LT 0

TECHNISCHE UNIVERSITAT MUNCHEN
DEPARTMENT OF INFORMATICS

BACHELOR’S THESIS IN INFORMATICS

Secure Port-Knocked Communications

Hugues Fafard

LT 0

TECHNISCHE UNIVERSITAT MUNCHEN
DEPARTMENT OF INFORMATICS

BACHELOR’S THESIS IN INFORMATICS

Secure Port-Knocked Communications

Sichere Port-Knocking-geschiitzte Kommunikation

Author Hugues Fafard

Supervisor Prof. Dr.-Ing. Georg Carle
Advisor Sree Harsha Totakura, M. Sc.
Date May 15, 2016

Informatik VIII
Chair for Network Architectures and Services LA

I confirm that this thesis is my own work and I have documented all sources and material
used.

Garching b. Miinchen, May 15, 2016

Signature

Abstract

Port-Knocking allows services to be hidden behind a firewall that blocks all access, yet
still be accessible by authorized users once a valid port-knocking request has been sent
to the server hosting the service.

Many port-knocking solutions are available, each with their own protocol that needs
to be supported by the client. Most applications do not support any of those protocols
and several applications also do not support encrypting their traffic. This thesis aims
to design a solution that allows applications to offload the port-knocking and the en-
cryption. We aim to use the port-knocking library sKnock, which uses certificates for
port-knocking authentification. Additionally, a Proof-of-Concept is implemented in the
scope of this thesis.

Zusammenfassung

Port-Knocking erlaubt Diensten, sich hinter einer Firewall zu verstecken, welche samt-
lichen Verkehr blockt. Dennoch bleiben diese Dienste fiir authorisierte Benutzer er-
reichbar, nachdem eine giiltige Port-Knocking-Anfrage fiir den Benutzer beim Server,
welcher den Dienst bereitstellt eingegangen ist.

Es sind zahlreiche Port-Knocking-Losungen verfiigbar, welche alle ihr eigenes Protokoll
haben, welches vom Client unterstiitzt werden muss. Die meisten Programme unterstiit-
zen jedoch keines dieser Protokolle und einige Programme unterstiitzen des Weiteren
keine verschliisselte Kommunikation. Diese Arbeit hat zum Ziel, eine Losung zu ent-
werfen, welche es Programmen erlaubt, das Port-Knocking und die Verschliisselung des
Datenverkehrs auszulagern. Als port-knocking library soll sKnock genutzt werden, wel-
ches Zertifikate zur Port-Knocking authentifizierung nutzt. Zusatzlich wird im Rahmen
dieser Arbeit eine Proof-of-Concept implementierung entwickelt.

Contents

1 Introduction

1.1 GoalsoftheThesis
1.2 Outline e
1.3 Motivation
1.3.1 History of Network Security
1.3.2 Port-Knocking

2 Background

2.1 The Port-Knocking Library: sKnock
211 BasicFunctioning L.
2.1.2 Elliptic Curve Cryptography
2.2 Possible Approaches Lo L
221 Proxy e
222 SSHTunnel
223 VPNTunnel
23 Conclusion L

3 Implementation

3.1 General Considerations
3.1.1 Connection TrackingandUDP
3.1.2 Differences in TCP/UDP Handling
3.1.3 Transparent Traffic Redirection
3.2 Overview of OpenVPN ExecutionFlow
3.3 Modified OpenVPN Client
3.3.1 Imitialization L Lo
3.3.2 Port-Knocking
3.3.3 Port-Knocking Keepalive Refresh
3.3.4 Transparent Traffic Redirection Using NAT
3.4 ConfigurationFiles L.
3.4.1 Server Configuration
3.4.2 Client Configuration

3.5 Limitations e

N DN DN = =

o 0 g N U1 G

I

A

41 TestSetup
42 Results

Testing
Conclusion

51 FutureWork
52 Summary 000

Additional Packet Diagrams

Bibliography

Contents

49

............... 49
............... 50

53

............... 53
............... 54

57

63

I

List of Figures

2.1
2.2
2.3

Al
A2
A3
A4

An sKnockpacket 6
An SSH tunneled packet L. 13
A VPN (over UDP) tunnel packet using SSL/TLS 17
A VPN packet over IPv4and TCP 58

A VPN packet over IPv6 and TCP 59
A VPN packet over IPv6 and UDP
As SSH packet over IPv6

List of Tables

2.1
2.2
2.3

31
3.2

Security strength comparison of RSAand ECC
MAC algorithms specified by the SSH standard.
Ciphers available to OpenSSH

Allocation of inner IPv4 and IPv6 addresses when tunneling over IPv4 .
Allocation of inner IPv4 and IPv6 addresses when tunneling over IPv6 .

12
13

37
37

Chapter 1

Introduction

1.1 Goals of the Thesis

The major goal of this thesis is to develop a solution to allow existing applications to
offload port-knocking and traffic encryption. This will involve some form of tunneling
to ensure the traffic encryption. The solution should present as little effort as possible
to set up, both for the service’s operator and for the user. If possible, the solution should
avoid requiring code changes to existing applications in order to be used. Furthermore,
the port-knocking authentication should be done via certificates. To achieve this, sKnock
should be used as a port-knocking library.

1.2 Outline

Chapter 1 introduces the concept of port-knocking and explains the rationale behind
developing a solution such as ours. This is followed by a brief introduction of sKnock as
our port-knocking library in Chapter 2. This chapter also explains the three approaches
which we considered and explains their respective strengths and weaknesses. Based on
this analysis, an approach is selected and its implementation is described in Chapter 3.
General concerns about additional features and how to implement them precede the
actual description of the implementation. Some limitations of the implementation follow.
The test setup used to test the implementation and the results of the test are explained
in Chapter 4. Finally, Chapter 5 suggests some improvements for future versions and
gives some pointers on how to do this before summarizing the results of this work.

2 Chapter 1. Introduction

1.3 Motivation

1.3.1 History of Network Security

When computer networks were first developed in the late 1960s and early 1970s, security
was not considered a design goal. The scientists designing the first computer networks
wanted to interconnect computers in an easy and reliable way. Adding security require-
ments to the goals would have added significant complexity to the protocols and thus
slowed their development. Furthermore, those networks were only accessible to people
deemed trustworthy, such as fellow scientists or the military [1].

It was not until the Internet became more widespread and government computers were
attacked in the 1980s that network security became a concern. But only when the
Internet became available to the public in the 1990s, network security become a major
issue [1]. During this time, public services started to appear. These are by definition
accessible by anyone, which is an exploitable weakness. While some threats—such as
(Distributed) Denial of Service attacks—often have easily recognizable patterns that
can be detected to thwart the attacks, any user can connect to such an open service,
whether or not the user has a legitimate interest in the service as such. This is much
harder, if not impossible, to detect and allows the user to gain information about the
service and potential vulnerabilities. This can partially be partially automatized with

port scans, which are, however more easily detectable.

1.3.2 Port-Knocking

Port-Knocking is an approach to run services behind a firewall, while still allowing users
with a legitimate interest in the service to access it. It is inspired by an ancient security
concept from which it also derives its name. A person wanting to enter a restricted
area would use a secret knock sequence as proof of his authorization to pass. When
transferring this concept to computer networks, the firewall would act as the closed
door and the client would attempt to connect to a previously specified sequence of ports.
If the sequence is correct, the desired port is opened and the client can connect [2].

This method does, however, have several severe security flaws. First and most impor-
tantly, any attacker can eavesdrop on the transmission of such a port-knocking sequence
and learn it. The attacker is then able to produce the sequence themselves to gain access
to the service. Furthermore, sending several packets before even beginning to actually
connect to a service introduces a delay. Additionally, any of those packets can get lost
during transmission or the packets may arrive in a different order than they were sent.
Both of these phenomena lead to a failure of the port-knocking requiring the client to

retry anew.

1.3. Motivation 3

There are several port-knocking approaches available, some of which successfully solve
some or even all of these issues. However, they all require the client to be aware of
the port-knocking and support the specific port-knocking protocol. In many cases,
a service provider cannot or is not willing to change the source code of the client
application to support a port-knocking protocol. This is, after all, a considerable effort.
Furthermore, the source code of the client application may not be available to the service
provider. A solution that allows these applications to offload the port-knocking to
another application would make it easier for service providers to protect their service(s)

with port-knocking.

Since there are still many applications which do not support encrypted communication,
this can be combined with offloading of the encryption to create a solution that enables
any program to use a secure communication channel to a port-knocked service with

little to no code changes.

Chapter 2

Background

This chapter begins with giving an overview of sKnock, the port-knocking library we
will use. This is followed by a description and theoretical evaluation of three possible
approaches to reach the goal of this thesis. One of these approaches is then selected
and this decision explained.

2.1 The Port-Knocking Library: sKnock

We have chosen to use the sKnock library to provide the port-knocking functionality
in this thesis. sKnock was recently developed as part of a Bachelor’s thesis by Daniel
Sel and features an approach to port-knocking, which we find promising. It is, however,
debatable whether it can still be called “port-knocking”, as it does not follow the name-
giving approach commonly associated with this term, though it does fulfill the same
purpose.

Instead of attempting to connect to a sequence of predefined ports to unlock a desired
port, it authenticates to the daemon running on the server with a single packet using
cryptography and additional information in the payload [3]. Such approaches are
sometimes also called Single Packet Authorization (SPA) and can be considered next-
generation port-knocking [4].

Unlike other SPA solutions, sKnock was designed with scalability and performance
in mind. As such, it requires neither the server daemon nor the client to keep track
of any state or other per-user information, such as credentials. A Proof-of-Concept
implementation bearing the same name was developed during the thesis. It runs in
user space and is designed for platform independence, though only Linux support has
been implemented yet. While it suffers from performance issues concerning the Elliptic
Curve Cryptography (ECC), profiling has shown that this is mostly due to the choice of
Python as a programming language and could easily be mitigated [3].

6 Chapter 2. Background

0 20 28 32
IP Header UDP Header Knock Header
32 33 34 36 52 56 3 gﬁ
3 : 5 §
< E 0 Protocol | Port No. Client IP Timestamp S s
= & S =
B A
=N)
2 E 56 710 | S §
& = & =
<9 X Client Certificate P
S 3 &
.
> g
710 782 783 § o%
Client Signature Padding 5 E
%3
783 816
Ephemeral Public Key

Figure 2.1: An sKnock packet. Source: [3]

2.1.1 Basic Functioning

TCP requires several packets to be exchanged while performing a handshake thereby
increasing the delay caused by performing the port-knocking. Furthermore, this would
also make it impossible to authenticate using a single packet. Thus, sKnock sends its
port-knocking request over UDP. The UDP header is followed by a minimal sKnock
header, containing a 1-Byte magic number to identify sKnock and a 3-Byte field with a
protocol version number [3]. Figure 2.1 shows a complete sKnock request, including the
IP, UDP and sKnock headers. It is a schematic overview and the fields are not necessarily
to scale.

sKnock sends the requested port number and signs the request with its private key. To
avoid having to manage user public keys on the server, the corresponding certificate—
signed by a CA trusted by the server—is appended to the payload. To prevent an
attacker from gaining information about the infrastructure, the payload is encrypted
with a symmetric key derived from the server’s public key and an ephemeral ECC key-
pair based on the same curve. Additional measures have been implemented to prevent
Man-in-the-Middle (MitM) [5] and replay attacks [6].

As shown in figure 2.1, the first field of the payload is a zero filled byte. Its purpose
is to facilitate efficient checking of the decryption’s success to rule out malformed or
incorrectly encrypted packets. Next is another 1 Byte long field containing the protocol
for which the desired port is to be opened, where ‘0’ represents UDP and ‘1’ represents
TCP. This is followed by the port number to be opened.

The IP address for which the port is to be opened is also included to protect against
Man-in-the-Middle attacks. To support IPv6, this field is 16 Bytes long. The downside

2.1. The Port-Knocking Library: sKnock 7

Security Bits H Sym. algorithm ‘ RSA key-size [bits] ‘ ECC key-size [bits] ‘

80 Skipjack 1024 160
112 3DES 2048 224
128 AES-128 3072 256
192 AES-192 7680 384
256 AES-256 15360 512

Table 2.1: Security strength comparison of RSA and ECC. Sources: [10,11]

of this are issues with NAT traversal, the IP address as seen by the Internet differs from
the IP address as seen by the client sending the request. For a request through a NAT to
be successful, the client requires knowledge of the public IP address. Replay protection
is achieved by the inclusion of a 4-Byte timestamp [7].

The next field contains the certificate belonging to the private key used to sign the entire
payload up until now, including the certificate itself. This signature is stored in the next
field, which is padded to a deterministic length of 72 Bytes, as ECDSA signatures may
vary in length with 72 Bytes being the maximum length when using a 256 bit key [8].

The entire payload up until now is encrypted using a symmetric key derived from the
server’s public key and an ephemeral ECC key-pair based on the same curve. For the
server to be able to decrypt the packet, the public key of the ephemeral pair needs to be
appended to the message, constituting the only unencrypted field of the payload [3].

2.1.2 Elliptic Curve Cryptography

Like RSA, Elliptic Curve Cryptography (ECC) is an approach at public-key cryptography
and as such can be used in asymmetric encryption and signature. However, they both
rely on different mathematical assumptions. Unlike RSA, which relies on the assumption
that the factorization of large numbers is significantly slower and more computationally
intensive than multiplying large prime numbers [9], ECC relies on the assumption that
reversing a point addition on elliptic curves of finite fields is significantly slower and
more computationally intensive than the addition itself. This assumption is known as
the elliptic curve discrete logarithm problem (ECDLP) [8].

Advantages of ECC include significantly smaller key sizes than RSA for comparable
security assurances. The size difference grows drastically as the security assurance
increases [10,11]. Table 2.1 shows a comparison of key-size at a comparable security
level. ECDSA signature sizes are also significantly smaller than RSA signatures [12].
Furthermore, ECC is faster than RSA for key generation and signature generation. On
the other hand, RSA is faster in regards to signature verification when using small key
sizes [11,13].

Since sKnock relies on sending the client certificate and a signature as part of the port-

8 Chapter 2. Background

knocking request, these smaller sizes are an important advantage, as they help keep
the packet small. This is especially important because sKnock is—for performance
reasons—not equipped to reconstruct fragmented requests [3].

2.2 Possible Approaches

The primary goal of providing existing applications with an encrypted communication
channel and to a port-knocked service can be reached via several approaches. Among
them, we have identified a local proxy, an SSH Tunnel and a VPN Tunnel as the three
most promising approaches to be further considered.

The following sections contain a more detailed description of the approaches, as well
as their potential advantages, drawbacks and other interesting properties.

2.2.1 Proxy

The first approach is a local proxy to which the application connects instead of connect-
ing directly to the service. The proxy would handle the port-knocking and encrypt the
traffic. However, this means that, unlike a traditional proxy, this approach requires a
counterpart on the server to decrypt the traffic before forwarding it to the service. This
solution would be the most flexible one, as it would be completely implemented by us.
However, this also makes it the most complex solution, as no code from other projects,
such as OpenSSH or OpenVPN can be reused.

2.2.1.1 Functioning

When an application connects to the proxy, it passes the target service’s IP address
and port on to the proxy, which then performs the port-knocking to open the port on
which a counterpart is listening on the server hosting the target service. Once the port
is open, the proxy connects to this counterpart and establishes an encrypted tunnel.
Subsequent traffic sent to the proxy is encrypted and sent through this tunnel to the
proxy’s counterpart on the server, which in turn decrypts it and locally forwards the

now unencrypted traffic to the service.

Considerations—A suitable proxy protocol would have to be selected to transmit in-
formation, such as the destination IP address and port. The SOCKS5 protocol would
be a good choice for this, as it is well-known and supports both IPv4 and IPv6, as well
as TCP and UDP connections [14]. Most browsers already implement support for the
SOCKSS5 protocol.

2.2. Possible Approaches 9

However, sKnock needs its client private key, its client certificate, the server’s certificate
and the CA’s certificate to perform the port-knocking [3]. This requirement is rather
unique and no existing proxy protocol is designed to convey this information. As a
result we either need to create a new proxy protocol or design an extension to SOCKS5.

Another way to solve this particular problem is to shift the management of the certificate
information from the application to the proxy itself. The proxy would then have to be
configured with service profiles. Each of these profiles would assign a tuple of client
private key, client certificate, server certificate, and CA certificate to a tuple of server
and port. Whenever a connection to a service is established, the proxy can then look up
the necessary certificate information without the applications needing to transmit or
even know about the certificates. The profiles could be provided by the service operator.

Since the proxy only listens to connections from localhost, it can be judged unneces-
sary for the application to authenticate itself to the proxy depending on the security
requirements.

It is also important that the server accepts requests addressed to the loopback interface,
as from the service’s perspective, packets sent through the proxy will be originating
from the same machine and may be addressed to the loopback interface, depending on
the counterpart’s implementation.

2.2.1.2 Communication Overhead

Gauging the communication overhead of this solution is difficult at this moment because
it depends on too many design decisions yet to be made, such as the choice of ciphers
and MACs used. It is however possible to minimize the per-packet overhead far beyond
what is possible with the other solutions, as they use more general-purpose tools that
are not as specialized as the proxy could be.

2.2.1.3 Advantages & Disadvantages

Advantages—As stated above, this approach would be the most flexible one, leaving us
free choice of ciphers and MACs. We would also be completely free to design how the
proxy and it’s counterpart would communicate and minimize the overhead. It would be
possible to avoid the additional overhead incurred by encapsulating the entire original
packet including its IP and TCP/UDP headers, as would be necessary in the approaches
presented in sections 2.2.2 and 2.2.3. This gives this approach the potentially lowest
overhead.

Since so many implementation details are open, it is however not possible to pinpoint
further advantages that might result from implementation specifics.

10 Chapter 2. Background

Disadvantages—Obviously, the application needs to be aware of this solution, as it
needs to address the proxy instead of directly connecting to the service. This requires
either modification of the source code in the case of a hardcoded service, or additional
configuration by the user in the case of a user-specified service.

Furthermore, the communication between the application and the proxy is unencrypted.
The applies to the communication between the service and the proxy’s counterpart,
which is running on the same server as the service. Since these communications all
happen on the local machine, the machine must already be compromised for an attacker
to exploit this. Thus, this can be considered a minor security risk, but it should not be
forgotten nevertheless.

This solution also requires the design of an entire security scheme to ensure that the
forwarded traffic stays confidential and cannot be manipulated. This opens up many
potential pitfalls, whereas other solutions described in sections 2.2.2 and 2.2.3 allow the
use of time-proven security schemes.

The most important disadvantage of this solutions however, is the fact that the applica-
tion’s source code may have to be modified to add support for the proxy protocol. In the
event of creating a new protocol or expanding SOCKSS, this will definitely be necessary.
Even if the certificate information is moved to proxy configuration and SOCKSS5 is used,
not all applications will already support the proxy protocol. Services which are accessed
through web browsers should not have this problem, as most web browsers already
implement support for the SOCKS5 protocol.

2.2.2 SSH Tunnel

Another promising approach is to establish an SSH tunnel and connect to the service
through that tunnel. An SSH tunnel connects a local port to a single port on a remote
machine through the SSH server. The SSH client would be modified to handle the port-
knocking and needs to have established an SSH tunnel before the actual application
attempts to connect to the service.

If following this approach, we would modify the OpenSSH [15] client. OpenSSH is
an open-source suite of SSH utilities released under a BSD-style license [15,16]. It is
one of the most widespread SSH suites and provides among other useful tools an SSH
client and server. The modified OpenSSH client would be expanded to use the sKnock
library to perform the port-knocking. Furthermore it could be stripped down to only
the necessary functionality to create an SSH tunnel, though this is not necessary.

2.2. Possible Approaches 11

2.2.2.1 Functioning

The modified SSH client is started before the application attempts to connect to the
service and uses the sKnock library to port-knock the SSH port! on the server hosting
the service. Once the port has been opened in the server’s firewall, the SSH client opens
an SSH Tunnel to that port, connecting a chosen local port to the service’s port on the
server. The application can then connect to the selected port on the local machine to
have its traffic sent over a secure channel to the service.

While OpenSSH also runs on Microsoft Windows through cygwin [15], a modified
version of PuTTY [19] could be made for Windows. PuTTY is one of the most popular
SSH clients on Windows and is released under the MIT license [19].

The service’s operator also needs to keep in mind that packets sent through the SSH
tunnel will be seen by the service as originating from the same host and may be addressed
to the loopback interface. The service thus needs to serve requests addressed to the
loopback interface and cannot be bound only to the server’s public IP address. This
also applies to clients which need to bind to an address, such as some peer-to-peer
applications.

2.2.2.2 Communication Overhead

The overhead incurred when sending a packet through an SSH tunnel is variable, de-
pending on the selected cipher, MAC algorithm and original packet length [20,21].

The original package sent by the application to the service including its IP and TCP
Header is transmitted as the payload of an SSH tunnel packet. As such, it inevitably
incurs the overhead of 20 Bytes for the additional IPv4 header [22] or 40 Bytes for
an additional TPv6 header [23]. Another 20 Bytes are added for the additional TCP
header [24].

Further overhead is incurred by the SSH protocol itself. An SSH tunnel packet starts off
with a 4 Byte field containing the length of the encrypted part of the packet followed
by a single Byte containing the length of the padding [20]. Next are another Byte-long
field containing a constant marking the packet as tunneled data and a 4 Byte channel
ID, followed by the actual payload [21]. This entire structure is padded to a multiple
of the cipher block size. The padding must be at least 4 Bytes and at most 255 Bytes
long [20].

The last field contains the MAC and as such also has a variable length depending on
the MAC algorithm used [20]. Available MAC algorithms are hmac-shal, hmac-shal-
96, hmac-md5, hmac-md5-96 [20], hmac-sha2-256, and hmac-sha2-512 [25]. OpenSSH

1SSH has been assigned port 22 by the IANA [17] but it can be configured to use another port [18].

12 Chapter 2. Background

’ Algorithm Status MAC size [Bytes] ‘
umac-32 — 4
umac-64 — 8
umac-96 — 12
hmac-sha1-96 | Recommended 12
hmac-md5-96 Optional 12
hmac-md5 Optional 16
umac-128 — 16
hmac-shal REQUIRED 20
hmac-sha2-256 | Recommended 32
hmac-sha2-512 Optional 64

Table 2.2: MAC algorithms specified by the SSH standard®. Sources: [20, 25, 26]

%The “umac-*” algorithms are not part of the official SSH standard. They are listed here because they
are supported by OpenSSH nevertheless.

further supports the non-standard umac algorithms umac-32, umac-64, umac-96, and
umac-128 [15,26]. Table 2.2 shows a list of MAC algorithms available to OpenSSH and
the respective size of their resulting MAC.

The SSH specification allows a large variety of CBC- and CTR-mode ciphers [20, 27].
Table 2.3 shows a list of available ciphers in OpenSSH and their respective block size.
Many of those ciphers are regarded as broken today and are only contained for com-
patibility with legacy clients. The cipher is used to encrypt the packet length, padding
length, SSH payload? and padding fields. The OpenSSH package distributed with Debian
8.4 prefers aes128-ctr as cipher and umac-64-etm® as MAC by default [18], though this
may vary depending on the OpenSSH binary used. Note that arcfour as a stream cipher
does not have a CBC/CTR mode or a block size.

Figure 2.2 is a graphical representation of an SSH tunnel packet using these default
settings making for an 8 Byte MAC. A packet sent through an SSH tunnel with these
settings thus incurs an overhead between 58 Bytes (With minimum padding of 4 Bytes)
and 313 Bytes (With maximum padding of 255 Bytes) depending on the length of the
original packet. When using IPv6 those values are 20 Bytes higher, since an IPv6 header
is 20 Bytes longer than an IPv4 header.

Further overhead arises from SSH protocol communications. This overhead is indepen-
dent of the number of packets sent through the tunnel and covers, for example tunnel
establishment and key-negotiation. It is also recommended to rekey after every gigabyte
sent or every hour depending which happens first [20]. RFC4344 further recommends

232

to rekey after every 232 packets sent or ever 21/4 blocks encrypted where L is the cipher

2In our case, the SSH payload is the tunneled packet.
3Encrypt-then-MAC (ETM) means that the MAC is calculated from the ciphertext instead of the plain-
text.

2.2. Possible Approaches

13

Algorithm ‘ Status (CBC) ‘ Status (CTR) ‘ Block size [bits] ‘

3des REQUIRED Recommended 64
blowfish Optional Optional 64
twofish256 Optional Optional 128
twofish192 Optional Optional 128
twofish128 Optional Optional 128
aes256 Optional Recommended 128
aes192 Optional Recommended 128
aes128 Recommended | Recommended 128
serpent256 Optional Optional 128
serpent192 Optional Optional 128
serpent128 Optional Optional 128
idea Optional Optional 64
cast128 Optional Optional 64
arcfour — — —

Table 2.3: Ciphers available to OpenSSH. Sources: [20, 27]

1

2

3

INDBNNnE

T Telale e w]e

ANNDERRE

A A [e o]

oo
4|32

8 | 64 IPv4 Header

12 | 96

16 | 128

20 | 160

24 |192

28 | 224 TCP Header

32 |256

36 | 288

40 (320 Packet Length

44 (352 Padding Length CHANNEL_DATA Channel ID...
48 | 384 ...Channel ID

...Payload...
(Variable length)

W\V_’_/\

1

2

3

T Telale e w]e

ANNDERRE

w7 A [o[e]

4 Bytes < Padding < 255 Bytes...
(Variable length)

—\//\—\//\/'/_\/\

0

1

2

3

L[]

8‘9‘10‘11‘12‘13‘14‘15

16‘17‘18‘19‘20‘21‘22‘23

24‘25‘26‘27‘28‘29‘30‘31

MAC (umac-64)

Figure 2.2: An SSH tunneled packet

14 Chapter 2. Background

block length [27]. Due to the low amount of data transmitted and the low frequency
at which such control messages are exchanged in pure tunneling use, this overhead
becomes negligible fairly quickly if the connection is in use long enough.

2.2.2.3 Advantages & Disadvantages

Advantages—One of the biggest advantages of this approach is the widespread use of
SSH. Most servers already have an SSH server installed and would therefore most likely
only need little to no additional configuration. In the case it is not already present on
the server, it is usually easy to obtain.

A user not having access to a modified OpenSSH client that can handle the port-knocking
could use the reference sKnock client and then manually open an SSH tunnel with any
SSH client. Once this is done, the application can connect to the service through this
tunnel. While this is less convenient, it is well within the grasp of anyone possessing at
least intermediate knowledge of such technology.

Another advantage of this solution is the time-proven security of the SSH protocol itself
and the OpenSSH implementation of the protocol [16]. This may not only further the
administrator’s and user’s trust in this solution, but also avoids the burden of needing
to develop a secure means of communication from the ground up.

Disadvantages—This solution does however have several rather severe disadvantages.
One of the most grave ones is the lack of support for X.509 certificates, despite RFC6187
specifying the use of X.509 certificates for SSH authentication [28]. Instead, it uses it’s
own minimalistic certificate format. Not implementing support for X.509 certificates
was a conscious decision of the development team in order to reduce certificate com-
plexity and theoretical attack surface [29]. It is therefore likely not desirable to add
this functionality. This means that the certificates used by sKnock cannot be reused by
OpenSSH to authenticate with the server, thus requiring the variations of each certifi-
cate to be passed to the binary even though the cryptographic material—the keys—is
the same. On the other hand, this allows to make the authentication for OpenSSH
independent from the authentication to open a port.

Another big issue is that SSH tunnels only support tunneling TCP connections [18,
30]. While many services one might want to hide behind port-knocking employ TCP
connections, this does not hold true for all services. Therefore, restricting applications
to TCP connections severely reduces the benefit of this approach.

As mentioned above, SSH tunnels only connect a single local port to a single port
on a remote host. In most cases, this should be unproblematic as most services only
require one port. However, some services, such as FTP in passive mode, for example,
require several ports to function. In this case, several SSH tunnels have to be established

2.2. Possible Approaches 15

manually. This is also necessary when accessing multiple services on the same server.
Additionally, the destination port and IP need to be known when establishing the SSH
tunnel. This is problematic for protocols that use random ephemeral ports, as those
ports are not yet known at that time.

Furthermore, OpenSSH works over TCP leading to SSH tunnels running TCP-over-TCP.
This can have a negative impact on the throughput [31, 32], especially when dealing
with packet loss above a few percent [33]. This is due to TCP being designed to run
over an unreliable carrier and being equipped with mechanisms to deal with packet loss.
TCP connections have a Retransmission Timeout (RTO) in which the sender expects an
ACK from the receiver. If the ACK is not received by the sender within the RTO, the
packet is queued for retransmission and the RTO is increased [24]. When tunneling a
TCP connection through another TCP connection, both run this coping mechanism in
parallel and do not necessarily have the same RTO.

When both RTOs have the same value, lost packets will only be retransmitted twice
(Once by the outer and once by the inner connection), which is bearable. But when the
outer RTO is longer then the inner RTO, any packet loss can lead to what is often called
a “TCP-Meltdown”. The inner RTO being lower, the inner connection will consider
the packet lost and queue it for retransmission before the outer connection’s RTO
has run out. When the outer RTO runs out, the packet in question is also queued for
retransmission by the outer connection. This causes a large amount of unnecessary
retransmissions to build up, possibly saturating the connection to the point where it
breaks [32,33].

2.2.3 VPN Tunnel

Lastly, it is possible to establish a VPN tunnel and connect to the service through
this tunnel. There are several VPN suits with different protocols available, such as
OpenVPN [34]. OpenVPN is an open-source VPN client and server published under a
GPL v2 license [35] that uses its own protocol based on SSL/TLS. Unlike IPsec, which
runs in kernel space and can have problems traversing NATs*, OpenVPN runs in user
space and has no problems traversing NATs [34,37].

This approach entails creating a modified OpenVPN client that can handle the port-
knocking and—if necessary—keep the port open by periodically resending a port-
knocking request. This may be necessary in cases where the server’s firewall does
not support connection tracking for the transport layer protocol used. This issue is
discusses in greater detail in section 3.1.1.

4When IPsec is run in Authentication Header (AH) mode, a cryptographic hash covering among other
things the IP source address is calculated [36]. As the source address is altered during NAT traversal, the
hash verification performed by the destination will fail [37].

16 Chapter 2. Background

2.2.3.1 Functioning

A normal, unmodified OpenVPN server is running on the server hosting the service.
The modified OpenVPN client is started before the application attempts to connect to
the service. It uses the sKnock library to send a port-knocking request for the port on
which the OpenVPN server is listening® and establishes a VPN tunnel. Once the tunnel
is established, the application connects to the service using the IP address of the server’s
VPN interface instead of the public IP address used to connect the OpenVPN client. The
port number of the service remains unaffected by the use of this solution.

Going one step further, it is also possible to use iptables to transparently redirect traffic
addressed to the server’s public IP to its VPN IP address. This would facilitate the use
of this solution for the end-user and make it completely transparent to the application.
This feature is described in more detail in sections 3.1.3 and 3.3.4.

Since requests arriving from a user employing this solution will be addressed to the
OpenVPN tun/tap device’s IP address, the service may not be bound exclusively to the
server’s public IP address(es), but must also accept requests addressed to OpenVPN’s
tun/tap interface. A tap interface’s address can be configured manually or obtained from
a DHCP server on the server’s network, while a tun interface always has the lowest
possible address in the pool allocated to OpenVPN’s pseudo-DHCP. Furthermore, the
tun/tap interface must not be subject to the port-knocking, for applications to be able to
connect to this interface without port-knocking. Since this interface is only addressable
after having connected to the OpenVPN server, this does not impact the security.

2.2.3.2 Communication Overhead
The per-packet overhead incurred when sending a packet through an OpenVPN tunnel
depends on several factors, such as:

« Whether OpenVPN is running in Routing or Bridging mode

« Whether the tunnel uses IPv4 or IPv6

« Whether the tunnel uses TCP or UDP

« The cipher used

+ The MAC algorithm used

« Whether SSL/TLS or a Preshared Key (PSK) is used

OpenVPN can operate either in Routing or Bridging mode. Routing mode operates on
layer 3, forwarding the entire layer 3 packet through the tunnel [37] thereby incurring

By default, this is port 1194 [17] but can be configured to be any other port.

2.2. Possible Approaches 17

Byte 0 1 2 3
Bit | 0 ‘ 1 ‘ 2 ‘ 3 ‘ 4 ‘ 5 ‘ 6 ‘ 7|8 ‘ 9 ‘10‘11‘12‘13‘14‘15 16‘17‘18‘19‘20‘21‘22‘23 24‘25‘26‘27‘28‘29‘30‘31
oo
4|32
8 | 64 IPv4 Header
12 | 9
16 | 128
20 | 160
o UDP Header
28 |224 Opcode |
32 | 256
36 | 288 HMAC (SHA-1)
40 (320 (Covers ciphertext IV and ciphertext)
44 (352
48 [384 |
52 | 416
56 | 448 Ciphertext IV (BF-CBC)
60 [480
64 |512 Packet ID...
68 | 544 ...Packet ID
72 | 576
Encrypted Payload (Ciphertext)
(Variable length)

- @ 0 @

Figure 2.3: A VPN (over UDP) tunnel packet using SSL/TLS

the overhead of additional headers depending on how the Tunnel connection is estab-
lished. Bridging mode on the other hand operates at layer 2, forwarding the entire layer
2 frame [37] and as such has all of the overhead of Routing mode plus an additional
Ethernet header. For our needs, Routing mode is sufficient.

The tunnel can either be run over IPv4 or IPv6. This affects the per-packet overhead
because of the different size of the additional header. An IPv4 header is 20 Bytes long [22],
while an IPv6 header is 40 Bytes long [23]. OpenVPN also supports running the tunnel
over either TCP or UDP. UDP is usually preferred because of its lower overhead due to
not being connection oriented and having a smaller overhead. Using UDP also avoids
potential TCP-over-TCP scenarios. As such it is the default. When using TCP, 20 Bytes
for the TCP header [24] are added to the overhead, while UDP adds 8 Bytes for its
header [38]. The OpenVPN also requires an additional 2 Byte field in its own header
when using TCP, which is not necessary with UDP.

Figure 2.3 shows a VPN data packet over IPv4 using SSL/TLS and the default settings®.
The OpenVPN header itself has several fields whose size depend on tunnel settings,
such as the cipher and MAC algorithm used. The first field is a 2 Byte field for the
packet length, which is only present when tunneling over TCP and thus not present in
figure 2.3. The next field is also a conditional field present only when using SSL/TLS
cryptography and is a combined 1 Byte field. It is composed of 5 bit message type and a

SUDP as the transport protocol, BE-CBC as the cipher and SHA-1 for HMACs.

18 Chapter 2. Background

3 bit key ID.

The next two fields are the HMAC over the entire rest of the packet and an Initialization
Vector (IV) for the ciphertext. The length of both of these depends on the selected
methods. For SHA-1 and BF-CBC, the HMAC is 20 Bytes long and the IV is 16 Bytes
long. Next is the packet ID, which is 4 Bytes long when using SSL/TLS and 8 Bytes long
when using a PSK. The last field is the payload, meaning the package that is being sent
through the tunnel. Both the packet ID and the payload are encrypted [39,40].

Since this approach uses SSL/TLS with the same certificates used by sKnock for port-
knocking, that leaves us with a per-packet overhead of 69 Bytes’ when tunneling over
UDP (preferred) or 83 Bytes® when forced to tunnel over TCP, assuming the default
cipher and HMAC are used. The values for IPv6 instead of IPv4 are each 20 Bytes
higher [39,40].

Additional overhead arises from the establishment of SSL/TLS sessions and regular key
re-exchange, as well as control messages. Since SSL/TLS requires a reliable communica-
tion channel, which is not given when tunneling over UDP, OpenVPN has an internal
ACK mechanism to confirm the receipt of control messages. This mechanism is only
used for control messages. Tunneled packets are not subject to this overhead [39,40].
All of this overhead is independent from traffic sent through the tunnel and it is so low
that it can be ignored.

Setting up an OpenVPN server is easily done and requires little effort from the service’s
operator. The only difficulty is configuring the service(s) to serve requests addressed
to OpenVPN’s tun/tap interface. A client configuration profile can also be created and
made available to the end-user by the service’s operator to make the use of this solution

easier and more comfortable for the user.

2.2.3.3 Advantages & Disadvantages

Advantages—This approach has many advantages, one of which is the native support
for X.509 certificates. This avoids the need for multiple certificate sets using different
standards or using another form of authentication additionally to the certificates. As
a result, this solution is both easier to maintain for the service’s operator and more
comfortable to use for the end-user.

This solution also benefits from a time-proven security scheme. Both OpenVPN and
SSL/TLS have been around for many years and have been extensively analyzed. As

a result, they have incorporated feedback and improved their security over the years.

769B = 20B (IPv4) + 8B (UDP) + 1B (opcode/key ID) + 20B (SHA-1 HMAC) + 16B (BF-CBC IV) + 4B
(packet ID)

883B = 20B (IPv4) + 20B (UDP) + 2B (packet length) + 1B (opcode/key ID) + 20B (SHA-1 HMAC) + 16B
(BF-CBC IV) + 4B (packet ID)

2.2. Possible Approaches 19

Having been around for this long also has led to administrators and even end-users,
in the case of SSL/TLS, to know about these technologies and trust them, thereby
facilitating the acceptance of this solution.

OpenVPN runs over UDP by default, thus having less overhead than TCP based ap-
proaches and avoiding possible TCP-over-TCP situations and the potential performance-
related pitfalls thereof, such as the infamous TCP-Meltdown described as a disadvantage
of the SSH tunnel approach in section 2.2.2.3. Nevertheless, OpenVPN allows to tunnel
over TCP at the service operator’s discretion. The operator can even configure the
OpenVPN server to accept both TCP and UDP tunnels and leave the choice to the user.
This can be useful to allow the use of UDP when possible but leave the ability to fall
back to TCP when UDP is unavailable intact.

Another advantage is the ability to redirect traffic destined to the service’s public IP
address through the tunnel, thus making this approach completely transparent to the
application. This increases the comfort for the end-user as they only need to launch the
modified OpenVPN client to establish the connection and then use the application as if
the service was not hidden behind port-knocking.

Since this approach mostly relies on widespread software, a user who does not have
access to the modified version of OpenVPN due to restrictive company policies, for
example, can still use sKnock’s reference client to manually perform the port-knocking
and then establish a tunnel with an unmodified version of OpenVPN. While this is
certainly less comfortable than using the modified OpenVPN client and does not provide
transparent traffic redirection for the service, it can at least allow access to the service
even without the modified client.

One last aspect needs to be mentioned, though it can be viewed either as an advantage
or disadvantage, depending on the viewpoint. Once the OpenVPN tunnel is established,
all of the server’s ports are accessible through the tunnel without the need for further
authentication or port-knocking. While this greatly facilitates the use of applications
using multiple ports or random ports, which are not yet known when establishing the
tunnel, it can also be viewed as a security risk. The sKnock library allows to encode a
restrictive list of allowed ports into the certificates [3]. This additional security feature
is completely circumvented when using this approach.

Disadvantages—This approach only has two notable disadvantages, one of which is
the aforementioned opening of all of the server’s ports to the user. As has already been
stated while enumerating the numerous advantages of this approach, this can however
also be viewed as an advantage.

The other disadvantage is the overhead. Of the three approaches presented in this
thesis, this one has the highest overhead. This being said, the per-packet overhead of
this solution is only 11 Bytes higher than that of the SSH tunnel solution. Furthermore,

20 Chapter 2. Background

the impact of this overhead may vary depending on the type of traffic the service
generates. Traffic with fewer but larger packets will be less affected than traffic with
many smaller packets.

2.3 Conclusion

The fact that the SSH tunnel approach only works for services that exclusively use TCP
greatly restricts its applicability. The risk of issues resulting from TCP-over-TCP further
increase an operator’s concerns about using such a solution. Finally, the lacking support
for X.509 certificates and the necessity of opening one tunnel per port further reduce
the comfort of using it, giving an already unattractive solution the killing blow.

The proxy approach, while seeming a lot more attractive and having a much lower
expected overhead, also has one severe disadvantage. The requirement for the client
to support the proxy protocol, be it SOCKS5 or a newly designed one results in the
possible need to modify the client software to add that support. This is a lot of work
and can even be impossible if the client is neither open-source nor developed by the
service operator. Most service operators are likely to recoil from a solution requiring
such drastic measures.

This leaves only the VPN tunnel. Luckily, the OpenVPN solution has few disadvantages,
the most notable of which is having the highest overhead of these three approaches.
However, this overhead is still not overly high and the VPN approach offers several
advantages to compensate. Requiring the least effort to implement from both, the
operator and the user, it also happens to be the least invasive approach. Add to that the
ability to seamlessly integrate sKnock with its EC Cryptography and certificates, this
solution becomes the clear winner.

21

Chapter 3

Implementation

This chapter explains the actual implementation of our modified OpenVPN client. It
describes some general considerations and design decisions that need to be made be-
fore giving a simplified description of how OpenVPN works. We then explain sample
configuration files for the server and the client before we finish with some limitations
of our implementation.

3.1 General Considerations

Once the OpenVPN approach has been selected, there are still a few general issues
to consider. One of the advantages of OpenVPN is that it leaves its user the choice
between TCP and UDP with UDP being the default. This however also means more
work for us, as TCP and UDP need to be handled differently in the code. Furthermore,
UDP as a stateless protocol may be problematic because of possibly lacking support
for connection tracking of stateless protocols in the server’s firewall. This eventuality
should also be dealt with. Lastly, if we wish to transparently redirect traffic to the
service’s server through the tunnel, we need to decide on how to achieve that.

3.1.1 Connection Tracking and UDP

Like most port-knocking solutions, sKnock only opens a port temporarily, closing it
again after a short, configurable timeout. To avoid severing the new connections that
were established while the port was open, the firewall is configured to allow already
established connections to pass even though new connections are blocked.

This requires to track the state of connections. Connections can be identified by at tuple
containing their (protocol, source IP, destination IP, source port, destination port) [41].
A firewall that supports connection tracking saves such a tuple and a state associated

22 Chapter 3. Implementation

with the connection whenever a new connection is established [42]. A tuple is removed
when the connection it identifies is terminated.

With TCP, this connection tracking is easily done, as TCP is a connection oriented
protocol. As such, it performs a handshake with its connection partner to establish a

connection and sends a termination message to close the connection.

UDP, however, is a stateless protocol and as such does not have any notion of connection.
This makes it harder to detect when a connection is established or closed. Luckily, most
modern firewalls are able to track “pseudo connections” in UDP. This works by checking
every received packet against a list of tracked connections. If no entry exists yet, a
new entry is created with a timeout. If an entry exists, its timeout is refreshed. Entries
whose timeout runs out are removed [42,43]. This approach can also be used with other
stateless protocols.

While most modern firewalls support this approach, this cannot be assumed to hold
true for all firewalls. Thus, for greatest possible interoperability, a mechanism needs to
be incorporated into our modified OpenVPN version that allows to periodically resend
a port-knocking request to keep the port open. The usage of this mechanism should
be optional such as to not unnecessarily weaken security by keeping the port open.
Furthermore, the interval at which the requests are resent should be configurable such
as to adapt to the timeout after which the server’s sKnock daemon is configured to close
the port again.

It would be advisable for service operators whose firewall does not support connection
tracking for stateless protocols to not configure a too low value for the duration for
which the port stays open, in order to leave some leeway for the client to resend a
port-knocking packet using this mechanism before the port closes again.

3.1.2 Differences in TCP/UDP Handling

Differences in the way UDP and TCP work affect the decision about when to perform
the port-knocking. In the case of TCP, the most logical choice would be to replace the
call to the built-in connect(socket, *address, address_len) function with a call to
a function provided by us. This function would perform the port-knocking and attempt
to connect. It would then ensure that the connection has been successfully established.

In the event of a failure it would retry the process several times before giving up.

This ensures the shortest possible delay between the opening of the port and the estab-
lishment of the connection, thereby allowing for extremely low values for the duration
for which the port stays open to be configured for the server’s sKnock daemon. Ad-
ditionally, this ensures that a connection attempt does not fail because of a dropped
port-knocking packet.

3.1. General Considerations 23

With UDP, however, there is no explicit connection function, since, as a stateless protocol
it does not have any notion of connections. Furthermore, there is no way of testing
whether a port-knocking request has failed, since it is not possible to attempt to connect
and check for the success of the operation.

The best we can do here is to perform the port-knocking right after the socket is created
and assume that the port-knocking was successful. In the event of a failed port-knocking
request, OpenVPN will fail to connect to the server without knowing why and may
retry the entire connection sequence. While not as elegant as the TCP solution, this
does at least ensure that the port-knocking packet has been sent before the program
continues execution and attempt to actually communicate with the server.

The entire process of establishing an OpenVPN tunnel usually only takes a few seconds.
Even though the delay between port-knocking and actual communication and thus
registration in the connection tracking table is potentially higher than with the TCP
solution, this should therefore rarely be an issue. Only setting values lower than those
few seconds for the duration for which the sKnock daemon on the server keeps the port
open could cause problems.

3.1.3 Transparent Traffic Redirection

In order to make this solution easy to use for the end-user, we want an application
accessing a port-knocked service to be useable as if the service was not port-knocked.
This means that it should not be necessary to edit the application’s settings.

Even once the tunnel is established, the port-knocking still protects every port on the
server. It is thus not possible to simply access the service with the server’s public IP
address, as the service’s port is still closed. However, if the service is listening on the
server’s tun/tap interface, it could be addressed through the server’s VPN IP address.
While this would ensure that the request to the service is sent through the VPN tunnel to
the tun/tap interface, this would mean a different usage of the application than without
a tunnel. The tun/tap interface must not subject to the port-knocking for this to work,
for a client to be able to connect to this interface without performing the port-knocking
itself.

One might be tempted to add an additional modification to the OpenVPN that edits
the client’s routing table in such a way as to route traffic to the server’s public IP
through the tunnel with the server’s VPN IP as the gateway. One would then activate
IP forwarding on the server to have the traffic sent from the client to the server’s public
IP address but arriving through the tun/tap interface forwarded to its public IP address.
This approach is, however, flawed, as VPN packets themselves, which contain the
encapsulated actual packets would then be routed through the tunnel. This means they
would be encapsulated into yet another packet, which would also be routed through

24 Chapter 3. Implementation

the tunnel, thereby creating an endless loop and causing the tunnel to collapse. The
VPN packets themselves thus need to be able to reach the server by its public IP address.
Moreover, the traffic being forwarded to the server’s public IP would again be subject
to the port-knocking.

This makes it necessary to exclude traffic from the OpenVPN client to the VPN port from
this redirection. This is, however, impossible to achieve with routing tables. Thus, we
decided to use iptables’ NAT functionality to rewrite source and destination IP addresses
of packets generated on the client instead of tampering with its routing table.

iptables’ NAT table has three chains: PREROUTING, OUTPUT, and POSTROUTING. The first
chain to be processed is the PREROUTING chain. It is processed before any routing
decisions are made and only applies to packets arriving to the machine, while the
POSTROUTING chain is the last one to be processed, after all routing decisions have been
made and applies to every packet leaving the machine. Source NAT (SNAT) replaces
the source address of a packet with another one and is usually done in the POSTROUTING
chain. The destination address on the other hand is substituted by Destination NAT
(DNAT), which is usually done in the PREROUTING chain [44]. The last chain, OUTPUT
has a similar purpose to the PREROUTING chain, except it applies to packets which are
generated on the machine, instead of being received by the machine [45].

Since the destination IP address can influence the routing decision and, in our case,
determines whether the packet is routed through the normal interface or the VPN
interface, the destination IP of packets sent by the client to the server’s public IP address
has to be substituted before these routing decisions are made. This means we have to
match packets addressed to the server’s public IP address in the client’s OUTPUT chain
and send them to the DNAT target.

In order for the server to be able to reply to the application, the source address of packets
sent from the client to the server’s public IP address also has to be replaced with the
client’s VPN address. In our case, this can only be done in the client’s POSTROUTING
chain, as the OUTPUT chain does not support the SNAT target and packets being generated
on the local machine do not traverse the PREROUTING chain. This is, however, the chain
in which SNAT is usually used and does not pose any problems for our setup. Since the
destination address of a response is the source address of the request, the response’s
destination address needs to be changes back to the original source address of the
request, meaning the source address it had before being subjected to SNAT. The SNAT
target automatically takes care of this replacement too.

Since DNAT is performed in the OUTPUT chain and thus before SNAT, the destination
address will already have been changed to the server’s VPN internal IP address. This
means the DNAT rule has to match against the server’s public IP address while the
SNAT rule has to match against the server’s VPN IP address. Putting it all that together,
we get the rules shown in listing 3.1.

3.2. Overview of OpenVPN Execution Flow 25

Listing 3.1: IPTables rules

iptables -A OUTPUT -d <server public IP> -j DNAT --to <server VPN IP>
iptables -A POSTROUTING -d <server VPN IP> -j SNAT --to <client VPN IP>

However, we still need to exclude the VPN packets themselves from these rules. Because
the ACCEPT target ends the traversal of a chain, we can simply prepend a rule that
specifically matches the VPN tunnel and use the ACCEPT target on it, thereby preventing
it from matching further rules in the table.

Furthermore, because we do not know what rules may already exist in the NAT table
and some targets—such as the above mentioned ACCEPT target—stop the traversal of
a chain, we want to ensure that our NAT rules are processed before any rule already
present. To do that, we simply insert our rules at the beginning of the NAT table. This
results in the improved rules as shown in listing 3.2.

Listing 3.2: IPTables rules

iptables -I OUTPUT -d <server public IP> -j DNAT --to <server VPN IP>
iptables -I OUTPUT -d <server public IP> -p <TCP / UDP> --port <VPN port> -j ACCEPT
iptables -I POSTROUTING -d <server VPN IP> -j SNAT --to <client VPN IP>

Note that the rules are now inserted (- I) instead of appended (-A). Therefore, the specific
rule for the VPN tunnel needs to be listed after the DNAT rule, as the last inserted rule
will be the first one to be processed.

Our modified OpenVPN client will be able to automatically determine the necessary IP
addresses and ports and add these rules to iptables once the tunnel is established. These
rules will automatically be removed when the tunnel closes.

Note that iptables is unable to cross between IPv4 and IPv6. This means that this feature
will only work for services addressed with IPv6 if OpenVPN is configured to assign IPv6
addresses inside the tunnel.

3.2 Overview of OpenVPN Execution Flow

The first thing OpenVPN does on startup is preparing a few things that only need to
be done once per process, such as initializing the global context. After that, OpenVPN
proceeds to execute three nested loops: The outer loop, the inner loop and the main
event loop.

The outer loop runs once on startup and after that once every time a SIGHUP is sent to
OpenVPN. Its main task is handling the top level initialization and then executing the
inner loop. The inner loop in turn selects and calls the appropriate function containing
an implementation of the main event loop depending on OpenVPN’s operation mode. It

26 Chapter 3. Implementation

runs once on startup, just like the outer loop and after that once every time a SIGUSR1
is sent to OpenVPN.

Because there is only one OpenVPN binary for both client and server mode, there exist
three functions containing an implementation of the main event loop:

« tunnel_point_to_point() for client mode,
« tunnel_server_tcp() for TCP server mode and lastly,
« tunnel_server_udp()! for UDP server mode.

As we do not change the server side code, we will not further discuss it here. The
tunnel_point_to_point() function first connects to the OpenVPN server, authenticates
and establishes the tunnel. Once this is done, it runs the main event loop, which does all
the actual work from now on until the tunnel is closed. At each pass, it checks its timers
to see if a timer based action, such as sending a keepalive ping needs to be performed.
It also checks if TLS needs attention before checking for previously received OpenVPN
control messages and processing them appropriately.

The main event loop then waits for either one of the following events to happen:
« Data can be read from the physical interface
« Data can be read from the tun/tap interface

« Data can be written to the physical interface

Data can be written to the tun/tap interface

A signal (such as SIGUSR1 or SIGHUP) has been received
 The timeout has run out

In the event of the timeout having run out, the main event loop simply proceeds to
the next iteration. This is done to ensure that the timers are checked sufficiently often.
operating system signals sent to OpenVPN are also checked in every iteration of the
main event loop. SIGHUP and SIGUSR1, cause OpenVPN to proceed to the next iteration
of the outer or inner loop respectively.

When data can be read from the physical interface, it is read and processed. For channel
control messages, an ACK control message is written to the output buffer of the physical
interface and the message itself will be handled during the next main event loop iteration.
Data messages are processed to extract the original packet which is encapsulated in it
and the “de-encapsulated” message is written to the output buffer of the tun/tap interface,

1 Actually, tunnel_server_udp() does not contain any logic itself. Instead, it simply calls the function
tunnel_server_udp_single_threaded (), which contains the actual implementation of this function. This
suggests that a multithreaded UDP server mode may be added in the future.

3.3. Modified OpenVPN Client 27

where it will be handled during the next iteration of the main event loop. This processing
includes among other things decryption, defragmentation and decompression.

When data can be read from the tun/tap interface, it is processed. This processing
includes compression (if activated), encryption (if activated), and encapsulation among
other things. The encapsulated packet is then written to the physical interface’s output
buffer to be handled during the main event loop’s next iteration. When there is data in
the output buffer of either the physical interface or the tun/tap interface, it is simply
sent through the appropriate socket.

OpenVPN’s state is separated into several layers, which are reset at different occasions.
There are three state levels with the “level 0 state” being initialized once at program
startup and then remaining until the process ends. The “level 1 state” is reset with every
iteration of the outer loop, but persist over iterations of the inner loop and the main
event loop. Lastly, the “level 2 state” is reset with every iteration of the inner loop. The
main event loop does not have an own context level.

3.3 Modified OpenVPN Client

The following sections explain the changes and additions done to the OpenVPN code in
order to achieve our goal in more detail. The code is classified by functionality, starting
with the initialization of resources needed by the rest of the code and continuing with
the port-knocking itself. Finally, additional features, such as periodic refresh of the port-
knocking request and transparent traffic redirection using iptables’ NAT functionality
described in sections 3.1.1 and 3.1.3 are explained.

Most of the new code that was added to enable OpenVPN to use sKnock to perform
the port-knocking, as well as additional features mentioned above, is located in the
new files wilfred.c and wilfred.h?. Other files have been slightly modified to include
calls to functions in wilfred.c. These files are openvpn.c, init.c, sockets.c and
forward.c. Furthermore, the files options.c, options.h and openvpn.h have been
modified to expand OpenVPN’s state and add new command line options for port-
knocking. In order to pass some state information down the port-knocking functions,
several function signatures had to be adapted resulting in minor changes to several
other files.

All new functionality added by us is entirely optional and is only used when the appro-
priate options are specified on the command line, in the configuration file or are pushed
by the server. This works without modifying the OpenVPN server, as it is able to push
arbitrary configuration options, as long as the OpenVPN client is able to understand

2The name for these files is derived from Wilfred Mott, a character from the Doctor Who series, whom
The Doctor saves at the cost of his own life. This event is heralded by Wilfred knocking four times.

28 Chapter 3. Implementation

them. Our modified OpenVPN client can therefore still function as a regular OpenVPN
client, thereby avoiding to have two versions of basically the same application installed
for users who also need a regular OpenVPN client.

3.3.1 Initialization

The initialization process consists of two steps, starting with the initialization of the
C wrapper library for sKnock. This can actually be done with only a single call to the
knock_init() function of the sKnock library’s C wrapper. Calling knock_init(), as
well as doing some additional checks to ensure the success of the operation is handled
by the function knock_init_lib() inwilfred.c. It also keeps track of the initialization
status of the library in a global variable and is able to print status messages or error
messages when something goes wrong. Listing 3.3 shows a simplified version of this
function, which has been stripped of screen output. First, it checks whether the library
has already been initialized before, in which case it immediately ends successfully. If
the library has not been initialized yet, the appropriate function from the sKnock library
is now called and its success stored. Lastly, the success of the initialization is returned.

Listing 3.3: Initialization of the port-knocking library

static bool initialized = false;

bool knock_init_lib () {
if (initialized) {
return true;

}
initialized = knock_init() ? false : true;

return initialized;

}

The second part of the initialization process is the initialization of the port-knocking
handle. This is essentially done with a single call to the sKnock library’s C wrapper
function knock_new(. ..), which requires a few values pertaining to the verification of
the port-knocking’s success, the path to the server’s certificate and the path to a PKCS#12
file containing the client’s private key and certificate, as well as the CA’s certificate.
Since the PKCS#12 file may be password protected, as it contains the client’s private
key, a password is also required. For PKCS#12 files that are not password protected,
it is simply an empty string. Furthermore, it is necessary for the library to have been
initialized before this function can be called.

Our modification to the OpenVPN code includes the function knock_init_handle(...),
which takes a password source and paths to the server’s certificate and the client’s
PKCS#12 files as parameters. A simplified version of this function, which has been
stripped of screen output is shown in listing 3.4. The listing also shows a few C prepro-

3.3. Modified OpenVPN Client 29

cessor definitions, which will be explained later. The function first checks if the library
has previously been initialized and aborts with a failure if not.

Next, the password of the PKCS#12 file has to be retrieved. OpenVPN already sup-
ports PKCS#12 containers and thus already provides methods of retrieving a pass-
word, which we can use. To avoid asking for the password twice, we first check if
the password has already been queried by OpenVPN and is still cached. To access this
information, the new function get_passbuf() is added to ssl.c. It simply returns a
pointer to OpenVPN’s password cache. If no password is saved in the cache, OpenVPN’s
pem_password_setup(...) function is called. Its task is to retrieve the password from
the password source key_pass_file, which may either be a path to a file or stdin.
This source can be passed as a parameter (--askpass [file]) when starting OpenVPN.
pem_password_setup(...) stores the password in the password buffer to which we

now have a pointer.

Because knock_new(...) requires a password string even for certificates without pass-
word, a dummy password consisting of an empty string is created and the usual password
retrieval skipped for certificates without password.

Should pem_password_setup(...) fail, a local password buffer is created and the pass-
word is manually queried form the password source and saved into this buffer. The
existence of a password is then checked one last time and if still no password could
be retrieved, the function fails. If, however, a password could be retrieved by either of
these methods, knock_new(. . .) from sKnock’s C wrapper is called with the appropriate
paths, the password and information on the desired port-knocking success verification.
If the allocation of a local password buffer was necessary, it is now freed before the
success of the handle initialization is returned.

Listing 3.4: Initialization of the port-knocking handle

#define KNOCK_TIMEOUT 5
#define KNOCK_ATTEMPTS 1
#define KNOCK_VERIFY 0

static bool initialized = false;
static struct KNOCK_Handle xknock_handle = NULL;

bool knock_init_handle (const charx key_pass_file,
const charx cert_srv_file,
const charx pkcsl2_client_file) {
struct user_pass *pass;
bool free_pass = false;

if (!initialized) {
return false;

}

if (nopass) {
/* Use an empty string as password instead of querying one if the
* certificate does not have a password */
pass = malloc(sizeof(struct user_pass));

30 Chapter 3. Implementation

memset(pass, 0, sizeof(struct user_pass));
free_pass = true;

} else {
/* Retrieve the PKCS#12 password x/
pass = (struct user_pass *) get_passbuf();

if (!strlen (pass->password)) {
pem_password_setup (key_pass_file);
}
if (!strlen (pass->password)) {
/* Manually query the password, if the normal way fails x*/
pass = malloc(sizeof(struct user_pass));
free_pass = true;
get_user_pass (pass,
key_pass_file,
UP_TYPE_PRIVATE_KEY,
GET_USER_PASS_MANAGEMENT | GET_USER_PASS_PASSWORD_ONLY) ;
}
if (!strlen (pass->password)) {
return false;
}
}

/* Create the port-knocking handle */

knock_handle = knock_new(KNOCK_TIMEOUT,
KNOCK_ATTEMPTS,
KNOCK_VERIFY,
cert_srv_file,
pkcsl2_client_file,
pass->password) ;

/* Free the memory if we had to get user_pass ourselves x*/
if (free_pass) {
free(pass);

}

/* Check whether the handle could be successfully initialized x*/
if (knock_handle == NULL) {
return false;

}

return true;

As has already been hinted, the sKnock library offers the option to verify the success of
the port-knocking attempt and—if necessary—retry the port-knocking. This is done by
attempting to open a connection to the port on the server. If the connection is refused
or cannot be established before a timeout, the port-knocking is deemed unsuccessful
and another attempt is made until a maximum number of attempts is reached. Due to
the nature of this verification, it only works for TCP ports, since UDP as a stateless
protocol does not have a concept of connections.

This behavior can be configured through the knock_new(. . .) library call’s first three
parameters, the first parameter being the timeout, the second one the maximum number
of attempts and the third one allowing to enable or disable this functionality. We wish to
verify the success of the port-knocking operation ourselves, as this allows us to directly

3.3. Modified OpenVPN Client 31

use the socket for OpenVPN if the port-knocking was successful. Therefore, we disable
this functionality.

Calls to these initialization functions are added to the level 1 initialization in the outer
loop, which is implemented in openvpn_main(...) in init.c. An excerpt of the modi-
fied version of this function is shown in listing 3.5. Port-Knocking is only initialized if
it was enabled by passing the option - -knock to OpenVPN on the command line or in a
configuration file.

Listing 3.5: Excerpt of modified openvpn_main(...) in init.c

static int openvpn_main (int argc, char xargv[]) {

/* Init the port-knocking library if necessary x*/
if (c.options.knock) {
if ('knock_init_lib())
break;
if (!'knock_init_handle(c.options.key_pass_file,
c.options.knock_cert_srv_file,
c.options.pkcsl2_file,
c.options.knock_nopass))
break;

return 0;

}

3.3.2 Port-Knocking

The port-knocking itself is handled with the sKnock library’s knock_knock(. ..) func-
tion, which requires a port-knocking handle, the OpenVPN server’s address, port and
transport layer protocol®. The port-knocking handle is part of the C wrapper for sKnock
and mirrors a ClientInterface object in from sKnock’s Python code.

The Port-knocking in our modified OpenVPN client is mainly handled by the func-
tion knock_do_knock(...), which takes a file descriptor of the socket for which to
port-knock and the OpenVPN server’s IP address and port. This function first checks
whether the library and a port-knocking handle have been initialized before continuing.
If either have not been properly initialized, the function fails immediately. If everything
is in order, the function proceeds with determining whether OpenVPN is running over
TCP or UDP by querying the socket. Since this yields us the protocol IDs as specified
in the respective RFCs* but sKnock uses different IDs, we need to “translate” this in-
formation. Once this is done, our code calls the sKnock library’s knock_knock(. . .)
function with the address and port of the OpenVPN server (supplied as parameters

30nly TCP and UDP are supported at this moment.
4TCP has protocol ID 6 and UDP has protocol ID 17

32 Chapter 3. Implementation

to knock_do_knock(...)) and the transport layer protocol determined before. The
knock_knock(...) function’s return value is only relevant when using sKnock’s suc-
cess verification feature, which we do not, thus it is unnecessary to catch this return
value. Listing 3.6 shows a simplified version of this function, which has been stripped

of screen output.

Listing 3.6: Simplified version of knock_do_knock(...) inwilfred.c

static bool initialized = false;
static struct KNOCK_Handle xknock_handle;

bool knock_do_knock (socket_descriptor_t sd, char xaddr_str, int port) {
int proto;
socklen_t len;

/* Abort if not ready to do port-knocking */
if ((!initialized) || (knock_handle == NULL)) {
return false;

}

/* Determine what protocol to knock on x/
len = sizeof(int);
getsockopt(sd, SOL_SOCKET, SO_PROTOCOL, &proto, &len);
if ((proto == IPPROTO_IP) || (IPPROTO_TCP)) {
proto = KNOCK_TCP;
} else if (proto == IPPROTO_UDP) {
proto = KNOCK_UDP;
}

knock_knock(knock_handle, addr_str, port, proto);

This function is accompanied by a few helper functions, which are able to receive
information about the OpenVPN server’s address and port in a different format and pass
it on to the knock_do_knock(...) function. knock_do_knock_ sockaddr(...) takes
a sockaddr structure as its parameter instead of an IP address and port. These are
instead extracted from the sockaddr structure. This is done with to two other helper
functions, knock_get_params(...), which extracts the information and stores it in a
knock_params structure, and knock_do_knock_struct(...), which uses the IP address

and port stored in a knock_params structure.

Another important function is the knock_connect(...) function. Its task is to establish
a TCP connection and it is intended as a drop-in replacement for the built-in connect ()
function in C. As such, it requires a socket descriptor and a sockaddr structure, from
which to extract the server’s address and port, as parameters. It handles the port-
knocking and the verification of its success. In the event of a failure, it also handles

retrying the process.

The knock_connect(...) function first extracts the OpenVPN server’s address and
port in an IPv6 aware fashion using the knock_get_params(...) helper function and
stores those values in a knock_params structure for reuse, in case another port-knocking

3.3. Modified OpenVPN Client 33

attempt is necessary. Should this operation fail, the function will immediately abort. The
knock_params structure is defined in wilfred.h and merely contains the IP address and
the port. Next, the port-knocking is performed using knock_do_knock_struct(...),
which accepts a knock_params structure as a parameter. knock_connect(...) then
attempts to establish a TCP connection. If the return code of this connection attempt
indicates a connection refusal or a timeout, it assumes that the port-knocking was
unsuccessful and another attempt is made, reusing the address and port extracted earlier.
This is done up to four times®. A connect(...) return code stating that the connection
is in progress indicates that the socket is in non-blocking mode. In this case, we are
unable to verify the success of the port-knocking and do not repeat the port-knocking.
Lastly, the return code of the last connect(...) call is returned, as OpenVPN performs
its own checks on this value. The listing 3.7 shows a simplified version of this function,
again stripped of screen output.

Listing 3.7: Simplified version of knock_connect(...) inwilfred.c

static struct KNOCK_Handle xknock_handle = NULL;

int knock_connect (socket_descriptor_t sd, const struct sockaddr xremote) {
struct knock_params params;
int status;
int i;

if ('knock_get_params(¶ms, remote)) {
return false;

}

/* Try to knock the port and connect. Try up to four times x/
for (1 =0; i < 4; i++) {
knock_do_knock_struct(sd, ¶ms);

status = connect(sd, remote, af_addr_size(remote->sa_family));
if (status) {
status = openvpn_errno ();

/* Only retry if the connection was refused (REJECT) of timed out (DROP) x/
if ((status == ECONNREFUSED) || (status == ETIMEDOUT)) {
continue;
}
/* When the socket is in non-blocking mode, we cannot verify the success x/
if (status == EINPROGRESS) {
break;
}
}

/* If the connection was successfully established or failed for another
* reason than a timeout or refused, do not retry x/
break;

}

return status;

}

3 Another wink at the Doctor Who series. The 10th Doctor’s death is heralded by Wilfred knocking
four times. Any other number could be used here, though values above five are probably useless.

34 Chapter 3. Implementation

As has been explained in section 3.1.2, when running the tunnel over UDP, the port-
knocking is done directly after the socket is created. Sockets are created by the function
create_socket(...) in socket.c. The relevant excerpt of this function’s modified
version is shown in listing 3.8.

Listing 3.8: Excerpt of the modified create_socket(...) in socket.c

static void create_socket (struct link_socket* sock,
struct addrinfox addr,
struct context xc) {
if (addr->ai_protocol == IPPROTO_UDP || addr->ai_socktype == SOCK_DGRAM) {
sock->sd = create_socket_udp (addr, sock->sockflags);
sock->sockflags |= SF_GETADDRINFO_DGRAM;

/* Do port-knocking. =/
if (c->options.knock) {
knock_do_knock_sockaddr(sock->sd, addr->ai_addr);

}

When running the tunnel over TCP, the port-knocking is done during connection
establishment instead. This happens in openvpn_connect(. ..), which is in the same
file. The calls to the built-in C function connect(...) need to be replaced by calls
to knock_connect(...). Because of C preprocessor #ifdef commands differentiating
between versions compiled with and without non-blocking socket use, there are actually
two calls that need to be replaced. Listing 3.9 shows the relevant excerpts of this
function’s modified version. Since both calls to connect(...) are identical and as
such replaced by identical calls to knock_connect(...), for simplicity’s sake the listing
contains only one call.

Listing 3.9: Excerpt of the modified openvpn_connect(...) in socket.c

int openvpn_connect (socket_descriptor_t sd,
const struct sockaddr *xremote,
int connect_timeout,
volatile int *signal_received,
struct context *c) {
int status = 0;

if (c->options.knock) {
status = knock_connect (sd, remote);

} else {
status = connect (sd, remote, af_addr_size(remote->sa_family));
if (status)

status = openvpn_errno ();

3.3. Modified OpenVPN Client 35

To enable port-knocking, the option - -knock has to be passed to OpenVPN either on the
command line, or in a configuration file. When this option is not passed, the modified
OpenVPN client behaves exactly like a normal client.

3.3.3 Port-Knocking Keepalive Refresh

As has been mentioned in section 3.1.1, the server’s firewall may not support connection
tracking, especially for stateless transport layer protocols, such as UDP. Since the sKnock
daemon closes the port after a configurable timeout, this would cause the tunnel to be
severed shortly after that happens. To prevent this, a mechanism has to be implemented
to reiterate the port-knocking request. This would cause the port to be reopened before
OpenVPN has a timeout or—in future implementations of sKnock—simply keep the port
open.

Because this periodic resending of the port-knocking request is not always necessary and
constitutes an additional overhead, this feature is entirely optional. It can be activated
through the new option - -knock-refresh [nl, where n specifies the interval in seconds
at which the port-knocking request is to be resent. It defaults to 10 when not explicitly
specified. This option can also be pushed by the server, allowing the service’s operator
to ensure that the user’s modified OpenVPN client can maintain a connection despite
the firewall not supporting connection tracking for the selected transport layer protocol.
If this option is unnecessarily used with a server whose firewall supports connection
tracking for the selected transport layer protocol, the option will not have any negative
effects beyond the unnecessary overhead of periodically sending an additional packet.

OpenVPN’s main loop checks for timer based events on every iteration. To do this,
OpenVPN stores an event_timeout structure for each of these timer based events in its
level 2 state® Listing 3.10 shows the definition of this structure, which can be found in
interval.h. n stores the interval at which this event is to be triggered in seconds, last
stores the last time at which the event was triggered and defined indicates whether
or not this timer is active. Timers which are not defined are ignored. We can thus add
such a timer for our port-knocking refresh to the level 2 state.

Listing 3.10: struct event_timeout definition in interval.h

struct event_timeout
{

bool defined;

interval_t n;

time_t last; /x time of last event x/
+

Each of these structures needs to be initialized before it can be used. This is done

The level 2 state contains state information that is reset at every iteration of the inner loop. This is
described in section 3.2.

36 Chapter 3. Implementation

with the event_timeout_init(...) function. OpenVPN initializes all timers in its
do_init_timers(...) function, which is called during level 2 initialization. This also
means that all these timers are reset whenever OpenVPN’s inner loop reiterates. We can
simply add the initialization of our new timer to this function, as shown in listing 3.11.

Listing 3.11: Excerpt from do_init_timers(...) in init.c

static void do_init_timers (struct context *c, bool deferred) {

if (c->options.knock && c->options.knock_refresh_timeout)
event_timeout_init (&c->c2.knock_refresh_interval,
c->options.knock_refresh_timeout,
0);

The main event loop calls a series of functions which eventually lead to a call to
process_coarse_timers(...). This function calls a check function for each timer one
after another. The check function does nothing more than call event_timeout_trigger,
which checks whether the timer has run out and updates it if necessary. If the timer
has run out, then an appropriate action is taken. Listing 3.12 shows an excerpt of the
modified process_coarse_timers(...) containing a call to our own check function,
which is shown in 3.13.

Listing 3.12: Excerpt from process_coarse_timers(...) in forward.c

static void process_coarse_timers (struct context xc) {

/* Does the port-knocking request have to be refreshed? x/
knock_check_refresh (c);

}

Listing 3.13: knock_check_refresh(...) and knock_do_refresh(...) inwilfred.c

void knock_do_refresh (struct context *c) {
knock_do_knock_sockaddr(c->c2.link_socket->sd,
c->c2.link_socket->info.lsa->current_remote->ai_addr);

}

inline void knock_check_refresh (struct context xc) {
if (c->options.knock
&& c->options.knock_refresh_timeout
&& event_timeout_trigger (&c->c2.knock_refresh_interval,
&c->c2.timeval,
ETT_DEFAULT)) {
knock_do_refresh (c);
}
}

3.3. Modified OpenVPN Client 37
IPv6 Tunneling || Off I On \
Outer Addr. | Inner Addr. || Outer Addr. | Inner Addr.
IPv4 v v v v
IPv6 X X X v

Table 3.1: Allocation of inner IPv4 and IPv6 addresses when tunneling over IPv4

IPv6 Tunneling || Off I On \
Outer Addr. | Inner Addr. || Outer Addr. | Inner Addr.
IPv4 X v X v
IPv6 v X v v

Table 3.2: Allocation of inner IPv4 and IPv6 addresses when tunneling over IPv6

3.3.4 Transparent Traffic Redirection Using NAT

To make this solution more comfortable and easier to use for the user, we want to
offer an option to transparently redirect traffic to the service’s public address through
the tunnel, as explained in section 3.1.3. For the purposes of this Proof-of-Concept
implementation, we decided to use iptables’ NAT functionalities with the equivalent
of the rules shown in listing 3.2. This feature can be enabled through the new option
--knock-nat and is entirely optional. Its use requires iptables to be installed system
running the modified OpenVPN client.

OpenVPN fully supports IPv6. This means that it can establish a tunnel over an IPv6
connection, as well as allow IPv6 traffic to pass through the tunnel. While this means
that IPv6 packets can be sent through the tunnel, this feature is disabled by default.
However, the server may push configuration options to the client enabling this. In any
case, OpenVPN will allocate IPv4 addresses inside the tunnel, but IPv6 addresses will
only be allocated when IPv6 tunneling is enabled. Thanks to this behavior, it is always
possible to redirect from a public IPv4 address to an internal IPv4 address, as can be
seen in table 3.1. When tunneling over IPv6, however, it is not possible to redirect to an
OpenVPN internal IPv4 address. Thus, redirection can only work if IPv6 tunneling is
enabled. This is shown in table 3.2.

There are mainly three methods of programmatically interacting with iptables: Through
the libiptc library, by repeatedly calling the iptables binary, or by opening a pipe
into stdin of the iptables-restore binary. According to the official iptables FAQ, the
libiptc library was never intended for public use. It is an internal interface used by the
various iptables binaries. As such it is rather unstable and its use is not recommended.
Instead, it is recommended to call one of the aforementioned binaries [46].

While hardcoding a call to a binary is generally not a good practice as file paths or
binary versions may not be the same across systems, using an unstable library, which

38 Chapter 3. Implementation

may also differ from system to system is not a good idea either. Since both methods
have portability issues, we decided to go with the recommended approach and call
one of the binaries. This approach also has the advantage of requiring significantly
less code, which should be easier to maintain. We chose to open a pipe into stdin of
iptables-restore, as this allows us to execute several commands while only using
one call to a binary, whereas three calls to a binary would be necessary when using
iptables. It is important to call iptables- restore with the -n or - -noflush parameter
to prevent it from removing all previously installed rules.

Once the rules have been added to iptables, all relevant information needs to be stored
in order to be able to remove the rules when the tunnel is closed. This information
consists of the server’s public and VPN IP addresses, the client’s VPN IP address, and
the port and protocol over which the VPN tunnel runs. Additionally, it is necessary to
store whether the rules are IPv4 or IPv6, as a different binary needs to be called for IPvé6.
The structure nat_info is defined for that purpose. Its definition is shows in listing 3.14.
Note that the IP addresses are stored as strings. This allows them to be used directly
when calling iptables-restore.

Listing 3.14: struct nat_info definition in wilfred.h

struct nat_info {
bool ipv6;
char vpn_loc[INET6_ADDRSTRLEN];
char vpn_rem[INET6_ADDRSTRLEN];
char pub_rem[INET6_ADDRSTRLEN];
int proto;
int port;

+

A global pointer to such a structure is declared in wilfred. c. Additionally, this pointer
is also used to determine whether or not the traffic redirection has been enabled, with
a NULL-pointer indicating that traffic redirection has not been enabled. The function
knock_nat_on(...) adds the iptables rules, and while doing so, allocates and fills the
global structure. knock_nat_off(), on the other hand, removes the iptables rules and
reads the necessary information to do so from the global nat_info structure. Once it is
done, it frees the allocated memory, thereby signaling that no redirection is configured
anymore.

The simplified code for knock_nat_on(...), which has been stripped of screen output,
is shown in listing 3.15. The function first checks if trying to NAT IPv6 to IPv4 and
aborts if this is the case. It also checks whether traffic redirection has previously been
activated and if so, tries to deactivate the old one before activating the new one. It then
determines whether to NAT IPv4 or IPv6 and gather the necessary information. For
the IP addresses, this is done by helper functions which extract the IP addresses from
various field in OpenVPN’s context. These helper functions will be described later. If
any of the necessary information could not be determined, the function aborts here. If

3.3. Modified OpenVPN Client 39

everything went well until now, a pipe is opened into stdin of iptables-restore or
ip6tables-restore and the rules are written to that pipe.

Listing 3.15: Simplified code for knock_nat_on(...) inwilfred.c

static struct nat_info *nat_info = NULL;

bool knock_nat_on (struct tuntap *tuntap, struct sockaddr *sa, int proto) {
FILE xipt_restore;
bool status;

/* IPtables cannot NAT IPv4 to IPv6 or vice-versa.
* Abort if only one of public/VPN address is IPv6. */
if ((sa->sa_family == AF_INET6) && !(tuntap->ipv6)) {
return false;

}

/* If NAT has already been enabled, disable the previous NAT before proceeding. x*/
if (nat_info !'= NULL) {

knock_nat_off();
}

nat_info = malloc(sizeof(struct nat_info));

/* Dtermine whether to NAT IPv6 or not x/
nat_info->ipvé6 = ((sa->sa_family == AF_INET6) && (tuntap->ipv6)) ? true : false;
/* Fill in the NAT info. %/
status = true;
status &= knock_nat_ip_vpn_local(nat_info->vpn_loc, tuntap, nat_info->ipv6);
status &= knock_nat_ip_vpn_remote(nat_info->vpn_rem, tuntap, nat_info->ipv6);
status &= knock_nat_ip_pub_remote(nat_info->pub_rem, sa, nat_info->ipv6);
nat_info->proto = proto;
nat_info->port = ntohs(nat_info->ipv6

? ((struct sockaddr_in6 *)sa)->sin6_port

((struct sockaddr_in x)sa)->sin_port);

if (!status) {
free(nat_info);
return false;

}

/* The actual magic. Open a pipe into stdin of iptables-restore as
* recommended by the IPtables FAQ. x*/
if (nat_info->ipv6) {

ipt_restore = popen("/sbin/ip6tables-restore_-n", "w");
} else {
ipt_restore = popen("/sbin/iptables-restore_-n", "w");

}

fprintf(ipt_restore, "xnat\n");

fprintf(ipt_restore, "-I_OUTPUT_-d_%s_-j _DNAT_--to_%s\n",
nat_info->pub_rem, nat_info->vpn_rem);

fprintf(ipt_restore, "-I_OUTPUT_-d_%s_-p._%s_--dport_%i_-j _ACCEPT\n",
nat_info->pub_rem, proto_ntop_socket(nat_info->proto), nat_info->port);

fprintf(ipt_restore, "-I_POSTROUTING_-d_%s_-j _SNAT_--to_%s\n",
nat_info->vpn_rem, nat_info->vpn_loc);

fprintf(ipt_restore, "COMMIT\n");

if (pclose(ipt_restore)) {

return false;

}

return true;

40 Chapter 3. Implementation

The helper functions to gather the IP addresses mainly abstract away differences in IPv4
and IPv6 handling. Apart from using slightly different function calls for the conversion
into strings, IPv6 addresses—unlike IPv4 addresses—are always stored in network byte
order and thus do not require conversion from network to host byte order. Furthermore,
IPv4 and IPv6 addresses are stored in different fields of OpenVPN’s context.

One of these helper functions which determines the server’s internal IP address is
however tricky, as this information is not easily accessible and has to be inferred.
The way in which this is done depends on the chosen OpenVPN topology, of which
there are three: p2p, net30 and subnet. The net30 topology allocates a full /30 subnet
for every client and thus requires 4 addresses out of the address pool the OpenVPN
server is configured to use. This topology is deprecated and therefore not supported
for transparent redirection. The p2p topology uses Point-to-Point networking and
the VPN internal IP address is stored directly in the context. The subnet topology is
the recommended topology and uses the OpenVPN server’s address pool as a subnet.
Addressing is done using an IP and netmask out of this pool. The server always takes
the lowest address of the pool. In this case, the server’s address needs to be derived by
adding 1 to the network address, which in turn needs to be derived from the client IP
and the netmask.

The function to disable the transparent traffic redirection, knock_nat_off (), is simpler
than knock_nat_on(...), asit does not need to determine as much information. All nec-
essary information is stored in the global nat_info structure and can simply be used as-
is. As can be seen in listing 3.16, which shows a simplified version of knock_nat_off()
that has been stripped of screen outputs, the function first checks whether transparent
traffic redirection has previously been enabled and if not, successfully ends at this point,
as there is no work to do. If there are iptables rules to be removed, the function pro-
ceeds to open a pipe into stdin of iptables-restore or ip6tables-restore, just like
knock_nat_on(...), but then issues the inverse commands’ instead, thereby removing
the rules. Lastly, it frees the global nat_info structure to signal that no transparent
traffic redirection is currently active.

Note that changing iptables rules requires root privileges. When configuring OpenVPN
to drop privileges after the tunnel is established, it will be unable to remove the NAT
rules when closing the tunnel.

Listing 3.16: Simplified code for knock_nat_off(...) inwilfred.c

static struct nat_info *xnat_info;

bool knock_nat_off () {
FILE xipt_restore;

"Using -D for “delete” instead of -1 for “insert”.

3.3. Modified OpenVPN Client 41

/* Only proceed NAT has previously been enabled. *x/
if (nat_info == NULL) {
return true;

}

/* The actual magic. Open a pipe into stdin of iptables-restore as
* recommended by the IPtables FAQ. */
if (nat_info->ipv6) {
ipt_restore = popen("/sbin/ip6tables-restore_-n", "w");
} else {
ipt_restore = popen("/sbin/iptables-restore_-n", "w");
}
fprintf(ipt_restore, "xnat\n");
fprintf(ipt_restore, "-D_OUTPUT_-d_%s_-j_DNAT_--to_%s\n",
nat_info->pub_rem, nat_info->vpn_rem);
fprintf(ipt_restore, "-D_OUTPUT_-d_%s_-p._%s,,--dport_%i_-j_ACCEPT\n",
nat_info->pub_rem, proto_ntop_socket(nat_info->proto), nat_info->port);
fprintf(ipt_restore, "-D_POSTROUTING_-d_S%s_-j _SNAT_--to_%s\n",
nat_info->vpn_rem, nat_info->vpn_loc);
fprintf(ipt_restore, "COMMIT\n");
if (pclose(ipt_restore)) {
return false;

}

/* Release the nat info */
free(nat_info);
return true;

Calls to those two functions are added to the existing OpenVPN code in the func-
tions do_open_tun(...) and do_close_tun(...). Those function are responsible for
bringing OpenVPN’s tun interface up and down respectively. Listing 3.17 shows ex-
cerpts of these two functions with the addition of calls to knock_nat_on(...) and
knock_nat_off(). The transparent traffic redirection is activated at the very end of
the tun interface’s initialization and is deactivated at the very beginning of the tun

interface’s deinitialization.

Listing 3.17: Excerpts of do_open_tun(...) and do_tun_close(...) ininit.c

static bool do_open_tun (struct context *c) {
struct gc_arena gc = gc_new ();
bool ret = false;

/* Enable S/DNAT x/
if (c->options.knock && c->options.knock_nat) {
knock_nat_on(c->cl.tuntap,
c->cl.link_socket_addr.current_remote->ai_addr,
c->cl.link_socket_addr.current_remote->ai_protocol);

}

gc_free (&gc);
return ret;

}

static void do_close_tun (struct context *c, bool force) {
struct gc_arena gc = gc_new ();

42 Chapter 3. Implementation

/* Disable S/DNAT x/

if (c->options.knock && c->options.knock_nat) {
knock_nat_off();

}

gc_free (&gc);

3.4 Configuration Files

This section gives an example for configuration files for the OpenVPN server and the
modified client. It also explains the options related to port-knocking, as well as some
other important options. OpenVPN additionally supports a vast number of configuration
options that we do not use. Since we use an unmodified server and the modified client
retains all the functionality of the original client, these options are all still available, if
necessary. Explaining each and every one of these options is, however, not the goal of
this section, as this is done by the official OpenVPN documentation.

OpenVPN configuration files are plaintext files with one option per line. The available
options are the same as the ones available as command line options, but without the
leading “- -”. The file may contain empty lines and comments, which start with either a

@« 5

“#”ora“;”.

The example configuration files are based on the ones we used during development
and testing. They have, however been stripped of comments and some empty lines
to save space. Furthermore, they contain a few options, which are commented out to
demonstrate their use. Our test server had the IP address 10.0.2.15 and ran on port 2789,
while the client had the IP address 10.0.2.4.

3.4.1 Server Configuration

Listing 3.18 shows an example configuration file for the server. It is based on the
configuration we used during development and testing. Lines 1-6 are fairly standard
configuration options for OpenVPN, setting it to run in routing mode (layer 3), establish
the tunnel over UDP on port 2789, and function as a server. The server option’s param-
eters determine the subnet that is used by OpenVPN internally. The interpretation of
these depends on the topology used. In our case this is subnet, which means that the

8 A wink to the Wheel of Time books. (100)19 can be represented as (AE5)16, which can be read as “Aes”,
the first part of “Aes Sedai”. Any other port can be used, though using a different port than the standard
port may impede detection by a hostile party, which is one of the goals of using port-knocking in the first
place.

oI B NS L

[I R e e Y e e T
N = OOV Jd s W= OO

3.4. Configuration Files 43

parameters to the server option represent the network address and netmask. It is also
possible to bind OpenVPN to a single IP address by uncommenting the option in line 6.

Three topologies are possible: “net30”, “p2p”, and “subnet”. net30, while deprecated,
is still the default value for compatibility reasons. It allocates a full /30 subnet to
every client, thereby using up four IP addresses for the pool. p2p uses a Point-to-Point
topology and only requires one address per client. subnet is the recommended topology
and configures the client’s tun interface with an IP address and subnet mask like a
normal interface. It thus also requires only one IP address per client. Whichever value
is selected, it is automatically pushed to connecting clients.

Listing 3.18: server.conf

dev tun

proto udp

port 2789

server 172.16.23.0 255.255.255.0
topology subnet

;local 10.0.2.15

tls-server

pkcsl2 /etc/openvpn/server.pl2
dh /etc/openvpn/dh2048.pem
persist-key

persist-tun

keepalive 10 120
;push "knock-refresh_30"
verb 3

user nobody

group nogroup
cipher AES-256-CBC
auth SHA256
;tls-auth ta.key 0

Line 8 instructs OpenVPN to take on the server role during the SSL/TLS handshake. The
SSL/TLS role is independent from the OpenVPN role, meaning that the OpenVPN client
could just as well act as the server and the OpenVPN server act as the client during
the SSL/TLS handshake. The following lines provide the server with its certificate and
Diffie-Hellman group. Furthermore, OpenVPN is instructed to preserve the tun/tap
interface and the private keys read across restarts of its inner loop. This is useful, as
later options cause OpenVPN to drop root privileges after initialization.

Line 14 defines OpenVPN’s ping behavior, by telling it to send an OpenVPN ping message
to its counterpart every 10 seconds and consider the connection severed when no ping
has been received from its counterpart for 120 seconds. These values are automatically
pushed to the client. The server is also able to push the knock-refresh [n] directive to
the client. This allows the operator to ensure that even improperly configured clients are
able to maintain a tunnel through a firewall that does not support connection tracking
for the selected transport layer protocol.

44 Chapter 3. Implementation

The verbosity setting in line 16 determines how much information OpenVPN outputs. 3
is a reasonable value for general use, while values of 4-6 are useful to debug connection
issues. 0 is almost completely silent, except for fatal errors.

The last options are there to improve security. Lines 18 and 19 instruct OpenVPN to
drop privileges after initialization. OpenVPN uses Blowfish as its cipher and SHA1 as its
hash algorithm for the HMAC by default. To improve security, we change this to 256bit
AES and SHA256. These options have to be mirrored in the client’s configuration file
too for the communication to be successful. If these options are omitted in the client’s
configuration, the connection will be established successfully, but data sent through the
tunnel will be unreadable by the other side.

Lastly, it is possible to have OpenVPN sign every SSL/TLS packet with an HMAC.
This allows the server to drop SSL/TLS packets with incorrect authentication code
immediately, without wasting further resources to process them. A service operator
may want to use this feature to help protecting the server against (Distributed) Denial-
of-Service attacks. To use this feature, a secret key which is used for this HMAC has
to be distributed to the server and all clients. Both, the server and the client need the
tls-auth option with the key as its first parameter and either ‘0’ or ‘1’ as the second
parameter, with ‘0’ denoting the server and ‘1’ denoting the client. Note that this
configuration is only an example and several other ways exist to further improve the
security of OpenVPN.

3.4.2 Client Configuration

The matching client configuration file is shown in listing 3.19. Its contents are similar
to the server configuration file with only a few minor differences and additional options
pertaining to port-knocking. The first three lines instruct OpenVPN to connect to
10.0.2.15 on port 2789 over UDP and run in routing mode (layer 3). The next two options
(lines 5 and 6) cause OpenVPN to take on the role of the client during the SSL/TLS
handshake and provide it with its private key, certificate, and CA certificate packaged
in a PKCS#12 file. As stated in 3.4.1, the SSL/TLS roles do not necessarily coincide with
OpenVPN’s role.

Lines 8-12 are the most interesting ones and contain port-knocking related options. Line
8 enables port-knocking, while line 10 provides OpenVPN with the server’s certificate.
This is necessary to pass this certificate on to sKnock, as OpenVPN itself does not need
it. Line 11 enables transparent traffic redirection. If necessary, OpenVPN can also be
instructed to periodically resend the port-knocking request. Alternatively, it is possible
to omit this completely and have the server push to the client this option. Line 9 can be
uncommented to tell OpenVPN to skip querying a password for the certificate and use
it without a password.

[N B S L

3.5. Limitations 45

Listing 3.19: client.conf

remote 10.0.2.15 2789
proto udp
dev tun

tls-client
pkcs12 /etc/openvpn/client.pl2

knock

;knock-nopass

knock-cert-srv /etc/openvpn/server.crt
knock-nat

;knock-refresh 30

pull
verb 3

cipher AES-256-CBC
auth SHA256
;tls-auth ta.key 1
;ns-cert-type server

The next two lines are miscellaneous options. pull is a very important option for the
client and causes OpenVPN to accept options pushed by the server. verb determines
how much screen output OpenVPN generates.

The last block of options serves the purpose of increasing security. cipher and auth
set the cipher and HMAC hash to match the server’s settings. If configuring OpenVPN
to append SSL/TLS messages with an additional HMAC, as briefly described in section
3.4.1, the option tls-auth FILE 1 has to be specified with FILE being the secret key
used to calculate the HMAC and 1 denoting the client role. Lastly, it is possible to enforce
that the client only connects to servers whose certificate have the nsCertType field set
to “server”. This feature protects against Man-in-the-Middle attacks, where authorized
client attempts to connect to the client, and can be activated by uncommenting line 19.

Such a client configuration file can easily be prepared by a service’s operator and
distributed to the users in order to spare them having to configure OpenVPN themselves.
The user is, however, free to modify this configuration file or create their own to better
suit their needs if they wish to do so.

3.5 Limitations

sKnock—This solution has several minor limitations due to the use of sKnock. Firstly,
though the sKnock library provides C bindings through a C wrapper, it is actually written
in Python and uses several Python libraries. Consequently, its use adds additional depen-
dencies on Python, the Python libraries used by sKnock and the C wrapper. Furthermore,
OpenVPN allows to use inline certificates, which is a technique to embed certificates
and private keys into the configuration file. However, the sKnock library’s API expects

46 Chapter 3. Implementation

to be handed paths to the certificates and any private keys it needs. This means that
OpenVPN’s inline certificates cannot be used in combination with the port-knocking
functionality.

Another limitation tied to sKnock is the need for the server’s certificate to be supplied.
sKnock uses the server’s certificate in combination with an ephemeral ECC key pair
on the same curve to derive a symmetric key with which the port-knocking packet is
encrypted. However, an unmodified OpenVPN client does not need to be supplied with
the server’s certificate. We thus had to add a new option, - -knock-cert-srv FILE, to
pass a server certificate to OpenVPN so that it can in turn pass it on to sKnock.

Double Certificate Transmission—At the moment, the client’s certificate needs to be sent
to the server twice. It is sent once by sKnock during the port-knocking and once again
by OpenVPN during the SSL/TLS Authentication. Though this seems unnecessarily
inefficient, the additional overhead of sending a certificate once more than theoretically
necessary is minimal. Improving this would require the sKnock daemon on the server
to pass the client’s certificate on to OpenVPN. This in turn would require significant
changes to both the sKnock codebase and the OpenVPN codebase in order to allow them
to cooperate in this way:.

NATting IPv4 and IPv6—The last noteworthy limitation is the inability to transparently
redirect traffic when OpenVPN is running the tunnel over IPv6, but is not configured to
forward IPv6 traffic through the tunnel. This is due to our choice of using iptables NAT
functionality to implement this traffic redirection, as iptables does not support NATting
from IPv6 to IPv4. This can, however, easily be circumvented by activating OpenVPN’s
ability to forward IPv6 packets through the tunnel. In this case, the modified OpenVPN
client would simply NAT the public IPv6 address to the VPN’s internal one with no
significant difference to the user.

This limitation makes sense when contemplating that NATting from IPv6 to IPv4 would
require replacing the entire IPv6 header by an IPv4 header. In the case of transport layer
protocols that contain a checksum covering parts of or the entire IP header, such as TCP,
this checksum would have to be entirely recalculated. This represents a considerable
effort to remove a limitation that can easily be circumvented. Perhaps nftables, the
successor to iptables, which is currently in development, will support this, though it
seems unlikely.

Another aspect to consider in relation to iptables is the need for root privileges to alter
the rules. OpenVPN offers the option to drop privileges after initialization. When used
in combination with transparent traffic redirection using iptables’ NAT functionality,
this would lead to the rules being added successfully when the tunnel is established.

3.5. Limitations 47

However, once the tunnel is established, the root privileges would be dropped and the

rules could not be removed when closing the tunnel.

Operating System Support—The current implementation has not been developed with
support for Windows in mind. As such, it currently only support *nix systems. Addition-
ally, the current implementation of the transparent traffic redirection feature depends
on iptables. Porting this feature to operating systems on which iptables does not run,
such as Windows, will be tricky and may require a different way of implementing the
feature, depending on the NAT capabilities of the Windows Firewall. Since this feature,
while comfortable, is not essential for the functioning of our solution, we deem this to

be a minor issue.

49

Chapter 4

Testing

4.1 Test Setup

Our test setup involves two virtual machines. One of them takes on the role of the
server hosting a service, while the other takes on the role of a client trying to access
that service. Both machines run Debian 8.4.

Server VM—The server virtual machine has the IP address 10.0.2.15 and runs a simple
apache server with a test page. This serves as our test service. Apache is installed from
the Debian repositories. The default configuration displays a “It works!” page, which is
sufficient to check the service’s reachability.

Furthermore, the server VM also runs the sKnock daemon and iptables. While iptables
can be installed from the Debian repositories, sKnock has to be installed manually.
sKnock’s toplevel directory needs to be part of the python search path. This can be
achieved by adding the path to the environment variable PYTHONPATH, which works
exactly like the environment variable PATH. sKnock also requires a few python modules
to be installed. These are “python-iptables”, “m2crypto”, “cryptography”, “six” and
“hkdf”. The modules can either be installed through the pip utility or through the
Debian repositories. However, since some of the modules are not available in Debian’s
repositories, we chose to install them all with pip. The sKnock daemon is configured to

use the same certificate file as Open VPN, which is located in /etc/openvpn/server.pl2.

OpenVPN can be installed from the Debian repositories as only the client has been
modified. It uses the same configuration options that were explained in section 3.4.1.
The configuration file, as well as the private key, certificate, and CA certificate—which
are bundled into a PKCS#12 file—are is located in /etc/openvpn. Most notably, Open VPN
is configured to run over UDP on port 2789. It uses the “subnet” topology and allocates

50 Chapter 4. Testing

addresses from the 172.16.23.0/24 subnet to its client, while assigning the IP address
172.16.23.1 to its own tun interface.

Client VM—The client virtual machine has the IP address 10.0.2.4 and has the sKnock
library and its C wrapper installed. Just like for the server setup, sKnock’s toplevel direc-
tory needs to be part of the python search path. The environment variable PYTHONPATH
is thus appended with the correct path. The C wrapper’s shared object has to be in one
of the folders on the library path. We chose to place it under /usr/local/lib. Unlike
the sKnock daemon running on the server, the client side sKnock library does not require
any additional configuration.

Furthermore, the modified OpenVPN version is installed on the system. The configura-
tion options used are the same ones that are described in section 3.4.2. Most notably, it
connects to the server (IP 10.0.2.15) on port 2789 over UDP. Port-Knocking and trans-
parent redirection are also enabled. The configuration file is stored in /etc/openvpn/as
client.conf. The client’s private key, certificate, and CA certificate are bundled into
a PKCS#12 file, which is stored in the same directory as the configuration file. The
server’s certificate is also stored in that directory.

4.2 Results

We use Firefox on the client VM to access the apache server running on the server VM.
As expected, the website is unreachable without further steps, as the port is closed.
Once we launch the modified OpenVPN client and have it establish a tunnel, the website
is now available under the server’s VPN internal IP address, 172.16.23.1. Thanks to
the transparent traffic redirection, the website is also accessible by entering the server
VM’s public IP address, 10.0.2.15. After closing the tunnel, the website is once again
unavailable through either IP address. All features, especially the - -knock-refresh
[n] and - -knock-nat have been tested and have been found to work properly. Further-
more, variations of the configuration where the server pushes the - -knock-refresh
[n] option to the client have also been tested and worked as expected.

We have however noticed an issue with the compatibility of the certificates between
OpenVPN and sKnock. When using the certificates provided by sKnock’s author as
an example, OpenVPN is unable to find a common cipher suit, even though several
cipher suits overlap. These certificates were generated on Windows using appropriate
Microsoft tools, which might be the cause for this issue. The parameters used in the
creation of the example certificates are unknown to use, which might also be the source
of the issue. When using certificates generated by OpenSSL through the OpenVPN
team’s EasyRSA 3 script, OpenVPN has no problem finding a common cipher suit and
establishing a connection.

4.2. Results 51

Note that sKnock only works with the NIST-P 256 curve at the moment [3]. Using any
other curve will cause sKnock to fail to perform the port-knocking.

Another observation we have made, is that when the VPN tunnel is active, even a simple
HTTP request causes several packets to be sent which are recognized by sKnock as
potential port-knocking requests. They are thus processed further before being found to
be malformed. We suspect this to be due to the OpenVPN encapsulation increasing the
packet size to a similar size to that of a port-knocking request. sKnock uses the packet
size to coarsely filter packets before processing them further to avoid wasting time on
unnecessarily decrypting packets which can not be valid requests. The effects of this
phenomenon on sKnock’s performance are unknown. Because of time constraints, we
did not investigate this further.

Since we did not change the way in which the OpenVPN core operates, our modifications
have no influence on its performance. This performance has been the subject of several
papers, such as [47] and [48]. Measuring the performance again would not have been of
any use. Moreover, no performance test we could have done in the scope of this thesis
could have been as thorough as the existing ones. The additional delay to the tunnel
establishment incurred by using port-knocking is the delay added by sKnock, which has
also already been measured [3]. As such, we did not deem it necessary to perform any
new measurements.

53

Chapter 5

Conclusion

Over the course of this work, we explained the rationale behind developing a solution
to allow existing applications to communicate through an encrypted channel with
a port-knocked service, before moving on to present several approaches to achieve
this goal. We wanted the solution to be easy for the operator and the user to set up,
which also means avoiding to change the application’s source code. Since this involves
tunneling in some form or another! to ensure the encryption of the traffic even if the
application itself does not support encrypted communication, this comes at the cost
of additional transmission overhead. This overhead was analyzed, as well as other
respective strengths and weaknesses of the approaches. Based on this analysis, an
approach has been selected and then implemented.

5.1 Future Work

OpenVPN supports what it calls “inline certificates”. Normally, the certificates and
private keys are saved as separate files. Inline certificates are instead embedded in the
configuration file. However, our implementation does not currently support using such
inline certificates in combination with the port-knocking functionalities. This is due
to sKnock expecting to be handed a path to the required certificates and keys. When
using inline certificates, it would be directly handed the certificate or key itself. Future
work could add support for these inline certificates, either by creating a temporary
file and writing the contents of the inline certificate to it before handing the path to
this temporary file to sKnock, or by modifying sKnock itself and adding support for
accepting the certificate directly, instead of a path to a file. Inline certificates could
facilitate the distribution of configuration files to end-users by sparing the user from the
task of placing the certificates and keys at specific locations on the file system where
the configuration file tells OpenVPN to look for them.

IFor example an SSH tunnel, an IPsec tunnel, or an OpenVPN tunnel

54 Chapter 5. Conclusion

Furthermore, the current implementation requires the client’s certificate to be sent
twice: once by sKnock for the port-knocking and once by OpenVPN for the SSL/TLS
handshake. The additional overhead is not huge, but it would be more elegant if the
certificate could be sent only once. This could be achieved by modifying sKnock and
OpenVPN to allow them to work together. While these changes are far beyond the scope
of this work, they would create a base for further modifications of the sKnock API to
allow it to pass certificates on to any service that uses certificate based authentication
and is aware of the sKnock APL

The current implementation is not able to disable the transparent traffic redirection
when closing the tunnel if the root privileges were dropped after creating the tunnel. A
future implementation could offload this functionality into a separate process, which
does not drop the root privileges. This process could communicate with the main
process through IPC and should only be able to enable and disable the iptables rules for
transparent traffic redirection.

Lastly, sKnock allows to encode a list of permitted ports into the client’s certificate. The
client is then restricted to opening only those ports. Using the modified OpenVPN client
could completely circumvent this security feature. Future work could enable OpenVPN
to either extract this list of ports from the certificate itself, or implement some form of
cooperation with sKnock to receive this information from the sKnock server daemon.
It would then be necessary to implement some kind of port filtering in OpenVPN to
restore the security benefits of this feature, while maintaining the comfort granted by
the current implementation.

5.2 Summary

Of the three approaches we presented, we selected OpenVPN, mostly because of its
flexibility and ease-of-use. The other approaches also turned out to have important
drawbacks, from which the OpenVPN approach did not suffer. The proxy approach,
for example, does not completely eliminate the need to change the code of the original
application, as some application would need to have SOCKS5 support added. The
OpenSSH approach on the other hand only allows to forward TCP connections and does
this over another TCP connection, thereby incurring the risk of problems resulting from
TCP-over-TCP.

Once the choice was made, we moved on to implement this solution step by step.
First we added support for initializing and using the port-knocking library to open the
OpenVPN server port. Then we started adding additional features, such as refreshing
the port-knocking request if necessary. We also added a transparent redirection feature,
which—when activated—allows the user to just start the modified OpenVPN client and
then use the application as if the modified OpenVPN client was not there.

5.2. Summary 55

Only the client side was modified, while the OpenVPN server’s code was left untouched.
Because of this, the resulting modified OpenVPN version remains fully compatible with
unmodified OpenVPN versions and can thus function as a normal OpenVPN client
without any of the additional functionality we added.

We then went on to describing the new configuration options added for the new features
and explained sample configuration files to showcase the use of our modified OpenVPN
version. Moreover, we explained that the service’s operator could create and distribute
client configuration files to make it easier for the user to set up. Lastly, we explained
the limitations of our approach and gave pointers on how to remove or alleviate these
limitations in future versions.

Appendix A

Additional Packet Diagrams

57

58

Appendix A. Additional Packet Diagrams

Byte

0

1 2

3

Bi

0‘1‘2‘3‘4‘5‘6‘7 8‘9‘10‘11‘12‘13‘14‘15 16‘17‘18‘19‘20‘21‘22‘23

24‘25‘26‘27‘28‘29‘30‘31

IPv4 Header

20

24

28

32

36

TCP Header

40

Packet Length | Opcode

44

48

52

56

60

HMAC (SHA-1)
(Covers ciphertext IV and ciphertext)

64

68

72

76

608

Ciphertext IV (BF-CBC)

Packet ID...

80

640

...Packet ID

84

672

Encrypted Payload (Ciphertext)
(Variable length)

—_— — 7

Figure A.1: A VPN packet over IPv4 and TCP

59

0 1 2 3

T LG Rl o

20

IPv6 Header

24

28

32

36

40

44

48

TCP Header

52

56

60

Packet Length | Opcode |

64

68

72

HMAC (SHA-1)
(Covers ciphertext IV and ciphertext)

76

80

84

88

92

Ciphertext IV (BF-CBC)

96

Packet ID...

100

...Packet ID

104

Encrypted Payload (Ciphertext)
(Variable length)

W\\W

Figure A.2: A VPN packet over IPv6 and TCP

60

Appendix A. Additional Packet Diagrams

0 1 2 3

e e[e [[o[ule]s[u]s]s]a]e]s][»]a]z]s]a]=]=]=[a]»]=]s

IPv6 Header

20

24

28

32

36

40

UDP Header

44

48

Opcode |

52

56

HMAC (SHA-1)

60

(Covers ciphertext IV and ciphertext)

64

68

72

76

608

Ciphertext IV (BF-CBC)

80

640

84

672

Packet ID...

88

704

...Packet ID

92

736

Encrypted Payload (Ciphertext)
(Variable length)

M—W

Figure A.3: A VPN packet over IPv6 and UDP

61

Byte

0

1

2

3

=

INBODOGE

8‘9‘10‘11‘12‘13‘14‘15

16‘17‘18‘19‘20‘21‘22‘23

24‘25‘26‘27‘28‘29‘30‘31

IPv6 Header

TCP Header

Packet Length

Padding Length

CHANNEL_DATA

Channel ID...

...Channel ID

...Payload...
(Variable length)

- e @ @O -

Byte 0 1 2 3
Bit0‘1‘2‘3‘4‘5‘6‘7 8‘9‘10‘11‘12‘13‘14‘15 16‘17‘18‘19‘20‘21‘22‘23 24‘25‘26‘27‘28‘29‘30‘31
Z :2 4 Bytes < Padding < 255 Bytes...

(Variable length)

W\/'/—_\/\

By:;t 0‘1‘2‘3(‘)4‘5‘6‘7 8‘9‘10‘11]12‘13‘14‘15 16‘17‘18‘19‘220‘21‘22‘23 24‘25‘26‘27728‘29‘30‘31
Z :2 MAC (umac-64)

Figure A.4: As SSH packet over IPv6

63

Bibliography

(1]

(2]

B. Daya, “Network security: History, importance, and future,” University of Florida
Department of Electrical and Computer Engineering, 2013.

M. Krzywinski, “Port knocking from the inside out,” SysAdmin Magazine, vol. 12,
no. 6, pp. 12-17, 2003

D. Sel, “Authenticated scalable port-knocking,” Bachelor Thesis, Technical Univer-
sity Munich, 2016.

M. Rash, “Single packet authorization with fwknop,” login: The USENIX Magazine,
vol. 31, no. 1, pp. 63-69, 2006.

Y. Desmedt, “Man-in-the-middle attack,” in Encyclopedia of Cryptography and
Security. Springer, 2011, pp. 759-759.

»

P. Syverson, “A taxonomy of replay attacks [cryptographic protocols],” in Computer
Security Foundations Workshop VII, 1994. CSFW 7. Proceedings. IEEE, 1994, pp.
187-191.

D. E. Denning and G. M. Sacco, “Timestamps in key distribution protocols,” Com-
munications of the ACM, vol. 24, no. 8, pp. 533-536, 1981.

D. Johnson, A. Menezes, and S. Vanstone, “The elliptic curve digital signature

algorithm (ecdsa),” International Journal of Information Security, vol. 1, no. 1, pp.
36-63, 2001.

R.L.Rivest, A. Shamir, and L. M. Adleman, “Cryptographic communications system
and method,” Sep. 20 1983, uS Patent 4,405,829.

A. Kumar, A. Jerome, G. Khanna, H. Veladanda, N. Ly, Hoa amd Chai,
and R. Andrews, “Elliptic curve cryptography (ecc) certificates performance
analysis,” may 2013. [Online]. Available: https://www.symantec.com/content/en/
us/enterprise/white_papers/b-wp_ecc.pdf

K. Maletsky, “Rsa vs ecc comparison for embedded sys-
tems,” jul 2015. [Online]. Available: http://www.atmel.com/images/
atmel-8951-cryptoauth-rsa-ecc-comparison-embedded-systems-whitepaper.pdf

https://www.symantec.com/content/en/us/enterprise/white_papers/b-wp_ecc.pdf
https://www.symantec.com/content/en/us/enterprise/white_papers/b-wp_ecc.pdf
http://www.atmel.com/images/atmel-8951-cryptoauth-rsa-ecc-comparison-embedded-systems-whitepaper.pdf
http://www.atmel.com/images/atmel-8951-cryptoauth-rsa-ecc-comparison-embedded-systems-whitepaper.pdf

64

[12]

[15]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

Bibliography

T. Oder, T. Péppelmann, and T. Giineysu, “Beyond ecdsa and rsa: Lattice-based
digital signatures on constrained devices,” in Proceedings of the 51st Annual Design
Automation Conference, ser. DAC '14. New York, NY, USA: ACM, 2014, pp.
110:1-110:6. [Online]. Available: http://doi.acm.org/10.1145/2593069.2593098

N. Jansma and B. Arrendondo, “Performance comparison of elliptic curve and rsa
digital signatures,” nicj. net/files, 2004.

M. Leech, M. Ganis, Y. Lee, R. Kuris, D. Koblas, and L. Jones, “Rfc 1928: Socks
protocol version 5,” mar 1996.

O. Team. Openssh website. [Online]. Available: http://www.openssh.com/

G. Venkatachalam, “The openssh protocol under the hood,” Linux ¥, vol. 156, p. 6,
2007.

IANA. (2016, apr) Service name and transport protocol port number registry. [On-
line]. Available: http://www.iana.org/assignments/service-names-port-numbers/
service-names-port-numbers.xhtml

O. Team. Manpage ssh_config(5). [Online]. Available: https://manpages.debian.
org/cgi-bin/man.cgi?query=ssh_config&manpath=Debian+8+jessie

S. Tatham. (2016, apr) Putty website. [Online]. Available: http://www.chiark.
greenend.org.uk/~sgtatham/putty/

T. Ylonen and C. Lonvick, “Rfc 4253: The secure shell (ssh) transport layer protocol,”
jan 2006.

T. Ylonen and C. Lonvick, “Rfc 4254: he secure shell (ssh) connection protocol,” jan
2006.

J. Postel, “Rfc 791: Internet protocol,” sep 1981.
S. Deering and R. Hinden, “Rfc 2460: Internet protocol, version 6 (ipv6),” dec 1998.
J. Postel, “Rfc 793: Transmission control protocol,” sep 1981.

M. Bider and M. Baushke, “Rfc 6668: Sha-2 data integrity verification for the secure
shell (ssh) transport layer protocol,” NIST Special Publication, vol. 800, p. 131A, jul
2012.

D. Miller and P. Valchev, “Draft: The use of umac in the ssh transport layer protocol,”
sep 2007.

C. Namprempre, T. Kohno, and M. Bellare, “Rfc 4344: The secure shell (ssh) trans-
port layer encryption modes,” jan 2006.

D. Stebila and K. Igoe, “Rfc 6187: X.509v3 certificates for secure shell authentica-
tion,” mar 2011.

http://doi.acm.org/10.1145/2593069.2593098
http://www.openssh.com/
http://www.iana.org/assignments/service-names-port-numbers/service-names-port-numbers.xhtml
http://www.iana.org/assignments/service-names-port-numbers/service-names-port-numbers.xhtml
https://manpages.debian.org/cgi-bin/man.cgi?query=ssh_config&manpath=Debian+8+jessie
https://manpages.debian.org/cgi-bin/man.cgi?query=ssh_config&manpath=Debian+8+jessie
http://www.chiark.greenend.org.uk/~sgtatham/putty/
http://www.chiark.greenend.org.uk/~sgtatham/putty/

Bibliography 65

[29] O. Team. (2012, mar) Openssh certificates. [Online]. Available: http://cvsweb.
openbsd.org/cgi-bin/cvsweb/src/usr.bin/ssh/PROTOCOL.certkeys?rev=1.9

[30] T. Ylonen and C. Lonvick, “Rfc 4251: The secure shell (ssh) protocol architecture,”
jan 2006.

[31] O. Honda, H. Ohsaki, M. Imase, M. Ishizuka, and J. Murayama, “Understanding
TCP over TCP: effects of TCP tunneling on end-to-end throughput and latency,’
in Performance, Quality of Service, and Control of Next-Generation Communication
and Sensor Networks III, M. Atiquzzaman and S. I. Balandin, Eds., vol. 6011, Oct.
2005, pp. 138-146.

[32] O. Titz. (2001, apr) Why tcp over tcp is a bad idea. [Online]. Available:
http://sites.inka.de/bigred/devel/tcp-tcp.html

[33] M. Ullholm Karlsson, M. Habib et al., “Ssh over udp,” 2010.
[34] O. Team. Openvpn. [Online]. Available: https://openvpn.net/

[35] O. Team. (2010, apr) Openvpn. [Online]. Available: https://raw.githubusercontent.
com/OpenVPN/openvpn/master/COPYING

[36] S.Kent, “Rfc 4302: Ip authentication header,” dec 2005.
[37] C.Hosner, “Openvpn and the ssl vpn revolution,” SANS Institute, Aug, 2004.
[38] J. Postel, “Rfc 768: User datagram protocol,” aug 1980.

[39] O. Team. Openvpn security overview. [Online]. Available: https://openvpn.net/
index.php/open-source/documentation/security-overview.html

[40] O. Team. Openvpn ssl.c. [Online]. Available: https://raw.githubusercontent.com/
OpenVPN/openvpn/master/src/openvpn/

[41] R. Russel and H. Welte. (2002, jul) Linux netfilter hacking
howto. [Online]. Available: http://www.netfilter.org/documentation/HOWTO/
/netfilter-hacking-HOWTO-4.html#ss4.4

[42] P. Ayuso, “Netfilter’s connection tracking system,” LOGIN: The USENIX magazine,
vol. 31, no. 3, 2006.

[43] O. Andresson. (2008) The state machine. [Online]. Available: http://www.iptables.
info/en/connection-state.html

[44] R. Russel. (2002, jan) Linux 2.4 nat howto. [Online]. Available: http:
//www.netfilter.org/documentation/HOWTO//NAT-HOWTO-5.html

[45] O. Andresson. (2008, jan) Traversing of tables and chains. [Online]. Available:
http://www.iptables.info/en/structure-of-iptables.html

http://cvsweb.openbsd.org/cgi-bin/cvsweb/src/usr.bin/ssh/PROTOCOL.certkeys?rev=1.9
http://cvsweb.openbsd.org/cgi-bin/cvsweb/src/usr.bin/ssh/PROTOCOL.certkeys?rev=1.9
http://sites.inka.de/bigred/devel/tcp-tcp.html
https://openvpn.net/
https://raw.githubusercontent.com/OpenVPN/openvpn/master/COPYING
https://raw.githubusercontent.com/OpenVPN/openvpn/master/COPYING
https://openvpn.net/index.php/open-source/documentation/security-overview.html
https://openvpn.net/index.php/open-source/documentation/security-overview.html
https://raw.githubusercontent.com/OpenVPN/openvpn/master/src/openvpn/
https://raw.githubusercontent.com/OpenVPN/openvpn/master/src/openvpn/
http://www.netfilter.org/documentation/HOWTO//netfilter-hacking-HOWTO-4.html#ss4.4
http://www.netfilter.org/documentation/HOWTO//netfilter-hacking-HOWTO-4.html#ss4.4
http://www.iptables.info/en/connection-state.html
http://www.iptables.info/en/connection-state.html
http://www.netfilter.org/documentation/HOWTO//NAT-HOWTO-5.html
http://www.netfilter.org/documentation/HOWTO//NAT-HOWTO-5.html
http://www.iptables.info/en/structure-of-iptables.html

66 Bibliography

[46] Iptables faq. [Online]. Available: http://www.netfilter.org/documentation/FAQ/
netfilter-faq-4.html

[47] B.Hoekstra, D. Musulin, and J. J. Keijser, “Comparing tcp performance of tunneled
and non-tunneled traffic using openvpn,” Universiteit Van Amsterdam, System &
Network Engineering, Amsterdam, pp. 2010-2011, 2011.

[48] I.Kotuliak, P.Rybar, and P. Truchly, “Performance comparison of ipsec and tls based
vpn technologies,” in Emerging eLearning Technologies and Applications (ICETA),
2011 9th International Conference on. IEEE, 2011, pp. 217-221.

http://www.netfilter.org/documentation/FAQ/netfilter-faq-4.html
http://www.netfilter.org/documentation/FAQ/netfilter-faq-4.html

	Introduction
	Goals of the Thesis
	Outline
	Motivation
	History of Network Security
	Port-Knocking

	Background
	The Port-Knocking Library: sKnock
	Basic Functioning
	Elliptic Curve Cryptography

	Possible Approaches
	Proxy
	SSH Tunnel
	VPN Tunnel

	Conclusion

	Implementation
	General Considerations
	Connection Tracking and UDP
	Differences in TCP/UDP Handling
	Transparent Traffic Redirection

	Overview of OpenVPN Execution Flow
	Modified OpenVPN Client
	Initialization
	Port-Knocking
	Port-Knocking Keepalive Refresh
	Transparent Traffic Redirection Using NAT

	Configuration Files
	Server Configuration
	Client Configuration

	Limitations

	Testing
	Test Setup
	Results

	Conclusion
	Future Work
	Summary

	Additional Packet Diagrams
	Bibliography

