Design of a Simulation Framework for MASQUEProxies

Motivation

References

Requirements

References
Requirements

Existing proxying technology comes with drawbacks. SOCKS is unencrypted and HTTP CONNECT is currently limited to proxying of TCP data. The MASQUE working group of IETF [1] plans to extend the current HTTP CONNECT with capabilities for proxying UDP and even IPlayer traffic. They focus on HTTP/3 which runs on top of the new transport protocol QUIC, which offers improved performance, embedded security and multiplexing. This technology has already attracted the attention of research [2], with its biggest current use case being Apple's iCloud Private Relay [3]. With many more possible use cases [4], performance and challenges of different scenarios need to be measured and identified. The main goal of this thesis is to design a simulation framework running on top of our high-precision timestamping hardware which simulates different static scenarios for MASQUE proxies.

- Familiarize yourself with our hardware and the MASQUE documents
- Find or identify different use case scenarios for MASQUE proxies
- Implement and set them up on our hardware
- Identify and measure differnet challenges and performance factors
[1] https://datatracker.ietf.org/wg/masque/about/
[2] https://dl.acm.org/doi/10.1145/3488660.3493806
[3] https://www.apple.com/icloud/docs/iCloud_Private_Relay_Overview_Dec2021.pdf
[4] https://dl.acm.org/doi/abs/10.1145/3472305.3472320
Familiarity with GNU/Linux and network protocols, basic research skills.

Lion Steger
Florian Wiedner
stegerl@net.in.tum.de wiedner@net.in.tum.de

MASQUE

I E T \mathbf{F}°

Contact

