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Abstract

Modern 10-100 Gbit Ethernet adapters with steadily increasing data rates push the
boundaries of the established work �ows and make extensive on line tra�c analysis a
computational challenge. We show that existing data structures are not ideal for use in
tra�c analyzers because of di�erent design goals. The root causes of the performance
problems are analyzed and possible mitigations are shown. Based on that a set of
requirements is worked out that a data structure should ful�ll. A prototype named
Queue of Queues (QQ) is developed following these guide lines and its performance is
measured. It is demonstrated that QQ can handle data rates up to 150 Gbit/s, a factor
2-100 increase to existing ones, while keeping the latency within the 10 ms range.
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Chapter 1

Introduction

Tra�c analysis is an integral part of network administration and is used in many areas
like �ow monitoring, security enforcement, �rewalls and intrusion detection systems
(IDS). Researchers, programmers and administrators rely on the e�ciency and reliability
of tra�c capturing and analysis tools like tcpdump and Wireshark. Usually these tools
operate on a copy of the tra�c stream, provided by the network stack of the operating
system. However, with the common prevalence of 10 Gbit/s and upcoming 40 Gbit/s
Ethernet devices, the internal stacks can not keep up with the high packet rates, resulting
in missing packets and incomplete traces. But not only the Kernel is reaching its limits,
other components which prior were fast enough, now become potential bottlenecks.
Conventional hard disks are limited to around 125 MiB/s write bandwidth, a value easily
exceeded by even two 1 Gbit/s NICs operating at full capacity. Another issue are the
data structures used to organize and manage this many packets. Higher rates require
more packets to be processed in the same time, while the clock frequency of CPUs
stagnated since 2005 and Moore’s Law is only ful�lled by �tting more cores on one chip.
Spare computation power for analysis becomes increasingly scarce and the exploitation
of modern multi-core architectures is a must.

As a result to these changes numerous software frameworks were developed, that bypass
the stack and utilize new hardware features, promising to solve the problems. They
are however not drop-in replacements and can only serve as a foundation for possible
tra�c analysis tool implementations by providing the basic building blocks. Products
like the capture box SolarCapture and the software suite n2disk show that there is also
commercial interest in reliable Gbit packet capturing. Both claim to be able to record at
10 Gbit/s wire rate without packet loss.
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1.1 Goals of the thesis

The goal of this thesis is to compare existing data structures on their applicability as
a core component of tra�c analyzers. As they are found to be unsuitable, a set of
requirements is worked out that such a structure has to ful�ll to be ideal. Based on
them a prototype named QQ is implemented. Lastly this prototype must be evaluated if
it ful�lls the set goals and how it can be utilized in a tra�c analyzer.

1.2 Outline

The thesis starts in Chapter 2 with an example visualizing the general processing time
problem with Gbit adapters and a usecase showcasing the possibilities a solution could
provide.

Chapter 3 lists work related to the problem, which, in part, serves as the basis for the
implementation.

In Chapter 4 several existing data structures of di�erent origin are evaluated and the
arising problems are discussed.

Further analysis on the problems is performed in Chapter 5 followed by the proposed
solution that solves them.

Chapter 6 concentrates on the implementation of the novel data structure named QQ.
Chapter 7 is dedicated to the evaluation of QQ to prove that it ful�lls the set requirements
in terms of throughput, latency and features. The chapter ends with an example that
solves the previously constructed usecase.
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Chapter 2

Motivation

This chapter provides an introduction to the challenge of packet analysis in the context
of multi-Gbit/s link speeds and how a suitable data structure can mitigate it.

2.1 Limitation of Processing Power

Budget 2.4 GHz / 14.88 Mpps = 161.3 cycles per packet

Costs

Packet retrieval ≈ 50 cycles per packet1

Memory management ≈ 17 cycles per packet1

L1D reference (hit) ≥ 4 cycles [1]
L2 reference (hit) ≥ 11 cycles [1]
L3 reference (hit) ≈ 34 cycles [1]

Table 2.1: Processing time costs at 10 Gbit/s (14.88 Mpps) line rate

One of the larger problems is the severe lack of processing power. In normal setups with
only a few million packets per seconds (Mpps) throughput, one CPU core may easily
handle the entire tra�c while analyzing it at the same time. With continuously growing
packet rates and the introduction of multiple queues per NIC, the load demand increased
dramatically. In Table 2.1 the costs of various packet processing operations are listed
for a commodity Intel Xeon E5-2620 v3 CPU with a (non-turbo) clock rate of 2.4 GHz.
The �rst two costs are measured averages per packet over the entire 10 Gbit/s stream
handled by an Intel 10G X710 Adapter, while the last three are per operation resulting in
the listed reference. The link was completely saturated at the maximum packet rate of
14.88 Mpps, resulting in a budget of 161.3 cycles per packet on the receiving core, which
must be adhered to or packet loss will occur. This assumes the ideal case, where the core
is not interrupted by the scheduler or occupied with other tasks. Each processing loop
starts with the packet retrieval from the NIC. While this is batched in modern drivers

1DPDK, 64 byte packets, 64 batch size
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to reduce overhead, an average time of 50 cycles per packet1 is still spend in the driver.
Due to the use of memory pools in DPDK, the objects storing the packets have to be
marked as free by the caller, so they can be reused later. This took another 17 cycles per
packet in our measurements. These �xed costs already take up 40% of the cycle budget
and arise independent from any tra�c analysis.

The remaining 60% or 94 cycles can then be used for only the most basic analysis: Even
a packet counter will take an considerable amount of time. The value �rst has to be read
into a register, which takes at least 4 cycles as the data will most likely remain in the L1
data cache due to frequent access. The increment operation is computational negligible,
but the following store will take a similar amount of time as the read. Reading actual
packet data is also not free. With technology like Intel’s Data Direct I/O (DDIO) modern
CPUs already optimize for fast access by writing the packets directly into the shared
last level cache (LLC) of the CPU, skipping the slow RAM. Reads from the cache are
generally much faster and will result in delay of around 34 cycles until the bytes of one
cacheline2 arrive. Analyzers �ltering e.g. by TCP ports or tracking state, have to expect
such costs.

RX

Distributor

Worker 
Lcore

Worker 
Lcore

Worker 
Lcore

RX

Figure 2.1: Load sharing scheme

While modern CPUs can coalescence many types of delays, it can be seen that overall
there is very little time left to do extensive packet analysis on the same core the packets
are received on. Therefore, they are usually distributed to other cores via queuing data
structures, e.g. the DPDK ringbu�er, but generic data structures may also be used. In
Figure 2.1 this is illustrated where a number of RX inputs, usually the RX-queues of
NICs, insert packets into the distributor. Worker tasks bound to logical cores fetch
and process packets in parallel, so that the load is shared among the CPU cores and
meaningful analysis can be done.

264 byte on x86-64
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2.2 Example Usecase - High Performance Filtering

A

InternetRB

W

eth0 eth1

QQ

Private Subnet

SW
10 Gbit/s

Figure 2.2: Example topology

In Figure 2.2 a possible use case is constructed in which such a queue can be used. A
private subnet with a number of host is connected to the Internet via a gateway router
R over a 10 Gbit/s link. Hosts A and B stand exemplary for the many clients connecting
to the Internet causing large amounts of tra�c. Additionally a webserver W is also
located within the subnet and provides services to outside clients. The router forwards
all tra�c and also runs some kind of IDS to protect the clients and in particular the
server from outside attacks.

In a usual setup the IDS would log the speci�c connection informations, if an attack
or abnormal activity is detected. It is not feasible to capture an entire 10 Gbit/s link
with standard tools like TCPDump in advance [2]. So all previous packets from the
potential attacker, apart from the ones at the moment of detection, would be lost and
not available for analysis.

With a suitable queuing data structure all tra�c could be bu�ered temporarily and
the analysis work load could be shared. Upon detection the speci�c analyzer then has
access to past and future packets, can �lter out interesting �ows and store only these
to disk. In Chapter 4 several existing data structures are evaluated if they satisfy the
requirements of a tra�c analyzer and Chapter 7.6 demonstrates how our new queue
can be used in the presented a scenario.
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Chapter 3

Related Work

This chapter presents a short overview over software and technologies related to packet
processing and capturing on commodity hardware.

TCPDump/libpcap One of the most commonly used tools for packet capture is TCP-
Dump implemented on top of libpcap. It relies on the Kernel interface to the NIC and
does not put it in exclusive mode like most other drivers do. This makes the tool more
versatile as it can monitor tra�c under normal operation, but also limits its performance
compared to other frameworks. Table 3.1 lists the maximum capture rates achieved
with TCPDump on Linux with a 10 Gbit/s Intel NIC as measured by Brown [2]. For
his assessment he used a dedicated capture cube build with high end, but commodity
hardware. Each test run consisted of unicast UDP packets and ended once TCPDump
dropped a packet. The highest rate without failure marks the �nal result.

Packet size [Byte] 64 128 256 512 1024 1500
Rate [Gbit/s] 0.6 1.0 1.7 2.8 4.4 5.9

Table 3.1: TCPDump lossless capture rates on Linux

It is evident that these rates are far to slow for our purpose, but the widespread use of
the pcap capture �le format and the availability of processing tools already supporting
it, make it the �le format of choice for our developed data structure.

nCap/n2disk In a publication from 2005 Deri [3] presents a novel approach for packet
capture by removing the control of the NIC from the kernel. His design is split into
two components: A new device driver managing the NIC exclusively with two circular
bu�ers for send/received packets and an userspace library as the interface for regular
C programs. In particular, the API is compatible to libpcap so that existing programs
can bene�t from the speedup without much rewriting. By mapping the NIC’s memory
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directly into the address space of the process nCap can capture at maximum Gbit speed,
while using less CPU cycles than a setup using the NAPI combined with PF_RING. Mea-
surements on 10 Gbit/s or faster adapters are not available, but the tool was developed
further by Deri and is now available as the commercial software product n2disk [4],
which claims to be able to capture up to 10 Gbit/s.

Data Plane Development Kit/MoonGen The DPDK project is a collection of libraries
and drivers for fast packet processing tasks. It has explicit support for multi core
architectures and is one of the most mature frameworks in terms of performance and
reliability as shown by Emmerich et al [5]. The written drivers require the NICs to
be bound to DPDK, which makes them invisible to the operating system even when
not used in an experiment. The MoonGen project [6] started as a scriptable packet
generator built on top of DPDK and accelerated by LuaJit, but developed into general
purpose wrapper around the DPDK API. In [7] the same researchers demonstrated that
MoonGen combines the ease of access and �exibility of scripting languages with the
performance of compiled code.

The focus of the DPDK and PF_RING frameworks lies more on fast and precise packet
transmission, than on packet capture or analysis. So they do not provide specialized
data structures beyond basic building blocks like the tested ringbu�er rte_ring and static
�lter modules.
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Chapter 4

Evaluation of Existing Queuing Data
Structures and Problem Analysis

In Chapter 2 we showed that a concurrent data structure is required to distribute packets
to di�erent tasks. As data sharing is not a new problem, such structures already exist.
In this chapter we present a comparison between a few general purpose ones and one
from the packet processing framework DPDK by evaluating their features relevant to
tra�c analysis tasks. Subsequently, the found problems of them are analyzed. The
newly developed data structure QQ is also included for reference.

4.1 Tested Data Structures

The following outlines the evaluated data structures. Implementation details, origin or
remarks not �tting into the general problem categories are mentioned.

Moodycamel: ReaderWriterQueue and ConcurrentQueue Both queues from Cameron [8,
9] are written for and in generic C++ and are completely lock-free. While the Reader-
WriterQueue (RWQ) is limited to exactly one thread inserting and one thread removing
elements from it compared to the ConcurrentQueue (CQ), both share the same underly-
ing concept. The queue is a contiguous circular bu�er of blocks, which can be allocated
in advance to speed up inserts later. An index keeps track of the front and tail block
respectively. Within each block there is an additional set of indices tracking its �ll
level. The performance bene�t comes from the fact that each thread works on a block
independent from others. The outer indices of the circular bu�er are only moved once
a block is full or empty and a thread moves on to the next block. One downside of
this approach is, that for the CQ the dequeue order of elements, enqueued by di�erent
threads, is not necessarily the same as the enqueue order: I1 inserts elements {A,B,C}
while I2 inserts {1, 2, 3}. An reader might dequeue any interleaved combination like
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{A, 1,B, 2,C, 3} or {1, 2, 3,A,B,C}. Only the intra thread ordering is preserved, while
no guarantees can be made about the inter thread order. The RWQ with facilitating a
single inserter does not su�er from this problem.

Folly: ProducerConsumerQueue and MPMCQueue The second set of queues origins
from the Facebook Open-source Library (folly). Like the �rst the �rst presented data struc-
tures, there are two variations with di�erent scopes. Similar to the RWQ folly provides
the single header �le ProducerConsumerQueue [10] (PCQ) with the identical limitations
to 1:1 producer:consumer relationships. The MultiProducerMultiConsumerQueue [11]
(MPMC) depends on the boost library and claims to be faster than any other queue
present in both folly and Intel’s Threading Building Blocks library. To be more robust
under heavy contention, i.e. a high number of concurrent workers, the ticket dispenser
uses an atomic increment instead of a Compare and Swap (CAS) loop to manage access.
As CAS iterations fail when the value is modi�ed by another thread at the same time,
the loop becomes nondeterministic and potentially slow. Unlike the CQ it is linearizable
and guarantees the same enqueue/dequeue order of elements.

Both queues are �xed in size, allocate all memory upfront and support optional blocking.

DPDK: rte_ring DPDK [12] comes with its own lock-free ringbu�er implementation
used internally and made available to programmers via the API. It allocates all memory
up front and stores pointers to objects. In the default con�guration rte_ring is single
producer, single consumer queue, but at creation it can be changed to support more
threads. We tested only the later setting. The number of slots is �xed once set and
limited to powers of 2. Additionally we found that the maximum number of slots is
227 = 134217728 ≈ 134 M [13], severely limiting its usefulness for our purpose: At a
packet rate of 50 Mpps rte_ring can only hold 134 M/50 Mpps = 2.68 sec worth of tra�c
until the ring is full, which does not ful�ll our goal of bu�ering longer periods into the
past. Enqueue calls will not overwrite old packets, but fail until slots are available again.
This requires at least one worker always dequeues packets to make space for new ones,
even when not processing or analyzing anything.

To store variable length packets without allocating every packet explicitly, DPDK pro-
vides a message bu�er class (rte_mbuf ) to be used in conjunction with memory pools
(rte_mempool). While these provide high performance object creation routines, they are
unsuitable for anything else than short term storage, as a single mempool is limited to
the same restrictions as the ring. The message bu�er also store several bytes of device
speci�c �ags and metainformation and so inhibit a constant memory overhead per
packets. Bundling multiple ringbu�er together to reach the required storage capacity
would be possible, but complicates usage and setup.

Due to their internal design with per-core caches, all rte data structures can not be
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used outside of the DPDK environment, in particular not by threads created with the
pthreads library.

We included rte_ring despite these shortcomings as it is not clear if the slot limits are
genuine design limitations or just precautionary limits set by the developers that could
be increased easily. DPDK may be used anyway, so that the additional requirements do
not always apply.

4.2 Tested Features

Throughput Throughput measures the average sustainable rate of packets and is an
important factor for a tra�c analyzer. The bars in Figure 4.1 show the measured rates
of each queue, depending on the used allocation method further explained in Section
4.3.2. The left y axis lists the packet rate in Mpps, while the right y axis shows the
equivalent data rate, if the packets were transmitted over a NIC1. For the test four
threads are inserting elements into a queue, while four other threads dequeue them
as fast as possible. To only measure the theoretical limits, no other work is performed
on the packets. With exception of rte_ring all queues are con�gured to allocate 16 GiB
of memory. All packets are 64 byte large as this represents the worst case in packet
processing [14]. As the RWQ and PCQ are inherently limited to one producer, one
consumer constellations, the benchmark can not be run in the same fashion for them
and is reduced to two threads. The results are therefore not directly comparable, but
still included, as workarounds with one separate queue per NIC are thinkable.

Low latency Depending on the implementation and features of a data structure, the
minimum time it takes for a element to traverse the queue may di�er signi�cantly. A
low value makes the structure eligible for use in real time (critical) environments, e.g.,
audio bu�ering or packet forwarding. In the context of tra�c analysis latency only
plays a minor role as small delays in the millisecond range can be tolerated and are
o�set by larger bu�ers. All tested structures except QQ are optimized for this.

Variable length objects and memory preallocation As packets come in di�erent lengths
it must be possible to store them e�ciently, while at the same time using only the
preallocated memory for performance reasons(Section 4.3.2). rte_ring and QQ solve this
problem by using special container data types, while the generic queues can not solve
this: Either pointers to individual allocations are stored, or the queues use �xed size
containers, which can be either too large or too small.

110 Gbit/s = 14.88 Mpps @ 64 byte packets
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Growability Growability describes the possibility to adjust the total number of slots
of the queue after creation. This can be bene�cial when the load pro�le changes over
time and memory usage should be minimized. While not technical impossible, none of
the queues that can store variable length objects and preallocate memory are resizeable.
rte_ring is di�erent to QQ in having a �xed number of slots, where in QQ the maximum
number of packets is limited implicitly through the memory capacity.

Special functions Special functions describe features going beyond the scope of a queu-
ing data structure that could aid in the implementation of a tra�c analyzer. Section 4.3.3
describes them and their use in greater detail.

Multi-producer/-consumer Apart from the RWQ and PCQ all queues can be used from
more than two threads at the same time. This is an important property when e.g. tra�c
from multiple NIC should be bundled or packets are distributed to more than one core.
In general single producer queues can be faster than multi-producer ones in the 1:1 case,
as they can ignore certain edge cases in their model.

Bulk operations To reduce the overhead of function calls, synchronization and general
housekeeping, bulking packets together into one single operation is a common technique
in networking. All provide such a mechanism, except the RWQ and the PCQ . While
QQ takes this principle even further by incorporating it deeply into its design, it has no
explicit bulk call for multiple packets.

RWQ PCQ CQ MPMC rte_ring QQ
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Figure 4.1: Throughput comparison with 64 byte packets

2Con�gurable, only the multi-producer/-consumer version was tested
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Variable length objects and memory preallocation X X X X (X) X
Growable X X X X X X
Special functions X X X X X X
Multi-producer/-consumer support X X X X X2 X
Low latency X X X X X X
Bulk operations X X X X X (X)

Table 4.1: Feature matrix

4.3 Detected Problems

This section lists the detected problems with the tested data structures and how these
problems limit their usage for packet processing. They are grouped by categories as
some problems are often universal and not limited to one speci�c implementation.

4.3.1 Latency Overoptimization

All tested data structures optimize heavily for short operational latency. They achieve
this by employing lock-free programming techniques with atomic operations or CAS-
Sequences. While this keeps the delay of a single call very short, the small overhead of
these operations accumulates over millions of packets per second, limiting the through-
put severely. One should also note that one operation does not always result in one
processed packet. Lock-free operations can fail when two cores access the same data
at the exact same moment. Then only one of the calls succeeds while the other has to
try again. It is obvious that this will occur more often with an increasing number of
threads. In Figure 4.1 therefore only the rate of actually stored packets, i.e., successful
calls, is listed. These are often lower than the benchmarks provided by the vendors, but
as we are only interested in the packet processing rate, it is conclusive to only count
real results.

The di�erent design goals are re�ected by the measured results. Only rte_ring can reach
data rates higher than 40 Gbit/s and in direct comparison QQ, which does not optimize
for latency, outperforms all other structures by a factor of 2.2 to 100.
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4.3.2 Memory Management

When dealing with variable length objects like packets, we have seen two approaches
of storing them in memory:

Message bu�er An extra class provides �xed size chunks of memory which encap-
sulate the actual packet data and store some meta information about it. Due to their
homogeneity they can be allocated in bulk and beforehand, which both increase perfor-
mance. Of the tested data structures only rte_ring in combination with rte_mempools
uses preallocated message bu�ers. The generic queues do not provide such features.
To still get comparable data we simulated message bu�ers by using �xed sized structs
larger than the packet. Generally message bu�ers have an inherent space overhead, as
short packets are padded and packets longer than 128 byte get segmented over multiple
bu�ers.

Individual allocation The naive way is allocating every single packet individually with
the correct length. The performance of the methods depends nearly entirely on the
underlying implementation of the malloc function. For the measurement we used the
implementation of the GNU C Library 2.19, which results in the following problems:

• The malloc function is thread-safe [15], which is ensured by locks or other mu-
tal exclusion mechanisms. As the function is called for every packet by every
inserter, the contention for this critical code path becomes very high and creates
a bottleneck. In Figure 4.1 the performance penalty of using malloc compared to
memory pools becomes evident. For the same setup and ring size, only 20% of
the throughput compared memory pools can be reached.

• Identical to the allocation problem, is the deallocation phase on the consumer
side. Reclaiming memory from processed packets is done via the free function,
which is synchronized in the same way as malloc and thus is limited in the same
way. Reusing memory directly to prevent any diversion over libraries is nearly
impossible as every chunk has been allocated with the speci�c length of the
previously stored packet.

• Individual allocation creates small packets fragments distributed over the heap.
In particular they are not guaranteed to be laid out continuously or ordered by
arrival time, so that memory accesses cannot bene�t from the principle of locality
of reference. The CPU prefetcher cannot predict where the next packet is stored
and consequently not preload it, leading to massive performance penalties [16].

It should be noted that this is a known problem and several malloc implementations
speci�cally for use in multi threaded applications exist, but comparing these is out of
the scope of this thesis.
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4.3.3 Lack of Special Features

Implementation e�orts of tra�c analyzers can bene�t from a certain set of functions if
provided by the underlying data structure.

Random access While a queue can usually only be accessed at either the front or back,
a tra�c analyzer must have access to packets at any position. All tested queues forbid
this as it requires additional synchronization and is beyond the scope of a normal queue.
Because of its great use, the QQ implementation must permit this mode of access, but it
may be limited to read only operations. As an analyzer should only monitor and not
modify tra�c, this is su�cient.

Roles Similar to the access, the existing queues lack the distinction between di�erent
roles. Only the obvious roles of the producer inserting and the consumer removing
elements are provided. As the analyzer needs to look at the �ow while not discarding it,
we require a third function named peek. It must behave equivalent to the tail by moving
forward up to the head index, but it does not remove packets from the queue, so they
are still available to a later dequeue call.

Additionally we want to control how an over�ow situation where more packets are
inserted than dequeued is handled. In the tested data structures we have seen either a
total block on inserts until slots are available again or an overwrite of the oldest element.
Both can be desired, for instance when an event has been detected and all stored packets
should be written to disk. Then new packets must only be inserted if space is available
or else valuable information could get overwritten.

Context coherent storing As real tra�c is not uniform in throughput, especially if
combined from di�erent sources, packets do not get distributed equally over the queue.
It can help analysis if there is a coherence between the position in the queue and the
arrival time of the packet. One can then calculate the estimated position of a packet
by knowing its arrival time, without doing a linear search. Queries for events that
happened 30 seconds before then become possible. Obviously none of the tested queues
support this.

Persisted storage Due to performance reasons the packets are only kept in RAM until
deemed interesting by the analyzer. But then it is crucial to have the option to move
packets into persistent storage for later o�ine analysis. While this is not implemented
by any queue, it could be added via a separate library supporting this functionality, as
it is done in our design.
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Chapter 5

Proposed Solution

In Chapter 4.3 we analyzed the problems that were found with the tested queues. Based
on the results we have worked out a set of requirements that a data structure must ful�ll
to be used in a tra�c analyzer. With them the outline of our prototype named Queue of
Queues (QQ) is set up in the last section.

5.1 Requirements

We have seen that data structures are often optimized for one speci�c property, i.e.
latency, and tend to ignore other key features that are important for tra�c analyzers.
With the following requirements a frame for the later evaluation of QQ is set.

QQ must...

(R1) ...be able to handle the throughput of a single 10 Gbit/s NIC and a total of 40
Gbit/s combined.

(R2) ...be able to store several million packets or at least 16 GiB e�ciently.

(R3) ...provide the special functions, enumerated in 4.3.3, needed to implement tra�c
analyzers.

(R4) ...scale on multi core architectures by at least not decreasing performance with
increasing number of workers.

5.2 Structure

To accomplish the set goals, we developed the structure shown in Figure 5.1, partly
incorporating features that have been proven functional in other designs.
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Figure 5.1: QQ design overview

The red boxes represent tasks and are run in concurrent threads. As QQ is not part of a
speci�c packet processing framework, NICs are not aware of it and can not store packets
in QQ directly. The inserter tasks therefore fetch the packets from the respective driver
in use and enqueue them into QQ. Analyzers can then obtain read only access to them
via the aforementioned peek function. Upon detection of an event they signal the dump
tasks the needed �lter criteria like a time range, IP addresses or port numbers. Theses
tasks in turn get the packets by calling the traditional dequeue function and can then
move them to persistent storage. This is done via the pcap writer, a memory mapped
writer implementation of the pcap storage format.

To distribute concurrent accesses e�ciently we utilize a two layer model:

Outer Queue An outer queue handles incoming calls, manages memory and defers
accesses to the inner queues. In particular it does not store packets itself. In Chapter 4
we have shown that memory management is a crucial component in an e�cient design,
therefore will the needed memory is be allocated at queue initialization time and further
allocations are minimized. To prevent fragmentation and to bene�t from locality of
reference, the space for the packets is allocated as one continuous block. To prevent data
races, all functions modifying shared state are secured by a queue wide mutex. Normally
having one global lock would lead to a very high contention around it, resulting in very
poor performance with an increasing number of threads. However, with the concept of
inner queues the number of function calls actually requiring that mutex can be reduced
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drastically, so that this overhead becomes negligible.

Packet 0

0x0000 0x0060Offset vector

Granted 
memory block Packet 1Packet

Header
Packet
Header ...

Mutex

base head

Figure 5.2: Inner queue structure

Inner Queue Inner queues are set up at initialization time and behave like independent,
equal sized queues. They do not allocate space themselves, but are assigned a range
from the large block by the outer queue. Unlike in the implementation of the CQ, inner
queues are not bound to a �xed task, but can be assigned to any role and to any member
of each role. In particular it is not necessary to know the number of inserter tasks in
advance. Further we exploit that the mutex guarding an inner queue only has to be
locked once by a task, then it can operate independently and without further checks
on that queue. In contrast to models that rely on atomic operations, not every insert
or dequeue is synchronized with all others immediately. Thus the higher initial cost
of locking the mutex is amortized by the large amount of following operations with
no additional costs. Once the mutex is unlocked all changes become visible to other
threads. The inner queue will serialize each packet into the assigned memory block.
A prepended header keeps auxiliary meta data and marks the start of an packet. To
enable constant time access, a reference to each header is stored in an o�set vector as
shown in Figure 5.2. New packets are copied at the head index until all space from
range is exhausted and a new inner queue must be requested. The current queue is
then unlocked and can be dequeued by an analyzer or dump task. Once the packets are
no longer needed, the queue can be reset by setting the head index to the base index,
making the clear a O(1) operation.
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Chapter 6

Implementation

This chapter documents the implementation details of the newly developed QQ data
structure, based on the analysis in Chapter 5. It provides an overview over all classes,
how they relate to each other, what and why design decisions have been made.

The implementation language of choice is C++ as it provides powerful abstractions
for container data types with the standard library. Writing these from scratch in pure
C would take a considerable e�ort while providing little to no bene�ts compared to
writing separate bindings for other languages. Where possible the use of static types
was preferred over void pointers as they inhibit performance penalties and provide no
strong type safety guarantees, which hinders analysis and is generally more error prone.
Overall is QQ written as a generic, userspace data container with no dependency on
external software libraries like boost and refrains from using lock-free programming
techniques. While its main purpose is high speed packet processing and it is used in
conjunction with the MoonGen and DPDK project in this thesis, it does not depend on
these frameworks or even packet tra�c at all.

6.1 QQ::packet_header Class

The QQ::packet_header class serves as a header prepended to the stored packets. Its
general purpose is to hold additional meta information about an L2 frame that is not
contained in the packet itself. To retain binary compatibility with plain C and LuaJIT the
structural complexity is limited to the semantics of a Plain Old Data (POD) struct [17].
As the C++ standard library does not provide a data type for in-place variable length
objects, we decided to use an incomplete array type from C99, called Flexible Array
Member (FAM) [18], for the frame data. Listing 6.1 shows the struct de�nition with
len storing the length of a packet and data holding the pseudo pointer to the frame.
When this struct is allocated with enough space to hold sizeof(packet_header) +
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len * sizeof(uint8_t) bytes, operations on the data member must behave as if the
member were a normal array of type uint8_t [18]. The resulting binary layout in
memory is illustrated in Figure 6.1 with the bit�elds timestamp and vlan being packed
into the �rst eight byte to reduce the total size of the header and therefore overhead
per packet to 16 bytes. Note that the data �eld conveniently starts at the 10th byte.
This aligns the start of an L3 PDU after the 14 byte long Ethernet header, marked in
blue, to an 8 byte boundary ((10 + 14) mod 8 == 0), which reduces the latency of
read and write operations on the x86-64 architecture [1] and is required on others like
ARM. The timestamp �eld holds the arrival time of the packet in microsecond resolution
with a range of 8926 years. The value itself has to be provided by the user and can
either be from a software clock or from the NIC if it supports hardware timestamps.
With the extra vlan �eld it is possible to store the VLAN identi�er (VID) of the optional
802.1Q header out of band. As this tag is often striped by networking hardware and
only provided as meta information, it would be otherwise lost.

1 struct packet_header {

2 uint64_t timestamp:8;

3 uint64_t vlan:12;

4 uint16_t len;

5 uint8_t data[];

6 };

Listing 6.1: struct de�nition

0 7 15 23 31

timestamp
vlan tag

packet length
ethernet destination address

ethernet source address
ethertype

L3 payload
hhhhhhhhhhhhhhhhhh

hhhhhhhhhhhhhhhhhh

variable length packet data




data
�eld

Figure 6.1: QQ::packet_header layout with an
Ethernet frame (header marked blue) stored

6.2 QQ::Storage Class

The QQ::Storage class is the implementation of the inner queue, as laid out in our
design structure.

To store the packets inside the memory block assigned by the outer queue, the placement
new functionality is used. It allows the construction of objects at a speci�ed location,
while leaving lifetime management to the implementer. With an index the current �ll
level is check before every insert, so that no out of bounds writes occur. As constant time
access to all packets is a bene�t, a pointer to each packet header is pushed upon an o�set
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vector. In addition to the amortized O(1) append of vectors, some space is reserved
at initialization time, so that in most situations no expensive reallocation is needed.
In general the Storage class behaves very similar to a std::vector and implements
common functions like the []-operator, pop_back(), clear() and iterators in the expected
manner. To preserve the 8 byte alignment worked out in Section 6.1, an optional
padding is inserted between two packets, depending on packet lengths. A std::mutex

in combination with std::unique_lock is used for synchronization purposes.

6.2.1 Maximum Hold Time

To account for situations where one writer does have signi�cantly less packets per
second to handle compared to its co-threads, we implemented a maximum hold time
check. As its write rate is lower than others, it takes more time to �ll up one Storage,
resulting in older packets being stored between much newer ones. There is also the
possibility of an lock occurring if this slow writer still holds a Storage when the rest of
the writers have moved forward and the readers are waiting for this thread. With this
check the packets are distributed more evenly on the outer queue, even at lower rates.

Each Storage has a �eld to store the last time it was given out to a task by the outer
queue. On each store call this value is checked against the current time. If more time
has passed than the timeout allows, the store operation is denied which signals the task
that this Storage element should be released and returned to the outer queue again.
The implementation uses the _rdtsc() [1] compiler intrinsic which returns the current
timestamp counter of the CPU. Modern CPUs have a synchronized counter across all
cores and increment it at a �xed rate called reference cycles per second, independent from
the actual, variable CPU frequency [1]. This makes the counter suitable for our check
where only the delta between two timepoints and not a wall time is needed.

6.3 QQ::Pointer Class

As described in the Section 6.2, Storages require some additional steps to function
correctly. To simplify and ensure correct usage for programmers, the QQ::Pointer class
takes care of most of these tasks by wrapping around a Storage. In particular it sets
the acquisition time correctly and ensures that the lock of the inner queue as actually
hold before operations on it take place. Should a Storage be unlocked by either going
out of scope or by explicitly calling release(), it guarantees that the mutex is unlocked
and prevents later dead locks. All other function calls are simply forwarded to the
underlying Storage, masquerading this wrapper to tasks.
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6.4 QQ::QQ Class

The QQ class serves as the outer queue and resource manager of the inner queues in our
design. It also handles the con�guration parameters set at compilation and run time.
Once a QQ object is instantiated it allocates the total memory needed in one contiguous
block and backed by huge physical pages. These are larger than the standard memory
pages of 4 KiB and therefore need less entries in the Translation lookaside bu�er (TLB) of
the memory management unit (MMU). In addition to the traditionally used (�le-)system
for hugepages, the Linux Kernel provides the concept transparent hugepages (THP) [19]
for userspace programs, albeit limited to 2 MiB sized pages. Because of the simplicity
in usage and silent fallback in case of lacking hardware support, we decided for THP.
Listing 6.2 shows an excerpt from the code of the constructor. The �rst system call
mmap returns a pointer the allocated block of memory in the virtual address space. It
is marked readable and writeable as we want to store the packets directly within it.
Line 5 sets the mapping as private which is an requirement of the kernel for the usage
THP and prevents an additional mapping into the address space of another process.
Subsequently, all parallelism e�orts are based on threads as they share the same address
space. With the second system call in Line 9 the pages are marked eligible for THP via
the MADV_HUGEPAGE �ag. Depending on the system’s con�guration the merging of the
pages will either be performed directly, deferred to later or skipped silently. Section 7
summarizes the relevant kernel parameter. Communication between di�erent tasks
happens via condition variables.

1 const size_t qq_capacity = pages_per_bucket * num_buckets * huge_page_size;

2 if ((backend_ = (uint8_t*) mmap(NULL,

3 qq_capticity,

4 PROT_READ | PROT_WRITE,

5 MAP_ANONYMOUS | MAP_PRIVATE, -1, 0)

6 ) == MAP_FAILED) {

7 handle_error("mmap");

8 }

9 if (madvise(backend_, qq_capticity, MADV_HUGEPAGE)) {

10 handle_error("madvise");

11 }

12 for (unsigned int i = 0; i < num_buckets; ++i) {

13 storage_in_use.emplace_back(new Storage<pages_per_bucket*huge_page_size>(

14 backend_ + i * pages_per_bucket * huge_page_size));

15 }

Listing 6.2: Memory allocation in the constructor

The loop in Line 12-15 then creates the Storage elements and stores references of them
into a vector. Each element is granted an even piece of the memory block determined
by an o�set and length.
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The analysis in Chapter 5 showed that having multiple di�erent roles is bene�cial for
certain packet analysis tasks. We wanted the possibility to look at the incoming tra�c
while not discarding it doing so. This is implemented in the additional peek position
index on the ringbu�er. It can be moved independently from the other ringbu�er
pointers but shares some semantics with the tail pointer. Under normal operation it
is positioned behind the head where the new packets are inserted and before the tail
where they get dequeued again. Unlike its POSIX counterpart it does not return the
same element repeatedly until new ones arrive, but moves forward up to the head,
giving a preview to each element exactly once.

6.4.1 Locking Strategy

Handling multiple locks requires great care to prevent deadlocks or bugs. Listing 6.3
shows the dequeue function with the locking sequence developed. First the global mutex
of the outer queue is acquired in Line 2 to grant exclusive access to the shared variables.
Should the mutex be held by other threads at the time, the caller will block until the
other tasks �nish and the mutex is released. Line 3 and 4 check several preconditions
with the use of condition variables, such as the current priority value and if the queue
even contains enough elements to be dequeued at the moment. Should these conditions
not be ful�lled, the thread will wait until it is noti�ed again, releasing the global mutex
while doing so. Upon noti�cation from, e.g., an inserter thread, it will reacquire the
lock atomically so that the checked conditions are guaranteed to remain true thereafter.
In Line 6 the Storage at the current tail index is fetched and its mutex is locked. This
has to happen before advancing the index in Line 7, as an index of a ringbu�er always
points to the next, not the current, element. Manually unlocking the global mutex in
Line 10 before notifying waiting threads is common praxis to prevent one unnecessary
wakeup and the immediately following stall: A waiting writer thread would be noti�ed
that space is now available and would try to acquire the global mutex. But at this point
it is still held by the reader thread sending the noti�cation, thus the writer would be
put on hold again until the reader leaves the dequeue function.
1 Ptr<pages_per_bucket> dequeue(const uint8_t call_priority = 1) {

2 std::unique_lock<std::mutex> lk(mutex_);

3 cv_prio.wait(lk, [&]{ return check_priority_no_lock(call_priority); });

4 non_empty.wait(lk, [&]{ return distance(tail, head) > guard_interval; });

5 Ptr<pages_per_bucket> p{*tail};

6 tail = wrap(tail + 1);

7 ++dequeue_call_counter;

8 lk.unlock();

9 not_full.notify_one();

10 return p;

11 }

Listing 6.3: Dequeue function
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Enqueue Task priority compared to QQ
succeeds ≥ =

Queue not full X X
Queue full X X

Table 6.1: Priority check matrix for enqueue calls

6.4.2 Priority System

Generally QQ handles overload situations where more packets are enqueued than
dequeued by discarding the oldest packets. In certain situations it can be required to
deviate from this behavior, e.g., when a �ow has been detected and it is more important
to dump all stored packets than to not drop new ones. Therefore, QQ has a global
priority level ranging from 0 (highest) to 255 (lowest) that is checked before unhandled
packets are overwritten by an enqueue call. Conversely tasks have an equivalent priority
value set as seen �t by the user, which they append to their calls to QQ. Table 6.1 lists
the possible constellations in a priority matrix. Should the call priority be high enough
for the current level or the queue is currently not full, then the enqueue will continue
immediately, as the call would either not overwrite elements or is speci�cally advised
to do so. Only if the queue is both full and the priority is too low, the thread will block
until either condition changes. With this it becomes possible to assign inputs di�erent
importance. It should be noted that this scheme is not fair and resource starvation of
low priority tasks is possible.

6.4.3 Guard Interval

To reduce unnecessary contention for the outer queue mutex, a guard interval is in-
troduced. It prevents the tail index from being pushed closer to the head index of the
ringbu�er than a speci�ed distance. This is necessary since inserter threads do not
notify the queue once they release a speci�c Storage element. It is therefore impossible
to decide if an element in the window [head − n,head] can be locked immediately or if
the Ptr creation in Line 9 of the dequeue function in Listing 6.3 would block because a
writer is still inserting packets. As this block would occur while still holding the global
queue mutex, all other threads would also be prevented from getting new containers,
thus resulting in an overall performance degradation. With the guard interval in place,
reader threads are prevented from trying to lock such potentially still in use elements.

In Figure 6.2 this concept is illustrated with four writers and an equivalent guard distance.
Despite being already �lled and unlocked by a writer, Storage n-3 can not yet be
dequeued to a reader thread as this fact is neither known by the queue, nor guaranteed.
In particular element n-2 is not yet ready and would block all operation until this
container is �lled and unlocked. This check is implemented in Line 5 of Listing 6.3
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Figure 6.2: Guard interval preventing the tail from being moved further ahead

where the current distance of tail to head is checked against the guard interval. Should
the test fail the queue mutex is unlocked and the thread suspended until noti�cation
from, e.g., the enqueue function. Contrary to situation before all other threads may still
operate on the outer queue as the mutex is using condition variables.

Chapter 7.5 evaluates the impact of varying guard interval lengths on factors like
throughput and latency and which trade o�s can be made.

6.5 QQ::pcap_writer Class

Although QQ has a large capacity, it can be of interest to save certain packets for later
o�ine analysis. The developed QQ::pcap_writer class provides an interface to store
packets to persistent storage in the widely used pcap1 �le format. To achieve high
peak performance and to not block queue operations, the implementation relies on the
e�ciency of �le-backed memory mappings into the virtual address space of processes.
Unlike with �le handles the packets are not written via write calls, but copied to the
appropriate memory areas. The kernel deferrers the actual, signi�cantly slower, write-
out to disk to a later time point, asynchronous to the packet analysis. Until then the
packets are bu�ered in free physical memory. This makes it possible to handle short
bursts of packets with much higher rates than the actual disk bandwidth.

As memory mappings are static in size and the �nal length of a capture is not known
1https://wiki.wireshark.org/Development/LibpcapFileFormat

https://wiki.wireshark.org/Development/LibpcapFileFormat
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at creation, the �le has to grow dynamically. To keep track of the current �ll level and
to not write beyond the page boundary, a variable counts the total written bytes. Once
the current capacity Nold has been reached, the �le is grown and remapped according
to the following formula:

Nnew = dK ∗ Nold e
4 KiB (6.1)

The calculated new size is rounded up to the next full 4 KiB as memory maps always have
a size multiple of whole pages. While using less would still work, it would waste some
space as the last partial page would be zero �lled [20]. With this exponential growth the
amount of resizes and resulting remaps is minimized, which can be expensive because
they may cause data to be copied to a new, large enough, memory area. We chose
a growth factor of K = 2 over the other commonly used value K = 1.5 as it further
decreases the number of resizes by growing faster, while still using an conservative
amount of space2. Together with the on-demand load of pages on access, this reduces the
costs of stores to an amortized constant factor. As it is expected to store several hundred
MiB of data, starting with a size of 1 Byte would only lead to countless unnecessary
resizes at the beginning. The pcap_writer therefore defaults to a initial size of 256 MiB,
but any hint can be speci�ed in the constructor. When a capture �le is closed, it is
truncated to the actual size as reported by the written bytes counter. Opening, reading
or appending to existing capture �les is not supported.

6.6 LuaJit/MoonGen bindings

To simplify the testing procedure, QQ has been made available to MoonGen usersripts
via the Foreign Function Interface (FFI) of the Lua Just in Time (LuaJit) compiler. In its
functionality and usage it is similar to interface of the DPDK driver and therefore can
be used in-place and besides of a NIC. Additionally, the packet_header is compatible
with MoonGen’s existing packet library, so that all programs building upon that will
also function with packets from QQ. A receive loop has been implemented so a a NIC
can be coupled to QQ with a single call.

2gcc uses K = 2 for its std::vector implementation
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Chapter 7

Evaluation of QQ

This chapter evaluates if the developed data structure QQ ful�lls the requirements from
Chapter 5.1 and measures various performance metrics.

7.1 Setup

All tests were performed on the same host equipped with multiple, interconnected NICs
to simulate more complex network setups. A detailed list of the used hardware is given
in Table 7.1.

Hardware

Omanyte
Mainboard Supermicro, X10SRL-F
CPU Intel Xeon CPU E5-2620 v3 @ 2.40GHz
Memory DDR4, 32 GiB, 1866 MHz
NIC 2 x Intel LX710 40 GbE QSPF+

2 x Intel X710 10G
2 x Intel X540-AT2 10G

Storage 2 x Samsung SSD 840 EVO 250GB (RAID-0)

Table 7.1: Test host hardware

Software

Various tools and frameworks were used in this thesis. Table 7.2 lists them with their
respective versions.
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Name Version
MoonGen 3b1a047
DPDK 16.04
pmu-tools r105
gcc 6.1.1
Ubuntu 14.04.4 LTS
Linux Kernel 3.13.0-86-generic
STREAM benchmark [21] 5.10

Table 7.2: Used software

Unless otherwise noted, QQ was con�gured to use 26 GiB of the available 32 GiB RAM,
with one Storage element being 4 MiB large.

Kernel Flags

The kernel provides several �ags to in�uence the behavior of its modules. In particular
the support for THP has to be enabled [19].

Flag Value
/sys/kernel/mm/transparent_hugepage/enabled madvise
/sys/kernel/mm/transparent_hugepage/defrag always
/sys/kernel/mm/transparent_hugepage/use_zero_page 1

Table 7.3: Kernel �ags

7.2 Benchmarks

In Chapter 4 we showed that most data structures struggle to keep up with high data
rates. The �rst benchmark in Figure 7.1 therefore measures the total achievable through-
put of QQ at di�erent packet sizes and varying number of threads. It was performed
within MoonGen via the developed QQ bindings for Lua. To exclude external in�uences,
e.g., from interaction with NIC drivers or link speed limitations, all packets were gener-
ated in software via concurrent MoonGen tasks. Each inserter continuously acquires
Storages from QQ and �lls them with packets as fast as possible. To make the test more
realistic, one additional task acts as a sink, dequeuing and counting the packets. Each
run consists of a warm up phase of 15 seconds to �ll the caches and ensure the allocated
memory is at least touched once. Then the rate samples are taken over a period of 30
seconds at the sink. While we did not set a priority level to prevent packets from being
overwritten by enqueue calls, we could not observe an over�ow, even at the maximum
recorded rate of 159 Gbit/s. This shows that the overhead of just dequeuing packets
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Figure 7.1: Theoretical QQ throughput within MoonGen
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Figure 7.2: Theoretical QQ throughput compared to STREAM

from QQ is extremely small, as a single sink thread could handle the entire �ow at ∼ 3%
CPU utilization.

The graph in Figure 7.1 shows the recorded rates in Gbit/s grouped by packet sizes. We
started with the smallest sensible size of 64 bytes and doubled it until the MTU of a
typical Ethernet link was reached at 1514 Byte1. The di�erent bars in each group show
the results for the number of input threads. As expected the rate does increases with
the number of threads.

Figure 7.2 shows the same data ordered by the number of inputs. To set the results into
a context, we included the copy measurement of the STREAM benchmark [21] as the

114 byte Ethernet header + 1500 byte L3 SDU, excluding the 4 byte FCS
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Figure 7.3: Multi-core (1.2 GHz) RSS with an LX710 40 GbE NIC and 256 byte packets

dotted line. It is often used to determine the total memory bandwidth of a system. I can
be seen that di�erent packet sizes have little impact on performance, while the overall
maximum memory throughput is not reached at any packet size or number of threads.
Runtime analysis of the code showed that 28% of the time in the store function is spend
for the timeout check. A bulk store option could skip this check and potentially improve
performance.

7.3 Multi-Queue Scaling for 40+ Gbit/s NICs

In Figure 7.1 and 7.2 it can be seen that the data rate for single inputs is severely lim-
ited compared to what is possible with multiple inputs. Speeding processes up by
running them in parallel is a common approach also pursuit by networking hardware
vendors by placing multiple queues with separate bu�ers on one NIC. These can be
bound to di�erent CPU cores exploiting modern multi-core architectures and solving
the computational resource bottleneck. Techniques like Receive Side Scaling (RSS) dis-
tribute incoming packets over di�erent queues, and consequently cores, by calculating
a symmetric two-way hash function over the packet header. The properties of the hash
functions are chosen so that the intra �ow packet order of the stream is preserved.
While packets of one �ow are all assigned to the same queue, no assertions can be made
about the order and timing of packets from distinct �ows. The concept of splitting the
stream up seems contrary to our goal of providing a single choke point for analysis,
but RSS can help to get the packets from the NIC into QQ within the time critical loop.
Every receive (RX) queue of the NIC is matched up with an inserter thread that stores
the packets into Storages of the same QQ. Combined with our design of independent
inner queues the resulting stream available to the analyzers is not further reordered.
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Applications that can handle RSS tra�c will not �nd problems with the packet order in
QQ tra�c.

Figure 7.3 demonstrates the performance improvements with one 40 Gbit/s NIC when
receiving 128 UDP tra�c �ows from varying source ports generated with another LX710
NIC. The packets are 256 bytes large and the link capacity of 40 Gbit/s is fully saturated
on the sending side. As the receive rate is largely dependent on the available processing
power, we reduced the clock frequency on the receiving cores to 1.2 GHz to simulate
higher link speeds and to show the scaling potential of having multiple receive queues.
In the case of one and two RX queues the remaining processing time left after interaction
with the DPDK driver is not enough to insert the packets into a Storage element of the
QQ. The NIC therefore has to drop packets from its internal bu�er as the inserter thread
can not keep up with the tra�c �ow. With each additional RX queue and paired inserter
thread the amount of dropped packets decreases until the full line rate is handled with
three queues. Adding more queues beyond that does not in�uence performance, but
would allow further scaling to 100 Gbit/s NICs as their queues are independent from
each other and the speedup from adding queues is nearly linear. QQ itself provides the
capacity and does not become a limiting factor until around 125 Gbit/s as discussed in
Section 7.2.

7.4 In�uence of Storage Sizes on Throughput
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Figure 7.4: Single Storage throughput with 64 byte packets

In this section the in�uence of di�erent QQ::Storage container size con�gurations
on performance are discussed. Figure 7.4 shows the throughput of a single container,
depending on the chosen size. The experiment is run with four inserters and one sink.

Overall the impact of di�erent container size con�gurations is minimal, with only 0.95
Gbit/s di�erence between the fastest (128 MiB) and the slowest (4 MiB) con�guration
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Figure 7.5: Outer queue call performance
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Figure 7.6: QQ throughput at di�erent guard
distances

and otherwise stable rates. We expected to see the smaller sizes to perform better due to
caching e�ects, but measurements of the L2 and L3 cache hit rates showed no distinct
trend.

In Section 5.2 we decided to use one queue wide mutex under the assumption that the
concept of inner queues keeps the number of calls hitting the outer queue low. None
the less we measure the call performance of the outer queue to ensure that it does not
become a limiting factor. Figure 7.5 shows the total number of handled enqueue and
dequeue calls per second. As common with mutexes, the rate decreases rapidly once
the contention becomes higher with more threads. Despite the seemingly low result of
170000 calls/s at 8 threads, we can verify that this is enough for our purpose:

40 Gbit/s
2 MiB · (1 + 1) = 4768 calls/s

Even with the smallest Storage size of 2 MiB and a rate goal of 40 Gbit/s, only 4768
call/s are required combined2.

This concludes that our Storage data structure is suitable to be used as the inner queue.

7.5 Throughput - Latency Considerations

One of the decisions that allows us to achieve high speeds was the possibility to tolerate
small latencies. In Chapter 6 we introduced a guard interval to prevent too heavy
contention for Storage locks at the expense of an additional packet delay. This section
expands on the usage of this interval and how it in�uences overall performance keys.

In Figure 7.6 the throughput of QQ at varying guard interval lengths is displayed. For
this experiment 8 (4+4) inserter and analyzer threads are working on 64 byte packets.

22384 enqueue and dequeue calls each
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It can be seen that the performance drops signi�cantly if the guard distance becomes
smaller than the number of inserters, down to the worst case of only one guard slot. As
expected the peak rate is reached with a guard distance exactly equal to the number of
inserters. We could observe that the inserter threads reach 100% CPU utilization at this
point, which means that they are no longer blocked by the analyzers. Adding further
guard slots does not lead to a higher rate and only increases the latency. So the optimal
guard value is

д ≥ #Inserters (7.1)

With the interval known, the minimum packet delay can be calculated:

dmin = min
(

s

rmax
, t

)
· д (7.2)

With s being the Storage size, rmax the maximum expected rate, t the set maximum
hold time for a container and д the number of guard elements. Note that the hold
timeout should not be set lower that s

rmax
, as then a container can not be �lled before

the timeout occurs.

Given a �xed total rate goal one can adjust several parameters to reach it, while still
maintaining a low latency. As shown in Section 7.4 the Storage size can be chosen
nearly freely without losing much single input throughput. At constant rates a smaller
Storage will be �lled faster, queued earlier and analyzed with less delay. Therefore, the
minimum container size of 2 MiB is preferred and yields the smallest latency, as shown
in Table 7.4.

Storage size 2 MiB 4 MiB 32 MiB
10 Gbit/s & 2 inserters 3.335 ms 6.711 ms 53.69 ms
40 Gbit/s & 4 inserters 1.67 ms 3.335 ms 26.84 ms

Table 7.4: Minimum latencies at various con�gurations

An option unexplored in this thesis is inserter multiplexing: As seen in Section 7.3
one inserter can easily handle tens of Gbit/s. Multiple NICs with low link speeds or
generally little tra�c could be served by one inserter, leading to a lower delay according
to Equation 7.2.

7.6 Exemplary Usage

This section shows how the use case constructed in Chapter 2.2 can be solved with QQ.
As building a complete subnet with hundreds of clients is rather elaborate, we simulated
the incoming tra�c on eth1 with a LX710 NIC generating 128 UDP �ows. A second
LX710 serves as the interface of the router itself. All packets are inserted into a QQ,
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where an analyzer task looks for packets not matching the destination port 80 of the
web server. With the dump task shown in Listing 7.1 we could capture up to 3.5 Gbit/s
of matching tra�c to disk.

1 function dumpTask(qq, path)

2 local pcap_writer = pcapLib.create_pcap_writer(path)

3 while mg.running() do

4 -- Signaling with analyzer omitted, variable ip_match holds the source IP

5 local storage = qq:dequeue() -- QQ API call

6 for i=0, tonumber(storage:size())-1 do -- loop over all packets

7 local pkt = storage:getPacket(i)

8 local udpPkt = pktLib.getUdpPacket(pkt) -- MoonGen's packet library

9 if udpPkt.ip4:getSrc() == ip_match then

10 pcap_writer:store(pkt:getTimestamp(), pkt:getLength(), pkt.data)

11 end

12 end

13 storage:release() -- explicit release at end of loop

14 end

15 end

Listing 7.1: Dump task
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Chapter 8

Conclusion

Comparison

We have shown that existing data structures are not entirely suitable for use in tra�c
analyzers, because of di�erent design goals that result in an impaired performance.
With QQ we set the focus on throughput instead of latency and introduced features
that tra�c analyzers could bene�t from. That improved the throughput performance
by a factor of 2.3-100, while also increasing the inherent latency from 1 us to 1-10 ms.
With real NICs QQ could handle at least 80 Gbit/s synthetic tra�c on our test system.

Possible Future Work

Although the prototype is completely implemented and rudimentary tested, certain
areas remain unexplored.

JIT Filter Expressions As shown in Chapter 7.6 the �ltering process is solved by an
analyzer function which discards uninteresting packets. In its current state the user is
required to provide this �lter function and therefore has to have knowledge about both
Lua and the MoonGen API to write one. To simplify the usage of this core functionality
of QQ and to satisfy the requirement of MoonGen to "be as �exible as possible" [7] it
could be of interest to integrate a Berkeley Packet Filter (BPF) module. The BPF syntax
consists of a relatively small instruction set which allows to write �lter programs. E.g.,
the Linux kernel uses an extended form (eBPF) to allow user-supplied code to run in
kernel space for, but not limited to, e�cient network tra�c �ltering purposes. This
interface is also used by libpcap, the library for the tra�c capture tools Tcpdump and
Wireshark. It should be investigated if it is possible to emit Lua code from such already
used �lter expressions. This code then could be JIT-compiled and used instead of
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the handwritten analyzer function, similar to how MoonGen customizes packets with
LuaJIT.
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