
Department of Informatics
Technical University of Munich

TECHNICAL UNIVERSITY OF MUNICH

DEPARTMENT OF INFORMATICS

MASTER’S THESIS IN INFORMATICS

Optimization of IoT service placement

Paulius Šukys

Technical University of Munich
Department of Informatics

Master’s Thesis in Informatics

Optimization of IoT service placement

Optimierung von Dienstplatzierung in IoT
Umgebungen

Author: Paulius Šukys
Supervisor: Prof. Dr.-Ing. Georg Carle
Advisor: Dr.-Ing Marc-Oliver Pahl

M. Sc. Stefan Liebald

Date: March 27, 2019

I confirm that this Master’s Thesis is my own work and I have documented all sources
and material used.

Garching, March 27, 2019
Location, Date Signature

Abstract

Internet of Things (IoT) heterogeneous computing environments introduce a challenge for exe-
cuting multiple services and maintaining quality of service. A way for maintaining and improving
is by managing the location of deployed services. By analysing the domain and related areas for
service placement, this thesis overviews the impact of placement strategies. Distributed Smart
Space Orchestration System (DS2OS) is focused as a base system to verify the design and
implementation. Evaluation relied on a simulation framework, that imitates relevant DS2OS
components, and has shown that placement strategies are not significant where execution relies
on a single service, and has impact in lowering runtime for executions that rely on composed
services. Finally, integration and evaluation limitations are discussed, as well as feasible feature
work directions.

Zusammenfassung

IoT verschiedenartige Rechenumgebungen stellten eine Herausforderung für mehrere Dienst-
durchfuhrüngen und erhaltung der Dienstleistungsqualität dar. Ein Verfahren zur Wartung und
Verbesserung ergibt sich aus Verwaltung der Dienststandortes. Die Masterarbeit gibt einen Über-
blick über die Auswirkungen mit Domain-Analyse für verwandate Dienstplatzierung Forschungs-
bereiche dar. DS2OS ist fokusiert wie ein Grundlage für Design und Bewertung. Die Bewertung
wurde im Simulationsrahmen, die relevanten DS2OS Komponenten hat, durchgeführt. Es hat
sich gezeigt, dass die Dienstplatzierungsstrategie keine Bedeutung für einzelne Dienstausfüh-
rung hat, jedoch eine niedrigere Laufzeit für zusammengesetzte Dienstleistungen aufweist. Zum
Schluss werden die Integrations,- und Bewertungsgrenzen, sowie machbare zukünftige Arbeits-
richtungen diskutiert.

Contents

1 Introduction 1
1.1 Methodology . 1

2 Analysis 3
2.1 Internet of Things . 3
2.2 Services . 5

2.2.1 Service Oriented Architecture . 5
2.2.2 Microservices . 6

2.3 Virtual State Layer . 6
2.4 The Distributed Smart Space Orchestration System 7

2.4.1 DS2OS Hierarchy . 7
2.4.2 DS2OS site . 8
2.4.3 Knowledge Agent . 8
2.4.4 Service Hosting Environment . 9
2.4.5 Node Local Service Management 9
2.4.6 Site Local Service Management 9
2.4.7 Site Local Certificate Authority 9
2.4.8 Smart Space Store . 10
2.4.9 DS2OS Site Implementation . 10
2.4.10 Service placement . 11

2.5 Resource Allocation Problem . 12
2.6 Service placement . 13

2.6.1 Service Composition . 13
2.6.2 Service Selection . 14
2.6.3 Cloud Brokerage . 15
2.6.4 Network Functions Virtualization (NFV) 16
2.6.5 Virtual Machine Migration . 17
2.6.6 IoT . 18

2.7 Requirements . 19

3 Related work 23
3.1 Service composition . 23
3.2 Service selection . 33
3.3 Service management . 35
3.4 Service placement . 36
3.5 Cloud configuration . 39
3.6 Cloud brokerage . 40
3.7 Resource allocation . 41
3.8 Resource management . 44
3.9 Conclusions . 46

4 Design 49
4.1 Solution requirements . 49
4.2 DS2OS integration . 50
4.3 Resource description . 51
4.4 Architecture and communications . 53

4.4.1 Placement Strategy Picker . 53
4.4.2 Placement Strategy . 56

4.5 Placement strategies . 58
4.5.1 Resource balance . 58
4.5.2 Networking and processing performance ranking 60

5 Implementation 63
5.1 Integration . 63
5.2 Placement Strategy Picker . 65
5.3 Placement strategies . 66

5.3.1 Ontology . 66
5.3.2 VSL communication . 67
5.3.3 Monitored data management . 68

6 Evaluation 69
6.1 Simulation framework . 69
6.2 Execution time . 71

6.2.1 Single service evaluation . 72
6.2.2 Composite service evaluation . 74
6.2.3 Conclusions . 76

II

7 Conclusion 77
7.1 Future work . 78

A List of acronyms 81

Bibliography 83

III

List of Figures

2.1 DS2OS hierarchy . 8
2.2 DS2OS site structure . 8

3.1 [44] SMA module diagram . 27
3.2 SSCM procedures [36] . 27
3.3 [42] service composition flowchart . 30
3.4 [28] framework’s architecture . 33
3.5 [39] primary ontological view of SOA for SSM 36
3.6 [47] VM placement framework . 38
3.7 [14] workflow deployment sequence diagram 42

4.1 DS2OS deployment in [3] . 50
4.2 Proposed DS2OS deployment with separated placement strategies . . . 51
4.3 SLSM workflow to receive placement layout 54
4.4 Monitoring requirements sequence diagram 57

6.1 Evaluation simulation framework’s components 70
6.2 Mock figure to display expectations in task execution times 72
6.3 Single service execution evaluation for resource balancing strategy . . . 74
6.4 Single service execution evaluation for network and processing ranking

strategy . 75
6.5 Composite service execution evaluation for resource balancing strategy . 75
6.6 Composite service execution evaluation for network and processing rank-

ing strategy . 76

List of Tables

3.1 [47] ILP based algorithm’s variable descriptions 39
3.2 Related work comparison overview . 46

6.1 Single service setup usages . 73
6.2 NLSM single service setup capabilities 73

Chapter 1

Introduction

Pervasive computing is a concept where computing is ubiquitous. A common part of
applications that follow this concept fall under the domain of IoT . Here devices come
in all kinds of sizes and capabilities. Due to their variety and resource limitations, it is
in the interest of the operator to obtain better utilization.

In a similar fashion, microservice based application comprises of multiple services, and it
is only natural that a set of services need to closely cooperate. By lining resource usage
against specific goals to improve system’s performance or efficiency on price, average
load, energy usage, microservice based applications can perform better.

By combining the approaches of microservices for service composition, it is worthy to
investigate its effects for IoT environments, to reap the benefits that microservices
attempt to gain.

The goal of this thesis is exploring the possibilities and effects of service location ad-
justment application in IoT , by attempting to combine the domains of IoT and mi-
croservices. With evaluation of what the constraints and possibilities of both domains
are through analysis, and relevant related work, thesis seeks to provide an evaluation
whether introduction of service placement methods provide any improvements.

1.1 Methodology

As this thesis covers two distinct domains, namely general service placement and IoT .
By firstly analyzing the domains of interest and saturating out research question, a set
of requirements would be set for reviewing related work.

Chapter 1: Introduction

Related work initially relies on areas of relevance drawn from analyzed domains, as well
as unstructured search that comes as advised literature from advisers. By evaluating
literature overview based papers and further investigating their references, requirement
fulfillment can be assessed.

Thesis structure continues with chapter 2 for overviewing domains of interest and build-
ing research questions based on aforementioned analysis. Then, in chapter 3, related
work analysis is conveyed on top of requirements for research questions. By evaluat-
ing common and fulfilled requirements in related works, design can be formalized in
chapter 4. The details of design implementation get documented in chapter 5. Fi-
nally, evaluation of implemented design is given in chapter 6 to indicate whether service
placement has significance in IoT environments. Conclusion in chapter 7 recaps thesis
contents and future work prospects are discussed.

2

Chapter 2

Analysis

This chapter overviews the landscape for service placement in IoT applications. The
problem connects two domains of requirements - what are the problems and respective
approaches that occur with services; and what constraints does IoT introduce for service
placement. To answer these question, this chapter is layed by sequentially analyzing con-
straints in both domains, application framework for IoT service management (Section
2.4) and general approaches for service placement. Firstly, IoT domain is overviewed
in section 2.1. As a step back, services themselves need to be analyzed and this is
done in section 2.2. Following comes an IoT middleware framework DS2OS (Section
2.4). Finally, to tackle the service placement, resource allocation problem is stated and
domains that attempt to solve it for general service placement are discussed in sections
2.5 and 2.6. Section 2.7 summarizes and granulates research questions that arise from
conducted analysis.

The methodology of conveying analysis is based on saturating challenges that come of
relevance of service placement in each analyzed domain. These challenges are aggregated
and converted to research questions of this thesis. Looking ahead into related work,
research questions are too general, therefore a set of requirement objectives are drawn
from research questions. Specifics of how challenges convert to research question and
they - to requirement objectives are discussed in section 2.7.

2.1 Internet of Things

“Internet of Things is a combination of a technological push and a human pull for
more and ever-increasing connectivity with anything happening in the immediate and

Chapter 2: Analysis

wider environment – a logical extension of the computing power in a single machine
to the environment: the environment as an interface”[18]. The Environment as an
Interface builds an understanding that surrounding objects are capable of transmitting
and receiving data. As these interfaces can easily be built, it is but inevitable that
management and development research emerges for IoT systems and architectures.

One way of developing an IoT system is IoT reference model published by [1]. Generally,
IoT reference model [1] is used to instruct how to compose an IoT based system. The
proposed model is based on 7 layers:

1. Collaboration & Processes - Businesses and clients

2. Application - Reports, analytics & control.

3. Data Abstraction - Aggregation and access

4. Data Accumulation - Storage

5. Edge (Fog) Computing - Data analysis & Transformation

6. Connectivity - communication

7. Physical devices & Controllers

The layers are designed to decouple logic from data (operational from informational)
technologies. List in descending order aggregates and/or transforms data from one layer
to another. Here control and policies can only be set from ascending order layers, i.e.
Connectivity layer controls and introduces policies to Physical devices & Controllers
layer.

As systems vary in environment and device characteristics, loose coupling allows the
system to be operational by separating intents into separate components.
Challenge 1 (Decoupled IoT) IoT devices are loosely coupled.

“The term Internet of Things (IoT) refers to the interconnection of small devices able to
interact with each other and cooperate in order to accomplish common tasks”[32]. While
physical size and resource ability of a device may vary, the task might have estimated
requirements for devices. This means that not every device can run a specific task due
to not being able to provide amount or type of resources needed. On the other hand,
devices are heterogeneous software-wise as well: using specific architectures, system
packages, and libraries.
Challenge 2 (Heterogeneous IoT) IoT devices have heterogeneous characteristics.

With the diversity of abilities each IoT device contains, it is assumed that these char-
acteristics are managed, and this is out of scope of this thesis.

4

2.2 Services

2.2 Services

Ideally, a service is a computational unit that performs a specific task. In cloud comput-
ing context, services are supposed to be flexible by adapting their ability to function re-
gardless of the environment. Due to the sheer amount of applications being used, it was
inevitable motivation for packaging, deployment, configuration, and most importantly
architectural pattern development. Further sections overview common architectural
approaches in general cloud computing.

2.2.1 Service Oriented Architecture

Service Oriented Architecture (SOA) is a software development design, where the core
element is a service. SOA specifically discusses variants of services, their usage, and
how they are managed independently and in clusters.

SOA has six core values1:

1. Business value over technical strategy

2. Strategic goals over project-specific benefits

3. Intrinsic interoperability over custom integration

4. Shared services over specific-purpose implementations

5. Flexibility over optimization

6. Evolutionary refinement over pursuit of initial perfection

1 and 2 are oriented towards ability to develop and maintain applications in an agile
manner. 3 and 4 state looseness of services and being independent of service local
implementation in order to provide same functionality. Finally, 5 and 6 relate to first
two by prioritizing rapid development and good maintainability.

While some of the mentioned values correspond to the development process itself, the
relevance of SOA to this thesis is the architectural concept that allows to develop and
maintain services in a scalable and sustainable way.

1As published in http://www.soa-manifesto.org

5

Chapter 2: Analysis

2.2.2 Microservices

While SOA is the base design principle, similar conceptual designs emerged, one of
them being Microservices. Microservices propose a loosely coupled architecture, where
separated services communicate through standardized protocols. This modularity is
beneficial for developers, when only a single component is needed to be modified. Main
difference from SOA is service independence from others, thus providing better fault-
tolerance.

Microservices attempt to have services loosely coupled, just like how devices are in IoT
domain.
Challenge 3 (Loosely coupled Microservices) Microservice based services need to
be loosely coupled and independent.

This akin feature gives insight that likely both domains tackle similar problems. Services
can be deployed onto different devices, and thus be interpreted the same way as services
are in microservices.

2.3 Virtual State Layer

Virtual State Layer (VSL) is a programming abstraction introduced by [25], “its purpose
is providing all kinds of services in the service domain with the context they need to
reach their goals”. VSL simplifies communication by providing semantic search to resolve
targets. Context Model (CM) is used for assisting in semantic search within available
services.

In [25] context models are “templates for representing properties of the physical world
in the virtual world”. CM s are shared over a global Context Model Repository (CMR).
For accessing context models, hierarchical addressing is used in the following format:

1 /grandparent/parent/child

The context is represented as context nodes, they provide the means for services to hook
into specific context and expose their functionality there. As the importance of exposed
functionality might be of different severity, it is possible to store the values for context
nodes inside the Knowledge Tree, and to supply them on-demand. VSL has two types
of nodes:

1. regular - coupling through subscription mechanism, values persisted in Knowledge
Tree,

6

2.4 The Distributed Smart Space Orchestration System

2. virtual - direct coupling to service, values are queried on-demand from a service
itself.

By providing these means, VSL helps to simplify complex application communication.

2.4 The Distributed Smart Space Orchestration Sys-
tem

[25]’s DS2OS is a framework that is developed with the help VSL (Section 2.3) middle-
ware.

It is an extensive and feasible application framework to enable simplified and secure IoT
application communication and management.

DS2OS adds functionality for: service management; global application store; and further
support for crowdsourced software development. Three main components of DS2OS are:

1. VSL (Section 2.3) as communication middleware.

2. Smart Space Service management (S2S) for managing VSL services.

3. Smart Space Store (S2Store) (Section 2.4.8) crowdsourced software development
based global service management.

2.4.1 DS2OS Hierarchy

DS2OS implements hierarchical management with 5 core components, as shown in
Figure 2.1. Abbreviations used in figures:

• Knowledge Agent (KA) - VSL communication endpoint, described in section 2.4.3.

• Service Hosting Environment (SHE) - low-level service management functionality:
service control and monitoring in Real-Time Environment (RTE). Described in
section 2.4.4.

• Node Local Service Manager (NLSM) - node-local service management: start,
stop, pause, and monitor VSL services in the node, described in section 2.4.5.

• Service Local Service Manager (SLSM) - manages NLSMs within a site. It pro-
vides service management and resource usage optimization, described in section
2.4.6.

• S2Store - CMR, collects, publishes statistics from sites. Described in section 2.4.8.

7

Chapter 2: Analysis

S2Store

Service Repository

Certificate Repository

Statistics

Model Repository

DS2OS Site 1

KA

SHE

NLSM

svc 1

svc 2

SLSM

KA

SHE

NLSM

svc 1

. . .

svn N

KA

SHE

NLSM

svc 1

. . .

svn N

DS2OS Site 2

KA

SHE

NLSM

svc 1

svc 2

SLSM

KA

SHE

NLSM

svc 1

. . .

svn N

Figure 2.1: DS2OS hierarchy

KA

SHE

SLSM

SPS

KA

SHE

NLSM

Service 1

...

Service N

KA

SHE

NLSM

Service 1

...

Service N

Figure 2.2: DS2OS site structure

2.4.2 DS2OS site

Figure 2.1 refers to overall structure, whereas this thesis orients towards service deploy-
ment within a DS2OS site, as shown in Figure 2.2:

In Figure 2.2 each box represents a single host. Each box’s NLSM uses its own KA to
communicate to SLSM through SLSM ’s KA. The following sections overview each of
DS2OS site’s components.

2.4.3 Knowledge Agent

KA is a separate instance that enables communication, and manages its connectivity
to other KAs and thus contributes in maintaining a knowledge tree. A knowledge tree
is a specific data structure and can be generally regarded as a database. As services

8

2.4 The Distributed Smart Space Orchestration System

connect to KAs, they are able to query data from other KAs and publish themselves in
their own KA’s domain.

2.4.4 Service Hosting Environment

SHE interacts and manages the execution environment. When NLSM receives a service
to be deployed, SHE prepares and starts the service. In general, SHE is responsible for
service executable execution management. SHE utilizes Open System Gateway initiative
(OSGi), that specifies dynamic component usage for Java applications. Further analysis
and implementation were carried on in [24].

2.4.5 Node Local Service Management

NLSM , in contrast to SHE , manages services as VSL services. Maintains communica-
tion with SLSM and receives services to be deployed. By VSL’s separation of service
logic from service state, which is stored in KA, thus NLSM can persist its state through
restarts. This allows seamless restarts on failure.
Challenge 4 (Dynamic DS2OS) NLSMs join and leave DS2OS site anytime.

2.4.6 Site Local Service Management

SLSM manages DS2OS site and is responsible for various functionalities:

1. Maintain communication with NLSM s.

2. Maintain local service repository, which is updated from S2Store.

3. Deploy and manage running services on NLSM s:

(a) deploy by specific constraints.

(b) migrate services in-between NLSM s.

(c) stop, and remove services from NLSNLSM s.

4. Monitor NLSMs and services running in them

2.4.7 Site Local Certificate Authority

Site Local Certificate Authority (SLCA) is responsible for managing DS2OS site’s cer-
tificates. It autonomously provisions certificates within the site, by renewing old cer-
tificates, and issuing new ones to running services in the site.

9

Chapter 2: Analysis

Further analysis and implementation was done in [6]

2.4.8 Smart Space Store

S2Store is a centralized instance that is considered as upstream service repository. The
repository houses three types of resources relevant to a DS2OS site (See Figure 2.1):

1. Context Models, described in 2.3.

2. Services, which are deployed into NLSM s.

3. Certificate repository

As discussed in Section 2.4.6, SLSM s update their local repositories from S2Store.

2.4.9 DS2OS Site Implementation

The combined implementation by [3][24][6] forDS2OS site components of SLSM ,NLSM ,
S2Store, SHE , SLCA had limited documentation and compilable source code resulting
in the system being non-functioning. While contents of their Theses described mech-
anisms, the intended design and execution details were non trivial to map to actual
implementation.

With these problems and failure to reproduce even minimally functioning DS2OS site
environment, I and M.Sc.. Christian Luebben attempted to rectify it.

Main issues were accumulated within source code repository issue system and a summary
of them is as follows:

1. Hard-coded absolute file paths that refer to author local file systems for depen-
dencies - configurations, certificates, working directories,

2. Communication misuse leading to overloaded systems,

3. Uncontrolled life-cycles leading to over-utilization where the service should be on
idle,

4. Failing service package transmission.

5. No development no documentation and usage system usage instructions

6. No functionality verifying tests or workflows

Most of the issues were minor changes, without implementation structure deviation.

10

2.4 The Distributed Smart Space Orchestration System

Main problem was [24] implementation as SHE lacked OSGi service management imple-
mentation for running and managing VSL based services. Namely, there was no service
bootstrapping, as typically a service needs information about KA and valid certificates
to be able to communicate. As well, SHE implementation used generic OSGi templates,
which did not have any VSL dependencies supplied.

To resolve this, I created a template OSGi VSL service that was the final missing piece
to execute whole implementation stack. Due to lack of time, no further architectural
fixes and implementations were conveyed, and hard-coded values, to workaround missing
SHE resolution mechanisms (bootstrapping new services), were applied.

Most of the system services did not have sane application life-cycles and their execution
yielded full utilization of host’s processing power. To fix these problems, artificial stops
and architectural changes needed to be applied, namely forcing the responsible thread
to sleep for a short amount of time, and creating event-based main-loops.

Most and yet not sufficient work was applied onto service packages. They:

1. Contained incompatible artifacts,

2. Were not able to be deployed multiple times,

3. Had flawed communication between services.

A lot of the problems, namely artifact compatibility and fixes in communication between
services, were fixed, yet due to time limitations the rest are documented as issues. Due
to the problems with target framework contained, evaluation uses simulation framework
which implements relevant DS2OS parts in section 6.1.

2.4.10 Service placement

Current implementation of DS2OS implementation of service placement relies on load
balancing: services are deployed to the least utilized NLSM .
Challenge 5 (DS2OS resource usage interpretation) DS2OS service placement treats
resource usage of equally.

While the utilization formula compares sums of memory bytes and Central Processing
Unit (CPU) relative (percentage) usage, the underlying design ideas remain clear.

11

Chapter 2: Analysis

2.5 Resource Allocation Problem

Resource allocation is a problem common not only in computer science, but also in
economics [9][33].

As resource allocation is generally solved as a single operation for resources, without
frequent recurrence, a common definite optimal solution is done by applying linear
programming ((LP)).

Linear Programming (LP) uses a mathematical model that contains linear relation-
ships to produce an optimal solution. In essence, linear programming: contains a cost
function, which needs to be maximized or minimized, depending on function’s goal; a
set of linear function constraints; and variable constraints (most commonly that some
variables cannot be negative). It can be formalized as follows:

Cost function f :

f(x1, x2, ..., xn) = c1x1 + c2x2 + + cn + xn

Given constraints:
a11x1 + a12x2 + ... + a1nxn < b1

a21x1 + a22x2 + ... + a2nxn < b2

...

an1x1 + an2x2 + ... + annxn < bn

and given variable constraints:
x1 >= 0

...

xn >= 0

Notable that in above descriptions, given the conditions, amount of constraints and
variable constraints can vary.

12

2.6 Service placement

2.6 Service placement

In the heart of this thesis, is the problem of service placement. The following sub-
sections overview various domains that attempt to solve service placement, and later
attempt compare problems that arise with these domains and IoT domain. In this case,
service placement also includes migrations thus including continuous service placement
planning.

2.6.1 Service Composition

Service Composition describes problem domain for bundling services together in order
to fulfill a common task. [16] conveyed a systematic literature review, and outlined the
following issues that service composition attempts to solve:

1. User requirement satisfaction

2. Quantitative QoS

3. Algorithm improvements

4. Data storage and indexing structures

5. Self-adaptability, automatism, reliability and accuracy, and quality as-
surance

6. QoS mathematical models

7. Revenue maximization

8. Service discovery optimization

9. New frameworks and structures

As all of the listed entries can be considered as relevant for service placement, it quickly
becomes clear that a combination that solving all of the listed out domains is out of
scope for this thesis.

Issue 1 tackles allowing users to describe their requirements and means to abide to them.
Qualitative Quality of Service (QoS) is simpler to define, yet more difficult to grasp,
thus issue 2 attempts to transform from qualitative to quantitative QoS parameters.
Challenge 6 (Service composition QoS optimization) Service composition relies
on QoS parameter optimization.

13

Chapter 2: Analysis

As Cloud Computing Service Composition (CCSC) is defined as NP-hard problem,
algorithmic advances are significant either by using heuristic or non-heuristic methods
in issue 3. To support scalability and recurrent composition, issue 4 attempts to solve
CCSC efficiently with data storage and indexing structures.
Challenge 7 (Service composition algorithms) Service composition relies on al-
gorithmic and data structure solutions.

Issue 5 tackles reliability in providing service and tooling automatization, which is
mostly user oriented. By using mathematical QoS to investigate all relevant aspects,
issue 6 tries to model service composition better. Again, by orienting towards user
goals, issue 7 attempts models the composition goals as revenue based and tries to max-
imize them. In cases where service composer does not automatically register services
on predefined requirements, issue 8 rectifies this by proposing discovery optimizations.
Challenge 8 (Service composition service discovery) Service composition needs
service characterization for service discovery.

Finally, issue 9 groups proposals that provide full-blown solutions that might combine
partial solutions to aforementioned issues.

2.6.2 Service Selection

Service selection is a problem domain, where services are ranked and filtered based on
preset set of constraints.

[34] distilled five major service selection topics:

1. Decision-making techniques,

2. Data representation models,

3. Service parameters and characteristics,

4. Contexts,

5. Purposes.

Topic 1 outlines algorithmic solutions that given specific input provides that provides
refined output for service selection.
Challenge 9 (Service selection decision making) Service selection relies on algo-
rithmic decisions.

Alternatively, topic 2 overviews service characterization options, such as semantics and
providing models to represent data. Topic 3 generally overviews what service evaluation
metrics are useful for service selection.

14

2.6 Service placement

Challenge 10 (Service selection characterization) Service selection characterizes
services, their contexts and goals.

These metrics are not concrete values, but derivatives that represent some non-functional
requirement, i.e. security, performance, accessibility, usability. Topic 4 groups actuality
of service selection for a given context: Infrastructure as a Service (IaaS), Platform as
a Service (PaaS), Software as a Service (SaaS), and general. Grouping by service selec-
tion goals is done in topic 5, which contains single tenant, composite, and multi-tenant
service selection.

2.6.3 Cloud Brokerage

Cloud broker is a service that connects cloud service providers with consumers through
a unified interface. This allows to integrate several cloud service providers seamlessly to
consumer. As cloud service providers offer heterogeneous resources differently, broker
maps them to internal model.

[8] overviewed cloud brokerage approaches. The paper provided an extended overview
on how cloud brokerage solution have been developed. An important issue, bidding
style for brokers were identified as the following:

1. Resource-driven - user defines resource requirements,

2. Deadline-driven - user defines execution goals,

3. QoS-oriented - user states certain QoS requirements,

4. Budget-based - where usage is priced and monetary budget is stated,

5. Resale - broker buying from vendors and reselling to users,

6. Marketplace - both providers and users place bids and broker is responsible for
matching.

Challenge 11 (Cloud brokerage goal optimization) Cloud brokerage uses various
methods to provide optimal service.

As some of the bidding styles rely on resource requirements and Service Level Agreement
(SLA) bind brokers to provide a agreed quality of services, [8] identified that monitoring
is conducted in hardware, Virtual Machine (VM), and service levels.
Challenge 12 (Cloud brokerage metrics as descriptors) Cloud brokerage uses var-
ious level metrics for service description.

15

Chapter 2: Analysis

2.6.4 Network Functions Virtualization (NFV)

Network Function Virtualization (NFV) was introduced by [26]. It is a network archi-
tecture for modularizing communication services as Virtual Network Function (VNF)s.
This is akin to the concept of Microservices (Section 2.2.2). [26] technical challenges
NFV faces are as follows:

1. Portability/Interoperability - a unified interface to decouple software from
hardware,

2. Performance Trade-off - as vendor software is most likely optimized for their
hardware, performance degradation is inevitable,

3. Migration and co-existence of legacy & compatibility with existing plat-
forms - ability to work with hybrid networks composed of virtual and physical
appliances,

4. Management and Orchestration,

5. Automation - for being able to seamlessly scale,

6. Security & Resilience - the introduction of NFV should not degrade security,
availability, and resilience,

7. Network Stability - NFV and scaling of virtual appliances should not impact
network stability,

8. Simplicity - virtualized network platforms being simpler to operate,

9. Integration - ability to “mix&match” appliances from different vendors/hyper-
visors

A set of ordered VNFs build a Network Service (NS), which represents a complex,
specific service.

[10] conducted a comprehensive survey on Resource Allocation in NFV (NFV-RA).
Authors stated that NFV is still forming and further developments can yield new chal-
lenges, and their paper overviews current ones and attempts to solve them. They
identified, that NFV-RA is composed of three stages:

1. Chain composition (VNFs-CC) - finding an ordered chain VNFs,

2. Forwarding Graph Embedding (VNFs-FGE) - finding whereVNFs should be placed,

3. Scheduling (VNFs-SCH) - finding parallel execution orders for VNFs to reduce
execution time.

16

2.6 Service placement

It is stated that while these stages have rather distinct results, it is possible to optimize
their functionality by coordinating them. This would mean running two stages at the
same and gradually integrating one’s results into other. Coordination is stated as one
of the challenges that NFV should tackle.

As NSs represent an ordered set of VNFs, VNFs-CC attempts to compose them into a
chain based on VNF characteristics. VNFs-FGE being the next step, attempts to map
VNFs in network infrastructure based on node or in-between the nodes characteristics.
Finally, VNFs-SCH attempts to optimize runtime of several NSs that run on the same
infrastructure and possibly share same nodes.

[10] outlined that VNFs-FGE are goal based (e.g. reliability, availability, and perfor-
mance). Given that NFV is a pretty saturated domain, each VNFs can be of computing,
storage, or networking type. Each has an implicit hardware and QoS requirements at-
tached to it, thus the types can be interpreted as generalized requirement groups.

2.6.5 Virtual Machine Migration

Providing a homogeneous environment for running the applications - VM - it became
possible to virtualize resources and provide them in a single machine seamlessly. Regard-
less, applications inside VMs do not utilize their resources to their full extent, therefore
making machines under-loaded. It is in the interest of infrastructure providers to benefit
from cost efficiency by running more infrastructure and thus having higher utilization.

VM migration is a solution that helps in achieving better utilization. In [46] an effective
cloud resource management system is of the following characteristics:

1. Estimates the risk of overload;

2. Identifies the best VM s to migrate;

3. Identifies the most appropriate target physical machine to migrate to;

4. Minimizes the impact on the underlying infrastructure.

Here 1 is an analytical result as a metric for determining for sensitive a specific resource
is to overload. 2 is for mainly identifying either with the help of 1 or other means
that a specific set of VM s should be migrated. As well by the help of 1 and external
tooling 3 searches for an appropriate and compatible machine. Finally, since migration
is a infrastructure management procedure not accounted to the user, the importance of
VM s migration overhead is tackled in 4.

17

Chapter 2: Analysis

2.6.6 IoT

Autonomic computing refers systems being able of self-management. In the context of
IoT , edge devices are difficult to manage manually due to heterogeneity and decen-
tralization. Autonomic computing also means that a set of edge devices are capable
achieving a solution without having a centralized manager.

From self-management systems to systems that are orchestrated in big scale Fog comput-
ing tackles this. It is an architecture that relies on edge devices to convey full or partial
computations that are passed into next computational layer. Layered computations
process several, thus making edge devices as virtual resources that fulfill some compu-
tational stage - parsing, data transformation, aggregation, analysis, or run computations
that require specific equipment. [23] overviewed state-of-the-art and research challenges
in Fog computing. They indicated that two major groups of research conducted was in
Fog computing algorithms, and architectures. Not only did they review other surveys
and papers, but also composed a sophisticated criterion system for evaluating research
papers. The criteria had 2 aforementioned groups (dimensions) - architectural and
algorithmic:

1. Heterogeneity - ability to cope with very heterogeneous devices,

2. QoS management - due to varying environment, QoS has to be managed,

3. Scalability - ability to elastic resource scaling,

4. Mobility - ability to provide service for mobile nodes (join or leave network),

5. Federation - provisioning several providers that run local fog domains,

6. Interoperability - provider interoperability.

Differently than Fog computing, Mobile Edge Computing (MEC) pushes the whole
services into edge devices. [20] identified that Edge Computing was suffering uncon-
strained battery consumption, execution and communication delays, and stated that
MEC emerged to cope with delay problems. Three main groups of research were dis-
tinguished:

1. Decision on computational-offloading,

2. Allocation of computing resources,

3. Mobility management.

1 helps to identify whether offloading is profitable in terms of energy consumption,
and execution delay. When computation is offloaded, 2 helps to efficiently allocate

18

2.7 Requirements

resources, and balance load. 3 refers to reaction to edge device parameters changing:
getting out/into MEC , having worse/better communication characteristics.

2.7 Requirements

To reiterate challenges from analysis, the list with challenge descriptions and their
locations is as follows:

Challenge 1 Decoupled IoT . 4

Challenge 2 Heterogeneous IoT . 4

Challenge 3 Loosely coupled Microservices . 6

Challenge 4 Dynamic DS2OS . 9

Challenge 5 DS2OS resource usage interpretation 11

Challenge 6 Service composition QoS optimization 13

Challenge 7 Service composition algorithms 14

Challenge 8 Service composition service discovery 14

Challenge 9 Service selection decision making 14

Challenge 10 Service selection characterization 15

Challenge 11 Cloud brokerage goal optimization 15

Challenge 12 Cloud brokerage metrics as descriptors 15

In order to better reflect these challenges when reviewing related work, the research
questions were formed.

RQ1. What characteristics are needed for optimal DS2OS service placement?

a) What heterogeneous node characteristics are important?

b) What service specific characteristics are important?

c) How can varying characteristics be taken into account in the general opti-
mization strategy?

RQ2. How can service deployment be improved to provide better execution performance?

a) How can RQ1. characteristics be used to elevate decision making for service
placement?

19

Chapter 2: Analysis

b) What methodologies can be used to run an online service placement and
migration strategy?

c) How can the methodologies be designed to be feasible to run in IoT edge
devices?

d) How significant is placement strategy’s ability to scale with the increase of
IoT edge devices?

RQ3. What effect does the proposed design and implementation have regarding opti-
mization strategies such as least-nodes, and resource balancing heuristics?

a) least nodes - attempt to place all services in as little nodes as possible

b) resource balancing - attempt to achieve a balanced resource usage between
all nodes.

Challenges 1, and 3 correspond well with the thesis target domain, which is described
by challenge 4 - allowing NLSMs to dynamically join and leave the site, thus it being
loosely coupled.

Challenges 2, 6, 10, and 12 form RQ1. to describe characteristics.

Challenges 10, and 11 form RQ2. for elevating goals. Challenges 7, and 9 refer to b) by
tackling specifics of implementation. As current implementation, challenge 5 has initial
answer for a), whereas the scope of this thesis is to evaluate feasibility of alternatives.

Finally, RQ3. mainly presents evaluation by validating proposed solutions and bench-
marking performance.

For evaluating related work with raised research questions, requirements were formed
as follows:

RO1 - unified description for heterogeneous resources,

RO2 - ability to run recurrently and online,

RO3 - IoT resource-sensitivity,

RO4 - low scaling overhead,

RO5 - placement methodology proposal,

RO6 - evaluation methodology.

RO1 covers a), b), and c) by evaluating ability to describe varying characteristics.
RO2 maps to b), RO3 to c), and RO4 to d). For deducing whether related work paper

20

2.7 Requirements

proposes a relevant solution RO5 is formed and it covers a). Finally, for evaluation and
comparison research question RQ3., requirement object RO6 was formed.

21

Chapter 3

Related work

Related work research has been conducted by keyword search in respective analysis
areas. In the case multiple related work pieces distinctly reference a specific topic, it
was included in related work research. The following sections indicate analysis on related
work papers that potentially provide sophisticated answers for requirement objectives.
Each subsection separates a specific piece of related work and in the end of each is a
description of what requirement objectives are fulfilled.

3.1 Service composition

Service composition is the domain for implementing and be able to modularly scale
complex applications. In heterogeneous cloud environments cloud service composition
distributes multiple services and attempts to adhere to their requirements.

“Service composition execution optimization based on state transition ma-
trix for cloud computing”

[19] proposes a QoS aware optimal service composition method. It “regards the cost
averaged for one time of successful execution” as actual and minimizes that cost. Paper
indicates four major QoS components:

1. Cost - execution cost, free for service invocation,

2. Availability - immediate service availability,

3. Reliability - probability of receiving right results within a time frame,

Chapter 3: Related work

4. Time - duration from service invocation to result retrieval.

Service composition is described by Business Process Execution Language for Web Ser-
vices (BPEL4WS). This method relies on Status Transition Matrix (STM) “to analyze
the dynamic execution process of service composition”. The contents of STM are based
on Markov system - set of nodes that have fixed probabilities for passing from one node
to another. A single service status transition matrix looks like:

Pws =

0 rws 1− rws

1 0 0
1 0 0

Here Pws - status transition probability matrix; rws - service reliability probability. The
paper includes the possibility that a service can possibly not execute or fail during
execution, thus decreasing the value of service composition. By using Markov system
and evaluation via STM s, failure domain is dealt too.

By evaluating the cost of every successful execution in the composition, STM allows to
choose an optimal composition.

This work covers the following requirements: RO5.

“A brokerage-based approach for cloud service selection”

[35] modeled a “brokerage-based architecture in the Cloud, where the Cloud brokers is
responsible for the service selection”. The fundamentals are: building index of service
provider properties; querying user’s requirements on the indexed properties.

Indexing relies on B+-tree for Cloud Service Provider (CSP) index. Each index entry
is of the following format: < Keysp, SID, p1, p2, . . . , p10 >. Here Keysp is the indexing
key; SID - service provider’s identity, px the following:

1. Service type - varying type between on-demand, reserved, or specialized services

2. Security - level of security: high if three or more compliances with [22], one-two
compliances - medium, else low.

3. QoS - determined through broker’s and other vendor evaluation.

4. Measurement units - terms that the service can be charged for (i.e. memory,
transactions, time).

5. Pricing units - how long a service is reserved for (i.e. hourly, monthly, yearly).

24

3.1 Service composition

6. Instance sizes - amount of resources used.

7. Operating system - in cases where licensing is necessary for operating system
usage.

8. Pricing - actual price for service usage.

9. Pricing sensitivity - price variability by region.

10. Subcontractors - indicates presence of subcontractors, and their services provided.

Every entry properties and relationships are encoded into binary strings, and concate-
nated. To generate the key, Hamming distance between every service provider and their
closest cluster center is calculated. Then, scaling value is used to saturate points closer
to each’s cluster center.

Querying the index is based on:

1. Query encoding - as indexes were generated through Hamming distance, and clus-
tering, having same encoding allows direct querying.

2. k-NN search - based on paper’s trial-and-error, k = 0.1 ∗N : k - neighbor amount;
N - service provider amount.

3. Result refinement - specific fit to query requirements.

4. Special criteria consideration - case of collision (requirement fulfillment varies), or
collusion (correlating usage with users).

This work covers requirements: RO2, RO4, and RO5.

Agent-based cloud service composition

[11] proposes agent-based approach to compose services for different types of Cloud
services. The architecture comprises of 6 elements:

1. Web service - interfaces to cloud resources,

2. Service ontology - functionality, input, and output describing specification,

3. Resource agents (RAs) - web service control and access orchestration,

4. Service provider agents (SPAs) - manage resources by organizing RAs,

5. Broker agents (BAs) - single interface for connecting SPAs into one virtualized
resource,

25

Chapter 3: Related work

6. Consumer agents (CAs) - parse consumer requirements and select best fitting
BA and submit service composition request to it.

The architecture essentially composes distinct functionality components in order to
provide virtualization in service level.

[11] covers requirements: RO1, RO2, RO4, RO6.

“A parallel branch and bound algorithm for workflow QoS optimization”

[17] devised a mathematical model for mapping abstract workflows to concrete ones. “A
workflow is composed of web services selected in accordance with user requirements”.

Multidimensional Multi-choice Knapsack Problem (MMKP) based model helps to de-
fine a happiness measurement, which considers requirements and their importance by
weighing against user preferences. To maximize the happiness measurement, a branch-
and-bound algorithm was used. This paper covers requirements: RO1, RO4, RO5.

“Cloud Computing Service Composition and Search Based on Semantic”

[44] proposes service matching algorithm (SMA), “which considers the semantic simi-
larity of concepts in parameters based on WordNet”. The proposed solution consists of
several components and steps for matching services:

Here Service Main Table, Service Parameter Table, and Service Operator Table store
main service elements. Concept Similarity Table is populated via pre-computed Word-
Net similarity relationships. Highly matching results of the tables are calculated and
stored in One-way Matching Table. Automatic Service Composition Module processes
data from One-way Matching Table, builds all possible service compositions, and stores
accordingly to Service Composition Table and Composition Path Table.

Service Matching Algorithm relies on matching two services and their input parameters
to others’ output parameters. [44] transforms service matching problem into semantic
similarity.

Data from One-way Matching Table can be represented as weighted directed graph,
where nodes are services and edges - semantic matching. For this, authors introduce an
improved EP-JOIN algorithm called Fast-EP with time complexity of O(N ∗ log(N)).
This time complexity is achieved by exploiting used table architecture by storing com-
posite service as a single one.

This work covers requirements: RO1, RO3.

26

3.1 Service composition

Concept
Similarity Table

Service
Parameter Table

Service
Main Table

Service
Operator Table

Services
Matching Module

One-way
Matching Table

Automatic Service
Composition Module

Service
Composition Table

Composition
Path Table

Figure 3.1: [44] SMA module diagram

Obtain
QoS Data

1. QoS
Uncertainty
Computing

2. Service
Selection

Service
Composition

Engine

Figure 3.2: SSCM procedures [36]

“Cloud model for service selection”

[36] propose QoS-aware service selection based on mixed integer programming. Service
selection via Cloud model (SSCM) two phased approach is used (See Figure 3.2):

1. Transform qualitative QoS to quantitative QoS,

2. Service selection

QoS-awareness is modeled as calculation on QoS fulfillment (uncertainty), as it can be
seen in Figure 3.2.

This work covers requirements: RO2, RO5, and RO6.

27

Chapter 3: Related work

“Resource allocation for service composition in cloud-based video sur-
veillance platform”

[12] developed a platform for resource allocation optimization. They posed resource
allocation as a linear programming problem. The objective function aims to minimize
physical server usage. The constraints are as follows:

1. One virtual machine per physical server

2. Virtual machine demands don’t overload physical server’s capacity

3. Specific latency threshold

4. Specific resource utilization threshold

5. Specific CPU utilization

The paper recognizes that LP solution does not scale well. To tackle this, a best-fit
decreasing heuristic was proposed. In this heuristic, VM is placed to a physical server
that leaves the least left over resources. This heuristic can be considered as a measure
for balancing resource usage between all machines.

Requirements covered by this work: RO2, RO3, RO5, and RO6.

“Revenue maximization with quality assurance for composite web ser-
vices”

[41] developed a method to determine policy under three decision criteria:

1. Service availability at the decision instant,

2. Execution cost,

3. Rest time to deadline.

Arrival decision rule would select services with the lowest cost. One of the constraints
are that workflows are expected to be sequential. For optimizing expected revenue,
dynamic programming is used for dynamic service selection.

Authors did not find correlation between cost and higher quality assurance. To tackle
this, a dynamic-programming algorithm to increase end-to-end quality assurance in
place of revenue, was developed.

This work covers requirements: RO2, RO4, RO5, and RO6.

28

3.1 Service composition

“Service-Oriented Computing”

[40] devised an approach to capture Cloud service capabilities and requirements using
variability modeling. To use variability modeling, authors adapted Feature Model (FM)
to Cloud Feature Model (CFM) by introducing extensive changes to attributing and
modeling. Different types of models are used for CFM:

1. Domain model - representation of all relevant abstract decision aspects for selec-
tion.

2. Service model - single concrete Cloud service offer.

3. Requirements model - representation of requirements.

4. Alternative model - single valid configuration derived from service model.

Requirements covered by this work: RO1, RO2,

“HireSome-II: Towards privacy-aware cross-cloud service composition for
big data applications”

[7] proposed a service composition method HireSome-II. Services are evaluated by some
of their QoS history records with k-nearest-neighbor method as representative data
selector. Paper’s authors pointed out that different type of services have different func-
tionality and thus QoS . To tackle the variability problem, MCDM and SAW techniques
developed by [13] were used to derive five typical QoS criteria:

1. Price

2. Duration

3. Reputation

4. Success rate

5. Availability

This work covers RO2, RO3, RO4, RO5 requirements.

“A QoS-satisfied prediction model for cloud-service composition based on
a hidden markov model”

[42] present a QoS-satisfied prediction model based on a hidden Markov model. It uses
the following general flowchart for service composition:

29

Chapter 3: Related work

Request
(with QoS)

Searching for QoS-satisfied
cloud-service component

QoS
component
exists?

Composite top-k
components

Provision service QoS predictionEffect feedback

yes

no

Figure 3.3: [42] service composition flowchart

Here the component of interest is QoS prediction. It is based on Hidden Markov Model
(HMM) to predict whether a composition of cloud service components can satisfy user’s
QoS .

Requirements covered by this work: RO2, RO5.

“QoS ranking prediction for cloud services”

[48] proposes a QoS ranking prediction framework. It focuses on client side QoS proper-
ties, such as response time; throughput; and failure probability. The framework follows
the following scheme:

1. Based on user-provided QoS similarities between user and training users are cal-
culated.

2. Based on calculated similarities, a set of similar users is deducted.

3. Several algorithms are proposed for personalized service ranking by correlating
usage experiences from similar trained users.

4. Results are presented to user.

Service ranking is presented by two proposed ranking algorithms - CloudRank1 and
CloudRank2. CloudRank1 is a greedy algorithm, that has the following steps:

1. Rank employed services by QoS values

2. Calculate service’s sum of preference values with other services

3. Rank services by their sum of preference values

30

3.1 Service composition

4. Pick highest ranking service and update ranks by removing picked service

5. Update ranks for all picked and non-picked services.

CloudRank2 algorithm is similar to CloudRank1, yet it does not sum preference values
and treats them individually, thus give more accurate results.

Requirements covered by this work: RO2, RO3, RO4, RO5, RO6.

“A hybrid imperialist competitive-gravitational attraction search algo-
rithm to optimize cloud service composition”

[15] proposed a hybridization of modified Gravitational Attraction Search with an Im-
perialist Competetive Algorithm to optimize response time and execution times simul-
taneously. Imperialist Competetive Search algorithm is based on sociopolitical evolution
of humans. It uses countries as individuals, which are ranked by some characteristic. A
set of “better” countries are selected as imperialist and others constitute as imperialist
colonies. The allocation procedure of assigning colony to imperial country is uniformly
distributed. As the total power of empire also consists of its colonies, during algorithm
execution colonies are absorbed by the imperialist country. This increases the power
absorbed from the colony.

Further on, empire competition power is decreased for the weakest empire until the
weakest empire is destroyed.

Another part of the hybrid solution proposed by [15] is Gravitational Attraction Search.
Main idea behind it is that problem search space contains many particles in n dimensions
that have masses. Mass is considered as a quality of solution and is managed through
Gravitation law, and Laws of Motion.

The hybridized solution obtains normalized weights for response-time and execution fee
(sum equal to 1). As response-time and execution fee are of different unit types, they
are normalized by deviation from average:

SV (xi) = xi − x̄

SD

Here x̄ - average set value; xi service specific value; SD - standard deviation of the set.

The whole process of hybrid modified Imperialist Competetive (IC) and Gravitational
Attraction Search (GAS) is as follows:

1. Generating countries

31

Chapter 3: Related work

• Country eligibility calculation on applicant’s normalized response-time and
execution fee.

2. Sort by country power

• Select imperialist countries and divide colonies among them

3. Move colonies towards their imperial country

4. Country eligibility re-calculation on applicant’s normalized response-time and ex-
ecution fee with respect to applicant’s weight.

• Replace each imperialist with most powerful country in empire.

5. Every 10th iteration - imperialistic competition

• Attract weakest country of the weakest empire

• Using roulette wheel selection, generate number of countries selected in each
empire for local search

6. GAS execution on previous phase-selected countries and imperialist country re-
placement with best found solution

• Sort imperialists based on their power

• Save best found imperialist

• Go to step 3

This work covers requirements: RO2, RO3, RO4, RO5.

“A service composition framework for market-oriented high performance
computing cloud”

[28] introduces a framework for on-demand composing and deploying available appli-
cation on clouds. It builds up a knowledge base, which is compared to dependencies
extracted from user’s requirements. The architecture is as follows

Here, composition agent parses composition request and uses knowledge base to resolve
all of the dependencies. Service Discovery is used to retrieve and update relevant service
information. If all dependencies are successfully resolved, the configuration is passed to
Packaging Engine and then to Service Delivery.

Knowledge base uses ontology developed by Web Ontology Language (OWL). It de-
scribes the components that are directly required in composition process. Ontology’s
relationships between components are the following:

32

3.2 Service selection

Knowledge Base Composition Agent Packaging Engine

Service Discovery Service Catalog Service Delivery

current
knowledge

update knowledge

new
service
spec. delivery request

relevant
services

service
details

update
new

service

Figure 3.4: [28] framework’s architecture

• Dependency - one component must exist for the other function

• Compatibility - two components are functional in a single environment

• Conflict - two components do not function in a single environment

• Whole-part - one component is part of the other

• Type - grouping instances that have the same set of functionality

This work covers the following requirements: RO1, RO2, RO5.

3.2 Service selection

Selecting cloud services under complex factors is one of related research areas. Mostly,
it involves characterizing service providers to fulfill requirements. This topic is relevant
for this thesis, as services, their requirements and functionalities are treated as hetero-
geneous (every service provides a different functionality). Main considerations when
looking into related works for service selection are to answer RQ1. and a).

“Cloud Service Selection Based on the Aggregation of User Feedback
and Quantitative Performance Assessment”

Inclusion and evaluation of user feedback was proposed as a framework by [30] to deduct
service satisfaction. The framework consists of four components:

1. Cloud selection service - accepting and processing consumer requests.

2. Benchmark testing service - third-party to test scenarios for performance.

3. User feedback management service - collection and management of consumer feed-
back.

33

Chapter 3: Related work

4. Assessment aggregation service - collects subjective data from User feedback man-
agement service, objective data from Benchmark testing service, and computing
final score for service.

Some of the subjective and objective attributes correspond to same metric and thus this
union is called associated attributes. These attributes allow direct comparison in their
proposed approach:

1. Convert subjective attributes into scalar ratings

2. Convert objective attributes into scalar ratings

3. Filter unreasonable subjective assessments - comparing associated attributes, where
feedback evaluation is significantly (in paper 80% of the maximum Euclidean dis-
tance) different than benchmarked.

4. Weight importance of every attribute - predetermined significance of every at-
tribute.

5. Aggregate all attributes - filtered and weighted attributes summed up to give a
final score.

This work covers RO2, RO3, RO4, and RO6 requirements.

“A Declarative Recommender System for Cloud Infrastructure Services
Selection 2 A System for Cloud Service Selection”

[45] proposed a system with an ontology model for characterizing providers in service
configuration selection. Cloud Configuration Management Layer maintains essential do-
main model for compute, storage, and network services. For service discovery, based on
their functionality and QoS parameters, a Web Ontology Language (OWL) defined on-
tology is proposed. To describe services, and configurations and metrics, two ontologies
are used:

• Cloud Service Ontology - to describe the service type itself,

• Cloud QoS Ontology - configuration and metrics.

Cloud Service Ontology mainly allows to describe the service itself, for example, what
functionalities/services it provides. On the other hand, Cloud QoS Ontology is essential
from a management point of view for each service.

This work mainly covers RO1 requirement.

34

3.3 Service management

3.3 Service management

“Large-scale cluster management at Google with Borg”

[38] describes Google’s approach on their own cluster management framework - Borg.
Borg cell is a set of machines that are considered as unit. Given different service
nature, Borg categorizes into long-running and short-term services. Short-term services
have lower priority and are killed (placed in backlog) in favor of long-term ones. Borg
scheduler is responsible for deducing placement and running services from backlog.
Scheduler first filters feasible machines and then applies scoring to evaluate machine’s
efficiency and availability.

In case of lack of resources, lower-priority tasks are preempted and put into scheduler’s
pending queue. Scheduler is responsible for reassigning new location for the tasks from
it’s pending queue.

This work covers requirements: RO2, RO3, RO4, and RO5.

“Ontological Map of Service Oriented Architecture for Shared Services
Management”

[39] proposes an ontological map of Service Oriented Architecture for Shared Services
Management (SSM). Shared Services contain common functions for organization in or-
der to “reduce information process duplication and increase information and knowledge
sharing”. Accordingly Shared Services Management is a set of activities that attempt
to optimize Shared Service efficiency and effect. The authors propose usage of Zach-
man framework to map to SSM. Zachman framework is an information architecture for
relating information system taxonomies.

In a nutshell, SOA to SSM mapping allows better ontological organization by defining
objects, subjects and relationships for entities, see Figure 3.5.

Mapping is as follows:

1. What - service unit:

• Refers to identifiable software application

• Described by hierarchical structure and represented by tree of services

2. How - service procedure

• Set of actions between client and host system

35

Chapter 3: Related work

Service Unit

Implements Associates

ActivatedInvolves

Resides

Service
procedure

Motivation

TimingActor

Location

Figure 3.5: [39] primary ontological view of SOA for SSM

• Contains inputs, output, logic and persistence method.

3. Where - service provider and client location (URL)

4. Who - actors, characterized by dimensions:

• Organizational - control and responsibility

• Technical - agent’s skills and expertise

• Human cognition - cognitive characteristics

5. When - time

6. Why - motivations for service sharing, generally cost saving.

This work covers requirement RO1.

3.4 Service placement

In order to find a set of nodes that comply with resource requirements is yet another
research field. Service placement tackles this by determining which nodes are qualified
for service deployment.

36

3.4 Service placement

“Hierarchical network-aware placement of service oriented applications
in clouds”

[21] propose Integer Linear Programming formulation for Cloud Application Placement
Problem (CAPP). The authors as well pose another solution as heuristic hierarchical
algorithm based on Particle Swarm Optimization and Genetic Algorithms. Paper notes
specific resource constraints: CPU and memory capacities; usage of specific hardware;
and network capacity. Problem optimization is split into multiple objectives that are
sequentially executed and planned in a way, that previous optimization objective results
are used by next one:

1. Request maximization by utilizing CPU usage

2. Network bandwidth maximization for inter-service communication

3. Computation node minimization to improve energy efficiency and placement cost

4. Minimization of service migrations

5. Minimization of hops between nodes for latency reduction

The optimization objectives are posed as variations of equations that formally describe
the problem. Integer Linear Programming based algorithm was used to solve the opti-
mization objectives.

One of the heuristics - Particle Swarm Optimization (PSO) - is based on swarm behavior
simulation. Every particle determines its best position and swarm is aware of best
position in it. Particle movement depends on local (their) and global best positions
meaning that while they search locally, direction is towards best known position. In
this paper’s perspective, every particle is a solution to CAPP. Solution is defined as
an array in 3-dimensions: application; application request number; and services. PSO
objective function is:

obj = (PlacedCPU

RequestedCPU
)2∗(PlacedRequests

TotalRequests
)∗(1−UsedNodes

| N | +1)∗(1−MigrationCount

| N | ∗ | S | +1)

Second heuristic is based on Genetic Algorithm (GA). In essence, GA relies on natural
selection based on solution fitness. New solutions are created by combining two existing
ones. For solution and combination, equations used in PSO approach are used, thus
making this only a different approach mechanism.

This work covers: RO2, RO3, RO5, RO6 requirements.

37

Chapter 3: Related work

Forecasting
module

Datacenter

Placement
module

Measurement
module

Resource
measurements

Predicted
demand

Migration
command

Resource
utilization

Figure 3.6: [47] VM placement framework

“Cool Cloud: A Practical Dynamic Virtual Machine Placement Frame-
work for Energy Aware Data Centers”

[47] proposes a framework for least resource wastage and power consumption. The
framework (Figure 3.6) has three distinct modules:

1. Measurement module - for CPU, memory, network, and storage usage metrics,

2. Forecasting module - for decision logic that produces VM migration plan,

3. Placement module - for deployment and migration of VMs

Authors modeled forecasting as Integer Linear Programming (ILP) problem with CPU,
memory, network, and storage resources. While proposed ILP solution provides optimal
placement, authors admit that it is “unpractical for large size data centers”. To tackle
this, they developed a low computational complexity heuristic described in Algorithm
1. The variables are described in table 3.1.

Variable Description
Period predefined execution time period
L′ current placement matrix
NVM set of Virtual Machines (VMs)
NPM set of Physical Machines (PMs)
P power consumption
Pactive power level of physical machines in active mode
Psleep power level of physical machines in sleep mode
UCP U VM CPU utilization
UMEM VM memory utilization
UHD VM storage utilization
UBW VM bandwidth utilization
T migrate time for VM migration
HCP U VM CPU limit
HMEM VM memory limit
HHD VM storage limit

38

3.5 Cloud configuration

HBW VM bandwidth limit
P migrate power level for VM migration
L placement matrix (decision variable)
G migration matrix (decision variable)
O operation mode vector (decision variable)

Table 3.1: [47] ILP based algorithm’s variable descriptions

Input : Period, L′,NVM,NPM, P, Pactive, Psleep,
UCP U , UMEM , UHD, UBW , T migrate,
HCP U , HMEM , HHD, HBW , P migrate

Output: L, G, O
while There exists a resource constraint violation do

Perform VM migration to find a feasbile solution;
if A feasible solution cannot be found then

Adopt the alternative for operation;
break;

end
end
repeat

Seek a better solution to consume energy at a lower level;
until The solution cannot be improved;
return L, G, O

Algorithm 1: [47] energy saving heuristic

Requirements covered by this work: RO2, RO3, RO5.

3.5 Cloud configuration

“Towards Multi-Cloud Configurations Using Feature Models and On-
tologies”

[31] presents a model driven approach to cloud configuration. The paper listed out cloud
variability, configuration dimensions, and multi-cloud configurations as main challenges.
Their proposed solution includes two parts:

1. describing cloud provider variability characteristics,

2. connecting application requirements to those characteristics.

39

Chapter 3: Related work

Part 1 uses FM for each cloud provider to describe. An ontology maps cloud concepts to
cloud providers FM ’s features. Another ontology maps resources and their capabilities
to cloud providers FM ’s attributes.

FM was based on the concepts from [29] and extended by [2] and [5]. As cloud providers
have different FM s and thus present heterogeneity, the paper proposes abstraction by
ontologies. For this, two ontologies are proposed: OntoCloud and OntoDim. OntoCloud

models technical requirements (software) supported by the cloud provider, and OntoDim

describes dimension properties (hardware) to be used for OntoCloud technical require-
ments. OntoDim allows part 2 to be fulfilled.

By having an extensive cloud provider description methodology, the paper uses round-
robin-based algorithm for picking viable machines to deploy applications.

This work covers requirements: RO1, RO2, RO4, RO6

3.6 Cloud brokerage

Cloud brokers “intermediate between cloud customers and providers to assist the cus-
tomer in selecting the most suitable cloud service”. As cloud services expose varied
functionality and have a varying amount of SLA satisfiability, it is non-trivial to deduct
services that best meet defined set of requirements.

“Smart Cloud Marketplace - Agent-Based Platform for Trading Cloud
Services”

[4] proposes Smart Cloud Marketplace - marketplace-like platform for cloud services.
Marketplace’s agents are both service providers and consumers that employ various
trading policies for local efficiency. Authors solve Cloud Services Allocation Problem
with Greedy-RP and Adaptive-Greedy mechanisms.

Greedy-RP mechanism is based upon on a greedy heuristic and allocation, and pric-
ing schemes. Output of this mechanism is user that obtains the resources needed.
Greedy-RP sorts all users by their price-per-item and checks against Available-Resource-
Constraint and Reserve-Price-Constraint. “Pricing scheme aims to establish the prices
that the users will have to pay for the granted resources” and helps deduce minimum
possible item price to win the auction.

This work covers requirements: RO2, RO4, and RO5.

40

3.7 Resource allocation

“Preference-based cloud service recommendation as a brokerage service”

[27] proposes service ranking. Their work allows fuzzy numbers and intervals to de-
fine Key Performance Indicator and user requirements. The ranking is done by deriv-
ing “fuzzy comparison matrices and subsequently using a fuzzy Analytical Hierarchical
Process”. Ranking procedure consists of 4 phases:

1. Expressing ranking problem into a hierarchical structure

2. Computation of relative QoS attribute weights

3. Computation of relative service performances

4. Aggregation of relative service weights

This work covers requirements: RO1, and RO5.

“A Broker-based Framework for Multi-Cloud Workflows Steinbuch Cen-
tre for Computing”

By evaluating services as tasks and clustering, [14] proposes a workflow based framework.
It consists of Workflow Engine, which interacts with Service Broker. Workflow Engine
is responsible for parsing and clustering proposed workflow, and Service Broker matches
providers, schedules tasks, and starts execution. Full interaction can be seen in Figure
3.7.

From the figure it is clear that tasks preparation and deployment is done in sequential
order. This imposes a workflow which limits parallelization. One of the limitations is
that with parallel deployment and execution some tasks cannot be optimally grouped.
Another would be architectural of having a full-stop whenever there is a need to get
results, full-stop milestones: deployment of the tasks; tasks grouping; task execution.

The paper specified only the sequence and architecture without specifics about methods
or algorithms applied for clustering and scheduling.

This work covers requirements: RO2, RO4, RO5, and RO6.

3.7 Resource allocation

“A Game of Things: Strategic Allocation of Security Resources for IoT”

[32] proposes security tool resource allocation methodology through game theory. In
paper a threat model is described with defendant strategies that consider resource allo-

41

Chapter 3: Related work

User Workflow Engine Service Broker Provider

register service offers

submit description
parse

workflow
cluster

clusters

SLA requirements
generate request

match providers

matches
prepare stages

stages
deploy VMs
VMs deployed

all VMs created
release tasks

schedule tasks

task schedule
execute tasks

finished
finished

execution finished

Figure 3.7: [14] workflow deployment sequence diagram

42

3.7 Resource allocation

cation cost, energy consumption, and resource’s criticality. For evaluating characteris-
tics, Pareto analysis is conducted for computing Pareto points (allocation plans). After
computing Pareto curve, a set of Pareto points, a risk minimization function is solved
to obtain Pareto point that best corresponds to requirements.

This work covers requirements: RO2, RO3, RO5, and RO6.

“Cloud resource allocation schemes: review, taxonomy, and opportuni-
ties”

[43] overviews cloud resource allocation schemes. The paper derived resource allocation
taxonomy in 8 categories:

1. Allocation with optimization objective

2. Design approach for allocation

3. By target resource type - instances, bandwidth, storage and work items

4. By optimization method

5. By utility function - user-center, system-center, or hybrid

6. By processing mode - centralized or distributed

7. By target instance - one or multiple datacenters

8. By evaluation setup - workload or experimental platform

Resource allocation taxonomy is relevant as it provides information of what [43] overview
found as means and goals.

One of the Optimization Objective is resource pricing for either monetary or opera-
tional expenditures. Another objective is resource utilization - attempt to have as few
unused resources as possible. Third objective is availability, to increase operational
performance. Lastly, QoS objective relies upon metrics visible by client.

Design approaches analyzed by [43] were:

1. Market-oriented - using economic principles

2. Queue theoretic models - for forecasting needed resources and performance metrics

3. General Machine Learning - statistical prediction-demand functions

4. Graph theory - graph model abstraction

5. Clustering (bin packing) - grouping items and trying to minimize the groups

43

Chapter 3: Related work

6. Heuristics

These design approaches give several insights for the actuality of the thesis. First of
all, the approach describes the data model that the solution relies on. Secondly, a
methodology on utilizing the aforementioned data model is set.

Optimization methodologies are mostly well known approaches:

1. Integer programming

2. Linear programming

3. Dynamic programming

4. Convex optimization

5. Inspired by biological problems

6. Statistical

These optimization methodologies directly answer RO5 by supplying the underlying
methodologies.

3.8 Resource management

“Exploiting Service Usage Information for Optimizing Server Resource
Management”

[37] show that exposing and using detailed service usage information allows to provide
improved QoS and optimize resource utilization. The paper describes four service access
attributes for service usage information.

First service access attribute is request flow. It gives high-level information, such as
client identity, request type, and request time. In [37] there attributes are interpreted
as: Overall request rate, specific type request rate, specific type request rate in session,
percentage of specific type of requests, average session length, average session inter-
request time, rate of new sessions, structure of web sessions.

Second attribute is coarse-grained resource utilization and reward. It gives information
about request type execution cost. Costs can be inflated by varying system load -
longer request processing under heavy system load -, and different amount of data
being processed. Having these problems in mind, this paper analyses average typed
request processing time.

44

3.8 Resource management

Third attribute is fine-grained server resource utilization. This request access attribute
describes detailed information about request type processing inside the server. Paper
programming language’s VM profiling to obtain metrics and relative information for
request processing.

Last attribute is data access patterns. Application’s data access by request type is
provided for this requests access attribute. This includes specific data segments accessed
and access consequences.

This work covers requirements: RO2, RO3 RO4.

Reference RO
1,
he
ter
og
en
eou

s r
eso
urc
es

RO
2,
run

rec
urr
ent
ly
an
d o
nli
ne

RO
3,
IoT

res
ou
rce
-se
nsi
tiv
ity

RO
4,
low

sca
lin
g o
ver
he
ad

RO
5,
pla
cem

ent
me
tho

do
log
y

RO
6,
eva

lua
tio
n m

eth
od
olo
gy

“Smart Cloud Marketplace - Agent-Based Platform
for Trading Cloud Services”[4]

x x x

“Preference-based cloud service recommendation as a
brokerage service”[27]

x x x x

“A Broker-based Framework for Multi-Cloud Work-
flows Steinbuch Centre for Computing”[14]

x x

“Towards Multi-Cloud Configurations Using Feature
Models and Ontologies”[31]

x x

“A Game of Things: Strategic Allocation of Security
Resources for IoT”[32]

x x

“Exploiting Service Usage Information for Optimizing
Server Resource Management”[37]

x x x

“Service composition execution optimization based on
state transition matrix for cloud computing”[19]

x x x x x

“A brokerage-based approach for cloud service selec-
tion”[35]

x x x

Agent-based cloud service composition[11] x x
“A parallel branch and bound algorithm for workflow
QoS optimization”[17]

x x x

“Cloud Computing Service Composition and Search
Based on Semantic”[44]

x x x x

45

Chapter 3: Related work

“Cloud model for service selection”[36] x x x
“Resource allocation for service composition in cloud-
based video surveillance platform”[12]

x x

“Revenue maximization with quality assurance for
composite web services”[41]

x x

“Service-Oriented Computing”[40] x x x x
“HireSome-II: Towards privacy-aware cross-cloud ser-
vice composition for big data applications”[7]

x x

“A QoS-satisfied prediction model for cloud-service
composition based on a hidden markov model”[42]

x x x x

“QoS ranking prediction for cloud services”[48] x
“A hybrid imperialist competitive-gravitational at-
traction search algorithm to optimize cloud service
composition”[15]

x x

“A service composition framework for market-oriented
high performance computing cloud”[28]

x x x

“Large-scale cluster management at Google with
Borg”[38]

x x

“Ontological Map of Service Oriented Architecture for
Shared Services Management”[39]

x x x x x

“Hierarchical network-aware placement of service ori-
ented applications in clouds”[21]

x x

“Cool Cloud: A Practical Dynamic Virtual Machine
Placement Framework for Energy Aware Data Cen-
ters”[47]

x x x

“Cloud Service Selection Based on the Aggregation of
User Feedback and Quantitative Performance Assess-
ment”[30]

x x

“A Declarative Recommender System for Cloud In-
frastructure Services Selection 2 A System for Cloud
Service Selection”[45]

x x x x x

Table 3.2: Related work comparison overview

3.9 Conclusions

This section summarizes the take-away from previous related work.

46

3.9 Conclusions

Not a lot of related work has tackled the heterogeneity of resources (RO1), yet those
who did mostly chose to model an ontology. Majority of algorithms were oriented
towards recurrent execution (RO2). Common activation approaches were: time based
- i.e. every minute; event based - i.e. on new node in cluster; and SLA violation based.

While not a lot of related work directly referenced IoT domain (RO3), some of them
relied on close monitoring of resource usage and reaction. Take away message would
exactly mean thorough resource monitoring with appropriate measures.

RO4 requirement fulfillment in related work was rather saturated. On one side - de-
terministic optimal solutions by using LP or variations of it. LP problems do not fulfill
this requirement as they do not scale.

Not all of the related-work papers proposed placement algorithm (RO5). Even more,
not all of the works that proposed a placement strategy contained an algorithm that
could model future resource usage.

Most RO6 works did not disclose their evaluation methodology. The minority, however,
described what resources, how and with what data they evaluated their solution with.

In design, alternative solution to related work will repeatedly discussed.

47

Chapter 4

Design

This chapter describes design and decisions for enabling DS2OS service placement strat-
egy usage. A discussion of alternative design approaches is provided at the end of each
section.

4.1 Solution requirements

In section 2.7 requirements were formed:

RO1 unified description for heterogeneous resources,

RO2 ability to run recurrently and online,

RO3 IoT resource-sensitivity,

RO4 low scaling overhead,

RO5 placement methodology proposal,

RO6 evaluation methodology.

This chapter overviews how this design fulfills these requirements. Section 4.3, with
guidance from related work, proposes a solution to RO1.

Design for requirements RO2, RO3, and RO4 is described in section 4.4. Multiple
placement strategies, that utilize resource descriptions from section 4.3, are described
in section 4.5.

Evaluation methodology, fulfilling RO6 is designed and conveyed in chapter 6.

Chapter 4: Design

Services [A, B, C]

Deployables

SLSM NLSM2

NLSM1

NLSM3

Deploy
in site

{A, B}

{}

{C}

Figure 4.1: DS2OS deployment in [3]

4.2 DS2OS integration

This section overviews current service placement design by [3] and proposes alterations
for carrying out thesis’s requirements.

In [3] section 4.3 described service deployment and migration.

In summary, in perspective of service placement, the procedure is defined as optimization
and is carried out by SLSM itself.

Figure 4.1 portrays current implementation as designed in [3]. Here services are deployed
through SLSM , it internally decides which service goes to which NLSM .

In figure 4.1 services are marked as A, B, C and NLSM1 receives services A and B,
NLSM2 does not receive any services, and finally NLSM3 receives C.

The proposed integration in figure 4.2 removes internal decision component from SLSM
while leaving the operational deployment responsibility. Here two types of services are
introduced: Placement Strategy Picker (PSP) and Placement Strategy (PS)s.

PSP is an intermediary which analyses placement goals from SLSM to provide the opti-
mal PS . PS is an abstract strategy which given current placement layout of the DS2OS
site, proposes alternative service layout. It completely depends on the implementation
of PS on how the proposed services are placed.

In figure 4.2 SLSM communicates with a PSP goals and services. PSP does an interme-
diate decision by analyzing goals and picking a specific PS . PS does the final decision
internally on service placement.

Architecture and communication between SLSM , PSP, and PS is described in section
4.4.

As an alternative for integration with DS2OS , all of the components could be incor-
porated inside of SLSM . This would likely provide better performance in the aspect of

50

4.3 Resource description

Services [A, B, C]

Goals [X, Y, Z]

Deployables

SLSM

PSP PS1

PS2 PS3

NLSM2

NLSM1

NLSM3

Deploy
in site

G
oa

ls

Pla
ce

m
en

t
st

ra
te

gy
C

urrent

layout

Proposed

layout

Register

Register

Register

{A, B}

{}

{C}

Figure 4.2: Proposed DS2OS deployment with separated placement strategies

SLSM , PSP and PS communication. On the other hand, the performance benefits of
this communication can be negligible as the communication is not intensive, and most of
PS communication is related towards NLSM resource and capability monitoring. Ad-
ditionally, by coupling PSP and PS with SLSM it becomes non-trivial to extend with
additional PSs. Another negative aspect of incorporating PS into an SLSM is process
resource utilization. PS execution requirements are not restricted, which in the sense
of PS being in SLSM would introduce the risk of deficiency in resource time. In other
words, PS direct integration would induce degradation of NLSM performance.

Another integration alternative would be combination of PSP and PSs into a single
service. While this does not introduce all of the SLSM related limitations, in aforemen-
tioned alternative approach, introduction of new PSs would still be coupled and limited
with PSP.

In general, PSP exposes distinctively different functionality than that of PS , therefore
applying architectural methodology of microservices (section 2.2.2), would provide loose
coupling and individuality.

4.3 Resource description

In order to model a heterogeneous environment, whose devices not only have different
amounts of resources, but also different capabilities, a resource description methodology
needs to be devised.

51

Chapter 4: Design

The parties that in current DS2OS integration (section 4.2) operate with resource ex-
posure are PSs and NLSM s (and SHEs, as they are responsible for managing NLSM ’s
environment).

A design decision of grouping by resource types was taken for resource description.
This decision is akin to proposed solutions in related works that propose ontologies or
specialized labeling methodologies.

While the principle of grouping by resource types does not provide equal evaluation
of resource qualities, it provides an abstract way of monitoring a definitive subset of
resources. For example, NLSM hosts can have multiple types of storage (such as local
and networked), different type of operating memory (dedicated and swap). In this case
PS does not indicate various types of grouped resources and attempt to micromanage
monitoring results for each of them, but instead would get information about NLSM s
capability and usage of specific type of resource.

Another consideration is distribution of resource description. Plainly the problem can
be described as follows: given that both NLSM and PS have the same resource type
group definitions, how would an update be distributed?

One way of doing this would be development of a central service, as it was done in
[15], by having a knowledge base. This would increase the complexity as both PS and
NLSM would have to adjust their internal models to what the resource description
service would offer. It is unclear how would a new unknown type be universally utilized
inside PS , whereas for NLSM the central service could provide resource to type group
mappings.

To avoid the aforementioned complexity introduction with additional service, the type
groups can be explicitly set and synchronized between NLSM and PS through software
project versioning. This would also allow PS developers to understand and exploit
available type groups better, than writing custom software that attempts to utilize
updates from a service.

It is very well expected that PSs will not utilize all of the available resources as this is
the decision of the developer itself, yet posing this problem as full-utilization one, allows
to understand the implications of how should it be implemented. In this case, second
approach, that does not use central service, will be used.

52

4.4 Architecture and communications

4.4 Architecture and communications

As mentioned in section 4.2, proposed design is by removing placement optimization
from SLSM into PSP and PS . Figure 4.2 shows a general model of how the service
deployment would work with the proposal.

Communication is conveyed through VSL (Section 2.3) as it is used in current imple-
mentation (Section 2.4). Alternatively, it is possible to use other communication pro-
tocols, such as Hyptertext Transfer Protocol (HTTP), but that in the long run would
introduce higher technical debt. Technical debt is an additional maintenance cost in
software development. In using a different communication protocol it would mean that
communication clients and their handlers have to be maintained in PSP, PS , SLSM for
service placement deduction, and NLSM for resource monitoring. Additionally, in the
case of different transport layer, which VSL might support, HTTP clients would need to
support as well, as the environment might not offer any other fall-backs. On the other
hand, since the communication relies on KAs, they will receive higher process load due
to introduction of monitoring. This additional load could interfere with intended use
of the system - service communication. A solution for this could be load balancing or
using different KAs, but that is outside the scope of this thesis.

As PSP only supplies matching to specific goals, it is redundant to maintain any persis-
tant storage or state in it. On the other hand, PS might maintain model of the DS2OS
site, depending on strategy itself. These conditions require PS persistence. Addition-
ally, given that SLSM is responsible for site’s management, PS only needs to maintain
an internal model.

SLSM initiates placement layout retrieval in figure 4.3. Figure can be split into three
parts: registration, initialization, and querying.

In initialization SLSM uses PSP to get optimal PS for given goals. After PSP returns
optimal PS for given goals, SLSM queries for PS ’s monitoring requirements.

Once initialization is done, SLSM can query PS whenever to retrieve placement layout
for services inside NLSMs. This functionality fulfills the requirement RO2 for continu-
ous, online running.

4.4.1 Placement Strategy Picker

PSP is responsible for interpreting submitted goals in order to deduce an optimal PS .
PSs register to PSP themselves and their capabilities in registration phase, as it can

53

Chapter 4: Design

SLSM PSP PS1 PS2

Register with capabilities
Register with capabilities

RegistrationRegistration

Get PS by goals
deduce PS by given goals

PS1
PS1

Get monitoring requirements
PS1’s monitoring requirements

InitializationInitialization

Get placement layout for services
Placement layout

QueryingQuerying

Figure 4.3: SLSM workflow to receive placement layout

54

4.4 Architecture and communications

be seen in 4.3 Registration block. Registration block is independent only for the case
of better visibility of functionality. By design the PSP should be able to dynamically
accept new registrations at any time.

From design perspective, there are multiple ways of modeling the registration procedure,
although it is a trivial where a different design would not indicate significant changes.

Actions between SLSM and PSP are in the following order:

1. SLSM send a list of goals to the PSP,

2. PSP parses goals,

3. PSP evaluates from a list of registered PSs and picks best match,

4. PSP returns the PS to SLSM .

From communication perspective, PSP exposes two endpoints:

1. placementStrategies - VSL list node that is a repository of registered PSs,

2. optimalStrategy - VSL node for getting optimal PS for given goals.

Using VSL list node for placementStrategies provides transparency by giving means
for PS to verify success of registration with PSP. Listing 4.1 is for placementStrate-
gies item’s CM . Here an entry contains the address to the PS , and strategy’s optimiza-
tion targets.

Listing 4.1: placementStrategy context model
1 <placementStrategy >
2 <address type="/basic/text" />
3 <optimizationTargets type="/basic/list" allowedTypes="/basic/text" />
4 </placementStrategy >

Listing 4.3 shows VSL context model for PSP. Here aforementioned placementStrate-
gies list is one of the fields. The other field - optimalStrategy - is for retrieving an
optimal PS . For this call, parameters are additionally required. The format is as follows:

Listing 4.2: optimalStrategy call example
1 /optimalStrategy/processing =10& networking =20&...

In 4.2 parameters rely on Query string1. Name of the parameter is the goal that the
strategy has to follow. Value - importance as a weight. Weighing just represents impor-

1Part of Uniform Resource Locator (URL) structured key-value representation in a string.

55

Chapter 4: Design

tance in comparison to other goals. This means that whatever the scores are assigned,
importance is weighted against the sum of the scores, rather than some absolute value.

Listing 4.3: placementStrategyPicker context model
1 <PlacementStrategyPicker >
2 <placementStrategies type="/basic/list" allowedTypes=".../ placementStrategy">
3 </PlacementStrategyPicker >

optimalStrategy does not provide such transparency as every PS has its own way of
determining the placement layout.

An alternative could be usage of ontologies or approaches similar to how PS and NLSM
resource type groups are designed, but this introduces another level of complexity and
generally is outside the scope of this thesis.

4.4.2 Placement Strategy

For PS to be selected, it has to be registered with PSP, as seen in figure 4.3 registration
block. By registering, PS also provides optimization targets that let PSP to later match
to goals received by SLSM .

PS utilizes resource type groups (section 4.3) by providing monitoring requirements to
SLSM . SLSM is responsible for distributing the monitoring requirements to NLSM s in
DS2OS site. Figure 4.4 displays the sequence of how PS ’s monitoring requirements are
distributed through SLSM .

In listing 4.4, PS has two fields - monitoringRequirements for exposing its monitor-
ing requirements; and placementLayout for providing latest optimal service placement
layout in NLSMs.

Listing 4.4: placementStrategy context model
1 <placementStrategy >
2 <monitoringRequirements type="/basic/list" allowedTypes="/basic/text">
3 <placementLayout type="/basic/list" allowedTypes=".../ placement">
4 </placementStrategy >

Placement layout is a list whose entries contain NLSM and the service that should be
running in it as it can be seen in listing 4.5.

Listing 4.5: single placement layout entry
1 <placement >
2 <nlsm type="/basic/text">
3 <service type="/basic/text">
4 </placement >

56

4.4 Architecture and communications

SLSM PS NLSM1 NLSM2

Get monitoring requirements
Monitoring requirements

QueryingQuerying

Parse monitoring requirements

Monitoring requirements for NLSMs

ParsingParsing

Update monitoring configuration
Update monitoring configuration

DistributionDistribution

Figure 4.4: Monitoring requirements sequence diagram

57

Chapter 4: Design

Final and essential PS functionality is providing placement layout for SLSM . By pro-
viding current service layout of the cluster, SLSM receives updated placement layout
in a timely manner, as well adhering to RO2.

For resource monitoring VSL will be used, as it has been well established between all
components already. This way, PS can directly query NLSM s and their appropriate
configurations. Using VSL’s type search, allows to avoid a race condition of when
monitoring requirements are not fully distributed to all nodes.

Returned placement layout is parsed by SLSM that operates on deploying new services
or migrating already running ones.

4.5 Placement strategies

This section overviews proposed designs for placement strategies that would integrate
with current implementation of DS2OS . In general, as discussed in section 4.4, all
placement strategies are separate microservices that comply with a proposed VSL com-
munication interface. This means that the possibilities of placement strategies are not
limited by the proposed design in this section, but rather by the algorithms that provide
an updated placement layout.

4.5.1 Resource balance

This placement strategy attempts to model the site so that every NLSM uses similar
amount of resources. It is noticeable that the balancing relies on absolute (specific usage
of resource) metrics and not relative ones (percentage of utilization), due to possibility
IoT ’s heterogeneous environment.

It was the initial approach by [3] (section 2.4.9) and was analyzed in [12] related work
as a heuristic.

The approach relies on a sequential service to NLSM assignment by finding the least
loaded NLSM . Algorithm 2 displays the general workflow on how the services are as-
signed. Due to high dimensionality of resources, as this strategy considers all of the
available resource type groups, to evaluate which NLSM s have highest resource capa-
bility, a sum of all their resources is generated. This resonates with the initial design
approach by [3], which was as well listed out as problem 5.

58

4.5 Placement strategies

input : layoutslsm ; // Current SLSM service layout
input : usagesnlsm ; // Resource usage per NLSM
input : capsnlsm ; // Resource capabilities per NLSM
output: layoutps ; // Strategy’s proposed new service layout
layoutps ← ∅
usagesservice ← ResourceusageperNLSM
foreach nlsm← usagesnlsm do

usagesnlsm.services) ← equal usage split from nlsm

end
foreach service← layoutslsm do

foreach nlsm← sorted(capsnlsm) ; // Sorted by sum of resources
do

if service usage fits in NLSM free resources then
layoutps ← service, nlsm capsnlsm ← capnlsm − usagesservice

end
end

end
Algorithm 2: Resource balance service to NLSM assignment

As discussed in previous sections in design and related work, resource balancing provides
optimization in having a buffer of resources for service usage peaks. This strategy
supposedly would allow to better control the whole site’s balancing approach.

Alternatives, or most likely directions where this placement strategy could be put in
the future would be:

1. Closer resource monitoring

2. Service differentiation

3. Profiling resources

Current resource monitoring is limited by implementation which provides usages per
NLSM . The assumption is then made that all services use the same amount of resources
within the same NLSM . While this might sound as obviously wrong solution to be used,
an important feature of placement strategies is that they provide continuous updates for
placement layout. That way, if the usages differ greatly, further placement layouts would
likely granulates higher resource usage services by continuous reordering. The downside
means that to archive an optimal state from a resource-balance perspective, it will take
multiple migrations, therefore - more time. To avoid this, closer resource monitoring, as
in monitoring resource usage by each service itself would allow resource-balance strategy
to propose the optimal solution in a single placement layout.

59

Chapter 4: Design

Service differentiation idea was used in [38] to identify long-running services. This iden-
tification is significant as long-running services have higher priority over short-running
ones, which can be removed in favor of long-running services. In resource-balance per-
spective, the layout could identify service priority and thus provide greater resource
buffers. This would surely introduce complexity by evaluating priority and adjusting
the placement procedure. Introduction of priorities would likely require a calculation
and scaling of available buffers, and this might be a challenge in a heterogeneous envi-
ronment.

Finally, resource balancing in current design does not track service usage. Differently
from the first future issue of closer monitoring, tracking service usage would enable strat-
egy to profile the service usage between migrations and have make a better assumption
of what the service usage is.

4.5.2 Networking and processing performance ranking

This strategy partly relies on service ranking proposed in [48]. Here services are ranked
mainly by their monitored network usage, which is considered as highest order resource.
In algorithm 3 service placement firstly relies on service network usage sorting. Ad-
ditionally, next important step is hosting NLSM ’s processing capability (denoted as
CPU), which sorts the NLSMs in that manner. The assumption is made that the most
network hungry services communicate with each other, as the VSL communication is
bi-directional (request-response). As in section 4.5.1 services are placed only in NLSMs
that have all the requirements fulfilled for the service.

The rationality behind using higher processing capability NLSM s for network intensive
services is based on the assumption that the network requests would be fulfilled quicker
as the transportation over network cost would be diminished.

By attempting to put services that have high network usage into single NLSM s this
placement strategy expresses its optimization goals as network load minimization.

A straight forward alternative would be introduction of service-service network mon-
itoring to be able deduce which pairs of services conduct high and frequent loads of
network communication. This would be an alternative solution for deeper monitoring,
discussed in resource balancing strategy (section 4.5.1).

Other than that, service communication profiling would provide a better understanding
of how services communicate. This proposal is different of the one in resource balancing
strategy, as it saturates on profiling service relations. This could be designed both

60

4.5 Placement strategies

input : layoutslsm ; // Current SLSM service layout
input : usagesservices ; // Resource usage per service
input : capsnlsm ; // Resource capabilities per NLSM
output: layoutps ; // Strategy’s proposed new service layout
net_sorted_usageservices ← sortservicesbynetworkusage
cpu_sorted_capsnlsms ← sortnlsmsbytheirCPUcapability
foreach service in sorted(usagesservices ; // services sorted by their
network usage
do

foreach nlsm in sorted(capsnlsm) ; // NLSMs sorted by their CPU
capability
do

if service usage fits in NLSM resources then
layoutps ← service, nlsm capsnlsm ← capnlsm − usagesservice

end
end

end
Algorithm 3: Networking and processing performance service to NLSM assignment

apriori, by analyzing service packages of their VSL communication calls, and prior
deployment, where service communication calls can be tracked in real time.

61

Chapter 5

Implementation

This chapter overviews decision when implementing design (chapter 4). Given that both
VSL core libraries and DS2OS site implementation are written in Java programming
language, all of the design implementation is done in Java as well. Obviously, by using
microservices architecture (Section 2.2.2), it is feasible to use any technologies, the
main constraint was that VSL communication client (connector) is written in Java
programming language. Alternatives would be using Jython - Python programming
language running inside Java Virtual Machine (JVM), but there is Jython minimal
project maintenance and it relies on an old version 2.7 of Python, which has end-of-life
scheduled as the start of 2020.

5.1 Integration

Additional integration into DS2OS site was needed. Apart from essential fixes in-
troduced (section 2.4.9) in attempt to make DS2OS site implementation feasible for
evaluation, multiple additional features were introduced:

1. Resource monitoring implementation in SHE and NLSM

2. Relevant communication endpoints in SLSM

Previous implementation of resource monitoring relied on custom crafted CPU relative
usage calculation which was unmaintainable (see section 2.4.9) and usage information

Chapter 5: Implementation

is useless as it provides relative usage (0-100%) on a heterogeneous DS2OS site’s node.
The proposed changes introduce an additional library - OSHi1.

For exposing resources that SHE exposes for monitoring, a VSL node of type /basic/list
was used (listing 5.1).

Listing 5.1: Exposed resource context model
1 <sheResource type="/basic/composed">
2 <value type="/basic/text" writer="" />
3 <max type="/basic/text" writer="" />
4 <min type="/basic/text" writer="" />
5 </sheResource >

Here each resource provides 3 additional nodes which correspond to capabilities of the
resource:

1. max - maximum possible value,

2. min - minimum possible value,

3. value - current resource usage value.

SHE exposes resources node through VSL as it was the [24] design decision in imple-
menting NLSM and SHE inter-communication. In general, SHE is considered as an
isolated node, which only allows NLSM to communicate with it. Thus resource ex-
posure only in SHE is not sufficient, since services (as minimal example, placement
strategy) inside DS2OS site need to have access to the resources.

NLSM implements a proxying methodology for replicating the exposed list of resources
and routing the monitoring requests to relevant SHE resource node. By subscrib-
ing to SHE ’s resource list, NLSM is able to synchronize the changes between its list
and SHE ’s (listing 5.2). Here a list of new resources (addedResources) and expired
(deletedResources) is deduced thus providing specific resources to add and delete from
NLSM ’s replicated resources list.

Listing 5.2: NLSM’s SHE resource synchronization method
1 private void synchronizeSheResources () throws VslException {
2 String myAddress = connector.getRegisteredAddress ();
3 String sheAddress = getSheAddress ();
4 ArrayList <String > sheResources = new ArrayList <String >(
5 Arrays.asList(
6 connector.get(
7 sheAddress + "/resources/elements"). getValue (). split(";")));
8 ArrayList <String > nlsmResources = new ArrayList <String >(
9 Arrays.asList(

1Native Operating System and Hardware Information library: https://github.com/oshi/oshi

64

https://github.com/oshi/oshi

5.2 Placement Strategy Picker

10 connector.get(
11 myAddress + "/resources/elements"). getValue (). split(";")));
12 // deletedResources = nlsm - she
13 // addedResources = she - nlsm
14 ArrayList <String > deletedResources = new ArrayList <String >(nlsmResources);
15 deletedResources.removeAll(sheResources);
16 ArrayList <String > addedResources = new ArrayList <String >(sheResources);
17 addedResources.removeAll(nlsmResources);
18
19 LOGGER.info("SHE:␣" + sheResources.toString () +
20 ";␣NLSM:␣" + nlsmResources.toString ());
21 LOGGER.info("Added:␣" + addedResources.toString () +
22 ";␣deleted:␣" + deletedResources.toString ());
23
24 for (String deletedResource: deletedResources) {
25 connector.get(myAddress + "/resources/del/" + deletedResource);
26 }
27
28 for (String addedResource: addedResources) {
29 connector.get(
30 myAddress + "/resources/add/ds2os/sheResource //" + addedResource);
31 addResource(addedResource);
32 }
33 }

In similar fashion, SLSM method responsible for deducing which services have to be
migrated is described in algorithm 4. Here servicesnew and servicesremoved are mapping
of services added and deleted from an NLSM .
input : layoutcurr, layoutps

output: servicesnew, servicesremovedforeachNLSM

foreach NLSM do
servicesnew(NLSM)← layoutps(NLSM)− layoutcurr(NLSM)
servicesremoved(NLSM)← layoutcurr(NLSM)− layoutps(NLSM)

end
Algorithm 4: SLSM’s migration deduction method

5.2 Placement Strategy Picker

Due to time limitations, current PSP implementation directly compares deployment
goals with PS proposed optimization targets. Similarly to how NLSM replicates SHE ’s
exposed resources section 5.1, PSP subscribes to placementStrategies VSL list for
changes and updates internal model of every PS .

On request for optimal placement strategy, PSP compares internal model with posed
requirements and deduces best match.

Goal matching is implemented has three distinct branches:

65

Chapter 5: Implementation

1. If all goals are matched by multiple PSs, first one (non-deterministic) PS is picked,

2. If some goals are matched, they are weighted and best match PS is picked.

3. If none goals are matched, first one (non-deterministic) PS is picked.

Namely, 2nd branch can be taken as non-trivial task is described in algorithm 5. Here
goals.getRelativeWeight retrieves the relative weight of a specific goal. Goals are de-
fined as a list of items with relative weight, which by default is equal between all goals
(if not set).

input : PSs, goals

output: PSoptimal

scores← listofscoresforeveryPS, initializedas0 foreach PSs do
foreach PS.optimizations do

scoresP S ← scoresP S + goals.getRelativeWeight(optimizationP S)
end

end
return PSwithmax(scores)

Algorithm 5: PSP goal matching when some goals are matched by PSs

5.3 Placement strategies

This section overview implemented placement strategies and most importantly the base
platform that they’re implemented upon. Base reduces the overhead of custom imple-
mentation for ontology based resource monitoring, VSL communication, and monitored
data management. As most of the implementation relies on template that covers pe-
ripherals, the implementation of each placement strategy just relies on the template and
appropriate algorithms proposed in design chapter (chapter 4).

5.3.1 Ontology

Ontology based monitoring relies on predefined resource groups. A snippet example is
shown in listing 5.3.

Listing 5.3: Ontology resource group distinction
1 switch(resourceName) {
2 case "CPU":
3 return ResourceGroup.CPU;
4 case "Memory":
5 case "RAM":
6 case "SWAP":
7 return ResourceGroup.Memory;

66

5.3 Placement strategies

8 case "Network":
9 case "Bandwidth":

10 return ResourceGroup.Network;
11 ...
12 }

Important issue when defining such resource groups is that this has to be initially
coordinated between PS base platform and SHE itself. While this issue couples, there’s
weak coupling between the base platform and implementation of PS itself. This is
because of dependency on the resource groups that base presents. It is assigned to
project development maturity by exposing wide range of resource group mappings, thus
making the coupling stable, and is out of scope for this thesis.

5.3.2 VSL communication

Since VSL context model for PS is set, the base platform handles and parses the re-
quests, thus removing the need for PS developer to re-implement communication layer.

Listing 5.4: Placement Strategy’s interface for custom PS implementation
1 public interface PlacementStrategy {
2 public void start ();
3
4 public void stop ();
5
6 public String getCurrentState ();
7
8 public ResourceGroup [] getMonitoringRequirements ();
9

10 public Map <String , String > getPlacementLayout(Map <String , String > oldLayout);
11
12 public void pushResourceUsage(Map <String , Map <String , String >> resourceUsage);
13 }

In general, the developer needs to implement the PlacementStrategy interface, shown
as listing 5.4. Here start, stop, and getCurrentState provide state management for PS
implementation. Expected states are:

1. STOPPED - when PS is not performing any operations,

2. LOADING - when preparation is in process. Eventually should change to
STOPPED or RUNNING,

3. RUNNING - indicator that placement strategy is operational.

getMonitoringRequirements provides a list of resources for monitoring, and pushResourceUsage

receives a snapshot of all resources monitored in whole DS2OS site and handles inter-
nally. Finally, getP lacementLayout provides a mapping of new layout < NLSM, service >

from an old layout.

67

Chapter 5: Implementation

5.3.3 Monitored data management

Monitoring is a data intensive activity providing a lot of information. Without any
management, this information would overload the process’s operating memory even
though the process does not utilize it. To tackle this, two data management solution
have been implemented:

1. Archiver - archiving data into storage after a specific threshold,

2. Archive rotation - purging archived data from storage after a specific threshold.

Every data point is a timestamp and the resource usage value. Current implementation’s
threshold relies on data size (i.e. data entries), but for future work it is possible to extend
it to threshold by time range. In a similar fashion, archives are rotated by a trivial size
threshold.

68

Chapter 6

Evaluation

This chapter evaluates service placement implementation for DS2OS site. To evaluate
in a quantitative fashion, a simulation framework has been developed and is described
in section 6.1. Only feasible evaluation is described in section 6.2.

6.1 Simulation framework

Due to DS2OS implementation with applied fixes (Section 2.4.9) being inappropriate
for performing stable and reproducible evaluations, a simulation framework has been
developed. It replicates the relevant functionalities for placement strategy microservice:

1. SLSM running services (current layout) interface,

2. NLSM resource monitoring interface.

As all of the communication is done through VSL (Section 2.3),

real SLSM and NLSM context models were used and VSL nodes, that are relevant for
PS evaluation, were implemented.

Figure 6.1 displays the simulation framework components. Here SLSMsim and NLSMsim

are parts of simulation, whereas PS is real.

Here services and their resource usages are as well simulated. The rationality behind
resource usage simulation is that artificially modelled service resource usage behavior
model would not deviate significantly. While it does not represent realistic resource
usage, an artificially modeled service would not represent actual resource usage and
requirements as well.

Chapter 6: Evaluation

SLSMsim

PS

NLSM2sim

NLSM1sim

NLSM3sim

Services

P
la

ce
m

en
t

la
yo

ut

Figure 6.1: Evaluation simulation framework’s components

Additionally, since the only interface that resource usage is capable to be monitored
through is NLSM ’s VSL node, it already provides an abstraction over resource usage.

Discussing corner cases, where service resource usage disrupts NLSM functionality is
out of scope for this thesis, as it is a domain of service management within SHE .

Simulation framework works on the premise that an evaluation is a test that has multiple
stages:

1. Initial state - site setup with already running services,

2. Migration transfer and installation - whenever PS proposes a different service
layout, migration is triggered,

3. Post-migration state - site with newly setup service layout.

Service execution induces a time constraint based suspension. For example, a service
can work for around 50ms. The same time constraint is put during migration and
communication domains: an operation has a preset time that it will take as a minimum.
To not rely on service always finishing in constant time, the sleep time is randomized
with gaussian distribution.

Comparison of result between initial and post-migration states allows to validate PS ’s
positive impact. Additionally it is possible to estimate the benefit of the migration.
Evaluating change during migration state allows to track and estimate the cost of the
migration. Comparison of costs and benefits of migrations enables modeling when pro-
posed layout pays off.

In retrospective, using simulation framework raises questions regarding the meaningful-
ness of results. As it attempts to simulate the real environment as close as possible, it is
relevant from architectural perspective. This means that the evaluation test cases could

70

6.2 Execution time

be seamlessly plugged into working DS2OS implementation (which is not due to the
reasons mentioned in section 2.4.9). Of course, the measures of fixing and stabilizing
the DS2OS are currently applied and it could likely modify the VSL interface. Then
this simulation framework would lose relevance.

As this simulation framework provides mocked environment with resource usages, an-
other question can be raised on meaningfulness of results. The evaluation of placement
strategy is to evaluate whether it provides improvements into the DS2OS site. As the
state of the site is discrete (discrete services running in discrete NLSM s controlled by
SLSM), it provides equal initial state for any placement strategy. Additionally, place-
ment strategy does not provide anything else just a proposition of how services should
be placed (layout). Generally, if not for dependence on resource monitoring simulation,
evaluation could be conveyed by analyzing proposed layout in how well it corresponds
to DS2OS site.

6.2 Execution time

Measuring task (call to service inside DS2OS site and response) execution time is an
evaluation for placement strategies. Due to the limitations of current DS2OS site im-
plementation and simplifications applied in evaluation simulation framework (section
6.1), this section evaluates overall capability and possible workload of a system.

The clearest benefit the PSs present is faster execution. By imposing different service
placement, migrations are needed. Figure 6.2 presents expected evaluation execution
times flow on strategies. This expectation figure can be split into two parts: migration,
and execution change after migration. It is expected that migration induces load on the
nodes and thus the execution quality suffers. On ther other hand, evaluation method
attempts to find whether placement strategy provides improval and degradation. In
figure 6.2 it is expected that placement strategy introduced placement layout will help
to decrease the execution time. Here vertical axis te represents overall time of execution,
whereas horizontal axis t - general timeline.

This evaluation can be split into two domains:

1. Single service placement evaluation,

2. Composite service placement evaluation.

Even though service usage is simulated, single services are more prone to migration
as migration benefit is only a single request, whereas composite services communicate

71

Chapter 6: Evaluation

Figure 6.2: Mock figure to display expectations in task execution times

in-between thus saturating migration benefits. Additionally, due to full simulation,
relevance of resource type is negligible.

The evaluation scenario can be split into the following stages:

1. Initial state with deployed services is provided and recorded,

2. Placement strategy layout is incrementally applied (migration) and recorded,

3. After-migration site’s state is recorded.

In constant time intervals task execution time evaluation requests are submitted, span-
ning throughout all of the stages.

By recording relevant states, in this case - task execution time, it is then feasible to
evaluate impact of proposed placement layout.

Before describing setups it is important to note that placement strategies do not have
access to usage per-service rather than general NLSM resource usage, as described in
section 4.2. Additionally, migration costs are also unknown apriori.

6.2.1 Single service evaluation

Table 6.1 describes the resource requirement for services and their mappings in DS2OS
site. Here CPU, Memory, and network usages are just mocked values as the simulation
framework (section 6.1) does not provide actual measured values.

Table 6.2 describes the NLSM resource capabilities. In the same manner, the values are
mocked, but these values with table’s 6.1 values are exposed to placement strategies.

72

6.2 Execution time

Service ID NLSM CPU usage Memory usage Network usage Runtime (ms)
1 NLSM1 100 100 100 60
2 NLSM1 150 50 120 60
3 NLSM2 200 150 150 60
4 NLSM3 50 200 100 60

Table 6.1: Single service setup usages

NLSM CPU Memory
1 300 300
2 300 200
3 500 300

Migration 20 20

Table 6.2: NLSM single service setup capabilities

The runtime of a service is a mocked value that simulation framework’s service idles to
imitate load, before responding to a request.

It is assumed that all NLSM s are connected with 10ms latency. This latency is mainly
used and should be visible in the case of composed services.

In this setup, for single-service evaluations the service of interest is 1. By design it is
independent and does not rely on other services.

Resource balancer

Figure 6.3 displays the results of resource balancer placement strategy. The horizontal
axis represents the general timeline, as in time that took the evaluation method to
execute. The vertical axis is the evaluation target value - service execution time. It
describes how long did it overall take for the client to request the service, the service to
process the request, and return the value back to the client. A spike of execution time
can be seen as migration has been triggered.

The pre-migration average execution time is 74.5ms and post-migration 80.2ms, the
difference 5.7. Red enclosing lines mark the formal migration start and finish in the
simulation framework, yet it can be seen that execution time did not immediatelly
get reduced post-migration. This can be labeled as partly problem of the simulation
framework, as the simulation is not efficiently parallelized. Another noticeable feature in
figure 6.3 is that pre-migration and post-migration execution times do not significantly
differ.

73

Chapter 6: Evaluation

0 2,000 4,000 6,000 8,000

60

80

100

120

140
migration

General timeline [t, ms]

Se
rv
ic
e
ex
ec
ut
io
n
tim

e
[t E

,m
s]

Figure 6.3: Single service execution evaluation for resource balancing strategy

Network and processing ranking

Similarly to results of resource balance single strategy’s service execution time in section
6.2.1, pre-migration and post-migration execution times do not differ significantly in
figure 6.4. The average execution time pre-migration was 74.5ms, and post-migration
was 76.2ms spanning 1.7ms difference. The differences in migration length and load
pattern between resource balance strategy and network and processing ranking strategy
can be simply stated as difference of proposed layouts and thus differently executed
migrations. As migration management is not part of this thesis, evaluation relevance in
negligible.

6.2.2 Composite service evaluation

While using the same setup as in single-service execution evaluation, the difference here
is that the service of interest is 2. In simulation framework it’s set-up that it relies on
services 1 and 3 for communication.

Resource balancer

In 6.5 it can be seen that pre-migration and post-migration execution times do not
have a significant difference. The average execution time pre-migration was 239.0ms

and post-migration 241.8ms, making the difference 2.8ms. This could be explained as
resource balancer strategy executed it’s placement layout calculation algorithm without
any composite service communication in mind.

74

6.2 Execution time

0 2,000 4,000 6,000 8,000

60

80

100

120

140
migration

General timeline [t, ms]

Se
rv
ic
e
ex
ec
ut
io
n
tim

e
[t E

,m
s]

Figure 6.4: Single service execution evaluation for network and processing ranking strategy

0 2,000 4,000 6,000 8,000
220

240

260

280

300 migration

General timeline [t, ms]

Se
rv
ic
e
ex
ec
ut
io
n
tim

e
[t E

,m
s]

Figure 6.5: Composite service execution evaluation for resource balancing strategy

75

Chapter 6: Evaluation

0 2,000 4,000 6,000 8,000

220

240

260

migration

General timeline [t, ms]

Se
rv
ic
e
ex
ec
ut
io
n
tim

e
[t E

,m
s]

Figure 6.6: Composite service execution evaluation for network and processing ranking strategy

Network and processing ranking

Figure 6.6 has a significant change of execution time. Average execution time before
migration was 242.2ms and post-migration 226.9ms, resulting in −15.3ms difference. It
can be assumed that the proposed placement layout grouped relevant services together
thus building difference in execution time.

6.2.3 Conclusions

Resource balance strategy did not provide clear benefit for execution time optimization
both in single service and composite service scenario. Network and processing ranking
strategy had no clear benefit for single service execution, whereas composite service
execution evaluation shows a significant improvement in execution time.

While evaluations are highly limited by the flexibility of simulation framework to give
a thorough inspection, the results, namely from figure 6.6, give incentive to see that
placement strategy would improve (reduce) the execution time.

76

Chapter 7

Conclusion

This thesis overviewed service placement approaches to apply them for IoT environ-
ments via VSL based DS2OS framework. Two distinct problem domains were identified
in analysis for service placement: need for description, and methodology on placements.
Analyzed related work gave insights in partial solutions, as it was observed in table 3.2,
for designing a placement strategy integration into DS2OS . While reparations for im-
plementations by [3] and [24] were not sufficient to use for evaluation of this thesis, a
mock simulation framework that reuses relevant interfaces from aforementioned theses.
For future perspective, when the DS2OS service management implementation is stable
enough, the evaluation methodologies, due to reuse of interface, will remain relevant. As
simulation framework mocks elements of the system, the results can be interpreted with
the bias of simulation framework’s implementation (section 6.1). The evaluation results
show that placement strategies applications have significant impact for IoT environment
solutions, of which one was DS2OS .

Finally, by reiterating the research questions and attempting to answer them, concludes
this thesis. This thesis found that answeringRQ1. “What characteristics are needed for
optimal DS2OS service placement” (and respective subquestions) is non trivial. First
of all, optimality is subjective to goals and thus characteristics depend on the service
placement strategy itself. The fulfillment from thesis was to design and implement
a flexible enough characteristic description system where NLSM s update to placement
strategy’s required resources for monitoring. a) “How can RQ1. characteristics be used
to elevate decision making for service placement” has partial connection to previous
research question as generally placement strategies rely on a set of monitored DS2OS
site characteristics. b) “What methodologies can be used to run an online service
placement and migration strategy?” specfically identified that any LP solutions are

Chapter 7: Conclusion

unsuitable for scalable and continuous running, especially in IoT domain. Most of
the methodologies that comply are heuristics that attempt to replicate the solutions of
LP service placement algorithms. Thesis did not extentively tackle c) “How can the
methodologies be designed to be feasible to run in IoT edge devices?”. Part of the
assumptions were placed on fulfilling b), another part by using DS2OS framework with
VSL to simplify complex communication. d) “How significant is placement strategy’s
ability to scale with the increase of IoT edge devices?” was not evaluated due to usage
of simulated framework for evaluations. Answer RQ3. “What effect does the proposed
design and implementation have regarding optimization strategies such as least-nodes,
and resource balancing heuristics?” relied on resource balancing placement strategy
only. A placement strategy that took networking and processing resources into account
was designed. The evaluation results have shown that composite service execution time
can be reduced, whereas single service execution time can not.

7.1 Future work

During thesis, a lot of distinct directions were found to work in the future.

In short they are:

FW1 Placement strategy picker

FW2 Deeper resource monitoring

FW3 Placement strategy switching

FW4 Combining placement strategies

FW5 Migration management

FW1’s PSP, described in section 4.4, can have extended functionality in controlling
which PS is chosen. Currently the choosing phase is a one-off, yet it could be adapted
to end-users changing requirements during execution, as PS integration is designed to
be seamless.

FW2 would provide thorough monitoring data. While this would need PS adjustment,
it would allow better modeling of resource requirements for services, by providing data
and parameters for Machine Learning algorithms. As communication relies on VSL
(Section 2.3), analyzing requests between services would additionally provide another
dimension in which services impose their requirements.

78

Given that a single PS is oriented towards a specific set of goals, with extension of
FW1, PS switching would be inevitable in FW3. While technically it is a trivial task,
the actual point of interest is rationale behind switching. In FW1 one example was
given as end-users changing their requirements. Another case would be identification of
PS effect and deciding to switch to another PS as provided benefits are better.

FW4 was a frequent discussion in thesis meetings whether running multiple PSs is fea-
sible. Rationale behind that was that a composition of services from a single deployment
would prefer a specific goal, whereas another deployment would have different goals de-
fined. Without much doubt, it is clear that there’s a possibility to have two clashing
placement strategies which would produce completely different layouts. Is it feasible to
combine PSs and if yes - how? Does PS combination provide better performance for
DS2OS site than running separately.

Lastly, FW5 is about migration management. As it can be seen in evaluation, migration
overhead is noticeable. It is important to note, that evaluation was done on the base of
a single migration. This thesis did not cover when and how often should migrations be
performed.

Another migration related future work could be regarding inclusion of migration costs.
This would give incentive to model and attempt to minimize amount of service migra-
tions performed.

It was not included, but a clear future work can be design of yet another placement
strategy for the DS2OS site. Given current evaluation methodology and independent
simulation framework from section 6.1, it is possible to apply a custom PS and evaluate
its performance.

Due to the DS2OS site implementation problems described in section 2.4.9, relevance of
simulation framework is short-lived. With further fixing and development on the DS2OS
site, it is likely better to apply described evaluation method on the actual implemen-
tation itself, which therefore would provide a more realistic performance evaluation of
the PS and big-scale integration test for the DS2OS implementation too.

79

Chapter A

List of acronyms

BPEL4WS Business Process Execution Language for Web Services

CCSC Cloud Computing Service Composition

CM Context Model
CMR Context Model Repository

CPU Central Processing Unit

DS2OS Distributed Smart Space Orchestration System

FM Feature Model
HMM Hidden Markov Model
HTTP Hyptertext Transfer Protocol

IaaS Infrastructure as a Service
IoT Internet of Things

JVM Java Virtual Machine
KA Knowledge Agent

LP Linear Programming

MEC Mobile Edge Computing

NFV Network Function Virtualization
NFV-RA Resource Allocation in NFV
NLSM Node Local Service Manager

NS Network Service
OSGi Open System Gateway initiative

PaaS Platform as a Service

Chapter A: List of acronyms

PS Placement Strategy

PSP Placement Strategy Picker

QoS Quality of Service

RTE Real-Time Environment
S2S Smart Space Service management

S2Store Smart Space Store

SaaS Software as a Service
SHE Service Hosting Environment

SLA Service Level Agreement

SLCA Site Local Certificate Authority

SLSM Service Local Service Manager

SOA Service Oriented Architecture
STM Status Transition Matrix
URL Uniform Resource Locator
VM Virtual Machine
VNF Virtual Network Function
VSL Virtual State Layer

82

Bibliography

[1] Martin Bauer et al. “IoT Reference Model”. In: Enabling Things to Talk: Designing
IoT solutions with the IoT Architectural Reference Model. Ed. by Alessandro Bassi
et al. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013, pp. 113–162. isbn: 978-
3-642-40403-0. doi: 10.1007/978-3-642-40403-0_7. url: https://doi.org/
10.1007/978-3-642-40403-0_7.

[2] David Benavides, Pablo Trinidad, and Antonio Ruiz-Cortés. “Automated Rea-
soning on Feature Models”. In: LNCS, ADVANCED INFORMATION SYSTEMS
ENGINEERING: 17TH INTERNATIONAL CONFERENCE, CAISE 2005. Springer,
2005, p. 2005.

[3] Deniz Celik. “Semi-Autonomous IoT Service Management on Unattended Nodes”.
PhD thesis. 2018.

[4] Sergei Chichin et al. “Smart Cloud Marketplace - Agent-Based Platform for Trad-
ing Cloud Services”. In: 2014 IEEE/WIC/ACM Int. Jt. Conf. Web Intell. Intell.
Agent Technol. (2014), pp. 388–395. doi: 10 . 1109 / WI - IAT . 2014 . 193. url:
http://ieeexplore.ieee.org/document/6928211/.

[5] Krzysztof Czarnecki, Simon Helsen, and Ulrich Eisenecker. “Formalizing cardinality-
based feature models and their specialization”. In: Software Process: Improvement
and Practice. 2005, p. 2005.

[6] Lorenzo Donini. “Autonomous Certificate Management for Microservices in Smart
Spaces”. PhD thesis. 2018. isbn: 6122738700.

[7] Wanchun Dou et al. “HireSome-II: Towards privacy-aware cross-cloud service com-
position for big data applications”. In: IEEE Trans. Parallel Distrib. Syst. 26.2
(2015), pp. 455–466. issn: 10459219. doi: 10.1109/TPDS.2013.246.

[8] Abdessalam Elhabbash et al. “Cloud Brokerage: A Systematic Survey”. In: (2018).
arXiv: 1805.09018. url: http://arxiv.org/abs/1805.09018.

[9] Rodica Gherghina and Ioana Duca. “Using Linear Programming in order to Op-
timize the Allocation of Resources for Investment”. In: Journal of Knowledge

https://doi.org/10.1007/978-3-642-40403-0_7
https://doi.org/10.1007/978-3-642-40403-0_7
https://doi.org/10.1007/978-3-642-40403-0_7
https://doi.org/10.1109/WI-IAT.2014.193
http://ieeexplore.ieee.org/document/6928211/
https://doi.org/10.1109/TPDS.2013.246
http://arxiv.org/abs/1805.09018
http://arxiv.org/abs/1805.09018

Management, Economics and Information Technology 3.1 (2013), pp. 1–12. url:
https://ideas.repec.org/a/spp/jkmeit/1354.html.

[10] Juliver Gil Herrera and Juan Felipe Botero. “Resource Allocation in NFV: A Com-
prehensive Survey”. In: IEEE Trans. Netw. Serv. Manag. 13.3 (2016), pp. 518–
532. issn: 19324537. doi: 10.1109/TNSM.2016.2598420.

[11] J. Octavio Gutierrez-Garcia and Kwang Mong Sim. Agent-based cloud service
composition. Vol. 38. 2013. doi: 10.1007/s10489-012-0380-x.

[12] M. Shamim Hossain et al. “Resource allocation for service composition in cloud-
based video surveillance platform”. In: Proc. 2012 IEEE Int. Conf. Multimed.
Expo Work. ICMEW 2012 (2012), pp. 408–412. doi: 10.1109/ICMEW.2012.77.

[13] C.I. Huang and K. Yoon. “Multiple Criteria Decision Making: Methods and Ap-
plications”. In: 1981.

[14] Foued Jrad, Jie Tao, and Achim Streit. “A Broker-based Framework for Multi-
Cloud Workflows Steinbuch Centre for Computing”. In: Proc. 2013 Int. Work.
Multi-cloud Appl. Fed. clouds (2013), pp. 61–68. doi: 10.1145/2462326.2462339.

[15] Amin Jula, Zalinda Othman, and Elankovan Sundararajan. “A hybrid imperialist
competitive-gravitational attraction search algorithm to optimize cloud service
composition”. In: Proc. 2013 IEEE Work. Memetic Comput. MC 2013 - 2013
IEEE Symp. Ser. Comput. Intell. SSCI 2013 3 (2013), pp. 37–43. doi: 10.1109/
MC.2013.6608205.

[16] Amin Jula, Elankovan Sundararajan, and Zalinda Othman. “Cloud computing
service composition: A systematic literature review”. In: Expert Syst. Appl. 41
(2014), pp. 3809–3824. doi: 10 . 1016 / j . eswa . 2013 . 12 . 017. url: http :
/ / romisatriawahono . net / lecture / rm / survey / networksecurity / Jula -
CloudComputing-2014.pdf.

[17] Kevin Kofler, Irfan Ul Haq, and Erich Schikuta. “A parallel branch and bound
algorithm for workflow QoS optimization”. In: Proc. Int. Conf. Parallel Process.
(2009), pp. 478–485. issn: 01903918. doi: 10.1109/ICPP.2009.34.

[18] Thorsten Kramp, Rob van Kranenburg, and Sebastian Lange. “Introduction to
the Internet of Things”. In: Enabling Things to Talk. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2013, pp. 1–10. isbn: 9783642404030. doi: 10.1007/978-3-
642-40403-0_1. arXiv: arXiv:1011.1669v3. url: https://link.springer.
com/book/10.1007/978-3-642-40403-0http://link.springer.com/10.1007/
978-3-642-40403-0{_}1.

[19] Sheng Liu et al. “Service composition execution optimization based on state tran-
sition matrix for cloud computing”. In: Proc. 10th World Congr. Intell. Control
Autom. (2012), pp. 4126–4131. doi: 10.1109/WCICA.2012.6359167. url: http:
//ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6359167.

84

https://ideas.repec.org/a/spp/jkmeit/1354.html
https://doi.org/10.1109/TNSM.2016.2598420
https://doi.org/10.1007/s10489-012-0380-x
https://doi.org/10.1109/ICMEW.2012.77
https://doi.org/10.1145/2462326.2462339
https://doi.org/10.1109/MC.2013.6608205
https://doi.org/10.1109/MC.2013.6608205
https://doi.org/10.1016/j.eswa.2013.12.017
http://romisatriawahono.net/lecture/rm/survey/network security/Jula - Cloud Computing - 2014.pdf
http://romisatriawahono.net/lecture/rm/survey/network security/Jula - Cloud Computing - 2014.pdf
http://romisatriawahono.net/lecture/rm/survey/network security/Jula - Cloud Computing - 2014.pdf
https://doi.org/10.1109/ICPP.2009.34
https://doi.org/10.1007/978-3-642-40403-0_1
https://doi.org/10.1007/978-3-642-40403-0_1
http://arxiv.org/abs/arXiv:1011.1669v3
https://link.springer.com/book/10.1007/978-3-642-40403-0 http://link.springer.com/10.1007/978-3-642-40403-0{_}1
https://link.springer.com/book/10.1007/978-3-642-40403-0 http://link.springer.com/10.1007/978-3-642-40403-0{_}1
https://link.springer.com/book/10.1007/978-3-642-40403-0 http://link.springer.com/10.1007/978-3-642-40403-0{_}1
https://doi.org/10.1109/WCICA.2012.6359167
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6359167
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6359167

[20] Pavel Mach and Zdenek Becvar. “Mobile Edge Computing: A Survey on Archi-
tecture and Computation Offloading”. In: IEEE Commun. Surv. Tutorials 19.3
(2017), pp. 1628–1656. issn: 1553877X. doi: 10.1109/COMST.2017.2682318.
arXiv: 1702.05309.

[21] Hendrik Moens et al. “Hierarchical network-aware placement of service oriented
applications in clouds”. In: IEEE/IFIP NOMS 2014 - IEEE/IFIP Netw. Oper.
Manag. Symp. Manag. a Softw. Defin. World (2014). doi: 10.1109/NOMS.2014.
6838230.

[22] Arlen J. Mogull R. “Security Guidance for critical areas of focus in Cloud Comput-
ing V4.0”. In: CSA (Cloud Security Alliance), USA. Online: https://cloudsecurityalliance.org/guidance
v4.0 (2017).

[23] C. Mouradian et al. “A Comprehensive Survey on Fog Computing: State-of-the-
Art and Research Challenges”. In: IEEE Communications Surveys Tutorials 20.1
(2018), pp. 416–464. issn: 1553-877X. doi: 10.1109/COMST.2017.2771153.

[24] Fabian Benedikt Ohlenforst. “Providing a Remotely Manageable Runtime Envi-
ronment for IoT Services”. PhD thesis. 2018.

[25] Marc Oliver Pahl, Georg Carle, and Gudrun Klinker. “Distributed smart space or-
chestration”. In: Proc. NOMS 2016 - 2016 IEEE/IFIP Netw. Oper. Manag. Symp.
2016, pp. 979–984. isbn: 9781509002238. doi: 10.1109/NOMS.2016.7502936.

[26] NFV White Paper. Network Functions Virtualisation: An Introduction, Benefits,
Enablers, Challenges & Call for Action. Issue 1. Tech. rep. ETSI, Oct. 2012.

[27] Ioannis Patiniotakis, Yiannis Verginadis, and Gregoris Mentzas. “Preference-based
cloud service recommendation as a brokerage service”. In: Proc. 2nd Int. Work.
CrossCloud Syst. - CCB ’14. New York, New York, USA: ACM Press, 2014, pp. 1–
6. isbn: 9781450332330. doi: 10.1145/2676662.2676677. url: http://dl.acm.
org/citation.cfm?doid=2676662.2676677.

[28] Tran Vu Pham et al. “A service composition framework for market-oriented high
performance computing cloud”. In: Proc. 19th ACM Int. Symp. High Perform.
Distrib. Comput. (2010), pp. 284–287. doi: 10.1145/1851476.1851511.

[29] Klaus Pohl, Günter Böckle, and Frank Linden. Software Product Line Engineering:
Foundations, Principles, and Techniques. Jan. 2005. isbn: 978-3-540-24372-4. doi:
10.1007/3-540-28901-1.

[30] Lie Qu, Yan Wang, and Mehmet A Orgun. “Cloud Service Selection Based on
the Aggregation of User Feedback and Quantitative Performance Assessment”.
In: 2013 IEEE Int. Conf. Serv. Comput. (2013), pp. 152–159. doi: 10.1109/SCC.
2013.92. url: http://ieeexplore.ieee.org/document/6649690/.

[31] Clément Quinton et al. “Towards Multi-Cloud Configurations Using Feature Mod-
els and Ontologies”. In: (). url: http://delivery.acm.org.eaccess.ub.tum.

85

https://doi.org/10.1109/COMST.2017.2682318
http://arxiv.org/abs/1702.05309
https://doi.org/10.1109/NOMS.2014.6838230
https://doi.org/10.1109/NOMS.2014.6838230
https://doi.org/10.1109/COMST.2017.2771153
https://doi.org/10.1109/NOMS.2016.7502936
https://doi.org/10.1145/2676662.2676677
http://dl.acm.org/citation.cfm?doid=2676662.2676677
http://dl.acm.org/citation.cfm?doid=2676662.2676677
https://doi.org/10.1145/1851476.1851511
https://doi.org/10.1007/3-540-28901-1
https://doi.org/10.1109/SCC.2013.92
https://doi.org/10.1109/SCC.2013.92
http://ieeexplore.ieee.org/document/6649690/
http://delivery.acm.org.eaccess.ub.tum.de/10.1145/2470000/2462332/p21-quinton.pdf?ip=129.187.254.46{\&}id=2462332{\&}acc=ACTIVE SERVICE{\&}key=2BA2C432AB83DA15.B4538F6A74FA55F8.4D4702B0C3E38B35.4D4702B0C3E38B35{\&}{_}{_}acm{_}{_}=1523363827{_}e128d2234a1b4d879db9802b9784c8ab
http://delivery.acm.org.eaccess.ub.tum.de/10.1145/2470000/2462332/p21-quinton.pdf?ip=129.187.254.46{\&}id=2462332{\&}acc=ACTIVE SERVICE{\&}key=2BA2C432AB83DA15.B4538F6A74FA55F8.4D4702B0C3E38B35.4D4702B0C3E38B35{\&}{_}{_}acm{_}{_}=1523363827{_}e128d2234a1b4d879db9802b9784c8ab

de/10.1145/2470000/2462332/p21-quinton.pdf?ip=129.187.254.46{\&}id=
2462332{\&}acc=ACTIVESERVICE{\&}key=2BA2C432AB83DA15.B4538F6A74FA55F8.
4D4702B0C3E38B35.4D4702B0C3E38B35{\&}{_}{_}acm{_}{_}=1523363827{_
}e128d2234a1b4d879db9802b9784c8ab.

[32] Antonino Rullo et al. “A Game of Things: Strategic Allocation of Security Re-
sources for IoT”. In: Proc. Second Int. Conf. Internet-of-Things Des. Implement.
(2017), pp. 185–190. doi: 10.1145/3054977.3055001. url: http://doi.acm.
org/10.1145/3054977.3055001.

[33] Thomas L. Saaty, Luis G. Vargas, and Klaus Dellmann. “The allocation of in-
tangible resources: the analytic hierarchy process and linear programming”. In:
Socio-Economic Planning Sciences 37.3 (2003), pp. 169 –184. issn: 0038-0121.
doi: https : / / doi . org / 10 . 1016 / S0038 - 0121(02) 00039 - 3. url: http :
//www.sciencedirect.com/science/article/pii/S0038012102000393.

[34] Le Sun et al. “Cloud service selection: State-of-the-art and future research direc-
tions”. In: Journal of Network and Computer Applications 45 (2014), pp. 134 –150.
issn: 1084-8045. doi: https://doi.org/10.1016/j.jnca.2014.07.019. url:
http://www.sciencedirect.com/science/article/pii/S108480451400160X.

[35] Smitha Sundareswaran, Anna Squicciarini, and Dan Lin. “A brokerage-based ap-
proach for cloud service selection”. In: Proc. - 2012 IEEE 5th Int. Conf. Cloud
Comput. CLOUD 2012 (2012), pp. 558–565. issn: 2159-6182. doi: 10 . 1109 /
CLOUD.2012.119.

[36] Switching Technology et al. “Cloud model for service selection”. In: 2011 IEEE
Conf. Comput. Commun. Work. (INFOCOM WKSHPS) 60821001 (2011), pp. 666–
671. doi: 10.1109/INFCOMW.2011.5928896. url: http://ieeexplore.ieee.
org/xpls/abs{_}all.jsp?arnumber=5928896{\%}5Cnhttp://ieeexplore.
ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5928896.

[37] Alexander Totok. “Exploiting Service Usage Information for Optimizing Server
Resource Management”. In: ACM Trans. Internet Technol 11.1 (2011). doi: 10.
1145 / 1993083 . 1993084. url: https : / / static . googleusercontent . com /
media/research.google.com/en//pubs/archive/37194.pdf.

[38] Abhishek Verma et al. “Large-scale cluster management at Google with Borg”. In:
(). doi: 10.1145/2741948.2741964. url: https://static.googleusercontent.
com/media/research.google.com/en//pubs/archive/43438.pdf.

[39] Hai Wang and Shouhong Wang. “Ontological Map of Service Oriented Architec-
ture for Shared Services Management”. In: Expert Syst. Appl. 41.5 (Apr. 2014),
pp. 2362–2371. issn: 0957-4174. doi: 10 . 1016 / j . eswa . 2013 . 09 . 034. url:
http://dx.doi.org/10.1016/j.eswa.2013.09.034.

86

http://delivery.acm.org.eaccess.ub.tum.de/10.1145/2470000/2462332/p21-quinton.pdf?ip=129.187.254.46{\&}id=2462332{\&}acc=ACTIVE SERVICE{\&}key=2BA2C432AB83DA15.B4538F6A74FA55F8.4D4702B0C3E38B35.4D4702B0C3E38B35{\&}{_}{_}acm{_}{_}=1523363827{_}e128d2234a1b4d879db9802b9784c8ab
http://delivery.acm.org.eaccess.ub.tum.de/10.1145/2470000/2462332/p21-quinton.pdf?ip=129.187.254.46{\&}id=2462332{\&}acc=ACTIVE SERVICE{\&}key=2BA2C432AB83DA15.B4538F6A74FA55F8.4D4702B0C3E38B35.4D4702B0C3E38B35{\&}{_}{_}acm{_}{_}=1523363827{_}e128d2234a1b4d879db9802b9784c8ab
http://delivery.acm.org.eaccess.ub.tum.de/10.1145/2470000/2462332/p21-quinton.pdf?ip=129.187.254.46{\&}id=2462332{\&}acc=ACTIVE SERVICE{\&}key=2BA2C432AB83DA15.B4538F6A74FA55F8.4D4702B0C3E38B35.4D4702B0C3E38B35{\&}{_}{_}acm{_}{_}=1523363827{_}e128d2234a1b4d879db9802b9784c8ab
http://delivery.acm.org.eaccess.ub.tum.de/10.1145/2470000/2462332/p21-quinton.pdf?ip=129.187.254.46{\&}id=2462332{\&}acc=ACTIVE SERVICE{\&}key=2BA2C432AB83DA15.B4538F6A74FA55F8.4D4702B0C3E38B35.4D4702B0C3E38B35{\&}{_}{_}acm{_}{_}=1523363827{_}e128d2234a1b4d879db9802b9784c8ab
http://delivery.acm.org.eaccess.ub.tum.de/10.1145/2470000/2462332/p21-quinton.pdf?ip=129.187.254.46{\&}id=2462332{\&}acc=ACTIVE SERVICE{\&}key=2BA2C432AB83DA15.B4538F6A74FA55F8.4D4702B0C3E38B35.4D4702B0C3E38B35{\&}{_}{_}acm{_}{_}=1523363827{_}e128d2234a1b4d879db9802b9784c8ab
https://doi.org/10.1145/3054977.3055001
http://doi.acm.org/10.1145/3054977.3055001
http://doi.acm.org/10.1145/3054977.3055001
https://doi.org/https://doi.org/10.1016/S0038-0121(02)00039-3
http://www.sciencedirect.com/science/article/pii/S0038012102000393
http://www.sciencedirect.com/science/article/pii/S0038012102000393
https://doi.org/https://doi.org/10.1016/j.jnca.2014.07.019
http://www.sciencedirect.com/science/article/pii/S108480451400160X
https://doi.org/10.1109/CLOUD.2012.119
https://doi.org/10.1109/CLOUD.2012.119
https://doi.org/10.1109/INFCOMW.2011.5928896
http://ieeexplore.ieee.org/xpls/abs{_}all.jsp?arnumber=5928896{\%}5Cnhttp://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5928896
http://ieeexplore.ieee.org/xpls/abs{_}all.jsp?arnumber=5928896{\%}5Cnhttp://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5928896
http://ieeexplore.ieee.org/xpls/abs{_}all.jsp?arnumber=5928896{\%}5Cnhttp://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5928896
https://doi.org/10.1145/1993083.1993084
https://doi.org/10.1145/1993083.1993084
https://static.googleusercontent.com/media/research.google.com/en//pubs/archive/37194.pdf
https://static.googleusercontent.com/media/research.google.com/en//pubs/archive/37194.pdf
https://doi.org/10.1145/2741948.2741964
https://static.googleusercontent.com/media/research.google.com/en//pubs/archive/43438.pdf
https://static.googleusercontent.com/media/research.google.com/en//pubs/archive/43438.pdf
https://doi.org/10.1016/j.eswa.2013.09.034
http://dx.doi.org/10.1016/j.eswa.2013.09.034

[40] Erik Wittern, Jörn Kuhlenkamp, and Michael Menzel. “Service-Oriented Com-
puting”. In: 7636 (2012), p. 34321. doi: 10.1007/978-3-642-34321-6. url:
http://link.springer.com/10.1007/978-3-642-34321-6.

[41] Daniel Worm et al. “Revenue maximization with quality assurance for composite
web services”. In: Proc. - 2012 5th IEEE Int. Conf. Serv. Comput. Appl. SOCA
2012 (2012). doi: 10.1109/SOCA.2012.6449452.

[42] Qingtao Wu et al. “A QoS-satisfied prediction model for cloud-service composi-
tion based on a hidden markov model”. In: Math. Probl. Eng. 2013 (2013). issn:
1024123X. doi: 10.1155/2013/387083.

[43] Abdullah Yousafzai et al. “Cloud resource allocation schemes: review, taxonomy,
and opportunities”. In: Knowledge and Information Systems 50.2 (2017), pp. 347–
381. issn: 0219-3116. doi: 10.1007/s10115-016-0951-y. url: https://doi.
org/10.1007/s10115-016-0951-y.

[44] Cheng Zeng et al. “Cloud Computing Service Composition and Search Based on
Semantic”. In: 2007 (2009), pp. 290–300. doi: 10.1007/978-3-642-10665-1_26.
url: http://link.springer.com/10.1007/978-3-642-10665-1{_}26.

[45] Miranda Zhang et al. “A Declarative Recommender System for Cloud Infrastruc-
ture Services Selection 2 A System for Cloud Service Selection”. In: 9th Int.
Conf. Econ. Grids, Clouds, Syst. Serv. GECON 2012 (2012), pp. 102–113. doi:
10.1007/978-3-642-35194-5{_}8.

[46] Xiangliang Zhang et al. “Virtual Machine Migration in an Over-committed Cloud”.
In: Vm ().

[47] Zhiming Zhang, Chan Ching Hsu, and Morris Chang. “Cool Cloud: A Practical
Dynamic Virtual Machine Placement Framework for Energy Aware Data Cen-
ters”. In: Proc. - 2015 IEEE 8th Int. Conf. Cloud Comput. CLOUD 2015 (2015),
pp. 758–765. doi: 10.1109/CLOUD.2015.105.

[48] Zibin Zheng et al. “QoS ranking prediction for cloud services”. In: IEEE Trans.
Parallel Distrib. Syst. 24.6 (2013), pp. 1213–1222. issn: 10459219. doi: 10.1109/
TPDS.2012.285.

87

https://doi.org/10.1007/978-3-642-34321-6
http://link.springer.com/10.1007/978-3-642-34321-6
https://doi.org/10.1109/SOCA.2012.6449452
https://doi.org/10.1155/2013/387083
https://doi.org/10.1007/s10115-016-0951-y
https://doi.org/10.1007/s10115-016-0951-y
https://doi.org/10.1007/s10115-016-0951-y
https://doi.org/10.1007/978-3-642-10665-1_26
http://link.springer.com/10.1007/978-3-642-10665-1{_}26
https://doi.org/10.1007/978-3-642-35194-5{_}8
https://doi.org/10.1109/CLOUD.2015.105
https://doi.org/10.1109/TPDS.2012.285
https://doi.org/10.1109/TPDS.2012.285

	Introduction
	Methodology

	Analysis
	Internet of Things
	Services
	Service Oriented Architecture
	Microservices

	Virtual State Layer
	The Distributed Smart Space Orchestration System
	DS2OS Hierarchy
	DS2OS site
	Knowledge Agent
	Service Hosting Environment
	Node Local Service Management
	Site Local Service Management
	Site Local Certificate Authority
	Smart Space Store
	DS2OS Site Implementation
	Service placement

	Resource Allocation Problem
	Service placement
	Service Composition
	Service Selection
	Cloud Brokerage
	Network Functions Virtualization (NFV)
	Virtual Machine Migration
	IoT

	Requirements

	Related work
	Service composition
	Service selection
	Service management
	Service placement
	Cloud configuration
	Cloud brokerage
	Resource allocation
	Resource management
	Conclusions

	Design
	Solution requirements
	DS2OS integration
	Resource description
	Architecture and communications
	Placement Strategy Picker
	Placement Strategy

	Placement strategies
	Resource balance
	Networking and processing performance ranking

	Implementation
	Integration
	Placement Strategy Picker
	Placement strategies
	Ontology
	VSL communication
	Monitored data management

	Evaluation
	Simulation framework
	Execution time
	Single service evaluation
	Composite service evaluation
	Conclusions

	Conclusion
	Future work

	List of acronyms
	Bibliography

