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Abstract

This work presents a novel indoor positioning system for end users. The user experience
of smart devices can drastically be improved by the knowledge of the user position. For
example, the user tries to turn on the smart light per voice command. Since the envi-
ronment usually can not easily determine the position of the user, the environment is
not sure about which light to turn on. Most current indoor positioning systems require
an explicit training phase. To increase the usability, this work uses continuous learning
instead of an explicit training phase. We combine WiFi �ngerprinting, clustering and
labelling via requested user feedback. Thereby, semantic location information e.g. room
names such as living-room or bathroom are provided to third party applications. Our
indoor positioning system runs on an android device, using WiFi scans and accelerom-
eter measurements. The positioning algorithm automatically determines whether the
current WiFi �ngerprint can be used as reference for the current location. The clustering
algorithm requires user feedback, whenever a new and relevant user location is detected.
Additionally, feedback is requested to increase the accuracy of an existing location. This
work focuses on a minimal intrusiveness for the user. By this, the user can start the
application without any prior knowledge and the application requests for feedback and
improve the known locations over time. Thereby, the recorded time to be invested by
the user are below ten seconds per day. In addition, an API provides the location and
movement data to third parties which can be smart environments.





Zusammenfassung

Diese Arbeit präsentiert eine neue Möglichkeit der Positionierung innerhalb von Gebäu-
den. Die Nutzbarkeit von intelligenten Geräten kann durch Informationen zur Nutzer
Position stark erhöht werden. So kann der Nutzer bereits per Spracheingabe eine Be-
leuchtung einschalten, jedoch weiß die Umgebung nicht welche Beleuchtung eingeschal-
ten werden soll. Durch die Position des Nutzers kann dies stark verbessert werden. Diese
Arbeit bietet existierendenden Anwendungen die Möglichkeit auf die semantische Posi-
tion des Nutzers zur zugreifen. Dazu wurden WLAN Fingerabdrücke verwendet. Diese
werden gruppiert und Benennung durch das Einbeziehen von Nutzer Rückmeldungen
durchgeführt. Die Anwendung ist als Android Programm ausgeführt und verwendet
den WLAN und Bewegungssensor des Mobiltelefons. Dadurch wird erkannt, wenn sich
das Mobiltelefon bewegt und der Nutzer kann zu seiner zuletzt besuchten Position um
Rückmeldung gebeten werden. Dadurch können neue Positionen hinzugefügt werden
und die Genauigkeit für bestehende Positionen verbessert werden. Zudem kann dadurch
auf eine anfängliche Trainingsphase verzichtet werden und der Nutzer das System di-
rekt verwenden. Zusätzlich bietet eine Schnittstelle die Daten über die aktuelle und die
vergangenen Postionen für weitere Anwendungen zur Nutzung an. Es konnte erreicht
werden, dass der Nutzer für dieses System weniger als 10 Sekunden am Tag verwenden
muss.
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Chapter 1

Introduction

This master thesis is embedded in the context of smart environments where the user
is surrounded with smart devices. One of such environments are smart home environ-
ments. These contain devices such as smart lights, smart plugs and smart locks. The
connectivity between di�erent smart devices can be achieved by existing platforms such
as meSchup [1] or DS2OS [2]. In addition, smart environments can extremely bene�t
from contextual information about the user. This can be social context, surrounding
conditions, location and infrastructure - in this thesis we focus on the user location.

1.1 Overview

The importance of the location context is addressed by the following example to control
lights. The user is familiar using a switch to turn on the lights. In a smart environment,
the lights can be switched on via voice control - "turn on the light". By this voice
command the user intends to turn on the light at his current location. In case the user
is using his smart phone to record the voice command, the issue is that the system is
not aware of the user location. Therefore, it is not be able to only turn on the lights at
the location of the user. This can lead to the behaviour that the environment can only
turn on all the connected lights. A possible solution would be to match the location of
the user with the location of smart devices. This enables a more natural behaviour by
only turn on the lights at the current location of the user.
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Figure 1.1: Location context to turn on the light

In this thesis we want to present an indoor positioning system which is detecting
locations and additionally provides semantic labelling of the detected locations. Current
indoor positioning systems focus on detecting locations while their semantic labelling is
less focused. According to Kim et al. [3] "people are going to want everyday applications
to have location-awareness that goes beyond simple numerical latitude and longitude
[..]" - places like ’my home’ or ’Ed’s o�ce’ which are within room-level granularity.
This semantic labelling of locations requires the user input to label locations of interest.

1.2 Goals of This Thesis

The goal of this thesis is to develop a software for mobile phones to periodically monitor
the users indoor location. The software should run on the mobile phone and not require
speci�c hardware in its surrounding infrastructure. The mobile phone has various
capabilities to sense its environment. These can for example be build-in GSM, GPS,
WiFi and Acclerometer. Based on the recognized sensor data and without adjustments
in the infrastructure, the application automatically learns about often visited places.

The goal is that this application is installed and kept at the users mobile phone. Unlike
others, we aim to not ask for an extensive survey right after installing the application.
Rather, the user should be asked during the localization process about his feedback.
The goal of the user feedback is to give semantic meaning to detected locations. While
asking the user for feedback, the requirement for feedback should be kept as small as
possible and as non-intrusive as possible.

Thus, one result of this thesis should be a minimal intrusive approach for semantic
labelling. To semantically label locations the user has to dedicate time and information.
Therefore, the labelling must be done as minimal intrusive as possible. One use-case
can be to provide location data and the history of visited locations to users - analogous
to �tness trackers. According to Whitson et al. [4], 60% of U.S. adults are currently
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tracking their weight, diet or exercise routine. This does represent ’what’ the user did.
By using location information, additional information about ’where’ the user has been
are available. Whitson et al. [4] underlines the importance of location information for
quanti�ed-self approaches.

The overall objective of this thesis is to provide third party applications and smart
environments with semantical location information about the users’ location. The
tracking can be done by the users’ smart phone since it is shown that "smart phone
proximity within the same room [. . . ] as the user is true almost 90% of the time" [5]. This
thesis further focus on three important aspects. The �rst focus lies on the clustering
of indoor locations.We secondly focus on semantic labelling of locations in a minimal
intrusive way. Last, we focus on providing the semantic locations through APIs to third
party devices in the smart environment of the user. Therefore, environments can make
more targeted decisions when controlling smart home devices (e.g. controlling light
and music, showing noti�cations, providing adaptive UIs).

1.3 Outline

This thesis is structured in the following chapters: While this chapter gave an overall
overview, the following chapter 2 analyses the important requirements of an indoor
positioning system. Related work is analysed according to the requirements in the
chapter 3.

Based on the requirements and related work, the design of this indoor positioning system
is discussed in chapter 4. This contains discussion about the technology, clustering and
labelling. Details of the implementation are provided in chapter 5.

The results of the user study conducted with this indoor positioning system are evaluated
in chapter 6. The results of this work are concluded in chapter 7. This is based on the
requirements and provides an outlook by its future work section.
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Chapter 2

Analysis

This chapter analyses the most important requirements for the desired indoor position-
ing system. Thereby, various technologies, clustering algorithms and labelling methods
are introduced. The result of this chapter are eight requirements which are used to
evaluate the related work.

2.1 Problem Domain

In a world with increasing numbers of “smart” networked devices around us - such
as lights, plugs, locks, TVs, phones, tablets - it is important to achieve targeted user
experiences and avoid user frustration. One important means to achieve this is to include
contextual information to the interpretation of explicit and implicit user interactions
with smart devices and environments. One important component of this contextual
information is the indoor location.

For instance, using a speech interface to control the lights at home. The voice command
“turn the lights o�” can only turn of all connected smart lights and not distinguished
based on the user location. From the natural user behaviour, it is only intended to turn
o� the lights in the same room as the speaking user.

The accuracy of the smartphone location can be the key component to derive a user’s
indoor location. Related work [6] and [7] show how the indoor location of smartphones
can reliably be determined on room-level and below using techniques such as movement
detection and WiFi �ngerprinting. Furthermore, its shown that “smartphone proximity
within the same room [. . . ] as the user is true almost 90% of the time” [5]. However,
to make these research insights truly usable for context-sensitive applications in real
world setups its necessary to a) link indoor location to semantic information and b)
lower the burden for setting up indoor location sensitivity and semantic linking.
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2.2 Problem Domain Solution Space with Identi�cation of
Requirements

This section describes all the possibilities to solve the individual requirements for an
indoor positioning system installed on the smartphone of the user. A possible solution
to detect the user’s indoor location requires several functionalities. At �rst it must be
clari�ed if the location of the user should be identi�ed from the view of the user or
from the view of the environment. In case the environment should sense the user, the
environment can add new sensors to its infrastructure. In case the user wants to sense
its location, infrastructure changes must be avoided. For this work the positioning
should be user centric. This means the system should run on a mobile device to locate
the user who is using this device.

The smartphone itself is equipped with various sensors like sender and receiver of
GSM, Wi� and Bluetooth. Further smartphone sensors are for example accelerometer,
gyroscope, GPS, compass and light sensors. Each sensor technology has its own sensor
readings, sensor ranges and sensor accuracy. While GSM and GPS perform very well
in outdoor environments, walls can cause signi�cant errors in indoor environments.
GPS and GSM work by the use of global infrastructure while WiFi and Bluetooth use
local infrastructure to transmit data. The Internal Measuring Unit (IMU) contains
sensors such as accelerometer, gyroscope, compass and completely focus on the data
which were generated by the personal use of the smartphone. All of these sensor data
change whenever the location of the smartphone changes. The accuracy of each sensor
predicting the location is related to the type of sensor, its environment and surrounding
infrastructure.

For each of the before mentioned sensor technologies, di�erent sensor data are pro-
vided for changing environments. Di�erent methods can be used in order to extract
information about the changes of the location. For sending and receiving technologies -
like GSM and WiFi - it is possible to detect the change of the environment by reading
the incoming signals from the environment. Whenever a signal is received, the receiver
must be in range of the sender. To further increase the accuracy, another approach is
to use measurements of signal transmission delays called lateration. Time di�erences
between multiple senders enable to calculate the position between these senders. Often,
walls and other buildings in�uence the signals received for lateration. Therefore, a more
robust approach is to detect the received signal strengths of multiple senders. These
senders and their signal strengths create a measurement per location. This method is
called �ngerprinting.

The afore mentioned methods generate information about locations. To use the indoor
positioning system, it requires the orchestrate single measurements into a whole en-
vironment context. Then the location of additional measurements can be evaluated.
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Therefore, clustering is used to bring individual measurements of locations into context
and provides the view on the whole scene. Probabilistic methods determine the classi�-
cation of one measurement in respect to an available data set. k-Nearest-Neighbours
is another clustering algorithm determining which k data are most related to the new
measurement and locate the new measurement. Further approaches use Neural Net-
works and Support Vector Machine to cluster data and make correct predictions about
the location of new measurements.

There are especially two types of positioning which can be done by indoor positioning
systems. At �rst, the accurate position can be represented using Cartesian coordinates.
Another approach is to use a topological model which does not focus on coordinates but
on the user spatial context like "kitchen", "o�ce", "bathroom" and others. A topological
model can start on higher granularity and can get more precise like "home"->"living
room"->"sofa". The selection of the model especially relies on the required resolution of
the indoor positioning system and is de�ned on the supporting use-cases.

To let the indoor positioning system run on the user’s device, the user must be motivated
to install the application and to keep it running on his or her mobile device. Therefore, a
well planned user-interface and user interactions are important requirements. Without
the application being installed and running, the indoor positioning does not work. The
indoor positioning system must be less intrusive and provide a real bene�t for the user.
At best, the bene�t is existent right from the users initial use even without surrounding
devices.

2.3 Useful Building Blocks - Technology Candidates

This section provides an overview of technologies as well as techniques and algorithms
to be applied in the use-case of indoor positioning.

2.3.1 Sensor Technology to Sense the Environment

In this subsection, possible technologies for indoor positioning are presented. Their pros
and cons are evaluated and a list at the end of this section summarizes their di�erences.

2.3.1.1 GPS - Global Positioning System

Global Positioning System (GPS) is used primarily for outdoor navigation. It is based
on satellites which continuously transmit signals down to earth. Any GPS receiver
can receive this GPS signals and calculate the current location of the user. Nowadays,
smartphones contain GPS receivers which are used for outdoor positioning and navi-
agation. The user only consume the GPS singals but does not send any data. Because
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GPS requires line-of-sight (LOS) transition between the satellites and the GPS receiver
this provides an accuracy of 5 meters in outdoor locations. In comparision, the indoor
positioning is more complex and according to Gu et al. [8] the accuracy ranges be-
tween 5 - 50 meters. This is due to much more additional in�uences and noise resulting
from construction materials of the building, humans and additional devices inside the
building.

2.3.1.2 GSM

Mobile cellular networks are available and provide wide coverage for mobile telephony
and internet. Each receiver is logged into at one GSM cell which has a unique cell-ID.
Di�erent cells are overlapping each other to provide better coverage. In rural areas
the number of cells is reduced while in cities more cells are available. Accoding to Liu
et al. the localization of the cell and cell-ID provides an accuracy of 50 - 200 meters,
depending on cell size [9].

Another approach is to use GSM �ngerprints. Thereby, positioning can be done through
checking all available GSM cells. A currently measured �ngerprint can then be compared
to prior recorded �ngerprints. Otsason et al. [10] showed that this technique provides
an median accuracy of 5 meters in large multi-�oor buildings.

2.3.1.3 WiFi - IEEE 802.11

Wireless Local Area Networks (WLAN) are operating in the 2.4 GHz band. The scope
of such networks ranges between 50 - 100 meters. IEEE Standard 802.11 is currently the
most common used wireless networking standard [9]. Therefore, WiFi infrastructure is
already included in most buildings today. Each network participant has its own MAC-
Address and the signal strength of the network changes according to the location. Most
indoor positioning systems using WLAN are based on these characteristics. Youssef
et al. [11] is using a joint clustering technique for location estimation. The result is
an accuracy of more than 90% within 2.1 meters. Another approach is to use neural-
networks-based classi�er [12] which resulted in an probability of 72% for an error
smaller than 1 meter. According to Bolliger et al. [13], many of these systems have
the initial problem that training measurements (o�ine phase) are required to setup the
system. This means initially many measurements have to be taken before using the
system in order to later localize the positions correctly. Most often the system gets more
accurate, the more measurements were taken beforehand.
Ekahau1 is a WiFi indoor positioning system which is used commercially. While it
uses the existing WiFi infrastructure inside the building, each user has to wear an
additional tag. The Ekahau system consists of three steps. At �rst a site survey is

1http://www.ekahau.com/

http://www.ekahau.com/
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required to measure signal strengths at di�erent locations. The second step is the
mapping of measured data from the site survey to the real map. Finally, each user gets
a tag emitting RF signals which are received by the access points and forwarded to a
calculation engine identifying the user location.
Haeberlen et al. [14] presented a practical robust Bayesian method for topological
localization. They focus on reduced cost in time and calculation power for the mobile
device. More details about this approach are written in the related work section.

2.3.1.4 Bluetooth - IEEE 802.15 / Bluetooth Low Energy

Bluetooth (operating at 2.4-GHz) is a very light data transmission standard which ranges
between 10 - 15 meters. Because Bluetooth transceivers are very small, Bluetooth is
integrated in almost every smartphone.
Each bluetooth device has its unique ID to be identi�ed. Bluetooth Low Energy (LE) is
the latest standard. This even enables small devices like bluetooth beacons (e.g. iBea-
cons2). Beacons have especially been introduced by Apple to improve the accuracy
of indoor locations. They simply transmit their unique ID and (battery-) status of the
beacon. Those can be placed at nearly any location and can run on battery for several
years. The signal intensity of beacons can be de�ned individually which allows to let
them cover only a distinct area. This to use beacons in order to mark speci�c points of
interest which then provides locational information.
Another local positioning system using Bluetooth is called Topaz3. It achieves 2 me-
ter accuracy in 95% of the measurements. Kotanen et al. introduced another indoor
positioning system called the Blutooth Local Positioning Application [15] which used
Bluetooth �ngerprints and an extended Kalman �lter to compute 3D position with an
accuracy of 3.76 meters.

2.3.1.5 RFID - Radio-frequency identi�cation

Radio-frequency identi�cation (RFID) using electromagnetic transmission to transfer
data. RFID has been designed to identify individual products in a fast assembly process.
A basic RFID system consists of RFID reader and RFID tags. Tags are storing data while
receiver consume data which they can read from tags. RFID tags are RF compatible
integrated circuits which are either passive or active.
Passive RFID tags operate without any battery. They are used like barcodes and
provide information when they are read by the RFID reader. Passive RFID tags re�ect the
RF signal which is transmitted from the RFID reader and add information by modulating
the re�ected signal. In comparison to the active RFID tags the passive RFID tags are

2https://developer.apple.com/ibeacon/
3www.tadlys.com

https://developer.apple.com/ibeacon/
www.tadlys.com
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lighter, smaller and have a more limited range which is between 1 - 2 meter [9].
Active RFID tags are small transceivers. They can actively transmit their ID plus
additional data if required. Their range covers an area of up to 100 meters.
Hightower et al. [16] used active badges and developed a system localizing RFID position
with an accuracy of 3 meter in a 3D room called SpotON. Their positioning system used
additional hardware but some of nowadays smartphones contain RFID technology.

2.3.1.6 Vision Based

One very common method to detect positions - especially for mechanical parts - is to
use cameras and evaluate their pictures and videos. The OPTPTRAK PROseries4 uses
three cameras to track 3-D positions of objects. These three cameras can cover a room
of 20 cubic meters and a maximum distance of 6 meters.
Google has started to work on its own Indoor Positioning System called Visual Po-
sitioning Service5. It is using a camera on site of the user. The camera records the
environment all the time and detects features. Feature recognition helps to localize the
position of the user.
Another example is provided by Funk et al. [17] which used the camera at the user to
provide navigation in indoor environments.

2.3.1.7 Optically

The use of visible and invisible light can be used to detect positions. Infrared Radiation
(IR) can transmit data through infrared radiation and is primarily used for Wireless Per-
sonal Area Networks (WPAN). Infrared covers a short range and narrow-transmission-
angle beam (line-of-sight ) [18]. This provides the feature that IR signals do not transmit
trough walls and enter other rooms.
One of the �rst indoor positioning systems is Active Badge [18] which was developed
in the 1990s. Users had to wear a badge which is used to localize the persons within
rooms. Unique IR signals are send per patch every 15 seconds. In each room sensors
are sensing IR signals from the batch.
Another more modern approach is to use LED light bulbs. These �icker at a very high
frequency. This frequency can be controlled and thereby be used to transmit data from
the light bulb to the receiving device. Like a bluetooth beacon a light bulb can emit their
ID and status which makes the mobile receiver aware of his context.

4http://www.ndigital.com/
5https://www.androidpolice.com/2017/05/17/googles-new-visual-positioning-service-will-guide-indoor-locations/

http://www.ndigital.com/
https://www.androidpolice.com/2017/05/17/googles-new-visual-positioning-service-will-guide-indoor-locations/
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2.3.1.8 Auditive

Ultrasound can not be heard by humans but is re�ected well by objects. Evolution gave
bats the possibility to emit ultrasound and navigate by receiving the re�ections. Similar
techniques can be used to provide indoor positioning. Information about the position
and movement of humans and objects can be estimated by positioning ultrasound
senders and receivers within rooms. The Active Bat positioning system6 was designed
at AT&T Cambridge and provides 3D position and orientation. A badge is carried by
a human and sends regular ultrasound signals. These ultrasound waves are received
by a matrix sensor system mounted on the ceiling. The room and thereby de�nes the
position and orientation of the badge and thereby of the human. The achieved accuracy
has been about 3 cm for about 95% of all measurements.
Other systems use audible sound which can be quite unique at di�erent locations. For
example some technical device emitting some vibrations and sound.

2.3.1.9 Inertial Measurement Unit (IMU)

In order to improve outdoor positioning and navigation additional sensors are used.
These sensors are called Inertial Measurement Unit (IMU) and can consist of magnetic
sensor, accelerometers and gyroscope. These sensor data allow to estimate the move-
ment of the mobile device into which the sensors are build into. GPS works well for
outdoor locations while it is hard to receive GPS signals in tunnels. Therefore, the
IMU data are used to estimate the speed and direction of the user to provide him with
navigational information even though there is no GPS signal available. This process
is called dead reckoning. Ta et al. [19] used IMU data to reconstruct the path a user
took inside a building. They comprehensively compared the di�erent data and their
possibilities to track the user.
Another approach using IMU data for indoor positioning is to use the sensor data to
estimate the current movement state of the user. The state can be standing, walking,
riding the bicycle. Bollinger et al. [6] used motion detection to trigger asynchronous
interval labelling. Whenever the smartphone of the user was not moving the system
processed measurements to improve the location accuracy.
While context awareness is important for many applications, Google published an An-
droid Activity Recognition API7 to receive the current movement state of the user. This
covers the activities of being in a vehicle, on bicycle, on foot, running, still, tilting
the phone and walking 8. The API requires several seconds until a switch of action is
detected.

6http://www.cl.cam.ac.uk/research/dtg/attarchive/bat/
7https://developers.google.com/android/reference/com/google/android/gms/location/

ActivityRecognitionApi
8https://developers.google.com/android/reference/com/google/android/gms/location/

DetectedActivity

http://www.cl.cam.ac.uk/research/dtg/attarchive/bat/
https://developers.google.com/android/reference/com/google/android/gms/location/ActivityRecognitionApi
https://developers.google.com/android/reference/com/google/android/gms/location/ActivityRecognitionApi
https://developers.google.com/android/reference/com/google/android/gms/location/DetectedActivity
https://developers.google.com/android/reference/com/google/android/gms/location/DetectedActivity
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2.3.1.10 Ultra Wide Band - UWB

Ultra wide band is using frequencies of 3.1 to 10.6 and 22 to 29 GHz for positioning.
According to Mahfouz et al. [20], a precision of 1 cm in an environment of 15x25m2

can be achieved. Indoor positioning systems using UWB consists of a sender (the
element which should be located) and receivers in the environment. Receivers are called
anchors and receive the senders signal. Further, anchors communicate with each other
to calculate the senders location.

Alari� et al. [21] evaluated the use of UWB and concluded that UWB is a very promising
technology - especially for applications requiring high precision. Through the use of
high frequency, UWB does not require line of sight to precisely predict locations.

2.3.1.11 Summary

To conclude, all introduced technologies are summarized in the following table. Each
column contains one speci�c feature. Each row represents one distinct technology.
Thereby, the di�erent technologies can be compared on di�erent features.

Technology Availability Range

Outdoor
Posi-
tioning
Use

Indoor
Posi-
tioning
Use

Available
Infras-
truc-
ture in
Build-
ings

Reliability Accuracy

GPS Globally Globally Hight Low Not Re-
quired

Relies on
GPS satel-
lites

5 meter
(outdoor)

GSM Mostly
Globally

max. 35
km per
cell

Medium Medium Not Re-
quired

Depending
on GSM cells

5 meter
(indoor)

WiFi

Requires
WiFi
infrastruc-
ture

50-100
meter Low High High

Depends on
WiFi Infras-
tructure

up to 2-3
meter (in-
door)

Bluetooth
(LE)

Requires
Bluetooth
infrastruc-
ture

10 - 15
meter Low High Medium

Depends on
Bluetooth In-
frastructure

2 meter
accuracy
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Technology Availability Range

Outdoor
Posi-
tioning
Use

Indoor
Posi-
tioning
Use

Available
Infras-
truc-
ture in
Build-
ings

Reliability Accuracy

RFID Requires
RFID Tags

1 meter
(passive)
up to 100
meter
(active)

Low Medium Low
Depends on
RFID infras-
tructure

3 meter

Vision
Based

Requires
Cameras

20 cubic
meters Low Medium Low Depending

on cameras na

Optically

Depending
on light
sending
infrastruc-
ture

Requires
LOS Low Medium Low

Depends on
light infras-
tructure

na

Auditive

Depending
on audio
infrastruc-
ture

Range of
sound Low Medium Low

Depends on
audio infras-
tructure

na

IMU Depending
on sensors

Unlimited
with in-
creasing
error

Low
Low
(IMU
only)

Not Re-
quired High

Accumu-
lative
Error

UWB

Depending
on UWB
sensor and
anchors

Range is
de�ned
through
anchor
locations

Low High

Requires
sender
and
anchors

High High

Table 2.1: Summary - Technology Candidates

Each technology has its distinct focus. Compared by their capabilities, all technologies
are di�erent and have their distinct use case. This requires to select the technology
dependent on the application.
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2.3.2 Localization

The previous section described the possible technologies. This section focus on the local-
ization techniques to process localization based on the input of the sensors. Positioning
and localization are used in a very similar context. Within this thesis, positioning de-
scribes the whole process and result of an identi�ed position, while localization only
describes the sub-task of gathering sensor data and analyse them.

To model indoor RF signal propagation is not a simple task due to many possible
interferences. Signals can be re�ected, multipaths are recorded and line-of-sight (LOS)
is not possible while changing to another room. Furthermore, there are building speci�c
parameters like �oors, architecture, surface and objects inside the building. Because of
these reasons, no unique model for indoor positioning is available right now providing a
solution to all of these topics. The next sections describe possibilities on how to estimate
positions and locations using di�erent algorithms and clustering methods.

2.3.2.1 Proximity (Cell ID)

For most RF technologies the sender has a unique ID. Therefore, the matching of this
unique sender ID (cell-ID) provides a rough estimate about the position. If the measure-
ment detects a sender, the measurement device and its user must be in the range of the
sender which must be closer then the maximum range of the sender. This gives a very
rough location estimate for receiver of this signal. Using GSM this methodology can
identify in which cell a smartphone is currently located.
The signal strength can be taken into account to improve the accuracy. If the maximum
and minimum signal strength are de�ned, the receiver can approximate if the sender is
closer or more distant to the receiver. Indoor e�ects like re�ections and attenuations
have to be taken into account.

2.3.2.2 Triangulation

Triangulation uses geometric properties to calculate the position of a target device.
This requires the use of the network infrastructure. Triangulation is either measuring
lateration or angulation. Lateration calculates the position based on the knowledge of
reference points and distances between these reference points. The angulation focuses
on the angle of the object to multiple reference points. In indoor environments the
lateration approach is used more common. In indoor environments triangulation is
most often performed using the existing WiFi infrastructure.

Time of Arrival (TOA)
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Time of Arrival is measuring the time which a signal takes to transmit from the sender
to the receiver. This time is proportional to the distance between sender and receiver.
To achieve 2D position accuracy at least three di�erent reference points must be consol-
idated. It is important to synchronize all senders and transmit a timestamp per packet.
The measurement can be processed using signals of di�erent transmitted content.

Real Time of Flight (RTOF)

Real Time of Flight (RTOF) measures the time which the transmission takes from the
sender to the receiver and back to the sender. This replaces the strict clock synchroniza-
tion which is required for TOA. The complete round trip time is measured and provides
data about the di�erent delays. These are further used to evaluate the distance between
the sender and receiver. This measurement still requires multiple reference points.

Time Di�erence of Arrival (TDOA)

While TOA focus on receiving signals from di�erent reference points, Time Di�erence
of Arrival (TDOA) sends the signals the opposite way - from the mobile devices to
reference points. By sending one signal which is received by multiple reference points,
the time di�erence of receiving the signals at di�erent reference points is correlating
the spatial distance between the sender and the reference point. Thereby, the location
can be calculated by a central unit receiving all the time di�erences.

Signal Attenuation-Based (RSS-Based)

Because TOA, RTOF and TDOA imply the correlation of signal strength and distance
between sender and receiver, this requires line-of-sight (LOS) transmissions which is in
indoor environments only rarely the case. The RSS-Based approach uses the attenuation
of the signal strength which lowers the signal strength between sender and receiver.
The di�erence of signal strength can be used as an estimate for the distance. Wall
Attenuation Factor (WAF) for example takes the number of walls and their in�uences
like re�ections on the RF signals into account. This model relies on its initial calibration
e�ort of the real world environment. The positioning can be very inaccurate because
of a large accumulated error according to Evnnou et al. [22].

2.3.2.3 Fingerprinting

Each network participant does have its own identi�er (e.g. MAC-Address). This enables
to identify and remember infrastructure devices like WiFi access points and repeaters.
The Received Signal Strength (RSS) states the quality of a received RF signal like WiFi
or Bluetooth. This provides an identi�er and a RSS value per detected sender. Receiving
signals of one or more sender and corresponding RSS values at the same position can be
combined into one �ngerprint. Measuring such �ngerprints initially at distinct positions
allows later localization of unlabelled measurements at these positions. The indoor
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positioning system RADAR introduced by Bahl et al. [23] is using k-Nearest-Neighbours
to achieve an accuracy of 2-3 meters inside a building using WiFi scans. WiFi scans
can be processed with an update frequency within seconds on regular devices. WiFi
Fingerprints have been recorded by Google Street View Cars9 for localization purpose.
These WiFi data enabled users without GPS sensors to get locational information for
the use of Google Maps10.

2.3.3 Scene Analysis (Clustering)

One of the main goals of this thesis is to recognize locations which were visited more
frequently. Entering these locations should be recognized and broadcasted to the users
environment enabling context sensitive applications - this requires clustering. Cluster-
ing analyses the set of measured data from di�erent locations. Therefore, prede�ned
identi�es are used e.g. the signal strength or time-of-�ight. The clustering algorithm
groups the measured data. Each clustered group has a common set of features which
makes this group distinguishable from another group. Ideally, each identi�ed group is
identifying one speci�c (indoor) location. The clustering algorithm is identifying these
groups using unique identi�ers. To make the groups human readable, each group can
be semantically labelled using location names as introduced in the labelling section.

Since indoor environments are changing over time, the indoor positioning system has to
take care of the localization in this environment with varying measurements at the same
location. As introduced before a �ngerprint is one measurement of the environment,
containing the characteristics the received senders and their signal strengths. The
�ngerprint is most likely to be unique for a speci�c location. At �rst, a data set has to be
recorded and their locations must be labelled. After this data set is prepared, this allows
to recognize locations by new measured �ngerprints. The measured �ngerprints do very
often not exactly match the current measurement due to re�ections and attenuation.
Clustering is able to build clusters based on these varying data. The identi�cation of
new measurements is processed based on the de�ned clusters even though the new
measurement does not exactly match one of the previous measurements at a distinct
location. Di�erent clustering approaches is presented below.

2.3.3.1 Probabilistic Method

Probabilistic methods consider the localization as a classi�cation problem. As introduced
by Yang et al. [24], in a given environment, there are n possible locations L1, ...,Ln
de�ned during an setup phase. During the working phase the user is using the system
for localization. Therefore, one signal strength vector s containing the signal strengths

9https://googleblog.blogspot.de/2010/05/wifi-data-collection-update.html
10http://www.zdnet.com/article/google-explains-why-street-view-cars-record-wi-fi-data/

https://googleblog.blogspot.de/2010/05/wifi-data-collection-update.html
http://www.zdnet.com/article/google-explains-why-street-view-cars-record-wi-fi-data/
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of the available networks is received which should be classi�ed as one of those locations.
This is done by the following function:

Choose Li if
P(Li |s) > P(Lj |s) (2.1)

for i, j = 1, ..,n and i , j

The probability P(Li |s) de�nes Li as most likely location.
While the probability P can be calculated using histograms it is possible to use a Gaus-
sian distribution per network of a location in order to represent the received signal
strength distribution. Instead of discrete points, this approach does only store the mean
and standard deviation of the distribution which results in a reduction of storage. Fur-
thermore, the setup measurements can be reduced because a small set of measurements
already provide a comprehensive function of the distribution.

2.3.3.2 kNN (k-Nearest-Neighbours)

For k-Nearest-Neighbour clustering, the new measurement is compared to the existing
setup measurements in the database. The k closest measurements are selected and their
major locations decide about the location of the new measurement. Parameter k can be
adapted to increase the performance of the location results.

2.3.3.3 Neural Networks

The use of a Neural Network requires an initial training phase. During the setup phase
the RSS values and corresponding locations are adjusting the inputs of the neural
network. The neural-network-based positioning system is using one hidden layer for its
multilayer perception (MPL) network. To address the inputs the measurements during
the working phase are represented as input vectors. This vector is multiplied by the
trained input weight matrix [9]. The output vector has either two elements or three
elements for a 2D or 3D estimated location.

2.3.3.4 SVM (Support Vector Machine)

A Support Vector Machine (SVM) is classifying measurements through the use of train-
ing data. These are used to construct an optimal separation between the di�erent labels
of the training data as surveyed by Liu et al. [9]. The measurements during the working
phase are then separated into di�erent labels according to the earlier de�ned separation
of di�erent locations.
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2.3.3.5 DBSCAN

DBSCAN has been proposed by Daszykowski et al. and focuses on the clustering of not
well formed clusters which do not have a typical circular shape but are for example a
long line of highly related objects with high density [25]. Therefore, DBSCAN is �rst
choosing one data point and checks if other data are close to this point. If there are
enough data available this data point is a core point. If there would not be some but
not enough core points close to it, DBSCAN marks them as reachable. If there would
not be any other core point within reach, this point is marked as not reachable. The
core points and related reachable points are clustered in the same cluster. This does
guarantee to �nd cluster even though they are not well formed or can be separated by
a straight line between the data points.

2.3.3.6 OPTICS

OPTICS [26] is related to DBSCAN but focuses on its major issue. The major issue of
DBSCAN is the density of points for clusters. If the density varies between clusters
DBSCAN struggles to identify the clusters appropriate. Therefore, Optics uses variations
in the density do detect clusters with lower density and clusters with higher density
correctly at the same time.

2.3.4 Environment Representation

To position the measurements in the real world, the real world needs to be abstracted
for the representation in a computer. Two possibilities are introduced below. The
environment can either be represented using a 2D or 3D map or by the use of labels per
location which can be ordered topologically.

Whenever the application aims to represent the exact location in a room, a map of
this room or building is required, Kartesian coordinates can match a drawn map. The
bene�ts of a map are that further data of this map can additionally be used to train the
algorithm such as coridors, doors or stairs. This has been used in the system of Ta et
al. [19]. For example the user is not able to walk through walls and has to use the door
which provides further estimates and information which can increase the accuracy of
the user position.

Another approach are topological models which are used to avoid the requirement of
real maps of the building. Those topological models start to label the positions and order
these labels hierarchically. This provides �rst information about the building and gets
more �ne grain like providing the correct �oor as another label. It continues getting to
more �ne-grained information like the exact room and even a speci�c position within
the room. This model does not require an exact map but information about the relations
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between di�erent label spaces. According to Haeberlen et al. [14], a topological model
can dramatically reduce the time required to train the model.

2.3.5 User Information

Using speci�c features of the object which should be positioned can bring an additional
bene�t. If the object does not move, di�erent assumptions can be made instead of a
movable object. While it can move, the movements can only happen within the physical
constraints. For a human it is not possible to change the room by walking through a
wall. These information can be used to add additional accuracy [19] to a positioning
system as introduced by Ta et al..
Another possibility is to recognize the movement possibilities of the user. This can be
states like walking, standing, riding a bicycle, running and others. To recognize these
patterns, the IMU of smartphones containing accelerometer and gyroscope can be used.
These sensor data can be evaluated to abstract the current state of user movement. APIs
o�er the possibility to read this user state in order to provide contextual information to
applications. Bolliger et al. used motion detection to improve the accuracy of indoor
positioning [6].

2.3.6 Application User Interface

If the positioning application is installed on the users smartphone, di�erent ways to
interact with the user are possible. These de�ne if the application is useful for the user
or in contrast be removed from his smartphone within a short period of time.

2.3.6.1 No User Interface

The application can completely run as a background service on the smartphone. It
completely works in the background, evaluates the user location and provides the
location to further applications. This removes the possibility to put the user into the
loop of labelling locations or to mark correct and false positions. This avoids giving the
user the chance to correct or at least report any incorrect data.

2.3.6.2 Light User Interface

A light user interface can provide information to the user. This can contain information
about the current location as done by Shin et al. [27]. By this, the user feels more
informed by the application, because he has the chance to check which location is
de�ned as the current location by the application. For users this gives the chance to
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simply consume the positioning service(e.g. using Google Maps11). An example can be
to �nd the closest rest room. Thereby, the user does not get in touch with the underlying
positioning measurements. The users can use the location service independent of the
measurements in a non-cooperative way.

2.3.6.3 Interactive User Interface

An interactive user interface does not only represent data to the user, but in addition
interact with the user. These interactions can be triggered by the application. The
application can ask the user to label the current location or to vote if the current
location matches the real location one example is RedPin [13]. By this the application
can ask questions to reach higher accuracy and to label locations.

Another possibility is to provide the user the tools to improve the location data on
his or her own. Thereby, the user can ask the application to start new measurements
since a location is incorrect or the infrastructure changed. This can be the interface
for an expert user improving the accuracy of the application. Instead of having one
distinct expert-user, the applications can ask the user to cooperate. This then provides
a collaboration between users and an increase of accuracy for the whole positioning of
each individual user as surveyed by Yang et al. [24]. The contribution per single user
remains very small. This approach to integrate the user has been used for the Redpin
application introduced Bolliger et al. [13].

2.3.6.4 Involvement of User Feedback

Various applications of mobile devices already ask for feedback of the user. They use
the feedback to improve their context sensitive behaviour as well as to improve the user
experience within the application. While some user feel good to provide feedback to
the application, other users are annoyed by frequent requests for feedback as Baumann
et al. [28] introduce by di�erent threshold levels. In addition to this, the way the
application asks for feedback is an important criteria for the user whether he is willing
to share his thoughts or if he does ignore the feedback request. An indoor positioning
application has to deal with various locations which provides a high uncertainty. This
can be reduced by asking the user for feedback. This can be to label the current location,
or provide feedback about his environment and the correctness of calculated location
of the application as implemented by RedPin [13].

11http://www.maps.google.com/

http://www.maps.google.com/
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2.3.7 Localization Accuracy

To provide a certain level of service, the accuracy of the indoor positioning system
must suit the application. Indoor accuracy can be separated into two main categories.
Room-level accuracy and exact position accuracy. Room-level accuracy identi�es the
right room in which the mobile device and its user are positioned. Systems like Redpin
introduced by Bolliger et al. [13] focus on room level accuracy to provide contextual
information of the user. Other systems focus on the exact position to calculate the exact
path of the user as introduced by Ta et al. [19].

2.3.8 Robustness on Changing Environments

Indoor environments are not completely static and can be changed by changing objects
over time. Depending on the technology, the signals received from the indoor location
are di�erent. The aim is to provide an accurate localization while the environment
might change. An approach to update the signal database is to make new reference
measurements. This leads to re-calibration as introduced in the framework of Ta et
al. [19]. In addition, Bolliger et al. [6] showed that the robustness of the measurements
increase by either more measurements or more sender in reach of the localizing receiver.

2.4 Requirements for an Indoor Positioning System

To identify the user location within an indoor environment, several tasks needs to be
considered. To sense the environment a sensor technology is required. The evaluation
of these data is important to extract position information. An algorithm to process
and label the measurements is mandatory. For the interaction with the user, the user
interface needs to provide additional requirements for example to ask for user feedback.
In the following list, all necessary requirements are explained in the following sections
in more detail.

2.4.1 <R.1> Sensors

To do indoor positioning, one or more appropriate sensor(s) need to be chosen in order
to read these sensor data and position the user. Some sensors need additional hardware
within the environment to receive useful sensor data. As identi�ed in �gure 2.1, for
most systems the user actively sends signals to the environment, which thereby detects
the users’ location. Another possibility is to employ the environment to send data to
the user. Thereby, the user detects these signals and can position himself. In the 1990s,
indoor positioning systems started used infrared and ultrasound. Today, GPS works
well for outdoor environments providing line-of-sight (LOS) transition from the satellite
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to the GPS receiver. Because of walls and obstacles, this does not provide a su�cient
reliability for indoor environments. Nowadays, indoor position technologies mainly
use infrastructure components which are already deployed or can be deployed easily.
WiFi infrastructures (Access Points) and Bluetooth infrastructures (Bluetooth Beacon)
have to be mentioned. Another approach is to use led lights and transmit data via hight
frequent �ickering of the light. This �ickering is detected and positioned. Movement
sensors like accelerometer, gyroscope or compass can track the movement of the user
and thereby increase accuracy of the indoor positioning system.

2.4.2 <R.2> Localization

The signals of a sensors requires further processing in order to abstract any locational
information. They are di�erent on the computational e�ort, the reachable accuracy and
the use of hardware. The most common techniques are described in the localization
section 2.3.2. The most intuitive solution to localize a mobile device is to receive RF
signals and identify their senders. Because each technology has only a limited trans-
mission range, the receiver must be in the range of the sender. This gives a very rough
estimate about the position while the accuracy depends on the technology used for the
sender and its settings. For example GSM Cells (50 - 200 meters), WiFi networks (50 -
100 meters), Bluetooth senders (up to 15 meters) or RFID (several centimetres to 100
meters).

Another approach is to use triangulation. This requires multiple reference points to
use geometric calculation in order to estimate the position of the user. In an ideal
environment, the transition time between sender and receiver are correlating to the
distance between sender and receiver. Therefore, the TDOA (Time Di�erence of Arrival)
approach sends data to all receiving reference points at the same time. From the time
distance between the arrivals at di�erent reference points, the position of the sender
within these reference points can be distinguished. A major issue is that there are
re�ections, attenuations and further in�uences in an indoor environment which reduce
the accuracy of this approach. Measuring the attenuations is possible by reading the
received signal strength (RSS) values.

2.4.3 <R.3> Scene Analysis (Clustering)

The sensor data of two measurements at the exact same location do most likely deviate
from each other. To identify di�erent locations while the measurements are not ex-
actly identical, clustering is a common approach. Clustering techniques deviate on the
methodology, on the required calculations and on the required data. The probabilistic
method employs the Bayes theorem, to identify the location which is most likely to
be the location of the new measurement based on a database with existing labelled
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measurements. The clustering of k- Nearest-Neighbours works by the evaluation of the
location of the position of the k closest neighbours. Neural networks and support Vec-
tor Machines are deeper analysing the training data. The approaches of DBSCAN and
Optics are developed to cluster datasets where the clusters have di�erent distribution
patterns and are not well surrounding a central reference point.

2.4.4 <R.4> Environment Representation

To make the data of locations feasible for the user, the environment needs to be ab-
stracted. Thereby, the user can understand and interact with locations inside the ap-
plication. This can be done using di�erent approaches as introduced in the according
analysis section 2.3.4. The real world environment can be represented by the use of
a 2D or 3D map. Another possible solution is to use labels for di�erent locations in
the building. This allows to orchestrate them hierarchically which is called topological
model.

2.4.5 <R.5> User Information

The user is de�ned though several physical properties. E.g. in case there are separated
rooms, the user is not able to transit from one room into another room by going through
walls. Contextual provided information about the user can help to make the indoor
positioning system even more precise. IMU sensor data provide information about the
current movement state of the user. The user can be in di�erent states like to stand still,
walk or run. These can all have in�uences on the position of the user and how fast he
transited the location. In addition to the sensing of the environment, the sensing of the
user provides valuable insights for indoor positioning systems.

2.4.6 <R.6> Application UI

The ultimate goal is to detect the location of the user. Data of sensors which are sensing
the environment provide valuable insights. In addition to those, some information
can only be provided by the user. In the work of this thesis such information are the
semantic representation of the current location. This can be called room name or room
identi�er. Di�erent approaches are presented in the Application UI section 2.3.6. An
application which is not using any user input can record data of the user location simply
as a background service. This does not give the user any chance to read information
from the system. Another approach is the light user interface where the user can see
the information about his current location, but can not interact with the system like
asking to correct a wrong location. This can be done in the interactive user interface.
Here the user is involved of the process of training the system to provide more accuracy.
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Either the user can actively interact with the system or the system can ask the user for
distinct feedback.

2.4.7 <R.7> Accuracy

The accuracy of the indoor positioning system can be de�ned on room-level or in more
detail to the exact position with some error. The required accuracy depends on the �eld
of application. Applications which need the user position for contextualization mainly
work on room-level location. Applications which are interested in the path of the user
are using exact positions. The true positive rate of predicted locations is important to
provide bene�ts being used in real applications.

2.4.8 <R.8> Robustness

Indoor environments are constantly changing. This can be persons walking around,
restructured rooms or changed weather conditions. To keep the trained positioning
accuracy the system has to be updated. As introduced in the section robustness 2.3.8
robustness can be achieved by additional measurements updating the existing data and
thus maintain the positioning accuracy.

2.4.9 Requirement Summary

Requirement Name
<R.1> Sensors
<R.2> Localization
<R.3> Scene Analysis (Clustering)
<R.4> Environment Representation
<R.5> User Information
<R.6> User Application UI
<R.7> Accuracy
<R.8> Robustness

Table 2.2: Listing of Requirements
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Related Work

Location-aware computing as surveyed by Chen et al. [29] became important trough
the existence of mobile computing devices. In early days location-awareness required
additional hardware to identify the location of a device. Di�uese infrared pulese have
been emitted by badges of the Active Badge System [16], which were detected by ceiling-
mounted sensors. Another early system has been the Active Bat System1 which uses
ultrasound signals for localization. These systems have been introduced around 2000.
Nowadays indoor positioning systems are are mostly using radio frequency signals such
as WiFi or Bluetooth. Below, a listing of diverse indoor positioning systems is provided.

3.1 Gaussian Fit - Practical Robust Localization over
Large-Scale 802.11 Wireless Networks [14]

Haeberlen et al. from Rice University published the paper Practical Robust Localization
over Large-Scale 802.11 Wireless Networks [14]. The system is using WiFi Fingerprints
in order to achieve room-level localization in an o�ce building. Haeberlen et al. iden-
ti�ed the following important factors for their system. At �rst, a very low training
e�ort is crucial for their indoor location-sensing systems. Furthermore, the system
must achieve high accuracy and must use available unmodi�ed hardware. To make the
system usable for a long period it must be robust for untrained variations of the sensor
data.

1http://www.cl.cam.ac.uk/research/dtg/attarchive/bat/

http://www.cl.cam.ac.uk/research/dtg/attarchive/bat/
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3.1.1 Requirements Analysis

3.1.1.1 <R.1> Sensors

Haeberlen et al. used the WiFi signals for their positioning system. They used the
existing 33 routers within their building and the buildings close to their building. A
notebook with WiFi antenna has been used to receive the signals from these base
stations.

3.1.1.2 <R.2> Localization

The localization has been performed by the recoding of WiFi �ngerprints. Therefore,
the indoor positioning system of Haeberlen et al. requires an initial training within the
environment. They focused on keeping the training e�ort as small as possible. This
resulted in the training time per room of one minute. A notebook is required to record
around 25 �ngerprints at each speci�c location. These �ngerprints are used to train
the system. During the use of the system these data are used to identify the current
location of user.

3.1.1.3 <R.3> Scene Analysis (Clustering)

The indoor positioning system of Haeberlen et al. focuses on a room-level localization.
During the measurement, each location (e.g. room or hallway) was treated as one single
position. Large rooms have been split up into smaller locations with an average size
of 24.6m2. The signal intensity distribution of each router has been approximated by a
normal distribution. Haeberlen et al. showed an improvement over another approach
using histograms. While the robustness increased, the number of required measure-
ments decreased. The number of measurements especially depends on the size of the
location area. In this paper Haeberlen et al. recommend to observe mean and standard
deviations of the measured data in order to estimate if more samples are required. Below
di�erent algorithms for localization using �ngerprints compared by Haeberlen et al. are
introduced.

Bayesian Localization Framework

The Bayesian Localization Framework, solves the localization problem determining
the agents position. It provides probabilities for di�erent possible states S = s1, ..., sn .
The probability distribution of the prediction completely relies on the current state
observations O = o1, ...,om . The estimated position is πi , while the new estimate is π ′i .

π ′i =
P(oj |si )πi

η
(3.1)
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η =
n∑
i=1

P(oj |si )pi
′
i (3.2)

Gaussian Fit Sensor Model

The Gaussian �t sensor model uses normal distribution functions for each base station
(access point) to represent the singular measurements. Therefore, it only requires to
store two variables per base station of a location. In addition, this reduces training e�ort
compared to the use of histogram (introduced next) by half.

A �xed set of base stations B = {b1, ...bk } matched with the received signal strength
(RSS) values V = {0, ..., 255} result in the observations O = B × V . Each state si has
its own probability for being the correct location. The signal intensity distribution
P((bj , v)|si ) per base station bi determined by mean µi, j and standard deviation σi, j of
this speci�c base station and speci�c location. Probability to observe bj , v ∈ O at state
si .

P((bj , v)|si ) =
Gi, j(v) + β

Ni, j
(3.3)

Gi, j (v) is a discretization of a Guassian probability distribution.

255∑
v=0

P((bj , v)|si ) = 1 (3.4)

Histogram sensor model

The histogram sensor model has been used in previous work of Haeberlen et al.. It
stores each P(oj |si ) in one table. Then for each state (location) si , the P(oj |si ) is deter-
mined. Having enough measurements, the histogram sensor model does look like a
Gaussian distribution curve. Because the Gaussian distribution curve only requires two
parameters while the histogram has to store each measurement, the histogram sensor
model requires way more storage.

Markov Chains

To model transitions between rooms, Haeberlen et al. introduce the use of Markov
Chains. Markov Chains contain details about transitions between rooms and reduce
the error impossible room transitions. The user is tracked while he or she is moving at
4 meters per second. This constraint is given because of the time to recalculate the next
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state.

<R.4> Environment Representation

The localization works through the use of a topological location based on Bayesian
inference. Therefore, the environment is modelled topologically as graph of the envi-
ronment. In addition, Markov localization is used to infer the next state from the current
state.

<R.5> User Information

No additional information have been used by Haeberlen et al. gained from the user of
the system.

<R.6> User Application UI

Because Haeberlen et al. focused on the location accuracy using WiFi, no user interface
has been introduced.

3.1.1.4 <R.7> Accuracy

A correct identi�cation of the room is achieved with an accuracy of over 95%. This
includes static as well as dynamic localization which supports a walking speed of 3
meters per second. To test their system, Haeberlen et al. performed at least 100 base
station scans in each of the 510 cells of their environment. To test the localization
accuracy, they removed �ve scans random for each of the 510 cells and trained the
system with the remaining data. Then they used the random chosen measurements
to test their accuracy. This has been repeated for 100 times choosing di�erent scans
each time. The Gaussian method clearly exceeded accuracy of the approach using
histograms. They additionally varied the training set size and measured the remaining
accuracy. From the experience of the author, people close to the antenna in�uenced
the measurement which for some measurements resulted in the identi�cation of the
localization in an adjacent o�ce.

Calibration

Environmental changes like time-varying e�ects and di�erent hardware can be approx-
imated by a linear relationship. These two parameters can be adjusted for the user with
little or no user-intervention.

c(i) = c1 ∗ i − c2 (3.5)

This linear relationship is used to calibrate speci�c measurements of a new device.
Identifying c1 and c2 requires a test environment. The calibration parameters can be
calculated through the least-squares method.
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3.1.1.5 <R.8> Robustness

The system of Haeberlen et al. focused on robustness of various hardware devices and
the time-varying phenomena of measurements. The di�erent results of di�erent WiFi
adapters are considered in their implementation. Various hardware can be used and
bene�t from this localization system. Furthermore, variations of the measurements
because of presence or absence of people in the o�ce building like o�ce tra�c is
considered. The system scales well for large buildings. They performed a test in an
12,000 square meter o�ce which has been divided into 510 cells. To reduce the number
of measurements, Haeberlen et al. evaluated how the number of measurements does
in�uence the resulting accuracy. In addition, the impact of base station density on
localization accuracy was evaluated. They show that the amount of measurements as
well as of base stations the be reduced to a certain amount without drastic changes in
accuracy.

3.2 Indoor Location Wi-Fi Fingerprinting using Invariant
Received Signal Strength [30]

In this article, Husen et al. [30] propose an improvement on indoor positioning through
focusing on the instability of random spatio-temporal disturbances of the received signal
strength (RSS). They aimed to make approaches using RSS based location �ngerprints
more suitable for real world applications. Their method achieved a 17% increase in ac-
curacy compared to regular indoor positioning which do not focus on RSS disturbances.

3.2.1 Requirements Analysis

3.2.1.1 <R.1> Sensors

Husen et al. used WiFi measurements to implement room level localization. They espe-
cially focused on getting measurements of the environment without any disturbances.
Therefore, a smartphone has been attached to a remote controlled robot.

3.2.1.2 <R.2> Localization

During midnight, the smartphone recorded WiFi measurements during midnight which
were then labelled and used as Reference Received Signal Strength (R-RSS). At each
location (one position per room) 100 R-RSS measurements have been processed. In
addition to the measurements processed during midnight, another measurement was
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performed during the day to collect the Invariant Received Signal Strength (I-RSS).
These training data contained interferences with people moving through the building.

3.2.1.3 <R.3> Scene Analysis (Clustering)

These I-RSS measurements have been processed at various locations and were accessed
in regard of variations compared to the Reference Received Signal Strength. To only
work with data which were reliable, the following rules were implemented:

• Observe RSS mean value: When the mean value of an RSS for a network is less
than -89 dBm this network is discarded, because for this speci�c location the RSS
value is very low and thus unreliable.

• RSS standard deviation: When the standard deviation is greater than 5, these
measurements are discarded.

• Percentage of missing and undetected RSS values: When more than 30% of
the measurements at a location do not contain a certain network, the network is
discarded from this location.

After accessing the di�erence between the pure measurement of R-RSS values and
the measurements during the day, the system identi�ed the Invariant Received Signal
Strength (I-RSS) values. During a regular localization request, the system uses the
�ngerprint and checks the possible in�uences of environmental factors using the I-RSS
values and estimates the user location.

3.2.1.4 <R.4> Environment Representation

The environment has been represented using room-level locations. Therefore, Husen
et al. used room identi�ers to label locations. This enabled them to process one set of
training data within each room. Per room the measurement device stood still during
the measurement.

3.2.1.5 <R.5> User Information

User information were not used to localize later measurements. These did only depend
on the measured signal strength of the di�erent networks and manual labelling during
the measurements.
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3.2.1.6 <R.6> User Application UI

A user interface has not been introduced since this system primary focused on the
accuracy using invariant received signals compared to regular signals.

3.2.1.7 <R.7> Accuracy

Taking the Invariant Received Signal Strength (I-RSS) into account improved the per-
formance of the indoor localization up to 93%. Using the same data and applying the
conventional approach resulted in only 76% accuracy on room-level predictions.

Recalibration

To maintain accuracy, the initial measurements of the framework from Husen et al. has
been recalibrated after several weeks to maintain its accuracy. To recalibrate, measure-
ments at distinct locations must be processed.

3.2.1.8 <R.8> Robustness

A high robustness is achieved through the possibility to recalibrate the initial measure-
ments after several weeks. This continuously ensures the quality of correct locational
information. On the other hand, this requires time and e�ort to process new readings
at di�erent rooms.

3.3 IPIN Tracking Competition - Smartphone-based User
Location Tracking in Indoor Environment [19]

Ta et al. submitted a paper for Track 3 of the 2016 IPIN competition. This competition
provided a set of data which were measured by the organizers. The challenge was to
construct the correct path the recording person took through the building. The building
has been a multiple �oor environment. Therefore, data from 12 di�erent types of sensors
were provided which were recorded. The goal has been to update a precise position of
the user every 0.5 seconds.

3.3.1 Requirements Analysis

3.3.1.1 <R.1> Sensors

The data consists of 10 di�erent sensor data recorded by three di�erent smartphones.
Ta et al. used data of GPS, WiFi, accelerometer, magnetic and gyroscope sensors. Each
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sensor data had a di�erent sampling rate. In addition, camera data have been observed
gain more insights on the recorded data of the competition.

3.3.1.2 <R.2> Localization

For localization purpose, the MAC-Addresses of available WiFi networks and WiFi
�ngerprints were abstracted from the data set. In addition, Ta et al. separated the user
state into the walking and standing state. Thereby, they reconstructed the path which
the user took through the building.

3.3.1.3 <R.3> Scene Analysis (Clustering)

In this paper, the tasks to reconstruct the path have been divided as follows. Since the
dataset contained multiple buildings, the correct building has been identi�ed at �rst. Ta
et al. used the GPS signal as well as the WiFi MAC address data to uniquely identify
buildings. The next task has been the �oor identi�cation where WiFi �ngerprints were
used to identify the �oor ID. For clustering three algorithms have been tested. K-nearest
neighbour (KNN), Random Forest (RF), Extreme Gradient Boost (XGB). While XGB
provided the most accurate results. To detect the orientation and direction of the user,
accelerometer, magnetic and gyroscope sensors were used. These allowed to separate
between the state of walking and the state of standing. The following formula has been
used to identify walking or standing of the user. Gyro = (1 − α) × InteдratedGyro +
α ×AccMaд. The factor α is a threshold weighting the contribution of the integrated
gyroscope as well as the accelerometer. At last, Ta et al. inferred the speed of the user
by its step length.

3.3.1.4 <R.4> Environment Representation

The environment has been topologically segmented. Starting from the identi�cation of
the building, the �oor-level, the room-level, to an accurate positioning within the room
to reconstruct the path.

3.3.1.5 <R.5> User Information

Ta et al. used information about the user and the environment to improve the accuracy
of their path predictions. Therefore, they avoid crossing of walls within their framework
and use walls as boundaries. Rooms can only be changed through doors or corridors.
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3.3.1.6 <R.6> User Application UI

Because the challenge only required to reconstruct the most accurate path the user took
through the building, a user interface has not been implemented.

3.3.1.7 <R.7> Accuracy

This paper focused on tracking the user through the building and evaluated using
di�erent data. The positioning error after some time of use has been measured to
compare di�erent techniques. The error after 7 minutes only using WiFi resulted
in 29.8 meters while the error declined to 24.5 meters after using the gyroscope and
accelerometer additionally.

3.3.1.8 <R.8> Robustness

To increase robustness Ta et al. used several sensors which improved the accuracy even
in di�cult situations like small rooms.

3.4 Joint Clustering - WLAN Location Determination via
Clustering and Probability Distributions [11]

In this paper Youssef et al. [11] from the University of Maryland propose a location
system using WiFi clustering and probability distributions. They reached an accuracy of
over 90% within 7 feet. Youssef et al. focused on two main features in their work. At �rst,
they wanted to reduce the impact of the noisy nature of wireless measurements by using
probability distributions to improve accuracy. Second, they reduced the computational
requirements by the clustering of locations. They called this method Joint Clustering
which is introduced in more detail below.

3.4.1 Requirements Analysis

3.4.1.1 <R.1> Sensors

Youssef et al. used WiFi for their indoor localization system. Received signal strengths
of networks below -81 dB have been ignored because of the inaccuracy of these mea-
surements.
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3.4.1.2 <R.2> Localization

For each location all available networks and their received signal strength (RSS) were
measured. By this, �ngerprints have been generated. Per location, only the amount k
visible networks were stored per �ngerprint. k has been de�ned beforehand. For large k ,
the calculation became more complex and all locations must be covered by k networks.
For location l the k networks with the strongest signal strength were selected. For each
of these k networks per location, the RSS values are stored and their distributions were
visualized as histograms.

3.4.1.3 <R.3> Scene Analysis (Clustering)

To locate the user, the RSS values of available networks at the users’ location have been
measured. Having k networks per location brings the risk of measuring less or more
networks than the stored k networks. Therefore, Youssef et al. introduce parameter q
which is smaller than k and is de�ning the size of a subset of networks. The q networks
with the strongest RSS values were selected. These networks were then used to estimate
the probability of each location using Baye’s theorem P(S). Bayes provides the chance
to implement di�erent likelihoods for di�erent locations P(l) while it is possible to give
an equal likelihood to all locations.

P(l |S) =
P(S |l) ∗ P(l)

P(S)
(3.6)

While P(S) is constant for all locations:

P(l |S) = P(S |l) ∗ P(l) (3.7)

The location having the highest probability is most likely the location of the user.

3.4.1.4 <R.4> Environment Representation

The environment has been modelled by dividing the 2D representation into equal cells
of 5 feet which has been used due to the width of the corridors. The cells were identi�ed
by labels. This resulted in 100 cells for their experimental environment.

3.4.1.5 <R.5> User Information

The algorithm did not include any information about the user behaviour and boundaries
like walls or other objects.
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3.4.1.6 <R.6> User Application UI

The client side has been a simple application without focus on the user interface. The
code to evaluate the position did run locally on each client. This kept the data about WiFi
�ngerprints and user positions local. This avoids privacy concerns of the user about
external calculated positions. The privacy for the location of the user is guaranteed.

3.4.1.7 <R.7> Accuracy

The framework of Youssef et al. has been evaluated in a 20,000 square foot area. An accu-
racy of over 90% within 7 feet has been achieved while having very low computational
requirements.

3.4.1.8 <R.8> Robustness

The computational e�orts to locate the user are drastically reduced by the use of only
the k strongest networks per location and the q strongest networks per measurement. If
the positioning is running on mobile devices, energy consumption is a very important
factor. The proposed solution focused on a small consumption of energy.

3.5 Redpin - Adaptive, Zero-Con�guration Indoor Localization
through User Collaboration [13]

Redpin2 is a indoor positioning system developed by Bolliger et al. from the ETH
Zurich. The system uses �ngerprints of GSM, Bluetooth and WiFi. The framework
is separated into a mobile client and a server. The main goals are to avoid the use of
additional hardware. To provide a very easy setup and maintenance procedure and to
provide at least room-level accuracy. It further empowers user collaboration to create
the measurements in order to localize positions within buildings. Every user can create,
modify and use location information which were created by other users. Redpin is
open source and publicly available. The Indoor Positioning System of Bolliger et al.
is separated into two main components. One is the server which is running as one
instance. The other one is the mobile application which each user is running on his
mobile device.

2www.redpin.org

www.redpin.org
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3.5.1 Requirements Analysis

3.5.1.1 <R.1> Sensors

Smartphones are used as mobile clients. On these, data of GSM, WiFi and Bluetooth are
used for the indoor location system. Each of these sensors is recording the available
networks (senders) in its technology.

3.5.1.2 <R.2> Localization

The available networks are measured which Bolliger et al. call sni�ng. The location
identi�cation takes place using an algorithm at the server which contains the so called
locator component. All �ngerprints are stored in the database on the server to provide
locational information. The locator service on the server allows the users to receive a
room-level location based on the measured �ngerprint. The location which best matches
the �ngerprint is send back to the users mobile client. The location is only send, if it is
below a de�ned threshold to reduce incorrect location information.

3.5.1.3 <R.3> Scene Analysis (Clustering)

At �rst, the mobile application is searching for available WiFi and non-portable Blue-
tooth networks. The measured �ngerprint is then send to the central server which tries
to locate the mobile device. If the user can be located the result is send back to the
mobile application which shows the position of the user on the map. If the �ngerprint
location is unknown for this measurement, Redpin identi�es the last known location of
the user. In order to locate the user, Redpin continues to measure the available networks
and compares them to the last three measurements of a known location. If the position
still can not be located, the user is asked to label the name of his current location. Fur-
thermore, he has to position himself on the �oor-plan using a marker on the map in the
application. In addition, Redpin o�ers the user the possibility to correct the identi�ed
location. Therefore, the database is continuously updated by changes and new entries
of the users.

3.5.1.4 <R.4> Environment Representation

The environment is represented on a map using Cartesian coordinates in two dimensions.
The �oor plan is required in order to let the user process measurements and label these
positions. In addition, this �oor plan represents the position of the user.
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3.5.1.5 <R.5> User Information

This paper focused on the collaboration of users. Additional information of the user
possibilities are not used by this system.

3.5.1.6 <R.6> User Application UI

To avoid an extensive training phase, Redpin employs the users to train the system
during their use. This not only avoids the initial training phase, it also accounts for
a continuous training. On the mobile client the user can name and rename locations
and place them on the map. The results and changes of the mobile application are send
to the central server to either generate the map or localize the user. By empowering
the user to add new, to create and to modify �ngerprints and locations the system is
more robust to changes in the environment. The visualization of the user location is
shown via a mobile application to the user. The matching of a measured �ngerprint is
not directly linked to a position on the map. Instead it is linked to a symbolic location
which for example can be a room number or room name.

3.5.1.7 <R.7> Accuracy

Bolliger et al. used the system in their o�ce building to evaluate the accuracy of this
application. The test environment consisted of 26 randomly chosen rooms where the
smallest room has been 5 by 3 meters. The mobile application was installed on multiple
mobile phones. The �ngerprints of the 26 rooms have been added to the system and
another mobile device was used to generate additional measurements and determine
the correct location. These measurements took place during working hours and during
the night on several days. The system identi�ed the correct location in 90% of the time.
A further test showed, that a collaborative approach can complete the whole map of
their building within one day if only 20% of all working people contribute.

3.5.1.8 <R.8> Robustness

In the paper Bolliger et al. write that wrong predictions have mostly been linked to
the settings of the threshold value. For this experiment no additional �ngerprints were
added to the system to improve accuracy or cope with changes in the WiFi infrastructure.
In regards of the setup measurements, they noticed, that it is often su�cient to have
only one �ngerprint per room.
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3.6 PILS - Improving Location Fingerprinting - Motion
Detection and Asynchronous Interval Labeling [6]

Bolliger et al. from ETH Zurich published the framework PILS (adaPtive Indoor Lo-
calization System). The �rst key challenge has been how to make users contribute to
label measurements without interrupting their work routine. The second challenge
has been to let the system unobtrusively keep the radio map updated over days and
weeks. PILS introduces a new concept of asynchronous interval labelling. This means
the system detects the movement of the user and does not ask the user while he or she
is walking but asks the user afterwards about feedback to label the prior location. PILS
does address the challenge of end-user labelling for WiFi indoor positioning systems.
To provide a high accuracy it is important to update positioning information frequently
and to have a large dataset per location. This is performed while the system detected
the device as stationary without requiring additional user input.

3.6.1 Requirements Analysis

3.6.1.1 <R.1> Sensors

The technical requirements for this system are an accelerometer as well as a WiFi
receiver. For their tests they used Mac Books as their supporting hardware device.

3.6.1.2 <R.2> Localization

While the system is divided into the scanner module, the locator module and the motion
detector module. The scanner module is listening for available networks and their
received signal strength (RSS) in the format of �ngerprints. The scans are processed
every 5 seconds and forwarded to the locator module.

3.6.1.3 <R.3> Scene Analysis (Clustering)

To analyse the scene, the locator module compares the current measurement with the
assembled radio map stored in the �ngerprint database. To reduce the data size and
provide faster calculations, normal distributions are used to store multiple RSS values of
a location. To localize the new measurement, the probability of the new measurement in
relation to the available locations is calculated and the result with the highest probability
is re�ected to the user.
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3.6.1.4 <R.4> Environment Representation

The user had to label the locations via the use of their Mac Books. The locations have
been labelled individually and are not taken into any relation. Therefore, each location
was represented by the label of a unique identi�er.

3.6.1.5 <R.5> User Information

One of the key developments of Bolliger et al. has been the motion detector module. This
detects the current motion of the user by evaluating the accelerometer measurements.
The accelerometer sampling is performed at 5 Hz while smoothing to the last 20 values
is processed to avoid incorrect classi�cation. The transitions between moving and
stationary has been able to track the intervals with a delay of 2 - 4 seconds which was
due to threshold values. The motion detector informed the locator about the start and
the end of an interval like transiting from the stationary interval to the movement
interval. This allows to label all measurements from the standing interval to the same
location. Only signi�cant motions are classi�ed as moving to avoid wrong classi�cations.
By this classi�cation, the system is able to learn continuously and unobtrusively during
each stationary period.

3.6.1.6 <R.6> User Application UI

The user interaction was able due to the installation on the participants Mac Books. In
the task-bar the current estimated location has been shown. It has been possible for the
user to add new locations and to state wrong locations. Because of the motion detection
and interval labelling approach, the system was able to ask for time intervals. One
example has been ["Where were you between 9:14am and 10:05am today?"] [6]. This
technique has been called asynchronous interval labelling. The user therefore does not
need to label the position instantly after he stood up and left the room but when he sits
down next time and has the time to reply on this feedback request of the application.

3.6.1.7 <R.7> Accuracy

In a survey Bolliger et al. evaluated their indoor positioning system. Therefore, 14
participants have been selected all working in the same o�ce space with an area of
1,000 square meters and about 70 rooms. The density of access points has been 0.23
access point per room while typically around 5 networks have been visible in each
room. The application has been installed on the participants Mac Books for one month
being visible in the task-bar. This always showed the estimated location, while the user
has been able to add new locations. The users were never asked about checking or
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improving the measurements by the system. All interactions with the system has been
for their own bene�t of more accuracy. The evaluation after this study identi�ed, that
the accuracy got better over time. A major amount of the new room labellings has been
done right at the �rst day.

3.6.1.8 <R.8> Robustness

Bolliger et al. enabled the user to provide feedback to the system about incorrect
identi�ed locations. By this, the system gets more precise over time and can adjust to
changes in the infrastructure. To improve robustness, measurements were only taken
when the client did not move.

3.7 Related Work Matrix

The previous described related work is summarized in the following table. The columns
contain the related work while the rows contain the features, sorted by the requirements
R.1 Sensor to R.8 Robustness.

Requirement Gaussian Fit
[14]

Invariant
Received
Signal
Strength
[30]

IPIN Track-
ing Compe-
tition [19]

Joint Clus-
tering [11] Redpin [13] PILS [6]

<R.1> Sensor

Sensor
Technology WiFi WiFi

WiFi,
GPS, IMU
Sensors,
Cameras

WiFi WiFi WiFi, Ac-
celerometer

Adding ad-
ditional In-
frastructure

No No Cameras No No No

<R.2> Localization

Setup Phase

Used note-
book to
scan 25
initial �n-
gerprints
at each
location

Smartphone
on robot
measures
�ngerprints
during the
night (100
scans per
location)

Pre-
provided
competi-
tion data
contains 12
di�erent
sensors of
the user

Training
phase: k-
strongest
�ngerprints
at each
locations
were used
and stored

No train-
ing phase.
Users are
asked to
label posi-
tions during
use of the
application

There is
no training
phase since
the user
trains the
system
during use



3.7. Related Work Matrix 41

Requirement Gaussian Fit
[14]

Invariant
Received
Signal
Strength
[30]

IPIN Track-
ing Compe-
tition [19]

Joint Clus-
tering [11] Redpin [13] PILS [6]

Localization RF Finger-
prints

RF Finger-
prints

RF Finger-
prints

RF Finger-
prints

RF Finger-
prints

RF Finger-
prints

<R.3> Scene Analysis (Clustering)

Scene
Analysis
(Clustering)

Bayesian
Inference
and Signal
Intensity
distribution
instead of
histograms

Use I-RSS
values to
identify
location.
Algorithm
to calculate
distur-
bances

WiFi Finger-
prints and
Extreme
Gradient
Boost. User
Direction:
IMU dead
reckoning

Baye’s
theorem to
extract the
likelihood
of di�erent
locations

Least
Square
Algorithm
to calculate
the error
between
locations
and mea-
surement

Probabilistic
model stor-
ing RSS
values in
normal dis-
tributions

<R.4> Environment Representation
Environment
Representa-
tion

Topological
Map

Topological
Map

Map of the
Building

Individual
Labels

Individual
Labels

Individual
Labels

Requires
Floor Plan

Only visual-
ization

Only for vi-
sualization

Yes for path
�nding No Only for vi-

sualization No

<R.5> User Information
Uses User
Information
(State)

No No Yes No No No

<R.6> User Application UI
User Appli-
cation UI No No No No Yes Yes

User Collab-
oration No No No No Yes No

<R.7> Accuracy
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Requirement Gaussian Fit
[14]

Invariant
Received
Signal
Strength
[30]

IPIN Track-
ing Compe-
tition [19]

Joint Clus-
tering [11] Redpin [13] PILS [6]

Accuracy

Achieved
a correct-
ness for
room-level
accuracy in
95% of all
measure-
ments

93% room
level ac-
curacy
compared
to 76% using
regular mea-
surements
without
I-RSS

Path loca-
tion error
after 7
minutes
has been
reduced to
24.5 meters
instead of
29 meters

Achieved
an accuracy
of more
than 90%
within a
distance of
7 feet (2,13
meters)

90% correct
labelling
of rooms
which have
been as
small as 5
by 3 meters

Achieved
room-level
accuracy
with an im-
provement
against data
without
interval
labelling

Complexity
and Scala-
bility

Requires
Expert for
initial setup,
around 100
initial scans
per location

Requires
Expert and
robot for
initial setup,
100 initial
scans per
location

Required
deep in-
spection
of envi-
ronmental
features
and the
recording of
data

Initial Mea-
surements
are required
at each loca-
tion which
should later
be identi�ed

Simple to
deploy and
fast to inte-
grate since
all users
can con-
tribute to
the system

The system
requires
not initial
setup while
the user
has to label
locations

<R.8> Robustness

Robustness Does not up-
date data

Does update
data

Does not up-
date data

Does not up-
date data

Does update
data by user

Does update
data by user

Device Cali-
bration

No (but pro-
posed)

No (but pro-
posed) Yes No No No

Table 3.1: Related Work Matrix
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Chapter 4

Design

To target the established requirements of the requirement summary of the analysis
chapter, this chapter discusses and evaluate the possibilities for each feature of the whole
indoor positioning system. These insights on decisions should help further developers
and architects of indoor positioning systems to make their decisions. For this purpose,
the design of this indoor positioning system is discussed in the following sections. At
�rst, an overview of all the required design components of an indoor positioning system
is given. Followed by a detailed discussion on each necessary component - building
blocks.

4.1 Design Components of an Indoor Positioning System

To gather indoor positioning data and use these, various elements are required. The
process from sensor input to publishing the detected location through an API. The
overview of required components is visualized in �gure 4.1. Initially, the sensor tech-
nology needs to be de�ned. The selection of sensor(s) is related to environment and the
required accuracy as well as the available hardware.

Figure 4.1: Overview of this Indoor Positioning System

The raw sensor input does not provide insights about locations. Therefore, clustering is
applied, abstracting features and thereby clustering locations. This provides clusters of
locations which do not have a semantic linking (e.g. name of location). The semantic
linking is necessary to use the cluster information in the environment of the user.
Therefore, labelling of these clusters is required. As a last element, the API is required.
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By this the information about the location can be provided to external parties. This can
contain the information about the current location, as well as historical data.

4.2 Block 1: Positioning Hardware and Devices

One of the most important decisions is the sensor(s) used for the indoor positioning
system. There is no single best choice, but rather various sensors for various types of
application. While some systems easily achieve an accuracy within several centimetres,
they come with an additional e�ort and cost to install hardware in the environment. In
this thesis we focus on the applicability and scalability and minimal intrusiveness within
the end-consumer environment. The sensor to select must meet a certain accuracy and
should have minimal costs.

4.2.1 Overview

As introduced in the sensor analysis 2.3.1, di�erent sensor technologies have di�erent
level of accuracy. Therefore, graph 4.2 provides an overview of the accuracy per sensor
technology. The gray color identi�es that additional hardware must be installed. For
example optical systems need additional installations, while in the environment of the
user a wi� router is already available and is therefore marked black this graph.

0 1 2 3 4 5 6 7 8 9 10

< 0,5m

2-3m

5m Indoor

5m Outdoor

A
cc

u
ra

cy

Additional hardware required in environment

No additional hardware required in environment

Accuracy vs. Sensor Technology

Sensor Technology

Figure 4.2: Accuracy of di�erent sensor technologies
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The goal of this thesis is room level granularity in the environment of the end-consumer.
Therefore, GPS and GSM is not accurate enough for this application.

4.2.2 Installation Costs

The cost for the user increase by every hardware installation. Considering this, identi�es
that all of the very precise systems <0.5m come with additional hardware. This makes
them less attractive to be installed in user environments. WiFi and Bluetooth LE are the
remaining two candidates. They ful�l the required accuracy and do not need massive
hardware installations.

4.2.3 Result: WiFi versus Bluetooth LE

Compared to Wi�, the Bluetooth LE standard is not very wide spread in home environ-
ments. This is due to the fact that Bluetooth LE beacons only have limited functionality
and can thereby only signal their position and provide a limited amount of information.
On the other hand, WiFi routers are wide spread since they are used for providing
internet access in almost every building. Therefore, WiFi is the optimal candidate to do
indoor positioning on room-level accuracy for consumers.

4.2.4 User Device - Smartphone

If possible, we want to avoid additional hardware in the environment of the user. Addi-
tionally, hardware which is already available at the user can be used since no additional
costs arise. According to Dey et al. [5], the mobile phone is at the same location as the
user during 90% of the day which makes it a highly personalized device. The sensors
of a smartphone contain wi�, bluetooth, accelerometer and many more. Both features
- technology and the personalization of the device - makes the smartphone a suitable
device to be used for indoor positioning of the user. Additionally, an application can
request the location of the user and represent the current user location.

4.3 Block 2: Localization using Radio Frequency Signals

Using Radio Frequency (RF) signals, di�erent approaches can be used to make an es-
timate about the devices’ location. All of them are explained in detail in the analysis
section 2.3.2 of this thesis. Therefore, the following network diagram visualizes the
strengths and weaknesses of each approach. The evaluation is processed on the follow-
ing indicators:

• Indoor Obstacles: How do indoor obstacles in�uence the accuracy?
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• Multiple Sensors: Do multiple senders increase the accuracy?

• Possible Precision: How precise can it possibly get?

• Initial Setup: How much e�ort is required for the initial setup?

• Use in related work: How often is this approach used in related work?

Indoor Obstacles

Multiple Senders

Possible PrecissionInitial Setup

Use in related work

Triangulation (e.g. Real Time of Flight)
Proximity (Cell ID)
Fingerprinting

High

Medium

Low

Figure 4.3: Accuracy in�uence factors

Each of the three techniques are discussed in the following sections.

4.3.1 Triangulation

As triangulation (introduced in the analysis 2.3.2.2) can achieve a high accuracy, this
accuracy is based on no signal re�ections and line-of-sight. Having obstacles such as
walls and humans in the environment of the user, makes a clear line-of-sight impossible
and thereby reducing the indoor accuracy. To conclude the requirement to provide
line-of-sight between sender and receiver makes triangulation not suitable for the users’
environment.
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4.3.2 Proximity (Cell ID)

Using cell ids (see 2.3.2.1) does not get in�uenced much by obstacles. This is because
the detected location depends on the reach of a speci�c network and thereby being in
the cell of a network. The initial setup is very fast, since it requires only a mapping of
the cell id with its location. Each cell is as large as the range of the sender and thereby
the accuracy is very inaccurate. For WiFi the range per router is usually much larger
than one room, thus room level accuracy can not be achieved by proximity.

4.3.3 Fingerprinting

The mechanism of �ngerprinting (introduced in analysis 2.3.2.3) detects all surrounding
senders and the received signal strength for each of them. This recording at one point in
time is called �ngerprint. While obstacles might come into the way, the received signal
strength for one or for multiple senders change. This combination of received signal
strengths from various sensors do contain additional information: a) which networks
are available b) how do the received signal strengths of networks relate to each other
(RSS are equal, stronger or weaker). These information make the location predictions
more robust against changes in the environment. The approach of �ngerprinting is
used in most of the related work research Bolliger2009 and is for the above reasons for
this and the other techniques the most promising for this indoor positioning system.

4.4 Block 3: Data Analysis to Determine Locations (Clustering)

Each measured raw data for itself does not provide an identi�cation of its location. The
data analysis of multiple measurements can determine a group of same measurements,
which is called clustering.

4.4.1 Goal and Constraints

The goal is to use a clustering mechanism, which achieves the best possible room-level
accuracy. There are various machine learning and clustering techniques available which
is discussed below. In addition to the constraint of accuracy, the users’ smartphone is an
additional limitation. Smartphones are limited on energy, calculation power and storage.
All of these three factors are all required for the computation of machine learning and
clustering. Usually, these algorithms perform on well formed data. This means each
dimension has a complete set of data and the dimensions stay the same. While for
�ngerprint scans, the detected networks are changing and therefore, the raw dataset is
not well formed. For this reason, the data need to be prepared before being processed
by clustering algorithms.
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4.4.2 Discussion of Available Clustering Techniques

The considerable clustering techniques are mentioned in the analysis section of clus-
tering techniques (2.3.3). To discuss which clustering technique is performing best, we
want to mention two important requirements. At �rst, the clustering must be performed
continuously. That’s because the training phase should not be separated from the phase
of use. Therefore, the clustering algorithm must be able to continuously add new data
for its training set. Secondly, the dimensions of each data pint are not limited. Each
�ngerprint consists of n measurements. The number n can even be changing in the
same environment since routers might be not received any more and networks can be
removed/added in the environment. To perform machine learning or clustering, the set
of input values is usually prede�ned before starting the algorithm - whereas it is not
the case when using �ngerprints. To conclude this paragraph, the clustering algorithm
need to perform well on adding additional data and need to perform well on adding
additional input values.

4.4.2.1 Neural Networks and Support Vector Machines

Neural Networks (2.3.3.3) and Support Vector Machines (2.3.3.4) are working on their
initially trained data values. While, an initial calculation load is given the labellings can
be processed without huge calculation e�ort. As one goal of this indoor positioning
system is to continuously add new location and additional training data, the process of re-
caluclating all values needs to be processed constantly and thus the load of calculations
require power and cost energy. Therefore, this is hardly applicable to be used in real-time
on a mobile device. Liu et al. [9] introduce its use on stationary devices.

4.4.2.2 DBSCAN and OPTICS

DBSCAN (2.3.3.5) and its adapted version OPTICS (2.3.3.6) are especially promising
because of their capability to label not well formed clusters. While this sounds promising,
the sparse data of many dimensions of �ngerprints reduces the correctness of this
method. Each �ngerprint contains a subset of the whole recorded set of networks. For
example at the one side of the �oor there are networks from the right neighbours and
on the other side of the �oor, there are networks of the left neighbour. This makes
the data very sparse in some dimensions. One solution is to add data to the sparse
dimensions. This can either be done via the average value, zero or another number.
Another solution is to remove this dimension. But as the example illustrates, these
additional data of the left and right neighbour are extremely important since they make
a signi�cant di�erence of the room left on the �oor and the room right on the same
�oor. Therefore, both options of add a value for sparse dimensions and to remove the
dimension are both removing a lot of important data.
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4.4.2.3 Probabilistic Method and k-Nearest-Neighbours

K-Nearest-Neighbours (2.3.3.2) is selecting the k-closest data points and uses them as
a reference to label the new data point. This is done by calculating the error for each
dimension of the new data point to the available data points. The k-closest are identi�ed
as the ones with the smallest error. The bene�t is, that labelled data points can be added
at all times and do not add an additional calculation e�ort. Still the regular calculation
to identify a network is more expensive since it needs to iterate through all the data
points and calculate the error.

The probabilistic method (2.3.3.1) is using a similar approach of comparison and iden-
tifying the smallest error. Initially, the new measurements are grouped. This is done
by not storing the data pints as individual values, but to cluster them as a Gaussian
distribution de�ned through mean and standard deviation. As identi�ed by Yang et
al. [24] this abstraction reduces the calculation e�ort to identify the location of a new
data point.

4.4.3 Conclusion

To avoid sparse data, the number of networks which are very rarely available needs
to be as minimal as possible. Therefore, a threshold of minimal accepted RSSI values
needs to be set which has been introduced by [11] and [30]. The clustering algorithm
must perform on a subset of dimensions. Because it can not be assumed that the the
dimensions of the new data set and the training data set are completely matching.
Therefore, we implemented k-nearest-neighbours with the data preparation using the
probabilistic method surveyed by Yang et al. [24].

Bene�ts of the probabilistic method are that the cluster of labelled data is stored very
compact. In addition calculations need to be done on less data, since the compact data
of mean and standard deviation can be used. Each location can consist of several sub-
clusters. This adds the bene�t of accounting for di�erent size of locations. For example a
living room might be multiple times larger than another smaller room. Having only one
cluster per location would make it more di�cult to distinguish between such locations.

On this compact data set, an adapted algorithm of kNN calculates the error between
the stored labelled data and the new measured �ngerprint. The error are calculated
per sub-cluster while all sub-clusters per location are averaged. This average error
per location is combined to the other locations allows the ranking of all locations per
measured �ngerprint. A scheme of the exact �ow is available in the implementation
chapter 5.
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4.5 Block 4: Digital Representation of User Environments

The users’ location needs to be visualized in this indoor positioning system in order
to enable the user labelling his current location. The Cartesian coordinates and room-
level labels for location identi�cations have been introduced in the analysis section
(2.3.4). Using GPS positions, the location is de�ned through longitude and latitude. In
a building this could be applied by using x, y and z values in a Cartesian system. For
indoor positioning the user needs to relate to a room, which makes it di�cult for x,
y and z coordinates. The z coordinate de�nes the height and thereby the �oor level
while x and y are the coordinates on the ground. It needs to be considered that this
segmentation into coordinates as shown in �gure 5.1a provides a segmentation sub
room-level. For the user, individual Cartesian positions are hard to grasp. The user is
more familiar with room level localization and names, while more detailed information
can lead to confusion of the user.

4.5.1 Hierarchical Labelled Structure of Locations

Using only labels makes it di�cult to get the rooms in a overall context. In a large
building, rooms are typically enumerated which makes this more simple. In addition, a
hierarchical tree of locations and sublocations can make clear references. This works,
even though rooms might have the same name. An example can be a kitchen on the
�rst and a kitchen on the second �oor. Using this hierarchical approach as visible in
�gure 5.1b, the kitchens can still be separated using paths like ground �oor / kitchen
and upstairs / kitchen or 1st �oor / kitchen. This approach is using labels and is ordering
them hierarchically. Thereby, additional information are contained which can further
be used for path �nding through buildings.

y

x

(a) Location Coordinates

Home
- Lisa’s Room
- Max’s Room
- Kitchen
- Master Bedroom
- Bath
- Closet
- Living Room
- Deck

(b) Hierarchical Semantic Labelling

Figure 4.4: Possibilities to do Indoor Location Labelling
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4.6 Block 5: User Involvement

The user involvement for our indoor positioning system should be as minimal intrusive
as possible. For this reason, the user should not make an initial recording for all rooms
but should from time to time provide location feedback to the indoor positioning system.
Combining these location information with the automatically recorded �ngerprints a
representation of locations in �ngerprints can be used. A very important question to
be raised is how the user interacts with the system. The section of user involvement
is separated into the following parts: 1. Motion detection using the users device. 2.
Reduced User Interactions - Noti�cations. 3. User Interface and Data Visualization.

4.6.1 Motion detection to Indicate Movements

Whenever locations are changing, the user had to move to change the location. The
possibility to identify movements can add additional information which are completely
distinct from any �ngerprinting methodology. These information can be used to identify
which recordings clearly belongs together. As an example: if no movement has been
detected for 10 minutes, all the WiFi recordings belong to the same location. This
methodology has been published by Bolliger et al. [6] at the ETH Zurich.

All information which the user does not have to provide actively, are reducing the
workload for him. Therefore, to identify the moments when the user is moving and
standing provides very valuable information. Whenever the person is moving, it identi-
�es, that the recordings do not need to belong together, while all recordings done in a
non moving state of the device have been processed at the same location.

Fortunately, an accelerometer sensor is available in any modern smartphone. A sliding
window algorithm to smooth the sensor data with a certain threshold to identify the
movements precisely predicts when the device and thereby the user is moving which
is demonstrated in the graph below. Test with the Android Activity Recognition API
identi�ed, that their activity recognition works well for longer durations of activities,
but has been to slow to identify whether the user has changed the room which needs
to be identi�ed within 5 seconds.
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Figure 4.5: States of movement and standing through accelerometer values

4.6.2 Reduced User Interactions - Noti�cations

User interactions with smartphones are possible in two ways: a) internally motivated:
the user opens an application, because he is motivated to send a message or open a
website etc. The other possibility b) is that the user gets triggered externally, which
could be an incoming call, an incoming message or any other noti�cation of the phone.
Google implemented an noti�cation feature into Google Maps. It detects when the user
has been at a distinct location for a certain time and asks him to provide feedback. This
request gets pushed via noti�cation on android devices. The text in the noti�cation title
says: "rate your visit".

Figure 4.6: Google Maps Noti�cation - Rate your visit

For our indoor positioning system, noti�cations are a reduced intrusive method to get
feedback from the user about his position. The feedback requests can be made whenever
the algorithm needs to get more information to become more precise in the prediction
of the speci�c location. This can be for the reason of adding a new location or the
reason to improve the prediction of existing locations. These are two di�erent types of
noti�cations with di�erent types of possible user actions.
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4.6.2.1 Noti�cation to Add a New Location

The noti�cation to add a new location must be shown when the clustering algorithm
detected a new location and is certain that this location is relevant to the user. This
means the user should not be asked continuously for his location, but only at locations
of his personal interest because it is a place which is often or regularly visited. The
algorithm knows about the movements of the user and thereby about the moment,
when a user is leaving the current location. This is the moment, where a noti�cation
can ask about the location the user just moved away. The noti�cation to request this
information does look as follows:

Figure 4.7: #InPos Noti�cation to rate new location

If the user is selecting the noti�cation in order to provide feedback for the current
location, he is referred to a new page. This page contains a hierarchical list of all
previously inserted locations. In addition, new locations can be added. To provide the
rating of a location, this distinct location needs to be selected and saved.

Figure 4.8: #InPos Activity to select the current location

4.6.2.2 Noti�cation to Improve Existing Location Accuracy

Because of changes in the environment, the detected �ngerprint is not constant at
a speci�c location. Therefore, the algorithm needs to add additional labelled data to
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update a location and improve accuracy. For this reason, noti�cations can request these
localization data from the user. To keep the user e�ort as minimal as possible, the
noti�cation already contains three possibilities to be selected by one click.

Figure 4.9: #InPos Noti�cation to rate the detected location

• Correct Location: The user can con�rm that the detected location is identi�ed
correctly.

• Wrong Location: The current identi�ed location is not correct. In case the user
is selecting this option, a page opens to select the current location. This is the
same page as for adding a new location shown in �gure 4.8.

• Not Sure: In case the user is not sure if the location has been correct, he or she
can skip the noti�cation by selecting this action.

4.6.3 User Interface and Data Visualization

Last section discussed the noti�cations which are triggering the user externally. In
this section the internal motivations for the user are discussed. Two main internal
motivations of the user can be identi�ed: a) check the current detected location and
history of locations b) take action to improve the correctness of detected locations.

4.6.3.1 Check Detected Location and History

To give the user a reason to interact with the application, there must be some kind of
motivation for him. Nowadays, the user is quite eager about the self quanti�cation such
as wearable wrist bands providing �tness and health data. These applications provide
an overview about the current status as well as a history about the past. These �tness
tracking wearables can be connected to an indoor positioning system. Both should
be as minimal intrusive as possible, provide as accurate data as possible and should
keep the interest of the user to not remove this application from his smartphone. To
address the user the same way as �tness tracker to, our indoor positioning has both
views. The view of the current location can be seen in �gure 4.10. The user does only
see the surrounding locations, which are most probably at this moment - rated with a
percentage.
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Figure 4.10: #InPosVis to inform the user about the current detected location

The history of visited locations can be provided in various ways. Showing the complex
raw data to the user does not show him the information on a quick look. Therefore, the
data need to be represented in some visualization. Various graphs are possible to do
this visualization. Finally, the two charts which can be seen in �gure 4.11 were chosen.

(a) Fragmentation History View (b) Pie Chart History View

Figure 4.11: InPosVis History Visualizations
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4.6.3.2 Take Action - Improve Correctness

After the user gets attracted by our indoor positioning system, it would be favourable
to enable him to add additional locations whenever a new location is not detected or is
not labelled correctly. This can be done by noti�cations as mentioned in the sections
before, but in case the algorithm did not already identify a new location and trigger
a noti�cation, the user needs to be enabled doing labellings whenever he would like
to add them. These labellings are called labelled recordings. Such labelled recordings
can be processed via the application and be triggered by the user. Therefore, the user
selects the speci�c room in the application and starts to add �ngerprint recordings by a
simple click on the recording button in the user interface.

4.7 Block 6: API to Distribute Location Data

While location data are nice feature for a user, the use-cases are still limited if this indoor
positioning system would keep the information to itself. The real bene�ts arise, as soon
as the information of the users’ location are published to the users’ environment. Then
the environment can act on the basis of these location information. By environment
two possibilities arise:

• Locally on the same mobile phone. This enables other applications to act in
regard of the current location. An example would be that an application could
send less noti�cations when the user is at work. Further, the UI of an application
could look di�erent. For some applications this is already done in the context of
driving where the user interface has a reduced design and buttons get larger.

• Publicly the mobile phone can send the location to all services in the environment
outside the own mobile phone. This enables the environment to take actions and
avoid others. An example can be that the home environment knows where the
user is located and can adjust the environment to a pre-set theme. Others can be
the environment is switching on and o� lights, depending on the user location.

Both of the above described applications should be able to request an API. The applica-
tion could simply publish their data on request. This method can cause a lot of additional
calculation since external services have to request the location using polling. Therefore,
a subscription service on side of the indoor positioning can notify subscribers about
updates whenever they happen. This reduces the amount of send messages and enables
the environment to get noti�ed. Because all is done centrally at the indoor positioning
service, this service can decide which requesting service should be entitled to receive
the indoor positioning data of the user. The implementation details are further described
in the Implementation section at 5.7.
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4.8 Resulting Solution - #InPos

Finally, the previous discussed building blocks can be combined into one indoor po-
sitioning system. This system starts with the input of the sensor using WiFi and the
accelerometer.

Figure 4.12: Complete Overview of this Indoor Positioning System

The accelerometer is identifying whether the user is still or moving to provide the
clustering algorithm additional data. The clustering of the recorded WiFi data is done
using k-Nearest-Neighbours. To reduce the calculation e�ort, the individual data points
are grouped using a Gaussian distribution per data point group. The grouping is de�ned
by the detected states (still/moving) of the user which are detected through the use of
the accelerometer data. In addition, the clustering algorithm can request user feedback.
Thereby detected clusters get labelled through the feedback of the user who can organize
his environment via hierarchically structured semantic labels. After this labelling is
done and locations are detected, these locations are published through a publishing
service running as a subscription server on the users smartphone. By this, other services
can subscribe themselves for position updates. A diagram of the complete overview can
be seen in �gure 4.12.
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Chapter 5

Implementation

5.1 Introduction

This chapter provides an overview of the implementation and highlight the most im-
portant features. This thesis �nally consists of two android applications. These can be
installed individually, while the main application is #InPos which stands for Indoor Posi-
tioning. The second application is #InPosVis which is an application purely visualizing
data from #InPos.

(a) #InPos (b) #InPosVis

Figure 5.1: Application logos of this thesis

Furthermore, this indoor positioning system should be able to be reused and improved
in the future. Therefore, it is planned to be published and open sourced.

5.2 #InPos - Indoor Positioning

The #InPos application runs as a background service recording WiFi �ngerprints and
detecting movements of the user. The user is getting noti�ed whenever the clustering
algorithm wants to receive feedback in order to improve the accuracy or in order to add



60 Chapter 5. Implementation

a new location. This application additionally o�ers the possibility for the user to add
additional recordings for a selected location manually. Finally, this application contains
much more features, which have been used to develop, test, iterate and improve the
application.

In �gure 5.2a screenshots of the implemented android noti�cations are shown. These
are used as external triggers in combination with a vibration alert to catch the users
attention. The select location activity (�gure 5.2b) gets displayed as soon as the user
clicks on the noti�cation.

(a) #InPos -
Noti�cations

(b) #InPos -
Select Location Activity

Figure 5.2: #InPos Noti�cations and Location Selection

The following �gure shows di�erent android activities, which are used to interact with
#InPos. The �rst activity (�gure 5.3a) is the main activity, and gives the user an overview
of current detections and the possible interactions. The centred activity (�gure 5.3b)
is used to make additional recordings per location, change the name or delete data.
The recording button is switching to red, if the user is processing a labelled recording
adding data. The right activity (�gure 5.3c) shows further possible interactions, which
are hidden for the user and only gets visible using the developer mode. This provides
access to the database, movement detection algorithm and other parameters.
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(a) #InPos -
User Menu Activity

(b) #InPos - Labelled
Recording of Location

(c) #InPosVis -
Developer Menu

Figure 5.3: #InPos Activities for User and Developer

5.3 Reusable Framework

As discussed in the design chapter, an indoor positioning system can consist of di�erent
variants in each building block. For example various technology can be used for posi-
tioning and individual clustering mechanisms. Aiming to enable further developers in
this area, this work is build as a framework which allows to exchange sensor technology
and clustering algorithms easily. Therefore, each input sensor consists of the recording
mechanism to generate the input data from this sensor. In addition, a speci�c clustering
mechanism is added which operates on the data of the speci�c input of this sensor. Each
of such sensor - clustering combination is called positioning. The class diagram
(�gure 5.4) does describe its design in more detail.

LocaitonClustering
«abstract»

LocationSensor
«abstract»

LocationClusteringWiFiFingerprintsLocationSensorWiFiFingerprints

Positioning
«abstract»

# locationSensor: LocationSensor
# locationClustering: LocationClustering
- PositiioningListener: positioiningListener

+ start:void
+ stop:void
+ labelledRecording:void
+ publishSensorUpdate:void
+ publishClusteringUpdate:void

PositioningWiFiFingerprints

Figure 5.4: UML diagram of positioning handler and its sensor and clustering

Positioning enables to add various di�erent sensor - clustering combinations (Location-



62 Chapter 5. Implementation

Sensor)

• WiFi sensor of smartphone (Analysis Wi�: 2.3.1.3)

• Bluetooth LE sensor of mobile phone (Analysis Bluetooth LE: 2.3.1.4)

• Android Location System build in mobile phone (Analysis Android Location
System: 2.3.1)

Speci�c Clusterings (LocationClustering):

• For Bluetooth and WiFi Fingerprinting the adjusted kNN clustering has been
implemented as discussed in the design chapter 4.4.3.

• Since the Android Location Service provides longitude and latitude measurements,
�ngerprinting is not applicable and therefore no clustering.

To manage all external commands such as start measurement, stop measurement, pro-
cess a labelled recording - an additional controller is set on top. All Position objects
are registered at this controller called PositioningHandler. The individual actions per
command are executed within the Position object, which is delegating this to its sensor
object and clustering object.

PositioningListener
«interface»

+ updateLocationEstimate:void
+ updateSensorData:void

PositioningAndroidLocation PositioningBluetoothLEPositioningWiFiFingerprints

Positioning
«abstract»

# locationSensor: LocationSensor
# locationClustering: LocationClustering
- PositiioningListener: positioiningListener

+ start:void
+ stop:void
+ labelledRecording:void
+ publishSensorUpdate:void
+ publishClusteringUpdate:void

PositioningHandler

- List positionings:  Positioining

+ start: void
+ stop: void
+ labelledRecording: void
+

1 n

Figure 5.5: UML Diagram of PositioningHandler and various sensor positionings

Internally, the Position Sensors are publishing new recordings. These are published
to the Position object which triggers the PositioningHandler that this sensor has an
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updated recording. Thereby, the PositioiningHandler is informing all Positioining
objects and inform them that a speci�c sensor received updated data. With this informa-
tion, the individual Positioining objects decide if they start to run further processing
such as process a clustering or adapt their clusterings on the new data.

PositioningHandler

Positioning

LocationSensor LocationCluster

 Step 2
publish
sensor & cluster
udpates

1

n

Step 1
publish
sensor & cluster
udpates

1

1

Figure 5.6: Layer Diagram of how information are propagated

This object and communication structure makes it simple to exchange individual compo-
nents and replace them by another. This works for clusterings as well as for sensor-types.

5.4 Process of Clustering

This section provides a more detailed insights into the implementation of the clustering
algorithm. There are two main task a) adding data: detect new locations based on a set
of recorded �ngerprints and b) localization: to identify to which location a recorded
�ngerprint belongs. These two processes are described in the following two sections.

5.4.1 Location Detection Process

Diagram 5.7 describes the process of adding new �ngerprints and the evaluation if these
belong to an existing location or might be the �ngerprints of a new location. Since
recordings of new locations are only done if the smartphone is at the same location,
the movement detection is indicating if the device is still. If it is still, all the �ngerprint
recordings are added with this distinct interval_id. This interval_id enables to further
select all �ngerprints which have been recorded during that interval. Using the already
introduced probabilistic method, the size of recordings per interval is reduced by gather
multiple �ngerprints and store them as one grouped �ngerprint, containing mean
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and standard-deviation for each RSS measurement. This provides a set of grouped
�ngerprints for the same location.

The grouped �ngerprint is then compared to the database of identi�ed labelled locations.
In case this gives no clear result, the algorithm can request user feedback to gain more
certainty. Finally, the clustering generates an additional data point for that location
which is added to the database and is used for the next labelling.

Individual Fingerprint
Individual Fingerprint

Individual Fingerprint

Still Interval

Probabilistic Method

Fingerprint Recording

Grouped Fingerprint

Combined Grouped Fingerprints 
of Location “Living Room”

kNN Error Analysis & User Feedback

User
Feedback

Clustered 
Locations

Movement 
detection 

Fingerprint
recording

Clustering

Figure 5.7: Diagram of grouping �ngerprints and cluster locations

5.4.2 Fingerprint Labelling Process

While the previous described process creates and updates the database of locations
and �ngerprints of locations, the next process describes how the location labelling of a
recorded �ngerprint works.

The �ngerprint is recorded independent of the interval. The condition if the user is
moving or standing within this interval changes the scope of the input �ngerprints.
If the user is moving, the past �ngerprints are only slightly considered, while if the
interval is still, previous �ngerprints of the same interval are considered, because the
combination of them provides a more comprehensive dataset.
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These �ngerprint data are then evaluated by the adapted kNN algorithm, described
in the design section 4.4.3. For each location, the error is evaluated and the current
location gets predicted.

Individual Fingerprint

Fingerprint Recording

Prediction of current Location

kNN Error Analysis

Clustered 
Locations

Fingerprint
recording

Clustering

Figure 5.8: Diagram of �ngerprint localization

5.4.3 History

The history of locations are additionally considered, when a new location estimate is
calculated. For example, a person is getting into the way between the smartphone and
the router. This immediately in�uence the RSS and the clustering algorithm might
estimate another room. Smoothing on the level of results is used to correct such false
predictions using the sliding window mechanism. This reduces the responsiveness
because of the window size, but reduces the correct identi�ed locations.

The complete history of locations is stored into the database, which enables API queries
to read on previously visited locations.

5.4.4 Clustering Parameters

The complete clustering process for �ngerprints is using parameters. Therefore, further
adaptations, changes, and tests can made quickly. The below table gives an overview of
the default values.
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Type Parameter Default Value
int AVOID_FIRST_N_ELEMENTS_TO_REDUCE_ERROR 1
int NUMBER_OF_COMPARED_MEASUREMENTS_PER_LOCATION 20
int DURATION_OFTHEN_LABELLING 5*60*1000
int INTERVAL_SELDOM_LABELLING 150*1000
int INTERVAL_OFTHEN_LABELLING 10*1000
int ESTIMATE_HISTORY_CHECK_SECONDS_DELAY 45
int maxNumberOfRecordedScans 25
int maxNumberOfComparedScans 15
int minNumberOfComparedScans 3
int minSizeOfCluster 2
double minAppearanceOfScans 0.0
int minIntensityOfScans -90
double maxGroupError 1.5
int �ngerprintMaxCount 1
�oat THRESHOLD_BELOW_LOCATION_IS_NOT_IDENTIFIED 0.1f
int DURATION_BEFORE_REMOVE_NOTIFICATION_OF_RATING 15*60*1000
int DURATION_BEFORE_REMOVE_NOTIFICATION_OF_REQUEST 30*60*1000
long TIME_UNTIL_WHEN_RECORDING_CAN_NOT_BE_USED 16*60*60*1000
long DURATION_OF_INTERVAL_BEFORE_CHECK_FOR_REQUEST 3*60*1000
long TIME_AFTER_WHICH_UNLABELLED_DATA_CAN_BE_REMOVED 3*24*60*60*1000

Table 5.1: Fingerprint Clustering Parameters

We provide this table as an overview, while more detailed information about the impact
of each parameter can be found in the implementation of this indoor positioning system.

5.5 External Libraries

For both Android Applications, the Android SDK has been used. In addition, two
libraries have been integrated.

• org.apache.commons has been used to run the server hosting the API.

• org.nanohttpd:nanohttpd has been used to process http requests to the API
server.

• com.obsez.android.lib.�lechooser:�lechooser has been used to pick �les and
folders during the process of importing and exporting the database in #InPos

• com.github.PhilJay:MPAndroidChart has been used for the graphical ele-
ments in #InPosVis.
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5.6 #InPosVis - Indoor Positioning Visualization

While #InPos is mandatory, #InPosVis adds additional information for the user but is
not required for the clustering or positioning of the device. The �rst activity (�gure 5.9a)
shows the current location using percentage indicators of the certainty per location.
The history data is visualized using a fragmented bar chart (�gure 5.9b), to show the
visited locations on the time axis. A pie chart (�gure 5.9c) is displaying the ratio of
visited location per day.

(a) #InPosVis -
Current location

(b) #InPosVis -
Fragmentation history view

(c) #InPosVis -
Pie chart history view

Figure 5.9: #InPosVis Visualizations

#InPosVis is connected to the data of #InPos using the API which is introduced in the
following section.

5.7 API Implementation

In order to provide other applications access to the location data of #InPos, a subscribe
and publishing service for the current locations is implemented. This service is a
webserver where external applications can request the current location. The response
is a json string which can be parsed to either visualize these data or use these data for
other location aware services. External webserver can subscribe themselves to receive
messages on the change of the devices location. An example of the API functionality is
the application #InPosVis.

The API is reachable at port 8776. Thereby, a request can look like: http://192.168.0.227:8776.
Since this address is only reachable from the local network, a universal reachable server
can be registered at #InPos. Thereby, #InPos publishes the location to a server which is
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not limited by a local network. The next table gives an overview about the reachable
endpoints.

Path Parameter
/ -
/CURRENT_LOCATION -
/CURRENT_INTERVAL -
/LOCATION_HISTORY from, to, granularity
/INTERVAL_HISTORY from, to, granularity
/REGISTER_UPDATE address, services
/UNREGISTER_UPDATE address, services

A complete request to subscribe a server (myservice:3030) at #InPos (192.168.0.227:8776)
can look as follows:

http://192.168.0.227:8776/REGISTER_UPDATE
?address=http://myservice:3030
&services=[interval_listener,location_listener]

For example, this API can be used by frameworks for smart environments like meSchup
[1] and DS2OS [2].

5.8 Testing of the Indoor Positioning System

In order to evaluate our indoor positioning system, a study where real users are using
this indoor positioning system should be processed. To extract insights about the user
behaviour, their activities and the sensor inputs have been recorded in a database. These
data are then used for the evaluation of this thesis.

The study setup contained an initial request for the mail address and age of the user.
The user data have then automatically be uploaded to a central server every 12 hours if
the user has been connected to a WiFi network in order to save his mobile data. These
provided regular insights into the current progress and indicates whether users are still
active in the user study.

After the end of the user study, the data have been processed via sql queries to extract
important measurements for the evaluation in a structured way.
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Evaluation

This indoor positioning system is intended to be a novel approach to gather indoor
positioning data. Therefore, two factors are especially relevant: 1. the evaluation of the
user intrusiveness and 2. the achieved location accuracy. The evaluation is structured
in the following sections: At �rst, the setup of the evaluation containing a user study is
described. Second, the interaction of the user is evaluated. The interactions are divided
into externally motivated interactions (e.g. noti�cations) and internally motivated
interactions (e.g. the interest to check the predicted location). The third section of this
evaluation is about the labelling process. The labelling process is especially evaluated on
the number of identi�ed locations and on the accuracy of the predictions. The labelling
process evaluation is followed by the usability evaluation of this indoor positioning
system - including user feedback.

6.1 Evaluation Setup - User Study

The goal of the user study has been to evaluate the indoor positioning system in di�erent
environments while being used through real users. The study especially focused on the
user interactions and detected locations. To gather insights into the initial setup and the
use of the indoor positioning system thereafter. Because the user is visiting most of his
relevant locations on a daily basis, the user study has been conducted throughout four
days. During this time period, the indoor positioning system has been running as an
application on the mobile phone of nine participants. Thereby, the system detected new
locations and asked the participant to label them. In addition, the system predicted the
position of the user. The user has been able to add additional measurements in order
to increase the accuracy of the system. At the end of the study, the participants were
asked to answer a System Usability Scale (SUS) test. The SUS test is a standardized
test consisting of 10 prede�ned questions. Thereby, the usability of the system can be
evaluated. One day after the SUS test, a survey of questions for qualitative answers has
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been conducted by the participants.

6.2 Evaluation User Interaction

Each system receiving or providing information does require some kind of interaction.
Both, inputs and outputs can be part of a system. In the particular case of this work,
the input (labelling of locations) heavily in�uences the output (accurate location) of the
system. Therefore, the user interaction is crucial to enable the user to labelled locations
and increase the number of detected locations and prediction accuracy.

6.2.1 Internal and External Motivation

Users can be motivated internally and externally to interact with the indoor positioning
system:

• Internal motivation: This can be the personal interest of the current location
detected by the system. Therefore, the time to check and read data is measured.
In addition, the interest of the user to improve the location prediction has been
recorded. Therefore, all manually added location recordings were measured by
the evaluation layer.

• External motivation: These interactions are triggered by external factors. For
this indoor positioning system, these have been noti�cations asking the user for
feedback about his location. Thereby, the user had the chance to label the current
location, while the user de�ned which noti�cations were answered and which
were not.

6.2.2 User Interaction Measurements

The interaction of the user has been measured separately by using internal and external
motivation as described in the previous section. The following graph shows the average
time spend per day on the application. Users have been internally motivated to a)
inform about the estimated location and b) to record additional labelled �ngerprints.
The externally motivated task is to answer the noti�cations. Both - internally and
externally motivated actions - have been recorded.
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Figure 6.1: Average Time Spend in Application per Day

As can be seen in graph 6.1, the user does spend initially more time to interact with the
system than at the following days. One reason for this is the initial setup. Here the user
had the chance to add locations to the positioning system. These locations are then
already available to quickly answer the request to label the current location. Over time
most locations are known to the system. Therefore, the demand of asking to label new
locations is reduced. Another reason might be that the interest of the participant for
this study decreased over time.

Done

Done

Done

1 1 1

2

3

Figure 6.2: Feedback noti�cation with possible number of clicks
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Figure 6.2 is visualizing the noti�cation and the possible user actions. Thereby the user
can reply to a location request of the positioning system. If the identi�ed location in
the noti�cation is correct, the participant can answer the feedback request by only 1
click. If the user does not want to answer the noti�cation, it was possible to press "not
sure". In case the detected location is wrong or not known, the click count increased
to minimal 3 clicks. Additional clicks were required if a new location is added to the
hierarchy of locations.
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Figure 6.3: Average clicks in application per day

The average numbers of user interactions per day can be seen in the following table:

Day Average Num-
ber of Noti�ca-
tions

Average Ra-
tio Answered
Noti�cations

Average Dura-
tion to Select a
Location [s]

Day 1 13.6 75.67% 4.85 seconds
Day 2 19 67.27% 5.52 seconds
Day 3 10.9 66.22% 3.29 seconds
Day 4 9.3 72.88% 2.24 seconds

Table 6.1: Average User Interactions with Noti�cations

The table indicates, that the average ratio of answered noti�cations remained constant
over time. The average ratio of answered noti�cations decreased over time as well as
the average duration to select a location. Both columns have a peak on the second
day of the user study. For the average number of noti�cations, this can be due to the
increased need of the algorithm to gather labelling information in order to improve the
precision. The average duration peak on the second day could be due to the additional
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e�ort of the user to add an additional location which must be added once. After the
new location is added, it does appear in the list of locations and can be selected faster.
This conclusion suits to the fact that the average duration per labelling is reduced over
time. At the same time less locations are added as described in the section of detected
locations 6.3.

6.2.3 Error Quanti�cation

The users were asked to interact with the indoor positioning system answering noti�ca-
tions whenever they want. To see whether the user interaction continuously decreases
the error, the following plot is drawn.
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Figure 6.4: Correctness vs. user interactions (answered noti�cations)

On the x-axis, the number of answered noti�cations are shown and combined with
the number of con�rmed noti�cations on the y-axis. These are calculated as follows:
If the noti�cation asked for the correct location the counter by 1 increased while it
has been decreased by 1 for the wrong predicted location. In case the user clicked
on "not sure", the counter remained the same. Each line is one participant of the
study and the increase or decrease of accuracy is visualized. Two signals turned to
be negative while two others remained horizontal to the x-axis. These signals have
less answered noti�cations than the signals which have a positive correctness. The
signal with the negative initial correctness is turning positive again and reached the
x-axis after 100 answered noti�cations. Therefore, it can be assumed that this signal
turns even more positive and provides a more correct labelling in the future. For the
under performing signals, a reason can be environmental in�uences for �uctuating WiFi
signals. Evaluating these measurements lead to several conclusions. At �rst, for some
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environments the algorithm did indicate the correct locations faster then for others.
Second, the overall correctness is increasing over time, even though the labellings might
be wrong initially.

In the following section, the labelling is evaluated and therefore compared to the results
of the user interaction within this section.

6.3 Evaluation Labelling

At �rst, the measured �ngerprints can only provide a good prediction of the location,
if the labelling works su�cient. Due to this, the accuracy of the labelling is especially
important. Second, the amount of di�erent locations is important to ensure them getting
distinguished by the classi�cation algorithm.

6.3.1 Time per Classi�cation

The average duration to label the �rst 4 locations is 6.5 hours (starting from the initial
labelling). While some users labelled all their locations within the �rst 10 minutes,
others took around 10 hours. In addition, there can be a large delay until the �rst
location is labelled. This is because the clustering algorithm has to evaluate whether a
location is relevant (visited more frequent) or not (only once or seldom visited location).
For this observation and decision, time need to pass by. The user can drastically reduce
this initial duration by process additional labellings of locations manually.
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Figure 6.5: Average number of known locations
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Graph 6.5 shows how the number of identi�ed locations increase over time. While
initially no locations are known, the number of known locations increases the most
at the �rst and second day. Thereafter, the number of new locations decreases and is
constant between day 3 and day 4. One reason for this limitation is that the environment
of the participant is limited in rooms and the algorithm does �lter locations which are
not visited regularly by the user. This leads to this saturation of new locations which
results in a decrease of new location labelling requests for the user and reduces the
interaction with the indoor positioning system.

6.3.2 Error of Classi�cation

The classi�cations need to meet a certain accuracy in order to provide a real bene�t
for the user. To not in�uence the evaluation of interaction and usability, the user has
not been asked any additional information during his use during the study. To still get
valid insights into the accuracy of the positioning system, the noti�cations answered
by the participant are analysed. Noti�cations are only issued if the location system
meets a certain level of con�dence about a location and asks the user to con�rm or
deny its correctness. A con�rmation by the participant identi�es, the system has been
correct about the location while denying identi�es an error. The error can come from
several factors such as no complete labelling of the users environment and external
parameters such as weather, open/closed doors, changes in the environment. The rate
of true positives and false positives can be seen in the histogram below.
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Figure 6.6: Correct Predicted Locations in Noti�cations

Graph 6.6, is based on the replies for feedback noti�cations. Whenever the user has
been asked for the current position, the clustering algorithm combined this request with
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a predicted location. In case the location is correct, the user con�rmed the location. In
case the location is wrong predicted, the user can submit the correct location and the
clustering uses this additional data. The graph shows the ratio of correct predictions
and wrong predictions. The true positives are starting at the �rst day above 70% and
increase the following two days. Not in line with this trend is day 4 where the rate of
true positives is below the �rst day of the survey.

In general the goal is to have the best possible ratio in favour for true positives. The
correctness of the predictions used for noti�cations are not representing the overall
correctness of this indoor positioning system. Further, the noti�cations are only used,
when the clustering requests additional data. To test the overall correctness, a parallel
measure to record the exact location of the system is required. Bolliger et al. [6] and
others already showed the possibility of room-level accuracy using WiFi �ngerprints.
Therefore, the goal of this thesis is to combine �ngerprinting with clustering and user
feedback to develop and evaluate an indoor positioning system for the real user. There-
fore, the focus of its evaluation is on the user interactions with this system. Focus on
additional accuracy data could be part of future work.

The overall accuracy has been requested by interviews with users. Thereby, statements
such as "worked very well" or "worked in around 90% of the time" were received. The
next section provides more details about the usability.

6.4 Evaluation Usability

One of the novelties for this indoor positioning system is to do indoor localization for
the user in a minimal intrusive way. Therefore, the usability evaluation focus on the
perception of the user during the use of the positioning system.

6.4.1 System Usability Scale (SUS)

One parameter which has been measured during the use of the system is the interaction,
as described in the section of the user interaction evaluation. A �rst indicator for the use
and usability can be the number of noti�cations which the user did or did not answer.
To additionally gather more data about the intrusiveness and the users perception, the
System Usability Scale (SUS) test has been processed. The SUS test is a standard tool to
evaluate the usability of a system and consists of the following ten questions:

1. I think that I would like to use this system frequently.

2. I found the system unnecessarily complex.

3. I thought the system was easy to use.
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4. I think that I would need the support of a technical person to be able to use this
system.

5. I found the various functions in this system were well integrated.

6. I thought there was too much inconsistency in this system.

7. I would imagine that most people would learn to use this system very quickly.

8. I found the system very cumbersome to use.

9. I felt very con�dent using the system.

10. I needed to learn a lot of things before I could get going with this system.

Each question is answered by the user of the system who can rate between strongly
disagree (value 1) and strongly agree (value 5).

The participants of the survey have been asked after completing 4 days of the user study.
The results of this questionnaire can be found in graph 6.7.
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Figure 6.7: Results of System Usability Scale Questions

The average SUS index is 79.72. According to Bangor et al. [31] this is in the range
between the adjectives good and excellent. This means the users felt con�dent using
the system. The next section provides more qualitative insights of participants.
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6.4.2 Qualitative Survey

In addition to the results of the SUS test, a survey of qualitative questions has been
processed by the participants one day after the �nal date of the user study. The goal
has been to receive qualitative feedback and opinions asking open questions about the
use of the indoor positioning system.

6.4.2.1 Distraction

Some of the questions focused on the distraction of the user. Asking for the distraction
caused by the application, the participants answered clearly that they want to avoid as
much noti�cations as possible. Overall the the noti�cations of this application did not
distract them. The answer of one participant summarizes is describing his experience
with noti�cation request of #InPos as follows: "Feedback noti�cations are kept short
and simple. This needs less time and avoids distraction".

6.4.2.2 Use of Indoor Positioning System

The participants have used the indoor positioning system for four days. The system has
not been integrated in other applications in their home. Therefore, the bene�t for them
has been quite limited. One bene�t has been the #InPosVis - visualization of the current
and past location data. The evaluation of the application use, identi�ed already that the
user did not use the application very frequently internally motivated. The same result
has been provided through the additional questionnaire. Half of the participants were
interested to have a look at the history of their locations. These are the same which
answered they would install the application in the future.

6.4.2.3 Use Cases

The participants mentioned that this indoor positioning system could be of use for their
home as well as external environments such as o�ce and public buildings. For the
home environment they already have very imaginations about use cases which can be
bene�cial for them. These can be all sections of home automation such as controlling
the lights, audio system, and even doors. Another suggestion is to link reminders of
todos to locations.

For large buildings such as shopping malls and o�ces, some participants suggested to
extend it providing indoor navigation and share the position. The great bene�t is that
no additional hardware would be required and no data of the user is published.



6.5. Evaluation Summary 79

6.5 Evaluation Summary

The goal of the evaluation has been to show the usability of this indoor positioning
system while being used by real users in their real environment. It has been shown
the participants felt comfortable using this indoor positioning system. The process of
providing feedback has been a non intrusive way to get information from the user about
the current location to label detected locations.

The survey about use cases for such indoor positioning system showed that users already
have several use cases in mind (see use cases 6.4.2.3). These especially focus around
smart home environments. Further, half of all participants can imagine using indoor
positioning in their environment.

Even though the participants have not been asked explicit to label rooms by their own,
they have been very motivated to do so. This has lead to an exploration of the �rst 4
rooms within 6.5 hours (starting from the labelling of the �rst location)(identi�ed in
evaluation section 6.3.1 time per classi�cation).

From the results of this user study it can be seen, that the introduced clustering algorithm
of this work depends on many factors. One of the most important is the number of
labelled data. Another is the environment which contain the number of available
networks, changing network signals and room size.

Analysing the user behaviour the user study identi�ed (table 6.1), that at the fourth day,
the users spend already less than ten seconds to answer feedback requests.

The SUS score reached 79.72 which states a user experience which is ranked between
good and excellent (SUS results in �gure 6.7). The participants of the study have been
very positive about installing an application on their mobile phone and get the service
of indoor positioning without any additional hardware. Using noti�cations to receive
feedback is accepted by the user, even though it must be focused to not ask the user too
many times in a short period.

Finally, the evaluation proved, that the user do not need to process a distinct training
phase. This is a huge di�erentiation to most of the mentioned indoor positioning
systems in the related work section. The user can start to use the system right from the
the installation on his smartphone.
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Chapter 7

Conclusion

This section concludes this work about indoor positioning. Therefore, the key aspects
are summarized. Afterwards, additional future work is proposed.

7.1 Conclusion - Requirements

The indoor positioning system of this thesis focused on the use for users in the real
word. In the analysis section, requirements have been de�ned. Based on them this
thesis is summarized. The analysis resulted in the following eight requirements.

7.1.1 <R.1> Sensors and <R.2> Localization

Indoor positioning can be achieved in di�erent levels of accuracy. While additional
hardware can improve the accuracy, WiFi �ngerprinting can provide a room-level
accuracy. We have proven that WiFi �ngerprinting has an accuracy which is satisfying
the users needs. In addition the implementation has shown that WiFi �ngerprinting can
be conducted using a smartphone which does not require the user to add any additional
hardware. Further, the user already carries the smartphone by his side most of the time.

7.1.2 <R.3> Scene Analysis (Clustering)

For analysing the WiFi �ngerprints and predict the location data clustering is required.
In this work a novel process from individual �ngerprints to room-level clustering has
been introduced. Compared to other approaches referred in the section of related work,
our indoor positioning system focus on the integration of user information. These can
be the measured information about when the user is moving and when the user is still.
To match identi�ed location clusters with human readable labels, the user is required
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to provide feedback. During the user study, the indoor positioning system has been
running as a background service on android devices. The results showed that after two
days, the average user had to spend less than 10 seconds per day to provide feedback to
the location requests.

7.1.3 <R.4> Environment Representation

The environment representation of this indoor positioning system is linked to the
user interaction. This thesis showed that the user can immediately understand the
hierarchical labelled structure of rooms in his environment.

7.1.4 <R.5> User Information

This work used three di�erent types of user information.

• User Movement: The internal accelerometer detects if the mobile device is
moved and thereby detects movements of the user.

• WiFi Fingerprints: The WiFi networks surrounding the user and their received
signal strengths are recorded to generate WiFi �ngerprints and recognize previ-
ously visited locations.

• User Feedback: The labelling of locations requires the feedback of the user. This
adds the context information to a recognized cluster of �ngerprints.

We showed that an indoor positioning system can provide contextual data of locations.

7.1.5 <R.6> User Application UI

While in this work the user interaction is important to label locations, the interactions
of the user have been reduced as much as possible. Therefore, the user does not need to
do an initial training phase and thereby interacting with the UI. In this approach, the
user only has to answer noti�cations and the indoor positioning system is clustering
locations and increase accuracy without explicit labellings.

7.1.6 <R.7> Accuracy

The accuracy of the indoor position depends on various inputs. At �rst, the available
networks and their signal strengths vary. Second, environmental constraints such
as walls, windows, and moving humans change the detected �ngerprints. Third, the
clustering depends on the given data which can lead to incorrect clusterings. Finally,
it depends on the feedback of the user and the visited locations. This makes it hard to
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provide one number for the accuracy. The recorded user study data show that for some
environments the clustering did not perform very well, while for others the correct
location has been detected very accurate in the impression of the user.

7.1.7 <R.8> Robustness

The mechanism of requesting user feedback is a strong tool for robustness against
changes. Old �ngerprints of an location are prioritised lower than the latest �ngerprints.
Thereby, updates - which are recorded in the latest �ngerprints - improve the accuracy
over the old measurements. Further, the algorithm requests user feedback in case its
certainty decreases.

7.1.8 Interface to other Applications

This indoor positioning system provides data to third party applications through a
subscription service. Thereby, third party applications can register their server at the
indoor positioning system and whenever the location changes, the third party gets
noti�ed.

Internally the system is set up as a framework enabling further technologies to be
used for positioning. Currently, Wi�, Bluetooth LE and Android Location Service are
implemented.

7.2 Future work

This indoor positioning system is currently at a state where it can be used by real
users and where the individual components like the background service, noti�cations,
clustering and sensor recordings work together. This work can be used as a basis for
further implementations and extensions.

7.2.1 Robustness and Clustering

As visible in the evaluation section, the robustness is not given in all environments.
Since this depends on various parameters, these parameters can be further analysed
and their impact on the overall result measured. Elements can be the user interaction,
WiFi signals, clustering algorithm.

The clustering mechanism can then be further improved on the results of these de-
tections. Another approach is to add another clustering algorithm and measure the
di�erence on the predicted location.
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7.2.2 Integration to Interact with Devices

The goal is to make the indoor positioning system be used by real users outside the user
study. This requires use cases and third parties which can interact based on location
input. Such third parties can be smart environment orchestrators like DS2OS and
meSchup, and other applications on the smartphone.

7.2.3 Activities

Users complained that they are in the car or public transportation quite often during
the day. This thesis did not make use of GPS data so far. Mixing indoor and outdoor
positioning data can track the position of the user continuously. In addition, the activities
of the user can be added as location. One example can be to use the android activity
service. This service can detect when the user is driving in a car. This information can
be used to label the position of the user as "in a car" instead of the currently shown
"unde�ned location".

7.2.4 Share Location Learnings

It is often important to know on the �rst visit in large buildings where the is the
current location and where do you have to go. To get information on the initial visit,
the database must already provide a clustering of the �ngerprints for the locations in
this environment. This can be achieved using a central database for �ngerprints and
techniques.
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Icons - Flaticon

The icons used in the application and in this thesis are provided by Freepic from
http://www.�aticon.com.
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