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Abstract

At the core of the Internet of Things (IoT) is an exchange of data. Sensitive data is often not
protected from unwanted access in the IoT, since removing data from the computational process
can potentially limit the functionality of the system. The trade-off between protecting the user’s
privacy, and functionality is therefore currently decided in favor of the latter. However, user ac-
ceptance of IoT solutions is critical, since IoT systems are often deployed in personal spaces and
therefore processes sensitive data. In order to give the users control over their privacy-relevant
data, a fine-grained privacy control mechanism is offered to the user.
In this thesis we extend the group-based access control of the Distributed Smart Space Orches-
tration System (DS2OS), a framework for managing smart environments. The additional access
control designed in this thesis can use any attributes of a system to express conditions in the
policies, e. g. location-based conditions.
Besides the fine-grained, multi-factored access policies, the contribution of this thesis is the in-
tegration of a pre-processing unit into the privacy protection functionality. Obfuscation alters
a data set so that it fits the user’s privacy understanding, e. g. by summarizing or leaving out
some data. This way, the coarse-grained data might still be functional to the system, while the
privacy of the user is protected.
An expressive policy language is designed, using state of the art tools and frameworks, while
keeping the understandability of the language, and a low system complexity in mind. The pri-
vacy policy is integrated into the DS2OS, where it is able to query oracles for evaluating policy
elements, or to obfuscate the data. By using oracles to evaluate the policies, the system is highly
adaptable to various usage scenarios and can transform with a growing system.
The prototype is evaluated for usability, and the performance of the system is compared to the
previous state by measuring the latency that is introduced by the privacy protection function-
ality.





Zusammenfassung

Eine zentrale Eigenschaft des Internet of Things (IoT) ist der Austausch von Daten. Sensible Da-
ten werden im IoT häufig nicht vor ungewolltem Zugriff geschützt, da ein verminderter Datensatz
die Funktionalität des Systems einschränken kann. Aus diesem Grund wird die Funktionalität
des Systems momentan als wichtiger bewertet als die Privatsphäre der Nutzer. Jedoch ist die
Akzeptanz der Nutzer essentiell, denn häufig werden IoT Systeme in privaten Räumlichkeiten
eingesetzt, wodurch sensible Daten verarbeitet werden. Um den Nutzern eine Kontrolle über
ihre sensiblen Daten zu geben wird ein feingranularer Datenschutzmechanismus zur Verfügung
gestellt werden.
In dieser Arbeit wird die gruppenbasierte Zugriffskontrolle des DS2OS, welches ein Framework
zur Verwaltung von Smart Spaces ist. Diese Zugriffskontrolle kann jegliche Eigenschaft eines
Systems in den Zugriffskontrollregeln nutzen um Bedingungen zu formulieren, ortsbasierte Be-
dingungen sind nur ein Beispiel hierfür.
Ein weiterer Beitrag neben der feingranularen Zugriffskontrolle, den diese Arbeit liefert ist die
Eingliederung von vorgelagerter Datenveränderung durch die Datenschutzfunktionalität. Da-
durch wird der Datensatz so verändert, dass er dem Privatheitsverständnis des Benutzers ent-
spricht, z. B. durch eine Zusammenfassung oder ein Auslassen von Daten. Dieser weniger um-
fangreiche Datensatz kann immer noch ausreichend für die Verarbeitung durch das System sein,
und schützt zugleich die privaten Daten des Nutzers.
Eine ausdrucksfähige Regelsprache wird unter Zuhilfenahme von neuesten Tools und Frame-
works entwickelt, wobei die Verständlichkeit der Sprache, und eine geringe Komplexität des
Systems beachtet werden. Die Zugriffskontrollregeln werden in das DS2OS integriert, wo es die
Möglichkeit schafft andere Dienste anzusprechen, um Elemente der Regeln auszuwerten, oder
um Daten zu verändern. Diese Dienste erhalten die hohe Anpassbarkeit des Systems an ver-
schiedenste Einsatzzwecke, und können mit einem wachsenden System mithalten.
Der entwickelte Prototyp wird hinsichtlich seiner Nutzbarkeit analysiert, und die Systemleistung
wird mit der des ursprünglichen System vergleichen durch eine Auswertung der zusätzlichen La-
tenz die eine Auswertung der Zugriffsregeln mit sich bringt.
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Chapter 1

Introduction

1.1 Topic

The General Data Protection Regulation (GDPR) is a European privacy and data pro-
tection law, which became enforceable in May of this year. It aims at giving people the
control over their personal data, and that data is protected by design and by default.
This approach fosters an increased privacy awareness and protection. Guaranteeing
privacy by default means that data processing entities have to make clear what data
they process. The highest privacy protecting configuration should be the default set-
ting of their system, so that users do not have to make an effort if they want to protect
their privacy. Personal data should also only be processed if is required for a specific
purpose. Privacy by design requires that those protection mechanisms are integrated
into the system and considered for the whole data processing.

One area where privacy protection is still widely ignored is the Internet of Things (IoT).
The Internet of Things (IoT) is an environment made up of smart devices, or things.
Those are real-world objects and entities, which are able to perform computations and
to interact with each other [16]. This creates a pervasive integration of smart devices
into the environment. The environment changes dynamically, depending on the type of
the devices that are in it.

Since the core of smart environments is data exchange and data processing, the main
focus of current IoT systems is on high performance. A study by the Information
Commissioner’s Office [27] has shown that the majority of current smart devices do
not inform users about the personal information they process, as it is required by the
GDPR.
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However, awareness for privacy in IoT is increasingly considered, not only because of the
GDPR, since it was noticed that user acceptance of pervasive computing environments
is low, due to the fact that users perceive a lack of control over their data [10]. Therefore
security and privacy are seen as the biggest concerns in the IoT by some studies [1, 10].
Since IoT solutions are commonly deployed in personal spaces, the data processed by
the IoT is also a highly sensitive one. In order to increase user acceptance of IoT so-
lutions, privacy should be enforceable in the system, and even integrated from early
development stages on, so privacy by design.

This thesis will implement a privacy protection functionality for the Distributed Smart
Space Orchestration System (DS2OS), which is an open-source framework for managing
smart environments [28]. The properties of a pervasive computing environment such as
the DS2OS confront us with certain specific requirements. The mechanism has to be
adaptable to new contexts, since the entities in a smart environment are heterogeneous
and new types are introduced constantly. Actions are happening in real-time, therefore
immediate responsiveness is important. A trade-off between performance and privacy
has to be considered. Further problems are that smart environments have to be scalable,
and resource efficient, since the devices are usually limited in their computational power.

Commonly, access control is a binary one, where access to data is either granted or
denied. An approach that goes a way in-between is to obfuscate the data, which means
that certain data points could be left out in the query answer, or it is summarized in
a way that abstracts sensitive data to a coarser level, which is no longer considered as
privacy relevant.

We will therefore define policies that let the users express their privacy understanding.
Policies are chosen for declaring a privacy understanding, since they are adaptive, and
allow for a flexible control over a system’s behavior, which fits the requirements for IoT
environments [24].

1.2 Goals and research questions

The goal of this thesis is to develop a mechanism that can protect privacy relevant data
with a fine-grained access control policy. The policy has to be able to use any attributes
of the environment that are available, to express conditions based on these attributes.
The functionality has to be adaptable to the great diversity of pervasive computing
environments. A mechanism that is new for IoT contexts is data obfuscation, which is
also aimed for in this thesis.
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1.2 Goals and research questions

The thesis develops a prototype that is based on the DS2OS framework, and the research
that is the basis of this framework [28]. The existing access control of the DS2OS is
a binary one, where access is either granted or denied, based on roles, or group mem-
bership. We plan to extend this access control to be more expressive and configurable,
which allows the users to enforce their privacy understanding for more contexts, and
with a finer control over the released data.

The following research questions declare the main challenges and important aspects that
are addressed in this thesis. It is a guideline for the next chapters.
The individual research questions are numbered, and shortened to RQ.X. This allows
us to later reference back to the goals more conveniently.

RQ.1 How can a privacy policy extend the existing access control, achieving
a fine-grained access control?
The existing access control is based on group membership. What are solutions
that can express a privacy understanding based on more environment attributes?

RQ.2 How can a high expressiveness of the policy be achieved while being
understandable?
Declaring a policy language that is able to express a more fine-grained access
control can easily become too complex for novices to understand. The developed
policy language should be understandable without loosing the high expressiveness.
Being able to alter the data that is disclosed gives the users a greater control over it,
and allows them to define their privacy understanding at greater detail, therefore
it is also included in the policy language.

RQ.3 How can the complexity of the DS2OS system be kept at the current
level?
Understanding how a system works takes some time, and we do not want to intro-
duce any major additional complexity. New functionalities has to behave similarly
to the existing system. We want to reuse existing mechanisms of the system, as
this helps us in maintaining the system’s complexity and understandability.

RQ.4 How can the performance of the DS2OS system be maintained or ap-
propriately slowed down?
Introducing privacy policies reduces the processing speed of the system, since it
has to take more factors into consideration. We declare the goal that the response
time of requests should stay below 1 second, ideally it should stay below 0.1 sec-
onds to achieve seemingly instantaneous responses (see [26]).

3
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Another factor that is considered is to maintain the autonomy of the DS2OS by
keeping it distributed and self-managing.

1.3 Outline

In chapter 2, privacy challenges in general, and in the IoT domain are analyzed, and
possible solutions which employ a policy language are inspected and assessed. The
DS2OS is analyzed in regards to the features that are relevant for the access control.
Chapter 3 looks at related work that is closest to the privacy protection implementation
proposed by this thesis, and compares and evaluates it for applicability.
A prototype is designed and implemented, which overcomes the challenges identified in
the first chapters. The design is presented in chapter 4. Specific implementation details
of the prototype are explained in chapter 5.
The developed prototype is tested against the requirements identified in the first chap-
ters in chapter 6.
Chapter 7 summarizes the achievements of this thesis, and possible enhancements to
the proposed solution are listed in chapter 8.

4



Chapter 2

Analysis

This thesis aims at defining a privacy policy language for an IoT environment that is
able to express the user’s understanding of privacy conform data sharing. As chapter 1
states, the policy language has to be able to include diverse environmental attributes
as conditions for the access control (see also RQ.1). The data that is released upon
an access grant also has to be configurable, as RQ.2 states. To be able to design
such a policy, we first have to understand what privacy is, what the parameters of IoT
environments are, and what policy solutions exist for those challenges.

Privacy is a term that means different things to different people [25], and different
application domains make the privacy definition even more difficult. Smart spaces are
highly dynamic, and composed of diverse types of devices. The privacy requirements
that users can have in general, and the challenge of introducing privacy in a pervasive
computing environment are explored in section 2.1.
First, general privacy aspects are explored in subsection 2.1.1.
Privacy aspects that are specific to smart spaces are discussed in subsection 2.1.2.

Policy languages are discussed in section 2.2.
Policies chosen as a means to declare the user’s privacy understanding, since they are
an adaptive and flexible means to control a system’s behavior. In order to control the
system’s components, a semantic description of is has to be present and capable of being
integrated into the policy language. Therefore we extract relevant contexts for describing
environments, and how policy languages in general use them in subsection 2.2.1.
In subsection 2.2.2 we look at existing policy languages for smart environments to find
current challenges and solutions, and we gain an understanding for how a fine-grained
language is designed.
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A new mechanism in access control is data pre-processing. We want to integrate this into
the policy language we design and therefore explore existing solutions in subsection 2.2.3.

The goal of this thesis is to design a fine-grained access control for the DS2OS. The
aspects that are relevant for integrating this access control into the system are explored
in section 2.3.

Lastly, section 2.4 summarizes the most useful findings from the literature.

2.1 Privacy

2.1.1 General aspects

Warren et al. define privacy as the „private life, habits, acts, and relations of an indi-
vidual“ [38]. This broad definition shows that privacy starts where more insight into
a person’s life can be gained. This insight into a person’s life can take many forms,
as some for example willingly share photos of themselves with the world, while others
regard them as confidential and would only share their photos with a specific subset of
people, or even none at all.

Westin introduce the term information privacy, where a person decides „when, how and
to what extent information about them is communicated to others“ [40]. So with this
definition, the notion of privacy is moved from a person-centric view to an environment
perspective.
Defining what privacy is to a person is difficult, as Shankar notices when asking people
about their personal data. Shankar finds that the term is too abstract and therefore
doesn’t speak to the person, and only example scenarios which helped them see which
information might be interesting for others to gain and which they want to protect [34].
Tang et al. notice that the number of recipients influences the privacy decisions a user
makes [37].
Kwasny et al. focus on further aspects of information sharing: The nature of the infor-
mation, the access rights others have, how the data is stored, and why it is requested [25].

This shows us that privacy can have multiple aspects when it comes to personal data,
and that users should be in control of the access to their personal information. Therefore
the most relevant privacy aspect which we keep in mind for our solutions is user control
over the conditions under which data is shared, which can be time, the manner of
sharing, the extent, and other conditions.

<PR.1> Sharing conditions

6



2.1 Privacy

Notation information: In order to summarize the most relevant findings, and to later
reference back to them, we numerate the most relevant privacy requirements and list
them as <PR.X>.

Another aspect is that the users are even not aware of how information about them
can be interesting for others. Therefore the users has to be assisted in gaining an
understanding and awareness of how their privacy can be protected.

<PR.2> User awareness

2.1.2 Privacy in smart environments

Privacy has no universal definition, as the previous section shows, and therefore is indi-
vidual to the use case and the user’s needs. This means that we have to give the control
back to the users, as only they know what their privacy definition is. The problem that
arises when giving the control of the privacy definition and privacy realization back to
the user, is that the users may not be able to convey their understanding of privacy in
total clarity to another person, as Shankar notes [34]. We therefore have to determine
aspects that might be privacy relevant for users, and thereby also raise awareness of pri-
vate data. Since we want to design a finer privacy control for a smart environment, we
explore the additional privacy challenges we face in pervasive computing in this section.

As Giusto et al. defines it, pervasive computing environments are spaces with „a va-
riety of ’things’ or ’objects’ [...], which, through unique addressing schemes, are able
to interact with each other and cooperate with their neighboring ’smart’ components
to reach common goals“ [16]. This variety of objects that interact with each other be-
comes a challenge, as no one-fits-all privacy consideration can be taken for the smart
environment.

<PR.3> Adaptability to high variety of entities

Christin et al. extend Westin’s definition of privacy to make it applicable to smart en-
vironments. They state that "privacy in participatory sensing is the guarantee that
participants maintain control over the release of their sensitive information". The sensi-
tive information they refer to are the sensor readings, and the information that can be
inferred from the user’s interaction with the system [8]. Therefore our privacy definition
becomes more specific, it not only concerns the personal data, like acts and habits of
a person, but also the environmental data like relations, as we state in the previous
section. The meta data of a person’s interactions with a system, as for example the
frequency and timespan in which the person uses the system, are part of this environ-
mental view.

7
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Atzori et al. formulate it more explicitly by saying that privacy is not only for protecting
against unauthorized access but also making spying on users harder, it protects from
surveillance [1]. Shankar state that the surveillance potential shifts the power dynam-
ics. In the use case they present, they see that it is bound to marginalize the elderly
users, as they become a subject of surveillance in their own homes [34].
Protecting users from surveillance, and protecting the metadata that can be gathered in
the system is currently not our focus, since the DS2OS is a framework that is deployed
by the user, and therefore no malicious third party is involved which can exploit the
users. However this aspect can be kept in mind for a further extension of the privacy
protection functionality, since users in the system could possibly try to monitor other
users.

Similar to Atzori et al., Panagiotopoulos et al. express the need for extended privacy
protection, not only as unauthorized access, but also that the amount of personal data
should be limited and saved from unwanted processing [29]. Atzori et al. further note
that privacy in the IoT is facing a new challenge, since data collection, mining, and
provisioning are done in a fundamentally different manner, and that this allows for data
collection at a bigger scale.
This bigger scale of the data collection also relates to our goal of employing pre-
processing of data, since control over the personal data not only has to be about access
grants or denials, but also about altering the data set to be less sensitive. A big data
set can for example become less privacy sensitive when it is summarized per day.

<PR.4> Data richness

This new form of data collection becomes even more threatening to privacy when con-
sidering that in the IoT even people who are not using the IoT services may be analyzed
by the system [1].
On a general note, protecting passive participants is a challenge that is too broad for
our design, as the way passive participants are affected by the system cannot be pre-
dicted, and it is individual to the use-case. However, a general solution for protecting
passive participants of an IoT system might be the proposal by Panagiotopoulos et al.
who suggest to implement basic privacy principles in all systems, despite their high
diversity. Those basic privacy principles are derived from international organizations
and span the following topics: Purpose specification, anonymity, security, individual
participation, accountability.

• Purpose
The purpose has to be specified, explicit, and legitimate.
This can be a useful part of our policies, as users might want to share data only for

8



2.1 Privacy

specific purposes. However it is close to the previous requirement for conditions
(<PR.1>), therefore this requirements is extended to cover the purpose of the
access request as well.

• Anonymity
Anonymity is described in this context as being able to identify the "data sub-
jects for no longer than it is required for the purpose for which those data are
stored" [29].
This is not part of the focus of our design, as we primarily want to protect the
data from unwanted access. However, anonymity and data lifetime are impor-
tant aspects for privacy, and should be addressed in a further enhanced privacy
mechanism.

• Security
Security means preventing data destruction, modification, and unintended or
unauthorized disclosure.
This is already implemented in the existing access control of the DS2OS and there-
fore is not a focus of our solution.

• Individual Participation
For individual participation, participants are informed about the data stored about
them.
This is already addressed in our requirement for user awareness of sensitive data,
see <PR.2>.

• Accountability
The entities in the system that are processing user information have to comply
with the previously mentioned principles and have to be accountable for it.
The DS2OS employs certificates to identify entities, and to guarantee accountabil-
ity. Therefore it does not have to be further addressed in this thesis.

Even if those basic privacy principles are implemented as a minimal guarantee for pri-
vacy, how can we be sure that the users understanding of privacy is represented well in
the system configuration?
In the previous section, we mention Shankar’s observations that it might be difficult for
people to implement their conception of privacy because they don’t know which infor-
mation is processed, that might be sensitive to them [34] (<PR.2> - awareness). This
becomes even more important in the IoT, as the main feature of it, the pervasiveness,
makes the users unaware of the computations performed and the traces left behind,
as Panagiotopoulos et al. note. They conclude that this limits the user’s control over
privacy [29].
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The users might also not be able to foresee the way their configurations and actions
impact their privacy [11]. Therefore we have to make the configuration of privacy easy
to understand and verifiable, even for people having little privacy and technology ex-
pertise, as Henze et al. mention [17]. They foresee a challenge in making the privacy
control simple for novices, but at the same time allowing for a fine-grained control for
experts [17].
These aspects correspond to our research questions RQ.1 and RQ.2 that aim at a fine-
grained, understandable, and expressive privacy protection, and are therefore important
requirements for our solution. The policy has to enable the users to express their privacy
to the level of detail they require. If the policy mechanism is not understandable, users
are not able to protect their data, therefore understandability is highly important.

<PR.5> Understandable privacy configuration

Christin et al. highlight four main privacy challenges.
The first challenge is to include the users in the privacy decisions. A necessity in order
to achieve this is to make the privacy configuration easy to use, as the user won’t
make use of the adaptability options, or won’t understand their implications, if it is too
complicated.
We already summarize those aspects in the requirement for a simple and understandable
privacy configuration (<PR.5>).

The second challenge they see are composable privacy solutions. In order to do this,
Christin et al. propose to implement privacy implemented at the system level.
The composable privacy solution we aim at is an extended access control that can
include diverse contexts. It is implemented at system level, as Christin et al. suggest.
Therefore a composable privacy protection is also part of our RQ.1, and is covered
already be the requirement for adaptability (<PR.3>).

The third challenge is the trade-offs one is facing between privacy, performance, and data
fidelity. One example for this is that emergency situations may turn privacy concerns
into less prioritized issues.
As we state in RQ.4, we want to maintain a good performance of the DS2OS. A fine-
grained protection of privacy can potentially lengthen the response time to requests,
since more factors have to be considered and evaluated for it. Therefore finding a trade-
off between a maximum of privacy protection, and a good performance of the system is
an essential requirement for our solution. We also declared the goal to obfuscate data
in order to increase the privacy protection. Therefore data fidelity can be decreased for
more privacy, but the functionality of the system has to be kept in mind.

<PR.6> Balance privacy, performance, and data fidelity
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The last challenge Christin et al. see is how to make privacy measurable. This issue
is further divided into generalized privacy metrics, where the nature of the input and
output parameters is considered, and provable guarantees for privacy, which is often
difficult when the system is a black box and allows for no privacy guarantees or proofs [8].
This challenge is too broad to consider it in this thesis, since first of all a privacy
protection has to be defined before it can be further analyzed.

From this section we can derive that our solution must support diverse factors for a
good privacy protection. The user has to be in control of the conditions under which
data is shared, and for what purpose it is requested (<PR.1>). Since the IoT is a
diverse system, the privacy protection must be able to include a high variety of entities
(<PR.3>). Those requirements can be linked to the research question RQ.1.
Requirements that are related to the research question RQ.2 are <PR.5> (understand-
able configuration), <PR.4> (coping with rich data sets), and <PR.2> (user awareness
of sensitive information). An expressive policy language has to be able to handle large
data sets and the sensitive data in them. The user has to be supported in the policy
declaration process in order to make the user aware of sensitive data, and to make the
privacy configuration understandable.
The requirement for a balance between privacy, performance and data fidelity (<PR.6>)
is linked to research question RQ.4 and is considered throughout this thesis.

2.2 Policy languages

This section looks at privacy policy languages in general IT systems, and in pervasive
environments. As Kagal et al. note, policy languages are used to express a desired
behavior of a system and the entities in it. Since they provide a high flexibility they
are used for controlling access rights for users and services, thereby ensuring the secu-
rity of the system. An automated evaluation of the policy becomes even more useful
when considering the diversity of pervasive environments, since ensuring the security or
privacy in such rapidly changing environments can hardly be done manually [24].

If we want to control the behavior of the system and the entities in it with the help of
a policy language, the first step is to look at the entities in an environment, and how
they and the environment can be described. We do this both for general IT systems,
and for IoT environments.
In subsection 2.2.1, we look at relevant aspects of policy languages in IT systems in
general. In subsection 2.2.2, the focus is on smart environments and what aspects and
challenges are special to them.
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2.2.1 Policy languages in general

Describing an environment and the entities in it is approached via three aspects in this
section.
The first focusses on relevant contexts that can be described in policies generally (sub-
subsection 2.2.1.1).
The second part explores the vocabulary, or in other words, ontologies that are com-
monly used in policy languages that describe environments (subsubsection 2.2.1.2).
When the environment is described the policy can make logical evaluations since it then
has an understanding of the environment. How those decisions can be made and how
the policy itself can be defined is discussed in subsubsection 2.2.1.3.

2.2.1.1 Contexts

Dey et al. define context as „any information that can be used to characterize the situ-
ation of entities [...] relevant to the interaction between a user and an application“ [12].
So in basic words it is a description of the entities in an environment and the interac-
tions taking place between them.
A policy language must therefore be able to describe the information in an environment,
as well as the entities and their interactions.

<C.1> Information

<C.2> Entity

<C.3> Interactions

Notation information: In order to summarize the most relevant contexts, and to later
reference back to them, we numerate the most relevant findings and list them as <C.X>.

Other basic privacy contexts can be found in the literature when we look at the work
of Ge et al. They list data, policy, entity, and operation as the main components that
make up the privacy domain. Data is what is to be protected, the policy protects it,
entities are the service provider and service user, and the operation is the action an
entity can take on data [15].
This describes our previously found context for entities <C.2> more detailed as service
providers and service users. The interactions (<C.3>) can also stand for operations
that are performed on data. The policies can be also seen as context that should be
expressible in policies, as they can be conditions for interactions. We therefore add it
to our list of useful contexts.

<C.4> Conditions
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Ye et al. emphasize that providing the correct context to the system it is a multi-factored
challenge, where the system behavior, the recipient, the time, and place all have to be
correctly modeled in order to be able to further work on that context [41].
Therefore additional contexts that are important for describing an environment are time
and locations. The previously mentioned context for conditions can be able to express
those environmental conditions as well, but since they are present in any system, they
are listed as individual contexts.

<C.5> Time

<C.6> Location

The five contexts which we found in this section are the most basic descriptions of
any environment. They allow us to describe the information contained in a system,
the entities and their interactions, as well as the conditions under which an interaction
should take place.

2.2.1.2 Ontologies

The contexts listed in the previous section are general terms. Poveda Villalon et al.
explain that a formal semantic for the context is created when context is represented
through ontology-based models. This formal semantic can be used to share and/or
integrate context information [31].
Since we want to reuse existing context descriptions in our policy design, we look at
several reference ontologies in this section. We do not require a full description of an
environment, since the DS2OS already provides such a semantic representation. This is
explained in more detail in section 2.3. However, existing ontologies indicate to us what
contexts are important and universal to many systems.

Resource Description Framework (RDF) is a data model that can represent entities and
relations between them as a graph. The graph consists of subjects, predicates, and
objects.
The subject can be an entity (<C.2>), a feature, and instance, or in general a start
node.
The predicate links the subject and the object, it expresses a relationship, an attribute,
and many other properties. This is a more detailed description of the context for
interactions (<C.3>).

<C.7> Relationship

<C.8> Attribute
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Figure 2.1: Ontology reusability and usability (from Poveda Villalon et al. [31])

The object can be a value (<C.1>) or an end node [9].
A useful approach of RDF is to name the link between entities as predicates, since this
corresponds to the sentence structure humans use. This might help us in defining an
understandable policy.

The Web Ontology Language (OWL) is a semantic language that uses RDF/XML as
syntax which allows for sharing of the vocabulary. It aims at being a basis for creating
ontologies [6]. With the help of OWL, other ontologies can map their domain-specific
ontology onto a common-sense ontology [39].

Poveda Villalon et al. show how different ontologies are conceptualized for different
levels of abstraction in Figure 2.1. They use it to classify the ontologies used in the
mIO! ontology network they developed. It can be seen that OWL is an example for a
very basic representation ontology. Through its basic level of expressiveness, it is not
usable for a specific solution straight away, but can be reused by other ontologies easily.
Time and location are identified by Poveda Villalon et al. as the ontologies in the
mIO network that are universal and can be used independent of a specific domain.
This enforces the decision to have individual contexts for time (<C.5>) and location
(<C.6>).
The domain ontologies describe aspects of a domain, that are specific to it, but at a level
that it can be reused by applications that are more specific in that domain. Examples
are device, environment, source, interface, provider, network, role, service and user.
We can summarize the devices and other entities in the existing context for entities
(<C.2>), whereas the role, and the network are attributes of the entities (<C.8>).
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At the most individual level, the application specific ontologies are created to fit to a
specific use case [31].

The problem in pervasive computing is that it is not sufficient to describe that a device
is of a certain type, since even similar devices may support different standards and
protocol, as Dixon et al. notes. Even activities are different for every setup [13].

An ontology that shows well how a domain can be described with is the Friend of a
Friend (FOAF) ontology. It has multiple classes to describe different actors and higher
level organization forms, such as person, project, organization, or image. Those classes
can have different properties, such as age, lastName, and title, and even relationships
can be described with properties like has, made, and knows [4].
Another more domain-specific ontology is Standard Ontology for Ubiquitous and Per-
vasive Applications (SOUPA). It uses OWL as a basis for specifying an ontology made
for pervasive environments [6]. It is designed in a modular way and parts of its classes
can be mapped to other ontologies like the FOAF ontology, therefore reusing existing
ontologies and providing a higher level of interoperability. We have a closer look at it
in subsection 2.2.2.

2.2.1.3 Policy

Controlling the access to information and thereby ensuring security and privacy can be
done based on various contexts, which the previous sections explore. At the most basic
level, it can be done based on the identity of the requesting entity and the requested
object (<C.2>).
Solutions like MAC, DAC, RBAC, ABAC, or XACML are introduced which make access
decisions based on those contexts and other parameters, such as attributes, categories,
rules, etc.

• MAC
In MAC, a fixed set of rules decides whether access is granted, based on security
labels (<C.8> - attribute) [32]. The rules cannot be altered by the user and are
checked for every action requested by every entity (<C.2>). Since this access
control mechanism is quite static, it is good for a central policy that should be
forced on all entities.

• DAC
Discretionary Access Control (DAC) allows change to the policy by allowing the
users to grant their access rights to another user. This forwarding of access rights
can be restricted by using MAC as well. A known implementation of this is the
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Unix access control for files, where the owner of a file can grant read, write, and
execute permissions to the file to other entities in the system.

• RBAC
Role-based Access Control (RBAC) is, as the name suggests, based on roles. Per-
missions are assigned to roles, and roles in turn can be given to users or entities
(<C.2>). When an entity in the system got a role assigned and is authorized for
this role, it can act on the permissions that come with the role. Permissions are
just another term for conditions (<C.4>).
RBAC is commonly used in companies to manage access, since RBAC roles can
be grouped to express a hierarchy. Through this hierarchy, permissions from roles
that are lower in the hierarchy are grouped into a higher level role, making role
management easier [5].

• ABAC
Attribute-based Access Control (ABAC) was designed because limitations ofMAC,
DAC, and RBAC were emerging [23]. The complex constraints that can’t be
expressed in these policies are manageable in ABAC. ABAC can also be used to
enforce MAC and DAC.
The access control is done via policies that use attributes to evaluate a rule set.
The attributes can be of various types, such as user, resource, subject, object,
environment, and others [23].
This is covered by our contexts for entities (<C.2>), and attributes (<C.8>).

Sandhu also adds action and context to the attribute types which are included in
the authorization decision. The contexts for interactions (<C.3>) covers actions,
and context is represented through the more general term information (<C.1>).
However it is interesting to see how those can all be described as attributes, which
is also one of our contexts identified so far (<C.8>). He explains how attributes
are name-value pairs, and that the values can be complex data structures.
The possible attributes can be associated with the above mentioned attribute
types. This makes ABAC extensible, which is a primary requirement of this thesis
(<PR.3> - adaptability).

For access control, the attributes are converted into rights through the policies. [32]
The attribute based policies allow for a greater flexibility of access control, as the
attributes can be adapted to the intended domain, but it also comes with greater
complexity, since it employs a whole architecture for the policy evaluation, as Jin
et al. explain. Additionally, they note that the higher flexibility of ABAC causes
the comprehensiveness and policy declaration to be more difficult [23].
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We have a closer look at ABAC in chapter 3, since it features quite a few aspects
that are useful for the goal of this thesis.

• XACML
eXtensible Access Control Markup Language (XACML) is also attribute-based and
defines a policy language, and a request/response language for deciding the access
control. The policy language describes the requirements that have to be fulfilled to
grant access. It can be extended to include new data types. The request/response
language describes the request to access a resource, and an action that is to be
performed. This request is then interpreted, evaluated, and a result is returned.
The response can either be permit, deny, indeterminate, or not applicable [36]. We
have a closer look at XACML in chapter 3 as well.

Both ABAC and XACML are designed to be used with a Policy Decision Point (PDP) and
a Policy Enforcement Point (PEP). A Policy Enforcement Point (PEP) is responsible
for forming the request caused by the action that is to be performed. For this it takes
the attributes of the requester, the requested resource, and possibly other information.
The request is then sent to the PDP.
The Policy Decision Point (PDP) knows the policies of the system and looks at the ones
that are applicable to the request. It evaluates the request based on the policy and
thereafter knows whether access is allowed. This result is then sent back to the PEP.
The PEP grants or denies access to the requester based on the result [36].
Since this approach is used by the two fine-grained policies ABAC and XACML, its
concept is considered for our design.

Chen et al. strike a balance between those approaches by using an ontology to do policy
evaluation. First a policy is defined using SOUPA, and then sent to a PEP. The PEP
transform all actions that reach it into a SOUPA action representation. The resulting
representation and the corresponding ontology are loaded into a PDP, which in their
case is a description logic reasoner. The result of the reasoning is fed back to the PEP,
which then looks if the classification of the action is of type pol:PermittedAction which
allows access to be granted [6].

It can be concluded that context descriptions and policies both have the characteristic of
varying from being broadly applicable but not very expressive, to being highly expressive
but only for a specific domain and being of higher complexity. We consider the presented
policies in our design of our solution. The context that seems to be the most useful one
when integrating it in a policy is an attribute (<C.8>), since an attribute can express
all relevant attributes of an environment.
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2.2.2 Policy languages in smart environments

This section explores additional contexts and ontologies that are relevant for smart
environments (subsubsection 2.2.2.1). It further looks at existing policy languages of
this domain in subsubsection 2.2.2.2.

The previously explored aspects of privacy are mainly focused on how the system should
behave, on how the user can be integrated, and to some extent, on the sensitive data
that has to be protected. The identified ontologies are aimed at describing general
application domains.
In pervasive computing, describing the domain with its actors, the environment and
their interactions with an ontology is especially useful since the interaction between the
participating agents has to be done in a machine-readable format.

For privacy rules, we have to rely on a description of the environment in order to be able
to evaluate the policies. The user cannot be asked to review the correct functionality of
the privacy protection since the user would even not be involved in many interactions in
the system. The main feature of pervasive computing is that the devices communicate
with each other without a need for human supervision. Therefore the knowledge that
lies in the ontology is used for automated policy evaluation. This section explores
the contexts that are of high relevance to pervasive environments, and existing policy
solutions.

2.2.2.1 Contexts and ontologies

As access control is done to restrict access of other entities, one of the main context in
pervasive computing is the user or service that is requesting access to the data (<C.2>
- entity). For this context, multiple properties of the user or service may be useful,
as for example the group a user belongs to, the organization, the employment status,
the mobility pattern, the skills [31], or the account validity [13]. This list of attributes
is different for every environment. A commonly used ontology for linking people and
information is the FOAF [4] ontology we mentioned in subsection 2.2.1.

As we explained in subsection 2.2.1, Poveda Villalon et al. declare time (<C.5>) and
location (<C.6>) as general contexts, since they can be used in any knowledge domain.
Time is also identified by Iacob et al. as a key feature [22]. Therefore we explore those
two contexts more elaborately than other contexts, showing how relevant contexts for
a policy language can be identified on this working example.

Time (<C.5>) can be described in various forms. It can be expressed as temporal
relations and events [6], temporal units and entities, instants, and intervals [31], for
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example the time since collection, the time zone the data is collected in, or the schedule
of an agent. An example for a time interval is presented by Hong et al., where access
is granted for example from 9 to 11 a. m. on Fridays [20]. Using a time windows and
time comparison is also done by Dixon et al. [13].
We can use those fine-grained descriptions of the time context to consider it in a time-
based policy.

A reference ontology for time is the DAML-time ontology, which describes temporal
concepts, and properties of time [18]. It is defined with XML and RDF. DARPA Agent
Markup Language (DAML) describes different temporal relations, ranging from temporal
entities like instants, intervals, relations like before that work on the temporal entities,
to temporal units.
Temporal units are second, minute, hour, day, week, month, year.
Intervals can have multiple relations, which is addressed in the DAML ontology through
evaluating if two intervals are either equal to each other, one starts before the other,
whether they meet or overlap, start or end at the same time, or if one is during the
other interval.
DAML is a time ontology, but can link to an event ontology and thereby express the
relation between time and events. This is done with the help of the following predicates:
at-time, during, holds, and time-span.
The ontology also includes an ontology for a clock and a calendar, but this is beyond
the interest of this thesis.

The take-away from this time-based ontology is a reference design for including time-
based conditions into our policy. Time is not part of the ontology of the DS2OS, therefore
a logic for evaluating time conditions has to be implemented for this thesis. Some more
detailed time concepts are discussed in chapter 3.

Location (<C.6>) is considered by Poveda Villalon et al. as a general ontology for
describing the majority of domains, as we mentioned before. Location context is also
present in many setups found in the literature, especially [8, 20, 7, 13, 22, 19]. Hong et al.
identify location privacy as one of three major themes in research (beneath smartphone
privacy, and pervasive sensing applications) [19]. For Iacob et al., location is one of the
key features [22].
Therefore, it is explored at greater detail, even though location is a context that has to
be expressed in the ontology of the DS2OS. This thesis does not implement a semantic
description of location information, but it aims at finding expressive means to declare
privacy conditions for various contexts. Location serves as an example for these contexts.
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Hong et al. use location information as part of their description of their subjects and
objects (<C.2>) [20]. Christin et al. provide an example, where the presence of trusted
people like family or friends is taken as a decision criteria. Another example by them is
whether a location is considered as sensitive, which has to be defined as such a priori [8].
Schilit et al. propose using different granularity levels for location context, reaching from
basic coordinates over rooms and floors of buildings to streets, neighborhoods, cities, and
countries [33].
For our implementation, we consider it useful to allow policies to express that the
presence of other entities is required. The different levels of granularity, at which location
information can be expressed are considered.

Standard Ontology for Ubiquitous and Pervasive Applications (SOUPA) is an ontology
that contains a core ontology and an extension ontology. It is build on top of the
OWL ontology. The SOUPA Core can be used to describe contexts that are common
in pervasive computing environments. It can model intelligent agents, persons, space,
time, events, actions and policies.
Those are contexts which we already declared as important ones. We can base our policy
design on those core contexts to our policy, since they are a fundamental description of
an environment.

The SOUPA Extension ontology extends the Core ontology, and is aimed at defining
more specific application contexts. It also acts as an example for other ontologies that
might want to extend the Core ontology [6]. Figure 2.2 shows the contexts of both
ontologies and how they are linked through OWL. SOUPA is employed by Poveda
Villalon et al. to formalize knowledge about buildings, coordinates, distances, countries,
etc. [31].
We can relate to this design, since it provides high adaptability for new contexts in
diverse environments. The design in this thesis is not made for a specific use-case,
therefore it has to be adaptable to any setup. By keeping the policy open for new
contexts, as it is done by SOUPA, we can ensure this requirement (<PR.3>).

2.2.2.2 Policy

Different policy languages exist for pervasive computing environments, and we explore
some of them in greater detail in chapter 3, since they give us a good understanding
of how a policy language has to be designed for smart environments. The language
addressed in the next chapter are Rei [24] and Bark [20], together with other policies
identified in subsection 2.2.1.
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Figure 2.2: The SOUPA ontology with the Core and Extension ontology (from Chen et al. [6])

A general aspect in regard to introducing policies is mentioned by Henze et al. They
declare default policies in their setup, which allow the user to adapt the default to their
individual privacy requirements. This way, privacy experts can define appropriate and
extensive privacy policies, making use of the full capabilities of the systems privacy
configuration, and can convey their full privacy understanding in a policy [17]. Privacy
novices can use and adapt these default policies.

The HomeOS platform described by Dixon et al. provides a user-friendly representation
and implementation of a pervasive environment in a home setup. Privacy is protected
in the HomeOS by granting access to sensor data only to applications that are allowed
to access the corresponding devices.
Similar to RBAC, HomeOS has hierarchical groups for users and devices. This tree
hierarchy is chosen since it is simpler to understand and retrace by the user. It avoids
the case that a user, who is not in an allowed group, can gain access by being in another
group. The devices are also modeled in a hierarchical manner, with the difference that
the root is a spatial point. This best fits the way humans conceptualize devices in their
home. The device groups also allow for a group-specific policy on top of device-specific
policies.
A group that is unbounded from location groups is the high-security group. Devices that
are assigned to this group are not accidentally accessible, but rather have to be explicitly
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allowed for certain applications. Dixon et al. use this group to also automatically assign
certain types of devices (e. g. door locks) to the high-security group, thereby making
them even more fail-proof.
We consider implementing default rules into our prototype, since they highly improve
the usability and understandability of policies.

The access policy of the HomeOS is expressed with Datalog rules. They are of the
following format, where r is the resource, accessible by group g, using module m, in the
time window T at day of the week d, with priority pri, and an access mode a:
(r, g, m, Ts , Te , d, pri , a)

The access mode can either be allow or ask. By making the access mode either an
automatic permit or an interactive request, the user doesn’t have to define all allowed
accesses, but rather can leave some for later.
The way the policy is defined provides a high functionality, since Datalog rules can be
easily evaluated. All contexts we listed is covered in this policy, except for location
context, although this might be expressible through the module. However, we do not
want to explicitly define access policies that require a user involved, since this slows
the performance down. We rather choose to have policies that restrict access, which is
explained in further detail in chapter 3 and chapter 4.

Priorities can resolve conflicts when two entities want to access the resource at the
same time. The Datalog policies are then evaluated by formulating Datalog queries.
Dixon et al. stress that this policy language has a good usability, as it can be translated
into English sentences, and can be easily visualized. It might be too limited for some
setups, but they conclude that for the HomeOS it is able to express all relevant privacy
rules [13].
The idea of transforming the raw policy into English sentences is useful and is explored
in chapter 3.

2.2.3 Data Pre-Processing

The previous sections list solutions that consider multiple aspects for privacy and how
policies can allow or deny access to data based on those aspects. A functionality, that
only few systems even consider, is data pre-processing, or data obfuscation. With data
pre-processing, the data is altered and adapted to the users understanding of privacy,
before it is shared with others. This helps in privacy concerns because by altering it,
the data needed by a service is still available, it only is less precise. This way, the
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functionality of a service can be kept unchanged, while the owner of the data has no
privacy concerns with this level of data sharing.

An example for this is presented by Atzori et al., where a sensor shares only the approx-
imate location of the individuals it senses. This is a trade-off that might be sufficient
for the processing services [1].

Patrick describes a process that can use PEPs and PDPs to assemble a privacy conform
response to a request. First, the request is sent to the PEP, which asks the PDP for
the correct access rights on the requested data. The PDP returns them, and the PEP
obfuscates any information that is not accessible by the requester. This is either done
by removing it from the response, or by encrypting it. The decision on what data is
included in the response is made based on policies. The patent proposes using XML
queries or XML Path Language to remove or alter inaccessible data [30].
Using policies to declare how data should be altered is a useful approach, since we can
thereby integrate it into our access policy.

Davies et al. propose a privacy enforcing architecture that comprises a mediator that is
able to obfuscate data aspects based on privacy policies. They name a video feed as an
example, where a few still images can be gathered from the feed, thereby keeping the
complete video private while still allowing some usage of the data. Another example is
to blur the faces of all people, or only the faces of a specific set of people [10].
Those obfuscation examples, and the pre-processing architecture are useful examples
for data obfuscation.

Taking these examples, more privacy related data actions can be thought of that can
be applied to the data in order to protect sensitive information. We explore more
possibilities in chapter 3 and chapter 4.

2.3 Relevant aspects of the VSL

The Distributed Smart Space Orchestration System (DS2OS) framework developed by
Pahl [28] is an integrated approach to the fragmented smart device market. It offers the
possibility to connect smart devices from different vendors to a smart space, overcoming
vendor silos. This section explores the most relevant aspects of the DS2OS.

The Distributed Smart Space Orchestration System (DS2OS) consists of a VSL middle-
ware, a Smart Space Store (S2Store), and VSL µ-services. The VSL is implemented in
Java.
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In order to gain an overview of the functionality of the system, the first sections explain
the connections between the individual central entities.
The services of the VSL are data centric, which means that services do not offer a certain
functionality, but instead offer data of a certain type. How the data and the µ-services
are managed in the VSL is explained in subsection 2.3.1.
The S2Store is an App store for smart spaces and is described in greater detail in sub-
section 2.3.2.
The DS2OS can consist of multiple VSL smart spaces, in other words, DS2OS sites.
Those sites each have a SLSM, which is described in subsection 2.3.3.

Understanding how data is managed in the DS2OS requires us to examine the data for-
mat, which is described through context models. They are explained in subsection 2.3.4.
The data is stored and managed by KAs, which are introduced in subsection 2.3.5.
Services in the VSL are wrapped and distributed as a service package, which is explained
in subsection 2.3.6.
Since this thesis introduces a more fine-grained access control to the DS2OS, we look at
the existing access control mechanisms in subsection 2.3.7.
In subsection 2.3.8, the functionality of search providers is explained, as they provide
the central service of discovering context.

2.3.1 VSL

The Virtual State Layer (VSL) is a distributed Peer-to-Peer (P2P) network of entities
called KAs, which manage the context of the different services. It can be described as
a distributed operating system of the smart space [28]. The KAs are central for the
implementation of access management and therefore vital to enforce more fine-grained
access control based on privacy policies. See subsection 2.3.5 for a detailed description
of the functionality of KAs.

The VSL is highly dynamic and extensible, as it is a µ-middleware. A µ-middleware
provides basic functionality, to which new services with new functionality can be added
during run time. Since the µ-middleware takes care of the smart space management, the
programmer doesn’t have to worry about this and thereby simplifies the development
process of new services. It has the central task of provisioning context to the services in
the smart space. New services are added via a unified interface whereby the interoper-
ability between services is guaranteed [28]. The unified interface in the VSL are context
models, which are further explained in subsection 2.3.4.
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Figure 2.3: Topology between the App Store and the DS2OS sites (from Pahl [28])

2.3.2 S2Store

Understanding how a service is installed and used in the DS2OS is required in order
to assess where the extended access control is implemented. One central, global entity
to the DS2OS is the Smart Space Store (S2Store). It functions like a smartphone app
store, as its task is to manage service executables (jar-files in case of the VSL) globally.
The service executable are contained in a service package, which we explain in greater
detail in subsection 2.3.6.

Developers upload their new services as service packages to the S2Store, where they are
made available to everyone. See Figure 2.3 for a schematic view of the functionality of
the S2Store. When some node in the VSL wants to install a service that is available
in the S2Store, the service package is downloaded from the store. The blue arrow
in the figure shows how the service is instantiated in the local site. The Site-Local
Service Manager (SLSM), that is part of this process, is explained in the next subsection
(subsection 2.3.3).

Since the manifest of services is considered as the location where the policies are de-
clared, the process of service distribution is explained to such extent. We also intend to
offer the possibility for default policy rules, which are uploaded with the service package
to the S2Store.
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Part of the S2Store is the also globally unique CMR, which takes care of managing
the context models. The CMR offers crowdsourced convergence mechanisms for the
developed services and the context models, and offers an information exchange platform
for service developers and users. The CMR stores and distributes context models which
can be used in multiple smart spaces [28]. The functionality of the CMR is further
explained in subsection 2.3.4.

2.3.3 SLSM and NLSM

As the name suggests, the Site-Local Service Manager (SLSM) performs management
tasks for the local DS2OS site. One SLSM instance is run on one of the nodes of a
site, managing the site’s resources and services by coordinating the Node Local Service
Manager (NLSM)s on each node. A NLSM manages all the VSL services on its node, by
monitoring, starting, stopping, or pausing them.

When a service is to be deployed on the local site, the corresponding service package
(see subsection 2.3.6 for more detail) is downloaded from the S2Store into the service
repository of the SLSM. The SLSM then redistributes the service package to a chosen
node in the site which stores the package in its NLSM. It does the same in case a service
update is available at the S2Store [28].

2.3.4 Context models and the CMR

The first sections of this chapter describe the contexts that are used in other imple-
mentations and related literature. This section explores how context is described in the
VSL, and how the semantic representation of the entities is structured.

Context models describe the information about the real world (i. e. context) that is
produced by a service, using XML as markup language. They structure the context and
thereby create a description of the world. A description of a world is an ontology, and is
usually defined as subject, predicate, object. In the VSL, the Context Model Repository
contains the ontology, since it contains the context models of the VSL. The identifiers
of the CMR are the subjects and objects. The predicates are matched by deriving and
composing, which is explained in the next paragraphs.

The basic data types, with which all further data types can be created, are /basic/text,
/basic/number, /basic/list, and /basic/composed. A new data type that inherits from
those basic types can for example be a boolean value. The following context model can
be derived for this purpose:
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<boolean type="/ basic / number " restriction =" minimumValue =’0’, maximumValue =’1’">
0

</ boolean >

Listing 2.1: Context model for a boolean value

The creation of new data types is not limited, for example the previously shown boolean
value can be used to describe the functionality of a lamp. A lamp can either be on, or
off, and to represent this, the data type /derived/boolean is inherited, and the initial
state of the lamp is set to "0".
<lamp type="/ derived / boolean ">

0
</lamp >

Listing 2.2: Context model of a lamp

Composing a new context model can be done by defining a new ModelId that contains
an existing context model, and can be multiple nodes of different types. An example is:
<specialLamp type="/ basic / composed ">

<lamp type="/ derived / boolean ">0</lamp >
<greet type="/ basic /text"></ greet >

</ specialLamp >

Listing 2.3: Context model that is composed of a lamp, and a text node

The context models can inherit from multiple other context models which allows a node
to have different functionalities. To stay with the lamp example above, our lamp could
also have the possibility to change its hue. The context model then looks like this:
<betterLamp type=".../ hueChangingLamp , .../ lamp">
</ betterLamp >

Listing 2.4: Context model of a multi-purpose lamp

The lamp can then be used either as a normal lamp, which can be switched on and off,
or as a color-changing lamp where the hue can be set.

Since context models describe the world, a semantic search of the services and the
represented data can be performed, which is elaborated in subsection 2.3.8.

In order to understand how new services are created from those context models, we have
to understand the CMR. The Context Model Repository (CMR) is a global repository
and part of the S2Store. It is responsible for storing and exchanging the context models
of the DS2OS to the VSLs, making them accessible to everyone. When a service is
deployed, the corresponding context models are instantiated from the global CMR into
the VSL context repository.
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Figure 2.4: VSL meta model with global CMR and local KA (from Pahl [28])

By involving the global CMR in the service instantiation process, the publication of
context models is encouraged, which in turn helps with crowdsourcing services. Through
this, the shared context models can be found by other developers and reused.

When a new service is developed, the developer uploads the context model to the CMR.
Context models have a unique ModelId, which ensures that the context models are
consistent throughout the whole network. The unique id also ensures that the context
models are consistent in the whole smart space, which in turn makes services portable.
In the local site, where the service is to be registered, the context model gets loaded
from the CMR into the local CMR service. A new instance of the context model is
instantiated and is assigned a new identifier. The CMR service is a caching proxy for
accessing the CMR. The created context model instance is then associated to a KA and
used to create a VSL node. See Figure 2.4 for an overview of this functionality.

The context node is of a certain type, described by its context model. In the case
of Figure 2.4, it is of type deviceA and is assigned a new name, in this case device7.
The node is instantiated based on the context model in the CMR of deviceA. Since
the context model of deviceA contains a node of type lamp, a node of type lamp is
automatically created inside of device7.

The nodes also have further attributes, that are passed via the context models. Besides
the data types, ReaderIDs and WriterIDs are passed, which declare the access rules.
How the access management works, using these attributes, is shown in subsection 2.3.7.

The type of the context node is used to identify the data type (e. g. number, text).
Besides the data type, the type also declares the functionality of the context node, since
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the ModelId points to a context model in the CMR. This globally stored context model
is associated with a functionality (e. g. door, lamp, ...) and therefore describes the
functionality of the context node.

The described VSL types represent an inheritance relationship. They declare that a
certain context node is-a certain type of service (e. g. lamp). As each site is uniquely
named, and the context nodes are also assigned unique names, hierarchical addressing
is implemented. Through the hierarchical addressing, a composition relationship can
be described, as it can for example be seen that node A has-a lamp service. Those
two relationship descriptions make the CMR an ontology for the VSL. The ontology is
extensible, self-managing, and collaborative, since the CMR stores the context models.
We make use of this ontology, as it is explained in subsection 2.3.8. This description
of the environment also relieves us of the task of defining a new ontology for the data,
which we need when formulating the policy language.

2.3.5 KA

The nodes of the P2P middleware are called Knowledge Agent (KA)s. Sensors and other
smart devices are attached to the KAs, A service that uses those smart devices is most
often connected via services to the corresponding KA. The KA stores the information
of the service in the form of context nodes in its context repository. The context nodes
are organized in a knowledge tree (see Figure 2.4). Since the KA takes care of the data
storage, the developer of a service doesn’t have to worry about it.

The developer can further use the KAs for context routing, as the KA provides various
methods to access the stored context. The main methods are get, set, subscribe, and
notify. The nodes are addressable via the agentID, the serviceID, and the path that is
described by the context model. The lamp23 from Figure 2.4 could for example be a
lamp on a smart mirror, and would be addressed via /bathroomAgent/mirror/lamp23.
See Figure 2.5 for a schematic view of the KA with the context manager and the context
repository.

Since we have a distributed P2P network of KAs, where every KA provides different
services, we need a way to discover those services to be able to access them. The
KAs synchronize the node structure of their context repositories periodically, which
forms the VSL µ-middleware. Through this, a KA has a local representation of the
context available in the VSL, making context access more reliable since even during a
connectivity loss the context is still available.
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Figure 2.5: Context Management Architecture of the VSL (from Pahl [28])

2.3.6 Service Package

The service package is mentioned in subsection 2.3.2 and subsection 2.3.4. It is a
container that packages the service executable (jar-file), the meta data of the service as
a service manifest, and the service certificate.

The service manifest protects the service executable by storing a cryptographic hash,
so that tampering with the jar-file is noticed. It further contains the unique name
of the service, the developerID, a version number, and the context models that are
required, obsoleting, or conflicting the service. For further service management, the
computational resource requirements, and resilience requirements are included.
The service manifest is of interest to this thesis, since it can be extended to include
a privacy policy. Storing the policies in the manifest has the advantage that default
policies can be distributed with the service executable, and therefore ease the usability
of the policies. The decision on where to declare the privacy policy is discussed in
chapter 4.

The service certificate protects the service manifest since it includes a hash over the
manifest. The service package is created and protected using the developer’s public key,
and then uploaded to the S2Store.

30



2.3 Relevant aspects of the VSL

2.3.7 Access management

In subsection 2.3.4 we mention that the context model passes other attributes of the
context node, such as the ReaderIDs and WriterIDs. These IDs are used to determine
which entities have access to the context nodes.

All basic context types have the accessID "*" in their readerID and writerID fields set,
which grant access to any service:
<text reader ="*" writer ="*">

Text
</text >

By default, all accessIDs are inherited from the data type the context node inherits
from. So if a context model inherits from this basic text type, it is by default accessible
by every service. To further understand how access can be limited with the use of these
IDs and how this access management is enforced, we have to look at the general security
architecture of the DS2OS.

In order to be able to decide whether someone is granted access, we have to verifiably
know who that someone is. This is commonly solved by introducing certificates, which
are issued and signed by a Certificate Authority (CA) to create a trusted validation
of identity. In the DS2OS, each site has a CA, called Site-Local Certificate Authority
(SLCA), where certificates can be issued for the entities of the corresponding site. Users,
developers, and services have certificates, which hold required information in them and
can assert the identity of the entity. We already mentioned the service certificate in
subsection 2.3.6, and the next paragraph explains what a developer certificate is used
for. In general, the user of a VSL site is issued a certificate by the SLCA and it contains
certain accessIDs. Those IDs are group IDs and grant the user access to all services
which require membership of this group.

Having a CA locally per site instead of a global one makes the VSL more resilient to
connection loss and keeps the site management decentralized. Trust between multiple
sites is done explicitly. Each site’s SLCA uses a public-private key pair to sign certificates
for the entities that wants to interact with the VSL. The SLCAs are considered as trusted
entities.

As subsection 2.3.6 mentions, the service package is protected by the developer’s public
key, as it is used to create the service certificate. The service package is then uploaded
to the S2Store, where it is verified using the public keys of the developer, which is stored
at the S2Store. If this verification is successful, the S2Store signs the service package
with its own public key, adds a signed certificate to the package, and makes the service
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available to everyone. The S2Store is also a trusted CA, as its keys are initialized once
at the beginning.

When the service is to be deployed to a local site, it is downloaded from the S2Store
and the user can choose to keep the access groups as they are declared in the context
model, or whether to restrict the access by defining different access groups. The SLCA
then creates a new signed service certificate, in which the accessIDs the user chose are
saved. Only services that are signed by the local SLCA can be run in a site.

Each context node has meta data, which declares the access groups the node belongs to.
The access groups are also contained in the service certificate. Once an entity wants to
access a context node, the accessIDs that the entity has in its certificate are compared to
the accessIDs in the meta data of the context node. In the context model of the service,
the developer declares the access groups that are allowed to perform get or set actions
on the context. This is done via the before mentioned readerID and writerID fields in
the context model. If the access mode is a get operation, the readerIDs are checked,
if it is a set operation, the writerIDs are checked. If at least one of the accessIDs in
the node are matched by the entity’s ID, the access is granted. Since the access rights
are stored in the meta data of a node, the access control can happen decentralized and
faster. The accessIDs cannot be changed, since they are safely stored in the certificate,
protected by the signature of the SLCA. If new accessIDs should be allowed, the new
service package has to be signed by the SLCA.

The access groups that are used in the service certificates and the context models are
stored on the S2Store. A developer can create a new access group identifier by uploading
it to the S2Store. A description of the access group is handed in with this upload, so
that the user who uses these groups to grant access to the new service knows who is
included in the group.

The enforcement of the access rights happens on the KAs, as Figure 2.6 shows. The
requests that are sent out and received at the KAs are passed through the Request
Router (RR) and forwarded to the access control. If the access is granted, the Knowledge
Object Repository (KOR) can be accessed, meaning the context can be retrieved.

So the KAs are the main components of the VSL, since they not only store the context,
but also make it accessible to other KAs. We introduce the concept of PEPs and PDPs
in subsection 2.2.1. In the DS2OS, the KAs act as both PEP and PDP, more specifically
the RR is the PDP, since it stores and evaluates the policies, and the access control unit
that sits between the RR and the KOR is the PEP, since it enforces the access decision
made by the PDP, or in our case, the RR (see Figure 2.6).
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Figure 2.6: VSL system architecture (from Marc-Oliver Pahl, adapted)

2.3.8 Ontology and Search Providers

We explore the ontology of the VSL in subsection 2.3.4, where we describe the is-a
relationship that is achieved through the context models and the therein declared data
types, and the has-a relationship, which is achieved through the hierarchical addressing.
Figure 2.7 shows the is-a relationship, and the way the real world objects are described
using a domain ontology. This ontology is expressed in the VSL through context models,
which are therefore a semantic description of the context nodes of the VSL.

One search provider that is already implemented in the DS2OS is the type search. The
type search can be used to search the VSL for the location of all the context nodes that
are of a certain type. The search is executed by performing the following get-operation:
get / search /type/ basic /text

It searches for the nodes that are of type /basic/text.

The result of the get-operation is the address of the context nodes that are of type
/basic/text, e. g.
/ agent1 / mirror / weather /// agent1 / welcome

These addresses can then be used to access the node and to use it for further function-
ality.

A search can also have multiple parameters that are passed. Separators between those
parameters can be ? and !, where ? is the separator between parameters, and ! allows
for multiple context types to be passed. An example is mentioned in [28]:
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Figure 2.7: Context related terminology (from Pahl [28])

get / search / typeAtLocation / livingRoom /!/ bathRoom /?/ basic / number /!/ basic /text

Multiple parameters can also be separated by a &:
get / search / location /key1= value1 &key2= value2

Since we can describe the environment semantically through different ontologies by
defining new data types in the context models, we can also have different search providers
in the VSL. We can extend it to offer a location search provider for example. The
location information of each context node could either be set in the context models of
each node through type inheritance, or by saving location information in a separate
database. The type inheritance has the disadvantage, that all existing context models
do not inherit the location information, therefore have to be updated. The current
implementation of the DS2OS therefore uses a separate database to store the location
of the context nodes, since the location information also has to be stored in the case of
type inheritance for caching reasons.

2.4 Summary

This chapter explores the functionality of access control management in the DS2OS and
existing components for semantic evaluation in the literature. The focus of the next
chapters is on how the privacy can be enhanced in the DS2OS and which constraints
have to be met while introducing this new functionality.
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A conclusion that we can derive from this chapter is that our prototype must support
multiple privacy requirements (see section 2.1). They are numbered from <PR.1> to
<PR.6>, and namely are Conditions under which data is shared and the purpose of the
request, Raising user awareness, Being adaptable to a high variety of devices, Handle
rich data sets, Providing an understandable privacy configuration, and Striking a bal-
ance between privacy, performance, and data fidelity.
They are providing a guideline for how the privacy policy can address important pri-
vacy aspects. Together with the relevant contexts listed in the next paragraph, these
requirements are formed into functional, and non-functional requirements for our design
in subsection 2.4.2 and subsection 2.4.1.

The list of relevant contexts we identify in this chapter is numbered from <C.1> to
<C.8>. They are Information, Entity, Interactions, Conditions, Time, Location, Rela-
tionship, and Attribute (see section 2.2).
Those contexts let us derive which contexts have to be expressible in a policy language.
They serve as wrapping terms for all possible sub-contexts might be relevant for a pri-
vacy policy in a specific domain. For example an entity can be a user or a device,
location can be defined at various levels, from GPS data points to certain rooms in a
building.

Data pre-processing is an interesting addition to the privacy policy, since it extends the
focus of the policy from solely being about access control, to also managing the data
set that access is granted to. Data obfuscation can use the ontology of the DS2OS to
define data redaction methods for certain types (see subsection 2.2.3).
An example for this is that for a temperature sensor, one redaction method is to only
publish the average temperature of the last month, or to share only the highest or lowest
temperature measurements in a given time frame. We address this topic in chapter 3.

Since the DS2OS is a framework that is adaptable to various use cases, this thesis does
not design a policy for a specific sub-context. It already features an ontology that can
describe contexts at high flexibility through the context models, therefore we do not
need to design an ontology, but can use the example ontologies of this chapter as a
guideline for how the context of the DS2OS can be integrated.

As we discuss in section 2.3 (Relevant aspects of the VSL), the existing access control
in the DS2OS is a binary one, that either allows a user to access a service or not. It
factors in other context for the access decision, like the data, the operation (get/set),
the entities and their groups, but it does not allow other parameters to influence this
decision. The users are therefore limited in expressing their privacy understanding, and
are forced to model it to the best extend via groups, which over time leads to a high
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number of groups. Access is also either a complete access grant or denial.
It is better to allow the users to use the context of the system to express their under-
standing of privacy, because no new environmental description has to be created, as it
currently done via groups. Instead, a policy can also include a check for the status of
a lamp, if it is switched on, access is granted, or denied if it is off. Modeling this via
access groups is almost impossible.
Including data obfuscation also makes the data set adaptable to privacy needs, as access
does not have to be either grant or deny, but can be a grant to blurred pictures or grant
to average of last week’s measurements.

Time and location are contexts that are used in many systems for privacy policies. We
focus on using time and location as new contexts for the privacy policies on top of the
existing access control, since they are the most common context. We cannot predict
that the privacy requirements in a DS2OS system stay the same over time, so we have
to design our policy language in a way that it remains extensible for other contexts to
be included. The functionality of the DS2OS supports this extensibility, since context
discovery is done via search providers, which can be added to the system and can
semantically search for certain contexts. The possible design choices are elaborated on
in chapter 4.

The next two sections summarize the findings of this chapter into functional (subsec-
tion 2.4.1) and non-functional requirements (subsection 2.4.2). The previously defined
requirements and contexts are integrated into them.
The last section maps the requirements onto the research questions that are listed in
section 1.2.

2.4.1 Functional requirements

Notation information: In order to summarize the most relevant functional require-
ments, and to later reference back to them, we numerate them in the following manner:
<FR.X>

As we explain in subsection 2.3.7, the access control in the DS2OS is done via the
readerIDs and writerIDs in the context models. The access groups are set by the
developer of the service and can be adapted by the user who instantiates the service in
the VSL site. This way the user can chose different access groups, but cannot incorporate
other factors beside group membership into the access decision process. Extending the
existing access control of the DS2OS is the goal of this thesis, and therefore a functional
requirement.
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<FR.1> Multi-factor privacy decision. Including attributes that describe the system in
a privacy policy allows for a fine-grained privacy declaration. It therefore is a
relevant extension to the access control in the DS2OS to evaluate other contexts
in the access decision process, transforming the binary access decision into a multi-
factored one.

Time and location are common privacy contexts in the literature, and are therefore a
starting point for implementing more contexts in the access policies [13, 20, 31]. They
are also such basic descriptions of any environment, that they are probably featured in
most use cases for the DS2OS.
An example for location based access control id that the lights in a room are fully
accessible by all devices in the same room. Only the device or house owner is allowed
to change the state of the lamps from other locations in this scenario.
An example for time based access control is a smart door lock, which allows access to
cleaning staff from 9 to 10 on Fridays.

This also integrates all of the contexts (<C.1> - <C.8>), since being able to address
all of the contexts of the system makes the policy language as fine-grained as it can be.
The privacy requirement for expressing the conditions under which data is shared
(<PR.1>) is integrated by including all attributes that describe the system into the
access evaluation. The privacy declaration also becomes adaptable to a high variety of
entities (<PR.3>).

<FR.2> Data obfuscation. The decision to share data should not only be based on
whether a person fulfills certain criteria to be able to access the full data set.
Instead the possibility to alter the data set depending on environmental context is
beneficial, as it is explained in subsection 2.2.3. This allows for a more fine-grained
data sharing decision, and keeps the usability of the system high, as data is still
accessible, just not to the full extent.

This integrates the privacy requirement for making the conditions under which data is
shared expressible (<PR.1>), at an even greater level of granularity as the previous
functional requirement. This way, the richness of the data set can also be handled
appropriately, as it is necessary for compliance with <PR.4>.

A major advantage of the DS2OS is the self-managing organization of the nodes, where
new services can be added by a user without having to take care of the adaptation
into the existing system. The KAs take care of context access and cache the context
node structures of the VSL locally, therefore do not rely on a central node for context
discovery.
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<FR.3> Autonomy. The distributed nature of the DS2OS is a key feature and provides
several benefits and is therefore declared as a key requirement. It is not beneficial
to the system if the prototype introduces a single point of failure, e. g. in case
of connection loss. Caching previously queried information can be beneficial to
maintain this autonomy.

A balance (<PR.6>) between a fine-grained policy, and a functional and autonomous
system is considered in this requirement.

<FR.4> Adaptability. The existing DS2OS implementation is aimed at providing a highly
adaptable system for various use cases. In order to maintain this adaptability our
design makes use of the existing ontology of the system.

In the DS2OS, the search providers provide a functionality that keeps the privacy policy
extensible for further contexts that is added to the privacy description later. The
privacy requirement for adaptability is matched directly in this functional requirement
(<PR.3>).

<FR.5> Reuse. The DS2OS already provides an ontology and a semantic discovery
functionality. Reusing the existing ontology minimizes the workload of this thesis,
and ensures a better understandability for the users, since no completely new
concept has to be understood by the programmer.

This integrates the privacy requirement for understandability (<PR.5>).

2.4.2 Non-functional requirements

Notation information: In order to summarize the most relevant non-functional require-
ments, and to later reference back to them, we numerate them in the following manner:
<NFR.X>

<NFR.1> System complexity. Maintaining the complexity of the system keeps it functional
and understandable. Designing a solution that follows the logic of existing func-
tionalities of the system (such as the access granting logic) also increases under-
standability for the programmer.

For example since the current access rights are set per node and are not inherited by
the child nodes. It is therefore helpful to low system complexity when the new access
policy rules also do not influence the child nodes, but instead are relevant only for the
current node.
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Henze et al. state how experienced programmers and privacy experts should be able to
define their privacy understanding at a fine-grained level of detail [17].

<NFR.2> Expressiveness. An expressive privacy policy can represent a user’s privacy
understanding to the full extent.

This relates to the privacy requirement for defining the conditions for which data is
shared (<PR.1>).

An expressive policy is useful for privacy experts, but making the policy declaration
understandable for privacy novices has to be considered in the policy design, as the
system is not only used by experts.

<NFR.3> Understandability. A privacy idea can only be expressed if the policy formulation
of privacy policies is easy and understandable. The understandability of the access
policies also ensures their usage, since only a functionality that is understood by
the user is employed to the full level that it was intended.

This matches the privacy requirement for understandability (<PR.5>), and even covers
the requirement for user awareness of privacy relevant information that is processed, as
an intuitive policy declaration helps the user (<PR.2>).
Introducing default policies is a good approach to help the user with the service setup,
as default policies can capture the most common privacy needs. This default privacy
policy can then be extended or reduced by the user.
Using natural language is recommended to increase the understandability of the privacy
rules [20]. Having a graphical user interface for policy configuration also helps with
allowing non-experts to define a fine-grained, individual privacy policy [13].

2.4.3 Linking to research questions

The functional requirements for multi-factor privacy decision (<FR.1>), obfuscation
(<FR.2>), and adaptability (<FR.4>) can be mapped to the research question RQ.1,
which explores solutions that use an extended access control.

Research question RQ.2 requires that the policy is understandable and expressive. It
covers the non-functional requirements expressiveness (<NFR.2>), and understandabil-
ity (<NFR.3>). Reuse (<FR.5>) also plays into this topic, as a reuse of functionality
helps the programmer to recognize and understand the inner workings of the system
more easily.
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Chapter 2: Analysis

System complexity (<NFR.1>) and reuse (<FR.5>) are requirements that are related
to RQ.3, which expresses a need for maintaining complexity in the DS2OS.

The performance of the system is at the center of RQ.4, and can be linked to the
requirement for continued autonomous operation (<FR.3>).
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Related Work

This chapter presents findings from the literature, that are related to our problem, and
that can answer some of the Research Questions identified in section 1.2.

In the first section (section 3.1) we look at how the standard access control, which
is usually done based on groups (see MAC, DAC, RBAC, etc.), can be extended to
cover more contexts for defining and evaluating an access policy. We want a more fine-
grained access control which also provides the possibility to alter the level of detail for
the returned data. This aims at answering the research question for an extended access
control (RQ.1).

The section 3.2 analyzes existing policies to find a solution that conforms to the require-
ments identified in subsection 2.4.1 and subsection 2.4.2. The goal of this section is to
answer how an expressive and understandable policy can be designed (RQ.2).

Section 3.3 lists good working examples for managing the trade-off between perfor-
mance and privacy. This section covers the research questions for low system complexity
(RQ.3) and for maintaining a good system performance (RQ.4).

We summarize the findings in a tabular overview in section 3.4.

The existing solutions analyzed in this chapter are ABAC, XACML, Bark by Hong
et al., and the work by Davies et al.. The solutions are presented in a short Overview
when they contribute to the challenge of a section. Since some solutions provide contri-
butions to multiple challenges, later sections refer back to the presented solution via a
Conclusion section.
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3.1 Extended access control

In section 2.1 we explore a great number of possible contexts that are relevant for pri-
vacy, both in general, and in pervasive computing. The conclusion from this section is
that beneath the usual user group based access control (like in e. g. RBAC), contexts like
location and time are commonly employed for the privacy policy declaration. Privacy
needs vary greatly from user to user, and from environment to environment. Therefore
it is reasonable to introduce more aspects which can be included in the privacy policy
definition, so that the users can declare the level of detail they understand their privacy
at (see the functional requirement for a multi-factored privacy decision <FR.1>).
The goal of this thesis is to extend the binary access control in the DS2OS to a more
fine-grained one. Currently, access is either granted if the access restrictions expressed
through the readers and writers fields are evaluated to true, or denied if otherwise.
By introducing data obfuscation (see functional requirement <FR.2>) we can deter-
mine the level of granularity that the shared data has to have.
Our solution is not tailored to one specific use case but rather is adaptable to var-
ious domains. We look at solutions that can be extended later on by plugging in
new functionality, or by addressing external sources. See the functional requirement of
adaptability for a specification (<FR.4>).

By addressing these topics, this section finds solutions for an extended access control
(RQ.1).

3.1.1 Multiple contexts

The traditional access control is based on user identity, or basic attributes like group
membership or roles. This section presents the solutions in the literature about how
more access policies can be added to the existing access control, which incorporates more
context for this decision. See the functional requirement for a multi-factored privacy
decision: <FR.1>.

3.1.1.1 ABAC - Overview

With Attribute-based Access Control (ABAC), all kinds of attributes can be used for
access policies. This is done by associating attributes with the predefined attribute types
user, subject, object, environment, policy, and actions, as we describe in subsection 2.2.1.
Like this, the decision whether to grant or deny access can use arbitrary attributes in
ABAC [21]. Hu et al. note that ABAC is only limited by the level of granularity that the
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attributes and the computation language are able to express. This removes the need to
define individual relationships between each entity.
Hu et al. also note that one of the main advantages of ABAC is that attribute based
policies do not require prior knowledge about the individual entities which may join
the network later, since not individual relationships between entities are described, but
entities are rather assigned the appropriate attributes and thereafter the correct policies
apply to them [21].

The access control mechanism of ABAC needs to gather the attributes which are required
for the policy decision, which can be done using a context handler, or a workflow
coordinator. To evaluate the policy elements with the gathered, available information, a
Policy Decision Point (PDP) is often used. A Policy Enforcement Point (PEP) enforces
the decision made by the PDP [21].

3.1.1.2 ABAC

The high adaptability of ABAC is a working example to fulfill the corresponding require-
ment of this thesis (<FR.4>). The existing access control in the DS2OS is one, where
access is granted based on the group membership of the entities. Since the DS2OS has
a semantic description of the environment, we do not have to be limited to this basic
access control, but can extend it to include all imaginable context. An example that is
named before is that the state of a lamp can be used to determine if access should be
granted, e. g. if the lamp is switched on, access is granted.

Using adaptable, dynamic attributes to refine the existing access policies makes sense
to achieve a privacy policy which is adequate for the specific environment.
We look at the architectural benefits of ABAC in the following sections again, but for
now it can be summarized that we already have an attribute based ontology, which
allows us to use ABAC, but we still have to see how those attributes can be integrated
into a policy.

3.1.1.3 Hong et al. - Bark - Overview

Hong et al. introduce the policy language Bark, which uses natural language to express
privacy requirements. A speciality of their approach is that communication between all
entities is default-off, and sharing of data has to be enabled explicitly. This whitelisting
approach makes the system highly secure and privacy-friendly.
They also propose a two-factor authentication scheme for granting access to information.
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Figure 3.1: The sentences are constructed using the natural questions (from Hong et al. [20])

The second factor is a non-network context, or a user making decision in real-time. This
can be done via SMS, passwords, or external oracles [20].

Bark is constructed using the natural questions who, what, where, when, and how.
Who are the devices and apps, and they can have an owner.
What are the services, that the whos offer. Those two questions can be mapped to
the context <C.2> - entity.
Where describes the topology of the environment or the network (related to context
for location - <C.6>).
When is either a time restriction, a boolean function, or an oracle to evaluate functions
(<C.5> - time, <C.4> - conditions).
How describes a command or an operation, and can take many forms, from HTTP, over
Bluetooth, to TLS/UDP exchanges (<C.3> - interaction).

The sentences consist of a subject, object, action, and condition.
Subject can be a who or where.
Objects can be who, where, or what.
Actions are the hows.
Conditions are the logical connectives ∧,∨, and ¬, which are used to link the whens
together to create a algebraic expression.

These building blocks can then be used to construct a policy, as Figure 3.1 shows.

The set of rules is connected by logical disjunctions (∨), meaning that if at least one
rule is matched, access is granted. If none is matched, no access is granted.
Bark also allows for grouping of principals, the gateways/locations, and services. This
way, they can be addressed as one.
Wildcards are allowed in Bark. The problem of groups and wildcards is that it has to
be differentiated whether the rule must only apply to the requesting entity, or to all.
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Hong et al. approach this problem by adding all and one annotations to the groups and
wildcards.
The individual rules can be activated by the user, and Hong et al. suggest that policies
can be created that are specifically adapted to a certain type of device, for example by
experts [20].

The solution by Hong et al. manages the policies centrally, but enforces them locally on
the data plane. In order to cope with an unreliable network, where the centrally stored
policies might not be reachable, they introduce caching and leases. Gateways, that sit
in the network of the devices, store a copy of the central policies locally for a certain
time, defined in the leases. After this time the policy has to be renewed, and if this
is not possible, the corresponding access is returned to the default, which is no access.
The responses from the external oracles can also be cached for a time specified by the
oracle.
They also use access revocation, but it is not explained in more detail [20].

3.1.1.4 Hong et al. - Bark

We identify some aspects of Bark that are already implemented in the DS2OS:
Since the policies are defined for a service, the requester of that service is identifiable
in the VSL, therefore being the subject - who in this example. The location of the
requester, i. e. subject - where, is not yet implemented in the VSL and has to be
added by our design.
The requested operation, either get or set, corresponds to the action that is to be
performed in this example.
The requested service on a KA can be mapped to the object - what, the KA being the
object - who. Again, the location of the object - where is currently not integrated
in the VSL.
Existing conditions in the DS2OS are the group based access restrictions declared in
the context models.
Valuable extensions to the design of our policy are therefore more fine-grained time and
location evaluations.

The grouping of entities described in this paper is already partly established in the
DS2OS. The access control is done by allowing certain groups to perform read or write
operations. Grouping of attributes in general might be useful, but it already can be
done with the existing DS2OS solution, since all, lets say, fancy lamp modification are
derived from a basic type for lamps. Managing the attributes, or data representation
in case of the DS2OS, is the responsibility of the DS2OS, and not part of this thesis.
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Wildcards, as proposed by Hong et al. are not something we consider for our design,
since currently no need arises for defining those. In the DS2OS, requests by specific
entities reach specific services. Since the policy designed in this thesis is declared per
service based on attributes, we can use the hierarchical structure of the context models.
Lets say we want to define a policy for all hue-shifting lamps, we declare that requesters
have to have the attribute type hue-shifting lamp.
We are focussed on defining restrictive rules, instead of explicitly naming all allowed
traffic, like Hong et al. do.

3.1.1.5 XACML - Overview

We briefly introduce eXtensible Access Control Markup Language (XACML) in subsec-
tion 2.2.1. It consists of a policy language and a request/response language. The policy
language and the request/response language of it are both written in XML.

The policy language defines the conditions under which access is granted. Sun Microsys-
tems highlight that policies are generic and therefore one policy can be used for different
applications [36]. Another advantage is that policies can refer to other policies, thereby
making them distributed. Thereby no one central policy storage facility is needed, in-
stead XACML collects the individual results from all policies and combines them into a
final decision.

The request/response language describes what entity wants to access a resource, and
the action that should be performed in a request, and interprets the returned response.
This response is either Permit, Deny, Indeterminate (due to some error it is not possible
to return a clear decision), and Not Applicable (the addressed service cannot answer
the request). The entities involved in the request/response messages are the PDP and
PEP, as we explain in subsection 2.2.1.

We go into more detail on the policy language of XACML, since this is the focus of this
thesis.
The XML root is a Policy, or a PolicySet. A PolicySet can contain other Policies,
PolicySets, or remote policies references. A Policy is an access control policy, which can
contain a set of rules.
The possibly multiple rules in a Policy(Set) have to be evaluated to form one final access
decision. XACML uses different combining algorithms for this, one example is a Deny
overrides algorithm. It evaluates to Deny if no Permit is in the evaluation result, or if
any evaluation returns Deny. Six other standard combining algorithms are available,
namely Permit overrides, First applicable, Only one applicable, Ordered deny overrides,

46



3.1 Extended access control

Ordered permit overrides, Deny unless permit, Permit unless deny. The possibility to
define a new algorithm beneath the seven standard ones is given.

A part of the policy is a tag called Target, and it is used to define who the policy
applies to. It consists of subjects, resources, and actions. An example of a Policy that
is matched to all requests looks like this:
<Policy PolicyId =" Example " RuleCombiningAlgId =" urn:oasis:names:tc:xacml:1 .0 :rule -

combining - algorithm:deny - overrides ">
<Rule RuleId =" LoginRule " Effect =" Permit ">

<Target >
<Subjects >

<AnySubject />
</ Subjects >
<Resources >

<AnyResource />
</ Resources >
<Actions >

<AnyAction />
</ Actions >

</ Target >

<Condition >
<Apply FunctionId =" urn:oasis:names:tc:xacml:1 .0 :function:time -greater -

than -or - equal "
<Apply FunctionId =" urn:oasis:names:tc:xacml:1 .0 :function:time -one -and

-only">
<EnvironmentAttributeSelector DataType =" http: // www.w3.org /2001/

XMLSchema #time" AttributeId =" urn:oasis:names:tc:xacml:1 .0
:environment:current -time"/>

</ Apply >
<AttributeValue DataType =" http: // www.w3.org /2001/ XMLSchema #time">

09 :00:00
</ AttributeValue >

</ Apply >
</ Condition >

</Rule >
</ Policy >

Listing 3.1: Example XACML Policy that allows access to all entities if the current time is after 9
a.m. (adapted from Sun Microsystems [36])

The conditions declared in those tags are evaluated using boolean functions, and if they
are met, then the corresponding Policy(Set)s, or rules apply. XACML also uses the
target descriptions to index the policies, making them easily findable.
Mapping the request to the target tags of the policies is the task of the PDP.

And finally, contained in those layers of policies are the Rules. Most rules contain a
Condition, which is also a boolean function. If this function evaluates to true, then the
Effect that is specified for the Rule is returned. This can be Permit or Deny. In our
example policy above it is Permit.

Since XACML is an implementation of the ABAC functionality, XACML can also express
all sorts of attributes. It uses XML to express the type of the information. Taking time
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as an example, there are multiple types and functions associated with it in XACML.
There are time, date, dateTime, dayTimeDuration and yearMonthDuration for data
types in XACML. The data format of those types are yyyy-mm-dd±tzdiff for date
(tzdiff is the time zone difference to the UTC), time is defined as hh:mm:ss±tzdiff,
dateTime has the format yyyy-mm-ddThh:mm:ss±tzdiff, dayTimeDuration is of for-
mat PdDThhHmmMss.sS, and yearMonthDuration is defined as PyYmmM [2]. Capital letters
are fixed characters. P indicates that the declared time is a period.

There are also many functions associated with those types, like time-equal, dateTime-
add-dayTimeDuration, time-in-range, time-greater-than-or-equal, time-is-in, time-
intersection, time-at-least-one-member-of [35]. We can use those time types for our
time based privacy policies. The functions are useful as an example for evaluating the
time based privacy policies.

3.1.1.6 XACML

The fine-grained and extensible the language of XACML is a useful reference design.
As the example of time shows, different types are declared and evaluable with useful
functions. Reusing this existing framework is helpful as it saves us time in coming up
with the functions to evaluate the different data types.
However, the DS2OS already describes the system semantically, therefore the definition
of the data types is superfluous and only creates more complexity for the DS2OS. Only
the functions that link the different data types and can compare them are useful for our
design.

3.1.2 Obfuscation

Introducing privacy in the DS2OS aims at designing a more fine-grained access control,
with rules that use more contexts. Beneath this access control, data pre-processing is
identified to increase the privacy protection and is part of the intended design. The
access control is moved from a binary allow or deny access policy to a fine-grained allow
access, allow access to obfuscated data, or deny access policy.
This also increases the performance of the system since the data is still available to the
service, it is not held private just because it contains sensitive elements. Instead, the
data is obfuscated or denatured to a level of abstraction where the owner no longer con-
siders it a privacy threat to share the data. This reduced data set can still be expressive
enough for a service to operate on, so the service functionality is not compromised, and
the user’s privacy can be protected.
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Figure 3.2: Privacy architecture (from Davies et al. [10])

Possible solutions for how data can be obfuscated are explored in this section. This
relates to the functional requirement for obfuscation: <FR.2>.

3.1.2.1 Davies et al. - Overview

Davies et al. introduce a solution consisting of a local cloud, called cloudlet, which stores
the data of the sensors, contains a set of privacy policies, and operates a privacy media-
tor (see Figure 3.2). The mediator is responsible for storing and aggregating data, and
for enforcing privacy policies with a possibility for obfuscating the data. The mediator
can be specific to a certain data type, or for a sensor class. If proprietary data formats
are used, a conversion layer might be needed before the mediator can act on the data.
Mediators can be developed by third parties, like an open source community, or ex-
perts. This makes the mediators with their privacy policies understandable and easy
to use. Davies et al. suggest that this can spark off an industry branch for developers
of trusted mediators and thereby trustworthy privacy instances, like anti-virus software
works nowadays. Trust in those externally produced mediators can be ensured through
certificates for example. Through shared mediators, the privacy policies can also be
shared, thereby allowing for reusable privacy policies for a specific application class, or
specific devices [10].

The proposed denaturing mechanisms of the mediator can vary greatly, since the func-
tionality depends on the type of the data, or the sensor. Davies et al. name different
ways, in which the sensor data can be denatured in order to make it less sensitive.
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Different levels of granularity greatly depend on the type of data:
Images and videos can be blurred, and if face recognition is possible, the obfuscator can
be told to blur the faces of certain people.
Sensor reading can be left out or only represented at a coarse granularity level during a
specified time interval.
Summaries of the data can be created, either by temporal or spatial context: The tem-
poral summary can be a view of a day, a week, or other time intervals, summarizing
the minimum, maximum, average, totals, or other statistical evaluations of the data
produced in the time frame. Spatial summaries can abstract the data to a coarser level,
for example GPS data can be summarized to ZIP codes.
The decision of data granularity has to be balanced in order to keep the value of the
data high enough for data reasoning. A useful approach is to make it dependant on the
context [10].

3.1.2.2 Davies et al.

We learn from the paper by Davies et al. that data obfuscation has to be done per
data or sensor type. Therefore we have to keep the system and our policy language
extensible for new obfuscation mechanisms, as new data or sensor types are bound
to occur. The examples listed for different granularity levels are kept in mind when
designing an interface for the obfuscation mechanism.

The adaptability of the mediators in this solution fits the requirement for adaptability -
<FR.4>. A useful idea for our design is that new mediators can be integrated easily
through this design. The idea of allowing for an external development of those mediators
is relatable to the crowdsourcing approach of context models the DS2OS takes.
We explore the adaptability aspects of this system in subsection 3.1.3 in greater detail,
but for designing an obfuscating entity it can be said that for our design a loosely
coupled obfuscator is considered useful.

3.1.3 Adaptability

This section tries to find good solutions for achieving adaptability to different use cases,
since the DS2OS is designed to be usable in any domain, and to be adaptable to any
pervasive computing environment. Therefore introducing a privacy solution that is
specific for a certain domain, or environment setup contradicts the goal of this thesis.
See the functional requirement for adaptability: <FR.4>.
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3.1.3.1 Hong et al. - Bark

For a description of the work by Hong et al. see subsubsection 3.1.1.3.
The conditions of the Bark policy language can name external oracles for further logic
evaluation. An aspect of the approach by Hong et al. that is considered useful is how the
privacy functionality is designed in an extensible manner, allowing for new context to be
added to the decision process. An adaptable system fulfills the functional requirement
<FR.4>.

This also doesn’t contradict our other goals, since this dynamic extensibility keeps
the complexity (<NFR.1>) of the system at a manageable level. This is because the
functionality of the external oracles doesn’t have to be added to the core functionality
of the system. It also helps in making the system understandable (<NFR.3>), since the
inner working of the external oracles doesn’t have to be understood by a programmer
who just wants to use it.

3.1.3.2 Davies et al.

For a description of the work by Davies et al. see subsubsection 3.1.2.1.
Similar to the external oracles in the solution by Hong et al., Davies et al. propose a
modular design where so called mediators are responsible for the access control and
data obfuscation. Those mediators are interchangeable, the authors even consider a
market niche for those mediators. This is a logical conclusion since data obfuscation
heavily depends on the data format or the device type, therefore specialized mediators
are needed for the different types.

In the proposal by Davies et al., the mediators can be created and shared by security
experts, by trusted providers, or by an open source community. The latter is an ap-
proach that the DS2OS features, where the context models are shared by all service
developers on a smartphone app store-like platform (see section 2.3). Therefore it is
considered a useful approach for our implementation to also share the obfuscation rules
and functionalities, and to have data obfuscation modules that can be integrated into
the policy language.

3.1.3.3 ABAC & XACML

For a description of ABAC see subsubsection 3.1.1.1. For a description of XACML see
subsubsection 3.1.1.5.
ABAC and XACML do not define specific relationships between entities but rather
base the access decision on the attributes that an entity has. Therefore they can be
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adaptable even in an established setup, since changes to the environment can be solved
by assigning affected entities the new attributes and creating new policies for those
attributes, instead of having to change the relationship descriptions between individual
entities.

3.2 Policy languages

This section explores how a policy language has to be constructed in order to be expres-
sive, but at the same time understandable, which is the purpose of research question
RQ.2. The requirements that play a role in the creation of a good policy are the non-
functional requirements expressiveness (<NFR.2>), and understandability (<NFR.3>),
and the functional requirement reuse (<FR.5>). They are addressed individually in the
following sections.

3.2.1 Expressiveness

In the non-functional requirement for expressiveness (<NFR.2>) we declare that the
policy has to be able to express a fine-grained privacy understanding. This allows
privacy experts and experienced programmers to implement their fine-grained privacy
understanding.

3.2.1.1 XACML

For a description of XACML see subsubsection 3.1.1.5.
The attributes in XACML can be compared to the context information in the VSL which
we can gather with the search providers. The PDP evaluates the attributes that are to
be checked, which in our case is for example the location search provider looking up the
proximity of the requester to the device. The PDP then evaluates if the attribute value
fits the required value stated in the policy.

We do not have the need to declare such an extensive Targets with subjects, resources,
and actions for our privacy policies. We can however adhere to the suggested parameters
that define the conditions under which the policy applies.
The resource is the service context the policy applies to, like the humidity sensor of
a weather station service. The action is either get and/ or set. The subject is the
requesting entity, which relates back to the group based access control, only being more
fine-grained here.
Since these parameters are not too diverse, we do not have to define extensive new
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matching functionality. The above mentioned target identifiers are already of a certain
data type, for example the requested context is the address of the context. The action
can be get and/or set. The subject is a group for which the policy applies.

An example looks like this:
requestedContext =humidity ,
action =get ,
subject = guest

This is explored in greater detail in chapter 4.

The privacy policy evaluation is partly done by the Request Router, since it receives
the request, therefore it acts as PDP.

The way the Effect of a rule is specified in XACML, e. g. Permit or Deny, is considered
a useful approach for our solution. It allows the user to either say "Allow access from 9
to 11 on Fridays", or "Deny access from 9 to 11 on Fridays". If we want to use only one
effect type, the latter case can be expressed using negation, so "Allow access if time is
not 9 to 11 on Fridays", but it is less intuitive for the user.
Further, allowing the user to define the combining algorithm for the different rules
achieves a high expressiveness. We discuss in chapter 4 how applicable it is to our use
case.

3.2.1.2 Hong et al. - Bark

For a description of the work by Hong et al. see subsubsection 3.1.1.3.
The logical connection of the different contexts in the conditions (∧,∨, and ¬) are a
simple but powerful way of evaluating the different conditions. Since the users of the
DS2OS are not normal users, but programmers, they have an understanding for the way
those operators work. Therefore this is an easy and valuable policy expression logic. It
can be also easily translated to and from natural language formulations.

3.2.1.3 Davies et al.

For a description of the work by Davies et al. see subsubsection 3.1.2.1.
Davies et al. don’t specify a specific policy language but instead suggest to use profiles
that contain policies, aimed at sharing and reusing them [10]. They identify smart
default privacy profiles and active privacy assistants as possible approaches to define
policies. This is too imprecise for our setup and therefore not useful for us.
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The fine-grained obfuscation mechanism that Davies et al. integrate in their privacy
setup is a useful approach. We aim at including this to achieve a finer granularity for
our policy.

3.2.1.4 ABAC

For a description of ABAC see subsubsection 3.1.1.1.
The limits of ABAC are that the specific policy implementation is not defined, since
the attributes are specific to every use-case. A PEP and a PDP have to installed, and
policies have to be defined. The main concept of ABAC, assigning attributes to entities
is not part of this thesis, since we have an attribute based ontology in the DS2OS, we
want to find a policy that can express rules for those attributes.

3.2.2 Understandability

In order to help the user in protecting their privacy, we have to make the policies easily
understandable. Otherwise their usage is requiring too much effort and discourages the
user. Only if the users understands how they can pour their privacy understanding
into a privacy policy will they feel private. Therefore the policy language has to be
understandable for novices, and the possible configuration options shouldn’t overwhelm
then. See the non-functional requirement for understandability: <NFR.3>.

3.2.2.1 Hong et al. - Bark

For a description of the work by Hong et al. see subsubsection 3.1.1.3.
By using natural language to define the policy, Hong et al. made their policy language
easily understandable and expressible for humans. This is also desirable for our setup,
since a natural language means that the understandability and the ease of use is facili-
tated for the programmer (<NFR.3>).

Making rules activatable by the user, and allowing specifically designed rules for a
certain type of device is also a good way to improve the understandability.
For once, it allows for the creation of default rules for specific types of devices or
services. Specialists can create those default rules, or more experienced users can share
their configuration with others.
Besides that, by providing a possibility to activate policies, currently unused rules do
not have to be deleted. This way, rules can be defined and kept for possible future
situations.
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3.2.2.2 Davies et al.

For a description of the work by Davies et al. see subsubsection 3.1.2.1.
Davies et al. introduce an interchangeable privacy mediator, and propose that third par-
ties develop useful mediators for user. Thereby they allow for default policies which can
be designed by privacy experts for example. This highly improves the understandability
(<NFR.3>) of the privacy policies, since the users can review the default policies and
possibly adapt them to fit their individual privacy needs.
Davies et al. also propose smart default privacy profiles that represent the privacy un-
derstanding of the average user. This is a solution that would be nice to have, but is
not further considered for this thesis.

3.2.2.3 XACML

For a description of XACML see subsubsection 3.1.1.5.
The policy definition in XACML is quite complex and takes some time to understand,
therefore integrating XACML into the DS2OS is not considered as a solution. Having
nested PolicySets with Policies and Rules makes it great for evaluation, but writing
the policy rules by hand is a tiresome act. Therefore a Graphical User Interface (GUI)
is probably needed to simplify the policy creation process. This complexity is not
something we aim for with this first prototype.

3.3 Privacy vs. performance

This section explores how the complexity and performance of the DS2OS system can be
maintained at the current level, how we can avoid to introduce unnecessary complexity,
or avoidable performance loss. The research questions RQ.3 and RQ.4 express this.
The requirements that play a role in the creation of a good policy is the non-functional
requirement for system complexity (<NFR.1>), and the functional requirements for
reuse (<FR.5>), and autonomy (<FR.3>). They are addressed throughout the follow-
ing sections.

3.3.1 System complexity

One goal of this thesis is to keep the complexity of the whole system at the current
level. Introducing complex new functionality means that the programmer has to take
time to understand this new part as well, making the usage of the whole system less
desirable. See the non-functional requirement for system complexity: <NFR.1>.
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3.3.1.1 XACML

For a description of XACML see subsubsection 3.1.1.5.
Although we see the advantage of having a request/response language to have a clear
separation between the processing entities, it makes the system too complex to introduce
another communication language. For now, we work with the existing request messages,
and any possible calls to evaluate entities are done using existing entities, like the search
providers.

3.3.1.2 Davies et al.

For a description of the work by Davies et al. see subsubsection 3.1.2.1.
The complexity of the system introduced by Davies et al. is kept low by making the me-
diators an entity which can be shared and thereby changed to fit a solution by someone
else. Through this interchangeability, the mediators can be described precisely in their
functionality. The interface for the mediator can be reused to fit in new operational
units.

3.3.2 Reuse

Reusing existing functionality of a system, in our case the DS2OS, is declared as a
functional requirement for our design (<FR.5>). The last sections show that we already
have a good basis for a privacy policy, since the VSL has an ontology to semantically
describe the environment with its entities. Therefore we can for example use the search
providers to evaluate the attributes of the privacy policy. Chapter 4 discusses the aspects
of creating a policy with low complexity and reuse of existing, familiar functionalities.

3.3.3 Autonomy

The KAs in the VSL are decentralized nodes in the self-managing P2P network. They
manage the storage of the data produced by a service, and provide context discovery by
caching the node structure of the VSL locally. This makes the nodes autonomous and
resilient against network outages. The self-management of the DS2OS also proves to be
a great advantage for the user, as it makes the introduction of new services easy for the
programmer. See the functional requirement for autonomy: <FR.3>
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3.3.3.1 Hong et al. - Bark

For a description of the work by Hong et al. see subsubsection 3.1.1.3.
The great advantage of the DS2OS is that it is a distributed, self-managing network of
nodes that can operate without a central management unit. Therefore introducing a
central policy storage counteracts the autonomy requirement (<FR.3>). The approach
taken by Hong et al., to cache the policies locally, is a valuable solution to maintain the
distributed, self-reliant nature of the VSL.
The solution of Hong et al. of storing policies centrally and caching them locally can be
applied to the VSL by caching the central policies on the KAs. However, the alternative
of storing the policies directly on the KAs is preferred for our solution, as chapter 4
discusses.
It is not required for our system to have default-off communication since the entities in
the DS2OS are trusted, there are no communication links to third party entities.
Where to store the policies and how we can increase autonomy of the KAs by caching
for example is discussed in more detail in chapter 4.

The proposed two-factor authentication using a user-in-the-loop is not considered useful
for our setup, since it prolongs the response time. Involving a user also makes the KAs
less autonomous, since they have to maintain a communication with the owner of a
service for example.

The downside of the whitelisting approach this paper takes is that the user has to ex-
plicitly declare all allowed communication beforehand, having to foresee all eventualities
that might be required. This makes the system prone to access errors, conflicting with
our requirement of autonomy <FR.3>, and the performance RQ.4.
However it is a good compromise to have the same approach if policies are defined, so
if there are privacy policies associated with a service, we evaluate them and if at least
one of them evaluates to true, then access is granted, otherwise access is denied. If no
policies are installed, then the access is allowed.

We don’t have to consider the handling of the general communication, like the default-
off strategy of this paper, since communication handling is done by the DS2OS. It
guarantees good security by encrypting the traffic on link layer, and validating the
identity of the entities in the network by issuing certificates (see section 2.3). Therefore
it is advisable that we define policies which restrict the access, instead of going the
whitelisting approach this paper proposes.
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3.3.3.2 Davies et al.

For a description of the work by Davies et al. see subsubsection 3.1.2.1.
The modular design Davies et al. propose is a decentralized approach where the cloudlets
can be installed on different computing entities, since they are portable. The cloudlets
contain the privacy policies and sit in between the sensor and the next processing
service.
The high flexibility and the autonomy of the cloudlets are useful references for our
design, since they resemble the operation of the KAs in the VSL. We therefore make an
effort to resemble the cloudlets in their autonomy, and try to keep the privacy policies
as decentralized and independent of other entities as possible.
The takeaway from this solution is to allow the KAs to evaluate the privacy policies
independently from the rest of the network, in order to make them resilient against
network problems.

3.3.3.3 ABAC & XACML

For a description of ABAC see subsubsection 3.1.1.1. For a description of XACML see
subsubsection 3.1.1.5.
The ABAC and XACML policy languages have great similarities to the multi-factored
context decision we envision for our privacy solution. Since ABAC and XACML require
instances to evaluate and enforce these policies, we take into consideration which entities
can act as PDP and PEP.
In the DS2OS the access control is currently checked on each KA. In subsection 2.3.7 we
explain that the requesting entity has a certificate signed by the local site, which also
contains the groups / accessIDs the user is assigned to. The context model of the service
declares the access rights needed to perform get and set operations for the individual
contexts. Since the KA has all the information it needs to make a privacy decision for
this access control, it is autonomous and can work in a decentralized manner. We aim
at maintaining this decentralized operation and therefore extend the existing autonomy
of the KA by having a node-local PDP and PEP for our privacy policy evaluation.

3.4 Summary

This chapter explores some useful approaches to the multi-faceted problem of introduc-
ing a privacy policy in the DS2OS. We sort those findings into the research questions
formulated in section 1.2. Analyzing the different aspects of the literature along the
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requirements that we associate with those research questions is a good structure to
compare different technologies for their approaches, their usability.

Since reuse (<FR.5>) is a requirement we define for our implementation and is specific
to the DS2OS, it is not something we can trace in related literature, therefore it is
excluded from the comparison.
Table 3.1 summarizes what literature is useful to us for which aspects.

Notation information:
The symbol© expresses that a property is not described in enough detail in the literature
to take any conclusions from it.
The symbol ⊕ expresses that advantages and disadvantages came with the proposed so-
lution.

Bark, ABAC, and XACML answer our RQ.1 to a great extend, they show us how
an access policy can be based on different contexts, mainly environmental attributes.
These reference policies are a basis for the policy language we design in the next chapter.
Especially the high adaptability that comes with these solutions is considered. Multiple
examples for integrating diverse contexts into a policy language are shown.

RQ.2 is not as clearly answered by the literature. XACML is highly expressive, it is the
language that comes closest to the expressiveness we envision for our setup. However it
is far too complex and requires a GUI if understandability is also a goal.

Requirements Hong [20] Davies [10] ABAC XACML DS2OS (plan)
RQ.1
Multi-factor 3 © 3 3 3

Adaptability 3 3 3 3 3

RQ.2
Obfuscation 7 3 7 7 3

Expressiveness 3 © 3 3 3

Understandability 3 3 3 ⊕ 3

RQ.3 & RQ.4
System Complexity 3 3 © 7 3

Autonomy 3 3 3 3 3

Decentralized PEP 3 3 © © 3

Decentralized PDP 7 3 © © 3

Focus service data data data data
Policy language Bark © ABAC XACML tbd
Policy evaluation Bark Mediators PEP PEP tbd

Table 3.1: Related work and the aspects covered in them, compared to the goal state of this thesis
(see on the right).
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Previous work on data obfuscation, especially in the context of smart environments is
sparse. The work by Davies et al. proposes the integration of an obfuscator into the
access decision process, and describes multiple ways context can be obfuscated. It is
quite vague on the way the obfuscator is instructed, the way the it is integrated into
the system however is a useful example for our design.

In regards to RQ.4, the question for autonomy is answered by all related works, mainly
through dynamically plugging in policy evaluation entities. The RQ.3 is naturally not
as clearly answerable, since it also depends on the system. However, by describing the
system setup clearly and by keeping the entities extensible, Hong et al. and Davies et al.
present useful approaches for our design.
Even though ABAC and XACML emphasise the benefits of a design separation of PEPs
and PDPs, it is not discussed in further detail how they process the policies. The most
explicit description of the policy evaluation process is done by Hong et al.

The DS2OS is a data-centric system, therefore it is interesting to compare other systems
for this property. Except for Hong et al., all designs are also data-centric.

It becomes clear that none of the related work covers all of our requirements, but
individually contribute useful ideas to our design. In chapter 4, we use those findings
to discuss the best approach to design a privacy policy that is more fine-grained than
the current access control of the DS2OS.
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Design

The design of the policies weaves in the findings from the previously discussed literature,
especially the ones addressed in chapter 3. We adhere to our functional and non-
functional requirements defined in subsection 2.4.1 and subsection 2.4.2, and try to
answer our research questions declared in section 1.2.

The first requirement is to design a privacy policy, that is able to express access require-
ments at a more fine-grained level than the existing access control (<FR.1>). We look
at how we can reuse (<FR.5>) the existing architecture and functionalities to evaluate
those additional contexts.
Including more contexts to decide the access control is a useful approach, but already
done by many systems. A new approach to access control and privacy policies is to also
obfuscate (<FR.2>) the returned data along the privacy understanding of the user.
How the obfuscation can be defined and done is discussed in this chapter.
We keep in mind not to create a domain-specific implementation of the policy, but to
instead keep the system adaptable (<FR.4>) to various use cases.
Those topics are addressed in the first section, section 4.1.

In order to reuse (<FR.5>) the existing architecture and the functionalities of the
DS2OS, we look at how the policy can be integrated well. We make an effort to keep
the VSL as autonomous (<FR.3>) as possible, so that the communication is kept as
reliant and safe from outages as possible.
We keep in mind that the system should not become too complex (<NFR.1>), by
ensuring that the programmer does not have to understand a whole new access logic,
or learn how to define the privacy policy.
This will be discussed in section 4.2.
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Expressiveness (<NFR.2>) aims at a policy language that is fine-grained but also un-
derstandable (<NFR.3>) to non-experts. This also keeps the complexity (<NFR.1>)
of the system low. These usability aspects is discussed in section 4.3.

Along those topics, we design a privacy policy step by step that fits our needs and is
adapted to the DS2OS.

4.1 Privacy policy

4.1.1 Fine-grained policy

As we elaborate in the previous chapters, the more fine-grained the policy is, the better
it is able to represent the privacy of the individual. Therefore we looked at possible
contexts that should be expressible in a privacy policy, and mainly identified location
and time as essential privacy contexts.

4.1.1.1 Location and other context based policy

In analyzing the Bark privacy policy (sec. 3.1.1.3) we notice that in the DS2OS we
already know a lot of the parameters that belong to a request. We can match the
Bark subject to the requester of a service is, since the request sent to the responsible
KA includes the ID of the requesting entity. We also know the action that is to be
performed, since it is delivered in the access request to the service, and can be either
get, or set. The object is the KA that is running the requested service (and also the one
who is processing this access request). The object is the service itself. The conditions
currently are only the group based access restrictions.
What we cannot match are the location of the requester (subject) and the location
of the requested service (object). This shows us that we mostly have all the relevant
information needed for constructing a privacy policy, and we can also add the possibility
to have more conditions for the access request.

How the DS2OS works is explained in section 2.3. We mention how search providers can
do semantic discovery of context. If new context is defined, it can become discoverable
by adding new search providers. Therefore we adhere to our functional requirement of
reuse <FR.5> and use this functionality to add location discovery through a location
search provider. We do not develop a specific location search provider (adhering to
our requirement for adaptability - <FR.4>), but rather pass location queries to the
search provider interface. The location search provider can be registered at the address
/search/location, therefore a request to it looks like this:
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get / search / location / livingRoom

The result of this request consists of all the nodes that are located in the living room.
A very basic location based policy therefore looks similar to this:
location =" livingRoom "

If a type of device is searched at a specific location, we use the multi-parameter search
mentioned in subsection 2.3.8:
get / search / typeAtLocation / livingRoom /!/ bathRoom /?/ basic / number /!/ basic /text

The policy then looks something like:
( location =" livingRoom " or location =" bathRoom ") and (type="/ basic / number " or type=

"/ basic /text")

This is easily translatable into the corresponding query to the search provider.

Following those examples we see that the VSL is very adaptable, it becomes possible
to have search specific to a needed use case, so in the example above to have a search
provider for finding services that are of a specific type at a given location. Therefore
our policy can also be specific to those use cases, and thereby to different contexts. If
we want to evaluate an access request for the context owner, then we can define a search
provider that searches for the owner of a certain device.

4.1.1.2 Time based policy

For a time based policy, we do not need a search provider, since this can be evaluated
based on the current time.

XACML has a number of time representation types, and functions on those types, as we
show in section 3.1.1.6. We use the data types time, date, dateTime, dayTimeDuration,
and yearMonthDuration, though only in their type usage, not in the exact format used
by XACML. The format of XACML includes an expression for time zones. Since the
policies are evaluated in the VSL, we do not have to consider time zones for our design,
as the local time of the machines can be used for the policies. So date in our design
is of the following format yyyy-mm-dd, time is defined as hh:mm:ss, and dateTime
has the format yyyy-mm-dd hh:mm:ss. DayTimeDuration is expressible in the format
PdDThhHmmMssS, and yearMonthDuration is PyYmmM.
We expect that date, dateTime, and yearMonthDuration will not be used very often
in our context, since it is unlikely that a user defines a specific date in the policy. It is
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more likely that recurring patterns such as policies for a day of the week, or a specific
day of the month is defined, instead of year-long safety measures. Therefore we also
define dayOfTheWeek, which is not part of XACML, but which can be useful to express
recurring patterns such as Allow access on Fridays from 9 to 10. It is included in
our design as a string, e. g. Mon, Wed.

The functions that are deemed useful for our policies are X-equal, X-greater-than,
X-greater-than-or-equal, X-less-than, X-less-than-or-equal, and
X-intersection, where X is one of the above mentioned types. Those functions are
applied in XACML directly to time declarations in the policies. Since we want to
have an easily understandable policy (<NFR.3>), we do not use those functions di-
rectly in the policy, but rather have a natural-language-like policy where statements
such as time="after 10:00:00" or time="between 10:00:00 and 16:00:00" can be
expressed. We then evaluate those expressions with time-greater-than, or time-
intersection respectively.

4.1.1.3 Obfuscation of data

A novel attempt to enhance the privacy protection is to also add pre-processing to
the access control, as we show in subsection 2.2.3. An example for this is a smart
air conditioning system that can display the outside and inside temperature readings,
as well as returning stored measurements from the past. We can think of a privacy
understanding where the device owner and all house inhabitants can access the complete
history. In this scenario, a technician is only allowed to access the daily average over the
data from the past year. All other people are only allowed to read the minimum and
maximum readings of the past week, and only if they are within a 10 meter distance.

Another example is a security camera, where the faces of the house members are blurred,
and any service working on the camera feed can only access a single frame every 10
seconds.

It does not make sense to implement the functionality to transform the data, so to define
the data obfuscation functionality, as this heavily depends on the data type. Therefore
we define only the interface to an obfuscation mechanism. Any obfuscation mechanism
has to be provided to the system for the specific data type that is to be obfuscated. Many
data types can be handled with one obfuscation function, as for example any sensor
measurements can be analyzed through statistical measures, such as average, min-max,
or distribution. We pass to the obfuscation mechanism the parameters granularity and
the time span with which we aim at modulating the data. Those two parameters are
the parameters along which Davies et al. suggested to obfuscate the data. Since we
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obtain the data type through the context model, we do not have to explicitly state the
data type in the policy.
The obfuscation policy statement is of the following format: granularity=’frames’,
timespan=’1 week’.

The complete privacy policies for the first example, where the temperature measure-
ments are obfuscated, looks like this:
group =" technician "
obfuscation =" granularity =’ average of day ’, timespan =’1 year ’"

Listing 4.1: Technician is allowed to access the temperature readings as daily averages for the past
year.

group =" inhabitants , deviceOwner "
obfuscation =""

Listing 4.2: House inhabitants and the device owner can access the data completely.

location =" distance = ’10 m’
obfuscation =" granularity =’minDay , maximum of day ’, timespan =’1 week ’"

Listing 4.3: Temperature reading for all other entities that are in a 10 meter distance can access the
minimum and maximum values of the past week.

For the security camera the following policies are declared:
group ="*"
obfuscation =" granularity =’ blurredFaces of inhabitants ’"

Listing 4.4: The faces of the inhabitants are blurred for everyone.

group =" service "
obfuscation =" granularity =’frame ’ frequency = ’10 seconds ’"

Listing 4.5: All services get access to single frames every 10 seconds.

Obfuscation only makes sense for get operations, as sensitive data is returned in a
minimized extensiveness. Writing data needs to be done to the full extent, since the
sent data has to be stored once in its full capacity. The submitter can also modify
the data that is to be written before sending it, therefore obfuscating the data at the
receiving end doesn’t make sense.
However we cannot simply say that all policies therefore only apply to read operations,
since write access might also be privacy sensitive, as for example switching on a camera
is. Therefore an additional attribute is added to our privacy policy, which is action,
which can either be get or set.
If obfuscation is declared for a set policy, the programmer might be warned that no
obfuscation can be done with this kind of action.
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The obfuscation is performed by an obfuscation service which has to be deployed and
registered in the VSL. As anchoring point, /system/obfuscator is suggested and used
for the prototype. In the future, it might be useful to have the address /obfusca-
tor/X, e. g. /obfuscator/statistical, just as the search providers are addressable
as /search/X, e. g. /search/type.
The raw data that is to be obfuscated is sent to the service, along with the parame-
ters that are passed in the policy. The obfuscating service then processes the data and
returns it to the KA.

What we can see when we look at the policies defined above is that it is not too clear how
they are expressed as a coherent policy set, and how the evaluation manages priorities.
Is the first matching rule applied? Is access allowed when the rules match, or is it
denied? Do all policies have to be matched, or is it sufficient if one of them allows
access? What happens when no rule matches?
These and more questions are explored and answered in the following sections.

4.1.2 Policy Language

We observe in the literature that a natural language is useful for intuitive policy for-
mulation. Allowing the users to formulate the policies however they wish to requires
too much of natural language processing though, therefore we introduce some keywords
that sort the privacy parameters into logical subunits, like time for example. This is
also the approach we take in the previous section.

The advantage of formulating the policy along predefined keywords also has the advan-
tage of later mapping those keywords to natural language constructs, as it is done by
Hong et al. [20]. They map subject, objects, and actions from the data types, like the
subject - who.
In subsection 2.3.4 we also explain how the VSL has an ontology that has subjects,
objects, and predicates, and can express has-a and is-a relationships. Therefore we can
also use keywords and map them to the subjects, objects, and predicates of the VSL
ontology. In chapter 3 we show that we can map almost all of our existing ontology
elements to a policy language as proposed by Hong et al. By using the subject - predicate
- object structure, users can understand the policy well [20].

Another solution to making the language intuitive for the user is to also use a GUI,
where the keywords can be woven into a policy definition interface that is even more
understandable, as it is done by Dixon et al. for example [13]. The keywords are then
mapped to an intuitive, natural language representation of the policy.
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In the current context models, the access control is also done via the keywords writers
and readers. Therefore the programmer is already used to this structure (<NFR.1>).

An alternative is to use the XML-based policy language of XACML, but it entails inte-
grating the whole architecture of XACML. Additionally, the language is far too complex
for our setup, as we explain in chapter 3. Furthermore, it doesn’t include the necessary
structure to offer obfuscation. Therefore we only pick useful concepts and functionalities
from XACML.

4.1.2.1 Keywords

The search provider functionality is a major benefit for semantic discovery, as we ex-
plain in the previous sections. We can only do semantic discovery for what semantic
representation is present in the system. Therefore we define our keywords along the
types of the search providers. We already have the type search in the current DS2OS
implementation. As we explored in subsection 2.3.8, we can extend the search function-
ality by adding new search providers to the VSL. By defining keywords as the main
policy constructs we also make clear what search providers are needed.

So, with the exception to group- and time-based policies, we can define new search
providers for adding new policy evaluation possibilities. For example for location-based
policies, we can define a search provider that can handle queries that search for the
location of an entity, or answer to a query for the distance between an entity and
another.

Making the search providers the main entity to our privacy policies keeps the system
adaptable (<FR.4>), reuses existing technology (<FR.5>), thereby also keeps the sys-
tem complexity (<NFR.1>) at the current level, as we outsource a lot of the information
gathering process to the search providers. We therefore start with the keywords type,
group, location, and time for our prototype.

How the adaptation to the search providers works is answered in subsection 4.2.2.

4.1.2.2 Logical connection

We decide on using keywords, but how do we combine them into a coherent logic?
For singular expressions, it is quite simple, to just say time="between 9 and 10" for
example, but when more contexts are added to the policy, like time="between 9 and
10", location="livingRoom", it has to be declared whether both contexts have to
evaluate to true, or if it is sufficient when one of them is fulfilled.
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For this, we can use logical operators such as ¬, ∧, and ∨. Hong et al. [20] use logical
operators to connect conditions, and rules, and in XACML, the different rules are also
connected via logical functions (see [36]).
An example policy can then look something like time="between 9 and 10" OR loca-
tion="livingRoom".
We can also think of scenarios where it becomes necessary to group certain logical con-
ditions together, and to evaluate the group against another expression. In XACML this
is solved by nesting conditions into each other. We can solve this by simply introducing
brackets to our policy.
Therefore our policy will look something like time="between 9 and 10" OR (loca-
tion="livingRoom" OR location="kitchen").

What we have to figure out now is whether the policy outcome should be seen as a
permission to perform an action, or whether those conditions are describing a case
where access should not be granted. This is explored in the following section.

4.1.3 Policy effect

In XACML, policy rules can declare one of two kinds of effects, permit, or deny, which
we explain in chapter 3. The effect is associated with each rule, therefore either one of
the effects is returned on evaluation [36]. In case of an error, either indeterminate or
not applicable is returned.

Hong et al. used a whitelisting approach in their work, meaning that only actions that
are explicitly allowed can be performed [20]. Therefore the effect of all of their policies
is a permit.

In general it is known that whitelisting is more secure, but also requires more manage-
ment of the rules, since all possible scenarios which might need access rights have to
be foreseen and declared in the policy. This makes a new service not usable if it has
context that doesn’t apply to the existing rules. This then leads to a scenario that it is
too restrictive in regards to allowing access to data, thereby reducing the functionality
of the system, which contradicts our RQ.4. The nature of IoT environments is the
high connectivity and the operation on data, therefore it reduces the performance of
the system.

Blacklisting is less secure, as it can only prohibit context which is already known, so
new threats might get past the policy. It is more convenient for the user, as by default
all communication is allowed except for the entries in the blacklist.
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In the DS2OS, access is currently granted when an entity is a member of a certain
group. Since the most basic context models declare that everyone has access, and all
other context models are derived from those basic models, the default is to have no access
restrictions. If access restriction is required, it can be set for each individual node in
the reader and writer ID fields of the context model. Therefore by default all entities
are allowed to access everything, but once a specific accessID is allowed access, no other
entities are allowed, therefore it is whitelisting. We use a whitelisting approach for this
reason, in order to be consistent with the logic of the system (<NFR.1>, <NFR.3>).
Any privacy policy rule that is declared therefore is a whitelist of access. If no privacy
policy is named, then no privacy has to be enforced and access is granted to the full
data set to whoever has passed the basic group-based access check.

To name an example, location="livingRoom" means that everyone who is in the living
room is allowed access. In the future the effect property can be introduced , through
which blacklisting is enabled.
Blacklisting can improve the understandability of a rule, since statements like From 8
to 10, nobody located in the living room should be able to perform the action can be
expressed with an blacklisting approach as effect=deny, policy="time=’from 8 to
10’ and location=’livingRoom’".
With whitelisting, it looks like this: effect=permit, policy="not (time=’from 8
to 10’ and location=’livingRoom’".
The latter is less intuitive for the user and therefore can easily lead to unintended
behavior. We make sure that a later introduction of policy effects can be easily done
for our solution.

4.1.4 Policy combining algorithm

In subsubsection 4.1.1.3 we use multiple policy rules to define a desired behavior. The
question that remains is how those different policies are combined to return a final
evaluation. Taking the presented use case as an example, where the inhabitants, and
the device owner are allowed full access, a technician can read the daily average of the
past year, and everyone else gets access to daily minimum and maximum values of the
past week.
Are the policies evaluated one after another, and the first match is taken? And what if
multiple policies are applicable, which one is applied?

Hong et al. use a logical ∨ to combine their different policies. Therefore if at least one
of the rules returns true, then access is granted. It is a useful approach to achieve a
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good performance, since we can stop evaluating all other policies once one of the rules
returns an access grant, returning a result more quickly.

Directly applying this to our scenario is not possible though, since we want to use
obfuscation mechanisms. We can think of the following scenario with two policies in
place:
group =" family "
obfuscation =" granularity =’ average of day ’, timespan =’1 week ’"

group =" owner "
obfuscation =" granularity =’ average of day ’, timespan =’1 year ’"

If the owner is part of the group family, only the data of the past week is available, since
this was the first rule that matched. We have a look at other combination algorithms
to evaluate if there is a better way to solve this.

We show in subsubsection 3.1.1.5 how XACML uses different combining algorithms. The
one we address in the previous paragraph is called first applicable.
The deny overrides algorithm returns deny if one evaluation returns deny. This is the
same in vice-versa for the permit overrides algorithm.
The ordered deny overrides and ordered permit overrides algorithms works in the same
manner, but also takes the order in which the policies are defined into consideration.
The only one applicable algorithm is not usable for combining rules, but for policy sets
and policies. Only one of the policies can return a permit or deny result, all other
policies have to return the not applicable effect [3].

However refined the policy combination algorithms are, they introduce too much com-
plexity to our system, since we do not want to include policy effects yet (as stated in
subsection 4.1.3). Also the user has to get to know all the different policy combining
algorithms before being able to define a policy, making the policy formulation process
less understandable <NFR.3>, contradicting RQ.2. We therefore resort to the first
example, where we consider applying a first applicable policy.
In order to avoid the scenario described above, the programmer has to declare the rule
with the least obfuscation first. Through this, the functionality of the system is also
kept high, as the least obfuscated data set can enable the best extend of operations on
it.

4.1.5 Rule matching

We do not check how well a policy matches, since this requires a Target declaration as
it is done in XACML. This is too much complexity that is introduced to our system

70



4.2 System integration of privacy policy

(<NFR.1>). What we do instead is to differentiate between the action type of the
request, namely if it is a get or a set request. Those actions represent different data
accesses altogether. A user might be willing to let others activate the camera (send a
set camera on command), but does not allow read access to the camera (send a get
cameraFeed).
In order to increase the usability of the policies, and to avoid duplicates, a policy can be
defined for both actions. An example is that access to the temperature service is only
allowed from inside the house, it doesn’t matter if read or write access is requested.

We also differentiate between the contexts that are requested, so to say the address of
the context for which the policy applies. The services of the DS2OS can be composed of
multiple other contexts, as we explain in subsection 2.3.4. Since the different contexts are
of possibly different data types, we have to make a context specific policy declaration
possible. An example is to have a service that is composed of a temperature and a
humidity measuring service. Therefore one policy addresses the temperature service,
requestedContext=temperature, another policy handles all requests to the humidity
service: requestedContext=humidity.

We therefore evaluate all rules that match the request parameters, until either access is
granted, or no rule returns true. In case none returns true, we adhere to the prevailing
whitelisting approach, therefore no policy allows access and the requester is denied
access. We make one exception to this behavior, because if no rule is defined, then
we grant access. This resembles the functionality of the context model based access
policies.

4.2 System integration of privacy policy

This section looks at how we can adhere to our research questions that want to keep
the system at the current complexity (RQ.3), and to maintain the performance of the
system (RQ.4). Therefore we look at what is the best place to declare and store our
policies in (subsection 4.2.1).
We already consider how the policies are logically evaluated, now we focus on how
the policy evaluation can be done considering the system setup, so which entities are
responsible for the evaluation, and what other factors play into its functionality (sub-
section 4.2.2).
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4.2.1 Storage point

The decision where to declare the policies has multiple possible locations to choose from.

The first possibility is to store the policies in the context models of every service. This
also suggests itself since the current access control is also done in the context models.
Since the context models are stored at the CMR this has the advantage that all KAs in
the network are able to query the policy of the service before sending the actual request.
This allows for fewer traffic and less latency. This approach is not chosen for multiple
reasons.
One reason is that the policy is likely to be different for every service and therefore
would result in a multitude of context models. The benefit of the DS2OS context mod-
els is that they are abstract service interfaces which can inherit properties from other
context models, or meta models. By creating a specific context model for every service,
this abstraction is counteracted (<NFR.1>, <FR.4>).
Another reason is that the XML tags of the context model gets bloated if they contained
the accessIDs plus an arbitrarily long privacy policy. This reduces the understandability
(<NFR.3>).

The next possibility is to store the policy at service initiation time in the corresponding
database of the KA. This approach has the advantage of keeping the policy declaration
point (like possibly the context model) abstract and general. It has the disadvantage
that the changes over time of the policy are not traceable. Also changes to the policy
then require a convenient database access interface, like a GUI. Therefore it is not
chosen for our design.

Another storage point is a policy database centrally in the VSL. This idea is not pursued
as it doesn’t bring any advantages besides having an easy implementation approach. The
disadvantages are in greater number, as this introduces a single point of failure, and
defeats the reliability and autonomy (<FR.3>) that is achieved through distributed
nodes.

The fourth possibility is to store the policy in an additional meta data field of the
services. The meta data is part of the service manifest, which in turn is part of the
service package. The service package further contains the service executable, and the
service certificate, all of which we explained in the subsection 2.3.6.
This possibility is chosen for our design, since the service manifest is downloaded from
the DS2OS, and therefore default policies can be integrated in it conveniently. It also
avoids the multitude of specific instances, which the first possibility features. The service
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manifest is adapted to the specific VSL context during the installation already, therefore
it is convenient for the user to also adapt the policy at this point. The policies are stored
locally at the KA, instead of at a central storage point, as the third possibility suggests.
Compared to the first possibility, the understandability is achievable in a better way
since the JavaScript Object Notation (JSON) format can have objects as values, which
allows us to declare sub-values. In the XML-based context models, this is only achievable
by defining a new XML tag.

A hash of the manifest is stored in the service certificate and is therefore verifiable.
Since this implementation is a first prototype, the policy is not part of the signature.
Therefore it is not verified, but the rest of the meta data, and general service information
such as the certificate remain the same and are therefore verifiable. In the future, the
policy can become part of the verifiable hash. Until the policy becomes part of the
service certificate, it is declared as a xPolicy element, the x being a marker for the
unverified part of the service package.

By storing the policies in the service manifest we can declare the policies per specific
service instance, without making the context models of the services too individual.
The existing structure of the service manifest also allows us to define the policies more
intuitively, since it is a JSON file. The service manifest that is presented by Donini
represents additional meta data of a service, and currently looks like this:
{

" serviceId ":"",
" developerId ":"",
" versionNumber ":"",
" dependencies ": [],
" resourceRequirements ":{

"CPU": {},
"RAM": {}

},
" requiredContextModels ":[],
" conflictingContextModels ":[],
" executableHash ":""

}

Listing 4.6: Manifest file as seen in [14]

Following our previous discussions and design decisions, we define a solution where the
manifest includes a way to define how the data is obfuscated, and the policy itself. We
decide on having a new attribute-value pair for each policy. It can have individually
set names, those are not important for the policy evaluation, but can help the user in
understanding what the policy is doing. Included in those policies are the attributes we
declare so far, namely action, requestedContext, obfuscation, and the policy itself.
Further discussions follow in the next sections, but for now we envision a manifest file
that looks similar to this:
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{
" serviceId ":"",
" developerId ":"",
" versionNumber ":"",
" dependencies ": [],
" resourceRequirements ":{

"CPU": {},
"RAM": {}

},
" requiredContextModels ":[],
" conflictingContextModels ":[],
" executableHash ":"",
" xPolicies ":{

" policy1 ":{
" action ":"get",
" requestedContext ":" temperature ",
" policy ":" group =’family ’",
" obfuscation ":""

},
" policy2 ":{

" action ":"get",
" requestedContext ":" temperature ",
" policy ":" group =’guest ’ and location =’house ’",
" obfuscation ":" granularity =’ daily average ’, timespan =’1 week ’"

}
}

}

Here we declare the least obfuscated rule first, in order to adhere to our previous con-
clusion to allow access on the first access grant.
New parameters can easily be added afterwards, such as the effect of the policy (permit,
deny), or a policy combining algorithm if needed.

The service package is downloaded from the S2Store to the SLSM, which then redis-
tributes the service package to a chosen node, its NLSM. On downloading it from
the S2Store, the programmers can declare their individual access rights for the service.
Therefore the policy is available locally, it is not stored on a central entity, making the
policy evaluation resistant to network problems, thereby autonomous <FR.3>. Also
latency is reduced since the policies do not have to be queried on a remote location, but
can be evaluated directly on the KA. Even if we counteract this problem by caching
policies locally, we run into the problem of consistency. Therefore the advantages of
this approach are clearly in greater number.

This way we can also define default policies for a service. The default policy is declared
by the developer and stored in the service manifest. This manifest is then uploaded to
the S2Store. When the user installs the service into the local VSL, the default policy
is included in the service manifest, but by default is not active. The user then adapts
the service manifest, and thereby the policy set, to the parameters of the VSL. The
user can activate the default policy, or can design a new one with the default policy
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as a guideline. This way, a default policy can help with understanding <NFR.3> and
defining an individual policy. We discuss default policies in subsection 4.3.1.

4.2.2 Policy evaluation

In the previous sections we decide on what the policy language looks like, where the
policy is stored, and how they are logically evaluated. What we want to focus on in this
section is how the additional data needed can be obtained and made available, how we
can handle different service policies, and how latency can be avoided.

4.2.2.1 Querying oracles

We explained how search providers are the functionality we base our policies on. The
keywords we use are the search providers we address for the individual policy aspects.
The disadvantage of this approach is that we rely on the availability of the search
providers. If for example a location search provider is not available, no location based
policies can be evaluated. The alternative is to implement all possible evaluation func-
tions for privacy policies inside the policy evaluation functionality. This strongly con-
tradicts our requirement for keeping the system adaptable (<FR.4>), it does not reuse
existing functionalities (<FR.5>), and increases the system’s complexity (<NFR.1>).
Even if implemented, it is not able to solve all problems, since location information
might still be represented differently in other domains. Therefore the best approach
that remains is to use the search providers.

When a search providers is present in the system, but becomes unavailable due to some
network or agent failure, the policy can no longer be evaluated. Therefore the usage
of search providers for the policy evaluation means a decreased autonomy of the KAs,
which is a requirement of this thesis (<FR.3>).
In this case we can employ caching of previous search provider results to make the KAs
more autonomous. Then, if a search provider is called but doesn’t respond, it is checked
whether the request has already been performed and if the response is still cached. If this
is the case, then that cached evaluation is taken as a valid response, therefore cached
search query results have unlimited validity in the cache. Once the search provider
becomes available, any new requests of course uses the up-to-date response of the search
provider.
However if no query results are in the cache, then access is denied, since it is a security
and privacy threat to grant access once a policy cannot be evaluated. This leads to
unavailable and not functional services, but it is at a balanced cost through caching
(<PR.6>).
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4.2.2.2 Latency

As we explain before, we have to query for additional information to evaluate our policy.
An example for this is to query if a certain device is in the living room. For this, the
location search provider is called, the relevant context is returned and then the policy
can be further evaluated.
A normal access request without a search provider involved is evaluated only for the
group based conditions. The evaluation latency we introduce by using search providers
compared to a basic, group based access check is tested in chapter 6. We also evaluate
how well caching improves the response time.

Latency can also be introduced by having a high number of policies, which all have to
be evaluated until one of them grants access. If none does, the whole set is evaluated.
Since the evaluation may include querying search providers, this potentially is a big
latency that is introduced.
To define a high number of policies is an effort for the programmer, and also decreases
the understandability. Therefore the number of policies per service is likely to remain
low.
In order to make the removal of policies easier, we consider introducing the possibility to
activate and deactivate policies. Since this is also a useful property for default policies,
this concept is explored in section 4.3.

The complexity of the policies can also be a factor for latency, since many nested
conditions require a recursive evaluation of the policy.

Another latency that is introduced is the obfuscation of the data, since this involves
sending the data to the obfuscating service, the obfuscator processes the data according
to the parameters given, and then returns the obfuscated data to the KA, which can
then finally send it to the requester. In order to avoid as many calls as possible to this
service, we only send out the obfuscation request once all other parameters of the policy
are matched, so if it is certain that the requester is allowed to access this data.
Latency can be further reduced by having the obfuscation service on the same KA that
is processing the request.

All mentioned latency factors are taken into consideration in chapter 6.

4.2.2.3 Policy conflicts

An advantage of our setup with a decentralized policy storage is that all policies are in
one single place, therefore an overlook over all policies for one service is possible. This
makes the maintenance of the service functionality more feasible, because too broad
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or too restrictive policies can be identified more easily than if they are synchronized
between different policy storage points.

We also avoid having policy conflicts by defining them in one place, since we only
evaluate the policy set in the service manifest of the service. We decide on evaluating
the policies using the first applicable combining algorithm in subsection 4.1.4. This also
avoids policy conflicts, as possible conflicts do not have to be evaluated, but instead the
first rule that allows access makes the evaluation process stop. If no rule is applicable
then access is denied.

A representative policy that implements all the previously discussed aspects looks like
this:

{
[...]
" xPolicies ":{

" policy1 ":{
" requestedContext ":" temperature ",

" action ":"get",
" policy ":" group =’family ’",
" obfuscation ":""

},
" policy2 ":{

" requestedContext ":" humidity ",
" action ":"get",

" policy ":" group =’guest ’ and location =’house ’",
" obfuscation ":" granularity =’ daily average ’, timespan =’1 week ’"

}
}

}

4.2.2.4 Policy inheritance

Another consideration in the designing process is whether policies should be passed
down from the parent node to the child nodes. In this scenario, the children is obliged
to adhere to the parent’s policy, and that the parent’s policies overwrites the child
node’s policies. This is more restrictive for the child nodes and leads to an access
granting behavior that is not traceable.
Another possibility is that the child nodes are able to overwrite their parent’s policy.
This results in the same confusing behavior.

The alternative to these scenarios is that every node implements their own policy and
nothing is passed on to child nodes. This brings the disadvantage that the policy
has to be defined for every single node, which causes repetitiveness and reduces the
ease of programmability. This effect can be diminished by introducing default policies
(see subsection 4.3.1).
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The current access control in the VSL works after the latter schema, therefore the privacy
policy uses the same behavior, which makes the evaluation process and mechanics more
comprehensible to the programmer (<NFR.3>).

4.2.2.5 Decentralized access management

We explain in previous sections how for example XACML uses PDPs and PEPs to
manage the policy evaluation. Since the policies are stored on the KA that runs the
service, it acts as a decentralized PDP. The requests reach the KA in the RR, as it
is shown on Figure 2.6. In the DS2OS, the RR is the PDP that stores and evaluates
the policies. The unit responsible for the access control on the node acts as the PEP,
where the result from the PDP is enforced, so either access is granted or denied. By
implementing the policy evaluation functionality in the RR of the KAs, we make the
policy evaluation as decentralized and autonomous as possible. This helps us in keeping
the latency low, and also reuses existing structures of the VSL.

4.3 Usability

The aspects considered in the previous sections define the technical functionality, but
the usability for the programmer is considered only as a minor aspect. However in order
to allow users to define their privacy requirements, the privacy policy has to be accepted
by the user. In this section we discuss aspects we found in the literature that are useful
for increased usability.

4.3.1 Default policies

Henze et al. argue that privacy novices have to be accounted for while at the same time
allowing a fine-grained policy definition for privacy experts [17]. Hong et al. and Davies
et al. suggest the use of default policies as they can help the users with integrating the
full potential of the policy language in their system [20, 10]. The users can then also use
the default policies as a basis to adapt the policy in order to represent their individual
privacy understanding better. Especially for the newly introduced data obfuscation
interface, it is useful for the user to have an example policy, since the users might not
be used to having this extended control over the data. Therefore we decide to implement
default policies that can be specifically designed for the type of context.

Since the service package is uploaded by the developer to the DS2OS, and since any user
who wants to use this service downloads it to their local VSL, we can define the default
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policies in the service package in the service manifest. The developer of a service knows
what data types are used, is usually more experienced in the domain, and can also get
example policies presented through the DS2OS. Thereby the policy definition is easier
for the developer.

However, the users might not want to use privacy policies just yet for their service, or
they might want to define multiple policies for their service and later decide at run-time
which policies should be in place. Instead of having to delete existing rules to keep them
from being evaluated, we make policies activatable. This is explained in more detail in
the next section.

The default policies will by default be deactivated, and can be activated if the program-
mer finds them to be useful. This provides a useful example to the user, without making
the system instantly more restrictive. If every default policy would be in place, the func-
tionality of the system would be significantly reduced. The user is more equipped to
consider the protection of privacy by restricting data access, and weighing it against
service functionality that might need extended data access.

Having default policies in the service packages which are stored in the DS2OS also allows
a crowdsourcing of the privacy policies, as users can look at the default policies that are
defined for other services of that type in the store.

4.3.2 Activation

We mention in the previous section how default policies can be activated by the user,
and that by default they are not activated. Default policies are useful for the user,
especially for privacy novices who are not aware of the possible ways they can protect
their privacy. However, the user might not care for privacy at the beginning because the
system just consists of the user, no external entity exists against which privacy has to
be protected. Maybe the service isn’t sensitive to privacy, or the user is willing to share
the data of this service and cares more about the performance of the system. The user
could also wish to keep an existing privacy rule for later, so deleting it means that once
the rule is needed again, it has to be defined again, making it more time consuming and
error prone.

Those scenarios show that rule activation is a useful mechanism for different use cases
and increases the usability of the privacy policy significantly. One disadvantage is that
the service manifest becomes too crowded when too many policies are defined, but
inactive. This can be counteracted by moving all deactivated policies to the bottom, or
to delete rules altogether.
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4.3.3 Error behavior

We explain in subsection 4.1.4 how policies in our design evaluate to grant access if no
policy is defined. This can now be refined to say that access is allowed if no policy is
active.

If a policy is active, but a required search provider is not available, it is good for a
higher expressiveness if the programmer can specify what evaluation schema is used.
The programmer can for example decide that high reliability of services is preferred,
and therefore cached policy evaluation results are taken as an intermediate solution,
e. g. the last location of the queried device is good enough to decide the access decision
on.
Another option is that the programmer decides that the privacy requirement is of higher
importance than reliability. With this schema applied, the unavailability of the search
provider means that the policy cannot be evaluated and therefore no decision can be
made. This results in an access denial.
For the prototype implemented for this thesis, access is granted if previously received
search provider results are still in the cache. If no cached query results are available
then access is denied. A corresponding error message is returned so that the requester
knows that under different circumstance access might have been allowed.
This is the behavior of the prototype, for future implementations this error behavior can
be made more flexible by allowing the programmer to chose what to prioritize, privacy
or performance.

If the policy involves a search provider that is not installed in the VSL, then the policy
cannot be evaluated and therefore returns an access denial. In this case, a special error
message is returned so that the user knows that access cannot be granted due to the
missing search provider.

If an active policy is evaluable and all search providers are reachable, then access is
granted if one of the rules evaluates to true, otherwise access is denied. The access
grant may be access to an obfuscated data set.

For the obfuscation policies, if no obfuscating entity is present in the VSL, then no
obfuscated data can be returned. In this case, this access policy is evaluated to deny
access, since we don’t want to leak the user’s private data. If any other policies are
in place which might return data without the missing obfuscating entity involved, then
those may return an access grant, therefore policy evaluation is not hindered too much.
However an error message is printed so that the user knows that under different circum-
stances, more or other data might have been available.
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4.4 Summary

Following the discussions in this chapter, our privacy policy is declared in the service
manifest, designed by Donini [14]. We add the xPolicy element to the manifest:
{

" serviceId ":"",
" developerId ":"",
" versionNumber ":"",
" dependencies ": [],
" resourceRequirements ":{

"CPU": {},
"RAM": {}

},
" requiredContextModels ":[],
" conflictingContextModels ":[],
" executableHash ":"",

" xPolicies ":{
" policy1 ":{

" active ":"true",
" requestedContext ":" temperature ",
" action ":"get",
" policy ":" group =’family ’",
" obfuscation ":""

},
" policy2 ":{

" active ":"true",
" requestedContext ":" temperature ",
" action ":"get",
" policy ":" group =’guest ’ and location =’house ’",
" obfuscation ":" granularity =’ daily average ’, timespan =’1 week ’"

}
}

}

Listing 4.7: Service manifest file, extension of the work by [14].

The policy is defined in the service manifest of the service package. Default policies
can be declared by the programmer when the service is created. The default policy is
stored in the service manifest and gets uploaded in the service package to the DS2OS.
The default policies are by default deactivated. The user who downloads and installs
the service can decide on what default policies to activate. New policies can be added,
following the example of the default policy.
The policies are therefore defined per service. To address the different contexts of this
service, the requestedContext key works as a vital identifier for the policy evaluation,
as the type of the requested context also influences how the policy can possibly obfuscate
the data.

The attribute that is added to the service manifest is named xPolicies. The x is
added at the front because the privacy policies are not yet included in the signature
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over the manifest. We decide to have multiple additional attributes in our privacy policy,
which are stored alongside the rule, such as active, or requestedContext. The JSON
attribute can hold multiple policies with arbitrary names, here policy1/2, which can
help the user to better understand what the policy protects.

The action is the type of the access request, and it can be get and/ or set.
Obfuscation is applied to get requests and also depends on the context type. An ad-
ditional obfuscation service has to be present in the VSL to answer to the obfuscation
request of the KA.

The prototype evaluates the policy set consecutively. It first analyzes which policies are
applicable. This is done by filtering for the rules that are for the requested context, and
that are active. It then evaluates the applicable rules until one grants access. If none
grants access, access is denied.
If no policy is applicable, then access is granted, since no restrictions are imposed.
Therefore, for applicable policies it works after the whitelisting approach suggested in
the literature.
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Implementation

In this chapter, we look at the prototype that is developed for this thesis. The features
that are explored in chapter 4 are used as parameters for the implementation.

A short overview over the code structure is given in section 5.1.
The extended constructor of the service manifest (see Listing 4.7), as well as the Policy
class are explained in section 5.2.
An example request to an obfuscation service is shown in section 5.3.
In section 5.4, the issues that are encountered during the implementation are summa-
rized and the steps taken are presented. The limitations of the prototype are addressed.

5.1 Structure

The existing access control is done by the Knowledge Object Repository (KOR) on
a request by the Request Router (RR). We therefore implement the privacy policy
evaluation in the KOR, using the caching functionality of the node. Specifically, this is
the class KnowledgeRepository.

The policy evaluation is performed for get requests after the group-based access decision
is made. For set requests, the policy is evaluated first, since the set function performs
an access check during the call to the function setValue in the Node Tree. It has
to be implemented for both actions individually, since set requests do not employ an
obfuscation functionality.
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The policy evaluation, and calls to the obfuscation service are both implemented in the
Policy class. It implements the functions for evaluating time contexts in the policy,
since this is the only universal context that is not searchable in the DS2OS.

5.2 Service Manifest

The service manifest as it is extended for this thesis is presented in Listing 4.7. In the
code, the existing service manifest constructor is extended by an Object that represents
the policy set declared in the JSON manifest. The Policies are mapped onto a HashMap
that consists of a String (the name of the individual policies, given by the user), and an
object of type Policy.
The Policy class has the properties that are also present in the service manifest, namely
active, requestedContext, action, policy, and obfuscation. This simplifies the
parsing of the manifest, since the policy objects are directly mapped onto the Policy
class.
The service manifest parsing and gathering is only implemented at a rudimentary level,
since another thesis extends the existing structure of the service manifest to include
more parameters in it [14].

The design includes key-value pairs in the policy rules, such as time=’from 10 to 13’
or timespan=’1 week’. Passing parameters in this manner helps us with later passing
those parameters to the obfuscator, or to the search providers. This is explained in the
next section.

5.3 Request formulation

As we explain in subsection 2.3.8, parameters can be passed via the request to a node.
Those parameters can then be extracted from the address.
The DS2OS already implements a functionality to return the parameters of the request
as a Map<String,String>. This makes the evaluation of the passed parameters easy
and functional.

Listing 4.7 shows an example policy with possible parameters. For example, if an
obfuscation service is located at /agent1/obfuscator, the request that includes the
obfuscation rule from the example looks like this:
get / agent1 / obfuscator /& timespan =’1 _week ’& granularity =’daily_average ’&/ nodeValue
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We also pass the node value, that is to be obfuscated, to the obfuscator.

The passed parameters can then be evaluated and used to modify the value.

5.4 Issues and workarounds

We extend the constructor of the ServiceManifest to include the privacy policies. This
is shown in section 5.2.
When a new service, that doesn’t import the Policy class, is added to the VSL, an error
because of the unknown type Policy is thrown. This is fixed by restoring the original
constructor, and listing it alongside the new one. Like this, all services can still be run,
and new ones can make use of the policies.
In the future, it is advisable to change the setup of all services to include privacy policies
in their service manifest.

As mentioned in chapter 4, the service certificate contains a hash over the service man-
ifest, thereby guarantees its integrity. Once the policy gets changed, the hash also
changes, and therefore the certificate has to be updated.
Including the privacy policies in the hash is not part of this thesis. It is therefore de-
clared as a special element, marked by a leading x in xPolicies.
A future work might include the policies in the certificate, since the certificate is created
by the SLCA once the service gets downloaded from the S2Store to the local VSL. Here,
the policy and other meta data can be adapted. The service certificate can then be
managed at the local site to cope with these changes at run-time. This protects the
privacy policy from being unintentionally altered.

A specific obfuscation service is not implemented as part of this thesis, since the focus
is on introducing a policy language. However, through the high adaptability of the
system, obfuscation services can be dynamically added later, and a type search for a
needed obfuscation service can be performed to discover them.
This makes sense especially as the functionality of the obfuscator is dependent on the
semantic description of the data.
Therefore implementing an obfuscator for a certain semantic value is not done, but
rather a dummy obfuscator is implemented in order to evaluate the performance (see
chapter 6.

We have to escape any spaces in the policy rules and the obfuscation parameters, since
a request to a node cannot include them. Therefore they are replaced by underscores.
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Chapter 6

Evaluation

This chapter evaluates the developed prototype for the requirements declared in sec-
tion 2.4.
The functional requirements are a multi-factored privacy decision, obfuscation, auton-
omy, adaptability, and reuse (<FR.1> to <FR.5>, see subsection 2.4.1).
The non-functional requirements are listed in subsection 2.4.2, namely complexity, ex-
pressiveness, and understandability (<NFR.1> to <NFR.3>).

In section 6.1 we address the qualitative factors, how our implementation meets the
different requirements that are not of a quantitative nature.

In section 6.2 we look at the general latency that is introduced by the policy function-
ality. For analyzing the quantitative performance, we evaluate how the implementation
of the prototype behaves in different setups, compared to the original system. This
addresses RQ.4, which aims at keeping the DS2OS at a good performance. As a quan-
titative measure for the system performance we look at the response time of a request.
In subsection 2.4.1 we set the goal that the implementation should ideally cause no
higher delay than 0.1 seconds, as this is the delay that becomes noticeable by users. At
a maximum, 1 second response time is tolerable.
We perform measurements to gain an understanding of how the added functionality
for the policy processing influences the system performance. For this, we measure how
much the response time to a request is longer for evaluating different types of policies,
compared to the original implementation of the DS2OS.

Lastly, we analyze how the characteristics of a policy influences the latency in section 6.3.
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6.1 Qualitative evaluation

In the research question for extended access control (RQ.1), we address <FR.1> and
<FR.4>, by looking for an extended access control mechanism that takes more contexts
than just the group based attributes of an entity into consideration.
Our implementation offers the possibility to name diverse privacy contexts in the privacy
policy, as the evaluation capabilities are only limited by the search providers available
in the system. Therefore this goal is met, and the system is kept adaptable to new
domains, as the policy is not tailored to a specific use case.

The RQ.2 addresses the need for a policy language that is both expressive and under-
standable. This covers the requirements <FR.2>, <FR.5>, <NFR.2>, and <NFR.3>.

One factor that guarantees a high expressiveness (<NFR.2>) of the privacy policy is
achieved by implementing the interface to an obfuscation service functionality (<FR.2>).
This allows the user to declare parameters along which the context of a service should
be altered to fit the user’s privacy need. The possible parameters that can be passed to
the obfuscation service are only limited by the implemented parameters of the obfusca-
tion service. Therefore the obfuscation rules are highly expressive and can be adapted
to new requirements easily.
Obfuscation is a privacy functionality that is not used in many cases in related works,
as we see in chapter 2 and chapter 3.

Another factor for an expressive policy is the use of the same functionality for the pos-
sible contexts for which a privacy policy can be declared. As long as a fitting search
provider exists, any context can be semantically discovered and analyzed in the VSL.
Therefore it is extensible and expressive.
By using logical connectives to express the privacy policy, the policies are easy to eval-
uate in our implementation, and are still understandable enough for the programmer of
a service. The programmers have a basic understanding of how the logical connection
of different parts works, and by using natural words for the logical connections in the
policy (and, or, not), even novices are able to figure out what the policy conditions
do (<NFR.3>). However, other policy languages achieve a higher understandability by
using natural language. Chapter 8 highlights some aspects which can further improve
the understandability of the policy.

By using the search providers to semantically discover relevant context, we also adhere
to the functional requirement of reuse (<FR.5>). We reuse the service manifest to
declare the policies, thereby integrating the policies into the declaring entity of system
requirements.
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In research question RQ.3 it is declared that the complexity of the DS2OS should be
kept at the current level. This is achieved by declaring all functions related to the policy
evaluation in a new Policy class. The obfuscation functionality is currently also part
of this class, but can be extracted and individualized in the future. The privacy policy
evaluation is called from the function that also checks access, so it is at the location
where a programmer looks if the access control should be changed.
Reusing the existing semantic discovery of context, and only extending the access control
also keeps the system complexity at the current level.
For the user, no additional complexity is introduced if the privacy protection is not
used. The usage of the system is therefore maintained at the previous complexity level.
The access granting behavior changes with the policies, as the data of a node may now
be altered depending on the obfuscation policy rules. However by declaring privacy
restrictions only for the current service, and not for the possible child nodes, the general
access scheme is continued and thereby understandable.

6.2 Latency

In this section we test the quantitative performance of the prototype by using different
setups, so the unchanged system with the original code, the setup with a policy and
obfuscation evaluation functionality in place, and the setup that additionally has caching
functionality for the results of the obfuscator. The latency is tested by measuring the
time difference of when a get request is sent out, to the time the result is received at
the requester. Set requests are not tested, since obfuscation is not applicable to them,
and we can measure the latency of a fine-grained access check for get requests already.

We use different policy sets for our evaluation.
First, we test a setup where no privacy policies are restricting the access.
If policies are used, they involve a relatively simple location policy that restricts access
to entities located in the living room. This therefore involves a request to a location
search provider. We evaluate cases where the access is allowed, or denied after the result
from the search provider is received. A combination of those policies is also tested, and
in order to keep the charts comprehensible we abbreviate an allow policy to 1a, and a
deny policy as 1d. Ten deny policies are therefore abbreviated to 10d.

For the tests, the service manifest with the policies is read from a specific location on the
system. This approach is chosen to make the changing of the policies more convenient
for testing. For using the policies in a running system, they will be gathered from the
service metadata stored in the NLSM, and then parsed for the policies.
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The measurement results are displayed in the Appendix in Table A.1 and Table A.2.

6.2.1 General

We want to gain an understanding of how introducing the privacy policy functionality
influences the system in terms of latency. We expect that the response time is slower
for all requests, since at least processing the manifest file takes some time.

In order to test how quickly the system responds to requests with and without policies
installed, we test the latency for local, and remote requests in both the original sys-
tem, and the new implementation that can evaluate privacy policies and obfuscate data.
However, no policies are listed in the service manifest just yet, in order to get the raw
processing latency of parsing the manifest and other additional functionalities we have
in our implementation.
Caching is analyzed in subsection 6.2.4, as we first want to see the general processing
differences.

We send out five requests to an installed service, once from a local node that runs the
service, and in the other case from a remote node. Having five requests to analyze gives
us a minimal understanding of the performance, and keeps the evaluation setup man-
ageable. Multiple first requests would mean to shut down the entire system and restart
it, which is considered as too extensive, especially since already the first measurements
showed a recurring value range.

We expect that the latency is increased only slightly, since no requests to external
entities are sent, only the manifest file is processed.
Figure 6.1 shows the results of this measurement in milliseconds.

The latency of the first request is higher than, or at least equal to all other latencies for
that request type. This is because caching is already done by the VSL, so after the first
request, an answer is sent out faster. The requests after the first are more interesting to
us, since they give a more balanced view of the processing latency. We can also expect
that in a real world use case, requests are repeated, since the evolution of a value is of
interest.

We can see in Figure 6.1 that for local requests, the difference is not very high, the
average latency is higher by 2.5 ms for the policy augmented system.
For remote requests, we even have a reduced latency, which is surprising. This could
be due to a measuring error, but since the average measurements are only 4 ms apart,
it is considered as a valid result.
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Figure 6.1: Latency introduced through policy processing functionality in code, no policies are
processed.

As conclusion it can be said that adding the processing functionality introduces some-
thing around 0 to 3 ms latency. This result can be used as comparison in later mea-
surements.
Therefore having our functionality implemented slows the system down to a negligible
extent.
First requests take around 7 ms for local, and around 80 ms for remote requests. Local
requests are on average up to 7.5 ms long, remote requests up to 35 ms.

6.2.2 Search provider queries

Since the introduction of the functionality to process policies keeps the reaction time of
the system at roughly the same value, we now test how high the latency of processing
a single policy is. For this, we add a policy that restricts access to entities located
at a specific location to the manifest. The policy mechanism queries a location search
provider for the devices at this location. In our case, the requester is listed as being
in that requested room and therefore the privacy enforcing mechanism grants access to
the requester. In the charts, this is abbreviated to 1a.

We test this setup for local and remote requests, and compare the results to the response
times of the original setup.
We expect that a significant latency is now taking place for the requests. For local
requests, it should stay below the original latency of remote requests, since requesting a
local service and a local search provider should not take longer than requesting a remote
service.
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Figure 6.2: Evaluating the total latency introduced by processing polices, at the example of a simple
policy that allows access.
Original request latencies are included for comparison.

Remote request delays are probably higher than with the original setup, but the differ-
ence is likely to be somewhere around the difference that we see for local requests.

In Figure 6.2 we can see that indeed the latency is now higher than the original response
time. Especially the first requests are high, even local requests are now surpassing the
formerly slowest response time. The first remote request has a response time of around
290 ms, and a first local request is roughly half as long (1̃50 ms). The average requests
are also roughly doubled, from 26 ms for local request to 48 ms for remote requests.
Originally, remote requests were seven times slower than local requests on average.

For a human user the difference should not be notable for requests on average, as at
worst it is only 10 ms slower than previous remote requests. Local requests are still
faster than the original remote requests.
So, if the majority of the services do not use a policy, then the latency is still in man-
ageable value ranges. If however the majority implements a single privacy policy, the
latency would be noticeable. In section 6.3 we analyze how different policy conditions
alter the behavior.

When comparing the latency for the first request to the original latency for first requests,
145 ms are added to the latency for local requests, or 200 ms for remote requests.
On average, this is 21 ms for local requests, and 14 ms for remote requests. It is
surprising that local requests on average introduce more latency to the system than
remote requests. This could either be a measuring error, or due to the big difference in
latency between remote and local requests.
For first requests, the latency becomes noticeable, as the latency surpasses 100 ms. This
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Figure 6.3: Comparing a policy set that first denies, then grants access (1d1a), to a directly access
granting policy (1a).
Original request latencies are included for comparison.

contradicts our goal to stay below 100 ms of delay, but since this high latency is only
reached by first requests, it is tolerable.

So, as conclusion, requesting a result from a search provider introduces a latency be-
tween 14 ms and 21 ms on average. This is still an acceptable latency. The latency for
a first request to a search provider is high, but only occurs once, so this is still functional.

For another evaluation, we analyze the latency that one additional policy introduces, by
using a policy set where the first policy requires that the requester is in a room (returns
an access denial for our setup), and the second policy is the same as in the previous
measurement (returns an access grant). In the charts, this is abbreviated to 1d1a.

We expect that the latency is further increased, only not as much as the previous
measurement added to the response time, since only another request to the location
search provider is performed.

We compare these results with the previous tests, so the original setup, and the policy
that directly grants access (1a) in Figure 6.3.

It shows the 1d1a measurements in yellow and blue, and the previous results in green.
The difference between the local requests which include a policy is still low, especially
for the first request. However, on average, the local request is now for the first time
slower than the original remote request, being at 39 ms, compared to 35 ms for a simple
remote request. This means that the difference becomes more and more noticeable by
users, especially for remote requests that have a policy.
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We see that the additional deny policy, that has to query for another room, introduces a
latency of 5 ms for local, and 83 ms for remote first requests, compared to the previous
measurements (green). For the remaining requests, having a deny policy increases the
latency by 13 ms for local, and by 20 ms for remote requests. This is a small latency,
and won’t slow the system down significantly on it’s own.
However we cannot directly compare the values from the previous measurement with this
one, as a certain base of processing time is part of the previous request. In section 6.3
we, beneath other factors, look at the latency that is introduced by one single policy.

6.2.3 Obfuscation

In order to evaluate the latency the obfuscation mechanism introduces, we use the policy
set of the previous measurement, and extend it to include a simple obfuscation rule.
The obfuscation functionality we use for our setup takes a node value, checks the value,
and returns an obfuscated node value. The obfuscation service also runs on the local
agent.

We expect that the obfuscation functionality introduces some latency, as another re-
quest to a service is sent with the corresponding obfuscation rules and the value. The
obfuscation service has to be discovered, which also introduces some latency. The ad-
ditional latency will therefore probably be somewhere around the latency introduced
in the first measurement (21 ms on average for local requests, and 14 ms for remote
requests).

Figure 6.4 shows the measurement results. It is surprising that the first local request
using obfuscation comparatively takes longer, compared to the first remote requests,
only 41 ms latency is introduced for first remote requests, whereas the local first request
is 130 ms slower when using obfuscation. This difference is quite high and must therefore
be a measuring error, since the remote request involves the local agent, and therefore a
remote requester gains at least the latency that the local agent experiences. It therefore
should be lower, or the value of the remote request should be higher.

The average values are more useful for us, and they show that the difference between
obfuscation and no obfuscation is on average either 27 ms for local agents, and 26 ms
for remote agents, so roughly the same. This means that we can take this value as the
latency that is introduced to policies on average, when they use obfuscation.

This is slightly higher than the expected latency, but it is still within a low range.
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Figure 6.4: Latency introduced through obfuscation, by evaluating a policy set that first denies, then
grants access (1d1a), either with or without obfuscation rules in the policy.

6.2.4 Caching

As a countermeasure to high latency, we introduce caching of previous obfuscation
results. We measure the advantage of caching by again applying a policy that first
denies, and then grants access (1d1a). We also compare it to the original response
times, in order to get an overview over the total latency.

We expect that the response time is further increased for first requests, compared to
the previous obfuscation policy results. This increase should be only a slight increase
though, as the only difference is that the result from the obfuscation service has to be
cached. After the value has been cached, all further requests with this setup should be
significantly faster, at least coming close to the performance we have when we are only
processing policies, no obfuscation rules.

The results are split into two charts, because the time difference between the first
requests, and the requests that come after it, is too big and the effect becomes clearer
by looking at the results separately. Figure 6.5 therefore shows the effect of caching for
the first requests sent by either a local, or a remote agent. Figure 6.6 shows the same,
but for an average over all policies coming after the first one.

In Figure 6.5 we see that for first requests, the latency is already improving. This is
unexpected and might indicate a measurement inaccuracy. For the remote requests it
is even faster than the functionality without any obfuscation rules involved, so this is
an unexpected result. Even for first requests, the latency is reduced by 5 ms for local,
and by 20 ms for remote requests. This difference is not too big, so we consider it as
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Figure 6.5: Latency on first request, introduced by the different implementations.
Testing for either a local or remote request with a policy set that first denies, then grants access (1d1a).

being slightly off.
As we state in the expected outcome, the response time for first requests should at least
be as long as the previous requests without caching.

Over all, this setup has a latency of 282 ms for first requests locally, compared to 7 ms
in the original setup. For remote requests, it is even higher, at 353 ms compared to
91 ms. The difference to the original latency is therefore 275 ms for local, and 262 ms
for remote requests.
This latency for first requests is high, the remaining requests should bring significant
improvement if we want to keep the system functional. Therefore we look at Figure 6.6
now.

We see that for local requests, the latency is 45 ms, thereby approaching the performance
as it is without obfuscation rules (39 ms). This is how we expected it to be, reducing
the latency by 20 ms compared to the previous measurements.
For remote requests, the value is even lower, which is surprising, but since the difference
is 3 ms, this can be disregarded. For remote requests, the performance is increased
at a higher rate, since caching the obfuscation result locally also saves the request to
the remote obfuscator and thereby further communication delay. We save 28 ms by
caching, compared to the previous measurements.
Therefore caching proves to be highly useful for the setup, at least for all requests after
the first ones.
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Figure 6.6: Latency on average, introduced by the different implementations.
Testing for either a local or remote request with a policy set that first denies, then grants access (1d1a).

6.3 Policy characteristics

This section looks at how the characteristics of a policy set change the performance of
the system. We want to know whether a large policy set with simple policies introduces
higher latency, than a policy set with few, but long policies. For this we measure the
average latency of different policy sets that use obfuscation. The results are shown in
Figure 6.7.

In subsection 6.3.1 we analyze the latency introduced by long policy rules. A long policy
in our test setup consists of five requests to a location search provider, and two requests
to a time evaluating functionality. The time evaluation is done on the node itself, since
this is not dependant on any external logic. Therefore the majority of latency that is
introduced comes from the location search provider.

This is compared to the number of policies in the policy set in subsection 6.3.2. For our
evaluation setup, a policy set that contains many policies consists of 10 access denying
policies and one access granting rule, all of which have the same obfuscation rules as in
the previous measurements.
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Figure 6.7: Latency introduced by the complexity of the policy set, analyzed for local and remote
requests, and considering the usage of caching.

6.3.1 Policy length

A long policy should take longer to evaluate than the previous policy sets, because the
different nested logical connections of the policy have to be evaluated and then combined
to return an access decision.

We expect that this increase is minimal, introducing around the same latency as previous
additional policies did (see subsection 6.2.2).

Figure 6.7 shows how the complexity is indeed increased, and that for example the
difference between a short access granting, and a long access granting policy (1a) is
increased notably.

We also see how caching makes the data points for local and remote policies almost meet
for 10 deny rules, with one following access granting rule (rightmost light and dark green
data points). The difference is only 4 ms. Since the 10 deny policies are requesting the
same value, this makes sense, as caching is effective for repetitive requests.

For the requests that use no caching (grey lines), it can be seen how the latency difference
remains the same throughout all policy sets. On average, they are 29 ms apart.
For the cached requests, the latency differs throughout the policy sets. It is highest
for the long 1a1d rules, which is plausible, since they involve two different requests for
multiple search provider results. The difference is lowest for the last data point, as
mentioned above.
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So, if we have long, complex rules, it is better to have caching enabled, since it reduces
the latency for remote requests.
We want to see the true cost of a long request which consists of five location restrictions,
compared to a short request, consisting of one location restriction. For this, we subtract
the latency of the long access grant (1l.A) policy evaluation from the long deny-allow
(1l.D, 1l.A) evaluation, and divide this result by the number of search provider queries
involved in the policy evaluation, so five. This gives us 14.25 ms (159 ms minus 87 ms,
divided by 5) for remote, and 10.2 ms (129 ms minus 78 ms, divided by 5) for local
requests per search provider involved in long rules.

6.3.2 Number of policies

Figure 6.7 we see that the latency is highest for a policy set with multiple policies. This
is no clear indicator of what influences the latency the most, as these large policy sets
(10d1a) consist of 11 requests to a search provider, and the small policy set that has
long policies (1l.D,1lA) has nine requests to a search provider, but combines the results
with logical expressions that have to be evaluated. So in order to get an understanding
for the latency that a big policy set introduces by first evaluating multiple denying rules,
we subtract the latency caused by one deny - one allow policy set (1d1a) from ten deny
- one allow policy set (10d1a) and divide this result by nine, in order to get the latency
of one deny policy on average.
In numbers, this is 193 ms minus 65 ms, divided by 9, resulting in 14.2 ms delay for one
remote request to a search provider in complex policy sets. For local requests,
this is 189 ms minus 45 ms, divided by 9, gives as a result about 16 ms for local requests
to a search provider.
It is surprising that local requests to a search provider on average take longer, but since
the values are close to another, this can be seen as the range of delay for this type of
request.

Comparing those values to the results of the previous section, we see that a request to
a search provider on average costs 10 to 14 ms in long rules, and between 14 and 16 ms
for complex policy sets. Therefore it can be said that a higher number of policies in
a policy set makes the response time about 3 ms slower than a single long policy rule
does. However this difference is minimal, and therefore the evaluation of long policies
does not have a significant impact on the evaluation time. The increase in latency is
mainly based on the number of search providers that have to be queried.
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6.4 Conclusion

Now we know that especially the first requests to a service are slowed down significantly
compared to the original response time. The highest latency we measure is for remote
requests with a policy set that contains many deny policies, this can be up to 461 ms
additional latency. By using caching, we can reduce the additional latency to around
around 400 ms. This is still a high value, since it is slower then 100 ms we aimed at in
subsection 2.4.1, therefore it causes noticeable latency [26].
However, the high latency is only produced by first requests, the additional latency
produced by later requests is at most around 200 ms (large policy set, local requests
without caching). With caching, this additional latency is at least reduced to 184 ms.
This is still high, but should not be a normal use case, as a policy set with many policies
also is less understandable for a user, and therefore is less likely.

A more realistic use case is one where two policies are active and applicable, and the
first policy denies access, followed by a policy that grants access (1d1a). For this, the
response time is around 40 ms slower as in the original setup for local requests, and
about 31 ms slower for remote ones. This is a comparatively low number, but especially
for local requests, this is nine times slower than the original request. Therefore this
additional latency will be noticeable once more services in the network have applicable
policies in place.

The latency we add to a request by passing its value to an obfuscator is around 26 ms, as
we discuss in subsection 6.2.3. On its own, this is not a high latency, but combined with
other time intensive rules, this causes a longer response time. Therefore obfuscation is
a factor that the user should consider in regards to if the performance loss is at balance
with the privacy protection it offers.

As we see in subsection 6.3.2, the latency introduced by one request to a search provider
is around 14 ms. Therefore the response time of a service using policies depends strongly
on the number of search providers involved.

We notice a major improvement in the response time when obfuscation results are
cached at the nodes, for local requests caching decreases the response time by 20 ms,
for remote requests it is even more, about 28 ms. So far, cached results are only a
fallback in case of an unreachable obfuscation service. In order to increase performance
in the future, the obfuscation results could be cached and used even if the obfuscation
service is available. In case the policy changes, and therefore the obfuscation rule might
have been changed, a new query to the obfuscation service has to be performed.
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The latency introduced through querying search providers is even more relevant, as we
expect this to be a standard part of the privacy policy. Using cached results of the
search provider is not advisable since for example the location of a device can change
often. Unless the search provider becomes unavailable we want to have the most recent
result from the search provider.

As a conclusion it can be said that for first requests, we do not meet our goal of staying
below the 100 ms delay, as we have measured a delay of 488 ms with our test setup. We
meet the lax goal of staying below a delay of 1 second.
For the requests after the first, we in most cases meet our goal of staying below the
100 ms delay, therefore keeping the impression up that the reaction is instantaneous.
We measure latencies higher than 100 ms only for policy sets that included calls to
nine or ten search providers. Since the delay introduced by search provider requests is
about 14 ms, we can estimate that a maximum of five to six search providers should be
requested by the policy for the most common use cases, if the reaction time should stay
below 100 ms.

In chapter 8 we list some possibilities that can reduce the latency observed in this
chapter.
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Chapter 7

Conclusion

This thesis approached the aspects of increasing the privacy protection in smart envi-
ronments, at the example of the DS2OS implementations. Access control is usually done
based on group membership or roles, which has the disadvantage that a high number of
roles is accumulated over time if more fine-grained access control is needed. The goal
of this thesis was to extend this access control to include other aspects into the access
decision which might more accurately represent the users understanding of privacy.

In analyzing related research and other implementations, we found that Attribute-based
Access Control (ABAC) is the most fine-grained and adaptable access control. The
attributes are a semantic description of the environment and are assigned to the entities.
A policy can use this semantic description to express a rule for a certain attribute, e. g.
the location of an entity.
The advantage of implementing an attribute based access control at the example of
the DS2OS is that a semantic description of the entities already exists, and context is
semantically searchable through search provider services. Therefore we can include any
attributes that are discoverable through search providers in the system.
We therefore solved the problem of creating a fine-grained access control. The individual
attributes are linked through logical expressions, which are known to the user. Since
the search providers can be designed to discover context at any level of detail, the policy
becomes expressive and adaptable to diverse use cases.

An additional privacy mechanism that is not part of ABAC and which has been used in
few other cases is data obfuscation, which removes or alters certain sensitive data. This
way, sensitive data is kept privacy but can still be processed, at a level of detail that is
accepted by the user, and that might still be useful enough for the service. This also
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helps to maintain a good system performance.
By combining the attribute based privacy policy with an obfuscation mechanism, the
users can not only decide who has access based on more factors, but can also alter the
exposed data itself based on the same fine-grained attributes. This further extends the
expressiveness of the policy.
The understandability of the policies is good enough for the prototype, where the pro-
grammers implement and maintain the policies. By creating the possibility for default
policies, the understandability is further increased. An ideal implementation could im-
prove this by offering a GUI, which we elaborate in chapter 8.

The design developed for this thesis extends the existing access control functionality of
the DS2OS with an attribute based access policy, which reuses the existing semantic
description of context. An interface to obfuscation services was created, and both the
attribute based access policies, and the obfuscation rules are declared in a policy set.
The policy set is defined per service and enforces the privacy rules for any requests to
this service.

The evaluation of the performance of the prototype shows us that the response time of
requests is slowed down by around 14 ms per search provider involved, and about 26 ms
latency is caused by the query to the obfuscation service. Caching proved to be a good
approach to reduce the latency, as it can save up to 28 ms of response time. Therefore
the performance of the system is slowed down, but for use cases that do not involve
more than five to six search providers the latency stays below 100 ms, which was the
requirement for this thesis. The latency can be reduced even further when caching is
also used for the search provider queries.
The autonomy of the VSL was maintained, since the policies are part of the service
manifest, stored in the NLSM. The policies are therefore locally available and the
processing of the rules is also done autonomously. The KAs only have to involve external
entities when a search provider is requested, which might not be available on the local
node. By caching previous results from search providers, the autonomy could be further
increased, but at the expense of an absolute privacy protection.

Ultimately, the owner of a pervasive computing environment has to decide how impor-
tant privacy protection is in their setup, and weighing this against the performance
decrease that is introduced by checking the privacy conformity of an access request.
The increased latency of the privacy policies in common cases does not slow the re-
sponse time down to values higher than 100 ms, but even this might be too slow for
time-critical operations. By enabling diverse caching possibilities, the owner can find a
good compromise between privacy and performance. Chapter 8 discusses some further
caching opportunities.
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Chapter 8

Future Work

As the previous chapter summarized, the majority of our requirements for an expressive
and understandable privacy policy are implemented in the current prototype. This
chapter explores features that would further improve the privacy policy functionality,
which we did not realize in the prototype.

In pervasive environments, the large number of devices and the high connectivity of the
devices is the defining property. Therefore the communication between the entities has
to be fast. The latency of the prototype is still unnoticeable in regular cases for the
user. However with an increased number of policies, or a bigger network where a search
provider might not be as quickly addressable as in the presented test setup, the latency
will become too high. This could lead to frustration with the privacy functionality and
would make the owner of a network disable the privacy protection mechanism. This is
not a desirable outcome, therefore the utmost priority for further improvement of the
prototype is to reduce the latency of policy processing.

One major factor that influences the performance of the policy evaluation is the querying
of different search providers to determine the parameters that are relevant to a policy.
In the prototype, the search providers are queried for every element of the policy anew,
since for example the location of an entity can change between different access requests.
This of course introduces latency, since every query to a search provider takes around
14 ms (see chapter 6). In future implementations it might be one solution to offer the
possibility to the programmer of a service to define a desired behavior for querying
search providers. Either they should be queried at a regular interval and between those
intervals, cached values are used, which would return results faster, but is less protective
than newly requested context. Alternatively the desired behaviour could be the current
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implementation, that new values should be queried for every request. It should be kept
in mind that the first behavior would cause a constant traffic in the background.

Another factor that introduces latency is that the address of the corresponding search
provider is looked up via a type search at every requests. An improvement to this
could be to cache the address of for example the location search provider once it was
discovered. If the search provider at the cached address becomes unavailable, a new
type search for another search provider of that type can be done.

The requests to the obfuscation service introduce some latency, and caching proved to
be a viable way to improve the response time. As it is explained in chapter 6, the cached
value is only used when the obfuscation service becomes unavailable. The obfuscation
will not change with changing environment attributes, therefore the cached obfuscated
values can be used, as long as the passed values stay the same.

Another minor but easy way to improve the latency would be to cache the policies of
the service on the node, instead of reading them every time from the manifest file. Since
a changed policy set would also mean that the manifest changed, we can rely on the
policies we read at startup of a service.

An aspect that is considered in the design process is to allow the programmer to set
a preferred functionality of the policy evaluation. The programmer could be offered a
way to specify if privacy or performance are of greater interest, and according to this
choice, the evaluation either uses caching extensively, not at all, or at the balance that
is proposed in this thesis.

A useful extension of the policy evaluation presented by this thesis would be to have
policies that are valid for all contexts of the service. In our prototype, the first matching
rule is evaluated. Therefore if another rule would grant access to a bigger data set, it is
not reached in our prototype.
However this can require the user to define repetitive policies for all context. To avoid
listing repetitive rules, an advanced evaluation mechanism could state generally valid
rules in addition to the context-specific rules.

Aspects which are mentioned in the literature, but which we didn’t implement in the
prototype are a Graphical User Interface (GUI), and policy conflicts. With a GUI,
the policy declaration becomes far more developer friendly, since suggestions about
available search providers can be presented. Furthermore, common privacy policies for
the context that is processed by the service could be suggested. A GUI can help the
programmer understand the policies better, and could possibly help them in activating
rules, or removing unwanted ones.
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An overview over the activated policies could be given to the users in the VSL, which
helps them to understand what policies are in place, and how they possibly restrict their
access.
Policy conflicts are currently unlikely, since the hierarchy of the services is not important
to the privacy enforcement, as policies are only valid for the specific service they are
declared for, not for any other services in the VSL.
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Chapter B

List of acronyms

ABAC Attribute-based Access Control.
CA Certificate Authority.

CMR Context Model Repository.

DAC Discretionary Access Control.

DAML DARPA Agent Markup Language.

DS2OS Distributed Smart Space Orchestration System.

FOAF Friend of a Friend.
GDPR General Data Protection Regulation.

GUI Graphical User Interface.

IoT Internet of Things.

JSON JavaScript Object Notation.

KA Knowledge Agent.

KOR Knowledge Object Repository.

MAC Mandatory Access Control.

NLSM Node Local Service Manager.

ORSD Ontology Requirements Specification Document.

OS Operating System.

OWL Web Ontology Language.

P2P Peer-to-Peer.
PDP Policy Decision Point.



Chapter B: List of acronyms

PEP Policy Enforcement Point.

RBAC Role-based Access Control.
RCC Region Connection Calculus.

RDF Resource Description Framework.

RR Request Router.

S2S Smart Space Service management.

S2Store Smart Space Store.

SLCA Site-Local Certificate Authority.

SLSM Site-Local Service Manager.

SML Service Management Layer.

SOUPA Standard Ontology for Ubiquitous and Pervasive Applications.

VSL Virtual State Layer.

XACML eXtensible Access Control Markup Language.

XML Extensible Markup Language.
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