
Technische Universität München
Department of Informatics

Master’s Thesis in Informatics

E�cient Storage Backends for IoT Data

Florian Georg Kreitmair

Technische Universität München
Department of Informatics

Master’s Thesis in Informatics

E�cient Storage Backends for IoT Data

E�ziente Speicherung von IoT-Daten

Author Florian Georg Kreitmair
Supervisor Prof. Dr.-Ing. Georg Carle
Advisor Dr. Marc-Oliver Pahl, Stefan Liebald, Dr. Cyrille Artho
Date May 15, 2018

Informatik VIII
Chair for Network Architectures and Services

I con�rm that this thesis is my own work and I have documented all sources and material
used.

Garching b. München, May 15, 2018

Signature

Abstract

Storing information is at the core of almost every Internet-of-Things (IoT) middleware,
which poses challenges relating to scalability, fault-tolerance and correctness. This
is even more relevant for a subset of IoT platform architectures that use a database
abstraction to connect IoT components and treat data that represents physical state,
control output, or inferred information in a uniform manner. At the same time, new
database products aim to address these challenges through means of distribution while
retaining semantics similar to existing relational databases. This study analysed the
requirements of a stateful IoT middleware on its database backend in order to identify
viable candidates. A middleware product was adapted to store its data on two backend
implementations based on the databases CockroachDB and In�nispan, which make
use of di�erent concepts and algorithms. To leverage their transactional capabilities,
the frontend interface of the middleware was supplemented with transactional access
methods. Finally, the performance of the implementations was measured and compared
with a set of application-oriented benchmarks. The results show a considerable trade-o�
between consistency, transactional safety, performance, and fault-tolerance and suggest
that IoT middleware should make a distinction between the processing of input data
aggregation and decision-making coordination tasks.

Sammanfattning

Att lagra information är en central uppgift i nästan varje Internet-of-Things (IoT) midd-
leware. Dessa system rörar mot skalbarhet, feltolerans och korrekthet. Det är ännu mer
relevant för en delmängd av IoT-plattformsarkitekturer som förbinder IoT komponenter
genom en databasabstraktion och behandlar data som representerar fysiskt tillstånd,
styrningsdata eller avledad information på ett enhetligt sätt och har därmed höga krav på
konsistens och performans. Samtidigt �nns det nu nya databasprodukter som adresserar
dessa utmaningar genom distribution, men behåller samtidigt semantiken av välkän-
da relationsdatabaser. Denna studien analyserar kraven av en stateful IoT middleware
på databasbackenden och försöker identi�era tillämpliga kandidater. En middleware-
produkt anpassas sedan för att lagra data genom två backend-implementeringar som
baserar på databaser CockroachDB och In�nispan vilka som använder olika koncept
och algoritmer. För att utnyttja deras transaktionsmöjligheter kompletteras frontend-
gränssnittet med transaktionala metoder. Slutligen mäts implementeringars prestation
och jämförs med varandra genom en applikationsorienterade benchmark. Resultaten
visar ett betydande avvägning mellan konsistens, transaktionssäkerhet och performans
och tyda på att middlewaren skulle skilja mellan bearbetning av indata och besultsfat-
tande koordinationsprocesser.

Zusammenfassung

Die Speicherung von Information ist eine zentrale Aufgabe jeder Internet-of-Things
(IoT) Middleware, was Herausforderungen an Skalierbarkeit, Fehlertoleranz und Kor-
rektheit stellt. Dies ist insbesondere für eine Teilmenge von IoT Plattform-Architekturen
relevant, die eine Datenbank-Abstraktion verwenden um Echtzeitinformation zum phy-
sikalische Zustand, Steuerungsdaten oder abgeleitetes Wissen über eine einheitliche
Schnittstelle zur Verfügung zu stellen und darüber hinaus hohe Anforderungen an
Konsistenz und Performanz stellen. Diese Herausforderungen werden auch von vielen
jüngeren Datenbank-Entwicklungen addressiert, die Daten verteilt speichern und dabei
versuchen die Semantik von herkömmlichen relationalen Datenbanken zu wahren. Die-
se Studie ermittelt die Anforderungen einer IoT-Middleware an ihr Datenbankbackend
und versucht geeignete Kandidaten zu identi�zieren. Das Middleware-Produkt DS2OS
wird dann für zwei der identi�zierten Datenbanken (In�nispan und CockroachDB) an-
gepasst. Zur Ausnutzung von deren Transaktionsfähigkeit wird das Frontend der Midd-
leware zusätzlich mit transaktionalen Zugri�smethoden versehen. Schließlich werden
die Implmentierungen mit anwendungsnahen Benchmarks vermessen und miteinander
verglichen. Die Ergebnisse zeigen eine deutlichen Zielkon�ikt zwischen Konsistenz,
Transaktionssicherheit und Performanz und legen nahe, dass eine IoT-Middleware bei
der Datenverarbeitung zwischen der Aggregation von Sensordaten und Entscheidungs-
prozessen zur Koordination von Ausgabehandlungen unterscheiden sollte.

I

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 State of the Art . 3
1.3 Goal . 3
1.4 Outline . 4

2 Analysis 5
2.1 Intelligent Buildings and Smart Spaces 5

2.1.1 Conventional Building Automation 5
2.1.2 The Vision . 6
2.1.3 Related work . 7

2.2 DS2OS . 9
2.2.1 Design and Objectives . 10
2.2.2 Developer-centred view of DS2OS 11

3 Databases for Smart Spaces 19
3.1 Requirements . 19

3.1.1 Data meta-model and structure 19
3.1.2 Interface . 22
3.1.3 Storage Location . 22
3.1.4 Partitioning (Sharding) . 24
3.1.5 Replication . 24
3.1.6 Concurrency control . 25
3.1.7 CAP Trade-O� . 28
3.1.8 Resource Consumption . 29
3.1.9 Triggers & Stored Procedures 30
3.1.10 Related work . 31

3.2 Available distributed datastores . 32
3.2.1 Zookeeper . 34
3.2.2 CouchDB . 34
3.2.3 Cassandra . 35
3.2.4 HBase . 35

II Contents

3.2.5 VoltDB . 36
3.2.6 CockroachDB . 36
3.2.7 Riak . 37
3.2.8 Scalaris . 37
3.2.9 Voldemort . 37
3.2.10 In�nispan . 38
3.2.11 Hazelcast . 38
3.2.12 Ignite . 39
3.2.13 Geode . 39
3.2.14 Conclusion . 39

4 Implementation 41
4.1 Architectural Integration . 41

4.1.1 Transaction Interface . 41
4.1.2 Version History . 43
4.1.3 Subscription and Noti�cations 47

4.2 Back-end Implementation . 48
4.2.1 CockroachDB . 51
4.2.2 In�nispan . 52

4.3 Summary . 53

5 Evaluation 55
5.1 Test Model . 56
5.2 Measurable properties . 57

5.2.1 Information dissemination latency 57
5.2.2 Transaction success rate . 58
5.2.3 Service-level latency . 58
5.2.4 Throughput . 60

5.3 Speci�c data�ow-oriented tests . 60
5.3.1 Aggregation Chain Length . 61
5.3.2 Coordination Complexity . 62
5.3.3 Coordination Scale . 63
5.3.4 Sensor Data Size . 64
5.3.5 Aggregation Chain Length Heterogeneity 64
5.3.6 Indirect Control . 65

5.4 Load tests . 66
5.4.1 Load generation . 66
5.4.2 Latency . 67
5.4.3 Throughput . 68
5.4.4 Fault tolerance . 68

5.5 Threats to Validity . 69
5.6 Conclusion . 70

Contents III

6 Conclusion 73
6.1 Di�erences & Trade-o�s . 73
6.2 Recommendations for Implementation 74

7 Future work 77

Bibliography 79

V

List of Figures

2.1 Context model example for a multicolour lamp. 12

4.1 Operations expicitly associated with a transaction object 42
4.2 One transaction environment per connector 42
4.3 One transaction environment per connector 43
4.4 Archiving the version history within the database that keeps the VSL data 45
4.5 Archiving state updates outside of the VSL state database in parallel . . 46
4.6 Archiving state updates before transaction commit 47
4.7 Archiving state updates after transaction commit 48
4.8 Database tables of the CockroachDB backend 51
4.9 Classes used as value types of the In�nispan backend 52

5.1 Information �ow . 57
5.2 Aggregation Chain Length Topology 61
5.3 Time between sensor output and actuator read of a causally related

event dependent on aggregation chain length 62
5.4 Coordination Complexity Topology . 62
5.5 Time for the execution of a coordination transaction dependent on the

containing number of reads (from KI services) and writes (to actuators). 63
5.6 Coordination Scale Topology . 63
5.7 Time for the execution of a coordination service transaction in scenarios

varying in the number of coordination services with identical access
patterns . 64

5.8 Aggregation Chain Length Heterogenity Topology 65
5.9 Indirect Control Topology . 66
5.10 Time for the execution of a control service transaction and throughput

of transactions. 67
5.11 Latency Comparison . 72
5.12 Non-transactional throughput . 72

VII

List of Tables

3.1 Requirement Matrix . 33

1

Chapter 1

Introduction

1.1 Motivation

Modern buildings and infrastructures can contain a vast amount of sensors and remote
controlled actuators. In a terminal building at an international airport, for example, there
are hundreds of automatic doors, lights, heating devices, escalators, security cameras,
light barriers, RFID scanners and other sorts of devices. These continuously emit new
data or require control input, while the procedures to process data and to determine
control input are complex.

Consider an automatic sliding door as an illustrative example: First and foremost such
a door must be safe to use – it must not crush a person who is walking through. On
the other hand it must not open when it is not supposed to, in order to isolate security-
critical areas where only authorised personnel is allowed to pass, or to keep distinct
groups of travellers, such as domestic and international ones, apart from each other. In
yet another case, it might be vital that it opens, for example with a manual override in
an emergency evacuation situation. An automatic door also emits information: it can
count the number of people who pass through in both directions, signal if it is currently
in an open or closed state, and trigger an alert when the emergency release button has
been pressed. To align its own state with higher-level coordination policies, the door
must communicate and interact with a network of distributed services. One such a
service could, for instance, estimate the total number of people within an area at a given
time by counting the tra�c that passes through the door. This value can then be made
available to other coordination processes; for example, it can be taken into account to
dynamically adapt the number of security lines in response to passenger tra�c. It can
also be used to limit the number of people in an area for safety reasons, or to move
baggage carts, tracked by RFID tags, to areas with increased demand. In the long run,
this data, aggregated over time, is also valuable for airport shop owners, advertisers, or
planners of terminal extensions.

2 Chapter 1. Introduction

Many of these coordination procedures can in principle be carried out by human op-
erators on control panels that receive the measurements and give instructions, then
con�guring devices according to human reasoning and judgement. However, the sheer
amount of information to process, the complexity, and the high expenses of the human
operators makes this unfeasible, while the infrastructure to collect and transmit the
measurement data and control information is nevertheless necessary. This makes it
economical to automatise the procedures to a high degree.

The task is not trivial: Physical devices come from di�erent vendors and have incom-
patible interfaces. Even if they are standardised, they remain heterogeneous, as a range
of standards exists for various specialised applications – for instance, the DMX protocol
for lighting installations. There are also implementations that are already integrated at
the device-level, such as radiators that come with an integrated thermostat. In addition,
some control functionality has to remain tightly integrated at the physical device be-
cause it is especially time- or safety-critical. To return to the door example, this might
be the control procedure to unlock the door when the emergency button is pressed. It
would be unsafe to fully rely on the availability of a human or non-human coordinator
and a network that exactly in such a situation is prone to damage. Therefore, this be-
haviour is already hard-wired in door units sold on the market and works autonomously
without the help of a back-end infrastructure. These circumstances make such devices
complex to model, as they are not simply sensors and actuators any more; instead, a
model has to incorporate a notion of autonomous behaviour as well. For example, by
regarding a door as a service that provides functionality like changing the opening
policy, reading the current state, or subscribing to alerts and people counter updates.

The dynamics involved are a further challenging point. The infrastructure is subject to
change: New physical components might be added or removed, or might simply fail
at times. And so must control policies changed from time to time: It should be simple
to switch sections of the building into a standby mode when they are closed for the
public, to switch subsystems to a manual operation mode, or to adapt heating control
parameters in order to save energy. This point also becomes relevant when the same
technology is used in small-scale deployments, which is becoming more common as
the technology is getting more a�ordable. In a residential setting, also called smart
home, it is more di�cult to plan and manage the IoT system professionally; instead, it is
important that the devices are compatible with each other easy to use by the occupants.
It implies that the devices themselves must be able to coordinate their topology, discover
resources and adapt to the environment. This points to a clear advantage of an adaptive,
dynamic system over a hard-wired implementation where changes in hardware or policy
entail changing physical infrastructure.

1.2. State of the Art 3

1.2 State of the Art

To account for these challenges, a number of solutions, often referred to as middleware,
have been developed. These are not necessarily limited to the context of building
automation, but to the wider internet of things as the challenges are similar in other
cyber-physical infrastructures. Their key concept is to provide abstractions that allow
programmers to access the heterogeneous physical space through homogeneous, well-
de�ned interfaces, thus hiding their complexity where it is irrelevant to the programmer.

Being stateful distributed systems in an asynchronous network, IoT middleware is
subject to the inherent conceptual constraints that these systems experience. Messages
between distributed components are transmitted unreliably and out-of-order and it is
not possible to detect failures of remote components reliably and consistently. It is
di�cult to abstract away from these phenomena and provide an interface that hides
the distributed aspect and makes guarantees about safety, reliability and availability
at the same time. Some of these challenges have in parts been overcome by recent
developments in distributed database architecture. Modern products of this kind, like
Google Spanner or Scalaris claim to o�er a high level of availability and scalability while
retaining consistency. Because of statefulness, a database is part of most IoT middleware
architectures, it is very likely that basic quality features can be improved by making
use of these modern developments.

DS2OS is an example of a distributed middleware product that aims to address the
outlined challenges. At the core, it employs a blackboard-like approach towards sharing
information: Services write their state to a global database abstraction and use the
same for querying other services’ current or past state. The information is described
semantically by context models which allows to discover services by their type. In
addition there is a subscription feature for push-based processing and a remote method
invocation feature for lazy processing of data. This makes the middleware especially
�exible. Yet further improvements are possible: It is desirable that middleware also sat-
is�es a number of quality requirements to the best extent possible. A malfunction, such
as the application of a wrong control rule, can result in physical and �nancial damage
and have safety and security implications. Also, unavailability or a slow response time
might transgress safety and security requirements or result in bad user experience in
the better case.

1.3 Goal

This thesis explores concepts from recent developments in distributed databases that
try to overcome some of the problems. In particular transactional safety, availability,

4 Chapter 1. Introduction

and scalability are properties that might be improved. This goal can be split up further
into the following research questions:

1. What are requirements on the datastore with respect to to smart space applica-
tions, and which carry priority under the existence of trade-o�s?

2. What are suitable database products, how can they be integrated in DS2OS archi-
tecture and which quantitative properties are to expect these combinations?

3. What is the quantitative performance of DS2OS with the distributed database
back-end in a realistic scenario?

In order to accomplish this, I surveyed the architectural design and features of distributed
databases, the possible ways to integrate them into DS2OS, and a number of available
database products. For two promising database products, I also developed connectors
to use these to store DS2OS real-time data and conducted a few benchmarks.

1.4 Outline

Chapter 2 contains background information on smart spaces and the Internet-of-Things
that form the area of application of this work and DS2OS which is the middleware
framework used as a basis for further research. Design di�erence among databases,
their properties, and features are explained in Chapter 3, followed by a survey on avail-
able database products. Chapter 4 contains explanations about the implementation of
In�nispan and CockroachDB connectors for DS2OS. These are quantitatively evaluated
with a test harness and set of benchmarks in the following Chapter 5. Chapter 6 sums
up the results and suggests how to use them to improve future smart space middleware.

5

Chapter 2

Analysis

2.1 Intelligent Buildings and Smart Spaces

2.1.1 Conventional Building Automation

One area of application for the Internet of Things is building automation. This is not a
new concept. It started out with small, focused subsystems such as automated elevators,
access control and alert systems which are already around for decades. Later devel-
opments integrate subsystems on a building level, automate operation, and provide
interfaces for manual monitoring and control. Another important step in development
was to connect the systems to the internet which allows to carry out these tasks re-
motely and across buildings. The main rationale for these conventional automation
techniques are to increase the reliability, reduce operating costs, enhance the produc-
tivity of operational personnel, protect people and equipment, and provide information
for building management [1].

The most common automation processes in these systems are control functions, which
can either be realised as closed or open loops. More than 80 percent are proportional,
integral and derivative (PID) control functions, a particular algorithm [1]. It takes a
measurement from the environment, for example the room temperature and a con�gured
set point. The output, so in the example the heater in the room, is then controlled in
proportion to the di�erence between the observed and desired temperature. Summing
up the error between both values over time compensates for constant disturbance (e.g.,
heat losses through the exterior wall) that cannot instantly be observed. Furthermore,
a derivative function of the error signal makes the control function react faster when
there is short-term disturbance. So for example, after a window has been opened the
heating should be turned up signi�cantly for some time to compensate the loss, even if
the drop in temperature was not that substantial.

6 Chapter 2. Analysis

At the implementation side, there are a number number of network protocols available
and in use to query and trigger physical components. Wang [1] mentions BACnet,
LonWorks, Modbus, PROFIBUS and EIB/KNX. Along with those special protocols exist
for certain subsystems, for example DMX and DALI for lighting installations. All those
have in common that they mostly focus on the communication between components,
but not integration, orchestration, and management issues. Interoperability is provided
by gateways that translate between protocols. Often they provide service-oriented
interfaces (CORBA, DCOM, SOAP) that allow higher level integration.

2.1.2 The Vision

While the described building automation technology ful�ls the goals described in 2.1.1,
it does not allow for the amount of integration of distributed devices that is possible.
Pervasive computing scenarios assume that in the future many or most building and
household items will have advanced sensing and computation capabilities and will
interact in some form with the persons in their vicinity.

Smart houses can for example feature sensors such as touch-sensitive �oor panelling
(smart �oor), infrared and ultrasound person and object detection, smart power outlets,
smart kitchen devices, a smart mailbox, as well as multimodal interfaces, such as dis-
plays, gesture recognition, smart mirrors, and smart phones that seamlessly integrate
and o�er additional value like social-distant dining or care for the elderly [2]. Smart
classrooms can seamlessly combine on-site with remote education and enhance the
learning experience [3].

These scenarios add additional complexity in terms of heterogeneity, scale, and dynamics
that cannot adequately be addressed by old fashioned building automation systems.
Similar challenges can also be found in other application areas of cyber-physical systems,
and a number of projects aim to develop middleware and frameworks to mitigate them.
These o�er various abstractions and interoperable interfaces to link together distributed
physical components and applications [4, 5].

It is also to expect that the previously mentioned claim that building automation logic
mainly consists of feedback loops of continuous variables, no longer holds true. Addi-
tional advanced reasoning and analytical capabilities are demanded. Discrete variables,
like the number and identity of people in a room play an increasing role in the coor-
dination logic. Also, complex reasoning tasks or aggregation of information over time
and sources is becoming more common. Since this data is part of the nonphysical state
of the IoT system, measurement and reasoning errors can accumulate over time and
lead to unwanted action. At the same time the topology of devices and rules in an IoT
network is becoming more dynamic through the integration of mobile devices brought
in by people and vehicles.

2.1. Intelligent Buildings and Smart Spaces 7

It is furthermore expected expected that devices will become active participants in the
environment and processes in which they are deployed, rather than passive sources and
sinks of information [6].

These changes require powerful frameworks that are able to accommodate the various
needs of the applications and provide interoperability despite heterogeneity.

2.1.3 Related work

There are a number of surveys that compared IoT middleware products in terms of their
features, capabilites and interfaces. A very throughout one was published by Razzaque
et al. [5]. The paper names and describes important properties of IoT, distinguished by
IoT infrastructure- and application-related ones. From these it deduces functional and
non-functional requirements of an IoT middleware. The core contribution are the de-
scription of a classi�cation of core concepts that middleware architectures provide as an
abstraction to their users, namely event, service-oriented, virtual machine, agent-based,
tuple space, database, and application-speci�c approaches. Event-based middleware
uses messages or streams to couple components together. Service-oriented middleware
adapts the service orientation paradigm. VM-based middleware provides a platform for
the secure execution of IoT applications by virtualisation of the infrastructure. Agent-
based middleware provides location transparency and recoverability by managing the
state of autonomous applications. Tuple-space middleware overcomes concurrency
issues by assigning each to a unique owner at any time. Database-oriented middleware
provides querying and processing functionality for sensor data. Application-oriented
middleware enables new features for a particular application. This framework is then
used to give an overview of middleware research projects.

With regard to data storage and processing, researchers have already looked at the
conceptual challenges imposed by the introduction and evolution of the IoT. In particular
Cooper et al. [7] have identi�ed a number of challenges that the Internet of Things
poses for database management, namely

• Size, Scale and Indexing

• Query Languages

• Process Modelling and Transactions

• Heterogeneity and Integration

• Time Series Aggregation

• Archiving

The issues arise because of the fact that data generated by the IoT is typically vast,
distributed and unstructured. These characteristics are ful�lled by the applications that

8 Chapter 2. Analysis

DS2OS aims to support. Thus the mentioned issues arise when designing an appropriate
database backend, and have to be addressed. The paper concludes that the problems are
not trivial and deserve closer examination, but does not provide possible solutions.

Other researchers propose speci�c solutions. Li et al. describe a storage system for
IoT data [8]. They assume a unidirectional �ow of data from sets of sensor objects,
thus disregarding the decision-making, control and actuation aspects of IoT systems,
which stands in contrast to DS2OS’ design. Instead they put the focus on spatial and
temporal context and e�cient querying of object data based on these features. For these
requirements they propose that the ideal database system favours performance over
consistency, is schema-less, sharded to allow scalability, and has a uniform interface for
access which also provides distribution transparency. The requirements on a database
in this work here are di�erent since the database is also used to provide a layer for
coordination between sensors, actuators and services, re�ecting object state rather than
only historical sensor readings, and thus requires consistency and transaction support.
In addition there is no particular support for indexing and querying spatial context,
which relaxes querying requirements.

Ma et al. propose a conceptual model for various data processing and management steps
which occur in the IoT and conducted a survey on approaches and projects for each
of these [9]. Their reference model distinguishes between the functional aspects data
cleansing, semantic enrichment through event processing methods, data persistence
and querying, and application integration through middleware. Put into this model,
with the middleware product given, this work focuses on data persistence and access
(storage and analysis layer), which covers exchange, storage, compression and mining.
In this category, the main challenges lie in semantic expression of the data and scalable
processing frameworks. The role that data plays for coordination and control of devices,
and how this is re�ected in the persistence layer, are in this work here important aspects,
which the theoretical framework does unfortunately not cover in detail.

Jiang et al. propose a storage architecture for IoT data that leverages the idea of distin-
guishing structured from unstructured data [10]. These are stored in separate databases
– a key-value store for unstructured and a relational database for structured data. The
platform o�ers a query interface through a REST webservice that can operate and even
execute join queries on both, and provides namespaces for multi-tenancy. Unfortu-
nately the authors forgave the opportunity to leverage the transaction capabilities of
the relational database and pass this feature on to the outer interface, although both
read and write operations are accessible through it.

A number of previous research evaluated databases in hindsight to their suitability for
IoT applications or propose storage architectures for IoT related data. It is important
to note though, that these evaluations are always tied to a speci�c scenario and ap-
plication at a speci�c place in a speci�c IoT framework. As already pointed out, the

2.2. DS2OS 9

diversity among IoT middleware architectures varies considerably and so do use cases
for databases.

Performance measurements of databases with IoT data were conducted conducted by
Copie et al. with Riak and MongoDB [11]. They investigated the impact of sharding
with small cluster sizes (1 and 2 nodes) on the latency of operations. While they did not
describe the exact workload that they used, the scope only captures sensor data. They
did also not explore the advantages and disadvantages of the two databases in terms of
their qualitative features. This is one of few performance benchmarks of databases that
speci�cally targets an IoT workload. Despite that, the kind of data is very di�erent from
the one that DS2OS produces, since latter mixes up the sensor readings with derived
and internal state, and control commands.

A similar study was undertaken by Phan et al. [12]. They compared the performance of
read and write operations with sensor data between MySQL, MongoDB, CouchDB, and
Redis. They did however only measure their performance in a non-distributed database
setup, with a variable number of concurrent local readers and writers. They concluded
that it depends on the type of data and access patterns to decide which database product
is the most performant choice. CouchDB showed low performance in general, while
MySQL and Redis achieved much better results.

MySQL and MongoDB were also compared in a benchmark by Paethong et al. [13]. They
evaluated them with special regard towards power consumption on low-end devices,
in particular the Raspberry Pi, which is often used in low-end IoT deployments. To
mitigate the storage constraints of those devices, the setup uses sharding, which is
implemented on top of the database layer and is thus similar to the architecture of the
middleware analysed in this work. Apart from the power consumption they measured
the latency for batches of various database operations on scalar values. The results
showed that both databases perform better on normal x86 computers, although at the
cost of higher energy consumption.

Fatima et al. compared the performance of MySQL, VoltDB and MongoDB, notably
databases with di�erent designs, with IoT sensor data [14]. The setup did unfortunately
not include distribution of the data, although this is an important distinguishing aspect
between the three test candidates. The results showed a signi�cantly better performance
for VoltDB, which is not surprising since VoltDB uses in memory storage.

2.2 DS2OS

DS2OS is a middleware for IoT applications and the software that the implementation
part of this work is based on. It is the outcome of a research project that has been docu-
mented in the PhD thesis of Marc-Oliver Pahl [15]. The thesis describes its motivation,

10 Chapter 2. Analysis

design considerations and implementation in detail. The project’s primary objective is
a real-world-usable orchestration service that allows developers of IoT applications to
access diverse physical and virtual objects and combine their functionality with auto-
mated coordination services. This section shall summarise the important points of its
design, analyse the how the current implementation handles data, and which semantic
properties the database interface provides. It shall also identify aspects that impose
requirements or limitations on possible changes and improvements to the database
layer.

2.2.1 Design and Objectives

DS2OS is described as “Smart Space Software Orchestration”, which is in turn de�ned
as the management of Smart Devices in order to create a Smart Space [15]. Smart
Devices are physical devices that are linked with a computing node and provide re-
mote communication via a network. Formerly found mostly in professional settings,
they are increasingly available on the consumer market. Their capabilities can only be
leveraged when a multitude of such devices are linked together to allow more complex
behaviour. Unfortunately this remains challenging due to non-standardised or incom-
patible interfaces. DS2OS, among other IoT middleware, seeks to overcome this by
providing a �exible, uniform access layer that makes this heterogeneity transparent for
developers. To accomplish this the original dissertation presents a number of compo-
nents and requirements of a middleware. On a functional level these are the following
(summarised):

• Context models provide at the same time semantic description for objects and
syntactic description for their interfaces and aid towards interoperability through
access transparency, standardisation, and extendability

• A dynamic service oriented architecture that fosters encapsulation, abstraction
and re-usability of modules

• A resource discovery service to provide location and migration transparency and
allow applications to dynamically look-up resources by type

• Flexible communication methods that allow push- or pull-based, persistent or
volatile, and exclusive or shared interaction between services and devices

• Multi-user support and authorisation

Apart from that ease-of-use, scalability, availability and security have been identi�ed as
important non-functional attributes and are incorporated into DS2OS’ design.

DS2OS is realised as a distributed peer-to-peer system with group communication.
Peers, also called knowledge agents (KA), discover each other by means of IP broadcasts,
limiting deployment to infrastructures that are fully connected in an IP subnet and

2.2. DS2OS 11

thus are co-located at one site or connected trough a Virtual Private Network (VPN).
The peers gossip group membership to each other, so that eventually each peer knows
about the existence and address of every other peer. When peers communicate directly
with each other, their communication is encrypted with a peer-speci�c private key by
SSL with mutual authentication. Communication between multiple peers is enabled by
network multicasts which are symmetrically encrypted with group key that is negotiated
through gossiping.

2.2.2 Developer-centred view of DS2OS

Developers who want to use the DS2OS middleware must encapsulate the logic of their
application in a so-called service which acts as a client to the middleware. This concept
applies regardless of the kind of desired functionality of the application. The services
can communicate with each other through the Virtual State Layer (VSL). The VSL is a
global state storage that has an API similar to a database. Basically, services can read
and write values to data locations identi�ed by addresses. They can also subscribe to be
noti�ed when a value changes and make remote procedure calls through the same API.

Developers are encouraged to re�ect all the state of their services on the database
interface, so that the services themselves can easily be terminated and restarted withut
losing their state.

The data in the VSL is described by composable and extendable context models that are
shared throughout the deployment. Services can easily discover resources by searching
for a given type. Each service has one such context model associated to itself in order
to describe its properties and interfaces.

2.2.2.1 Service classes

There are various use cases in regard to which functionality shall be implemented. These
are described in the following and map to a service class as described in [15].

1. Control an actuator, such as a motor, light, or valve setting. In this case the
developer would provide the physical component and hardware to control it.
Linking the actuator to DS2OS happens with a so-called adaptation service. Those
services typically take a desired value as input, adapt the physical component
state and write the resulting value to a di�erent tuple serving as input to other
services which are interested in the current state of the component.

2. Provide sensor data, for example from a light, pressure or temperature sensor.
In DS2OS terminology those services are also referred to as adaptation services.
They take the sensor reading periodically, transform it into meaningful data (such
as the temperature in degrees Celsius) and write it to the VSL.

12 Chapter 2. Analysis

3. Implement coordination functionality, for example set a valve of a radiator de-
pendent of a temperature measurement. In DS2OS terminology they fall into the
orchestration service class. Typical control procedures in building automation
follow an open- or closed loop.

4. Inferring aggregate information, for example energy consumption over a day.

5. Reason about circumstances, for example estimate the number of people in a room
by light barrier measurements, the utilisation of the WiFi access point, noise levels
etc. This might involve techniques from statistics or machine learning.

The service classes are not a construct that must be explicitly denoted in a service
implementation. It rather serves as a framework to classify use cases and provide
recommendations for their implementation. This is in so far relevant as it should be
demonstrated that services of the identi�ed kinds can access the database e�ciently.

2.2.2.2 Context models

Context models describe the data that is stored in the VSL. The original dissertation sug-
gests to understand them “as templates for representing properties of the physical world
in the virtual world” [15]. Technically they represent a schema that describes the data
and interface, like WSDL does for web services and XSD for XML. The description shall
be both syntactic and semantic, as it is the case in object oriented programming. DS2OS
requires that each service has exactly one equally-named context model, that describes
its data and interface. The XML �les can be stored at a Central Model Repository, which
is a server with a well known address, at a site-local mirror of that repository, locally
in the �le-system, or a combination thereof. The models can be cached as they are not
supposed to change. An central goal the DS2OS project is to create an infrastructure of
repositories for distributing context meta-data publicly. But this task is still in progress.
Figure 2.1 shows a context model for a multi-colour lamp as an example.

<rgbLamp type="/basic/composed">

<brightness type="/basic/number" restrictions="minimumValue=’0’,maximumValue=’1’">0</

brightness>

<colour type="/basic/text" restrictions="regularExpression=’^#([0-9a-f]{3}){1,2}$’">#

ffffff</colour>

</rgbLamp>

Figure 2.1: Context model example for a multicolour lamp.

2.2. DS2OS 13

2.2.2.3 Addresses and Namespaces

Addresses are used to identify and access tuples in the VSL. The addresses are denoted
in the well-known URL format, with slashes as separation between identi�ers. They
contain the location of a service, the service identi�er and the path within the hierar-
chical structure as de�ned by the service’s respective context model. An address that
is valid within the DS2OS system has to start with the agent identi�er, followed by
the service identi�er, and then the location within the service’s node hierarchy, e.g.,
/agent1/lamp5/brightness. On top of that, virtual nodes can be registered.

2.2.2.4 Composition

VSL context models can be a scalar value, such as a string or integer, or contain of list of
subnodes thus forming a hierarchical structure. Each node further has a type indicating
which values are valid. Basic types are text, list, and number, but additional types can
be de�ned through restrictions expressed by regular expressions or the minimum and
maximum allowed value. Furthermore, every context model itself forms a type, which
can be referenced by other nodes through its model name. Additionally, existing models
can be extended with additional subnodes through inheritance of a parent node, in a
manner similar to inheritance in object oriented programming.

2.2.2.5 Access Control

VSL nodes have two �elds to store read and write permission respectively. The possible
values are either a list of the identities of authorised services, an asterisk as wildcard
indicating unrestricted access, or an empty value meaning that access is strictly private.
The permission to use subscription and locking methods on a node is also restricted by
these two values.

2.2.2.6 Connector interface

Services provide their own runtime environment. They communicate with the VSL
by obtaining an instance of the Interface org.ds2os.vsl.core.VslConnector, which handles
network communication with the knowledge agent. An interesting feature of DS2OS is
that various mechanism of process coordination are bundled in the same interface. There
is the register-type pattern where clients access the same datastore, event-based coupling
with publishing and subscribing to information, and �nally a message-passing approach
where some remote code is executed on request. As mentioned these mechanisms are
used through the same interface and are thus transparent to the client.

14 Chapter 2. Analysis

Register-based communication Register-based communication means that clients that
want to interact, access the same datastore and namespace concurrently. In this case the
datastore is the VSL. Clients can read and write values by calling VslNode VslConnector

.get(String address) or void VslConnector.set(String address, VslNode knowledge) respec-
tively. In both cases, the address refers to the VSL address, and the VslNode to the value
that is written or read.

Event-based communication Event-based communication means that there are pub-
lishers which release information, and subscribers which are interested in it. An
event broker then forwards information to interested parties. DS2OS provides the
void Connector.subscribe(String address, VslSubscriber subscriber) method which allows
to register subscriptions on a VSL address. The publishers release information as before
via the set-method. The subscriber has to provide a callback method that is wrapped in
the VslSubscriber class. This method is then called by the knowledge agent whenever
new data is available for the registered address. A peculiarity is that the client is only
informed – the updated value is not delivered and has to be requested explicitly by the
client through the get method. The noti�cation provides the exact address where the
update occurred, which can be a child of the subscribed address. It should be mentioned
that it does not include the version number, so there is no guarantee that the subsequent
request for the value returns exactly the one that lead to the noti�cation being issued.
By the semantics of the database interface it is guaranteed that it is the latest though.
Publishers can also issue noti�cations for its virtual nodes, which are described in the
following section.

Method-Invocation-based communication Clients can register so-called Virtual Nodes
which serve like conventional VSL nodes with the di�erence that they can be
inserted into the VSL dynamically and have no persistent data. To insert
such a node, a client can call void Connector.registerVirtualNode(String address,

VslVirtualNodeHandler virtualNodeHandler). The programmer has to provide an implemen-
tation of VslVirtualNodeHandler, which consists of callback methods for get, set, subscribe
and unsubscribe. These are then executed whenever another client issues a respective
operation on the registered address.

This feature constitutes a form of remote method invocation (RMI). In combination with
other functionallity of DS2OS, like context models and resource location, this becomes
a service oriented architecture (SOA) [15].

2.2.2.7 Data management

As noted before, DS2OS provides two interfaces for communication with clients. One
is the VSL, the other the context model store that describes the VSL data structures

2.2. DS2OS 15

semantically. But from an implementation perspective there are also other pieces of
information that are necessary to provide the interface in its current design and is im-
plicitly. Examples for that are neighbour (connection) information, locks, subscriptions
for tuples etc. Those also represent state in technical sense and special consideration
must be taken on how to manage this state in a distributed system.

In the current implementation every service client is associated to exactly one knowledge
agent. This knowledge agent manages the VSL state associated to that client all by itself.
The task also includes keeping subscriptions and locks. Since the URL to access those
data items always includes the name of the knowledge agent, it is implicitly clear which
host to contact in order to register a subscription or to set a lock for a particular tuple.
This association is lost when there is one global database (=state) abstraction. It can
of course be used to store the data, but it is not immediately clear which host would
be responsible to send out noti�cations for existing subscriptions or who has to check
whether a VSL operation violates a safety constraint.

VSL data is stored locally at the knowledge agent with which resources are associated.
Data can also be accessed remotely; in that case the KA would extract the location of
the remote KA from the VSL address and route the operation call there. The data is
persisted in a federated HSQLDB database, which is a �le-based, embedded Java DBMS
that o�ers SQL support through JDBC and ACID-compliant transactions. New data
is only appended to the database, so if there is an update to an existing tuple, a new
one with an incremented version identi�er is created and stored. Old versions can be
explicitly queried through the VSL API, but otherwise always the latest value is returned.
Each KA also keeps a local structure that stores the locks and information to rollback
incomplete transactions in memory. From an external perspective, the VSL itself can be
regarded as a sharded distributed datastore.

Consistency Since DS2OS’ interface resembles that of a simple database, it is interesting
for application developers to know which consistency guarantees it provides. In this
context, it should be mentioned that the term consistency can be used for di�erent things
in connection to distributed databases. What they have in common is the idea that
concurrent or dependent operations should lead to a more or less deterministic outcome
that does not violate de�ned safety constraints. We commonly distinguish between
transaction consistency and the consistency of a replicated register. A transaction is
a sequence or a partially ordered set of operations on a number of database elements.
The other refers to the consensus of a single database element that is replicated among
a number of nodes.

The conventional implementation provides atomic consistency on a record (VSL node)
level since there is no replication of VSL data: Each node is uniquely assigned to one KA
and only stored in a local database there. This database system itself orders operations
and executes them atomically, which means that there is a single point of truth for each

16 Chapter 2. Analysis

VSL node and a deterministic sequence of state changes for each local database. Due
to the atomicity guarantee, there is a speci�c point in time at which the state of a DB
changes. This implies that there is a natural global sequence in which state changes
occur. Another fact that is worth noticing is that the clients communicate with the
KAs via a blocking API. Therefor requests cannot get reordered by the network on
a client level which means that they all see the same sequence. Operations are also
strictly executed at some point in time between the request and the delivery of the
result. Together these properties satisfy linearisable (or atomic) consistency as de�ned
in [16]. Linearisable consistency also entails causal consistency. That is means that if a
state change A causes a client to commit a write B and thus another state change, any
process able to observe B can also observe A.

Transactions Another, but di�erent important safety feature are transactions. These
are sets of operations that have to be executed in a de�ned order and in isolation of
other concurrent transactions. DS2OS does not provide an idiomatic transaction feature.
Instead there is a simple locking mechanism. A service that wants to isolate a set of
operations from con�icting ones has to set and release the locks itself. This is done by
acquiring an exclusive lock (shared locks are not part of the speci�cation) on a VSL node
tree before it is accessed for a read or write operation. After the operations have been
carried out, all the locks either have to be committed or rolled back. As committing
only a subset can lead to inconsistency in the form of lost updates, it is important that
either all or none are committed. Since there is no atomic commit operation, the client
itself has to make sure of this behaviour. It also has to ensure that locks are held long
enough, because if the client does not release them within a pre-de�ned period of time,
DS2OS does that automatically.

Also, if a lock cannot be acquired because of a concurrent transaction, it is up to the
client to decide how to proceed. It can either wait for the lock by calling the lock
command again after some time, or abort the transaction. If several clients apply the
former behaviour then there is a risk of deadlocks. The latter alternative in contrast is
prone to livelocks. These are the only alternatives since DS2OS has neither a mechanism
to abort transactions and release their locks from the outside, nor an algorithm to detect
deadlocks.

It is clear that the lock interface does not provide carefree transaction support with the
usual interface. A similar behaviour can be achieved with the provided locking methods
but they should be used very carefully. To ensure isolation, service clients must adhere
to a locking protocol (like 2-phase locking, 2PL). Atomicity can only be guaranteed
if neither the client nor the network fails during the commit phase, and no locks are
implicitly removed from the client due to timeouts. It is wise to implement services
so that they can compensate the e�ects in case of a failure. Given these shortcomings
the locking interface is hardly suitable for widespread use of transactions, e.g., for

2.2. DS2OS 17

decision-making services that check if a certain premiss is ful�lled and apply a resulting
action. The question arises if they are always necessary and meant for widespread use.
The dissertation [15] motivates the locking feature with the need to set con�guration
data consistently. Such a task would only be carried out occasionally as a result of
administrator intervention, in contrast to operational coordination services that would
access data more regularly. Due to the tree-shaped structure of the VSL it is possible to
lock a complete KA, so that for most interventions only one lock has to be acquired. In
this case the lock commit operation is atomic.

To support ACID compliant transactions, the locking API needs at least a command that
commits a set of locks atomically rather than a single one. Even better because simpler
to use would be an interface call that marks a block of read and write operations as
transactional and implicitly acquires locks for all accessed VSL nodes, thus hiding the
details of the concurrency control algorithm from the developer. Additionally, a way to
de�ne program behaviour if the transaction is aborted by external means (e.g., by raising
an exception) would allow to transfer transaction scheduling to the database. This is
relevant when transaction support o�ered by various distributed DBMS products shall be
used. These typically feature the outlined interaction pattern, originally conceptualised
by Jim Gray [17], and require changes to the VSL API for compatibility.

Meta information DS2OS associates various pieces of meta-information to each VSL
tuple. Some of that information is determined statically by the context model (schema)
that de�nes the structure of the data, some is set dynamically.

• Type information

• Latest version

• Reader identi�ers

• Writer identi�ers

• Subscribers

• Lock state and owner

• Update timestamp

• Caching property

The context-models that describe the VSL structure semantically are expressed in XML
and stored in a central location. They specify the data types, access rights and default
values of data and can be composed to express complex semantic structures.

It is part of the design of DS2OS (reference) that data of di�erent nature is accessed
with the same methods. Other models do make a distinction that is not necessarily
transparent to the application developer. The reference model by Abu-Elkheir et. al. [18]

18 Chapter 2. Analysis

for example suggests dedicated data stores for metadata and object catalogues, for
structured and unstructured data and for aggregation and query layers. It also suggests
to distinguish between temporal and modal data. The former continuously update
sensor readings, while the latter do not. This is in so far relevant as various types of
data have di�erent access patterns, such as the update frequency, the proportion of
read and write operations and the number of concurrent writers. They might also have
varying consistency requirements.

19

Chapter 3

Databases for Smart Spaces

The current approach of federated data storage in DS2OS is not yet optimal, because it
lacks tolerance to failures and support for transactions. Scalability is in so far provided
as the dataset can easily be partitioned by assigning services to other knowledge agents.
The obvious alternative, using a centralised database, lacks this property, and is thus
clearly not an option.

In this chapter, available datastores shall be evaluated in regard to their suitability to
a decentralised state storage for IoT. The approach is to �rst describe the variations of
architecture and features among distributed databases, decide if they are bene�cial to the
application, and then �nd candidates of database products that satisfy the requirements.

3.1 Requirements

3.1.1 Data meta-model and structure

Among databases, there are di�erent ways how the data is conceptually described and
physically organised and indexed. This is very closely related to the types of queries
that a database supports, their performance and versatility, and �exibility in general
and can thus render databases more or less suitable for certain applications. Thus, this
dimension is of particular importance, and therefore most commonly used to classify
database systems. The common data models are:

Key-value is the simplest one. It is basically a unidirectional mapping between a key
of a certain type to content of a certain type. Typically strings or hashes are used
as keys, and the value can be arbitrary binary code or a document format like
JSON or XML. Typically it is only possible to query based on a key, sometimes
also on key ranges. Some key value stores are marketed as grids or caches (e.g.,

20 Chapter 3. Databases for Smart Spaces

Hazelcast, In�nispan) and some also provide additional indexing capability (e.g.,
Riak, In�nispan).

Document -oriented databases store semi-structured XML or JSON data. They are
similar to key-value stores in that data is identi�ed by a key, but in contrast to
them the meta-format of the value is known to the database and can thus be
interpreted. This allows the database to index the value in order to o�er more
advanced querying support. The internal representation can vary, but is typically
suited to hierarchical structures.

Relational is the most established for persistent storage. They store data in tables
which are described by a de�ned schema. Databases of this kind typically o�er a
rich set of features, including support for transactions, advanced query support
including joins between datasets, aggregate functions and secondary indices, all
commonly provided through a SQL interface. Some of these features can be costly
to implement and execute in a distributed environment [19], though there is
a class of recent software projects, so called “NewSQL” databases that aim to
implement this functionality in a distributed database [20]. Physically, the data
can be organised either in rows or in columns. The latter are designed to use less
space for sparse data and perform better for queries that concern few columns
but many records, which is common in analytic workloads.

Wide-column stores, sometimes also called “extensible record” stores, share properties
with the three so far mentioned. They share with the key-value model that data is
identi�ed by a key, and with the relational model that data is organised in tables.
The important di�erence to the relational model is that the schema of columns
is not de�ned statically, and no space for empty columns is reserved. A row can
instead be seen as another map of keys to values, making it a two-dimensional
key-value store, though only the �rst level is sharded over the network so that
there is some control on which data ends up together on one network node. They
can be seen as a special case of the document-oriented model, restricted to only
�at documents.

Graph databases store data that represents a graph, so nodes and edges. There is no
general standard how those data items are represented, and how the graph data
is organised physically. Graph databases emphasise associations between records
and o�er query support for graph traversal.

For storage, DS2OS data imposes relatively few requirements on the data model. The
VSL data has a hierarchical structure and can be written as XML data, which would
suggest a document model for adequate representation.

However, it is also possible to represent it as a mapping from a path to a leaf node
within that hierarchy. The version identi�er can be either part of the path or the value
contains a list of the most recent versions. Metadata can be stored along with the node

3.1. Requirements 21

content. In this model, querying a subtree would constitute a range query on VSL paths.
So to get the full data of /ka/srv/, a query from /ka/srv/ to /ka/srv/~ would return the
relevant tuples. It should be noted that not all key-value stores support this kind of
query. Alternatively all possible paths can be computed from the context model, though
this would result in a much higher number of queries.

The same behaviour can be achieved with wide-column stores, by taking the URL that
identi�es a service as the key for a row and the internal structure of service data as
the column. This way all the service data is stored on one physical node and can be
retrieved in one package or with given granularity.

Since the VSL address is the only way to access data in the VSL, there are no requirements
on join query support or secondary indexing capabilities, thus a key/value store is
su�cient, although document-oriented, relational or wide-column data models work
as well. Generally speaking, the models are somewhat similar on a conceptual level in
that they can easily be mapped onto each other. A document store can be mapped to
the wide-column model, by taking making the document identi�er the row key, and the
path within the document the column key. A wide-column store can be represented in
the key/value model by concatenating row and value keys. A transactional wide-column
or key/value store can be extended with indexing and schema capabilities to yield a
relational database, as the internal architecture of CockroachDB demonstrates. Lastly, a
a relational table with a primary key and one other column behaves like the key/value
model.

R-1 New data, consisting of a character sequence (VSL address) as key and arbitrary
binary data or a character sequence as payload, can be inserted into the database.

R-2 A single record can be retrieved by its key.

R-3 A written record can be updated with a new value.

R-4 Hierarchies of VSL nodes, beginning with a pre�x of knowledge agent and service
identi�er (such as “/ka1/service2/”) can be fetched e�ciently in a bulk read.

R-5 To ensure R-4, the database has to maintain locality between records with a com-
mon VSL node pre�x. This can either happen by a 2-dimensional data model as
provided by a wide-column store, or lexical ordering of keys for sharding and
disk storage in all other databases.

R-6 To ensure R-4, the database forthermore has to provide a bulk read or range query
operation for keys that start with a common VSL node pre�x, or a read operation
for a full row in the wide-column model.

22 Chapter 3. Databases for Smart Spaces

3.1.2 Interface

Databases are either embedded, and interact with the client application by direct API
calls, or they communicate via a network protocol. If they use the network, the database
manufacturer provides libraries that hide the details of the interaction under a trans-
parent API, which either allows direct access to particular database operations or en-
capsulates a query language. Relational databases are typically access with SQL or a
derivative language. In Java, SQL interfaces are usually made available through the
standardised JDBC API. Key-value stores do typically not provide an SQL interface, as
they allow only simple read, write and update queries.

The database interface API also handles security-related functionality, such as authenti-
cating the client at the database server, and encrypting the connection. As con�dentiality
and integrity are important design considerations of DS2OS, both features have to be
supported.

R-7 The database has to support a blocking or non-blocking Java API, that supports
the database operations subsequently identi�ed as required.

R-8 The database supports a SQL-based API, which is accessible through JDBC. This
requirement is an alternative for R-7.

R-9 The database o�ers functionality to authenticate a client prior to creating a session.
This is to maintain con�dentiality and integrity of the VSL data.

R-10 The connection between database and client is encrypted. This is to ensure that
transmitted data cannot be read by an unauthorised third party (maintining con-
�dentiality) or altered (maintaining integrity). It is not necessary if the database
is embedded.

3.1.3 Storage Location

There are two possible ways on how databases physically access their data: Either they
place it in memory, or on secondary storage devices like hard disks or solid state (�ash)
memory.

Memory storage has the major advantage of very low latency in comparison to harddisks.
It provides fast �ne-grained (random) access through memory addresses. Thus the order
in which data is stored and its fragmentation is much less a consideration as compared
to disk storage and databases using this type of persistence achieve lower latency and
higher throughput for random access operations. On the downside main memory is
much expensive and it is volatile. The data does not survive system restarts or crashes.
To allow recovery it must be shadowed to non-volatile storage (e.g., through an write-
ahead log), or replicated.

3.1. Requirements 23

Conventional disk storage is cheap, non-volatile and provides high throughput for
sequential read and writes. In contrast to main memory it has to be accessed indirectly
through a �lesystem abstraction provided by the operating system. Filesystems are
typically not optimised to store many separate items with only small size, so they have
to be combined in a �le with an internal structure for retrieval. Physically, harddisks
only provide block-level access, which means that are several kilobytes of data that are
fetched or written as a piece, so that there is no �ne-grained random access. Also they
are relatively bulky regardless of their capacity and have a high energy consumption,
which can limit their suitability for embedded applications. In contrast to that, �ash
solid state storage does not have theses shortcomings and on top of that a lower read
latency. However this comes at the price of considerably lower write performance.

For the database developer the choice between main memory, �ash or disk storage has
implications regarding the optimal combination of indexing and concurrency control
algorithms. For the user of a database product, the decision between both is all about
the trade-o� between high throughput and low latency versus price and extensibility,
so all questions of quantity. A main memory database has lower latency for OLTP-style
access patterns than a conventional database with comparable characteristics [21].

Furthermore, volatile storage usually means that a fail-stop model is assumed (e.g.,
Scalaris), where a node that is considered to have crashed is removed permanently from
the network overlay. Non-volatile storage in contrast does not lose persisted data and
allows to be taken online again (e.g., CockroachDB). The decision between either does
not limit the durability of the data, as this can also be provided through replication.

It has to be mentioned that the classi�cation between both types is not so clear in
practice. Modern databases may provide a choice between both, or even combine
them transparently. Sometimes the module to actually persist data can be changed or
recon�gured. Operating systems also cache open �les in memory to decrease latency
and extend the main memory with swap �les stored on a harddisk. Lastly solid state
storage can be used like disk storage through a �lesystem but provides random access
and low latency like main memory.

Operational smart space workload as it is modelled by DS2OS, involves many small
pieces of data that are updated frequently. This would carefully hint towards main
memory or �ash storage. However as mentioned the decision rationale is a quantitative
one that has to take into account the current state of hardware development and prices.
Therefore this is rather a soft requirement, or a point to take into consideration, than
a criterion for exclusion. An optimal candidate would provide both options to choose
from or combine them transparently to leverage their respective advantages.

R-11 The database maintains durability of write operations.

R-12 The database leverages the latency advantages of memory either by transparent
caching or complete in-memory storage.

24 Chapter 3. Databases for Smart Spaces

3.1.4 Partitioning (Sharding)

Partitioning or sharding means that a dataset is divided up and stored at di�erent
locations. The technique is used to enable scalability through a distribution of database
load on multiple nodes and can be combined with replication.

Highlighy scalable, and mostly automatic partitioning of data is the distinctive feature
of modern distributed datastores.

R-13 The database must shard data automatically and homogenuously across the clus-
ter.

R-14 The database must support functionality to rebalance the distribution when nodes
are added or removed.

To locate and access sharded data, there are in principle two options: One is to use a
Distributed Hash Table (DHT) and route the communication on a peer-to-peer basis
through the resulting overlay topology. There are a few such algorithms available [22],
but obviously the most popular for distributed databases are algorithms reminiscent
of Chord [23], as used by Cassandra, Amazon Dynamo, Riak, Voldemort and Scalaris.
These locate data on a self-healing ring-shaped overlay structure, with shortcuts to
route requests to the target quickly. Advantages of this concept are hiegh scalability
due to the routing mechanism and availability due to the lack of a single point of failure,
and the self-healing capabilities. The other option is a directory which maps keys of
the data to its destination address. This approach has the advantage that after address
resolution, the node which holds the data can be contacted directly, thus without the
routing overhead of a DHT. The directory can either be kept in a central location, as it
is for instance practised with Apache Hadoop (prior to version 2) where the directory
resides on the NameNode [24], or replicated to achieve an improvement of scalability
and availability.

3.1.5 Replication

Replication describes that the same data item is stored on multiple nodes. This can
happen for various reasons, namely for reducing read or write latency, sometimes to
improve scalability in read-heavy workloads, but foremost to improve availability when
nodes fail. To achieve the latter, replication is the only viable option and therefore
a necessary requirement for a smart space database. If the objective lies instead on
achieving performance gains, replication it is often referred to as caching.

Replication poses challenges for consistency. As mentioned, linearisabe consistency is
desirable, which requires that every read operation must return the value of the most
recent con�rmed write. Distributed databases can achieve this through a number of
di�erent protocols. Their key mechanism is always to achieve an ordered sequence

3.1. Requirements 25

of state changes. This can happen by routing all write operations through a leader
which ultimately decides on a write sequence. In this case there is the additional
problem of deterministically electing a leader and recognise reliably when it fails, so
that the database stays available. Alternatively, there are algorithms which write or
read from all nodes instead, or use quorums. [25] provides details on relevant available
algorithms. The key takeaway from there is that there is no algorithm which satis�es
all the previously mentioned properties. To read the de�nite latest value from any
replica, a precedent write operation has to update all replicas before it can be considered
successful, leading to additional roundtrips and time required to discover probable node
failures. Alternatively, quorums for both read and write operations can be used, but
these also come with an overhead compared to non-replicated storage. Ultimately this
is implied by the CAP theorem.

R-15 The database must replicate data with a con�gurable redundancy transparently.

3.1.6 Concurrency control

Many applications that access and manipulate the state of a database want that the
e�ect of their action is internally consistent. A frequently employed example is that of
a withdrawal of a certain amount of money from a bank account. For that, a process
reads the account balance from the database, subtracts the amount and writes the result
back to the database. It is important that the updates on the record correspond to
the sum over the actual �ows of money, otherwise there is a breach of integrity and
the customer ends up with more or less money than there should be on their account.
The straightforward procedure should typically accomplish this, but there are issues
when another concurrent process accesses the account record. It could be that two
processes read the balance at the same time and then carry out their updates. Then
only one withdrawal action will be e�ective. This is also called a “lost update” [26]. It
could also happen, that a di�erent process adds money, and increases the balance. A
withdrawal process reads the new value, and completes its action by writing back the
new amount. After that the �rst process wants to abort the top-up. This situation is
called a “dirty read” [26]. In another situation a process has to read the value twice for
some reason, but due to an interfering withdrawal the amount has changed in between.
This “unrepeatable read” is undesirable [26] in many cases, though not in every one.
For this reason, some database products allow to opt in or out from some guarantees.

Actions that demand consistency can occur in building automation systems as well. For
example to switch on a certain cooling system, the cooling device and a number of fans
to distribute chilled air in the building have to be switched on together. It wouldn’t
make sense if a concurrent control process would switch o� either the cooler or some
fans in the middle of this. In more severe cases, safety constraints could be violated, for

26 Chapter 3. Databases for Smart Spaces

example when a robot that is only allowed to operate when a door is locked and the
door and the robot are not accessed transactionally.

To avoid the described situations, related operations should be combined to a transaction.
Transactions are sets or sequences of operations that are executed in isolation of each
other. That means that when they are executed, a scheduler puts them in a partial order
with con�icting transactions (Con�ict serialisability, CSR). It may also abort transactions
and roll the database back to the original state. The client that issues a transaction has
to be aware that, depending on the scheduling algorithm, its transaction can either be
aborted midway, or that it has to wait until locks are released. Transactions can involve
multiple di�erent records, but are typically constricted to an instance of a database
system, so state-changing side e�ects on systems outside of the database have to be
compensated by the client when its transaction aborts. The database system has to
include algorithms that order the execution of transactions, make sure that they don’t
interfere with each other, and that changes of succeeding transactions are atomically
applied.

There are two classes of algorithms that can be employed to achieve isolation and
atomicity [27]. Pessimistic algorithms take action (delay or abort a transaction) as soon
as there is an indication of a con�ict. Optimistic algorithms wait until a transaction
wants to commit and only then they check for con�icts and decide which one will
eventually succeed. Subsequently, the changes applied by a succeeding transaction
must be stored durably and those of aborted transactions must be recovered to their
previous state. On top of that, in a replicated or sharded database, it must be ensured
that all involved database nodes execute the transaction consistently, meaning that
either all or none decides to commit and carry out the resulting state changes to their
dataset. This is a consensus problem and there are algorithms, namely Two Phase
Commit Protocol (2PC) and Paxos that solve this in a distributed setting [28]. The
2PC algorithm uses a transaction manager to coordinate that asks participants in the
transaction to make sure that they are able to commit, decides to commit if there is a
consensus that the commit is possible and – if it is – then requests the participants to
execute the commit. This procedure is vulnerable to node failures. In particular if the
transaction manager fails during one of the phases, it cannot proceed.

It is a debatable question whether Smart Space Orchestration needs support for strong
ACID-compliant transactions. Algorithms like Paxos and 2PC are tedious to implement
and come with a considerable messaging overhead. Some database products such as
for example Cassandra or Dynamo promise to achieve higher performance by relaxing
consistency guarantees. And this might actually be su�cient for many scenarios. In a
building automation setting, coordination services that have more than one input or
output, are typically open or closed loop control circuits. For example they might adapt
the setting of a valve that supplies a radiator according to a temperature measurement,
a target temperature and the current valve setting. In this scenario it is less of a concern

3.1. Requirements 27

if the input parameters are the latest available ones or whether the last temperature
measurement happened before or after the last valve adjustment, but more so if the
input parameters are recent in a chronological sense. Independent from that there
is the need to change system parameters and con�guration data in a reliable way, as
previously recognised. However those are typically rare, don’t involve a high number
of competing writers and limited to a certain subtree, so that a simple local locks might
actually su�ce.

Given the obvious performance drawback of distributed transactions, they should only
be implemented if there is su�cient need for them. We can provide the following
arguments in favour of this:

Achieving statelessness. .Guidelines for DS2OS service developers explicitly want
services to store their state in the VSL, so that they can be stopped, restarted
or migrated without causing safety or consistency concerns. Since they are im-
perative programs, they have both variable state (current values of variables)
and program state (current line and stack trace), so if real statelessness shall be
achieved, both have to be persisted. Doing that for variable state is intuitive for
the programmer; they simply operate with the VSL API’s get and set calls instead
of local variables. For program state, this is not so easy, as it requires to change
the design of a service, to achieve something like a state machine, that in each
service iteration reads the program state from the VSL, executes an operation,
and saves the new program state, but also with this technique, it is impossible to
make service executions atomic. If there is support for transactions, there is an
elegant solution to this problem: The entire code of a sequential service execution
is wrapped in a transaction. This makes all the state changes that it does on the
VSL database atomic, so that it actually becomes stateless and can be restarted at
any point.

Guaranteeing safety properties. Certain parameters must always appear in a con-
sistent state or otherwise a major problem occurs. Consider for example, a pump
that is connected to a pipe with valve. When the pump is switched on, the valve
must be opened too, or otherwise the pump would overheat or the pipe burst.
And when the pump is switched o� the valve must be closed to prevent an un-
desirable counter�ow. It is obvious that a service accessing these two devices
must always access both, and keep their state consistent. This cannot be guaran-
teed in a non-transactional system, since when a concurrent access occurs, both
services’ operations interleave in arbitrary order. This problem can be mitigated
by allowing only one service private access to the system of valves and pump,
which would then take con�guration parameters and set the state of the devices
accordingly. This approach is possible only as long as there are clear boundaries
between the systems, with no shared components – in the example of the pump
and valve, if a valve is connected to several pumps, all of these must be controlled

28 Chapter 3. Databases for Smart Spaces

by the same process. If the network of devices is very large, this can lead to a
performance bottleneck. Take for example all doors in an airport terminal build-
ing. These belong to di�erent subsections and ful�l di�erent purposes, but are
subject to the same global constraint to keep various groups of people (e.g., with
or without security clearance, sta�/passengers, arrival/departure) separate from
each other. If subsections shall be used �exibly (e.g., to accommodate various
airlines’ requirements or use sections for either domestic or international �ights),
all the doors involved must be controlled by the same service to prevent accidental
misscon�guration due to concurrent allocation. Similar constraints also exist for
non-physical properties, for example network parameters,that would render a
device unreachable if set in an inconsistent manner.1

Accurate reasoning. In addition to requirements of state-changing operations as in
the previous example, inconsistent reads can also be problematic, in particular
for reasoning services. Those query the state of a number of system parameters,
before calculating a conclusion that is then returned as the output. As an example,
consider a service that queries the measurements of �ow meters and valve settings
in a network of pipes in order to detect if there is a leakage. It is important that
while the measurements are taken, no other process can interfere and switch –
for example – a valve, as this could potentially lead to a wrong conclusion. To
prevent this, however, it is necessary that the all involved processing steps form
a transaction together, which is unfeasible in reality. An easier alternative is
to track causality between service inputs and outputs, so that services realise if
they have read data that has been in�uenced by di�erent versions of a sensor
reading. This can be accomplished for example by vector clocks [29, 30] and does
not require transactions.

Given that transaction support is evidently di�cult to implement on top of an exist-
ing datastore and comes with additional communication overhead between client and
database servers, the database itself should provide support for it.

R-16 The database provides support for ACID-compliant transactions, makes it avail-
able through the API and allows R-1, R-2, R-3 and R-4 to be executed in a transac-
tional context.

3.1.7 CAP Trade-O�

In 2000 Eric Brewer presented the CAP conjecture [31] which claims that it is impossible
to combine three properties, namely consistency, availability and partition tolerance
in any stateful distributed system without perfect failure detection. The claim has
been formalised and proven subsequently [32]. Consistency in this context suggests

1Example given in [15]

3.1. Requirements 29

linearisability of operations, meaning that all client processes of the distributed system
observe the same sequence of state changes, and upon request, are always served with
the latest available state. Availability means that any request, read and update operations,
sent to any non-failed node of the systems will be served with a response after arbitrary
time. Partitions refer to network failures that make communication between groups
of nodes impossible; a partition-tolerant database would allow to execute operations
in each of the partitions. In the original talk, examples for each combination of two
out of theses three properties were mentioned. The practical relevance can easily be
overestimated, because it does not make predictions about more interesting properties,
like latency, transactions and tolerance of node failures [33].

Linearisable consistency is a property that the original implementation of DS2OS pro-
vides, and that many applications rely upon. Furthermore it is a requirement for im-
plementing distributed mutual exclusion and thus pessimistic concurrency control
techniques which provide transaction support. It’s therefore de�nitely worth to keep.

Regarding the remaining two properties, they are of minor relevance. In terms of
availability it is mainly important to keep the latency low and to tolerate node failures.
Partition tolerance would be worth considering in two cases. First, if we would look at
an IoT system that is distributed over multiple sites, or even globally, though operates
on a common database. DS2OS has the capability of addressing remote deployments,
but this feature is not transparent to the application layer and thus does not require
strict availability guarantees. The second interesting case would be a middleware that
remains fully functional when parts of the local system have been split apart from the
rest. This might be relevant in practical scenarios (sabotage, �res etc.), but guarantees of
that sort would also require deeper changes of DS2OS architecture, so that for example
application layer services are replicated and can be scheduled automatically to ensure
continuous operation. Therefore it is safe to assume that partition-tolerance guarantee
is not required. The interesting property is again how many database node failure can
be tolerated.

R-17 The database has to maintain linearisable consistency (read always returns value
of latest write operation) across replicas.

3.1.8 Resource Consumption

A further important point is the database’s consumption of system resources. Examples
for resource consumption are CPU, memory, storage utilisation and network bandwidth,
and due to the distributed nature also the number of computing nodes. These in�uence
the hardware requirements, costs of operation, and thus constrain the the area of
economically viable deployments. Like the question of storage method, this issue
rather entails a goal for optimisation than a hard requirement. Generally the goal is
to achieve a lower resource consumption. The total consumption can, for each system

30 Chapter 3. Databases for Smart Spaces

resource, roughly be divided up into a �xed base footprint and a load-dependent variable
component. In the end the hardware has to be dimensioned large enough so that it can
handle the maximum expected load. However, it is important that the chosen product
is also able to scale down and work resource-e�cient in scenarios with consistently
low load. DS2OS is not designed to be deployed in a multi-tenancy setting across
organisations, so low-tra�c deployments are common. This stands in contrast to the
fact that conventionally, distributed datastores have been designed to address scalability
issues that arise from needs global, integrated storage of mass data, for example in
the context of software as a service products or large social networks. They are not
necessarily designed to perform e�cient in smaller settings, which makes the minimum
resource requirements an important point to consider.

However, it is di�cult to give a hard quantitative threshold the maximum resource
consumption, since it is mainly a question about economics. Lower requirements on the
hardware and less consumption of electricity leads to lower costs of operation and in-
creases the margin to make the deployment of Smart Space Orchestration economically
feasible. As performance of hardware increases and its cost decreases continuously, it
is subject to change over time, so the current situation will soon be outdated. There-
fore database candidates should be evaluated in hindsight of memory, disk and CPU
utilisation and the results should be discussed, but it is impossible to give an absolute
limit.

3.1.9 Triggers & Stored Procedures

Many databases allow to execute user-de�ned queries when an event occurs, for example
when data has been inserted, updated or after a transaction commits. They typically
only notify the code, but do not allow it to change the outcome of the action that lead to
the noti�cation. Triggers can be used to enforce application-level integrity constraints,
so when data is changed, other records are a�ected automatically. In DS2OS a scenario
where this would provide bene�cial is archiving of the version history and to notify
subscribers about changes. For either, a procedure must be invoked when a record is
updated. For versioning it is important that this happens in a transactional context in
order to maintain the consistency of the archive. This is not required to implement
noti�cations, but the invoked procedures must be allowed to contain side-e�ects, so
that they can inform subscribers.

R-18 It is possible to invoke custom code (stored procedure) when a write operation
occurs. This is only required to either implement versioning or noti�cations
inside the database.

R-19 Stored procedures can execute completely within the transactional context of the
write operations that triggered them. This is important to maintain consistency

3.1. Requirements 31

when there are concurrent writes or when transactions with write operations are
aborted.

R-20 Stored procedures are able to send messages over the network outside of the
database system. This allows to implement noti�cation functionality.

These three requirements are optional, as they also can be implemented in the code of
the knowledge agents at the cost of additional roundtrips.

3.1.10 Related work

Corbellini et al. conducted a fairly recent survey on scalable, sharded NoSQL datas-
tores, comparing products on a qualitative level by data model, persistence, replication,
sharding, consistency, API, query methods and implementation language [34], which
are dimensions that are highly relevant for this work. Apart from that they give an
overview over theoretical concepts and implementation techniques. The authors note
the high diversity in all of the investigated aspects, concluding that the choice of a
database must be suited to its application, that in some cases hybrid approaches with
a combination of di�erent databases behind an integration layer are needed, and that
benchmarking results vary a lot by the test characteristics and thus need to designed
according to the application.

Unfortunately a study that compares the performance of transactional features of
NewSQL database products could not be found.

Stonebraker et al. published a guideline of of 10 rules with justi�cation to chose an
appropriate distributed data storage architecture [35]. The rules cover aspects of the
implementation of a distributed database as well as choice and usage in an application
context. The following of them are found relevant for this work:

• Look for shared-nothing scalability: This refers to the horizontal scaling (sharding)
capability in opposition to vertical scaling where some resources (e.g., disk or
memory) are shared between database nodes. The databases that are considered
for evaluation all apply this principle.

• Plan to carefully leverage main memory databases: The authors suggest to use a
main memory database, as operations otherwise involve multiple disk seeks due
to, locking, logging and the actual data access.

• High availability and automatic recovery are essential for SO scalability

• Don’t try to build ACID consistency yourself: The authors state that it is very
ine�cient to write own protocols to maintain transaction isolation. This justi�es
listing transactional capabilities of the database system itself as a requirement.

32 Chapter 3. Databases for Smart Spaces

• Open source gives you more control over your future: The rule states reasons in
favour of open source software, which is a general requirement for compatibility
with the DS2OS project.

3.2 Available distributed datastores

This section presents a selection of available distributed datastores, their features, char-
acteristics and some of their internal architecture. Table 3.1 indicates which of the
databases ful�ls the described requirements. The selection of database candidates is
based on the following properties:

Open license This includes free software (GPL, FGPL etc.), as well as business-friendly
open source licensed (Apache, BSD etc.) and dual-licensed (service or extra fea-
tures commercially available from developer) software products. This constraint
has to be made to be compatible to DS2OS and its philosophy of supporting an
open maker-culture.

Documentation Documentation is needed to evaluate if the product full�ls the re-
quired features quantitatively. In the optimal case it also includes descriptions on
the internal architecture, extendability and scienti�c literature with comparisons,
veri�cation, and performance studies.

Aims & Goals The database should make distribution a fundamental choice of its
design, meaning both replication to improve fault-tolerance and latency, and
sharding/partitioning with automatic placement and re-balancing for scalability.
The latter should happen automatically and transparently and not only be an
add-on feature as it is the case with many older RDBMS. This excludes local in-
memory databases like Redis or RocksDB, but also databases that use replication
merely to achieve higher availability, without sharding. This is in line with the
research topic.

Data model Graph-oriented data organisation has not been identi�ed as having any
particular advantage over the other models for our use case. Thus products from
this category do not need to be considered.

Nowadays, the number of available of distributed datastores is vast; and thus it is impos-
sible to list and compare all of them. The selection is supposed to be both representative
of the available technologies, and to include all candidates that seem to be especially
promising for this particular task by their marketing.

Many of the available distributed databases were modelled after proprietary prototypes
developed by internet companies which faced scalability requirements that could not
be met by any existing product. Amazon came up with Dynamo, a key-value store
with high availability and partition tolerance, and sharding by consistent hashing. This

3.2. Available distributed datastores 33

O
pe

ra
tio

ns
In

te
rfa

ce
St

or
ag

e
D

ist
rib

ut
io

n
Co

ns
ist

en
cy

Tr
ig

ge
rs

R-1

R-2

R-3

R-4

R-5

R-6

R-7

R-8

R-9

R-10

R-11

R-12

R-13

R-14

R-15

R-16

R-17

R-18

R-19

R-20

Insert

Read

Update

Querying on key pre�x

Controlable locality

Bulk reads

API in Java

JDBC connector

Authentication

Encryption

Durable writes

In-memory data access

Sharding

Automatic rebalancing

Replication

ACID transactions

Linearizable consistency

Triggers

Atomic stored procedures

Procedures with side e�ects

Zo
ok

ee
pe

r
X

X
X

X
X

X
X

-
X

X
X

X
-

-
X

-
X

X
-

X
Co

uc
hD

B
X

X
X

-
-

-
X

-
X

X
X

-
X

-
X

-
-

?
-

-
Ca

ss
an

dr
a

X
X

X
X

X
X

X
X

X
X

X
-

X
X

X
-

Xa
X

-
X

H
Ba

se
X

X
X

X
X

X
X

-
X

X
X

-
X

X
X

-
-

X
-

X
Vo

ltD
B

X
X

X
X

X
X

-
X

X
X

-
X

X
X

X
Xb

X
X

X
-

Co
ck

ro
ac

hD
B

X
X

X
X

X
X

-
X

X
X

X
-

X
X

X
X

X
-

-
-

In
�n

sp
an

X
X

X
?

X
Xc

X
X

X
X

X
X

X
X

X
X

?
X

?
X

Ri
ak

X
X

X
-

-
Xd

X
-

X
X

X
X

X
X

X
-

Xa
X

X
X

Sc
al

ar
is

X
X

X
-

X
Xnt

X
-

-
-

-
X

X
X

X
X

X
-

-
-

Vo
ld

em
or

t
X

X
X

x
X

Xc
X

-
-

-
X

X
X

X
X

-
-

-
-

-
H

az
el

ca
st

X
X

X
-

-
Xc

X
-

X
X

X
X

X
X

X
X

X
?

?
?

Ig
ni

te
X

X
X

-
-

Xc
X

X
-

X
X

X
Xe

X
Xe

X
X

X
X

X
a

It
ca

n
be

sp
ec

i�
ed

to
re

ad
/u

pd
at

e
re

co
rd

sf
ro

m
/to

a
qu

or
um

of
no

de
s.

b
O

nl
y

av
ai

la
bi

le
fo

rs
to

re
d

pr
oc

ed
ur

es
,w

ith
ou

ts
id

e
e�

ec
ts

.
c

O
nl

y
by

lis
to

fk
ey

s,
no

su
pp

or
tf

or
ra

ng
e

qu
er

ie
s.

d
Vi

a
se

co
nd

ar
y

in
di

ce
s.

nt
N

o
su

pp
or

tf
or

tra
ns

ac
tio

ns
.

e
Ei

th
er

sh
ar

di
ng

or
re

pl
ic

at
io

n,
no

co
m

in
at

io
n

of
bo

th
.

?
Pr

oj
ec

td
oc

um
en

ta
tio

n,
us

er
gu

id
e,

pu
bl

ic
at

io
ns

do
no

tg
iv

e
a

cl
ea

ra
ns

w
er

.

Table 3.1: Requirement Matrix

34 Chapter 3. Databases for Smart Spaces

design inspired Riak, Voldemort and Cassandra. Google developed the Google File
System and Bigtable, which serve as the prototypes for the Hadoop File System (HDFS)
and HBase. Google also developed Spanner which leverages timestamps as a way to
order commits in a transactional system. This principle is adopted by CockroachDB.

3.2.1 Zookeeper

Zookeeper is a coordination service for distributed applications [36]. Like DS2OS it
provides the interface of a simple hierarchical datastore with read and write operations,
but its primary purpose is not to store large quantities of data. It is rather meant to
provide strong guarantees in terms of linearisability, availability and fault tolerance,
which can then be used to build other coordination primitives upon, for instance group
membership, locking, barriers, or con�guration management. This is re�ected in its
characteristics: All the data is fully replicated to all of the clients and kept in memory,
while all write operations are forwarded to one leader that decides on a total order. The
data is not partitioned among nodes as it is not designed for high scalability, but rather
fault tolerance and consistency. In terms of fault-tolerance, Zookeeper is capable of
handling

⌊
n
2

⌋
concurrent node failures with n being the total number of nodes. Quite

obviously Zookeeper is not a viable candidate for building the VSL state layer upon,
not only because of limited scalability, but also because there is no native support for
transactions. However, it can be used to implement concurrency control mechanisms
which add transaction support for other non-transactional stateful distributed systems
or to distribute metadata in a reliable way. Clients can register “watches” on records
that act like one-time subscriptions, informing the client that data has changed.

3.2.2 CouchDB

CouchDB is a document-oriented database which focuses on web technologies to sim-
plify integration in modern web-based applications. In line with this, data is repre-
sented as JSON documents, accessed through a REST interface and queries and views
are expressed as JavaScript code. CouchDB supports both replication and automatic
partitioning of data; but it is not possible to reorder or increase the number of shards
during runtime [37].

In the CAP-model, CouchDB achieves availability and partition tolerance while relax-
ing consistency. In other words, it allows one to continue reading and writing data
even in the case of a “split-brain” scenario – when parts of the network have been
disconnected [38]. Between these autonomous segments, con�icting writes can occur.
Although CouchDB will not drop any data, resolving the con�icts is up to the user.
While partition tolerance is an interesting property for systems that need resilience in

3.2. Available distributed datastores 35

the case of major damage or are globally distributed, insu�cient consistency guarantees
and no support for transactions exclude it as a candidate.

3.2.3 Cassandra

Cassandra [39] is a wide-column store that employs consistent hashing to distribute
keys among the nodes and to route requests. It o�ers access through a SQL-like interface
and supports secondary indices on single columns, although without fulltext indicing
or joins. By default there is no guarranteed consistency. It is however possible to
explicitly specify quorums of nodes for select and update statements, in order to avoid
con�icts. There is thus also no support for ACID-compliant transactions, but updates
are guaranteed to execute atomically on row level. It is also possible to make an update
or insert operation dependent on a condition on the a�ected row, which is checked
atomically (compare-and-swap). Additionally, batches of operations can be con�gured
to execute in isolation. While it is possible to get transaction support by implementing
a concurrency control protocol on top of these, it is discouraged, since there is is
no performance gain as compared to dedicated ACID-compliant databases and the
implementation e�ort is considerable [35].

On the upside, [40] shows that Cassandra achieves constantly low read and write latency
even in high load scenarios. The scalability is almost linear. However, since transaction
support is missing, it is not suitable for our purpose.

3.2.4 HBase

HBase [41] is another candidate from the wide-column family of databases. It leverages
the Hadoop Distributed Filesystem (HDFS) for distributing data. In contrast to Cas-
sandra, its interface is relatively bare: There is no SQL abstraction, but only an API in
native Java, also available as a web service with various serialisation formats. All data
is generally represented as byte arrays and there is no support for secondary indices
either. Columns can be grouped into column families which are then physically stored
together. This is relevant for performance optimisations. Reads and Updates are all
routed through a unique server per shard (region server) which orders requests and
thus ensures consistency on shard level. Batches of operations are not guaranteed to
execute in isolation or even in the order that they were speci�ed. There is however, like
in Cassandra, an atomic check-and-mutate operation that allows one to tie an update
or insert to a precondition on the a�ected row. It is still impossible to build transactions
with ACID semantics on top of it, since there is no way of specifying atomic operations
that a�ect more than one row (like atomic batches in Cassandra).

36 Chapter 3. Databases for Smart Spaces

Similar to Cassandra, it was demonstrated that HBase scales well and has low latency for
read and write operations [40]. But the missing transaction support likewise disquali�es
it for our purpose.

3.2.5 VoltDB

VoltDB falls into the “NewSQL” category. Those are databases that aim to provide the
well-known functionality and transaction capabilities of legacy relational databases, in
combination with a distributed design that achieves higher scalability and availability
through partitioning and replication [42]. On top of that, VoltDB places all its data in
memory, and entertains the idea to move code that requires transactional access closer
to the database, in the form of stored procedures. These are executed transactionally,
and can be repeated if they fail. This is unfortunately the only way to access VoltDB data
transactionally. There is no equivalent to the well-known sequential communication
between the database and the client within a marked transaction context, which imposes
the limitation that transactions cannot have side-e�ects. Although this is generally
desirable, it constrains the functionality, especially in the context of a cyber-physical
system, and is more di�cult to integrate since transactional service code would have to
be compiled to a VoltDB stored procedure, marshalled and shipped to the database for
execution.

3.2.6 CockroachDB

CockroachDB [43] is like VoltDB a member of the “NewSQL” movement, inspired
by the design of Google’s Spanner [44], thus mimicking the functionality of classic
transactional RDBMS, with additional scalability and high availability through global
distribution. Unlike VoltDB, it stores its data on disk, employing RocksDB as a backend
for local storage. It also retains the more generic form of transaction support which
allows user-de�ned client-side code to communicate with the database server, rather
than scheduling a user-de�ned function to execute on the server. This functionality is
accessible through a SQL interface.

Internally CockroachDB uses Raft to achieve row-level consistency among the repli-
cas and MVCC to ensure transaction isolation. Total ordering of version requires an
accurate time source. To obtain it, CockroachDB employs an algorithm that combines a
time source from synchronisation algorithms of physical clocks with that from a logi-
cal Lamport clock [45]. Spanner in contrast uses technologically advanced hardware,
namely atomic clocks and GPS receivers, to achieve this.

3.2. Available distributed datastores 37

3.2.7 Riak

Riak [46] is a key-value datastore. Inspired by Amazon Dynamo [47], it uses consistent
hashing to distribute data on a ring structure and to route requests. It allows to plug in
various storage back-ends that place data either on disk or in memory.

Riak has a sort of secondary indexing capability, but since it is a key-value store, it
cannot create indices automatically. Instead the programmer must manually attach index
labels to each persisted record. On top of generic payload as values, Riak also supports
maps, sets and counters. These have semantics of con�ict-free replicated datatypes
(CRDTs) [48], so will eventually converge to a value without losing data. Riak does
not provide strong consistency, but tracks versions of records with vector clocks and
resolves con�icts on detection either with last-writer-wins semantics or return multiple
values, thus leaving con�ict resolution up to the user. This behaviour is comparable
to CouchDB or Amazon Dynamo. If there are higher requirements on consistency,
Riak allows the user to globally con�gure strong consistency, for all operations, while
sacrifying availability guarantees. In this mode, Riak additionally provides a conditional
modi�cation operation, like to Cassandra and HBase.

3.2.8 Scalaris

In contrast to most of the other datastores presented in this section, Scalaris is a research
project, not a commercial product. It aims to provide a scalable distributed key-value
store with strong transactional semantics [49]. It is entirely based on peer-to-peer mes-
saging, employing the gossiping protocol T-Man to build a ring-structured overlay [50],
an algorithm derived from Chord to provide routing [51], and Paxos for optimistic
concurrency control [52]. Unfortunately there is no support for versioning, encryption,
authentication or triggers which limits its use for real-world applications a little. There
is also no option to submit queries for more than one record at once in a transactional
way, which would make querying VSL node trees ine�cient.

3.2.9 Voldemort

Voldemort is a key-value store, modelled after Amazon Dynamo [47]. Thus, it also
shares some characteristics with Riak. It shards data according to a con�gurable hash
function. Data locality can be preserved if a hash function is provided that maps a key
to an integer which then determines the storage location. For VSL addresses, this could
be a hash of the substring determining the knowledge agent or the knowledge agent and
the service identi�er, to preserve locality among those. Like Riak, Voldemort versions
all its data with vector clocks. This feature is not hidden from the database user and
can be used to resolve con�icts manually. These can occur in the event of partitions for

38 Chapter 3. Databases for Smart Spaces

which there are no further mechanisms to prevent, making Voldemort an AP store in
the CAP model, like CouchDB and Riak in their standard con�guration. Unlike for these
two, there is also no option to change this behaviour. Obviously, there is no support for
transactions or conditional update operations.

3.2.10 In�nispan

In�nispan [53] and similar products (Hazelcast, Ignite, and Geode) are marketed as
“distributed caches” or “data grids”. Data grids aim at improving the performance of
computation workload [54]. For that reason they incorporate functionality to transfer
and distribute computation workload to the servers where the data resides, to store
partial results, and to make these results available to other processes. Irrespective of
that, managing distributed data is the core concept, making In�nispan and consorts
likewise distributed databases with key-value semantics.

In�nispan distributes data like other key-value stores on a DHT with a ring topology,
using consistent hashing [55]. Both key and value can be arbitrary Java objects, as long
as they can be marshalled into binary data. By default all data is stored in-memory,
but optional persistence to disk can be con�gured. In�nispan can be used as a cache
with an optional automatic retention policy and with con�gurable levels of replication
and sharding. It furthermore provides the possibility to index and query data by in-
corporating Apache Lucene for full-text indexing. In�nispan incorporates support for
distributed transactions, employing the 2-phase commit protocol. The user can chose
between an optimistic and a pessimistic mode.

In�nispan can either run as a Java library within the runtime environment of the
application that accesses the data or independently as a standalone server.

3.2.11 Hazelcast

Hazelcast is conceptually similar to In�nispan, Ignite, and Geode. Like those, it functions
as a distributed key-value store for Java objects. Additionally, it can also store data
structures that are di�erent from the key-value map, such as lists, sets, queues, locks
and counters and it can also be used as an event broker. This makes it a more versatile
product. Hazelcast locates sharded data by using a global, replicated partitioning table.

In a recent study, it was shown that In�nispan outperforms Hazelcast for simple opera-
tions with key-value semantics [56].

3.2. Available distributed datastores 39

3.2.12 Ignite

Apache Ignite is similar to Hazelcast. It stores Java or .NET objects in memory, with
an option to persistence to disk and provides additional datatypes like queues and
sets. Ignite provides an optional SQL interface, though this is currently without the
support for transactions, which are only provided for the native key-value API. These
are implemented using the 2-phase commit protocol. Developers of Ingite claim that it
remains functional when the transaction manager or a node that stores a�ected data
crashes [57].

3.2.13 Geode

Apache Geode is another instance of key-value stores that closely resemble In�nispan.
Geode supports a subset of SQL for querying data. Notably, support for joins is unavail-
able for sharded datasets. It allows both replicated and sharded distribution of data,
but has only rudimentary support for a combination of both (additional master-slave
replication for a sharded dataset).

3.2.14 Conclusion

For further analysis, we selected CockroachDB (version 1.0) and In�nispan (version 9.1).
Both cover the requirements and allow to compare di�erent approaches in regard to
modelling, integration, and performance relating to their architectural di�erences. They
are also representative for their product class: CockroachDB is a “NewSQL” database
that aims to provide a more scalable and fault-tolerant version of a relational database
and Ininispan is an “In-memory data grid” that aims towards a tight integration into
the application and bears similarity to Hazelcast, Geode, and Ignite.

It should be noted at this point, that distributed databases are evolving rapidly and
the development of many products is still ongoing. During the time that this work
was conducted, two new versions (1.1 and 2.0) of CockroachDB were released, which
contain new features and are claimed to bring signi�cant performance improvements.
Another promising candidate also inspired by Spanner, TiDB [58], was only released
for production in October 2017 (version 1.0).

41

Chapter 4

Implementation

After surveying candidates and concepts among databases, this chapter �rst explores
how the VSL data model of DS2OS can be integrated into the databases, how the
semantics of subscriptions, version history, and virtual nodes can be retained, and how
the VSL interface has to be changed to support transactions. The second part then
provides details about the implementation of CockroachDB and In�nispan backends to
achieve this goal.

4.1 Architectural Integration

There are several challenges involved in integrating a distributed datastore into DS2OS
that mostly arise from the fact that it allows to interact with KOR data in various di�erent
ways. Data can either be queried explicitly or the client registers a subscription and
is informed whenever data is available. Then, there is a distinction between virtual
and persistent (non-virtual) data, and it is not statically known in which of these two
categories a node identi�ed by an address falls, since it can be registered as either of
them.

In contrast to these versatile ways of interaction, databases usually – and that includes
most of the reviewed instances – only provide support for a querying mode of access;
that is reading and writing values. Database triggers is a feature that cannot be consid-
ered a standard among NoSQL databases and if it is supported, its behaviour in relation
to transactions is often not explicitly documented, not to mention controllable.

4.1.1 Transaction Interface

As outlined before, the user-side API of DS2OS does not have an idiomatic transaction
interface that hides details of concurrency control procedures away from the user. This is

42 Chapter 4. Implementation

a feature that is often provided by databases, which hide the details of the concurrency
control. Typically, a database user �rst starts a transaction, executes a sequence of
operations and then either commits or rolls back the transaction. The database con�rms
if the operations have been carried out sucessfully or informs if the transaction has
been aborted. To schedule con�icting transactions, the database may either delay an
operation or abort a transaction, which can happen immediately or when it is committed.
Some con�icts cannot be resolved through delaying because they mutually depend on
their progress. These cases have to be detected and resolved by the database scheduler.

To bring this behaviour to DS2OS the Connector interface has to be changed. Two
possible alternatives on how such an interface could look like exist:

org.ds2os.vsl.core.VslConnector conn;

try {

Transaction trans = conn.createTransaction();

VslNode lamp1 = trans.get("/agent2/light1/isOn");

trans.set("/agent2/light2/isOn", lamp1);

trans.commit();

/ / or : trans . rollback () ;
} catch (TransactionAbortedException e) {

/ / handle transaction abort
}

Figure 4.1: Operations expicitly associated with a transaction object

org.ds2os.vsl.core.VslConnector conn;

try {

conn.beginTransaction();

VslNode lamp1 = conn.get("/agent2/light1/isOn");

conn.set("/agent2/light2/isOn", lamp1);

conn.commitTransaction();

/ / or : conn . rollbackTransaction () ;
} catch (TransactionAbortedException e) {

/ / handle transaction abort
}

Figure 4.2: One transaction environment per connector

In 4.1 the user creates a transaction object �rst. They then use that handle to add opera-
tions and commit or abort the transaction. In 4.2 there is only one possible transaction at
a time and the user uses the VslConnector object to issue operations. The former is more
generic and has the advantage that multiple transactions can co-exist at the same time,
while also allowing non-transactional operations when a transaction is active. The latter
is closer to the original interface, but there is only one transaction at a time. It should

4.1. Architectural Integration 43

be noted that 4.1 can cause implementation issues, as not all databases themselves have
interfaces that allow multiple concurrent transactions within a session. An example for
this are all SQL interfaces; they resemble alternative 4.2.

The interface has to inform the user on the success of a transaction. This can happen
eagerly, when a operation leads to a con�ict and thus an abort of the transaction, or
lazily, when the transaction is committed. In the former case an exception has to be
thrown. The latter could also allow to return a boolean value for the commitTransaction()

call that would indicate if the transaction was successfull, as in the listing:

org.ds2os.vsl.core.VslConnector conn;

conn.beginTransaction();

VslNode lamp1 = conn.get("/agent2/light1/isOn");

conn.set("/agent2/light2/isOn", lamp1);

if(conn.commitTransaction()) {

/ / transaction was successful
else {

/ / handle transaction abort
}

Figure 4.3: One transaction environment per connector

Preferrably, the new interface will be backwards compatible. First this implies that
the get and set methods of VslConnector should not throw any new exceptions. This is
given when they are instead explicitly called for a transaction handle as in 4.1, or if the
success is only checked on commit as in 4.3. Secondly, it is desirable if the existing lock,
commit and abort methods still work and integrate with the transaction interface. To
accomplish that, a possible solution is to initialise an implicit transaction whenever a
lock method is called, and commit it when an acquired lock is committed; otherwise
abort. Algorithm 1 describes the procedure in detail.

4.1.2 Version History

DS2OS records all versions of a VSL tuple and allows access to it with incremental
version numbers, e.g., /agent/service/data/15. This version number has to be updated
whenever a �eld is updated, and the old value has to be stored. If, when and in what order
a new value is decided uppon, is in the end up to the database and its concurrency control
mechanism. The database might either already have functionality to keep records of
the version history and make it accessible, or that behaviour has to be implemented
externally.

One way of implementing this behaviour is to store the current version number along
with the value of a VSL address, in the value-part of a key/value store, or a column in a

44 Chapter 4. Implementation

Algorithm 1 Locking shim for transactional connector
conn . Transactional VSL connector interface
l ← ∅ . Mapping of lock address to transaction ID
h ← ∅ . Mapping of lock address to lock handler

5: procedure Get(addr)
if ∃(address, tid) ∈ l ,address pre�x of addr then

try conn.дet (addr , tid)
on TransactionException handleAbort (address)

else
10: conn.дet (addr)

end if
end procedure

procedure Set(addr ,data)
15: if ∃(address, tid) ∈ l ,address pre�x of addr then

try conn.set (addr ,data, tid)
on TransactionException handleAbort (address)

else
conn.set (addr ,data)

20: end if
end procedure

procedure LockSubtree(addr ,handler)
tid ← conn.beдinTransaction()

25: l ← l ∪ {(addr , tid)}
h ← h ∪ {(addr ,handler)}
handler .lockAcquired (addr)

end procedure

30: procedure CommitSubtree(addr)
for ∀(addr , tid) ∈ l do

conn.commitTransaction(tid)
end for

end procedure
35:

procedure RollbackSubtree(addr)
for ∀(addr , tid) ∈ l do

conn.rollbackTransaction(tid)
end for

40: end procedure

procedure HandleAbort(address)
for ∀(addr ,handler) ∈ h do

handler .lockExpired (address)
45: end for

l ← {(addr , tid) ∈ l ,addr , address}
h ← {(addr ,handler) ∈ l ,addr , address}

end procedure

4.1. Architectural Integration 45

Service Knowledge Agent VSL State DB

write(addr, data)

beginTransaction

read(addr)

<old_data, version>

write(addr/version, old_data)

write(addr, <data, version+1>

commit

committed

Figure 4.4: Archiving the version history within the database that keeps the VSL data

database table. When a VSL tuple is updated, the version number has to be read, and the
old record has to be copied and archived. Then the version can be incremented and the
new value written to the database record. To ensure consistency, this whole procedure
has to happen within a transaction (see Figure 4.4). This is also the approach that is
taken in the current implementation. There it is not much of a performance problem as
all of that happens locally. In a distributed setting however, this will likely involve data
partitioned and replicated to multiple servers between which the transaction has to be
coordinated. This can lead to a bad performance even for simple write operations that
are committed outside of a transaction from the user API. The problem can parially be
resolved when it is ensured that the current version and version history of a record are
stored in the same partition. Furthermore database triggers can be used to move the
coordination of the procedure to the database layer and avoid unnecessary rountrips
between the knowledge agent responsible database server.

Alternatively, a record containing the number of the latest version can be kept as a
database record. This can then be used to reference the latest value indirectly. Unfor-
tunately it involves more than one database operation for both VSL reads and writes.
Thus they also have to be wrapped in a transaction.

Another alternative approach is to seperate the version history and the current state of
data, and not involve the VSL database in tracking the versions. Instead the numbering
and archiving is handled by a seperate append-only log system. This can either be a time
series database or an event stream system with storage capabilities like Apache Kafka.
The important requirements are just that it can agree on a total order and number the

46 Chapter 4. Implementation

Service Knowledge Agent VSL State DB Version History DB

write(addr, data)

write(addr, data)

write(addr, data)

committed

version

Figure 4.5: Archiving state updates outside of the VSL state database in parallel

versions and that it allows random access to these version numbers. Apart from that,
there are no more consistency requirements as data is never changed after appending.
It can be replicated to achieve performance bene�ts arbitrarily many times without
worrying for coherency.

When the VSL state is altered, one of the components that is involved in the update has
to forward the new state to the version archive. This can be done by the database that
keeps the VSL state, if it supports this feature, or by the knowledge agent whose service
changed a VSL tuple. In the latter case, there are several alternatives as to when this
update happens: When a the client issues a write (Figure 4.5), when the client called to
commit the transaction that contains it (Figure 4.6), or when the commit is con�rmed by
the database (Figure 4.7). In the former two cases it’s guaranteed that the new values end
up in the version history database, but it may also contain some uncomitted versions
in the end. In the other there is a small risk that the knowledge agent crashes and that
the values are ommitted from the version history. The second option, waiting until
the client commits the transaction, allows to enforce the version order in the history
by delaying committing the VSL transaction until the version history database has
con�rmed the append. In all cases, reading historic versioned data is unproblematic for
consistency guarantees, because it can never change.

Lastly, many databases keep old versions of their data by themselves. This has mostly to
do with the multi-version concurrency control (MVCC) mechanism that many of these
deploy, and to avoid seek time in disk storage. Despite the di�erent primary intention,
some allow the user to access old versions as a feature as well, though not necessarily
with the same semantics as DS2OS versions.

4.1. Architectural Integration 47

Service Knowledge Agent VSL State DB Version History DB

beginTransaction

beginTransaction

write(addr, data)

write(addr, data)

commit

write(addr, data)

version

commit

committed

committed

Figure 4.6: Archiving state updates before transaction commit

4.1.3 Subscription and Noti�cations

As mentioned before, services can subscribe to VSL addresses and are informed when
their values change. The subscriptions are so far stored at the knowledge agent that is
responsible for the service that owns the data. Since this knowledge agent processes
all writes to that data, it is guaranteed that all interested parties are informed correctly
as long as no messages are lost or the knowledge agent crashes. This mechanism is
not possible anymore if all knowledge agents access the distributed datastore directly.
Instead, any knowledge agent via which a write is executed must make sure that all
subscribers are served. That also means that there must be one single location where
the list of subscribers are kept. There are three straightforward ways to implement this:

1. Store the list of subscribers in the distributed database along with the value. The
writing KA must carry out the actual noti�cations by itself.

2. Store the subscriptions at the knowledge agent to which the VSL address is
associated, as it is practiced in the original version and let this knowledge agent
send out the noti�cations. Any other KA that carries out a write needs to inform
this KA.

3. Use a separate message broker, such as Apache Kafka for handling the subscrip-
tions.

48 Chapter 4. Implementation

Service Knowledge Agent VSL State DB Version History DB

beginTransaction

beginTransaction

write(addr, data)

write(addr, data)

commit

commit

committed

write(addr, data)

version

committed

Figure 4.7: Archiving state updates after transaction commit

The semantics of the noti�cations are also a point to consider. Unless there are agent
failures, subscribers are informed exactly once per write access and at most once when
the owning KA fails. Currently there is no guarantee on the delivery time and order
of noti�cations and that the value read as a cause of a noti�cation is the value whose
write operation triggered the noti�cation being sent out. This means that additional
noti�cations for an update would not cause any harm, which is insofar relevant as it
simpli�es noti�cation handling within transactions. Since writes that are issued within a
transaction block can be rolled back, sending out noti�cations would have to be delayed
until they are committed.

4.2 Back-end Implementation

In the implementation phase, we took the existing DS2OS codebase and applied the
necessary changes. The service-side and internal APIs were extended by transactional
capabilities. For this, the more generic version with explicit transaction identi�ers was
chosen. This is because on the logical level of interaction between knowledge agents and
service connectors, there is no concept of a session, so requests from service connectors
are stateless. The transaction identi�ers are valid within one connection between a
client and a knowledge agent and can be obtained by starting a transaction with String

beginTransaction(). Then, transactional access can be performed through the VslNode

4.2. Back-end Implementation 49

get(address, parameters, transactionID) and void set(address, knowledge, transactionID)

methods with the respective transaction identi�er. For the original DS2OS implementa-
tion with a federated backend, a connector shim mimics the behaviour of the transaction
API for compatibility (see listing 2). It implements a simple 2-phase locking algorithm
on top of the old locking functions, although without guaranteeing consistency in the
case of a KA failure or deadlock detection.

Two more implementations of this API connect either as In�nispan and CockroachDB
as database backends. Since In�nispan is designed to execute embedded in the Java
Virtual Machine together with the application that uses it, the connector accesses it
directly through the provided API. For CockroachDB it uses the compatible Postgres
JDBC driver to communicate with the database server over a SSL-secured TCP protocol.

The subscription and virtual node querying functionality were changed as little as
possible in order to preserve their original semantics: Reads and writes to virtual nodes
are forwarded to the knowledge agent where the node is registered after it has been
detected that the node is virtual by a set �ag in the database. The routing layer was
changed to check if a node is virtual or persistent and to direct requests for persistent
data directly at the database instead of a remote knowledge agent. The downside of
this approach is that it requires an additional database access. To mitigate this, both
modes of access are executed in parallel for get and set operations: To check for a
virtual node, the request is sent through the responsible remote knowledge agent; to
access persistent data, the request is forwarded to the distributed database. When the
data at the destination does not match the access method, so when the database record
indicates, that the queried node is virtual or the Virtual Node Manager does not �nd a
corresponding Virtual Node Handler, they return a failure result. Whichever of these
two operations �st returns a valid result is chosen. This helps to speed up processing
of virtual nodes, so that accessing virtual nodes still has the same latency as the old
implementation.

Noti�cations are implemented as suggested by alternative 2 in section 4.1.3: The sub-
scriptions are stored at the knowledge agent with which a VSL address is associated,
like in the original version. The disadvantage of this approach is a higher delay in
noti�cation because of the additional round-trip. Whenever a persistent node’s data
is updated, the knowledge agent where the access happens informs the knowledge
agent where the accessed service is registered which can then send out the noti�cations.
This happens irrespective of whether the write access happens in a transaction or not
and may thus result in additional noti�cations in the case of aborted or rolled-back
transactions or too early noti�cations for which the noti�ed party cannot yet see the
results.

50 Chapter 4. Implementation

Algorithm 2 2-phase locking shim
conn . VSL connector interface
l ← ∅ . Locks per transaction
c ← ∅ . Completed transactions

5: procedure Get(addr , tid)
if tid ∈ c then

return
else if ∃〈tid, lock〉 ∈ l .∃x . (lock ◦ x) = addr then . Already holds lock

return conn.дet (addr)
10: else

conn.lockSubtree (addr , λ_.noti f y (var))
wait (var) .Wait for lock
l ← l ∪ 〈tid,addr 〉
return Get(addr , tid)

15: end if
end procedure

procedure Set(addr ,data, tid)
if tid ∈ c then

20: return
else if ∃〈tid, lock〉 ∈ l .∃x . (lock ◦ x) = addr then . Already holds lock

return conn.set (addr ,data)
else

conn.lockSubtree (addr , λ_.noti f y (var))
25: wait (var) .Wait for lock

l ← l ∪ 〈tid,addr 〉
return Set(addr ,data, tid)

end if
end procedure

30:
procedure Begin

return random tid
end procedure

35: procedure Commit(tid)
c ← c ∪ tid
for ∀〈tid, lock〉 ∈ l do

conn.commitSubtree(lock)
l ← l\〈tid, lock〉

40: end for
end procedure

procedure Rollback(tid)
c ← c ∪ tid

45: for ∀〈tid, lock〉 ∈ l do
conn.rollbackSubtree(lock)
l ← l\〈tid, lock〉

end for
end procedure

4.2. Back-end Implementation 51

vsl.structure

address: String
type: String

vsl.history

address: String
val: String
version: BigInt

vsl.data

address: String
val: String
version: BigInt
reader: String
writer: String
restriction: String
cacheparameters: String
depth: Int
virtual: Boolean
types: String
ts: BigInt

Figure 4.8: Database tables of the CockroachDB backend

4.2.1 CockroachDB

For the implementation with the CockroachDB backend, data is spread across three
database tables: structure, data, and history (see Figure 4.8). All current data along
with structural information is stored in the data table. The records in that table have
a �eld depth that indicates the length of the address, or in other words slashes in the
address string, which helps to query subtrees of a speci�c length. VSL data is queried
trough an equality expression on the address. When a node tree of a depth other than
zero is queried, this has to be a regular expression, which has bad performance in
CockroachDB because a fulltext index feature has not yet been released (it has been
announced for a future version). The structure table contains pairs of an address and a
type and forms an index for the type search functionality. The history table contains
versions of the records present in the data table, marked with a version number, but
without the structural information. For every write, the record in the respective data
table is inserted into the history table.

The interface code uses a connection pool to enable multiple threads to access the
database concurrently. The connections itself are encrypted with SSL and mutual
authentication through a client key. For transaction processing, pairs of the transaction
identi�er and a corresponding active JDBC connection object are kept in a map and
used whenever a transactional get or set operation is requested.

52 Chapter 4. Implementation

DataRecord

address: String
value: String
timestamp: long
version: long

StructureRecord

address: String
parentAddresses: SortedSet[String](generated, indexed)
readers: List[String]
writers: List[String]
restriction: String
cacheParameters: String
isVirtual: boolean
depth: int(generated)
types: SortedSet[String] (indexed)

Figure 4.9: Classes used as value types of the In�nispan backend

4.2.2 In�nispan

The In�nispan backend uses two collections, which are maps of a VSL address to Java
objects of a speci�c types, to store the VSL data. One is named vsl-structure, the other
data. The values are Java objects as displayed in Figure 4.9. The structure table is marked
as non-transactional and asynchronously replicated, so it is shared with all knowledge
agents to decrease access latency. It contains all the metadata that is associated with a
VSL node. Furthermore the node address is broken up into its parent addresses (pre�xes)
which are stored in a list structure within the structure object. This structure is indexed
by the integrated Lucene search engine to query for subtrees of the VSL structure faster.
Also, the type �eld is marked to be indexed for the type search. The other table, vsl-
data contains the values and timestamp of the current version. This table is marked as
transactional and synchronously distributed. That means for every write the database
makes sure that the operation is transmitted to at least three replicas to guarantee
durability. The In�nispan backend does not use separate collections for current and
historical data, instead the old data is appended to the data collection with the version
as su�x to the key.

The connector takes the same approach to transaction handling as the CockroachDB
one, with a map of transaction identi�ers and database handles. Unfortunately, the
In�nispan API has the idiosyncrasy that transaction sessions are tied to the executing
thread. This might simplify the development of applications in many cases, but in
this one it is rather cumbersome since within the knowledge agent it is not de�ned
which threads are used and reused to submit database requests. To work around this
limitation, the approach was to create a new thread on each transaction start which
wraps the database API handle and executes all transactional requests for the respective
transaction identi�er. The communication with the calling thread happens through
variables and low-level synchronisation primitives (wait and notify), so that there should
not be a signi�cant decline in performance.

4.3. Summary 53

4.3 Summary

Both backend implementations have the same interface: They store the VSL structure
and current payload data and archive its history. They are able to mark virtual nodes
and have an optional transactional mode for get and set operations. Independent of the
chosen backend, subscriptions, noti�cations on update, and requests to Virtual Nodes
are always forwarded to the KA responsible for the a�ected VSL address.

Among the two databases themselves, there are a number of architectural di�erences:
In�nispan runs within the Java Virtual Machine of the KA, CockroachDB as an inde-
pendent server, that is accessed via a local TCP socket. Also, the storage location di�ers.
In�nispan uses pure in-memory storage and will not attempt to restore any data if
it crashes. In contrast, CockroachDB uses a RocksDB backend which stores data on
disk and is able to reuse the dataset after a crash or restart. CockroachDB maintains
consistency using a consensus protocol, while In�nispan only makes a best e�ort of
updating records on the reachable nodes. These di�erences are important to consider
when the backends’ performance is compared.

55

Chapter 5

Evaluation

For benchmarking, two test setups were created. One consists of several small scenarios
with a few services and aim to analyse speci�c properties. The other contains scenarios
with a large number of randomly generated services and is meant for simulating high
tra�c scenarios. The tests and measurements were carried out at the ilab computing
facility at the Chair for Network Architectures and Services at TUM. The hardware
setup was a cluster with 6 nodes, each equipped with 4 core CPU (Intel Xeon E3-1265L
v2) and 16 GiB memory. The nodes were connected through a switched 1000 MBit/s
Ethernet network, with a simulated transmission delay (2ms + 1ms normal dist.) and
packet loss (0.1%, 75% dependent on predecessor). This should represent a deployment
within a company site where the network is shared with other applications.

For generating test tra�c and taking measurements, a test harness was implemented in
Scala. It executes an embedded knowledge agent with a con�gurable database connector,
runs concurrent load tests according to a provided test model or speci�c test for a
particular property (microtests), and takes measurements of performance metrics. The
measurements are asynchronously written to local storage through a bu�er in order to
avoid putting additional load on the network or delaying test execution.

It is likely that performance testing will reveal a trade-o� between throughput and
latency on one side and consistency and availability on the other. The expectation is
that CockroachDB will perform worse in terms of latency and throughput in comparison
with In�nispan and the existing HSQLDB backend. CockroachDB o�ers the transaction
semantics of a conventional relational database, but in a distributed environment and
with higher availability and scalability, which requires more sophisticated scheduling
algorithms, quorums and more messaging between nodes. In�nispan in contrast doesn’t
enforce quorums and uses a simpler 2-phase commit protocol for distributed transaction
coordination. The expectation here is that its non-transactional operation latency will
compete with the HSQLDB backend. The throughput might be slightly lower because
of the overhead for replication.

56 Chapter 5. Evaluation

5.1 Test Model

Generally, the clients of an IoT system can be classi�ed into di�erent groups. Some
services are linked to a physical component and their state re�ect their state in the real
world while others perform purely logical tasks. And some produce data while others
only consume it. The following categories classify services with regard to their data
access patterns and role in information transformation:

Sensors These continuously produce measurements and write it to their own VSL
address. The data is scalar, thus the node can be �at and the write access is does
not need to be wrapped in a transaction.

Complex devices The restriction on single values and unidirectional data �ow is too
simple for many devices found in real building automation installations. Some
devices incorporate both sensor and actuator functionality and possibly also their
own logic (e.g., automatic sliding door). These devices generally access data
con�ned to their own VSL node tree, but can access several parts of it at once,
wrapped in a transaction.

Knowledge inference services These services aggregate or enrich information from
sensors, complex devices, and other knowledge inference services. On each
iteration, a knowledge inference service reads data from di�erent VSL nodes,
performs computations, and writes the result to its own VSL node. A real-world
knowledge inference service would perform computations which can be as simple
as a unit conversion but also a more complex reasoning or machine learning task.
The service has to make sure that it reads recent data.

Coordination services Coordination nodes implement automatic control loops and
provide coordination functionality between the input and output sides of an
IoT network. In a typical iteration, a coordination process �rst reads data from
various nodes, determines the control output, and then writes the results to other
nodes. These nodes are outside of the service’s own VSL address space. A stateful
coordination service might also have its own private state stored in its VSL node,
but this would typically only be accessed by itself. All operations carried out
within a control iteration should be wrapped in a transaction in order to enforce
policies imposed by the control logic.

Control services Control services manage and control hardware (sets of actuators
and complex devices), and act themselves on control inputs. The di�erence to
coordination services is that they do not collect data from other services them-
selves, but rather act upon changes of their own VSL node, representing control
input. The execution of such services can be wrapped in a transaction, as control
functions might impose consistency requirements. For load tests this class of

5.2. Measurable properties 57

service is not necessary, as its access behaviour is equivalent to a coordination
service with one read access.

Actuators Actuators continuously consume data from their own VSL address. Repre-
senting devices, they would adjust their physical state to the data that was read
from the VSL. The value stored there is scalar and the read accesses occur outside
of transactions.

Sensor/Device
Layer

Aggregation
Layer

Coordination
Layer

Control
Layer

Actuator/Device
Layer

Figure 5.1: Example topology of information �ow across an IoT network, boxes indicate
services, red ones those performing transactions

These service classes typically form chains of information �owing from sensors and
complex devices to actuators and again complex devices (e.g., Figure 5.1).

5.2 Measurable properties

5.2.1 Information dissemination latency

It is desirable that the smart space reacts to changes quickly. This property can be
expressed as the di�erence between the time of writing a sensor reading and the time
at which an actuator responds to it. Of course, an actuator action can be the causal
result of readings from several di�erent sensors and coordination actions. In these
cases, the newest sensor reading is relevant as it is the event which �nally triggered
the chain of updates that lead to the actuator action, while the other may not directly
have caused an intermediate knowledge inference or coordination service to emit a new
value. Secondly, it is also relevant to see if any stale data is present; that is when an
actuator read returns causally related sensor data for which a newer version is available.
This is not avoidable unless a whole chain from sensor to actuator is put in one distinct

58 Chapter 5. Evaluation

transaction, which is only possible if there is only one intermediary service. For tracking
the causal relationships of transmitted information, vector clocks can be used.

5.2.2 Transaction success rate

Devices, coordination and control services, in some cases possibly also knowledge
inference services, can use transactions to apply consistent changes of VSL state. If
those transactions are aborted by the middleware, they have to be attempted again,
a�ecting the overall reactiveness of the smart space. Con�icts can only entirely be
avoided if transactions are scheduled in a strict sequential order, without concurrency,
or if con�icts are detected in advance. Both methods are infeasible for distributed
databases, as the �rst a�ects scalability and fault tolerance and the second entails a
semantic restriction. Thus, con�icts between transactions can possibly occur, but it is
up to the concurrency control algorithms of the database to handle them e�ectively
and decide which transactions will be cancelled, delayed, or transparently resubmitted.
From the user perspective, it a�ects the rate at which transactions are accepted and the
time it takes to complete transactions.

It should be mentioned though, that workloads which are likely to cause deadlocks, and
thus the inevitable abort of a transaction, are unlikely to be encountered in realistic
workloads. It would require that several sensors access the same data in a non-uniform
manner, e.g., by randomising over the sequence of write access to a set of output
addresses. This cannot be ruled out, but it is also not the norm. Therefore, the tests do
not contain workload that deliberately causes deadlocks.

5.2.3 Service-level latency

From the perspective of the developer of coordination services, an important perfor-
mance property is the time it takes to execute a database operation. This includes
reading and writing of nodes of varying complexity on virtual and non-virtual nodes,
executing type searches, and initiating and committing transactions. A low latency for
these is obviously desirable because the service process can typically not progress while
waiting for data to arrive. As a result of high latency, the overall service performance
degrades, a�ecting safety and user satisfaction.

In addition to that, a predictable distribution of latency is desirable. In particular, an
especially long response time should be avoided – even if this happens rarely – since it
stalls the accessing service and might annoy user or have safety or security implications.

Internally, the expected latency is composed of several factors: First, there is the delay
for transmission between the service client and the knowledge agent and between the
knowledge agent and the database node. These are more or less constant for each

5.2. Measurable properties 59

submitted operation and dependent on network characteristics known to a potential
user who wants to deploy the middleware. It is independent on the choice of the database
backend or type of operation; thus it is fair to avoid network transmission between
services, KA, and database to obtain more meaningful results.

Another component is time where a database node is waiting for system resources to
become available. This can be access to the disk, to a thread pool, or other local resources
that are shared between concurrent processes that execute the database operation. This
component is sensitive to the load put on a database node and limits the total amount
of operations that the database can handle in parallel.

A further component of latency is communication between database nodes. This is
speci�c to distributed databases and thus of particular relevance. Since data might
be placed an a remote node, there is a further transmission delay. On top of that the
concensus protocols needed to ensure consistency and fault tolerance require additional
communication for most operations. This can cost several round trip times in addition
to processing delays. CockroachDB, which relies on hybrid timestamps for transac-
tion commit ordering also requires additional time to compensate for synchronisation
imprecision. In the old approach with the federated database backend, the inter-node
communication (which is actually inter-KA communication) is only a single roundrip
and there is an upper boundary. Additionally database nodes sometimes have to trans-
mit batches of data between them to handle failover and rebalancing. This, however,
happens asynchronously in the background and should not a�ect query processing.

Lastly, processing of an operation can be delayed because it has to access a database
record that has already been locked by concurrent operations. This is speci�cally the
case when a locking concurrency control algorithm is used to implement transactions.
It is expected that the total lock waiting time increases with the number and size
of transactions and the overall time a client needs to complete a transaction. This
relationship is not linear since the waiting time feeds again into the time a transaction
is holding other locks. Thus long waiting times have the potential to delay operation.

Overall, the following measurements are needed:

• Latency of every read or write operation, together with information if the opera-
tion was part of a transaction sequence or not and the size of the returned/sub-
mitted VSL node tree.

• Latency of every whole transaction sequence, from the begin to the end of the
commit operation or to the forced end of the transaction, together with informa-
tion on the success and the number of reads and writes within it.

60 Chapter 5. Evaluation

5.2.4 Throughput

The throughput refers to the number of operations that the database handles per time.
The maximum amount of this metric cannot be measured directly, but has to be ob-
served indirectly by executing very high load scenarios and measure how the latency of
operations respond. This maximum throughput is the result of a bottleneck of a system
resource.

5.3 Speci�c data�ow-oriented tests

Considering the whole network that is controlled by the middleware, an important
property is the time that is takes for information to disseminate along the control
chain. So after a sensor emitted a new value, it is the total amount of time that it takes
knowledge aggregation and coordination services to read and process that information
and to update the relevant actuators.

This property is best tested in small test scenarios that model a complete �ow of infor-
mation. The scenarios consist of sets of services of a particular class, which exchange
data through the VSL. In the graphical representation (e.g., Figure 5.2) they are denoted
as a box in the charts. An arch between boxes indicates, that each service of the target
group is connected to each service of the origin and consumes all its data. All services
emit data containing physical timestamps and vector clocks as payload, so that it can
be determined which input is causally related to which output. Coordination between
services is handled by subscriptions, so for example knowledge inference services sub-
scribe to a sensor value and poll it whenever it receives an update noti�cation. Most
scenarios include several instances of a service of a speci�c type. This is to simulate
some amount of concurrency between data access, which can a�ect the performance
especially of transactional access, and also to obtain a better distribution of the data
over database nodes.

Unfortunately the existing implementation of subscriptions and group communication
encountered scalability and concurrency issues in a clustered setup. For that reason, it
was impossible to distribute the participating services on di�erent nodes, so they all had
to be placed on one KA. This is not a big issue for testing the In�nispan and CockroachDB
backends since these use a distributed hashtable to distributed data among their database
nodes and the results concerning database access are just as meaningful. When used
with the original backend with the federated HSQLDB database however, this would
mean that all data is co-located on one node which would produce incomparable results
– which are only meaningful insofar as they represent a baseline for comparison to a non-
distributed setup. Thus only the measurements with the In�nispan and CockroachDB
backends are interpreted here. The test setup for the federated backend, including the

5.3. Speci�c data�ow-oriented tests 61

transaction shim (Algorithm 2, remains fully functional and can be used for future
evaluations.

5.3.1 Aggregation Chain Length

The �rst scenario measures the impact of di�erences in the number of layers of knowl-
edge inference services. It is relatively obvious that a longer chain will lead to a longer
time until an action occurs. To determine how big this e�ect is quantitatively, the
number of theses aggregation chain lengths is a variable parameter of the scenario.

6
Sensors

6
Actuators

2
Coordination

Services

2
Knowledge Inference

Services

2
Knowledge Inference

Services

n layers

Figure 5.2: Topology of the Aggregation Chain Length Scenario. n indicates the num-
ber of aggregation layers (services that consume and process the values of preceding
knowledge inference services or directly form sensors).

The primary expectation of this test is that the aggregation chain increasing in length
a�ects the time it takes for information to travel from sensors to actuators in a more or
less linear manner. This expectation holds true for the In�nispan backend, where it takes
on average 33 ms when no knowledge inference service is involved, up to 160 ms when
10 layers consisting of 2 knowledge inference services are chained. In CockroachDB
this increase also exists with higher delays ranging from 800 ms to 11 s. Also, the
increase seems to be slightly overproportionate to the chain length, and measurements
of the read and write latencies suggest also an increase in both transactional and non-
transactional database operations, which explain this relationship. These e�ects were
not present in the measurements with the In�nispan backend where operation latencies
show no signi�cant increase.

Interestingly, the length of the chain a�ects the latency of transactional operations
in CockrochDB, which is in so far unexpected as knowledge inference services are in
this test non-transactional and access, with the exception of the last one in the chain,
only records that are independent of the transactional coordination services. The likely
explaination of this is that the push-based linking of aggregation steps which consist of
several single knowledge inference nodes increases the frequency of noti�cations and
therefore thriggers the execution of following processing steps more often. The increase
in transaction duration is then explained by the fact that the concurrent execution of
transactions degrades their performance in CockroachDB as also demonstrated by the
Coordination Scale scenario.

The increase in noti�cation output can in fact be observed in this simulation, noticeable
in the count of coordination service transactions which increased from 226 with a chain

62 Chapter 5. Evaluation

Aggregation Chain Length

Ti
me

 in
 m

s

Actuator Action Delay (cockroachdb)

0 1 2 3 4 5 6 7 8 9 10
200

400

1k

2k

4k

10k

20k

40k

(a) CockroachDB

Aggregation Chain Length

Ti
me

 in
 m

s

Actuator Action Delay (infinispan)

0 1 2 3 4 5 6 7 8 9 10
4

10

20

40

100

200

400

1k

(b) In�nispan

Figure 5.3: Time between sensor output and actuator read of a causally related event
dependent on aggregation chain length

length of 0 up to 491 with 10 knowledge inference steps. This is something that should
be kept in mind when chaining services. However, since noti�cations in DS2OS are by
design decoupled from access to the value of the subscribed address, an explosion in
the number of following read accesses can be prevented if the services are implemented
properly and thus do not issue read requests when a request on the same address is still
executing.

5.3.2 Coordination Complexity

In this scenario, the number of knowledge inference services and actuators is variable.
Both classes of services are connected to coordination services which perform transac-
tional reads on knowledge inference services and writes on actuators. The number of
these services and thus the number of reads and writes that the coordination services
perform within one transaction will determine the time that it takes for this transaction
to complete. Since there are two such coordination services, their transactions will
compete with each other and dependent on the concurrency control capabilities of the
underlying database leading to delays.

1
Sensor

m
Actuators

2
Coordination

Services

n
Knowledge Inference

Services

Figure 5.4: Topology of the Coordination Complexity Scenario. n indicates the number
of Knowledge Inference services that form the input and m the number of Actuators
that form the output of the coordination services.

Both In�nispan and CockroachDB are able to handle this task well. With increasing
numbers of operations, the time to complete transactions did not increase overpro-
portionally. A less than asymptotically linear increase cannot be achieved since there
always is network communication between the service and the database between each

5.3. Speci�c data�ow-oriented tests 63

Reads per coordination transaction

Ti
me

 in
 m

s

Coordination Transaction Time

1 2 3 4 5 10 20 50
40

100

200

400

1k

2k

(a) CockroachDB

Reads per coordination transaction

Ti
me

 in
 m

s

Coordination Transaction Time

1 2 3 4 5 10 20 50
2

4

10

20

40

100

200

(b) In�nispan

Writes per coordination transaction

Ti
me

 in
 m

s

Coordination Transaction Time

1 2 3 4 5 10 20 50

100

10k

10

1k

(c) CockroachDB

Writes per coordination transaction

Ti
me

 in
 m

s

Coordination Transaction Time

1 2 3 4 5 10 20 50
4

10

20

40

100

200

400

(d) In�nispan

Figure 5.5: Time for the execution of a coordination transaction dependent on the
containing number of reads (from KI services) and writes (to actuators).

operation. Reads have a lower impact than writes, which is analogue to the latencies of
non-transactional counterparts.

5.3.3 Coordination Scale

The impact of such competition between transactions can further be investigated by
increasing the number of homogeneous coordination services. The expectation is that
services that concurrently access the same data transactionally, produce con�icts, which
leads to transaction aborts and/or longer delays depending on the databases’ transaction
schedulers. This shall be evaluated in this scenario, where the number of coordination
services is the variable.

6
Sensor

3
Actuators

n
Coordination

Services

3
Knowledge Inference

Services

Figure 5.6: Topology of the Coordination Scale Scenario. n indicates the number of
coordination services that concurrently access the same data.

64 Chapter 5. Evaluation

Coordination Scale

Ti
me

 in
 m

s

Coordination Transaction Time (cockroachdb)

1 2 3 4 5
40

100

200

400

1k

2k

(a) CockroachDB

Coordination Scale

Ti
me

 in
 m

s

Coordination Transaction Time (infinispan)

1 2 3 4 5 10 20
2

4

10

20

40

100

200

400

(b) In�nispan

Figure 5.7: Time for the execution of a coordination service transaction in scenarios
varying in the number of coordination services with identical access patterns

Unsurprisingly, this had an in�uence on transaction latency. The CockroachDB backend
could not schedule more this workload for more than 5 parallel transactions and duration
increased to times longer than the test execution (5 minutes).

5.3.4 Sensor Data Size

This scenario should test how the databases cope with varying sizes of data. To do this,
the model incorporates sensors that emit relatively small amounts of data (only the
vector clock) and a second set of sensors with variable payload size. It is expected that
the latency for read and write operations increases with increasing payload size, since
it requires more time to transmit and store the data.

With both backends, there was no signi�cant di�erence, only non-transactional accesses
with the In�nispan backend was slightly faster with lower payload. Overall the results
suggest, that the databases can cope with data size that is in the order of a few hundred
kilobytes and that the delay introduced by it is negligible.

5.3.5 Aggregation Chain Length Heterogeneity

In this scenario chains of knowledge inference services of di�erent length are simulated.
This is to evaluate if di�erent versions of a sensor value are causally related the control
output for the actuators at the end. This can happen when the same data is processed
in two di�erent tasks whose output is merged again afterwards and if one of these
processes is slower than the other, e.g., because it incorporates more steps as in this
scenario.

No such event occurred in tests with either backend with chain lengths up to 20 and
a sensor update frequency of 5 seconds. Despite this, it is still possible that such
event happen, since transactions cannot cover processing steps over multiple services.

5.3. Speci�c data�ow-oriented tests 65

Processing tasks that are vulnerable to inconsistent results have to take own precautions
to prevent this. That can be to add a vector clock in the payload and delay producing an
output when input data from another KI service is causally related to an older version
of a sensor value.

Apart from that, the performance metrics with both the In�nispan and CockroachDB
backends were similar to those of the Aggregation Chain Length scenario, which is
apart from the additional parallel knowledge inference layer identical.

5.3.6 Indirect Control

This scenario investigates the impact of serially linked transactional services, which
is common when control services are used to manage access to devices. This pattern
involves a lot of transactions which access the same data. Thus there is a risk that the
transactions a�ect each other, leading delays or aborts.

This apprehension did not play out with the In�nispan backend. There, the time that
the control services need to execute a transaction remained constant. CockroachDB
however seemed to have problems with this kind of load pattern. As the chain of services
become longer, the transaction throughput drastically decreased and only very few of
them were carried out, while others seemed to experience very long delays, so that only
few sensor data updates actually made it through and lead to an actuator action. From
a chain length of 4, signi�cantly less transactions were carried out within the 5 minutes
of test execution and from 5 layers upwards, the test scenario got completely stuck in
the sense no actuator access was recorded anymore.

A potential problem that was also noticed in the Aggregation Chain Length scenario
is, that push-based chaining of services through subscriptions leads to an exponential
increase of service action. In this scenario this is even more dangerous as transactional
operations are expensive and might congest the scheduler. Services developers must
consider this.

6
Sensors

6
Actuators

2
Coordination

Services2
Knowledge Inference

Services

2
Knowledge Inference

Services

n layers

2
Knowledge Inference

Services

Figure 5.8: Topology of the Aggregation Chain Length Heterogenity Scenario. n indi-
cates the number of aggregation layers (services that consume and process the values
of preceding knowledge inference services or directly form sensors).

66 Chapter 5. Evaluation

5.4 Load tests

Load tests incorporate a mixture of tra�c that is assumed to be representative of a real
scenario. The properties of interest are here how much load the database can handle and
how that throughput a�ects the latency of database access operations. In contrast to the
previously described small test scenarios, using subscriptions for service coordination
has been omitted, since this would put additional load on the network and KA processes
and a�ect the VSL access rate of services and makes it harder to control, while it is not
a feature that accesses the database directly. Instead, services carry out their work at
�xed intervals.

5.4.1 Load generation

When it comes to determine the total amount of load that a smart space would put
on the middleware, there are essentially two factors: First, the amount of hardware,
that is the sensors, actuators and other devices, that directly access data mostly in
a nontransactional fashion. This number grows with building size and over time as
technology progresses and smart devices become more ubiquitous. Here it is foremost
important that the IoT middleware is capable of handling the tra�c present in a smart
space of a certain scale. Second, the amount of intelligence that is implemented to
make the hardware form a smart space. This translates to the amount of coordination
and knowledge inference services, the frequency and the amount of records that they
access. Installing additional coordination services comes at little price for the end-user,
in contrast to installing additional hardware. So it is expected that users will install
more such services until they exceed the technical capabilities of the IoT middleware.
So, apart from basic coordination and monitoring tasks which implement necessary
core functionality, the scale of intelligent services will also be determined by capabilities
that the IoT middleware o�ers. Thus, a high performance of coordination services is
desirable, but it is hardly possible to come up with a speci�c baseline.

The test scenario takes this into account by six parameters:

• Amount of sensors

• Amount of actuators

6
Sensors

6
Actuators

2
Coordination

Services

2
Knowledge Inference

Services

n layers

2
Control Services

2
Control Services

Figure 5.9: Topology of the Indirect Scenario. n indicates the number of layers of control
services that execute a control function transactionally).

5.4. Load tests 67

Control Chain Length

Ti
me

 in
 m

s

Transactions / s

Control Transaction Time & Throughput

0 1 2 3 4 5
80

100

200

400

600

800
1k

2k

0

200

400

600

800

1000

(a) CockroachDB

Control Chain Length

Ti
me

 in
 m

s

Transactions / s

Control Transaction Time & Throughput

0 1 2 3 4 5 6 7 8 9 10
2

4

10

20

40

100

0

3k

6k

9k

12k

15k

(b) In�nispan

Figure 5.10: Time for the execution of a control service transaction and throughput of
transactions.

• Amount of transactional complex devices

• A coordination frequency factor that determines how often coordination and
knowledge inference services poll data from sensors, complex devices and other
services

• A coordination complexity factor that determines how many other nodes coordi-
nation and knowledge inference services poll in each iteration

• A coordination quantitiy factor that determines how many coordination and
knowledge inference services exist in the network

5.4.2 Latency

Overall, the In�nispan backend allowed had the lowest latency for reads. This is likely
due to in-memory storage and replication – since every record is stored on three nodes,
remote access can be avoided in one out of two cases. The federated HSQLDB backend
had the highest write performance. This is very likely the result of the absence of
replication which eliminates any remote access to complete a write operation.

CockroachDB showed signi�cantly higher latency, for both reads and writes, but writes
took especially long. Most likely this is due to the consensus protocol that CockroachDB
uses in order to maintain consistency and the usage of disk-based storage.

There was no considerable di�erence in latency between non-transactional and trans-
actional operations. This is no surprise since also non-transactional operations are
a�ected by concurrency control methods.

Figure 5.11 shows a comparison of the latency in one execution of the test setup with
500 sensors, 100 actuators, 100 devices, 70 coordination services each performing 5.6
operations per transaction on average every 14.2 seconds on average.

68 Chapter 5. Evaluation

The measurements show that scenarios with a high number of physical infrastructure
(5k sensors, 5k actuators, 1k complex devices) congest the CockroachDB and HSQLDB
backends, resulting in very long latency above or close to 1 second, which is which is
prohibitively long for applications that require fast reactions or direct user interaction.

5.4.3 Throughput

For conducting the throughput measurements, a test model consisting of 1000 sensors,
1000 actuators and 1000 coordination service instances was used. Then the frequency
of their VSl access was varied to yield a speci�c load of reads, writes, mixed tra�c and
transactions. In�nispan generally achieved the best results. With the described setup of
6 hosts, it could handle more than 10k actuator reads per second. It had similar write
performance as the federated HSQLDB backend, which is remarkable as In�nispan
replicates data to three di�erent hosts. Also, in processing transactions it outperformed
the other candidates with 900 transactions per second, themselves containing 5 reads
and writes each. There also did not seem to be a notable di�erence in transactional
and non-transactional access to the data in terms of throughput. CockroachDB and
the original database backend performed considerably worse. CockroachDB did only
occasionally complete any transaction successfully (the maximum was 2); HSQLDB with
the concurrency control shim peaked at 23 transactions per second, which is less than
with equivalent non-transactional tra�c. The CockroachDB backend had a low write
throughput of 120 writes per second while write tra�c also reduced read throughput
to about 130.

5.4.4 Fault tolerance

DS2OS is itself not designed to be fault-transparent, since it is not completely location-
transparent. VSL addresses that are located on a failed knowledge agent simply become
unavailable. For more advanced fault tolerance properties, services must also be repli-
cated and made location-transparent which is currently not the case and out of scope
of this work. Thus improvements of fault tolerance are con�ned to the storage layer.
However the new design with a distributed database should be at least as good in terms
of fault-tolerance as the old one. That includes that healthy parts of the network are not
a�ected when some nodes fail and that their data stays accessible. With a distributed
database this is not necessarily the case as the crashed nodes can also contain data
associated to otherwise healthy knowledge agents.

To test failure tolerance, the Aggregation Chain Length scenario was taken. After 90
seconds of test execution, a number of database nodes were shut down.

CockroachDB could tolerate up to 2 node failures without a measurable decline in the
performance metrics.

5.5. Threats to Validity 69

5.5 Threats to Validity

There are some factors that might interfere with the validity and generalisability of
the obtained results. Most importantly, the tests are subject to the design decisions
made when modeling the Virtual State Layer. There is a variety of di�erent options,
as outlined in Chapter 4 and these a�ect the performance. Especially the hierachical
structure of the VSL, allowing operations on entire subtrees, is something that is di�cult
to model in a way so that queries can be performed e�ciently. Some approaches to
accomplish it will have better performance for small subtrees or focused queries, while
others scale better for bigger subtrees. To mitigate this, for both backends a similar
approach was chosen by indexing the subtree column, so that the results are comparable.
The load test model contains a mixture of VSL node trees of various sizes in order to
add some variance in this regard.

Network latency has been modelled statically, but it might vary from depoyment to
deployment. It de�nitely has an e�ect on operation latencies, especially if a lot of
communication is necessary to complete a request. The one millisecond that has been
set as the average transmission delay is a rather pessimistic estimation representative
for one-site deployments.

A property that has not been addressed in the quantitative evaluation is horizontal
scalability, meaning the ability of the database to increase throughput by execution on
a higher number of nodes. That the databases posses this ability is relatively clear, since
both of them avoid the usage of centralised resources and try to spread all data out by
sharding and replication mechanisms. Generally these mechanisms do not scale linearly.
For the Chord algorithm, for example, the number of hops required to reach a certain
node increases logarithmically. The e�ects will, however, only become noticeable when
the cluster size increases signi�cantly, not only by a few more nodes, which was not
achieveable with the available hardware. However, the setup is su�ciently big enough
to test whether the databases are able to execute e�ciently in distributed settings in
principle. Since that is the case, there is a high probability that as they work well on
six nodes, they will also do so on 50 nodes, which could be considered a rather large
deployment already.

As pointed out before, the databases have a number of important di�erences, notably
execution environment, data model, consistency guarantees, and storage location. This
makes it di�cult to attribute the measured di�erences in the performance metrics to any
of these di�erences. The choice of two such very di�erent products is in so far justi�ed
as both chosen databases are each representatives for a class of available software
for which similar products can be found, employing similar approaches and o�ering
comparable features.

70 Chapter 5. Evaluation

To overcome variance in measurements, all tests have been carried out long enough
to obtain a large sample of several hundred measurements for the speci�c scenarios
and several thousand for the load tests. The average and median measured values
were relatively stable. The 99th percentile was naturally subject to higher levels of
variance but should still be a good estimate of the maximum expected delay in a speci�c
con�guration.

5.6 Conclusion

Overall, In�nispan had signi�cantly better performance than CockroachDB. There are
several likely reasons for this. Most notably, In�nispan o�ers lower consistency guar-
antees than CockroachDB does. The latter uses a consensus protocol to ensure single
value consistency, which requires multiple roundtrips between a majority of replicas
for any write access. In In�nispan, in contrast, there is one leader that coordinates the
writes, so only one node which has the replicas must be contacted to obtain the data.
In addition to that, since the number of replicas versus the number of nodes in total
is high in the test setup, the probability that the requested data is locally available is
relatively high, and contacting a remote node can be avoided. This approach becomes
problematic when a leader is slow and is suspected failed by a subset of the other nodes
or if there is a network partition. In these cases inconsistency might occur. Cock-
roachDB’s longer response time can be seen as the price for this guarantee. Additionally
CockroachDB guarantees sequential transaction isolation and high availability of the
transaction manager.

Another reason is that CockroachDB always stores data on disk. This applies to trans-
action management data as well. And, since every operation can possibly interfere with
a concurrently running transaction, locks have to be read or written as well. Cock-
roachDB’s durability guarantees also require that a log of all operations is persisted,
so that every operation can include several accesses of the �lesystem. In�nispan in
contrast stores all its data in main memory which is considerably faster.

Finally, In�nispan is a key-value store which allows the programmer to optimise the
structure and indexes for the expected access patterns. This was done in the connector
implementation. So, since the consistency of structural information of the VSL is not
so critical1, it is marked as asynchronously replicated. Subsequences of VSL addresses
are marked to be indexed, which speeds up querying for subtrees. These are two things
that are not possible in the relational interface provided by CockroachDB. Its strong
consistency guarantees apply to all its data and there is no option to exclude some parts
and it is not possible to use set types and use indexes on these. On top of that, the

1What could happen is that the type search returns a service that no longer exists or that structural
information (e.g., access permission) are old. These are relatively static because given by the context model,
which are cached anyway.

5.6. Conclusion 71

SQL interface comes with some overhead too, requiring parsing of the SQL statement,
serialisation of the transmitted data to a binary format, and generation of a query plan,
even for very simple operations.

72 Chapter 5. Evaluation

Operation Type

Ti
me

 in
 m

s

Operation Latency

CockroachDB Federated HSQLDB Infinispan

Trans. Read Non-trans. Read Trans. Write Non-trans. Write
0.1

1

10

100

1k

Figure 5.11: Comparison of latencies in a test setup (sensors=500, actuators=100, complex
devices=100 complexity factor=0.04, frequency factor=0.7, quantity factor=0.1)

Operation load per second

Re
ad

s p
er

 se
co

nd

Non-transactional Read Throughput

CockroachDB Federated HSQLDB Infinispan

100 500 1000 5000 10000 50000
10

100

1k

10k

100k

(a) Read Throughput

Operation load per second

Wr
ite

s p
er

 se
co

nd

Non-transactional Write Throughput

CockroachDB Federated HSQLDB Infinispan

100 500 1000 5000 10000 50000

100

10k

10

1k

(b) Write Throughput

Figure 5.12: Plots of simulated load against successfully executed operations, the amount
that a backend can handle �attens at some point, determining its maximum throughput

73

Chapter 6

Conclusion

In this work, we evaluated how distributed databases can be used to store operational IoT
data e�ciently and how to use them to address concurrency issues through a transaction
abstraction.

To accomplish this, the key requirements on a database are scalability which is obtained
by automatic partitioning, availability which can be achieved through replication, query-
ing options for hierarchical structures or for pre�xes of strings, and security features.
Of lesser important are the employed data model and querying and indexing support
beyond the capabilities mentioned.

Those requirements are satis�ed by a number of available products, although the in-
tegration of these can look very di�erent, as demonstrated with CockroachDB and
In�nispan connector implementations.

6.1 Di�erences & Trade-o�s

The In�nspan backend had a low latency and high throughput. CockroachDB fared an
order of magnitude worse in both. This can be explained in the richer set of features,
that CockroachDB o�ers, in particular modelling, indexing, and query features, the
persistence on disk, the strong semantics, and an excellent capability to deal with
node churn. A major advantage is also that it can be used like any other SQL database.
In�nispan does not o�er such comfort. Indexes must explicitly de�ned, advanced queries
are impossible, and the consistency guarantees are lower. In return the developer gets the
chance to apply own optimisation, which has been done, for instance, by replicating VSL
structure data. The result is a much lower latency and higher throughput. Unfortunately
it also comes at the price of fault-tolerance: Under churn, some VSL data was not
accessible anymore.

74 Chapter 6. Conclusion

The benchmark results highlight a trade-o� between performance, consistency and
fault-tolerance, which was expected. Record consistency requires coordination of reads
and writes, while fault-tolerance requires that the protocol must not block when a
node fails and that failures are detected reliably. Only sophisticated algorithms like
Raft of Paxos are able to guarantee that. The same applies to concurrency control
methods, where transaction records and recovery data must be stored consistently and
the peers must agree on the status of locks and order of operations. In�nispan provides
an approximation of this, although it is not perfect. But obviously, the performance
bene�ts are signi�cant. This makes choosing between one and the other di�cult: The
need for transactional safety does de�nitely exist, as pointed out earlier, on the other
hand real-time performance is also a desirable property.

There is a further trade-o� between failure tolerance and measured latency. As observed
with the CockroachDB backend, the latency of operations can get so high, that it
becomes a problem for availability. In a realtime system, long response times are not
any more tolerable than actual failure to serve a request, as it was observed with the
In�nispan backend under churn.

6.2 Recommendations for Implementation

The generic design of the DS2OS interface also leaves many decisions concerning service
coordination and data access up to the service developers. It is up to them whether to
use pull-based communication with get operations or push-based communication with
noti�cations, coordination by persistent state or remote method invocation through
Virtual Nodes, whether to use transactional access or not, where to locate a service
and which execution model to use. These decisions have signi�cant performance im-
plications as shown in the benchmarking and a�ect the execution of other services as
well (e.g., through locks). The basis for such a task has already been laid in the original
publication and in this thesis, out of the necessity to express meaningful patterns of
service interaction for a realistic test setup:

• Classi�cation into data-generating sensor services, aggregating, knowledge infer-
ence services, decision-making coordination and management services, executing
actuator services, and complex devices.

• Clocks attached to sensor data and inferred information to obtain time-consistent
knowledge.

• Allowing knowledge inference services to keep private state that results from a
series of input data and is thus recomputable.

• Keeping coordination and management services stateless and wrapping their
decision-making process into a transaction in order to obtain �exible re-scheduling.

6.2. Recommendations for Implementation 75

• Noti�cation-driven processing of data to obtain a push-based �ow of information.
Services that access the same data repeatedly should cache it and only read it
again after a new noti�cation has been received.

The overall topology should have the shape of a two-sided funnel: On both sides, high
number of information sources and actuators as sinks, a smaller number of inference
services that process the raw data and infer knowledge, and a smaller number of decision-
making services and coordination tasks in between. This way, it is also ensured that the
services can execute e�ciently. These building blocks are su�cient to build acyclic real-
time building control. Templates or libraries can be provided to reduce the workload
of implementing these interaction patterns. In the ideal case, the user speci�es the
input sources and output and provides a function that maps one to the other while the
template code handles transactions, subscriptions and other details of interaction.

77

Chapter 7

Future work

Given the results, the choice is currently between using a fast database backend that
has availability and consistency shortcomings in edge cases or a perfectly consistent
and available but slow one. The ultimate answer might be to drop the idea of a homoge-
neous interface that treats all data equally and and instead enable costlier features and
properties only where they are really needed. This is possible because services have
very di�erent needs in regard to data storage and suggests a hybrid approach, where a
consistent and available database is used for the parts that require it, and a faster one
for the rest.

For sensor readings, the order of values and their age counts, requirements that are
already met with eventual consistency guarantees. Historical data is even easier to
manage from a consistency viewpoint, as it never changes. Instead, it requires sophis-
ticated indexing and access methods to query for aggregate information and to make
use of it, which is something that is not addressed in the current design of DS2OS at all.
For inferred knowledge, causality is an important aspect, but atomicity is not, so using
transactions might simply be an overkill. They only become important when it comes to
implementing decision rules in order to avoid con�icts and to ensure consistent atomic
access to multiple output devices. Also, for data that stems from services which mainly
produce data, such as sensors and knowedge aggregators, there is typically only this one
writer. For these kinds of data, alternatives exist: Event brokering systems like Kafka
can preserve causality order and met realtime requirements and might be suitable for
sensor-processing of information. Scalable, non-transactional storages with indexing ca-
pabilities and a selection of adapters for analytical software, like for instance Cassandra
or Riak, are better suited to historical data. For complex devices that encapsulate their
own logic, exclusive access on its own data combined with message-based interaction
patterns for all external access might be the more suitable choice, which is something
that DS2OS already provides. Transactional capabilities are needed for data that ful�ls
a coordinating function, rather than represent a measured or inferred fact. This is the

78 Chapter 7. Future work

case for actuators, coordination, and control services, which write data in order to cause
some change and are therefore subject to con�icts.

A middleware product that separates these kinds of data must be aware of the nature
of services and their access behaviour on data. This means the uniform interface that
treats every service alike and provides the same access methods to them is not possible.
Instead there have to be separate interfaces for each service class or the nature of data is
described in the associated context model, so that the middleware can make the decision
where to place it. The advantage of such a hybrid architecture is that it is faster and at
the same time safe for parts where transactional state changes are needed.

Another improvement that comes up is decouple the services from the knowledge agents.
So far, services are not location-transparent – every service’s VSL address contains the
identi�er of the knowledge agents where it is registered. With the federated database,
this is necessary for routing access requests to the right location. With a distributed
database the requests can be served by any knowledge agent, making it unnecessary.
The adaptation requires some changes to the DS2OS codebase, since some parts rely
on extracting the agent identi�ers from VSL addresses. The bene�t is full location
transparency. This enables load-balancing and automatic fail-over for knowledge agent
failures for services and improves availability. For transactional and stateless services,
another possibility is also to decouple them from their execution environment. Since
they can be stopped and restarted at any point, they can be replicated and migrated
between physical nodes and their lifecycle can be managed automatically, providing
higher availability and tolerance to failures.

79

Bibliography

[1] S. Wang, Intelligent buildings and building automation. Routledge, 2009.

[2] S. Helal, W. Mann, H. El-Zabadani, J. King, Y. Kaddoura, and E. Jansen, “The gator
tech smart house: A programmable pervasive space,” Computer, vol. 38, no. 3, pp.
50–60, 2005.

[3] Y. Shi, W. Xie, G. Xu, R. Shi, E. Chen, Y. Mao, and F. Liu, “The smart classroom: merg-
ing technologies for seamless tele-education,” IEEE Pervasive Computing, vol. 2,
no. 2, pp. 47–55, 2003.

[4] A. H. Ngu, M. Gutierrez, V. Metsis, S. Nepal, and Q. Z. Sheng, “Iot middleware: A
survey on issues and enabling technologies,” IEEE Internet of Things Journal, vol. 4,
no. 1, pp. 1–20, 2017.

[5] M. A. Razzaque, M. Milojevic-Jevric, A. Palade, and S. Clarke, “Middleware for
internet of things: a survey,” IEEE Internet of Things Journal, vol. 3, no. 1, pp. 70–95,
2016.

[6] O. Vermesan, P. Friess, P. Guillemin, S. Gusmeroli, H. Sundmaeker, A. Bassi, I. S.
Jubert, M. Mazura, M. Harrison, M. Eisenhauer et al., “Internet of things strategic
research roadmap,” Internet of Things-Global Technological and Societal Trends,
vol. 1, pp. 9–52, 2011.

[7] C. Joshua and J. Anne, “Challenges for database management in the internet of
things [j],” IETE Technical Review (Institution of Electronics and Telecommunication
Engineers, India), vol. 26, no. 5, pp. 320–324, 2009.

[8] T. Li, Y. Liu, Y. Tian, S. Shen, and W. Mao, “A storage solution for massive iot data
based on nosql,” in Green Computing and Communications (GreenCom), 2012 IEEE
International Conference on. IEEE, 2012, pp. 50–57.

[9] M. Ma, P. Wang, and C.-H. Chu, “Data management for internet of things: chal-
lenges, approaches and opportunities,” in Green Computing and Communications
(GreenCom), 2013 IEEE and Internet of Things (iThings/CPSCom), IEEE International
Conference on and IEEE Cyber, Physical and Social Computing. IEEE, 2013, pp.
1144–1151.

80 Bibliography

[10] L. Jiang, L. Da Xu, H. Cai, Z. Jiang, F. Bu, and B. Xu, “An iot-oriented data storage
framework in cloud computing platform,” IEEE Transactions on Industrial Informat-
ics, vol. 10, no. 2, pp. 1443–1451, 2014.

[11] A. Copie, T.-F. Fortis, and V. I. Munteanu, “Benchmarking cloud databases for the
requirements of the internet of things,” in Information Technology Interfaces (ITI),
Proceedings of the ITI 2013 35th International Conference on. IEEE, 2013, pp. 77–82.

[12] T. A. M. Phan, J. K. Nurminen, and M. Di Francesco, “Cloud databases for internet-
of-things data,” in Internet of Things (iThings), 2014 IEEE International Conference on,
and Green Computing and Communications (GreenCom), IEEE and Cyber, Physical
and Social Computing (CPSCom), IEEE. IEEE, 2014, pp. 117–124.

[13] P. Paethong, M. Sato, and M. Namiki, “Low-power distributed nosql database for iot
middleware,” in Student Project Conference (ICT-ISPC), 2016 Fifth ICT International.
IEEE, 2016, pp. 158–161.

[14] H. Fatima and K. Wasnik, “Comparison of sql, nosql and newsql databases for
internet of things,” in Bombay Section Symposium (IBSS), 2016 IEEE. IEEE, 2016,
pp. 1–6.

[15] M.-O. Pahl, “Distributed smart space orchestration,” Dissertation, Technische Uni-
versität München, München, 2014.

[16] M. P. Herlihy and J. M. Wing, “Linearizability: A correctness condition for concur-
rent objects,” ACM Transactions on Programming Languages and Systems (TOPLAS),
vol. 12, no. 3, pp. 463–492, 1990.

[17] J. Gray and A. Reuter, Transaction processing: concepts and techniques. Elsevier,
1992.

[18] M. Abu-Elkheir, M. Hayajneh, and N. A. Ali, “Data management for the internet of
things: Design primitives and solution,” Sensors, vol. 13, no. 11, pp. 15 582–15 612,
2013.

[19] R. Cattell, “Scalable sql and nosql data stores,” Acm Sigmod Record, vol. 39, no. 4,
pp. 12–27, 2011.

[20] M. Stonebraker, “Newsql: An alternative to nosql and old sql for new oltp apps,”
Communications of the ACM. Retrieved, pp. 07–06, 2012.

[21] F. Raja, M. Rahgozar, N. Razavi, and M. Siadaty, “A comparative study of main mem-
ory databases and disk-resident databases,” in TRANSACTIONS ON ENGINEERING,
COMPUTING AND TECHNOLOGY. Citeseer, 2006.

[22] E. K. Lua, J. Crowcroft, M. Pias, R. Sharma, and S. Lim, “A survey and comparison of
peer-to-peer overlay network schemes,” IEEE Communications Surveys & Tutorials,
vol. 7, no. 2, pp. 72–93, 2005.

Bibliography 81

[23] I. Stoica, R. Morris, D. Liben-Nowell, D. R. Karger, M. F. Kaashoek, F. Dabek,
and H. Balakrishnan, “Chord: a scalable peer-to-peer lookup protocol for internet
applications,” IEEE/ACM Transactions on Networking (TON), vol. 11, no. 1, pp. 17–32,
2003.

[24] K. Shvachko, H. Kuang, S. Radia, and R. Chansler, “The hadoop distributed �le
system,” in Mass storage systems and technologies (MSST), 2010 IEEE 26th symposium
on. Ieee, 2010, pp. 1–10.

[25] C. Cachin, R. Guerraoui, and L. Rodrigues, Introduction to reliable and secure dis-
tributed programming. Springer Science & Business Media, 2011.

[26] W. Kim, B.-J. Choi, E.-K. Hong, S.-K. Kim, and D. Lee, “A taxonomy of dirty data,”
Data mining and knowledge discovery, vol. 7, no. 1, pp. 81–99, 2003.

[27] G. Weikum and G. Vossen, Transactional information systems: theory, algorithms,
and the practice of concurrency control and recovery. Elsevier, 2001.

[28] J. Gray and L. Lamport, “Consensus on transaction commit,” ACM Transactions on
Database Systems (TODS), vol. 31, no. 1, pp. 133–160, 2006.

[29] C. J. Fidge, “Timestamps in message-passing systems that preserve the partial
ordering,” 1987.

[30] F. Mattern et al., “Virtual time and global states of distributed systems,” Parallel
and Distributed Algorithms, vol. 1, no. 23, pp. 215–226, 1989.

[31] E. A. Brewer, “Towards robust distributed systems,” in PODC, vol. 7, 2000.

[32] S. Gilbert and N. Lynch, “Brewer’s conjecture and the feasibility of consistent,
available, partition-tolerant web services,” Acm Sigact News, vol. 33, no. 2, pp.
51–59, 2002.

[33] D. Abadi, “Consistency tradeo�s in modern distributed database system design:
Cap is only part of the story,” Computer, vol. 45, no. 2, pp. 37–42, 2012.

[34] A. Corbellini, C. Mateos, A. Zunino, D. Godoy, and S. Schia�no, “Persisting big-
data: The nosql landscape,” Information Systems, vol. 63, pp. 1–23, 2017.

[35] M. Stonebraker and R. Cattell, “10 rules for scalable performance in’simple opera-
tion’datastores,” Communications of the ACM, vol. 54, no. 6, pp. 72–80, 2011.

[36] P. Hunt, M. Konar, F. P. Junqueira, and B. Reed, “Zookeeper: Wait-free coordination
for internet-scale systems.” in USENIX annual technical conference, vol. 8. Boston,
MA, USA, 2010, p. 9.

[37] A. S. Foundation. (2017) Apache couchdb 2.1 documentation. [Online]. Available:
http://docs.couchdb.org/en/2.1.0/index.html

http://docs.couchdb.org/en/2.1.0/index.html

82 Bibliography

[38] B. Holt, Scaling CouchDB : replication, clustering, and administration, 1st ed.
Sebastopol, Calif.: O’Reilly Media, c2011, elektronische Ressource. [Online].
Available: http://proquest.safaribooksonline.com/9781449304942

[39] A. Lakshman and P. Malik, “Cassandra: a decentralized structured storage system,”
ACM SIGOPS Operating Systems Review, vol. 44, no. 2, pp. 35–40, 2010.

[40] B. G. Tudorica and C. Bucur, “A comparison between several nosql databases with
comments and notes,” in Roedunet International Conference (RoEduNet), 2011 10th.
IEEE, 2011, pp. 1–5.

[41] M. N. Vora, “Hadoop-hbase for large-scale data,” in Proceedings of 2011 International
Conference on Computer Science and Network Technology, vol. 1, Dec 2011, pp. 601–
605.

[42] M. Stonebraker and A. Weisberg, “The voltdb main memory dbms.” IEEE Data Eng.
Bull., vol. 36, no. 2, pp. 21–27, 2013.

[43] C. Labs. (2017) Cockroachdb docs – architecture. [Online]. Available: https:
//www.cockroachlabs.com/docs/stable/architecture/overview.html

[44] J. C. Corbett, J. Dean, M. Epstein, A. Fikes, C. Frost, J. J. Furman, S. Ghemawat,
A. Gubarev, C. Heiser, P. Hochschild et al., “Spanner: Google’s globally distributed
database,” ACM Transactions on Computer Systems (TOCS), vol. 31, no. 3, p. 8, 2013.

[45] M. Demirbas, M. Leone, B. Avva, D. Madeppa, and S. Kulkarni, “Logical physical
clocks and consistent snapshots in globally distributed databases,” 2014.

[46] B. Technologies. (2017) Riak kv docs – concepts. [Online]. Available: http:
//docs.basho.com/riak/kv/2.2.3/learn/concepts/

[47] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Lakshman, A. Pilchin,
S. Sivasubramanian, P. Vosshall, and W. Vogels, “Dynamo: amazon’s highly avail-
able key-value store,” inACM SIGOPS operating systems review, vol. 41, no. 6. ACM,
2007, pp. 205–220.

[48] M. Shapiro, N. Preguiça, C. Baquero, and M. Zawirski, “Con�ict-free replicated
data types,” in Symposium on Self-Stabilizing Systems. Springer, 2011, pp. 386–400.

[49] T. Schütt, F. Schintke, and A. Reinefeld, “Scalaris: reliable transactional p2p key/-
value store,” in Proceedings of the 7th ACM SIGPLAN workshop on ERLANG. ACM,
2008, pp. 41–48.

[50] M. Jelasity, A. Montresor, and O. Babaoglu, “T-man: Gossip-based fast overlay
topology construction,” Computer networks, vol. 53, no. 13, pp. 2321–2339, 2009.

[51] T. Schütt, F. Schintke, and A. Reinefeld, “Chord#: Structured overlay network for
non-uniform load-distribution,” 2005.

http://proquest.safaribooksonline.com/9781449304942
https://www.cockroachlabs.com/docs/stable/architecture/overview.html
https://www.cockroachlabs.com/docs/stable/architecture/overview.html
http://docs.basho.com/riak/kv/2.2.3/learn/concepts/
http://docs.basho.com/riak/kv/2.2.3/learn/concepts/

Bibliography 83

[52] F. Schintke, A. Reinefeld, S. Haridi, and T. Schütt, “Enhanced paxos commit for
transactions on dhts,” in Cluster, Cloud and Grid Computing (CCGrid), 2010 10th
IEEE/ACM International Conference on. IEEE, 2010, pp. 448–454.

[53] T. I. community. (2018) In�nispan 9.1 user guide. [Online]. Available: https:
//docs.jboss.org/in�nispan/9.1/pdf/user_guide.pdf

[54] A. Chervenak, I. Foster, C. Kesselman, C. Salisbury, and S. Tuecke, “The data grid:
Towards an architecture for the distributed management and analysis of large
scienti�c datasets,” Journal of network and computer applications, vol. 23, no. 3, pp.
187–200, 2000.

[55] W. R. d. Santos, In�nispan data grid platform de�nitive guide. Packt Publ., 2015.

[56] H. Salhi, F. Odeh, R. Nasser, and A. Taweel, “Open source in-memory data grid sys-
tems: Benchmarking hazelcast and in�nispan,” in Proceedings of the 8th ACM/SPEC
on International Conference on Performance Engineering. ACM, 2017, pp. 163–164.

[57] D. Setrakyan. (2014) Two-phase-commit for distributed in-
memory caches. [Online]. Available: http://gridgain.blogspot.de/2014/09/
two-phase-commit-for-distributed-in.html

[58] P. Inc. (2018) Tidb documentation. [Online]. Available: http://download.pingcap.
org/tidb-manual-en.pdf?v=1526301490

https://docs.jboss.org/infinispan/9.1/pdf/user_guide.pdf
https://docs.jboss.org/infinispan/9.1/pdf/user_guide.pdf
http://gridgain.blogspot.de/2014/09/two-phase-commit-for-distributed-in.html
http://gridgain.blogspot.de/2014/09/two-phase-commit-for-distributed-in.html
http://download.pingcap.org/tidb-manual-en.pdf?v=1526301490
http://download.pingcap.org/tidb-manual-en.pdf?v=1526301490

	Introduction
	Motivation
	State of the Art
	Goal
	Outline

	Analysis
	Intelligent Buildings and Smart Spaces
	Conventional Building Automation
	The Vision
	Related work

	DS2OS
	Design and Objectives
	Developer-centred view of DS2OS

	Databases for Smart Spaces
	Requirements
	Data meta-model and structure
	Interface
	Storage Location
	Partitioning (Sharding)
	Replication
	Concurrency control
	CAP Trade-Off
	Resource Consumption
	Triggers & Stored Procedures
	Related work

	Available distributed datastores
	Zookeeper
	CouchDB
	Cassandra
	HBase
	VoltDB
	CockroachDB
	Riak
	Scalaris
	Voldemort
	Infinispan
	Hazelcast
	Ignite
	Geode
	Conclusion

	Implementation
	Architectural Integration
	Transaction Interface
	Version History
	Subscription and Notifications

	Back-end Implementation
	CockroachDB
	Infinispan

	Summary

	Evaluation
	Test Model
	Measurable properties
	Information dissemination latency
	Transaction success rate
	Service-level latency
	Throughput

	Specific dataflow-oriented tests
	Aggregation Chain Length
	Coordination Complexity
	Coordination Scale
	Sensor Data Size
	Aggregation Chain Length Heterogeneity
	Indirect Control

	Load tests
	Load generation
	Latency
	Throughput
	Fault tolerance

	Threats to Validity
	Conclusion

	Conclusion
	Differences & Trade-offs
	Recommendations for Implementation

	Future work
	Bibliography

