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ABSTRACT

Nowadays IT trends like the Internet of Things and Big Data induce a couple of consequences for
related computing networks. Those include the steady growth of the networks in their number
of components, the resulting and increasing dependencies between those components as well as
more traffic in general and interfaces to the outside. Summarizing, this leads to more complex
networks and thereby accompanying side-effects such as increased attacks and intrusions. Their
advance makes it hard to detect, analyze and ward them off in time with traditional counter-
measures. Conventional firewalls for instance are not able to inspect malicious network traffic
in depth. However, as due to the aforementioned evolutions especially the security, safety and
functional integrity of those networks within critical infrastructure are crucial, a modern net-
work intrusion detection system is required, in order to early and reliably identify deviations
from usual behavior and traffic.

The application of such a system in particular needs a mechanism for extraction and analysis
of network communication characteristics (called features), which often proves to be difficult
in safety- and security-critical networks though. This primarily is due to the characteristics
of those networks as they appear in e.g. cars and aircraft. Of particular importance is both
the high distribution of the strictly hierarchical structured network components as well as their
compartmentalization into single disjunct domains (e.g. control sub-systems of an aircraft).
Therefore, a central point for extraction and analysis, which not coercively scans all but only
relevant portions of network traffic and communication behavior, is not given. In order to not
have to integrate additional components into concerned networks due to that reason and there-
fore further advance the evolutions described above, the innovative approach of a decentralized
feature handling process on unused resources of the already available network components is
pursued.

Thus, in this master thesis we develop FHS-DNA, a Feature Handling System on Decentralized
Network Agents. So, the main functionality consists of the decentralized extraction of network
communication features by utilizing unused resources of available network components, further
processing them afterwards and finally store them appropriately, so that various models have
the option of subsequent use for anomaly detection. Special characteristics and therefore focus
of FHS-DNA are besides the option for general connection to various such detection models
also a broad, inclusively offered variety of advanced analysis options of extracted features, an
easy extensibility concerning processed features of multiple levels of abstraction as well as high
configurability with respect to involved network components, their interfaces and extracted
features. Hence, the developed solution is based on an in-depth analysis of these requirements,
already existing, similar (partial) approaches, concepts and technologies and finally combines
The Bro Network Security Monitor, the Bro Analysis Tools as well as the Parquet file format
to a fine-tuned synthesis.






ZUSAMMENFASSUNG

Heutige IT-Trends wie das Internet der Dinge und Big Data induzieren eine Reihe von Auswir-
kungen auf beteiligte Computernetzwerke. Diese beinhalten das stetige Wachstum der Netze in
der Anzahl ihrer Komponenten, die daraus resultierenden steigenden Abhéngigkeiten zwischen
den Netzwerkkomponenten untereinander als auch generell mehr Verkehr und Schnittstellen
nach auflen. Zusammenfassend fithrt dies zu komplexeren Netzwerken und damit einhergehen-
den Nebeneffekte wie vermehrten Angriffen und Eindringen. Die Ausgereiftheit dieser macht
es schwierig, sie rechtzeitig mit herkdmmlichen Gegenmafinahmen zu erkennen, zu untersuchen
und abzuwehren. Klassische Firewalls sind z.B. nicht in der Lage, schadlichen Netzwerkverkehr
tiefgriindig zu inspizieren. Da aufgrund der zuvor beschriebenen Entwicklungen aber besonders
die Sicherheit und funktionale Integritit dieser Netze in kritischer Infrastruktur von Bedeutung
sind, beno6tigt man ein modernes Network Intrusion Detection System, um Abweichungen vom
gewohnten Verhalten und Verkehr sowohl friithzeitig als auch verldsslich zu identifizieren.

Die Anwendung eines solchen Systems bendtigt insbesondere einen Mechanismus zur Extraktion
und Auswertung von Netzwerkkommunikationseigenschaften (sog. Features), was sich in sicher-
heitskritischen Netzen jedoch oftmals duflerst schwierig gestaltet. Dies liegt vor allem an den
charakteristischen Figenschaften dieser Netzwerke, wie sie beispielsweise in Autos und Flugzeu-
gen vorkommen. Von besonderer Bedeutung sind dabei sowohl die grole Dispersion der streng
hierarchisch strukturierten Netzwerkkomponenten als auch deren Kompartimentierung in einzel-
ne disjunkte Bereiche (z.B. Steuerungssubsysteme eines Flugzeugs). Ein zentraler Extraktions-
und Analyseknoten, der nicht zwingend den gesamten, sondern lediglich relevante Teilberei-
che des Netzwerkverkehrs und Kommunikationsverhaltens untersucht, ist somit nicht gegeben.
Um aus diesem Grund nicht noch weitere Komponenten in betroffene Netzwerke integrieren zu
miissen und damit die oben beschriebenen Entwicklungen weiter voran zu treiben, wird der inno-
vative Ansatz eines dezentralen Featureverarbeitungsprozesses auf den ungenutzten Ressourcen
der bereits vorhandenen Netzwerkkomponenten verfolgt.

In dieser Masterarbeit entwickeln wir daher FHS-DNA, ein Feature Handling System on Decen-
tralized Network Agents. Die Hauptfunktionalitdt besteht also daraus, Netzwerkkommunikati-
onsfeatures dezentral und mit Hilfe ungenutzter Ressourcen der vorhandenen Netzkomponenten
zu extrahieren, anschlieflend entsprechend weiter zu verarbeiten und schlieflich in geeigneter
Form abzuspeichern, sodass verschiedene Modelle die Moglichkeit der Weiterverwendung zur
Anomaliedetektion haben. Besondere Eigenschaften und somit Fokus von FHS-DNA sind ne-
ben der Moglichkeit der generischen Anbindung solcher verschiedener Detektionsmodelle auch
eine grofle, integrativ angebotene Vielfalt an weiterfilhrenden Analysemoglichkeiten der extra-
hierten Features, eine einfache Erweiterbarkeit beziiglich verarbeiteter Features iiber mehrere
Abstraktionsebenen, sowie hohe Konfigurierbarkeit im Hinblick auf beteiligte Netzwerkkompo-
nenten, deren Schnittstellen und erhobene Features. Die entwickelte Losung basiert daher auf
einer grindlichen Vorabanalyse dieser Anforderungen, bereits existierender dhnlicher (Teil-)An-
sitze, Konzepte und Technologien und kombiniert letztlich The Bro Network Security Monitor,
die Bro Analysis Tools sowie das Parquet Dateiformat zu einer wohl abgestimmten Synthese.
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CHAPTER 1

INTRODUCTION

Our work discusses the need and aspects of proper feature handling in the allover context
of a forensic center for anomaly detection in networks.

Context of this work is the joint research project DecADe (for Decentralized Anomaly
Detection) of Technische Universitdt Miinchen and various of its partners like Airbus
Group Innovations and Audi Electronics Venture GmbH [1]. The project puts special

focus on on-board networks of cars and aircraft.

In the following, we give a short motivation for our work, state the research questions
as well as related goals and conclude with an outline explaining the structure for the

rest of this thesis.

1.1 MOTIVATION

Nowadays computing trends like Internet of Things, big data and ubiquitous computing
both foster and gain on an increasing amount of networking devices. That causes
growing connectivity, more network traffic [2] [3] [4], more complexity and therefore
more dependencies [1] between those devices. Hence, these aspects affect both safety
and security of those networks, as common side-effects of those developments are an
increasing amount of intrusions and sophisticated attacks. However, those advanced
persistent threats often stay undetected by common security infrastructure like firewalls,
as they do not inspect network traffic in depth [3]. Thus, actual circumstances call for

modern network intrusion detection systems.

However, on the one hand, networks of most critical infrastructure such as cars and

aircraft are strictly hierarchical and therefore consist of different clusters of decentral-
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ized [5] and compartmentalized devices [6]. That makes it very hard to monitor these
networks and their communication traffic for intrusions or attacks, as there is not a
central point to capture traffic from.

Though, on the other hand, those networks are also characterized by well- and prede-
fined communication patterns, as they are static and closed. Hence, those patterns in
principle perfectly support the detection of anomalies, as every deviation of the prede-

fined model may be considered as an anomaly.

This is, where our work comes into play. We pursue an innovative approach suggested
by the DecADe project [1], which manages decentralized feature handling directly on
networking devices under surveillance. Hence, we aim to develop the groundwork for
later anomaly detection and incidence response, by properly extracting, processing and

storing features from network communication traffic.

1.2 RESEARCH QUESTIONS AND (GOALS

The research questions of this thesis are:
1. Which network communication features can be useful for anomaly detection?

2. How can these features be extracted and collected from decentralized and distrib-

uted networks?

3. How can this feature extraction and collection mechanism be extended and con-
figured?

4. How can distributively collected features be further processed and stored for sub-

sequent anomaly detection purposes?

By elaborating these research questions, we aim to develop a Feature Handling System

on Decentralized Network Agents, named FHS-DNA. The system’s goals are:

1. Directly extract and collect network communication features on decentralized net-

working devices under surveillance.

2. Allow reconfiguration and extensibility for the feature extraction and collection

process.

3. Process and store those features for subsequent anomaly detection purposes.



1.3 OUTLINE

1.3 OUTLINE

The rest of this thesis is structured as follows:

Chapter 2 introduces a general anomaly management process, characteristics of on-
board networks and various aspects of network communication features. Furthermore,
different options for network traffic monitoring and feature extraction are explored, as

well as several technologies for further feature processing and storage are explained.

Chapter 3 analyses the underlying problematic of our work in-depth before deducing
most important functional and non-functional requirements of FHS-DNA. Moreover, it
explores different design choices for feature extraction, processing and storage and a

cohesive concept resulting from those high-level requirements.
Chapter 4 describes diversified related work to various facets of our target system.

Chapter 5 picks up design choices from Chapter 3 and argues our design decisions
resulting in the allover system’s architecture. As this architecture is separated into
internal (i.e. within the (sub-)network(s) under surveillance) and external components,
also important interfaces of this architecture are explained. Furthermore, different types

of intermediate log files are explored.

Chapter 6 explicates a proof of concept implementation for several selected aspects
of FHS-DNA, such as feature extraction, processing and storage as well as interface
interactions (e.g. dynamic reconfiguration of our system), before giving a summarizing

overview of its allover workflow.

Chapter 7 is categorized into a section describing our system’s test setup deployment
and a second one for its evaluation. The former one explores various aspects concerning
virtualization, prerequisites, installations and configurations before summarizing with
an overview of the test setup. The latter one presents the methodology, results and

implications for the evaluation of most important aspects of FHS-DNA.
Chapter 8 assesses the high-level requirements stated in Chapter 3.

Chapter 9 concludes this thesis by summarizing our main contributions and giving an

outlook on possible future work.






CHAPTER 2

BACKGROUND

This chapter contains basic background knowledge for better understanding of subse-
quent chapters. It starts by introducing a typical, overall anomaly management process
in order to better understand the intended use of FHS-DNA and our problem domain
(see Section 2.1), followed by an explanation of on-board networks’ characteristics (see
Section 2.2). Afterwards, general aspects of features are explored in Section 2.3, before
different options for feature extraction (see Section 2.4) as well as various technologies

for feature processing and storage are elaborated (see Section 2.5).

2.1 GENERAL ANOMALY MANAGEMENT PROCESS

Figure 2.1 shows an overall, generic three-step workflow of an abstract anomaly man-

agement process as e.g. in a FC.

In the first step, features are extracted from network traffic, collected and prepared for
storage. In the second step, (anomaly) detection models ((A)DMs) access those features
and run some (machine learning (ML)) algorithms, which compare the actual network
communication pattern to a predefined, static one. Whenever those two patterns differ,

an anomaly in network communication is identified and a potential incidence response

Feature Extraction (ML-based)
& 0 beeemmeeeg » Anomaly Incidence Response
Feature Processing Detection Model [~™™""""""™" »  Mechanisms

FIGURE 2.1: A general, three-step anomaly management process
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FIGURE 2.2: A typical, hierarchic topology with decentralized and compartmentalized components of
an on-board network from [6]

may be selected and triggered in step three.

Hence, FHS-DNA’s operational purpose is to implement step one. Potential fields of
application for FHS-DNA are in particular on-board networks (OBNs) of cars and air-
craft, which require special considerations regarding the development of FHS-DNA due

to their characteristics.

2.2 (CHARACTERISTICS OF ON-BOARD NETWORKS

Beside the fact that cars and aircraft hold strict limitations to the hardware of OBNs
(e.g. size, weight, space and performance), their most crucial characteristics with respect

to feature handling (FH) are explained in the following two subsections.

2.2.1 HIERARCHIC, DECENTRALIZED AND COMPARTMENTALIZED TOPOLOGY

The first and most important characteristic is the hierarchic network topology with
multiple clusters of compartmentalized devices within those (sub-)networks.

Within an aircraft for example, different (sub-)systems are integrated into the overall
aircraft system. Such (sub-)systems are e.g. the on-board lightning, the passenger en-
tertainment and the flight assistant system. They all are of different criticality and
therefore need to be compartmentalized within the overall aircraft system.
Consequently, as Figure 2.2 from [6] indicates, the abstract compartmentalization of
such an OBN induces clusters of networking devices, sensors and actuators within var-
ious sub-networks. Furthermore, especially in aircraft, these (sub-)networks are decen-
tralized [5].



2.3 AsPECTS OF NETWORK COMMUNICATION FEATURES

2.2.2 STATIC AND PREDEFINED COMMUNICATION TRAFFIC PATTERNS

Another key characteristic of those OBNs are well-defined communication patterns be-
tween the networking agents. This is, because different devices of e.g. a flight control
system fulfill special and very well predefined tasks only. In addition, the number of
agents of an OBN is static and does not change, as those networks are not publicly
accessible. Hence, the topology and its communication behavior are known and clearly
determined ex ante. That makes network traffic anomaly detection in step two from
Figure 2.1 especially suitable in those nets, because each deviation from the intended
network communication may be considered as an anomaly with potential influence on

the car’s or aircraft’s safety and / or security.

2.3 ASPECTS OF NETWORK COMMUNICATION FEATURES

In the next few subsections, we explicate some important aspects of network commu-
nication features. First of all, we give a definition for feature (see Subsection 2.3.1).
In close relation to the introduced definition, different levels of abstraction for feature
categorization considered in our work are explored in Subsection 2.3.2. Next, various
commonly well-known traffic datasets are introduced, from which many features are de-
duced (see Subsection 2.3.3). Furthermore, we underline the relevance of features for the
subsequent steps after extracting and processing them (see Subsection 2.3.4). Lastly,
some background research regarding the effects of reducing the number of features for

subsequent anomaly detection is explored (see Subsection 2.3.5).

2.3.1 FEATURE DEFINITION

A common definition for feature is "specification of an attribute and its value” [7].
However, it is often used as a synonym for attribute, e.g. ”in feature-subset selection”
[7]. Due to this definition, we also want to define the term attribute in the context of
our work.

An attribute is a "quantity describing an instance. An attribute has a domain defined
by the attribute type, which denotes the values that can be taken by an attribute”
[7]. In the following, different feature levels of abstraction considered in our work are
explained, which may also be accounted for the different feature domains according to

the aforementioned definition of an attribute.
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2.3.2 FEATURE LEVELS OF ABSTRACTION

In accordance to the definitions given above, one possible domain for the features being
handled in this work is abstraction level. This domain can have three categorical types,

namely:
 Packet level (PL),
o Connection level (CL),
o Network level (NL).

According to [7], such a categorical type definition is one of the two most common ones
and determines a “finite number of discrete values” [7]. The goal is to handle features

of all three levels of abstraction in our final system.

PACKET LEVEL

PL features are related to a single network packet only. By conducting a unique instance
of such a feature for further analysis only allows statements about this particular related
packet. However, combining and analyzing more than just one instance of a feature of
this abstraction level can allow more complex or significant conclusions related to more
than just one network packet (e.g. connection related statements).

An example for a PL feature is all TCP header information of a single packet.

CONNECTION LEVEL

CL features are also often called flow level features. They induce conclusions about
single connections or network flows, as each instance of such a feature is related to one
connection or flow in the network. Hence, combining multiple PL features may - but not
necessarily does - have the same significance as a single CL feature. In some cases, e.g.
by making use of all packets of a connection, explanatory power may be equal to only
considering one CL feature regarding this connection. However, by combining only two
or three random packets of a long connection, a CL feature related to this connection
may have more expressiveness than the combined PL features always depending on what
exactly wants to be expressed. Again, combining more than one CL feature leads to
higher level insights. Under the premise that those CL features are related to the same
network, their combined analysis may lead to network wide information.

An example for a CL feature is the number of data bytes transferred from a source to

a destination within a single connection or flow.
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NETWORK LEVEL

NL features are the third and highest abstraction level considered in our work. They
provide information about the entire network. Each single instance of these features
by itself allows for statements about the entire, related network. Thus, it is the same
with one NL feature and multiple CL features (of the same network) as it was with one
CL feature and multiple PL features (of the same connection). Combining multiple CL
features may - but not necessarily does - have the same explanatory power as a single
NL feature, although it depends on what exactly is analyzed or expressed.

An example for a NL feature is the number of connections to the same destination

address within the last 100 connections.

2.3.3 VARIOUS FEATURE TRAFFIC DATASETS

Besides this vertical feature categorization, a more common one is horizontal. Typically,
features deduced from some traffic datasets by running intrusion detection algorithms
on them are categorized horizontally. Such classes can include, but are not limited to,
content features, time features and basic or statistically aggregated features.

Anyway, different network traffic datasets may therefore serve on the one hand as an
option to deduce features and on the other hand as one possible input for the evalua-
tion of a (network) intrusion detection system ((N)IDS). Well-known datasets are for
example the DARPA98, KDD99, NSLKDD and others, which have been in use over the
last decades [3] [8] [9] [10]. Though, numerous studies argue that those do not reflect
nowadays low-footprint intrusions, are biased and corrupt [3] [4] [11]. Hence, this work
is essentially based on results for today’s most valid dataset UNSW-NB15, which tackles
major flaws of the previous ones [3] [8] [10] [11].

Depending on the specific traffic dataset, its synthetically included attacks and the ap-
plied algorithms, even different features may be deduced and further turn out differently
valuable for the subsequent detection process [3] [9] [12]. Therefore, we put major focus
on features proven most valuable and deduced from UNSW-NB15. The significance of

considered features directly leads to the next aspect.

2.3.4 FEATURE RELEVANCE

The relevance of extracted features and their validity fundamentally contributes to the
quality of an IDS [12] [13] [14]. This is what makes the first of the three steps from
Figure 2.1 so important. The (A)DMs and final results of their algorithms heavily

rely on the features and their contribution to the detection of the appropriate attack
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or intrusion. Therefore, even the selection and triggering of an incidence response in
step three transitively depends on the handled features’ relevance. Hence, this is why
we consider different features’ validity before extracting and processing them in our
FHS-DNA’s PoC implementation.

2.3.5 FEFFECTS OF FEATURE REDUCTION

Feature reduction is another aspect closely related to the quality of the overall detection
process. Research indicates that reducing the number of features to only some valuable
ones with respect to traffic classification by adjacent algorithms has been proven to
increase performance and validity of results [12] [15] [16]. For that reason, we aim to
identify, extract and further process only one possible subset of features for our PoC
implementation of FHS-DNA. Nevertheless, arbitrary (other) subsets are in principle

also possible.

Suggestions for valuable feature subsets are given in [9] [12] [17]. [9, p. 5] presents
considerable examples, where most frequently appearing features according to [8] are
listed. Additionally, in [9, p. 6], a very significant subset of features according to [8] is
listed.

Further, Table 2.1 based on [12, p. 8] shows the eleven highest ranked features from
UNSW-NB15 and NSLKDD according to a specific algorithm as proposed in [12]. Hence,
a couple of those features are included into our dedicated subset for the PoC implemen-
tation and will be extracted from network traffic as explained in Chapter 6. These
features are marked green in Table 2.1.

Selection criteria include considerations to extract features from every vertical level of
abstraction as described above and with different complexities. Furthermore, as the
UNSW-NB15 dataset is a more recent, reliable and valid one, we decided to include
twice as much features from it than from the NSLKDD dataset. An overview of all

manually implemented features part of the selected subset is given in Table 6.1.

TABLE 2.1: Eleven highest ranked features from datasets UNSW-NB15 and NSLKDD according to a
particular algorithm as specified in [12]

UNSW-NB15 Features NSLKDD Features
state dst__bytes
dttl dst_host_srv_diff host rate

10
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UNSW-NB15 Features NSLKDD Features
synack? srv_diff host rate
swin land
dwin dst__host_same_src_ port_ rate
ct_state ttl count
ct_src_Itm src__bytes
ct_srv_dst logged_ in
sttl protocol__type
ct_ dst_sport_ltm num_ root
djit Srv__rerror_rate

2.4 OPTIONS FOR TRAFFIC MONITORING AND FEATURE EX-
TRACTION

Before feature extraction (FE) can actually happen, network traffic needs to be moni-
tored. A comprehensive overview of possible options to do so is given in [18]. In order
to explain a valuable subset of tools from this huge variety, we classified them into three
general, overall categories. For each category, we present examples most representative
for it, which are also well-known and commonly used for respective purposes. In general,
all categories can somehow monitor network traffic, which is why in principle all of them
may be utilized to extract features from the traffic in some way. However, some tools

are more suitable for FE than others, often depending on their specific main purpose.

2.4.1 TRAFFIC CAPTURING AND BASIC PACKET ANALYSIS

This first category aims at simply monitor network traffic, maybe save it in files and
do some basic packet analysis. Moreover, this packet analysis often is not even done
automatically, but requires manual inspection. Hence, it is a less advanced category.

Common examples are presented below.

! Green features are considered and manually implemented for possible extraction by FHS-DNA as
explained in Chapter 6
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TcPDUMP AND LIBPCAP

Tepdump! is a command line packet analyzer. It utilizes Libpcap?, a library for network
packet capture. Tcpdump can be used in multiple ways, e.g. save captured network
traffic in files of Libpcap’s format (pcap?®) or read from previously saved pcap-files
instead of the actual traffic. It further prints out descriptions on network packets that

matched a pre-specified Boolean expression [19].

WIRESHARK

Wireshark? is probably the most commonly known network packet analyzer. Its primary
intention is to capture packets from a wire and display them on the screen as detailed as
possible. For that purpose, an interface needs to be specified, from which the network
traffic is captured. Hence, Wireshark may especially be used for deep packet inspection.
However, that needs to be done manually with a set of options provided. These include
e.g. adapting filters to search for specific packets only, creating plenty of statistics and
providing a user-optimized graphical user interface with colorized packets. Furthermore,
it is possible to capture live data as well as read in pcap-files from disk or many other
capture programs. Additionally, exporting captured packets is possible, too [20].

Hence, Wireshark originally is not a packet manipulation system nor an IDS [20]. Such

systems are presented below.

2.4.2 TRAFFIC MANIPULATION AND REPLAY

This second category may be seen as slightly more powerful in contrast to the previous
one. Its overall purpose is to not only monitor network traffic, but also manipulate it
in some way and replay it afterwards. Hence, presented examples are common options
for e.g. testing or training detection tasks with previously captured and intentionally

forged traffic.

Yhttp://www.tcpdump.org/
2http://www.tcpdump.org/
3http://www.tcpdump.org/manpages/pcap.3pcap.html

“https:/ /www.wireshark.org/
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TCPREPLAY

A first example for those purposes is Tcepreplay!. Previously captured network traffic
within pcap-files serves as input to Tcpreplay. It ”allows you to classify traffic as client
or server, rewrite Layer 2, 3 and 4 headers and finally replay the traffic back onto the

network and through other devices such as switches, routers, firewalls, NIDS” [21].

SCAPY

Scapy? is a more powerful packet manipulation system. It can be used to capture,
decode, forge and resend packets of a wire. Regarding the manipulation of traffic, it
is important to mention its outstanding capabilities of being totally independent of
packets’ standard structures. That means, it is not only possible to tamper with e.g.
some values of predefined header fields, but allows to e.g. craft a totally untypical new
structure of and values for packet fields. Furthermore, a number of additional tasks like
tracerouting, scanning, probing and attack detections are possible. Although all these
tasks are supported, they are not implemented automatically. A very important aspect
and also kind of the intention of Scapy is to just decode, but not interpret the data
before presenting it to the user. Hence, the user has to manually decide on what the

decoded data means to him or her [22].

2.4.3 NETWORK INTRUSION DETECTION SYSTEMS

NIDSs constitute the third category. Their approaches aim to detect malicious traffic
in a network more automatically and can be distinguished into signature- (also called
misuse-) and anomaly-based ones [10]. The signature-based ones work on patterns,
which explicitly mark instances to be identified as intrusions, whereas anomaly-based
approaches work on estimations of "normal” behavior. Specifying how ”"normal” be-
havior looks like allows anomaly-based IDSs to detect zero-day intrusions [2] [3] [8].
This is, why they have gained more focus in research and development over the past
few years [2] and are recommended [3]. However, especially at the early stages of their
implementation, they often produce higher false-alarm-rates [2] [8] [12].

Anyway, by our system extracted features may be used as input to either kind of NIDSs.

Furthermore, our system can be seen as partly fulfilling some tasks of a NIDS itself,

"http://tepreplay.synfin.net/

2 https://scapy.net/
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which are e.g. monitoring network traffic and extracting features from it. Common

examples for NIDSs are presented in the following.

SNORT

Snort! is an intrusion detection and prevention system. It offers three general modes, in
which to run the system. The first mode is called Sniffer mode, which simply reads and
displays the network traffic packets [23, section 1.2]. The second mode is called Packet
Logger mode. In comparison to the first mode, it additionally logs the packets to the
disk [23, section 1.3]. The most advanced mode is called Network Intrusion Detection
System mode, which also is the most comprehensive and configurable one. Within
this mode, network traffic can be detected and analyzed in more detail [23, section
1.4]. In general, this is done by specifying some rules. Once packets matching these
rules are detected, pre-specified alert mechanisms are invoked. Hence, Snort primarily
works signature-based, not anomaly-based [24] [25, p. 6]. That means, based on some
predefined whitelists and blacklists, further handling of the network traffic is specified.
In addition, commonly known attack patterns are checked by default, too [26]. For
whitelists in Snort there are provided two different meanings. They are unblack and
trust. The first one explicitly allows IP-addresses, which also are on blacklists. That
means, the whitelist has higher priority than blacklists. The other option trust means

that corresponding packets get bypassed and not further detected by Snort [27].

Hence, in comparison to Wireshark, Snort is able to passively monitor and post-process
network traffic. The main similarity is that Sniffer mode in Snort basically fulfills
the same purpose as using Wireshark. In addition to Wireshark, Snort also supports
comprehensive logging, which allows post-processing analysis. Furthermore, handling
network packets in Network Intrusion Detection System mode of Snort fundamentally

differs from what Wireshark provides.

In comparison to Scapy, Snort’s intention is not to be a packet manipulation system,
but a NIDS or network intrusion prevention system. Though, the user may manipulate
packets, resend and finally inspect them in Scapy on a very low-level basis. In Snort,
the user captures packets as they come and specifies some rules on how to handle them

in order to detect or prevent network intrusions.

"https: //www.snort.org/
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THE BRO NETWORK SECURITY MONITOR (BRO)

Another passive network traffic analyzer is Bro'. It primarily "inspects all traffic on
a link in depth for signs of suspicious activity” [28]. A detailed and comprehensive
description of it can be found in [29]. Although it can also be used both as a real-
time as well as an offline network traffic analyzer and NIDS comparable to Snort, it

fundamentally differs from it in a couple of aspects.

First of all, Bro’s internal architecture is a key difference to other known NIDSs. In
principal, it is built out of two major components as described in [28]. The first one is the
event engine (or core). Its purpose is the reduction of network packet streams into some
high-level events. They characterize the packet stream from which they were created
by the event engine. However, this characterization is policy-neutral, which means it is
not classifying nor interpreting the packet stream at this point. So, this interpretation
is done by the second component - the policy script interpreter. Therefore, the events
get passed on to this component, which then launches a set of scripts - called event
handlers. These handle the incoming traffic, derive statistics and find correlations by
being capable of maintaining state over time [28]. Hence, this event-based architecture
with its event engine and the policy script interpreter is a first main difference when

compared to all tools elaborated above.

Considering the policy script interpreter, the second main difference of Bro is its domain-
specific and Turing-complete scripting language for implementing any analysis tasks [28]
[30]. That makes Bro very flexible, highly extensible and customizable as well as power-
ful with respect to traffic analysis tasks even beyond the security domain. Furthermore,
this scripting policy makes Bro not a typical signature-based IDS (like e.g. Snort).
Although Bro supports this kind of traffic analysis, it even provides a "much broader
spectrum of very different approaches to finding malicious activity, including semantic
misuse detection, anomaly detection, and behavioral analysis” [28]. A comprehensive

overview of Bro’s features is given in [28].

Another characteristic main difference of Bro is its substantial set of high-level log files.
These go beyond low-level logging and already identify and correlate information across

connections and even various application-layer transcripts [28].

Lastly, one of the outstanding possibilities of Bro is the deployment of a distributed setup
of various single but coordinated Bro instances across larger systems compounded of

separated, physical machines. This is called a cluster. For operators controlling such a

"https://www.bro.org/index.html
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cluster, a central management framework - BroControl - is provided by Bro per default
[28]. Moreover, there are actually two different types of clusters, which again differ in a
couple of aspects. Nevertheless, for both types of clusters some special prerequisites need
to be considered before usage. For those, we want to refer to appropriate documentation
provided by Bro (e.g. see [31] and [32]).

("Normal”) Cluster: An overview of this first type and its generic architecture is given
in [33]. It is ”a set of systems jointly analyzing the traffic of a network link in a
coordinated fashion” [34]. In contrast, the standalone mode of BroControl handles
Bro running on a single system, i.e. device. Hence, the ("normal”) cluster mode of
BroControl can basically be compared to an automated, coordinated and decentralized
composition of multiple standalone modes on a couple of different networking devices.
However, a ("normal”) cluster is not just the composition of many standalone modes.
Rather it is an amount of Bro instances - each one working as a single entity - taking
over a specific part of the overall cluster’s functionality. Nevertheless, it is possible that

multiple ("normal”) cluster’s Bro instances run on the same physical host [34].

According to [33], Bro is not multithreaded, which explains the composition of single,
cohesive Bro instances and their coordination in a ("normal”) cluster setup across mul-
tiple cores or even physical devices for purposes of spanning larger systems. This way,
instances in a ("normal”) cluster work together as different types. For each ("normal”)
cluster, at least one manager, one prory and one or more worker nodes need to be
defined.

Manager Hence, a manager node is a mandatory one. It has primary two jobs, which

are to:
1. Receive logs;
2. Handle notices.

Regarding the first task, logs from all the worker nodes are collected on the manager,
which leads to a single log per subject (e.g. extracted feature) aggregated on the man-
ager instead of multiple ones on each worker [33]. Though, whenever a logger node is
defined in the ("normal”) cluster setup as well, this first task of collecting logs is taken
care of by the logger and not the manager [33].

Nevertheless, independent of a logger node being configured or not, the second task of

handling notices is always implemented by the manager node. A notice may be raised
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by a worker whenever something special - that was defined by the operator’s scripts -
is identified in the traffic.

Worker The worker nodes are where the actual traffic sniffing and protocol analysis
is performed. Hence, at least one node of this type is mandatory. Moreover, the most
affordable resources with respect to memory and CPU should be provided to this type
of nodes [33]. Therefore, the "maximum recommended number of workers to run on
a machine should be one or two less than the number of CPU cores available on that
machine” [34]. Nevertheless, although most of the work is performed on the worker
nodes, requirements with respect to disk space are very limited, because all logs are
collected at the manager or a logger node [33]. Further specifications and suggestions

on provided resources for worker nodes can be found in [33].

Proxy A prozy node in a ("normal”) cluster is described as ”a Bro process that man-
ages synchronized state. Variables can be synchronized across connected Bro processes
automatically. Proxies help the workers by alleviating the need for all of the workers
to connect directly to each other” [33]. Further, the number of prozy nodes may grow
higher than one, but at least one is required in a "normal” cluster. However, most often
one proxy (at least for smaller clusters) should be enough, as they do neither need that
much CPU nor memory. This may also be a reason, why many operators often run a

prozy on the same physical host as the manager [33].

Logger The logger node is optional in contrast to all the other types. ”If a logger
is defined [...], then it will receive logs instead of the manager process” [34]. Hence,
by having a logger in a ("normal”) cluster setup, resources on the manager node are

preserved.

Deep Cluster: The second type of Bro clusters is a so-called deep cluster. It ”provides
one administrative interface for several conventional clusters and/or standalone Bro
nodes at once” [31]. In other words, a deep cluster can even be a cluster of distributed
“normal” clusters and standalone Bro nodes. Furthermore, it fosters direct information
exchange between different, originally not directly connected Bro (cluster) instances
by enabling the communication with each other via the underlying and additionally
integrated publish-subscribe system [31]. Hence, a deep cluster can be considered as an
overlay peer-to-peer network, whose goal it is to ”setup large numbers of Bro instances

that might be deployed in different parts of the network (or in different networks)” [31].
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Consequently, the communication between different (deep cluster or standalone) nodes
fundamentally differs from the basic, routable communication in "normal” clusters. An
additional difference to a Bro "normal” cluster is that a deep cluster’s nodes have no
types anymore (e.g. manager, prozy, worker). Instead, the nodes can accept different
roles on-the-fly. Even more than one role at a time is possible and there are more roles

available in a deep cluster than types in a "normal” cluster [31].

2.5 TECHNOLOGIES FOR FEATURE PROCESSING AND STORAGE

Feature processing (FP) can be considered as post- or pre-processing. Pre-processing
means managing features before they are input to subsequent (A)DMs, whereas post-
processing means managing features after they were extracted from network traffic.
Hence, both terms mean the same in the context of our work, but refer to different
points in the allover FH process.

Regarding feature storage (FS), that especially means the final storage of previously
extracted and processed features, from which subsequent (A)DMs can query them in
order to do the actual anomaly detection.

Moreover, processing and storage are considered together in the following subsections, as
both tasks are closely related to each other. For instance, F'S preparation is considered

a part of FP throughout this work.

2.5.1 RELATIONAL DATABASE MANAGEMENT SYSTEMS

For final F'S, a general option is to utilize a database management system (DBMS). Such
a first type are relational database management systems (RDBMSs). They and their
concept function with data structured in and across predefined tables in a relational
model. They organize their data in rows and can reference entries across tables with
primary and foreign keys describing columns (i.e. attributes of row-based entries). Two

well-known RDBMSs are shortly explored in the following.

POSTGRESQL DATABASE

PostgreSQL! is open-source with a plug-in available for Bro as described in [35] and

[36]. PostgreSQL’s main goals are to be compliant to standards and very extensible. By

"https://www.postgresql.org/
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being programmable it offers a broad number of third-party tools and libraries support,
which makes working with PostgreSQL very simple and powerful. Furthermore, it of-
fers all highly required and fundamental RDBMSs’ functionality such as full support for
atomicity, consistency, isolation and durability (ACID). In addition, it is highly efficient
and supports multi-version concurrency control, which ensures the ACID compliance
[37].

Benefits of PostgreSQL include, but are not limited to, being an open-source, standard
compliant RDBMS with a broad community and documentation. Further, it is exten-
sible and objective, whereas on the downside it is less performant for read intensive
queries [37].

Hence, whenever high speed with respect to querying and a simple setup is required,
this database is not appropriate to use. However, if complex queries in combination

with high data integrity is in demand, PostgreSQL may be a good solution [37].

SQLITE DATABASE

SQLite! also is an open-source, RDBMS library with an available plug-in for Bro [38].
According to [39], it is the worldwide most used database engine. As a self-contained,
file-based database, it provides a huge set of tools in order to process almost any data
with little constraints [37]. Using SQLite is very fast and efficient, as it works with
"functional and direct calls made to a file holding the data [...] instead of communicating
through an interface of sorts” [37].

Being a file-based database is a big advantage of SQLite with respect to portability.
However, performance tuning is almost not possible. That is a con especially with
respect to always only allowing a single write operation at a time [37].

Hence, applications with high write volumes should consider another DBMS, whereas
SQLite in principle is a good solution for applications that directly need to read from
and write to disk [37].

2.5.2 NON-RELATIONAL DATABASE MANAGEMENT SYSTEMS

In contrast to RDBMSs, another concept of DBMSs are non-relational database man-
agement systems (NRDBMSs). NRDBMSs (also often referred to as NoSQL databases)
are missing a predefined, relational model (with all their constraints) in contrast to
RDBMSs [40]. In the last years, more and more NRDBMSs were applied, due to reasons

Yhttps: //www.sqlite.org/index.html
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such as the rise of big data containing less structured information [40], as NRDBMSs
allow for a unique and not predefined scheme definition that suits the data in use [40].
Thus, data does not have to be structured in rows and columns, but maybe in documents

or graphs.

Summarizing, for both aforementioned concepts of DBMSs, processing mainly refers to
analysis after structuring, storing and querying information in some scheme (predefined
or manually defined). In case of RDBMSs, that could for example include further

analytics or statistical aggregations by combining (e.g. joining) queries’ results.

2.5.3 SEARCH AND ANALYSIS ENGINES

An additional, but completely different, concept means a cohesive kind of processing
and storage option. It stores huge amounts of data, which can either be first queried
and results subsequently analyzed or allow implementation of analyzing routines ex ante
querying, if respective APIs are provided. Hence, for that concept processing primarily
refers to querying and analyzing results ex post storage. Nevertheless, if APIs are
available, operators have the options to also manually implement their own analytics
ex ante querying and then afterwards query for only their results (as e.g. patterns not

typically stored as such but hiding within the stored data).

ELASTICSEARCH

One example for such a concept is ElasticSearch!. It is a search and analysis engine
based on representational state transfer (REST), which centrally saves all data [41].
It is capable of handling tones of data, but also scaling very well both on distributed
indexing and searching [42]. Moreover, it is built upon Apache’s Lucene? project, it
provides various APIs (e.g. Java API and RESTful API), is capable of (almost) real-
time search and fulfills ACID consistency [43]. Furthermore, it is also open-source and
offers a plug-in to Bro [36] [42]. A detailed description on a possible integration to Bro
is given in [44].

Summarizing, Elasticsearch is a good solution for effectively, quickly and dynamically
searching data in a huge amount of information. Hence, it is especially useful for search

intensive queries. However, if the operator wants to retrieve and save data out of

"https://www.elastic.co/de/products/elasticsearch

Zhttps://lucene.apache.org/core/
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queries, it is not the best choice [45], as exporting search results is not part of its core

functionality.

2.5.4 PROCESSING AND STORING WITH GENERIC DATA FORMATS

Another, general and abstract as well as cohesive processing and storage option is to
transform intermediate log files, which contain the previously extracted features, into a
generic data format for final F'S. Those transformed log files can then be stored in some
manually structured way and serve as input to various subsequent (A)DMs, which can
easily utilize them due to their general data format. Thus, storage is not necessarily a
typical kind of database, but rather may also be the logically and manually organized
storage of transformed features’ log files. These could for example be directly stored
in the file system. Hence, processing for this concept is twofold. First, it especially
means transformation of some features’ log files into a generic data format, so that
subsequent (A)DMs are able to easily access them and then run further detection or
misuse algorithms on them. Second, complex analysis tasks (e.g. statistical aggrega-
tions) may also be implemented before transformation directly on the original feature
log files, which could even result in some new additionally generated logs which finally

also get transformed for final storage.

Bro AnaLysis TooLs (BAT)

As an example for that abstract concept, we want to introduce BAT. Included tools are
- as already indicated by the name - especially suited for processing and analyzing Bro
logs (which contain the extracted features) [46]. Hence, focus in this concept is much
more on processing and analysis than on storage by default. So, BAT’s main purpose
is to read in log files provided by Bro and do post-logging processing and analysis on
them [46]. Running complex statistical evaluations and aggregations, applying ML or
anomaly detection exploration is all possible with BAT by offering bridges to make those
log files accessible for subsequent (A)DMs and ML-components like Spark! and others.
For that purpose, BAT provide methods for easy transformation of Bro log files to
various generic data formats, e.g. Parquet?, Python dictionaries or Pandas dataframes®

[46]. Consequently, these various, generic data formats finally also allow compressed and

! https://spark.apache.org/
2https:/ /parquet.apache.org/

3https://pandas.pydata.org/pandas-docs/stable/generated /pandas. DataFrame.html
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efficient storage (e.g. on disk), as well as easy access for further analysis tools due to
their generic format. Nevertheless, structuring and organization of this storage solution
still remains to be developed manually.

Summing up, BAT provide comprehensive analysis and processing options perfectly
compatible to Bro log files [46]. It is not a typical storage concept such as a RDBMS
or a NRDBMS, but offers transformation to generic data formats, so that multiple
subsequent tools or analysis components can easily access those data appropriately
stored on disk. So, BAT may be seen as a storage preparator or assistant, whereas the

structure and organization are manually developed.

PARQUET AS GENERIC DATA FORMAT

One of those generic data formats that are supported by e.g. BAT is Parquet. It is a
columnar, self-describing and language-independent storage format [47], which further
supports compression [48]. For a detailed overview of its characteristics we want to refer

to its official documentation provided in [48].
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CHAPTER 3

ANALYSIS

This chapter describes and analyzes the underlying problem statement of our work in
Section 3.1. Outgoing from the problem statement, important high-level requirements
that need to be respected in our solution are categorized into different classes and
explained in Section 3.2. Closing this chapter, different design choices regarding single
aspects of our final solution are presented in Section 3.3.

Furthermore, we declare the (sub-)network(s) under surveillance as N(s)US for easy

reference throughout this thesis.

3.1 PROBLEM STATEMENT

Correctly behaving and communicating network devices are crucial for the safety and
security of their spanning networks. If those networks are themselves part of critical
infrastructure such as cars or aircraft, the necessity for appropriately detecting anom-
alies in network communication is even more important. For that purpose, an allover
anomaly detection process as depicted in Figure 2.1 is necessary.

The groundwork with essential influence on the quality of such an allover detection
process is the determination, extraction, collection and appropriate processing of fea-
tures from network traffic. However, networks in e.g. cars and aircraft are especially
characterized by strictly hierarchic topologies as described in Section 2.2. Furthermore,
due to their hierarchy those OBNs are compartmentalized into different clusters of net-
working devices within different decentralized or distributed (sub-)networks [5].

In general, extracting, collecting and processing network traffic in centralized networks

is not a problem. At a central point in the net, the traffic is captured by e.g. installing
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FIGURE 3.1: A typical, hierarchic topology with differently marked components of an on-board network
based on [6]

a switch with a mirrored port. That way, features can be extracted from the interesting
network traffic very easily. However, in hierarchic networks with many compartmen-
talized and decentralized devices, such a central gateway / point is not available for

capturing only the relevant traffic.

Figure 3.1 based on [6] illustrates this problematic. A typical, hierarchic OBN’s topology
is depicted, with orange circles representing clusters of decentralized and compartmen-
talized devices in various (sub-)networks. For further reference, we specify three (types

of) components.
e Each orange device within a red circle is referenced as a component of type A.
e Device within green circle is referenced as component B.
e Blue triangle device within red circle is referenced as component C.
o Each orange device without a red circle is referenced as a component of type D.

As an example, those devices of type A and their communication traffic should be mon-
itored. Hence, there is no central point in the network, which allows for capturing the
communication traffic of all - but only - those devices of type A. Of course, one could
implement a switch at the device B, because all underlying network agents are of type A
and their traffic needs to be monitored. Though, one would only capture the traffic from
those three devices of type A below component B and not from the other three agents
of type A under the component C. Furthermore, it is not possible to utilize component
C as a central gateway, because some of its inner devices should not be monitored, as
they are of type D.

Thus, we need to propose a decentralized approach for extracting, collecting and pro-
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cessing network communication traffic features in such hierarchic, compartmentalized
networks. Following this idea, there are three potential ways to do so.

First, we could simply monitor all the network traffic of all devices - regardless of their
type - and afterwards discard all the information related to components which are not
considered relevant. However, in our example we are generally only interested in traffic
of components of type A. Thus, this approach would first of all induce an enormous
overhead on monitored traffic, which increases necessary effort in various aspects. For
example, handling more traffic takes more time and disk space for respective feature
extraction, collection and processing. Moreover, those OBNs and their agents are in
principle and per assumption constrained in their resources, which would further am-
plify these negative overhead affects. Additionally, after FE it may become (almost)
impossible to discard unwanted information from irrelevant devices, as extracted fea-
tures may combine and build around this data.

A second option is to simply integrate additional monitoring and maybe analyzing
components into each NUS logically next to each device under surveillance. However,
considering specific requirements of especially the avionics and car industries, this ap-
proach has some disadvantages. Integrating additional components leads to more costs,
higher network complexity and requires more physical space and weight, which would
negatively influence the competitive capability.

The third way is to utilize already available, free and so far unused resources on those
devices of type A, although they might be somehow limited. That implies, devices whose
traffic should be monitored become monitoring agents. This approach is the innovative
idea of DecADe [1].

Although going that third way is in accordance with the industries’ conditions, some
additional problems need to be considered and properly handled. The first one is to
facilitate each respective networking agent with the abilities to monitor and analyze its
passing network communication traffic. Resulting from that, some form of coordina-
tion among those devices is required. Agents only analyzing the traffic directly passing
themselves and not bringing their extracted features into correlation with others lim-
its conclusions about characteristics e.g. concerning the entire NsUS. Third, in close
relation with the need for coordination among those devices is the need for different
types of them, each indicating some specific tasks and abilities. As already hinted in
the aspect mentioned before, comprehensive and encompassing statements about the
network only arise from the combination of extracted features of multiple monitoring
devices. Therefore, some agents need to send their results to some or at least one other
device, where the extracted features are gathered and (at least intermediately) stored.

Outgoing from this challenge, another one follows. An appropriate storage format and
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concept for extracted (and maybe further processed) features needs to be easily accessi-
ble and efficiently queriable by various subsequent (A)DMs. Last but not least, flexible
reconfiguration and extensibility needs to be ensured. On the one side, arbitrary addi-
tional features should be able to be handled. On the other side, flexible definition of the
agents being part of the monitoring process should be possible. Furthermore, flexible

determination which features are handled by which agents should be possible, too.

Summarizing, extraction, collection and processing network communication features
from strictly hierarchical, decentralized and compartmentalized networks is challenging

as explained above.

3.2 HIGH-LEVEL REQUIREMENTS

Based on the problem statement above, some (partly already hinted) additional high-
level requirements are deduced in the following. Those are categorized into functional
(see Subsection 3.2.1) and non-functional requirements (see Subsection 3.2.2) with some
further, fine-grained classes. Moreover, as the overall system’s intention is to serve as
a decentralized FH system, the aspects of decentralization and necessary coordination

among those decentralized components characterize the generic functional layout.

3.2.1 FUNCTIONAL REQUIREMENTS

Functional requirements (FRs) describe, which basic functionality the final system FHS-
DNA should have.

FR.1: Feature Extraction from Network Communication Traffic: FExtracting features
of multiple levels of abstraction as described in Subsection 2.3.2 from network commu-
nication traffic states the groundwork for FHS-DNA and must be possible. Hierarchic,

compartmentalized networks demand this task to work in a decentralized way.

FR.2: Processing of Previously Extracted Features: Features should not only be ex-
tracted, but also further processed. Hence, FP generally needs to be allowed by FHS-
DNA. It could include for example the creation of new features out of the already existing
ones (e.g. statistical aggregations), execution of various analysis options on features or
the transformation of extracted features’ log files into an appropriate storage format. In
any case, it refers to the post-processing after extraction and the pre-processing before

import of features by subsequent (A)DMs.
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FR.3: Storage of Previously Extracted and Processed Features: Features are not
pushed out to subsequent (A)DMs immediately. Hence, querying and importing fea-
tures is initiated by the subsequent (A)DMs, which is why they need to be stored in an

appropriate format and scheme in the meantime.

3.2.2 NON-FUNCTIONAL REQUIREMENTS

Non-functional requirements (NFRs) describe characteristics of FHS-DNA, that are not
directly related to its functionality. Hence, they determine the constraints of the system
that need to be fulfilled. They are further categorized into general claims, NFRs for FE
and NFRs for FS.

GENERAL CLAIMS

In the following, NFRs considering more than only one aspect or task of the overall

system are explained.

NFR.1: Ease of Integration onto Devices Inside the NsUS: As described in Section 3.1,
the innovative idea of DecADe is to do decentralized FH directly on the network agents
under surveillance by utilizing free resources. Hence, our system FHS-DNA should allow

easy integration of such FH capabilities onto the already existing agents of the NsUS.

NFR.2: Explicit Applicability on Network Communication Data: Focus in our work is
on network communication traffic and not application data. Hence, FHS-DNA explic-
itly needs to be capable of FH of network communication features. Nevertheless, our
approach may also be generalizable to network application data, although this is not

explicitly required.

NFR.3: Generality of Interfaces in Their Utilized Technologies: With respect to their
utilized technologies, interfaces should be as generic as possible. That in particular
means not to introduce any unnecessary compatibility restrictions. In specific, the

storage format must be usable by common subsequent (A)DMs.

NFR.4: Applicability on General Networks, Topologies and Industries: Furthermore,
FHS-DNA should not be restricted to any general types of networks, topologies or
industries, although specific characteristics of OBNs in the car and aviation industries

are respected.
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NFR.5: Automation of Entire Feature Handling Process from Extraction To Storage:
After an initial setup, FHS-DNA is supposed to work totally autonomous and without
any mandatory interference with the operators. Explicitly excluded from this require-

ment is the reconfigurability from NFR.6, which naturally functions on demand.

FEATURE EXTRACTION

NFRs concerning only certain aspects of FE are presented in the following.

NFR.6: Reconfigurability of Monitoring Agents and Their Handled Features: Recon-
figurability refers to FE in two aspects. First, the system should allow to adapt the
selection of devices and their interfaces being monitored. Second, the operators should
be able to explicitly and dynamically order, which features are handled by which devices

and therefore are extracted from which interfaces.

NFR.7: Extensibility of Features Handled: Network communication features originally
not considered by our proof of concept (PoC) implementation of FHS-DNA should be

able to be manually implemented and added.

FEATURE STORAGE

Lastly, some NFRs for F'S are explained.

NFR.8: Ability to Query and Combine Stored Features by Subsequent Detection Mod-
els:  Stored features must be easily queriable by (and therefore accessible to) subsequent
(A)DMs, because they are not pushed to but rather pulled by them. In addition, stor-
age format should allow them meaningful combination of different queries’ results, for

instance with a join.

NFR.9: Storage Format Efficiency in Disk Space and Query Performance: Storage
format should support compression, in order to save disk space with respect to the large
amount of network data. Further, the storage format should allow fast read times by

subsequent (A)DMs, especially for large-scale queries.
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3.3 DESIGN CHOICES

Based on the problem statement and the identified requirements, a system for decen-
tralized feature handling is developed. As there are different design choices for single
aspects of the final system, we shortly want to explore them in the following. For each
aspect of these design choices below, we present two different approaches. Certainly,
further ones are possible, too. Nevertheless, the explained ones are always contrary on
a rather high level and therefore in principle form the basis for other ones, which often
result from a balanced and synthesized combination of the explored ones. This can for
example be seen in Section 5.1 for our final design decisions.

Moreover, criteria on which all approaches of the different design aspects are compared
to each other mainly refer to the constraints of our final system and the underlying
NsUS. Hence, these constraints include differently available resources and requirements
(e.g. of different components) especially with respect to CPU, disk space, memory and

storage, bandwidth within the NsUS and to external components and information loss.

3.3.1 FEATURE EXTRACTION

For FE, the requirements already adumbrate how it is intended to work. Nevertheless,
it is not pre-specified whether traffic capturing and feature extraction are done together

or as separate steps.

CAPTURING AND SUBSEQUENTLY READING TRAFFIC FOR FEATURE EXTRACTION

A first option for extracting features with our final system is to distributively capture
network traffic, save it in e.g. pcap-files and then send those to other components, which
finally extract features from the reread traffic files.

Overall, this seems to be a good way of task sharing and results in a clear separation
of concerns and responsibilities. Moreover, the captured and saved traffic may be fur-
ther manipulated or changed (i.e. for example filtering some traffic or tampering with
packets) according to specific (e.g. testing) needs with an intermediate manipulation
component before finally being sent to and reread by the FE components. However,
capturing - maybe even filtered - network traffic and then resending it actually induces
more load than necessary. First, saving that traffic in e.g. pcap-files requires huge
amounts of memory and disk space, as those files typically can grow very large. Second,
sending those pcap-files to other components for subsequent feature extraction requires
huge bandwidth depending on their size. Furthermore, this also requires some CPU.

Finally, the other components further read the pcap-files and therefore need to process
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contained traffic again to extract desired features. Finally, as another consequence, FE
from live traffic is never possible, which prevents FHS-DNA to be operated within an

actual and active network without having recorded traffic available.

MONITORING AND FEATURE EXTRACTION ON LIVE TRAFFIC

In contrast to the first option, the second one aims to monitor traffic and directly ex-
tract features from it. Consequently, network traffic is not needed to be saved in e.g.
pcap-files, does not have to be resent to and read by additional components.

Hence, monitoring traffic and directly extracting features preserves much more re-
sources. First, no traffic needs to be captured resulting in huge files, which preserves
memory and disk space. Second, those pcap-files do not have to be sent to other com-
ponents, so no bandwidth is lost. Third, potentially saved traffic does not need to be
processed a second time, which preserves CPU. This is especially true, because handling
traffic per se makes up a major portion of processing time compared with FE as we show
in our evaluation in Section 7.2. So, even though FE requires some additional CPU on
those devices, that approach overall preserves CPU compared to the first one. This is
further affirmed, as our requirements of DecADe and from Section 3.2 demand the FE
to directly take place on the free resources of the devices of the NsUS, which per as-
sumption are resource-constrained. Hence, this prevents the first approach to outsource
the FE to substantially more powerful components. However, for FE from live traffic
the respective monitoring devices have to fulfill both tasks for monitoring and FE. That
means, each one has to be facilitated with appropriate capabilities. Moreover, as traffic
is not saved in files it subsequently cannot be manipulated for other (e.g. testing) needs.

Thus, the entire traffic always is analyzed as it is.

3.3.2 FEATURE PROCESSING

The specific meaning of FP depends on the technologies and concepts used (see Section
2.5) and the particular design decision for FP (see Subsection 5.1.2).

Furthermore, we state for better clarification that external in the following refers to
components that are not part of the NsUS and therefore are not constrained in their
resources (or at least not to the same extend). On the contrary, internal refers to more

resource-constrained (per assumption) components inside NsUS.
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ON DECENTRALIZED MONITORING DEVICES

The first option is to do FP on these internal monitoring devices, which also do FE. As
a result, not only FE, but also FP would work decentralized.

Hence, for this approach to function, it is a mandatory prerequisite that those agents are
equipped with capabilities both for FE and FP. However, it is important to keep in mind
that the available resources on those utilized network devices are limited. Consequently,
one major disadvantage of this approach is that extensive FE and FP at the same time
mutually limits each other. Hence, less comprehensive FP (e.g. analysis of extracted
features) would be feasible when handling traffic peaks, as FE also needs to be done
and consumes some CPU, memory and disk space. Of course, depending on the specific
definition of processing, some subtasks are not necessarily executed simultaneously to
FE (e.g. the potential transformation of extracted features’ log files to another storage
format). Nevertheless, other subtasks of FP (e.g. the creation of some certain, statistical
aggregated features) would need to be done simultaneously to FE. This is especially true
for features relying on some mandatory, contextual information, which is not contained
in the basic ones. Nevertheless, although this approach mutually limits FE and FP (with
respect to CPU, memory and disk space), one major advantage is that in principle
multiple - even different - FP tasks may be executed at the same time and even on
different feature subsets. This is possible, as each decentralized monitoring device could
work as an autonomous instance and do its own FP. This can e.g. include the FP subtask

of storage format transformation, which would result in many, but small storage data.

ON SINGLE, EXTERNAL COMPONENT

A second option is to do central FP on an external component in contrast to decentral-
ized FE on the internal monitoring devices. Thus, no processing capabilities need to
be deployed onto the network agents, whereas an external FP component can easily be
installed.

A first major disadvantage of this approach is that distributively extracted features
need to be sent to this external component. Depending on the sizes of the extracted
features’ log files, this consumes some additional bandwidth, as those files are not yet
compressed, as compression is considered as a FP subtask. Furthermore, another addi-
tional, resource-unconstrained component is required, of course. On the contrary, the
missing option of internal FP (as provided e.g. in the first approach) also yields a major
advantage. This is, that all available resources (memory, CPU and disk space) of those
internal agents can be utilized for FE only. On the one side, this allows more complex
and comprehensive FE when handling traffic peaks. Thus, less information may get

lost, as more features can explicitly and immediately be extracted from live traffic. On
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the other side, also more comprehensive and powerful FP (e.g. analysis) is possible on
a non-restricted external FP component. As a consequence, a trade-off between FE
and FP is not needed anymore, as it would be with the first approach. Hence, this one
introduces another degree of freedom for the operators to choose whether to extract
some complex features directly from traffic or construct them by processing basic ones.
As a result, sometimes complex FE is not needed anymore, as those complex features
may also be gained by processing original ones, which would further preserve resources
on the internal devices and therefore allow extracting more basic features for higher
traffic peaks. However, depending on the specific features of interest, it is important to
keep in mind that some kind of information might still get lost when not explicitly and

immediately extracted from live traffic.

3.3.3 FEATURE STORAGE

FS means not the intermediate saving of extracted features’ log files, but rather the
final storage of features in an appropriate format, from which the external (A)DMs
can import features. As already mentioned above, the transformation of intermediate
feature log files into the final storage format is considered as a subtask of FP. Therefore,
it is important to understand that each device supposed to do feature transformation
needs to have FP capabilities. So, this characterizes the close relation between FP and
FS throughout this work.

Besides the common assessment criteria of available resources, the evaluation for FS
design choices is also particular based on related requirements regarding the comfortable
access, querying and combination of stored features (especially with respect to NFR.8).
Furthermore, the self-initiated traffic is another important criterion, as this also costs
bandwidth and further may falsify the FE.

ON DECENTRALIZED MONITORING DEVICES

First, a decentralized FS approach within the NsUS is imaginable. Each device ex-
tracting features could also finally store its features. This requires each device to either
transform its features into a compressed storage format (according to NFR.9) on its own
or send them to a transformer (which basically is a FP component then) and receive
them back for storage.

For both cases there are some disadvantages. In the first case, each device needs trans-
formation capabilities in addition to FE capabilities. However, resources on each device
are limited, so available disk space and CPU may be restricted. That leads to similar

negative effects as described in Subsection 3.3.2. In the second case, transformation
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would be done centrally, whereas final storage is still intended to be done decentralized.
Consequently, a lot more self-initiated traffic is generated and bandwidth is consumed,
as features would be sent across the NsUS to the central transformation component
and then received back from it after transformation. Moreover and independent of the
two cases, the access to decentralized stored features by subsequent (A)DMs is more
complicated to handle than it would be for a single, central storage. In close relation
to this, comprehensive statements concerning e.g. the entire NsUS also become much
harder. That is, as external (A)DMs must access multiple storages of various devices
and correlate their (transformed) features, instead of accessing just a single storage.

Nevertheless, there are also some advantages. First, as each F'S component only stores
its own extracted features, the storage per device is much smaller than a single, central
storage. That increases clarity and simplifies organization and structure of the final
storage, as features of specific devices or interfaces are known to be found in the respec-
tive agent’s storage. Second, having transformed the features to a compressed storage
format already inside the NsUS saves bandwidth per query for transferring them to the
outside of the NsUS. However, having the storage inside the NsUS requires transfer of
features and therefore some bandwidth for each query by the (A)DMs. Hence, depend-
ing on the query frequency, this may eventually cost even more bandwidth in total than

having the features stored externally.

ON SINGLE, EXTERNAL COMPONENT

Therefore, a single, external storage option is also possible. Hence, all intermediate
feature log files of all devices get transferred to an external component, which then
transforms those into a compressed storage format and stores them. Hence, transfor-
mation capabilities do not need to be deployed onto the network agents themselves.

A first disadvantage is, that another additional, resource-unconstrained component is
required. Further, a central, comprehensive storage grows bigger than many decentral-
ized ones. Although the total storage size basically would be the same, this may make
it a little harder to simply, clearly and intuitively organize the storage, as features of
all devices and interfaces are then stored within a single storage rather than on each
respective device directly. Hence, the storage structure is more complex. Moreover, as
the external storage gets the uncompressed and untransformed intermediate feature log
files transferred, the storage either is not always absolutely up to date (between two
transfers the external storage will be the same), or must get updated with transferred
features on a very frequent basis. However, the smaller this time interval gets, the more
bandwidth again is consumed for feature transfer and self-initiated traffic is increased,

but the external F'S would get more up to date. Hence, this requires some trade-off per
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default.

However, there are also a couple of advantages. First of all, an external, resource-
unconstrained component can easily be integrated and storage growing big on there is
in principle not a problem. Further, in contrast to the second case of the first approach,
intermediate feature log files only need to be transferred one-way from the internal de-
vices to the external F'S (i.e. they do not need to be sent back to them). In contrast to
the first choice, this preserves some bandwidth and limits self-initiated traffic, as not for
every query from the external (A)DMs features need to be transferred from the device-
specific internal storages. Hence, the total required bandwidth over all (A)DMs’ queries
do not require any bandwidth nor induce additional traffic inside the NsUS, because the
storage would be external as well as the querying (A)DMs. Outside of the NsUS, band-
width is not a bottleneck anymore and traffic is not monitored. However, the updating
feature transfers do induce additional traffic and consume bandwidth. That is especially
true the smaller this update interval is chosen. Hence, a reasonable trade-off has to be
found. Another advantage is, that feature access for subsequent (A)DMs is much sim-
pler, as they only need to have access to this single, external storage and not multiple,
internal ones. Furthermore, comprehensive statements are possible to be made by this
external component even before final storage, as all feature log files will be available on
it after transfer and before transformation. Last but not least, all available resources
of those internal agents can be utilized for FE only, which further saves memory, disk

space and also CPU (as no transformation is done).

3.3.4 COHESIVE PROCESSING AND STORAGE CONCEPT

Independent of the specific design decisions finally made, there has to be some harmo-
nized interaction between processing component(s) and storage component(s), as they
are closely related with each other as already indicated above. Hence, a cohesive con-
cept between FP and FS is indispensable, as e.g. the transformation into an appropriate
storage format is considered as part of the processing. Thus, there are multiple potential
options. These generally result from the different combinations of design decisions for
FP and FS. Identification of a final, best solution has to be made once the underlying

single design decisions are clear.
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RELATED WORK

This chapter explores some related work by classifying it into a couple of different

categories. Each category is explained in its own section.

4.1 ANOMALY DETECTION FOR SOME/IP

In close relation to NIDSs and with special focus on the automotive and aerospace
industries, Herold et al. suggest in [49] an "anomaly detection system for SOME/IP”
[49]. SOME/IP is a "standardized automotive middleware protocol” [49], which is used
for control messages [50]. In the proposed solution, domain specific rules are applied
to SOME/IP packets. This way, attacks and protocol violations can be detected [49].
This is an especially useful extension for anomaly detection in specific packets, as other
common NIDSs - such as Bro and Snort - lack in adaptability to SOME/IP [49].

However, the presented approach mainly focuses on packets and overall is an anomaly
detection approach. In contrast, we aim to develop a system that is not supposed to
do anomaly detection, but rather enable it by doing the groundwork regarding FE, FP
and FS up-front.
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4.2 VAST

VAST! stands for "Visibility Across Space and Time” [51]. It is "a distributed plat-
form for high-performance network forensics and incident response that provides both
continuous ingestion of voluminous event streams and interactive query performance”
[52]. Outgoing from that, VAST can also be considered as kind of a search and analysis
engine as explained in Section 2.5, because it is supposed to provide ”(7) an expressive
data model to capture descriptions of various forms of activity; (i) the capability to use
a single, declarative query language to drive both post-facto analyses and detection of
future activity; and (i) the scalability to support archiving and querying of not just log
files, but a network’s entire activity, from high-level IDS alerts to raw packets from the
wire” [52]. Hence, VAST may be seen as an intelligent database concept that processes
logs from network traffic in addition to enabling network forensics and incidence re-
sponse mechanisms. Furthermore, that processing is intended to be very extensive,
scalable and conclusive. Moreover, it is supposed to allow the import of log files from
various different systems, such as Bro, firewalls, embedded devices and IDSs in general
[61]. For the sinks on the other side of the architecture, it already supports exporting
information to various formats [52], e.g. ASCII?, JSON?, Bro, pcap and Kafka*. A
high-level architecture of VAST can be found in [53].

In the context of our target system, VAST may be considered as a compounded feature
database and analyzing component. Hence, VAST can be compared to our described
design choice of a cohesive FP and FS component in Section 3.3, which allows analysis
and other processing of stored information. So, VAST could possibly be integrated into
our target system as such a component. Regarding the general technology or concept
applied for the potential implementation of such a design choice, VAST can be seen as
a search and analysis engine as explained in Section 2.5. However, right now, both no
actual release nor an official documentation is available. Thus, VAST is heavily under
development at the moment and not yet offers the full functionality it is proposed to do.
This fact is underlined as only very limited analysis options for processing are available

so far [54]. Therefore, depending on our concrete intention to already provide more

"http:/ /vast.io/
2http://www.theasciicode.com.ar/
3 https://www.json.org/

4 https:/ /kafka.apache.org/
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potential feature processing and analysis tasks than VAST currently offers, it finally is
not yet utilized by FHS-DNA.

4.3 (COLLECTIVE INTELLIGENCE FRAMEWORK

The Collective Intelligence Framework (CIF) is an intelligence management framework
for cyber threats, which allows the operators ”"to combine known malicious threat in-
formation from many sources and use that information for identification (incident re-
sponse), detection (IDS) and mitigation (null route)” [55]. Hence, it can be compared to
a server fetching intelligence data from multiple sources, whereas a NIDS like Snort or
Bro may be the client to query and (post-)process CIF’s output data. Further, "CIF is
used mainly in two ways: either to query for data stored about an IP address, a domain
or a url, or to produce feeds based on the stored data sets” [56]. Those feeds can then

serve as input to tools like Snort or Bro as mentioned before.

However, as our system especially considers static, strictly hierarchical and closed net-
works in cars and aircraft - even though FHS-DNA is not limited to them in any way -
CIF may not be considered necessary for gathering external intelligence data. In con-
trast, predefined models of well-known communication patterns inside those NsUS can

be used as a benchmark for subsequent anomaly detection.

4.4 SECURITY INFORMATION AND EVENT MANAGEMENT TOOLS

Another category of related work are security information and event management (SIEM)
tools. By conducting distributed FE and anomaly detection, SIEM tools seem to be
similar to the context of our work. However, they detect aplenty events of network infra-
structure components (e.g. servers, firewalls and antivirus filters) on a more high-level
view [57] [58]. Events raised, logged, analyzed and evaluated are not low-level per-packet
or per-connection information, but already rather aggregated by default instead (e.g.
the number of failed logins on a component per time). Additionally, they incorporate
high-level contextual information about all types of assets [58]. Another difference is,
that our system FHS-DNA will not classify feature instances nor react to them. It will
only extract, process and store them, so that another application may build upon them,
maybe implement pattern-mining and finally trigger incidence response mechanisms.
In contrast, a main excellence of SIEM tools is to do exactly that and detect patterns
in the logs through correlation [58] [59] and react appropriately. Therefore, FHS-DNA

may be compared to a partial, low-level application layer within an entire, common
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SIEM tool or NIDS. Nevertheless, a similarity may be the necessity to log some kind of
events and process them in order to make them easy to use in a meaningful way for an

adjacent inspection model [59].

4.5 APPROACHES PARTLY SIMILAR TO FHS-DNA

Another key facet of our work is the decentralization of FH. Approaches similar to
FHS-DNA - at least in some aspects - is [60] and [61].

4.5.1 Two-MODULES APPROACH

[60] proposes an IDS consisting of two modules. Traffic from various networks is cap-
tured via a central switch with a mirrored port and then sent to the first module - a
central traffic collector outside the NsUS. This component extracts the packets from the
traffic and even more the headers of the packets and redistributes those to the second
module via a so-called master node serving as a gateway between the two modules.
The second module is a Spark cluster consisting of multiple worker nodes, each of them
having a Hadoop Distributed File System® deployed on them for storage and further pro-
cessing. Their task is to extract features from the previously extracted packet headers
and send those features via the gateway master node back to the first module. Finally,
this central collector and monitor analyzes the features, trains the IDS’s algorithm and
updates the cluster [60].

By comparing this approach with our target system, three major differences are evident.
First, the presented approach utilizes a central switch with a mirrored port in order to
capture traffic. That was exactly the case which is not possible for strictly hierarchical
networks as described in Section 3.1. Instead, the innovative idea of the DecADe project

is to develop a decentralized FE approach on the agents themselves of the NsUS.

That directly leads to the second difference. In the presented approach from [60],
the actual FE is done outside the NsUS. Worker nodes of an external Spark cluster
extract features from redistributed packet headers. In contrast, FHS-DNA will deploy
lightweight traffic monitoring and FE capabilities on the agents of the NsUS themselves

and make use of so far underused resources.

"http://hadoop.apache.org/
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Third, the approach in [60] only considers features that are extracted from packet head-
ers. As explained in Subsection 2.3.2, we consider features of different vertical abstrac-
tion levels. So, features regarding packets, connections and the entire network will be
handled - not only from packets or even only packets’ headers. Hence, FHS-DNA will

be more comprehensive with respect to information and features under consideration.

Regarding potential design choices as described in Section 3.3, the presented approach
from [60] decided to first capture and save traffic in files, before redistributing it for
actual FE. Hence, this approach implements FE similar to the option as explained in
Subsection 3.3.1. Furthermore, regarding FP and FS, it implements a cohesive process-
ing and storage concept similar to the one described in Subsection 3.3.4. FP (in that
case especially further feature analysis) is on an external, central component and there-
fore can be compared to the option of Subsection 3.3.2, whereas FS somehow can be
described as a composition of options from Subsections 3.3.3 and 3.3.3, as the features
on the one hand are stored outside the NsUS, but decentralized in a Hadoop Distributed
File System on the other hand.

4.5.2 Two-LAYERS APPROACH

Another approach, which now actually takes place inside the NUS itself, is described
in [61]. It suggests a two-layer IDS. Agents on the lower host-layer capture network
traffic and extract features with special focus on identified connections. Furthermore,
they already analyze those extracted features and their respective connections and in
addition apply some background classification on them. These classifications are as-
sessments, whether the identified instances are considered as anomalies or not. Hence,
they send instances of concern to the upper classification-layer hosts, which will fur-
ther take care of these concerns and check the provided classification suggestion with
a misuse detection algorithm. This has the purpose to identify the appropriate attack
types of those pre-classified anomaly suggestions, before retraining and updating the
database and propagating their classifications in order to probably determine appro-
priate responses [61]. Although this approach is applied on the network agents under

surveillance themselves, it differs from our target system in a few major aspects.

First of all, the FH components of FHS-DNA will not make use nor include some
particular classification algorithms in order to do anomaly detection. Their purpose is,
to extract, process and format some features and finally store them appropriately. Those
features may then be used as input to various (ML-based) (A)DMs. Thus, the anomaly

classification is not part of our work. Furthermore, our system may not just consider
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features characterizing connections, but rather all three levels of feature abstraction as

explained in Subsection 2.3.2.

Regarding potential design choices as explained in Section 3.3, the presented approach
from [61] decided to implement FE from live traffic directly on the decentralized, mon-
itored devices and therefore can be compared to the option of Subsection 3.3.1. It also
uses a cohesive FP and FS concept similar to the one of Subsection 3.3.4. FP in this ap-
proach particularly means to distributively analyze connection instances. However, this
FP (i.e. analysis) is not completely done on the monitored devices, but rather finally
handled by the upper classification-layer hosts, which are not inside the NsUS. So, this
FP implementation can be seen as a combination of the options described in Subsection
3.3.2. In contrast, FS better matches a single option described in our design choices, as

it uses a single, external database similar to the option described in Subsection 3.3.3.
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CHAPTER 5

DESIGN

In this chapter we introduce the high-level design of our final Feature Handling System
on Decentralized Network Agents (FHS-DNA). It is supposed to be independent from
any specific implementations, making it generally reusable and deployable to any do-

main, network, topology or hardware with respective resources.

In Section 5.1, we motivate our design decisions for various partial aspects of the overall
system. Further, in Section 5.2 those partial design solutions are compounded to result
in a big picture of the allover high-level system architecture. Moreover, this is further
explored in detail within different subsections, describing the components within the
(sub-)networks under surveillance (NsUS), referenced as internal (see Subsection 5.2.1)
and outside the NsUS, referenced as external (see Subsection 5.2.2).

Finally, important interfaces between those internal and external components are ex-

plained.

5.1 DESIGN DECISIONS

Outgoing from the compared design choices as elaborated in Section 3.3, in this section

we argue our partial decisions within respective subsections in the same order.

5.1.1 FEATURE EXTRACTION

The first design decision to make concerns FE. Two different choices are presented in
Subsection 3.3.1.

On the one hand, we considered an option to share tasks of traffic capturing and FE
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among different components. Hence, the actual FE would not be on live traffic, but
rather on captured traffic saved in files (e.g. pcap-files) sent to other components for
reading those files and finally extracting features from it.

On the other hand, we proposed an option which monitors and directly extracts features
from live traffic. Thus, traffic is not saved, resent and reread in files, but handled
immediately as it is instead.

We finally decided for the second option, where FE is directly done on monitored live

traffic. A couple of reasons are stated below for arguing that decision.

First, there is no need to manipulate or tamper with the monitored traffic. This possi-
bility is explicitly given by the first choice, but not the second one. Thus, the first choice
would be especially useful for purposes like pre-filtering some traffic or manipulate some
packets before extracting features from it, because traffic saved in e.g. pcap-files can be
changed or tampered with. Hence, such an approach would also help a system to learn
and detect e.g. different intrusion patterns or attacks by training it with differently
changed traffic (maybe from an underlying, basic pcap-file). Hence, a system imple-
menting such an approach would turn out to evolve to kind of an anomaly detection
system. However, this is not the intention of FHS-DNA. It should provide the ground-
work for later anomaly detection (as explained in Section 2.1) and therefore extract
(and further process and store) features from traffic as it is. Consequently, those in-
termediary traffic manipulation capabilities are not needed, would make our system’s
design overcomplicated and miss the actual purpose. In addition, FHS-DNA should not
miss the option to handle live traffic, as this would prevent FHS-DNA to be operated
within an actual and active network without having recorded traffic (i.e. for example

pcap-files) available.

Second, based on the absence of that intermediate manipulation need, additionally sav-
ing, resending and rereading traffic would consume limited available resources, especially
disk space due to large files of captured and saved traffic as well as bandwidth for re-
sending them. In addition, also CPU consumption is increased, as the traffic files need
to be read again (even though the original traffic may be limited by pre-filtering). This
is especially true, as a major portion of processing time is consumed by handling the
traffic and not the actual FE as underlined by our evaluation in Section 7.2. By elimi-
nating those unnecessary steps and directly extracting features from traffic instead, we

therefore preserve important resources.

Moreover, with the selected option our system is actually capable of handling live traffic,
which is not possible with the other choice. That way, we gain an additional time

advantage for the overall performance of our system only by design.
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Due to these main reasons, a design decision for monitoring and directly extracting
features from live traffic makes much more sense and improves various aspects (especially

with respect to the constrained resources) of our final system by design.

5.1.2 FEATURE PROCESSING

A second design decision concerns FP. Again, two different choices are presented in
Subsection 3.3.2.

A first option is, to facilitate those internal, decentralized monitoring and FE compo-
nents of the network with additional capabilities to also do FP. Hence, each network
agent as part of the extraction cluster would not only do its own FE, but also its own
FP.

In contrast, the second option is to only do central feature processing on a single, exter-
nal component. That way, FP would be offloaded from the resource-constrained network
agents, which therefore would not need to have FP capabilities deployed on them.

As both of these approaches have reasonable advantages but also disadvantages, we
decided for kind of an efficient and flexible compromise between central, external and
decentralized, internal FP. This compromise aims to combine advantages and eliminate

disadvantages of both choices.

Overall, FHS-DNA should be flexible and adaptable with respect to extracted features.
Nevertheless, for each specific feature and in general we put strong focus on not to miss
any (meta) information that we could get coming along with it. That means, for each
feature we also want to extract all information that we can get, although it may not
be part of the actual feature. An example for that could be to also log the source port
of each connection, even if the actual feature only is about the source address. Hence,
it is important to allow comprehensive feature (and information) extraction even for
traffic peaks by best utilizing limited available resources. Thus, offloading extensive
FP in principle for performance reasons to an external component not restricted in
resources per assumption is very helpful. Hence, offloading FP subtasks e.g. includes
various, comprehensive analysis options for extracted features and the transformation
of features’ log files into an appropriate storage format. So, internal agents save e.g.

CPU, which can be used for more comprehensive FE then.

Although these subtasks of FP are decided to be offloaded from the agents within the
NsUS, we still can do some form (i.e. subtask) of FP directly on the internal agents,
which is the creation of statistically aggregated features.

As already mentioned before, a result from offloading intensive FP (e.g. analysis options)

is the growing ability of extensive FE on the internal agents. Hence, also more complex
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features (e.g. statistically aggregated ones) can directly be extracted from live traffic.
That way, these complex features already may be extracted and therefore do not need
to be constructed anymore by subsequent FP.

In other words, the direct extraction of more complex features actually is a task of FE,
but can also be considered as a subtask of FP. Therefore, extracting complex features
has direct, positive effects on FP, as these complex features would in principle also be
able to be generated (i.e. not being extracted but constructed later on) out of more

basic ones (i.e. which explicitly have to be extracted) during FP.

Although FP on an external component is per assumption not restricted in resources,
this further yields two major advantages.

First, by directly extracting (i.e. not generating by FP) those complex features, the
above mentioned additional (meta) information can also be gained from traffic. Some
(meta) information would not be generated when constructing the complex features dur-
ing external FP, as it maybe simply cannot be deduced from already available features
or information. As reduction of information loss to a reasonable minimum is intended
to be possible with FHS-DNA this is an important aspect for our decision. Hence, the
crucial argument for this kind of compromise is not only the available resources, but
also the minimization of information loss.

Second, having the additional option to directly extract more complex features also
allows the potential extraction of features, which may not be constructed with provided
analysis capabilities during FP. Thus, this is closely related to the first reason of not
missing any relevant information (or even features) from live traffic.

Nevertheless, of course it is still possible to only extract some basic features and later
on further process (e.g. statistically aggregate or analyze) them on the external FP
component. Hence, this design induces great flexibility and another degree of freedom
for the operators. If the respective FP capabilities for a specific feature are available
on the external FP component, the operators can decide whether to directly extract or

generate (i.e. resulting from FP) it.

Summarizing, no specific additional FP capabilities are deployed on the internal mon-
itoring devices. Instead, an external component provides specific FP tasks and capa-
bilities, like e.g. the transformation of log files into a compressed storage format and
various analysis options. This preserves resources on the internal agents, which allows
more complex and comprehensive FE, which furthermore reduces the need of subse-
quent FP, as comprehensive features are already extracted. Hence, this closes the circle

of synergy effects resulting from that solution.
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5.1.3 FEATURE STORAGE

The third design decision concerns final FS. Final storage means the storage of all
transformed and therefore compressed features in an appropriate format, from which
the external (A)DMs can query them. Once again, two different approaches are pre-
sented in Subsection 3.3.3.

A first choice is that all internal monitoring and extraction devices directly save their
own extracted features. That means, each monitoring agent would not only do FE,
but also partial (i.e. its own) final F'S. So, as extracted features are not compressed
and in the appropriate storage format by default, this choice requires either each FE
component to do local transformation (i.e. a subtask of FP) on its own or to send the
extracted features to a central transformation component and receive them back.

In contrast, the second choice suggests that F'S is done on a single, external component.
Therefore, no finally transformed features would need to be sent back to the internal
agents.

Similar to the above design decision regarding FP, we also decided for kind of a compro-
mise solution here. Thus, its concept is twofold and again tries to combine advantages
and eliminate disadvantages of direct FS inside the NsUS and an additional, external

FS component.

We already explained above, that feature transformation is a subtask of FP. Hence, in
the first case of the first choice, each internal FE agent which should also store its own
features would further need FP capabilities. However, we already argued in Subsection
5.1.2 why we decided to offload extensive FP (which includes feature transformation)
from internal agents to a single, external component. Consequently, the first case of the
first choice can directly be neglected according to the same reasons.

Hence, from the first choice it remains the second case. Though, as the limited resources
like the available bandwidth and the self-initiated traffic are major factors in our deci-
sion, neither the merely second case of the first choice nor the merely second choice is

perfectly suited as argued in Subsection 3.3.3.

Therefore, our compromise combines the idea of a single, external, final FS and a single,
intermediate F'S on a dedicated agent inside the NsUS. Within the internal, intermediary
storage, only untransformed (and therefore uncompressed) features are saved, whereas
the final F'S will contain the finally transformed and compressed features and therefore
form the interface to the subsequent (A)DMs’ queries. Moreover, the final F'S will be
updated once in a reasonable time interval, whereas the internal, intermediate FS will

always be absolutely up to date.
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The first main reason for that compromise is that it saves bandwidth and reduces
self-initiated traffic inside the NsUS. That is, because all features extracted from all
decentralized FE devices are directly and originally logged solely on that aforementioned
dedicated device and therefore do not need to be sent across the NsUS. However, as this
dedicated, internal device is also resource-constrained, it does not have to do FE itself
but solely should collect the log files. Thus, it is clear that for this internal, intermediate
storage the device of the NsUS with the most available disk space, but probably with
the less required CPU should be chosen. In contrast, all FE agents do not need to have

any disk space for F'S and can utilize all their resources solely for FE.

A second main reason for that solution is, that the reasonable time interval for the syn-
chronization to and update of the final, external F'S further limits consumed bandwidth
and self-initiated traffic to a reasonable minimum, as features are not sent out perma-
nently but still keeps the final storage relatively up to date (depending on the specific
update frequency). Each pre-specified time interval those internally gathered log files
are synchronized from within the NsUS to an external, not resource-constrained trans-
formation component, which results from the solution identified in Subsection 5.1.2,
which then further initiates the update of the final FS.

Third, access for subsequent (A)DMs is much simpler, as they only need to have access
to this single, external storage instead of to each internal one. That way, comprehensive
feature correlations are also possible to be made by this external component even before

final storage.

Summarizing, this compromise solution once again underlines the close interrelation of
FS and FP. Therefore, the following last design decision identifies a cohesive concept as

shortly explained below.

5.1.4 COHESIVE PROCESSING AND STORAGE CONCEPT

A fourth, last design decision is to be made on the cohesive processing and storage
concept.

As already hinted by the aforementioned design decisions, they offer to combine the
external transformation and the final storage component. Thus, it has to be decided,

whether to combine those external FP and FS components or not.

Per assumption, external components are not restricted in resources as it holds for the
networking devices. Hence, we decided to compound external components for both
FP and FS into a single one. This especially makes sense, as final storage requires

transformation, which is considered as one aspect of FP. Hence, once transformed, the
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same component can directly store the features.
Moreover, this design decision keeps the number of components and interfaces to a
reasonable minimum, which further simplifies the overall system architecture. This

architecture is now explained below in more detail.

5.2 SYSTEM ARCHITECTURE

Based on those design decisions explained in Section 5.1, we come up with an overall
architecture for our system. An overview of it is depicted in Figure 5.1. It is explored
in detail in the following by first describing internal components (see Subsection 5.2.1)
and then external ones (see Subsection 5.2.2).

Moreover, besides all components and their important main tasks also all interfaces are

explained in the respective (sub-)sections below.

5.2.1 INTERNAL COMPONENTS

Again, internal refers to components within the NsUS. Thus, these are not additional
components, but rather those monitored devices, on which our system FHS-DNA is
deployed on to handle features as explained in Section 3.1. Hence, all those components
are limited in their available resources per assumption.

Furthermore, as already hinted by the specific design decisions in Section 5.1, there is

the need of having different types of internal components taking over various tasks. It
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is important to know, that all those types and their tasks are disjunct per assumption.
That means, each type fulfills specific tasks, which are explicitly not taken care of by
other types. Consequently, a type explicitly defines some tasks and resource require-
ments for each device of that type. Moreover, all these types mandatorily need to be
present in a monitoring cluster of FHS-DNA | which basically means that at least one
device must be of each type. In principle, also one device can be of multiple types at
the same time. Furthermore, it is also possible and allowed that between two runs of
FHS-DNA’s monitoring cluster devices change types. Hence, this increases the flexibil-
ity of FHS-DNA, as each device in principle can take over each type (as long as they

fulfill the respective resource requirements of that type).

SNIFFER AND EXTRACTOR

A first type is named Sniffer and Extractor. Its tasks are to monitor the passing net-
work communication traffic and extract features from it as specified by the operator
beforehand. According to the design decisions as stated in Section 5.1, this type does
not care about further FP (e.g. transformation or analysis) nor FS.

Nevertheless, it logs all its extracted features directly and originally onto the Collector
typed device for intermediate, internal FS as explained in Subsection 5.1.3. Hence, this
type requires less disk space than a Collector as it does not log any extracted features,
but some CPU resources for sniffing the network traffic and corresponding FE. Fur-
thermore, that way bandwidth inside the NsUS is preserved and self-initiated traffic
reduced, as no additional transmitting of extracted features’ log files from the Sniffer
and Extractor agents to the dedicated internal, intermediate storage agent (i.e. the
Collector) is necessary.

In general, within the monitoring cluster of FHS-DNA there can be multiple devices of

this type at the same time.

COLLECTOR

The second type of internal devices for our system is named Collector. In contrast to
the above type, FHS-DNA’s monitoring cluster always only contains exactly one device
of this type at a time. Its task is to save all decentralized extracted features of all Sniffer
and FExtractor typed devices on its disk. As already explained before, this is done by
allowing the Sniffer and Fxtractor typed devices to directly and originally log onto the
Collector, as this preserves bandwidth for not needing to send the extracted features
across the NsUS. Hence, this typed device serves as the intermediate, internal FS, from

where the log files (containing the extracted features) are synchronized once in a rea-
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sonable time interval to the external, cohesive FP and final FS component (resulting
from design decision in Subsection 5.1.4). Hence, the Collector needs more disk space
than any Sniffer and Extractor, as it saves all their extracted features, but requires less
CPU, as it does not monitor traffic nor extract features itself. Thus, as this feature
gathering type already by design plays a central role among those internal devices, it
further serves as a gateway to the outside for different purposes.

First, as the intermediate, internal F'S component it provides an interface to the com-
pounded external FP and final FS component outside of the NsUS.

Second, the Collector provides another interface for (dynamic re-)configuration of FHS-
DNA’s monitoring cluster. That means, via the Collector it is possible to specify, which
devices of the NsUS are part of the monitoring cluster and of which type. Even further,
the operators can specify, which of those Sniffer and Extractor typed devices extract
which features.

Third, also starting and stopping FHS-DNA’s monitoring process is initiated on the Col-
lector, which is especially needed when a new configuration of the monitoring cluster
should be loaded.

COORDINATOR

The third and last type for internal components is named Coordinator. Again, within
a monitoring cluster of FHS-DNA, it is in principle possible to have more than one Co-
ordinator at a time. Its task is to keep state across different devices of type Sniffer and
Extractor. This is especially necessary, if multiple, decentralized devices of type Sniffer
and Extractor extract and log features to the same feature log file on the Collector. As
all logs are intermediary gathered at a central, internal point (i.e. the Collector), it is
reasonable to have only one common log file for each feature whenever possible, which
is written by multiple Sniffer and Extractor devices.

However, there are also features which corresponding logs are not able to be aggre-
gated across Sniffer and Eztractor devices (and respective interfaces) as described in
Subsection 5.4.2 below.

5.2.2 EXTERNAL COMPONENTS

In contrast to internal components, external means outside the NsUS. It can even be,
that they are physically not located next to each other or the NsUS. With respect to the
car and aircraft, that could mean they do not even have to be on board. Consequently,

those components do not have to be restricted in their resources per assumption.
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FEATURE PROCESSOR AND STORAGE COMPONENT

The first external component is the Feature Processor and Storage Component.

As explained in Subsection 5.1.4, it is reasonable to combine the external FP and final
FS component into a single one. Hence, its main task is to poll out the intermediately
and internally collected feature log files from the internal Collector typed device. This

is done once in a predefined time interval by synchronizing the respective directories.

Although this means that the final, external FS is not always absolutely up to date
with respect to actual extracted features’ log files, it is important to understand that
related design decisions (as explained in Section 5.1) do not only preserve limited avail-
able resources (especially bandwidth), but even further does not loose in any way the
fundamental advantage of FHS-DNA to handle live traffic and extract features from it.
In case we would have decided that handling live traffic is not necessary for FHS-DNA,
it would never be possible to directly operate FHS-DNA in an active network without
having previously recorded traffic (e.g. saved in pcap-files) available. Hence, that would
generally restrict FHS-DNA to be applied to any use case where no recorded traffic is

available.

Further, once the feature log files are synchronized to the external Feature Processor
and Storage Component, it has multiple opportunities of locally processing them. This
includes comprehensive analysis options, the creation of new features out of already
available ones (e.g. statistical aggregations) and the transformation of the intermedi-
ate feature log files into the final, compressed and generic storage format. Once this
has been done, the final storage can be updated by the Feature Processor and Storage
Component, before it finally does some cleanup, which includes locally removing the
uncompressed, intermediate feature log files, as they are no longer needed.

Moreover, the storage has to allow queries and their results’ combination by exter-
nal (A)DMs (see requirement NFR.8), which need to import some compressed stored
features for subsequent anomaly detection. Thus, the Feature Processor and Storage
Component also serves as a gateway to those (A)DMs via another interface.

The so far intended number of such components is limited to one at a time. As sug-
gested in Section 9.2, development of ensuring mechanisms may be conducted as future

work.

CONFIGURATION COMPONENT

A second external component is called Configuration Component. Its main task is to
initiate dynamic reconfiguration of FHS-DNA’s monitoring cluster on demand of the

operators. This reconfiguration includes the determination of which Sniffer and Ex-
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tractor extracts which features. In order to allow that dynamic reconfiguration, the
Configuration Component needs to connect to the internal Collector in order to locally
initiate the reconfiguration from there.

The reason for this component to be an additional and especially external one there-
fore is to keep the design as realistic as possible. In a real-world scenario, authorized
operators probably would (maybe even remotely) connect to the Collector in order to
initiate a reconfiguration.

Due to that, our system in principle also allows multiple external Configuration Com-

ponent typed devices, each representing an authorized operator’s computer.

5.3 IMPORTANT EXTERNAL INTERFACES

Due to the design decisions as stated in Section 5.1 and the existence of external com-
ponents (see Subsection 5.2.2), our system requires interfaces as depicted in Figure 5.1

to the outside of the NsUS. Those are explored in detail in the subsections below.

5.3.1 EXTERNAL LINKAGE INTERFACE

This interface has the purpose to centrally start and stop FHS-DNA’s monitoring clus-
ter. As the Collector serves as a central gateway between the internal and external

components, this interface is to the internal Collector typed device.

5.3.2 LOGS SYNCHRONIZATION INTERFACE

Further, the Logs Synchronization Interface has the purpose to allow polling of collected
and intermediately saved features’ log files from the Collector to the external Feature
Processor and Storage Component. Thus, it also is adjacent to the internal Collector
component. Furthermore, this interface utilizes generic and widely-used technologies as
explained in Subsection 6.3.1, e.g. for transferring those features’ log files via synchro-
nization. That is done once in a predefined time interval as explained in Subsection
5.1.3 and totally autonomous in accordance to NFR.5 (from Subsection 3.2.2). More-
over, this synchronization is done no matter whether FHS-DNA is currently monitoring

traffic or not.
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5.3.3 (RE-)CONFIGURATION INTERFACE

The purpose of this interface is to allow (dynamic re-)configuration of FHS-DNA’s
monitoring cluster. Reconfiguration is initiated on demand by the operators, each rep-
resented by an external Configuration Component. Hence, this interface is between
the internal Collector component and that external Configuration Component typed
device(s). Thus, in order to enable easy appending of additional authorized compo-
nents of type Configuration Component to initiate reconfiguration on the Collector, this
interface also utilizes generic and widely-used technologies as explained in Subsection
6.3.2, e.g. for remotely connecting from such a Configuration Component to the internal
Collector.

Furthermore, we want to specify on a rather high level, how such a (dynamic re-)con-
figuration works in general. For that, it has to be differentiated between a static config-
uration (e.g. for the initial startup of FHS-DNA’s monitoring process) and a dynamic
reconfiguration. Intuitively it is already clear, that a (static) configuration is the basis
for a potential subsequent (dynamic) reconfiguration. Moreover, dynamic means that
switching from one configuration into another only needs to be initiated by a respective
script call, but not manually edited (i.e. implemented). Furthermore, it means that it
can even be initiated independent of whether FHS-DNA’s monitoring process is actually
running or not, whereas a static (manually implemented) configuration must only be

edited or changed when FHS-DNA is currently not monitoring traffic.

(STATIC) CONFIGURATION

A particular configuration is actually fourfold and necessarily defines:
1. Which internal devices of the NsUS are part of the monitoring cluster.
2. What type each agent of the monitoring cluster has.
3. Which interfaces each agent particularly monitors.

4. Which features each Sniffer and Extractor as part of the monitoring cluster ex-

tracts.

The design for such a configuration requires to statically and manually define (only
while FHS-DNA is not monitoring) point one, two and three within a single file which is
referenced and utilized every time FHS-DNA launches another monitoring run and called
monitoring layout from now on. Conceptually, such a monitoring layout is supposed to
have the structure as depicted in Figure 5.2. Of course, it is not lower nor upper bounded

to four agents. Within the brackets, we can set a random name for each agent part of
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[name-monitoring-agent-1]

type=
host=

[name-monitoring-agent-2]

type=
host=

[name-monitoring-agent-3]

type=
host=
interface=

[name-monitoring-agent-4]

type=
host=
interface=

FIGURE 5.2: Exemplary extract of the abstract and conceptual structure of a statically and manually
to define monitoring layout

the monitoring cluster within the NsUS. The host section must contain its IP-address.
The type section specifies the type and therefore the tasks of that agent. In addition, for
each Sniffer and Extractor we further have to specify the interface section, which has to
be the exact name of the interface to extract features from. As an additional note, all
the defined IP-addresses need to be part of networks, which are further communicated
to FHS-DNA in another file by simply listing them in there.

In contrast to the other points, aforementioned point four is defined in another, separate
file. The definition of such a file specifying which agent extracts which particular fea-
tures is called a configuration mode in the following. Hence, as an abstract, conceptual
configuration mode can be seen in Figure 5.3, loading various scripts for FE to either
all monitoring agents of type Sniffer and Extractor (line 3 - 5) or to only specific ones
(line 9 - 20) is possible. Even further, in case the monitoring cluster only consists of
one standalone agent fulfilling all tasks of type Sniffer and Extractor, Collector and
Coordinator altogether, it is further possible to load only a specific subset of additional
scripts for FE (line 22 - 25) besides the default ones (line 3 - 5) to that standalone
agent. Consequently, the directly loaded scripts cluster-main-3-script, cluster-main-
1-script and standalone-main-1-script transitively load the respective actual scripts for
FE. However, the most important line of such a configuration mode is the first one,
although it is a comment. It explicitly specifies the configuration mode and always has
to be of the format # Mode X, with X being the value to identify and reference the

configuration mode.
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1 #Mode X

2 # Default, independent script loading.

3 (@load ./testing/feature-extraction/feature-extraction-script-1
4  (@load ./testing/feature-extraction/feature-extraction-script-2
5 (@]load ./testing/feature-extraction/feature-extraction-script-3
6

7

8 # Additional, conditional script loading

9 @if (Cluster::is_enabled())

10 # Matches on name-monitoring-agent-3.
11 @if (/name-monitoring-agent-3/ == Cluster::node)

12 # Load internal specific scripts here
13 @load decade/cluster-main-3-script
14  @endif

15  # Matches on name-monitoring-agent-4.
16  @if (/name-monitoring-agent-4/ == Cluster::node)

17 # Load internal specific scripts here
18 @load decade/cluster-main-1-script
19  @endif

20 @endif

21

22 @if (!(Cluster::is_enabled()))

23 # Load scripts for standalone mode.

24 (@load decade/standalone-main-1-script
25 @endif

FIGURE 5.3: Exemplary extract of the abstract and conceptual structure of a statically and manually
to define configuration mode
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Summarizing, although all configuration modes as well as the monitoring layout need to
be statically and manually defined before being used, a crucial difference between them
is that it is possible to have more than one operationally available configuration mode,

but only one combinable monitoring layout at a time.

(DyNAMIC) RECONFIGURATION

Hence, by further implementing and adding such transitively loading scripts and com-
bining them in different manually and statically defined configuration modes, we can
dynamically switch between those modes as described in the following.

Hence, dynamic reconfiguration of FHS-DNA’s monitoring process means to switch be-
tween various manually and statically defined configuration modes by always keeping
the same manually and statically defined monitoring layout. Moreover, dynamic means
that this switching process can even be initiated while the FHS-DNA’s monitoring
process is running. Nevertheless, it of course is also possible if FHS-DNA is actually
not monitoring any traffic. In the latter case, the configuration mode is just switched
and remembered for the next run. In addition, configuration modes can of course be
switched more than once (even if monitoring is currently not done), as always only the
last configuration mode is remembered. However, if monitoring is currently done and
the operators temporarily switch configuration modes multiple times, FHS-DNA handles
each switch separately and therefore it may take some time until the final configuration
mode is on. However, it is possible to switch directly from any configuration mode into
every other one, so temporarily switching configuration modes multiple times is not a

typical use case anyway (but still possible).

Moreover, this conceptual design further contributes to the required extensibility and
flexibility as specified in NFR.6 and NFR.7. Furthermore, a more detailed and therefore
low level description of the concrete implementation of the dynamic reconfiguration

workflow is explained in Subsection 6.3.2.

5.3.4 DETECTION MODEL INTERFACE

This last explicitly listed interface of FHS-DNA serves the purpose to allow access to the
compressed, appropriately transformed and stored features in the final feature storage
on the external Feature Processor and Storage Component (as argued in Subsections
5.1.3 and 5.1.4). Subsequent (A)DMs need to be able to query and easily combine
features from there (see NFR.8 from Subsection 3.2.2) for following anomaly detection.
Hence, this interface is located between that external Feature Processor and Storage

Component and potentially many external (A)DMs.
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5.4 INTERMEDIATE LoG FILES

Intermediate log files in general always mean the respective extracted features from
their initial logging on the internal Collector until the transformation into the final,
compressed FS format by the external Feature Processor and Storage Component (from
that moment on it is referenced as a feature in its final, compressed F'S format). Hence,
an intermediate log is the file an extracted feature is initially saved in as its content.
Moreover, we further differentiate between two different types of these intermediate log
files as explained in the following Subsections 5.4.1 and 5.4.2. Differences certainly also
affect the content to include depending on the specific feature as well as the overall
format. Latter characterizes one of the two types and also depends on the specific

feature to extract and in particular its complexity.

Nevertheless, a common similarity for all intermediate log files - regardless of which type
they are - is their general high-level organization scheme to store feature information.
With respect to NFR.8 and NFR.9, finally stored features are required to be (efficiently)
queriable. Furthermore, easy combination and analysis (e.g. during FP) is desirable.
Hence, although no queries of subsequent (A)DMs will ever be done on the intermedi-
ate log files ((A)DMs will always query the finally compressed, stored features from the
external Feature Processor and Storage Component), having the same principal organi-
zation scheme as the finally stored and queriable features allows much easier and faster
transformation into that final, compressed FS format than additional reorganization
would be necessary.

So, outgoing from a tabular organization scheme with rows and columns, a columnar
FS format is preferable over a row-based one. That especially is a consequence resulting
from our feature context, as even single columns of a feature’s intermediate log file can
in principle be understood as further and more basic (sub-)features, too. For better

clarification what we exactly mean by this, an example is given in the following.

Considering for instance the intermediate log file which represents the feature (we call it
conn-count in the following) for counting the number of connections from each identified
source address. This log file could have structured that information as its content in
two columns. The first column contains all the identified source addresses, whereas the
second one contains the respective count. Hence, whenever referencing feature conn-
count (before its transformation), we mean the appropriate intermediate log file which
contains this particular feature’s information as its content. However, even those two
columns (in particular the first one with all the source addresses) can further be seen as

basic (sub-)features themselves. For example, we could call the first column the feature
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src-adr, which therefore does not need an own intermediate log file, because it is a more

basic one and already included in another feature’s intermediate log file.

Hence, using such a tabular organization scheme for already the intermediate log files
further reduces the transformation to simply converting each one into an adequate
and also tabular, but moreover compressed, columnar final FS format. In addition,
querying for basic (sub-)features (i.e. columns) in such a columnar format is much easier
and faster, as not plenty of distinct rows have to be (eventually selectively) queried in
order to gain all entries for a specific, basic (sub-)feature. Moreover, rows in principle
can grow very large (depending on the number of extracted basic (sub-)features, i.e.
columns), which would further downgrade features’ querying, combination and analysis

performance.

5.4.1 GENERAL LOGS

The first intermediate logging type is the General Logs. Logs of this type are mainly
characterized by two aspects.

First, each specific feature - no matter whether it is extracted just from a single interface
of a single Sniffer and Extractor device or even from multiple interfaces of various Snif-
fer and Extractor devices at the same time - always is logged in a unique and therefore
common intermediate log file on the Collector. Hence, for each feature of type General
Logs we get exactly one corresponding intermediate log file, which contains raw feature
information extracted and combined across all participating (i.e. contributing to the
generation of the common log file by extracting the appropriate feature) Sniffer and
Eztractor devices.

The second characteristic aspect refers to the raw feature information, which is con-
tained in these General Logs. Raw feature information explicitly means that these logs
do not contain sliding windows of the respective feature’s exact evolution over time.
Nevertheless, each additional extracted information (which is related to and therefore
should be incorporated into this feature’s log file) over time is appended in a new row
at the end of the log file with the respective values of the more basic (sub-)features
(which make up the actual, superior feature and its respective log file) in the appropri-
ate columns, according to the overall tabular organization scheme as explained above.
Hence, whenever the log file of this type is referenced or utilized, its content represents
a snapshot of the feature as it is at the moment without focusing on the exact, previous

step-by-step evolution.

Furthermore, it is important to understand that extracting, potentially combining and

finally logging information from all over across the participating Sniffer and Extractor
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devices of FHS-DNA’s monitoring cluster, is totally independent of the level of abstrac-
tion of the respective feature. In other words, it does not mean that each feature which
is extracted from multiple interfaces of various Sniffer and Extractor devices at the same
time always is e.g. a NL feature. Quite the contrary, as already mentioned above the
type is mainly dependent on the specific feature (but not its level of abstraction) and
in particular its complexity.

Hence, regarding the complexity it is in principle the case for FHS-DNA that less com-
plex features are of this type General Logs, because distributively extracted, raw feature
information can more easily be combined within a single, common log file per feature
on the Collector.

5.4.2 INTERFACE-SPECIFIC SLIDING WINDOW LOGS

On the contrary, more complex features - again in principle independent of the respec-
tive level of abstraction - typically are of the second type, which is Interface-Specific
Sliding Window Logs. Again, logs of this type can be characterized by a few aspects.

First of all, the more complex features often already incorporate for example some sta-
tistics. Hence, in order to also be able to directly extract such features from network
traffic instead of generating them during subsequent FP (e.g. Subsection 5.1.2 explains
why that can be meaningful), some additional calculation (e.g. some statistical aggre-
gation) during extraction is necessary. So, in contrast to the General Logs, operators
could not only be interested in a snapshot of the respective, complex feature’s statistic,
but also in its exact evolution over time. Thus, this is another facet further increasing
the complexity of the logged information. General Logs are per design not representing
this information, as they are aggregated across all participating Sniffer and Extractor
devices and logged within a single, common file on the Collector not taking care of the
exact evolution of its entries as explained above. That means, the order in which each
new row is appended is per design not necessarily the order, in which the information
was extracted. Already that argues why a second, intermediate log type with sliding
windows representing the exact evolution of the respective feature’s statistic should also
be supported by our system FHS-DNA. Therefore, a design solution for not only con-
tinually expanding the log randomly (that refers to the order, not the content), but
rather doing that in the exact order is necessary. Conceptually designing such a solu-
tion has the advantage of being independent of a particular (available) implementation.
Nevertheless, it is clear that some kind of history of that feature’s statistic needs to be
stored, continually expanded and logged as one sliding window (with a separating row
between each two sliding windows) for every change propagated by one participating

Sniffer and Extractor. However, in case more than one Sniffer and Extractor propagate
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a change on that feature’s history at the very same time, the history could escalate in
more than it is supposed to do within one step, which could easily exceed the meaning-
ful composition of one statistic’s step and therefore compromise the original intention
of these logs as described above. That means, the history would again not represent
an accurate step-by-step evolution, which argues to restrict the extraction of the same
feature generating a log of type Interface-Specific Sliding Window Logs to one interface
(and therefore one Sniffer and Extractor) for each monitoring run of FHS-DNA. Hence,
extracting the same interface-specific feature from more than one interface at the same
time must be prevented in order to produce meaningful Interface-Specific Sliding Win-
dow Logs. This decision is even further reasoned by the implementation limitations as
explained in Subsection 6.1.5. Moreover, this is also the reason why this type is called
interface-specific. Nevertheless, different features which each generates a log of this type
are allowed to be extracted (from the same or different interfaces) at the same time.
Further, all logs of that type are still logged on the Collector device, but in an opti-
mal way with additional meta information (especially from which interface they were
extracted) in their log file’s name. Capturing that meta information also contributes
to the intention of FHS-DNA to not miss any information that could easily and addi-
tionally be saved as explained before (e.g. in Section 5.1). How this additional meta
information is than used to further implement a reasonable organization for the final

FS is explained in Subsection 6.2.4.

5.5 FINAL FEATURE STORAGE

In contrast to the intermediately stored log files on the internal Collector, the final
FS on the external Feature Processor and Storage Component contains the extracted
features in a transformed, compressed and generic storage format (accordingly to NFR.
8 and especially NFR.9) as described in Subsection 5.5.1. Moreover, the corresponding

storage scheme is explained in Subsection 5.5.2.

5.5.1 FINAL STORAGE FORMAT

Although all options of various technologies for final FS from Subsection 2.5 are open-
source, fundamental differences appear.

PostgreSQL and SQLite are RDBMSs. Those require some predefined schema, which
maps a reasonable distribution of the logging data across tables and rows [37]. So, they
typically work row-based. However, basic features can typically be compared to columns

of tables (as described in Section 5.4). Hence, in the context of extracted network fea-
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tures, those row-based types of database systems make it hard to define a model that
allows easy and fast large-scale queries concerning some basic features. Querying for
specific columns (i.e. basic features) instead of rows (i.e. an entry with many different
features, whereas only one basic feature / column is relevant) is much simpler. More-
over, one query for that column over all entries (e.g. for more comprehensive analysis)
is also much more efficient and faster than querying over all entries and retrieving all
their columns (which are not relevant except the only interesting one). Beyond that,
a simple setup as well as fast read times are not really supported by PostgreSQL [37],
but are required for the approach within our work.

Another crucial disadvantage of both RDBMSs and NRDBMSs is that those are just
storage options, which do not offer integrated analysis or further processing.
Regarding Elasticsearch it almost holds the same, as it does not provide all function-
ality needed (e.g. transformation to a compressed format). Nevertheless, it contains
integrated analysis options. However, querying and probably saving those results for
further analysis may be a possibly relevant aspect and therefore should not be restricted

at early stages.

Hence, the most proper solution is to transform the intermediate log files into a com-
pressed data format. In order to further contrast that solution’s possibilities to the
other options disadvantages, the final FS data format also has to be generic, so that
various (A)DMs can properly utilize it. Moreover, it would be best, if that storage
format further is a columnar one, so that easy and efficient querying on basic features
(i.e. columns) is supported as explained above. In that case, NFR.8 and NFR.9 can
be perfectly complied with. Nevertheless, storing those transformed logs (and their
contained features) in such a data format requires to manually define an appropriate

storage scheme as explained below and in Subsection 6.2.4.

5.5.2 FINAL STORAGE SCHEME

Conceptually, our storage is a hierarchic directory structure directly in the file system
of the Feature Processor and Storage Component. At the lowest level of that hierarchy
it stores the transformed, generic, compressed and columnar feature files. Below, we

state the main reasons, why we decided for such a final FS scheme.

First, the overall goal is to have an appropriate storage scheme, from which various
(A)DMs should be able to query and combine results (according to NFR.8 and NFR.9).
So, with a hierarchic directory structure we already pre-cluster the transformed files
according to their contained features. That way, (A)DMs already get a hint, which files

may typically be combined for more comprehensive analysis. So, regarding easy and
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efficient querying and combination of results, this structure yields particular benefits.
First of all, a join of multiple files (maybe even across different levels) is in principle not
just always possible, e.g. with Apache Spark SQL [62] [63] [64], as long as an index for
a join is available in the respective files, but also even cheaper for very likely or typical
correlations. That is, as especially files within a certain, common categorization (i.e.
directory) are more likely to be combined for analysis, as they contain similar informa-
tion. Consequently, additional queries for preselecting various transformed files before
actually combining them for analysis are not needed, as our structure allows to do that
with only one query on the respective superior directory to receive all contained files.
Moreover, in case of less typical correlations, no additional inefficiencies are coercively
induced, as selecting only single files from various levels and directories is still possible
and maybe even accelerated due to easier navigation in a well-structured hierarchy.
So, this structure is in no way restrictive to any case of querying or meaningful combi-
nation of transformed files by (A)DMs. Furthermore, it already provides a reasonable
categorization on certain levels, which allows cheaper and more efficient associations in
most cases. That especially contributes to compliance with NFR.8 and NFR.9 and is

further especially related with the third reason below.

Second, our hierarchic structure is meant to be relatively stable. The peak of it in
principle is much less volatile (and broad) than the basis, which perfectly fulfills our
intention of allowing easy navigation (i.e. access) for (A)DMs. The top level always is
the single directory containing the entire F'S. The second level always contains maximal
two directories - one associated with the last (i.e. maybe current) live monitoring run
and one for historic data. The more we descend in this pyramid, the more growth is
possible. For instance, depending on the traffic load, the number of additional interfaces
(which could e.g. be another level in the pyramid) is probably hardly growing, whereas
the size of the transformed files on the bottom level definitely increases as well as their

number with each additional monitoring run does.

Third, the increasing number of smaller files on the bottom level of this pyramid also is
another reason for that storage scheme. Putting all information and all features into e.g.
a single file would indeed eliminate the need for joins, but make subsequent anomaly
detection nevertheless much less efficient.

First, the size of the file to import is much bigger than only importing a relevant subset
of features in respective files already pre-categorized in our pyramid.

Second, the number of rows in a single file would rapidly grow, whereas many columns
for each row would stay empty, as not every row necessarily contains an entry for each
column. Hence, for efficient handling of those logged features, subsequent (A)DMs are

better off with our storage structure of more smaller, but less bigger transformed,
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compressed files. However, the size dimension only refers to rows. With respect to
columns, our files contain as much reasonable data as possible to reduce information loss.
Thus, reasonable means non-empty entries, which again closes the circle in comparison
to a single file with many empty columns for each row. So, making (efficient) joins on
much smaller (subset) data is still supposed to be way less expensive than always having

to import one very large file.

Fourth, by already pre-clustering the files in a hierarchic directory structure on disk,
the (A)DMs also get a better overview on which data is available and therefore possible
to query or combine. Hence, that makes the storage both more clearly arranged as
well as deducible with respect to missing features maybe being extracted in future for

generating specifically desired insights by combination with already existing files.

Fifth, our pyramid can clearly separate between live data and historic data. Live data
always gets handled with special care, as new live data requires the old one to be deleted
beforehand. Hence, old "live” data gets not directly inserted to the historic branch (on
the second level as mentioned above) of the storage, as it may still grow or change.
Therefore, this data is not considered as historic before the actual monitoring run is

finished. Therefore, handling F'S updates requires special care (see Subsection 6.2.5).

Finally, besides the mere, final F'S in a structured way as explained above, this de-
sign moreover contributes to our intention to reduce information loss to a reasonable
minimum whenever possible as already mentioned before. This is achieved, as the lev-
els of the hierarchic directory structure may also incorporate (and therefore log) some
additional meta information (e.g. related levels of abstraction, interfaces, dates and
timestamps of files) not directly related to the originally extracted features themselves.

How this is actually implemented is explained in detail in Subsection 6.2.4.
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IMPLEMENTATION

In this chapter we explain our implementation of the previously introduced high-level
design from Chapter 5. The implementation presented serves as a proof of concept
(PoC) and is available on [65].

It is important to note that only exemplary extracts of FHS-DNA are described in detail
in the following. Hence, for a more comprehensive review of code and its considered
implementation concepts we refer to appropriate scripts in the codebase in [65]. For
their implementation languages, our scripts are mainly implemented in the Bro scripting

language for FE and Bash? as well as Python® scripts for everything else.

6.1 FEATURE EXTRACTION

The first section is about live traffic monitoring and extracting features from it.

6.1.1 BRO AS TOOL FOR TRAFFIC MONITORING AND FEATURE EXTRACTION

After having compared a huge variety of potential options such as the ones described
in Section 2.4, we decided to use The Bro Network Security Monitor due to following

main reasons.

Uhttps://www.bro.org/sphinx/script-reference/index.html
2https://www.gnu.org/software/bash/

3 https://www.python.org/
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First of all, Bro by default provides a monitoring cluster layout composed of multiple
Bro instances being coordinated [33] [34]. As the FH approach needs to be a decentral-
ized one as monitoring capabilities need to directly be deployed on the agents of the
NsUS, such a Bro monitoring cluster perfectly suits that intention. Supporting that
option natively (e.g. Bro’s node.cfg file exactly specifies such a monitoring layout as
presented in Figure 5.2) and additionally providing mechanisms for coordination and
central logging [33] prevents otherwise most likely occurring issues regarding instantia-
tion and coordination of such a cluster. Moreover, even a central cluster management
interface - named BroControl - for comfortable control and access of this cluster is pro-
vided by Bro by default [28]. Moreover, in Bro cluster mode Bro and BroControl only
need to be installed on the manager [66], which additionally preserves disk space on
the other nodes. In contrast, tools like Snort and others do not natively provide these

options.

Moreover, a central logging mechanism is not only already integrated into the cluster
mode, but also abstracts a little bit and therefore is rather high-level [28]. In addition,
the central logging architecture supports the fact of "data centric architectures being

incorporated into modern aircraft” [67].

Another crucial reason for Bro is its Turing-complete and domain-specific scripting lan-
guage [28]. This opens up much broader implementation opportunities for FE than for
instance just defining rules for signature-based detections as possible in Snort, because
"arbitrary analysis tasks” [28] for monitored traffic can be implemented. That particu-
larly means that Bro is not restricted to work signature-based, but rather also supports
anomaly-based analysis and extraction [28]. Hence, that better fits our work’s context,
which primarily is network anomaly detection. As this especially requires passive net-
work monitoring for FE and not deep-packet inspection nor packet manipulation, that

makes Bro also more appropriate than e.g. Wireshark and Scapy.

6.1.2 BRO "NORMAL” CLUSTER FOR DECENTRALIZED ON-AGENT MONI-
TORING AND FEATURE EXTRACTION

As explained in Subsection 2.4.3, there are basically two different cluster modes of Bro
provided by default. Below we argue the main reasons why we decided to use the

"normal” cluster instead of the deep cluster. Those include, but are not limited to:

1. The deep cluster concept is still under development. At the current state, imple-
mentation and adaption of some functionality already integrated and usable in
“normal” cluster is not yet finished for a deep cluster setup (e.g. the sumstats
framework) [31].

64



6.1 FEATURE EXTRACTION

2. Focus of a deep cluster is on very big setups. The intention is to "bring monitoring
from the edge of the monitored network into its depth” [31]. Even a group of cars
or aircraft interconnected with each other is too small in comparison to such an

intended field of application as described in [31].

3. A deep cluster is based on fundamental and more comprehensive requirements as
for instance, which components need to be connected. In detail, the communi-
cation system requires each deep cluster node being able to communicate with
each other. Therefore, the created peer-to-peer overlay network and the publish-
subscribe system lead to a bidirectional communication system for all nodes. One
reason for such an overlay network is, that all worker nodes and sub-clusters within
the deep cluster can be fed with rules, information and reactions from the entire
network. In contrast, the “normal” cluster requires much less communication in-
terfaces, as e.g. not every worker needs to communicate with all other worker
nodes. Hence, the "normal” cluster is totally fine for FHS-DNA’s purpose, as it

does not require such a high interconnectivity.

4. Moreover, such a peer-to-peer overlay network with its publish-subscribe commu-
nication system is not really appropriate for our system. Besides the fact that it
would be very hard to ensure this kind of connectivity between e.g. cars, they
even should not be connected that way. In contrast, a centralized approach, where
e.g. all cars write to a central logging hub (e.g. a logger) after FE and FP, is more

realistic and perfectly matched by a "normal” cluster.

Hence, this is why we decided for the “normal” cluster of Bro and against the deep

cluster concept. An even more detailed comparison is given in [31].

6.1.3 ADAPTION OF BRO "NORMAL” CLUSTER TO INTERNAL COMPONENTS

Hence, the final implementation of a coordinated, decentralized, on-agent monitoring
cluster is done with a Bro “normal” cluster, which in the rest of this chapter is simply
referenced as Bro cluster, if not explicitly stated otherwise. Within this subsection, we
give an overview on how it is adapted and mapped to our system’s architecture and its

internal components’ types and tasks.
SNIFFER AND EXTRACTOR

Each device with monitoring type Sniffer and Fxtractor is of type worker in the in-

tegrated Bro cluster of our system. This is possible, as the worker typically fulfills
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the same main tasks (see Paragraph 2.4.3) as required by a Sniffer and Extractor (see
Subsection 5.2.1).

COLLECTOR

The internal Collector typed device is represented by the manager node of a Bro cluster.
Outgoing from its main purpose of gathering all the logs of the distributively extracted
features, this type could also be simulated by a logger node of a Bro cluster at a
first glance. However, as one node of the internal monitoring cluster also needs to
serve as a gateway for a couple of interfaces as defined in Section 5.3, this type must
be implemented as a manager node. Hence, starting and stopping the Bro cluster is
initiated on the manager via the External Linkage Interface, which is implemented by

the default BroControl interface.

COORDINATOR

Finally, each device with monitoring type Coordinator is of type prozy in the integrated
Bro cluster of our system. Again, this is possible as the prozy typically fulfills the same

main tasks (see Paragraph 2.4.3) as required by a Coordinator (see Subsection 5.2.1).

6.1.4 MANUALLY IMPLEMENTED AND EXTRACTED FEATURES

In order to keep information loss while FE at a reasonable minimum, FHS-DNA is sup-
posed to extract features and as much relevant additional meta information as possible
from multiple levels of abstraction (PL, CL, NL). For that, in addition to the features
extracted by Bro by default (see [68]), Table 6.1 gives an overview of all comprehensive,
additionally and manually implemented features that are handled in the PoC imple-
mentation of FHS-DNA. So, it is important to understand that those comprehensive
features may even contain more basic ones as additionally logged meta information.
Consequently, all together make up one possible and reasonable feature subset.

As already explained in Section 2.3, features originally deduced from different datasets
differ in their relevance depending on the specific aspects of their deduction and corre-
sponding valuation. In order to consider as actual and meaningful insights as possible
on those aspects, we took Table 2.1 based on [12, p. 8] - showing the eleven highest
ranked features from UNSW-NB15 and NSLKDD according to a specific algorithm as
proposed in [12] - as a foundation for our reduced subset composition. Selection criteria
include considerations to extract features from every vertical level of abstraction (which

is why we additionally also personally constructed some PL features not respected in
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Table 2.1) and with different complexities. Furthermore, as the UNSW-NB15 dataset is
a more recent, reliable and valid one, we decided to include (i.e. marked green in Table
2.1) twice as much features from it than from the NSLKDD dataset.

In the first column from Table 6.1, we see the common name of each feature. Below,

we give a short description on what each feature stands for:

land: Indicates a land-attack. If a connection’s IP-addresses and port numbers
from source and destination are the same, then the connection related entry has
value 1, otherwise 0 (based on [69]).

synack: Calculates the TCP connection setup time. This is the time between the
SYN packet from the originator and the respective SYN__ACK packet from the
responder in a TCP handshake (based on [3]).

ct_src_ltm: For each of the 100 last connections anytime it counts the number of

connections that contain the same source address (based on [3]).

ct_srv_dst: For each of the 100 last connections anytime it counts the number of

connections that contain the same service and destination address (based on [3]).

ct_dst_sport_Itm: For each of the 100 last connections anytime it counts the

number of connections that contain the same destination address and source port
(based on [3]).

count: Whenever a connection is identified, it counts the number of connections
to the same destination host as the current connection in the next two seconds
(based on [69]).

raw__layer?2 _packet__header: All available layer two header information of a packet.
raw__IPvj _packet header: All available IPv4 header information of a packet.
raw__IPv6__packet header: All available IPv6 header information of a packet.
raw__TCP__packet_header: All available TCP header information of a packet.
raw_UDP_packet__header: All available UDP header information of a packet.

raw_ICMP__packet__header: All available ICMP header information of a packet.

The second column lists the script implementing the appropriate feature. All scripts

are implemented in the Bro scripting language [30]. In the third column, we either list

the dataset from which the respective feature is deduced or at least referenced in or -

in case the feature was personally constructed - we write Personal. The fourth column

associates the respective feature with the vertical level of abstraction (PL, CL, NL) as
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described in Subsection 2.3.2.
Furthermore, the general layout of and contained information in the respectively gen-

erated intermediate Bro logs can be seen in the appendix in Subsection A.1.1.

TABLE 6.1: Manually implemented features for potential extraction by FHS-DNA

Feature Name Script for Extraction Origin Level
land feature-extraction-NSLKDD-7.bro NSLKDD CL
synack feature-extraction-UNSWNB15-34.bro UNSW-NB15 | CL
ct_src_ltm I | UNSW-NB15 | NL
ct_srv_dst UNSW-NB15 | NL
ct_dst_sport_ltm UNSW-NB15 | NL
count feature-extraction-NSLKDD-23.bro NSLKDD NL
raw__layer2 packet_header| feature-extraction-P-1.bro Personal PL
raw_ IPv4 packet_header | feature-extraction-P-2.bro Personal PL
raw_ IPv6_ packet_header | feature-extraction-P-3.bro Personal PL
raw__ TCP_ packet_ header | feature-extraction-P-4.bro Personal PL
raw__ UDP_ packet_header | feature-extraction-P-5.bro Personal PL
raw_ICMP_ packet_header| feature-extraction-P-6.bro Personal PL

PACKET LEVEL FEATURES

Table 6.1 lists six manually implemented FE scripts for PL features. They all extract
different packet header information. As an example, we shortly constitute some imple-
mentation details of feature raw_layer2 packet_header, which logs layer two? header
information. The structural idea is as follows.

Whenever Bro’s event engine throws an event named raw_ packet, a packet with a valid
link layer header is seen by Bro. Within the event handling it first of all is checked which
data link layer header fields are available for that packet. This is done by declaring a
vector of Boolean variables, each representing the availability of various - in principle
optional - layer two header fields. So, this vector is initialized with value false for all
header fields at the beginning. Each header field identified available later on sets the
respective Boolean entry of the vector to true. Next, all available header fields of layer

two that could be found are extracted and logged. Afterwards, this packet is worked

! Orange marked scripts should only be loaded to one specific interface per monitoring run!

?Refers to the data link layer in the ISO/OSI model
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1 event connection_established (c:connection) {
2 if (c.source.sent SYN_packet() == true) {

3 log("synack", c.source.addr, c.setup_time);
4

5

}
}

FIGURE 6.1: Pseudo code fragment for extraction of feature synack

off and the next is ready to be handled whenever the Bro event engine sees a new raw
packet. On overview of which data link layer header fields are potentially extracted and

logged is given in the appendix in Table A.7.

In contrast to that feature’s extraction, all other manually implemented PL features
from Table 6.1 only extract and log mandatory header fields as listed in the respective

tables in the appendix (see Subsection A.1.1).

CONNECTION LEVEL FEATURES

Regarding CL features, Table 6.1 lists two different ones. Both their extraction logic is
shortly explained in the following with respective pseudo code extracts.

The first one is feature synack. It extracts and logs a TCP connection’s source host and
setup time for every connection, for which a SYN__ACK packet from the responder is
seen during the TCP handshake. A corresponding pseudo code extract is depicted in
Figure 6.1 and referenced in the following.

Every Bro worker node throws an event named connection__established (line 1) whenever
it sees a SYN__ACK packet from the responder in a TCP handshake. In order this
connection was indeed correctly established, a SYN packet must have already been sent
by the connection’s source host (line 2). Hence, only if that is the case, the connection’s
source host and TCP setup time for feature synack is extracted and logged to the

corresponding intermediate Bro log file (line 3).

The second manually implemented CL feature is land. It extracts and logs every TCP,
UDP and ICMP connection’s start time, source host and port, destination host and
port and the value (1 or 0 as specified above) for the land feature. A corresponding
pseudo code extract is depicted in Figure 6.2 and referenced in the following.

Each Bro worker node throws an event named new__connection (line 1) whenever it sees
a first packet of a so far unknown TCP, UDP or ICMP flow. If its source and destination
hosts as well as the ports are equal (line 2), it extracts and logs all the aforementioned
information to the corresponding intermediate Bro log file by specifying the value for
the land feature with 1 (line 3). Otherwise, also everything is extracted and logged, but

land has value 0 instead (line 6).
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1 eventnew_connection (c:connection) {

2 if ((c.source.addr == c.dest.addr) && (c.source.port == c.dest.port)) {

3 log("land", c.start_time, c.source.addr, c.dest.addr, c.source.port, c.dest.port, 1);
4

5 else {

6 log("land", c.start_time, c.source.addr, c.dest.addr, c.source.port, c.dest.port, 0);
T}

8

}

FIGURE 6.2: Pseudo code fragment for extraction of feature land

NETWORK LEVEL FEATURES

For the third level of abstraction, Table 6.1 contains four NL features.

As an example, we present some implementation details of feature ct_dst_sport ltm,
which logs for each of the 100 last connections (at any time) the statistical step-by-step
evolution of the count of connections with the same source port and the same destination
address. As its FE script already directly extracts, calculates and logs some statistical
aggregations as described above, further subsequent statistical analysis (i.e. as part of
FP) for the creation of this feature is not needed any more. Hence, that feature is a good
example for a more comprehensive (with respect to its calculation during direct FE) NL
feature, as its general, abstract implementation logic moreover is also comparable to NL
features ct_src_Itm and ct_srv_dst. A corresponding pseudo code extract is depicted
in Figure 6.3 and referenced in the following.

First of all, three global variables are declared (line 1 - 3), which are fundamental for
the subsequent implementation of feature ct_ dst_sport Iltm. These variables are set
globally, as they have to persist throughout one entire monitoring process.

The first one is named count_table (line 1). It is a map with its key being the pair
of the current connection’s destination address and source port and its value being the
count of connections with the same key among the last 100 ones. Hence, this map
always contains the actual status (i.e. snapshot) of this statistical feature and therefore
represents one sliding window of the corresponding Bro log file at any time. Moreover,
it is important to understand that it is filled up based on the content of the second
variable, which is pair_table (line 2). It is an array of the last 100 connections’ pairs of
destination address and source port. Hence, the number of same pairs in pair_table is
the corresponding count value in count table. Limiting pair_table to a maximal size of
100 entries is ensured by appropriate handling of its index for circular fill-up, which is
the third global variable named indez pair table initially set to 0 (line 3).

Whenever a Bro worker raises an event log conn (line 5), this index_pair_table is
checked at the very beginning (line 6). That means, it should never exceed value 99.

Then the new_pair for the actually handled connection is extracted (line 7). In case it is
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1 global count_table = [pair(destAddr, srcPort); count];
2 global pair_table = [pair(destAddr, srcPort)];
3 global index_pair_table = 0;

4

5 event log_conn (c:Conn::Info) {

6 check index(index_pair_table);

7 new_pair = (c.dest.addr; c.src.port);

8 if (pair_table.len() < 100) {

9 pair_table.update(new_pair);

10 count_table.update(new_pair);

1}

12 else {

13 old pair = pair_table[index pair_table];
14 pair_table.update(new_pair);

15 if (new_pair !=old_pair) {

16 count_table.update(new_pair);

17 count_table.cleanup(old_pair);

18 }

19 3

20  for (pair in count_table) {

21 log(""ct_dst sport_Itm", pair.destAddr, pair.srcPort, count table[pair]);
22}

23 log("ct dst sport Itm",,,);

24 }

FIGURE 6.3: Pseudo code fragment for extraction of feature ct_dst_sport_ltm

under the first 100 handled ones (line 8 - 11), pair_table gets updated (line 9) by simply
inserting the mew_pair to pair_table at the current index, before index pair_table is
incremented. Furthermore, the count table gets also updated (line 10) based on the
new pair_table, which means incrementing the count of new_ pair (eventually new pair
was even needed to be inserted to count_table before). In case pair_table already has
been completely filled up (line 12 - 19), we intermediately save the old_pair (line 13),
as this one will be overwritten by inserting the new pair in the update of pair_table
(line 14), but will still be needed subsequently for also updating count__table. However,
only in case new_ pair is not equal to old_ pair (line 15 - 18), we further need to update
the statistics of our feature saved in count_table. That includes increasing the count for
key new__pair (and potentially even inserting it first) (line 16), as well as the decreasing
the count for old_pair (and potentially even deleting it) (line 17).

Finally, this new sliding window (i.e. statistical evolution’s snapshot) is logged by
writing each key and its corresponding count value in the count_ table to the appropriate,
intermediate Bro log file (line 20 - 22), before a separating line is logged, too (line 23).
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6.1.5 INTERMEDIATE LOG FILES

In the following, implementation details of different types of log files as described in
Section 5.4 are explained. As we use the default logging mechanism of Bro, all log files
in principle follow the layout of Bro. An overview of what information is explicitly
logged in manually constructed log files is given in the appendix in Subsection A.1.1.
Besides those manually constructed and implemented ones, default intermediate log files
are also considered by FHS-DNA. For a detailed description of those we refer to [68].

GENERAL LOGS

General intermediate logs only represent direct feature (and maybe some meta) informa-
tion as it currently is without representing the exact evolution (i.e. no sliding windows)
of it. That makes the implementation of such a snapshot log less complicated than it is
for the interface-specific sliding window ones.

The default logging mechanism of Bro is utilized and we only have to specify, which
columns the respective log file should have and which information is inserted appropri-
ately, as it already handles coordination among the participating Bro workers in order
to aggregate all information into a single log file. Depending on the specific feature, the
information to insert requires some additional calculations up-front (e.g. calculating
some duration values), before finally being logged. Logging for that type of intermedi-
ate log files then means to append all the information in one row (with the respective
values in the appropriate columns) whenever a participating Bro worker extracted (and
maybe further calculated) the values as described in Subsection 5.4.1. Hence, also no
sliding windows’ separating lines need to be logged. An example for a feature generating
such General Logs in our PoC implementation is synack from Table 6.1. An exemplary
fragment of such a General Log for that feature is represented by Figure A.1 in the
appendix in Subsection A.1.2.

INTERFACE-SPECIFIC SLIDING WINDOW LOGS

In contrast, features generating sliding window logs in my PoC implementation are
ct_srv_dst, ct_src_ltm and ct_dst_sport_Iltm (see Table 6.1). As described in Subsec-
tion 6.1.4, these features’ log files are filled up based on some global variables initialized
and handled in Bro events. The variables contain some statistics, which are calculated
directly during FE. Each single change of that statistic represents one sliding window
in the Bro log. That makes those features and their logs much more comprehensive
and complicated to implement and also is the reason, why each such feature should

only be extracted from one network interface of a specific host in one monitoring run
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of FHS-DNA. In addition to the high-level argumentation as explained in Subsection
5.4.2, implementation restrictions underlining the need of this constraint are presented

in the following.

Outgoing from the intention to eliminate the aforementioned constraint, we identify two
theoretical ways to do so below. However, for each of those options, we further argue
some limitations within Bro, which finally explain their corresponding option not to

work in practice.

1. Control access on those global variables (of each feature) and / or the feature’s

unique, common log file.

2. Generate more than one log file for the same feature (e.g. one for each network

interface that same feature has been extracted from).

Regarding the first option, although synchronizing variables in Bro is possible, it is
still vulnerable to race conditions. "We implemented synchronized tables by propagat-
ing changes to the data in terms of descriptions of the operations to perform on the
data rather than the full (and probably mostly unmodified) data itself [...]. This can
in some circumstances however lead to race conditions. Avoiding them would require
mutually-exclusive data operations |...], but this would violate Bro’s real-time process-
ing constraints due to having to wait for access before performing an operation” [70].
However, in order to represent the exact stepwise evolution of the statistics, race con-
ditions are required to be excluded for sure. Otherwise, statistics may end up falsified.
Regarding the second option, that seems to be possible at a first glance. However, we
would also further need the three global variables for each log file (of the same feature)
in order to finally write the logs based on those variables’ content as described in Sub-
section 6.1.4. However, FHS-DNA should for instance be (dynamically re-)configurable
and extensible with respect to extracted features (see NFR.6 and NFR.7 from Subsec-
tion 3.2.2). That means, in general different features should be allowed to be extracted
from different interfaces. Hence, that would explicitly require us to dynamically (i.e.
within the event handling) declare (e.g. depending on the names of the Bro nodes and
their interfaces), initialize and fill those global variables for each interface. However, ex-
actly this is not allowed in Bro scripting language, as declarations ”cannot occur within
a function, hook, or event handler” [71].

Concluding, the only reasonable solution is to extract the same feature generating this
type of log file on only one specific interface for each monitoring run. Nevertheless, our
system is robust enough to cope with violations of this constraint, although generated

logs may be falsified in those cases.
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Extracted features generating these Interface-Specific Sliding Window Logs in our PoC
implementation only are ct_srv_dst, ct_src_ltm and ct_dst_sport ltm from Table
6.1. All others generate General Logs. An example for such a manually constructed
Interface-Specific Sliding Window Log in our PoC implementation refers to feature
ct_dst__sport_ltm and is represented by Figure A.2 in the appendix in Subsection A.1.2.
The sliding windows can clearly be identified and exactly illustrate the stepwise evolu-

tion of that feature’s statistic as desired.

6.2 FEATURE PROCESSING AND STORAGE

As stated in Subsections 5.1.2 and 5.1.3, we decided for compromised design solutions
regarding FP and FS. Nevertheless, they work together on an external, not resource-
constrained and compounded Feature Processor and Storage Component as explained in
Subsections 5.1.4 and 5.2.2. Crucial implementation details regarding this component

are explained in the following.

6.2.1 BAT As TooLS FOR FEATURE PROCESSING AND STORAGE PREPARA-
TION

For FP, we decided to use BAT and integrate it into our system FHS-DNA. Main
reasons for that decision include that BAT according to [46]:

1. is compatible to and directly works on Bro logs,

2. enables processing of real-time data,

3. offers a comprehensive set of integrated analysis and processing options,

4. enables potentially offloading analysis and processing tasks from the NsUS,

5. supports various generic data formats as transformation output (e.g. Parquet,

python dictionaries and Panda data frames),

6. offers support for combination with various ML-based anomaly detection and stor-

age models (e.g. Spark),
7. provides a stable release with documentation.

BAT is only installed on the external Feature Processor and Storage Component. Auto-
matic installation is implemented in the Bash script BAT-Installation.sh. Moreover, as
that component is a compounded one, BAT may be utilized both for FP of intermediate

Bro log files (containing the features) and for preparation of final FS by transforming
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them into an appropriate, compressed and generic storage format as described in Sub-

section 5.5.1.

6.2.2 PARQUET AS FINAL FEATURE STORAGE FORMAT

Based on the decision to use a generic, compressed and columnar data format for final
FS (see Subsection 5.5.1) in combination with utilizing BAT for FP and final FS prepa-
ration, we decided to use Parquet as our final storage format. Only most important

reasons pro Parquet are listed below.

1. Parquet is a columnar storage format [47] [72], which is especially suitable for
our feature context. Querying on columns (i.e. features) instead of single rows
is beneficial, as this way basic features can e.g. easily and more efficiently be
analyzed, combined and queried than selectively querying many single rows for
conclusions about one feature (in compliance with NFR.8 and NFR.9). Further
reasoning for a columnar FS format is also given in Section 5.4 and Subsection
5.5.1.

2. Parquet supports compression [48] [73], which helps to save resources with respect

to disk space (in compliance to NFR.9).
3. Parquet is a self-describing and language-independent storage format [47].

4. Parquet supports high "extensibility of storing multiple types of data in column

data” [74]. This is important, as different features’ data has different types.

5. Parquet allows generic utilization by various subsequent (A)DMs, such as e.g.
Spark or Presto! (in compliance to NFR.3 and NFR.8). Moreover, Parquet format
is "available to any project in the Hadoop ecosystem, regardless of the choice of

data processing framework, data model or programming language” [72].

6. Parquet is very performant in multiple aspects (in compliance to NFR.9). It is very
efficient for large-scale queries on huge amounts of data as well as for performing
aggregation operations (e.g. average) on multiple columns [74]. So, it optimizes
query performance [47] [75]. All aspects are very relevant for our work, as our
system may extract huge amounts of network data on the one hand and allow

some statistical aggregations on them on the other hand.

"https://prestodb.io/
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7. Parquet minimizes 1/O [47] [75] and allows fast read times of subsets of data (in

compliance to NFR.9) as datasets are partitioned horizontally and vertically [75].

8. Parquet files can easily be queried and combined in many meaningful ways with
e.g. Apache Spark SQL! [62] [63] [64] and therefore supports compliance to NFR.8.

9. BAT supports transformation of Bro logs to Parquet format [46] [76].

On the contrary, Parquet for instance is write intensive [73] [75]. However, as our
external Feature Processor and Storage Component is per assumption not resource-
constrained, this is negligible. Summarizing, Parquet is fully compliant to many related
requirements (see Section 3.2) and basic design decisions (see Subsection 5.5.1). Even

further, it provides a lot of important advantages in addition as listed above.

6.2.3 INTERMEDIATE BRO L0GS” TRANSFORMATION TO PARQUET FORMAT

Thus, our external Feature Processor and Storage Component needs to transform in-
termediate Bro logs into Parquet format as part of its processing and final storage
preparation tasks. The entire transformation is automatically executed (in compliance
to NFR.5) every time directly after synchronization of intermediate Bro logs from the
internal manager to the external Feature Processor and Storage Component. This hap-
pens once in a predefined time interval (every five minutes in the PoC implementation)
by a cron? job specified in the crontab® file on that component. Nevertheless, FHS-DNA
also allows anytime manual synchronization and transformation. Latter is done with
BAT and making use of its function log to_ parquet. A summarizing description of the
implementation is given in the following. However, for a more detailed review, we want

to refer to Bro-To-Parquet.py in the codebase in [65].

First of all, synchronized intermediate Bro logs are checked for their filename matching a
regular expression containing one of the prefixes listed in Table 6.2. Only files with their
name matching one of those prefixes get further processed, as those Bro logs typically
are expected to have a format matching the specific requirements of the subsequently
applied method log to parquet of BAT. Nevertheless, in order to make FHS-DNA ro-

bust against unforeseen deviations from that expected format, it is additionally and

"https://spark.apache.org/sql/
Zhttp://manT7.org/linux/man-pages/man8/cron.8.html

3http://man7.org/linux/man-pages/man5/crontab.5.html
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explicitly checked for each of those files with a matching name, whether it contains a

line that starts with #fields or not. Only in case it does, it finally gets transformed.

TABLE 6.2: Filename prefixes whitelisting respective intermediate Bro logs for potential transformation
to Parquet format

File Label
capture_ loss http smtp
communication intel software
conn known_ hosts ssh
dhcp known__services ssl
dns notice traceroute

feature-extraction packet_ filter weird
files reporter x509

6.2.4 TFINAL STORAGE SCHEME

Once, all the logs are transformed to Parquet format, the final FS can be updated.
However, in order to understand how its update works, we want to describe its abstract

implementation of the underlying scheme described in Subsection 5.5.2 first.

datapool

—spool
tmp
manager*
worker*®
proxy*
logger*

—logs

L abstraction level

interface
refix of log's filename
date
actual Parquet files

FIGURE 6.4: Abstract implementation of the hierarchic directory structure of the final on-disk feature
storage scheme

Conceptually, our storage is a hierarchic directory structure directly in the file system
of the Feature Processor and Storage Component (as described in Subsection 5.5.2). It
consists of six layers or levels. These are depicted in Figure 6.4 and explained in more

detail below.
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The top layer is the overall storage’s directory named datapool. It contains the entire
final FS with all its Parquet files in its structured subdirectories.

On the second level, we have two branches named logs and spool. The logs branch
contains all Parquet files in respective subdirectories representing historic features. His-
toric in that context means, that it is not related to the lastly (maybe currently) live
monitored traffic. In contrast, the spool directory contains all so far synchronized and
transformed Parquet files containing features extracted from the lastly (maybe cur-
rently) monitored live traffic.

On the third level, the spool directory can have multiple branches, which depend on the
exact layout 