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Abstract

The Internet of Things (IoT) has been at the center of many emerging new technologies in the
recent years. Interconnected smart devices constitute an essential part of the IoT paradigm.
These become more and more powerful every year. In the near future, many common objects in
smart spaces will be capable of running more complex software. The integration of IoT devices
in standard internet infrastructures has, however, introduced numerous security challenges. The
heterogeneity of devices and their constrained resources are the main cause for a lack of stan-
dards and security features. The implications of lacking security mechanisms include, among
other, data integrity and confidentiality violations, unauthorized access to sensitive resources
and arbitrary malicious code execution.
The Distributed Smart Space Orchestration System (DS2OS) is a framework built for managing
smart spaces of the future, focusing on user experience and automated application lifecycle con-
trol on unattended nodes. It considers an app-based ecosystem, in which users can download
applications from an app store and deploy them on their IoT devices, distributed across the
smart space.
This work investigates a suitable approach for protecting the application lifecycle management
in such a distributed scenario. The designed solution relies on the Virtual State Layer (VSL)
middleware for securely exchanging data between different IoT nodes within the network. At the
same time, it introduces a farsighted approach to securing apps targeting IoT devices. Apps are
protected at different stages thanks to code-signing and certificate-based authentication. The
major contribution is introduced with an automated certificate renewal mechanism, aiming to
guarantee security and consistency of access control rules within a distributed system, where
connectivity may be intermittent. In the end, the security against known attacks on the IoT is
evaluated, along with considerations about the performance impact and the scalability of the
designed solution.





Zusammenfassung

Das Internet of Things (IoT) stand in den letzten Jahren im Mittelpunkt vieler neuer Techno-
logien. Verbundene intelligente Geräte sind ein essentieller Teil dieses IoT Paradigmas. Diese
Geräte werden jedes Jahr immer leistungsfähiger. In der nahen Zukunft werden viele übliche
“Dinge“ in Smart Spaces dazu fähig sein, komplexere Software auszuführen. Die Integration
der IoT Geräte in die allgemeine Internetinfrastruktur bringt allerdings zahlreiche Sicherheit-
herausforderungen mit sich. Die Heterogenität der Geräte und deren eingeschränkte Ressourcen
waren der Hauptgrund für einen Mangel an Standards und Sicherheitsfunktionen. Die fehlende
Sicherheitsmechanismen haben zu unerwünschten Nebenwirkungen geführt, wie die Verletzung
der Datenintegrität und Datenvertraulichkeit, sowie nicht autorisierten Zugriff auf wichtige Res-
sourcen und die Ausführung von schädlichem Code geführt.
Das Distributed Smart Space Orchestration System (DS2OS) bietet ein Framework, um Smart
Spaces der Zukunft zu verwalten. Im Fokus steht die leichte Bedienung und automatisierte Re-
gelung des Anwendungs-Lebenszyklus auf unbewachten Knoten. Das System basiert auf einem
Anwendungs-Ökosystem, wo Anwendungen über einen App Store von Benutzern heruntergela-
den werden, und auf deren verteilten IoT Geräten installiert werden.
Diese Arbeit erforscht einen geeigneten Ansatz um die Verwaltung des Lebenszyklus der An-
wendungen in so einem verteilten System zu schützen. Der Lösungsentwurf baut auf der Virtual
State Layer (VSL) Middleware auf, um Daten zwischen verschiedenen IoT Knoten innerhalb des
Netzwerks sicher auszutauschen. Gleichzeitig wird ein weitsichtiger Ansatz vorgestellt, um Apps
auf IoT Geräten zu sichern. Die Apps sind in jeder Phase des Anwendungs-Lebenszyklus mit
Code-Signierung und Zertifikat-basierter Authentifizierung geschützt. Der Hauptbeitrag dieser
Arbeit ist ein automatisierter Zertifikatserneuerungs-Mechanismus, welcher die Sicherheit und
die Konsistenz der Zugriffsregeln in einem verteilen System mit unzuverlässiger Konnektivität
gewährleistet. Abschliessend wird die Widerstandsfähigkeit gegen bekannte Angriffe auf das IoT
analysiert, wobei auch die Auswirkungen auf die Leistung und die Skalierbarkeit der vorgeschla-
genen Lösung bewertet werden.
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Chapter 1

Introduction

The Internet of Things (IoT) is a global network of things, which are real-world physical
objects with augmented capabilities. Things have embedded electronics, which allow
them to perform complex operations and communicate with other devices.

During the past years the IoT has rapidly evolved without the appropriate consideration
of the profound security goals and challenges involved.
Security in the IoT world is a complex topic, as most devices today have limited re-
sources. To improve performance and battery life, many of these devices prioritize
functionality over security. The plethora of heterogeneous devices available on the mar-
ket runs mostly closed-source software, typically driven by economical decisions instead
of reliability. This opens the way to numerous combinations of security issues and makes
it difficult to provide proper protection.

Contrary to smartphones, modern IoT devices are typically left unattended by the user.
In a scenario with billions of distributed nodes, unattended devices become a huge
security concern and require proper protection. It must therefore be possible to manage
the applications running on these nodes.

The research presented in [59] addresses this problem and aims to create an autonomous
smart space service management. This assumption leads to a scenario in which ap-
plications can be installed/uninstalled on IoT nodes easily, via an app store. In an
app-store-like scenario, it suddenly becomes even more important to focus on security.
The management of the lifecycle of software and applications within the smart space is
achieved using the Distributed Smart Space Orchestration System (DS2OS).



Chapter 1: Introduction

1.1 Topic and Goals

The topic tackled within this thesis is the IoT application security in distributed smart
spaces. The thesis is strictly related to other two ongoing works [58] [12], which focus
on providing service management mechanisms within the DS2OS. All three works are
based on the research introduced in [59].

The concrete goals include:

1. Conducting an extensive literature review of the existing security threats and
countermeasures for app-based and IoT scenarios

2. Improving the status quo of the DS2OS with additional security mechanisms aimed
to protect the service management

3. Implementing a prototype which incorporates the designed security features

4. Evaluating the performance impact of the introduced security features

1.2 Outline

Chapter 2 will present a thorough analysis of smart spaces and the scenario targeted
by the DS2OS. Furthermore existing IoT security issues and possible countermeasures,
related to the chosen scenario, will be investigated.
Existing works, related to the analyzed topic, are presented in chapter 3. The approaches
to security in related works will be compared to the proposed security concept.
Chapter 4 will cover the design of the concrete solution to the analyzed problems, match-
ing the system requirements. Additional implementation details will be documented in
chapter 5.
Chapter 6 contains an evaluation of the implemented prototype with respect to the
overall system.
In the end, the results of the thesis are summarized and possibilities for future works
are presented.

2



Chapter 2

Background and Analysis

A first analysis of smart spaces, and how users interact with them is necessary, to
put them into context. The main focus will be put on the problem scenario and on
the intrinsic issues and security limitations of smart spaces. These problems will be
addressed thoroughly and possible solution techniques analyzed.

Some background on the topic and motivation will be given in 2.1, then the problem
domain will be analysed.
Some history and considerations about smart spaces will be presented in 2.2.
Architectural patterns fit for IoT services and similar distributed systems in general are
described in 2.3.
Section 2.4 introduces an existing approach that covers some of the issues identified
before, leading to the guiding research questions.
Given the problem scenario, section 2.5 will identify and prioritize security goals for the
IoT. Sections 2.6, 2.7 and 2.8 will then focus on security-relevant aspects for this thesis
and possible approaches.

2.1 Motivation

IoT applications have different scopes and can target different scenarios and environ-
ments. The main applications nowadays are:

• Smart buildings: offices and homes equipped with smart devices enable energy
management, dynamic lighting, door locks and so on.
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• Connected Health: small devices with embedded sensors can become health mon-
itoring and drug delivery systems [84], leading to improved well-being of people.

• Wearables: devices such as smartwatches, fitness bands, rings [55], smart shoes
[16] and so on aid users in keeping track of their health data.

• Environmental: sensor nodes for monitoring the environment (e. g. air/water qual-
ity) collect enormous amounts of data, which allow to detect emergency situations
and provide important insight to recurring problems.

• Smart cities: traffic optimizations, waste management, pollution monitoring, ur-
ban security and so on make life in cities easier and more efficient.

• Connected vehicles: moving IoT systems can interact with other environmental
sensor and nodes to distribute information, improve traffic management, naviga-
tion and more.

• Industrial: tracking assets, production progress, detecting faults and so on greatly
aid the management and control of production and assembly lines.

• Energy management: proper monitoring and prediction of energy consumption
allows to improve the efficiency, reliability and costs of electricity. Smart grids
provide macro-management, while users micro-manage their own power consump-
tion at the same time.

Other emerging sectors, where connected smart devices make a difference are, for ex-
ample, the food supply chain, farming, supply transportation and retail management.

It is obvious how the market evolved in just a few years and how more use-cases for
smart devices are presented every year.

The chart in 2.1 shows the increase in installed IoT devices over the past three years.
A prediction for the next 7 years is also given [74]. According to this prediction, by the
end of 2025, around 75 billion IoT devices will be installed throughout the world. This
means that the number of intelligent devices will have exceeded the global population
by a factor of 10. Also, the amount of IoT devices alone will be dramatically superior
to the amount of traditional computing devices, such as desktop computers.
This exponential increase in smart devices available on the market has produced an
undesired side effect: each device is a potential threat that needs to be addressed. If
traditional Information Technology (IT) security is critical, the security of the devices
used in the above mentioned scenarios is no different.

On one hand, IoT devices are often vulnerable nodes, given their low computational
resources and therefore lack of a proper security stack. On the other hand, companies

4



2.1 Motivation

Figure 2.1: Internet of Things (IoT) connected devices installed base worldwide from 2015 to 2025
(in billions). Source: https://ihsmarkit.com/index.html

designing products to release on the market often overlook security implications and
rather focus on the needed functionality. At the beginning of the IoT era, the primary
requirements were to permeate the market with innovative and ground-breaking solu-
tions. Being farsighted enough to consider all possible security issues that could arise
was not a primary requirement. Nowadays, this has changed, given the plethora of
devices and different purposes they serve.

Considering we are surrounded with smart devices with important responsibilities we
have to consider what would happen in the face of malicious attackers. In short, the
advent of pervasive computing, as integrating part of our lives, also opens up countless
potential new security issues. These issues need to be identified and defended against.

Several major vulnerabilities in IoT devices have been recorded up until now [24]. Many
more exist and are being discovered every day [41]. There is a multitude of reasons
for attackers to take advantage of vulnerabilities: access to confidential data, profit,
protests against organizations, wreak havoc and so on.
Regardless of the motivation of attackers, security vulnerabilities pose a real threat, to
us and to our environment. For example, an implantable cardiac device may fail to
recognize a heart problem or even administer fatal shocks, endangering a person’s life.
The same reasoning applies to many other health monitoring applications.
Other scenarios are not to underestimate either. Imagine a smart city paralyzed by an
attack on the infrastructure itself: huge traffic congestions, large-scale electricity grid
issues and improper functioning of the safety/security measures.
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Another huge issue to be considered is the theft of sensible data. It represents a huge
privacy violation and can have severe repercussions on individual’s lives and maybe
even the community as a whole. Gaining control over nodes can lead to attacks on
third-party entities.

All the mentioned threats become very real as we rely more on machines and auto-
mate everything. It is fundamental to address these threats aggressively, not only by
researchers but also by industry leaders.

2.2 Smart Spaces

The term Smart Spaces refers to environments containing several smart devices, such
as a home, an office, a factory, and so on. Smart devices include any kind of device,
powered by electricity and capable of running software. One defining characteristic of
these devices, to which they owe the name Smart device, is the capability of commu-
nicating (often wirelessly) with other devices, in order to exchange information. This
fundamental functionality broadens the scope of the single devices, allowing them to
interact with any other device and access many more features.
In reality this is often not the case, given the heterogeneity of such devices and their
incompatibility with one other. These incompatibilities are due to different hardware
constraints, different protocols, vendor policies and so on.

2.2.1 Smart Home

The most common example of a modern smart space is the smart home. The high-level
setting shown in 2.2 is a usual representation of a smart home.

Most of the deployed devices are typically sold by different vendors and each serve a
single specific purpose. The heterogeneous nature of the deployed devices has a major
side-effect:

<P.0> An ad-hoc service needs to be used in order to manage a single device. As a result
most devices require a different service or app to manage it

For example retrieving data from a smart scale requires the user to connect to it over
Bluetooth Low Energy (BLE), using a smartphone app built by the vendor for that
specific purpose. Similarly, to set up smart lighting requires the user to have an app
compatible with that specific light bulb. If light bulbs from two different vendors are
deployed, different apps are needed.
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Home Router

ZigBee
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IoT Hub

WiFi / Ethernet

Cellular

Internet /
Service Providers

Z-Wave

Figure 2.2: An example of a smart home containing heterogeneous IoT devices, which use different
connectivity technologies

Depending on the hardware and the vendor, the same kind of device may also use
different communication technologies. Regardless of the underlying connection, multiple
application protocols are also possible.

Today, there is a plethora of communication technologies and application protocols used
in smart spaces (not just smart homes). Some IoT devices use Constrained Application
Protocol (COAP) on top of user datagram protocol (UDP). More powerful devices rely
on the widely known, yet with more resource overhead, Representational state transfer
(REST) over HyperText Transfer Protocol (HTTP).
This makes it extremely difficult to integrate them in a single platform or management
system. A more uniform abstraction is required to address this problem.

Different approaches to bridge the gap between different vendors and software stacks
exist. Some solutions found in literature and in the industry, both for consumers and
businesses, are briefly introduced in section 3.1.

2.2.2 Hardware

IoT devices are all powered by micro-controllers or even more performant single-board
computers (e.g. a Raspberry Pi [25]). Although constrained, the equipped resources are
quite generous and not necessarily saturated by everyday use. As technology evolves
and the demand for smart devices increases, computing units also get more powerful.
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In the future it will be possible to have devices with increased capabilities for the same
price (or even lower), maintaining the same footprint and power consumption. This is
a key point, as it will allow to run multiple applications and more complex software on
smart devices spread throughout a site.

Several projects exist, with the purpose of shrinking the Linux kernel to a minimum and
make it deployable on very constrained devices and even micro-controllers [82]. Running
an Operating System (OS) opens up many new possibilities and comes with security
features that have been tested and used for many years.
When talking about Micro-Controller Unit (MCU), the minimum CPU, Random Access
Memory (RAM) and Read-Only Memory (ROM) requirements are extremely low. An
STM32F4 MCU [75] sports 180Mhz CPU, 384KB RAM and 2MB ROM. While this is
indeed very low, it leaves little room for applications and doesn’t contain many modules
useful to the developers, such as a Memory Management Unit (MMU), cryptographic
modules and more.
Other Single-Board Computer (SBC)s with a very small footprint exist, capable of
running a full-fledged version of Linux. Worthy of mentioning are:

• Omega2+ [14], supported by a 580Mhz CPU, 128MB RAM and 32MB of storage

• VoCore2 [76], supported by a 580 CPU, 128MB RAM and only 16MB of storage

• C.H.I.P. [13], with a generous 1Ghz CPU, 512MB RAM and 4GB storage, given
its small size

• Raspberry Pi Zero [26], also assisted by a 1Ghz CPU and 512MB RAM

The mentioned hardware configurations certainly look low for today’s desktops stan-
dards, but a modern Linux kernel can still run on something as constrained as the
mentioned SBCs. A mere 580Mhz CPU allows to run most of the existing desktop-class
software. The actual performance will, of course, be impacted, but the functionality of
the software is guaranteed. The average current draw of such boards is also just 200mA,
for a power consumption of around 0.6W.

Such a feat was not possible 5 years ago. The advancement of technology has made it
possible to build powerful yet very tiny computers. It appears extremely likely, that
more resource will enable devices in future smart spaces to perform demanding edge
computation, run machine learning algorithms and offer more functionalities.
A good comparison to this phenomenon is the mobile phone. Phones are the first devices
to become very smart in a short span of time [56].
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Twenty years ago, mobile phones were only able to send/receive calls and SMS. By
the end of the first decade of the 21st century, mobile phones had already evolved to
smartphones. These allwed users to easily accomplish more complex tasks, such as man-
aging their calendar appointments, surfing the web, taking photographs and listening to
MP3 music. Nowadays, smartphones have partially replaced personal computers, giving
users all the computational power they need for daily tasks and beyond (e.g. machine
learning), while being in a pocket-size form-factor.

An important feature of smartphones is that they run a full-fledged OS. Any modern
OS has high security standards, that have been used and tested for many years.
Smartphones also embrace the App economy, supporting multiple apps to run on it.
Most of these apps each have a specific purpose, but the user can control them all from
the same device.
The very same concept is slowly applying to other devices surrounding us: watches,
house-appliances, doors, switches and more. Most of these devices are not in our pockets
at any given time, but they still are integrating part of our everyday lives. It seems
reasonable that future IoT devices will all be powered by tiny yet powerful computers.

2.2.3 Distributed Smart Spaces

Similarly to the evolution of smartphones, IoT spaces also have the potential to embrace
an app-based ecosystem. More powerful smart devices with more sensors and resources
will be able to run multiple services.

The smart space scenario, however, is intrinsically different. Contrary to smartphone
apps, IoT devices and services are geographically distributed and are not always reachable
within a network. Users also require a mechanism and UI to easily install services on
their IoT devices.

It is undesirable, from a user perspective, to have an ad-hoc management system for
each IoT device. Furthermore it doesn’t seem scalable, particularly in environments
with many devices, to rely on a different app for every available device/service.

The main identified problems for the present and near future are summarized:

<P.1> distributed IoT devices need to be setup, managed and maintained

<P.2> distributed IoT nodes may be unattended and suffer from churn and unavailability

<P.3> managing services individually, via ad-hoc interfaces, is not a scalable approach
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2.3 Microservices

This section analyzes an emerging architectural pattern, which is fit for IoT applications,
due to their distributed nature.

2.3.1 Monolithic Architecture

Traditional monolithic applications tend to include many tightly coupled modules, which
grow in size and complexity over time. This leads to development and scalability issues,
suffering from “dependency hell“ and overwhelmingly large codebases. Eventually, this
kind of applications become unmanageable.
An example of a monolithic architecture with high complexity is visible in Figure 2.3.

Figure 2.3: Monolithic architecture of Uber [44]

2.3.2 Microservice Architecture

The microservice architecture pattern [64] was invented to tackle the problems intro-
duced by monolithic applications. Its architectural style structures an application as a
collection of loosely coupled services.
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Figure 2.4: Microservice architecture of Uber [44]

Microservices architecture is a more concrete variant of the Service Oriented Architec-
ture (SOA). A micro-service (µ-service) implements only a small subset of distinct and
self-contained functionalities. Each service is a mini-application with its own hexagonal
architecture, containing business logic and a database. It can expose Application Pro-
gramming Interface (API) to other services and/or access other service’s functionalities
using adapters and interfaces. An example is shown in Figure 2.4.

Microservices typically communicate with one another using messages. Two kinds of
messages exist:

• Synchronous messages, such as REST API;

• Asynchronous messages, such as Advanced Message Queuing Protocol (AMQP)
[57] or Message Queuing Telemetry Transport (MQTT) [54]

Working with abstractions and technology-agnostic protocols enforces modularity and
collaboration between services. Every µ-service is built with its own technology stack,
independent of the technologies and frameworks used in other services (which it com-
municates with).
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Such an architecture has several advantages:

• each µ-service is small, which makes it easier for developers to maintain;

• services boot faster as their size and complexity are rather small;

• the architecture enables continuous integration and delivery of large, complex
applications, which is invaluable to organizations;

• small agile development teams can work on a single µ-service, without needing to
know how other services work;

• each service leverages its own dedicated database, which is best suited to its needs;

• services can easily be swapped out, maintaining the same interfaces;

• errors are isolated to a single service and do not impact the entire system.

A microservices application is intrinsically a distributed system, which also introduces
some disadvantages:

• some tasks become more complex, such as integration testing or implementing the
communication mechanisms;

• deploying a single service requires more complex pipelines and an improved level
of automation, as the number of µ-services increases;

• implementing use-cases or changes that involve multiple services at once requires
more coordination

• better hardware is required, as each µ-service runs in a separate environment (e.g.
a Docker container), allocating more memory and consuming more disk space.

This approach is used by many large organizations, such as Amazon and Netflix, to
achieve better scalability and be able to better maintain their software services. It is
especially used when dealing with large web applications.

2.3.3 IoT Model

Before comparing the IoT with the microservices approach described in 2.3.2, it is
important to introduce the IoT Service Oriented Architecture (SOA).

The industry and research communities refer to the IoT reference model, shown in 2.5
and introduced by CISCO [78]. This seven-layer model is meant to be a widely-accepted
model and facilitates the analysis and design of functionalities on a layer-basis.
The introduced model follows a bottom up vertical approach to offer an application.
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Figure 2.5: The IoT reference model

In the IoT, each layer is independent from the others, following a modular approach
(as seen in subsection 2.3.2). The resulting application is based on all layers working
together to shape a complete service. The top-most layer may support collaboration
between different IoT services, but this is often not the case nowadays, due to hetero-
geneity and vendor diversity.

2.3.4 Microservices for the IoT

Modern smart spaces consider IoT nodes in a distributed environment, as introduced in
subsection 2.2.3.
Self-contained IoT applications benefit from the µ-service architectural pattern the same
way traditional services do. IoT applications can be considered as small and independent
services, as they align with the capabilities and constraints of the embedded devices they
represent. These services are built over several layers and typically consider:

• a hardware device, containing sensors, actors and storage;

• an on-device service, which acts as the Hardware Abstraction Layer (HAL) and
provides the data;

• a back-end service, run on a more powerful machine without constraints;

• in some cases a front-end UI.

Many IoT top-level services nowadays run on cloud platforms. Cloud platforms support
internet-based functions, such as maintenance, analytics, data storage, security and
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more. Exemplary platforms for cloud management that fulfill this purpose are Amazon
Web Services [72], Google Cloud IoT [29], Azure IoT [51] and more.

Compared to traditional µ-service architecture, in IoT cloud µ-services, different vendors
come into play, and getting services to collaborate is less trivial.
The vendor diversity leads to a major issue: every IoT service relies on a dedicated server
and UI (be it a smartphone app or web application). In fact, the service decoupling
principle described in subsection 2.3.2 is here taken to the extreme, as every service is
truly independent.

There are several major documented differences when comparing “traditional“ µ-services
to IoT services [11].

First, the main way for putting different services together in the IoT is by using an
orchestrator, while in traditional µ-service architecture a choreography is best suited.
The orchestrator is a centralized entity, in control of the other running services. In a
choreography, every application is independent and is part of the resulting application.

Second, services can be containerized in both the µ-service architecture and the IoT.
The most widely solution used for µ-services today is Docker [38]. It is a scalable
approach which allows to package a µ-service and its dependencies in a virtualized con-
tainer. Docker can be very heavyweight and taxing on nodes with hardware constraints.
This makes it less suitable for IoT devices. Approaches more fit for IoT nodes are Docker
versions with smaller footprint like RancherOS [39], or solutions like OSGi [2].

Last, in IoT scenarios it is considerably more difficult to perform continuous integration
and delivery. This is mostly due to the problems mentioned in 2.2.3.
Continuous integration in the IoT is especially hard to achieve with services developed
by different vendors, as they typically use custom interfaces and protocols. Service
updates are common in microservices architecture, where approaches such as blue-green
deployment [21] or canary release [68] are adopted, to reduce service downtime risks.
Conversely, IoT nodes often do not have such requirements. Moreover, IoT services are
typically unattended and therefore less maintained.

2.3.5 From Cloud to Edge Services

IoT services running on cloud platforms can be fully considered µ-services. The pro-
vided interface and functionalities are contained in the top-most layer, abstracting the
underlying hardware.
Another valid approach, however, is to deploy IoT µ-services directly on edge nodes,
completely off the cloud. Taking into consideration the increasing resources for edge
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computation mentioned in subsection 2.2.2, it is completely feasible to deploy µ-services
not just on cloud platforms but also on smart devices themselves. Edge nodes within
smart spaces typically have internet connectivity and may be able to provide the same
features offered by cloud platforms, possibly with comparable performance.

An important issue arises, when moving µ-services completely to the edge nodes:

<P.4> services deployed on unattended edge nodes require lifecycle management and
additional security mechanisms

This problem is (partially) taken care of when cloud-based services manage the IoT. On
distributed edge nodes, however, this problem needs to be addressed properly.

2.4 Distributed Smart Space Orchestration System (DS2OS)

The Distributed Smart Space Orchestration System (DS2OS) [59] is a high-level frame-
work used for providing autonomous service management within a smart space. It is
the result of a research project and is meant to bridge the gap between the existing IoT
devices and the plethora of ad-hoc management systems built for them.

The DS2OS embodies the µ-service architecture described in 2.3, and pushes it towards
an app-based ecosystem, targeting a fully distributed system.

The key idea of the DS2OS is to abstract the service management mechanisms and
allow developers to develop their own µ-services without having to directly deal with
any management-related issues, such as service availability, Machine to machine (M2M)
communication, network management, security and so on.
Besides the benefits offered to the developer, the DS2OS also targets the final user and
thrives to ease the management of a smart space. As described in 2.2, the smart space
considered in this thesis consists of a plethora of nodes distributed in a site. These
nodes are typically unattended and do not provide intuitive management interfaces
themselves.
The average user doesn’t want to spend much time configuring and managing every
single node over its lifetime.

The DS2OS aims to solve problems [P.0], [P.1], [P.3] and [P.4] by introducing the idea of
a central orchestrator node within a smart space, capable of managing all the others.
By providing a single UI to the user, the entire smart space can be managed effortlessly
and transparently.

The main features supported by the DS2OS to manage a smart space are:
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• lifecycle management of µ-services

• resource usage collection on different nodes

• dynamic µ-service migration and load-balancing

• communication between nodes over a secure channel

• µ-service security (discussed in subsection 2.4.10)

By not allowing users to manually mess with the IoT devices, but only through a
controlled management interface, the attack vector can be controlled and taken care of.

2.4.1 Architecture

The DS2OS is based on three components: the VSL, the S2Store and the µ-services
running on the IoT nodes inside a smart space.

2.4.2 Virtual State Layer (VSL)

The Virtual State Layer (VSL) is a programming abstraction, based on a middleware
concept introduced in [59].
The VSL is a novel attempt to gap the bridge between the cyber-world and the physical
world. This is meant to overcome the heterogeneity of devices found in smart spaces.
Each device in pervasive computing typically offers one or more services, tied to a
specific context.
To unify the different contexts under a single interface, the VSL leverages a hybrid
meta-model, used for defining context models.

Context Models

A context model provides an abstraction for the structure of the context of an IoT
device. The context is represented using virtual objects, called context nodes. The
mapping between a real-world entity and the context node representing it is purely
abstract. This concept can, therefore, be applied to virtually any domain.

The meta-model introduced to describe a context allows to define:

• regular context nodes, which map a domain property to a specific value (e.g. a
temperature value);

• virtual context nodes, which turn nodes into abstract service interfaces.

16



2.4 Distributed Smart Space Orchestration System (DS2OS)

Both types of nodes serve as a representation of the underlying properties, but virtual
nodes are not limited to just static data. They offer, instead, an interface for other
services to retrieve dynamic data and trigger functionalities. This functionality is very
powerful, as it allows to define virtual nodes as if they were high-level functions. This
enables a SOA of smart space services.

Context models are defined using human-readable markup language, and support nested
properties. The example in listing 1 shows the context model for a temperature service.
The model contains a temperature value in Celsius and Fahrenheit, as well as some
information about the temperature sensor.

1 <temperatureService type="basic/composed">
2 <currentTemperature type="basic/composed">
3 <celsius type="basic/number" />
4 <fahrenheit type="basic/number" />
5 </currentTemperature>
6 <sensor type="basic/composed">
7 <model type="basic/text" />
8 <firmwareVersion type="basic/text" />
9 </sensor>

10 </temperatureService>

Listing 1: Context Model defined in XML for a temperature service

The root element of a context model is the name of represented domain. All other
nested context nodes are structured like a tree.
Each Context node offers primarily two functionalities: get and set. These are accessor
functions that allow to respectively retrieve and update the data of a context node.
In the reference implementation of the VSL, set and get operations are invoked as if
they were RESTful APIs. This holds true both for regular and virtual context nodes.
Services also have the possibility to subscribe to a specific regular context node, to get
notifications when the property data changes.

The VSL keeps a public Context Model Repository (CMR), in which the context models
are uploaded. When a context model with a unique identifier is loaded by the VSL,
it becomes usable within the smart space. Other services can access the data and
functionalities offered by another service, via the context model.

Knowledge Repository

The VSL is built to support knowledge sharing and collaboration between services. For
this purpose, it is designed as a fully distributed Peer-To-Peer (P2P) middleware system.
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Each peer is called Knowledge Agent (KA). KAs manage the Context Repository and
all the contained data.
The data contained within the Context Repository is structured like a tree, with the
root of a tree being the KA itself. Every leaf of the root corresponds to a loaded
context model. As already mentioned, each context is represented as a tree and contains
knowledge about the modeled entity and its properties.

Knowledge
Agent

Context
Repository

Context Manager

Service Service

Adaptation
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Service

get / set
Virtual Node

Function
Call
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Figure 2.6: Architecture of Knowledge Agent (KA) with Context Management

Fig. 2.6 shows the components of a KA and its interaction mechanism with other
services. Any kind of service conforming to the DS2OS framework can load their con-
text model onto the VSL. Adaptation services are considered special services, as they
don’t just contain software logic but actually communicate with physical sensors and/or
actuators.

As part of a distributed system, KAs provide context for services and retrieve context
from other connected KA peers. The discussion about the synchronization procedure
is not within the scope of this thesis, but more details about the lifecycle management
and the current security concept are presented in subsection 2.4.6 and 2.4.10.
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2.4.3 Smart Space Store (S2Store)

The S2Store store is the global entity in charge of storing µ-services, developer metadata,
data analytics and more. Its functionality is conceptually the same as any other app
store. Third-party developers submit their µ-services to this store, making them avail-
able for users. Submitted µ-services can be downloaded from the S2Store and installed
inside a DS2OS smart space.

2.4.4 Micro-service (µ-service)

Microservices running inside a smart space make up the third component. Inside a
DS2OS, every running software service, besides the VSL, is a µ-service, developed relying
on the DS2OS framework. µ-services in this context follow the same principle as apps
and can exchange data over the VSL.
Microservices within the DS2OS are small self-contained services, which are meant to
be used together with other services in an IoT context. Being the minimal functional
unit, µ-services are very powerful and at the same time very flexible. The entire service
management system can be built entirely using dedicated µ-services.
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Figure 2.7: Distributed Smart Space Orchestration System (DS2OS) architecture

From an architectural point of view, the service management system considers the com-
ponents shown in 2.7. Each of these is a specific-purpose µ-service, that enables the
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management of the smart space by working together with the other services. A detailed
analysis of the components follows.

2.4.5 Service Hosting Environment (SHE)

The SHE is a runtime environment for the µ-services, and is unique per every node. Its
main function is to interact with the underlying hardware and provide functionalities
typical of a HAL. It takes care of (re)starting and stopping the µ-services and interfaces
them with the system. µ-services need common interfaces, as they may require access
to:

• the VSL knowledge, also used as an interface to other µ-services

• system peripherals

• other hardware resources, such as sensors, bus systems, etc.

• the file system

Dependencies and runtime parameters are provided by the SHE to the µ-services, which
run agnostically of the environment they’re deployed in. It is the duty of the SHE to
start the services in the right order, monitor them and act accordingly, in case of service
failure or unexpected behavior.

The SHE may be implemented on top of an OS or provide the low-level functionalities
that an OS does. The in-depth study of this component is out of the scope of this thesis,
but is extensively analyzed in [58].

2.4.6 Knowledge Agent (KA)

Knowledge Agents are instances run locally on each node that support the VSL middle-
ware, as described in 2.4.2. Leveraging the underlying knowledge sharing mechanisms
they keep a partial (or full) local copy of the knowledge of the network. Whenever a
specific information inside the knowledge tree is required, it is queried from the node
which possesses the requested information.
The knowledge sharing mechanism is fundamental within the DS2OS, as it allows nodes
to retrieve information from other nodes. The visibility and access rights of this knowl-
edge is discussed in 2.4.10.

In case of connection loss or intermittent connectivity, the KA will keep running nor-
mally. The local knowledge tree will keep getting updated, based on data set by the
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overlying services. The KA will automatically attempt to reconnect to the rest of the
network and then update the shared knowledge tree.

Each node runs only one KA, started by the SHE and managed accordingly in case of
failures. Every µ-service started by the same SHE instances connects to the same KA
(if needed) and uses it to access context model data. Regardless of the nature of the
service, the SHE passively monitors it and collects data needed for management and
load-balancing purposes.

2.4.7 Site Local Service Manager (SLSM)

The DS2OS runs on distributed nodes, but instead of having a completely distributed
service management, it considers a central trusted entity within the system. This entity
is the SLSM, which acts as the orchestrator of the entire smart space. Every other
node knows the central entity and relies on it to take management and load-balancing
decisions within the smart space. Key responsibilities of the SLSM include:

• keep track of the existing nodes in the network

• download µ-services from the S2Store

• distribute µ-services on target node(s), according to specific policies

• instruct nodes to remove specific µ-services if needed

• manage failure/churn of nodes running critical services

• perform load-balancing and service migration according to optimization strategies

In the basic design of the DS2OS, the SLSM is a unique entity within the smart space and
is typically run on the most powerful node, as it requires more computational resources.

2.4.8 Site Local Certificate Authority (SLCA)

The DS2OS enforces service authentication with the VSL, by presenting a valid service
certificate. To issue these certificates, a Certificate Authority (CA) is needed. Instead
of relying on a global CA, the DS2OS proposes the leverage a dedicated local CA. The
SLCA embodies this entity and is unique for each DS2OS site. A more in-depth analysis
about certificates is presented in 2.7.
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2.4.9 Node Local Service Manager (NLSM)

The last fundamental brick needed for smart space management is the NLSM. This
component is more strictly coupled with the SHE and manages the lifecycle of services
running on a node.
An NLSM is unique for every node and is always the first µ-service to be started by the
SHE.
The main tasks of the NLSM include:

• (un)installing µ-service if instructed so by the SLSM

• automatically start services installed on the node

• automatically stop services before updating them, or if instructed so

• request new certificates when needed (see 2.7)

• monitor the resource usage and behavior of the µ-services running locally

• periodically inform the SLSM about the resource usage

• relay important information (such as critical errors) to the SLSM

The NLSM contains the logic for performing the mentioned tasks, but may not execute
all the operations on its own. For example the NLSM takes the active decision of
instructing the SHE to start a service. The service processes, however, is not started
directly by the NLSM but by the SHE. Although the NLSM and the SHE turn out to
be coupled, the logic is still kept completely separate from the system-level operations.
More details on this in chapter 4.

It is worth mentioning that on the master node of a site, hosting the SLSM, an NLSM
instance is still needed to manage all the running µ-services.

2.4.10 Current Security Concept

The VSL supports communication encryption out-of-the-box. This is achieved by es-
tablishing TLS connections between different KAs, as well as between a µ-service and
the KA running on the same node.

TLS connections provide confidentiality, integrity and authentication on the communi-
cation layer. As a consequence, all data shared between KAs is automatically protected
and encrypted.

Digital certificates are used for establishing a TLS channel. More specifically, each
agent requires a certificate from a CA. When different agents try to exchange data, they
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Figure 2.8: Authentication between a µ-service and a KA (left) and between two KAs (right) to
create TLS connections. Each entity uses a different certificate signed by the same CA.

authenticate one another through their certificates and then establish a TLS connection.
For this authentication to succeed, both certificates need to be issued by the same CA.

The VSL also requires services to present a valid certificate when registering a context
model. This has two purposes:

• authenticate the service, making sure the certificate was issued by a valid CA

• apply access control rules, expressed as certificate metadata

The VSL is completely agnostic of the management system introduced by the DS2OS.
However, it expects all the certificates to be issued by the same CA. Figure 2.8 shows
that, even though the certificates on the two KAs and the µ-service are different, the
signature has the same origin.

The VSL implements security by design, since it protects its most relevant feature as a
middleware: communication and knowledge sharing. It is preferable, to build additional
security layers on top of a system already providing End-To-End (E2E) encryption. For
this reason, this thesis builds upon the DS2OS and aims to provide additional security
mechanisms for securing the service management.
The DS2OS security concept, introduced in [59], considers leveraging digital certificates
for protecting the µ-services, as well as the entire service management workflow.

The main research questions that this thesis wishes to address are:

<Q.0> How can a distributed smart space orchestration system, such as the DS2OS, be
protected against malicious attacks?

<Q.1> How is the introduced security concept backed in the state of the art?

<Q.2> How can the security concept be implemented and improved?
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2.5 Internet of Things (IoT) Security

Smart devices are intrinsically computers and are at least as vulnerable to cyber-attacks
and faults as traditional computers. Like for any other computing device, security and
privacy are a major concern. A thorough security assessment of all existing IoT vulner-
abilities is almost impossible to make, but some main attacks and threats identified in
literature [53], [5], [19] are worth mentioning.

2.5.1 Attacks on the IoT

For categorizing attacks, the industry and research community refers to the IoT reference
model, shown in Figure 2.5. Referring to the seven-layer model facilitates the analysis
of threats on a level-basis.
This thesis mainly focuses on applications running on edge nodes within smart spaces.
While communication between edge nodes and remote servers is not out of the question,
the analyzed scenario considers users to directly manage their smart devices and services.
This leads to a simplified IoT reference model, containing only 3 layers: a physical
layer, a connectivity layer and the application layer, which may include all the upper
layers collapsed into one (i.e. data storage, aggregation and even collaboration between
different applications).

Name Short Description
Confidentiality C Concealment of information
Data Integrity I No improper or unauthorized change of data
Availability A Services should be available and function cor-

rectly
Authenticity AU An entity is who she claims to be
Accountability AC Identify the entity responsible for a commu-

nication event
Controlled Access CA Only authorized entities can access certain

services or information

Table 2.1: Reference technical definition of security goals

The security goals considered in table 2.1 are used as a reference for the following
analysis. Each attack on the IoT may impact one or more of these defined security
goals.

Table Table 2.2 shows a summary of the major threats and countermeasures that can
be found in the IoT.
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Attack Layer Impact Countermeasure
Hardware Trojan Phy All Controlled circuit design and production

process
Node tampering Phy I,A Restrictions to physical device access, secure

boot
Node imperson-
ation

Phy AU Authentication mechanisms

Eavesdropping Net C Communication encryption
Man in The Mid-
dle (MiTM)

Net All Secure channels, with authentication, en-
cryption and integrity protection

Routing Net C,I,A,AC Encryption, advanced routing techniques
Sybil Net All Enforced authentication, encryption, ad-

vanced routing techniques
Unauthorized
Conversation

Net AU,CA Authentication mechanisms, access control
rules

Cryptanalysis App C Strong encryption schemes
Virus, Malware
and Spyware

App C,I,A,CA Authentication, controlled access, applica-
tion integrity protection, anti-malware

Malicious code in-
jection

App All Authentication, controlled access, applica-
tion integrity protection

Protocol App C,A,AU Auditing and testing
Denial of Service
(DoS)

Any A,AC Authentication, firewalls, controlled applica-
tion management

Social Engineer-
ing

Any C Protect confidential information, promote
awareness

Side-channel Any C Restricted physical access, metadata encryp-
tion, de-patterning transmission

Table 2.2: Attacks on the IoT physical layer and countermeasures

The typical countermeasures adopted in research works and industry solutions for the
IoT include (see chapter 3):

• protection of the IoT devices, relying on integrity checks and the encryption of
the device itself;

• enforcing the usage of secure channels for securing the communication between
IoT devices;

• use device certification, by pinning certificates to the software running on them;

• to address application security, existing app ecosystems leverage code-signing and
automated analysis techniques for protection (analyzed in subsection 2.6.3).
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2.5.2 Threat assessment

While each one of the analyzed layers should be protected properly, the presented range
of attacks is too wide to be addressed in a single solution. The basic assumption is that
the attacker may be the network, or someone with the possibility to inject malicious
applications or tamper with existing applications.
In light of the identified threats, this assessment considers feasible approaches, con-
straints and defines the target security goals.

Physical Layer

The main constraint on the physical layer is given by the low resources of the involved
devices. Many IoT devices do not support powerful cryptographic primitives, such as
Advanced Encryption Standard (AES) or Secure Hash Algorithm (SHA) algorithms.

Physical attacks are not considered within the scope of the thesis, since they are un-
related to the top-level service management. However, some basic assumptions for the
analysis will be:

• devices have at least basic cryptographic capabilities

• attackers cannot physically access the vulnerable devices

Network Layer

The ideal protection on the network layer is the usage of secure channels for commu-
nication. By authenticating and encrypting messages (e.g. using TLS), data integrity,
authentication and confidentiality are guaranteed. The scenario targeted in this the-
sis relies on the existing VSL, which provides this functionality already (see subsec-
tion 2.4.10). Therefore, many of the attacks targeting the network layer are already
protected against.

Application Layer

On the application layer, the chosen IoT scenario based on apps, any kind of software-
based attack is to be considered.
Software applications are the main source of security issues, as they offer a wider range
of functionalities to exploit. Vulnerabilities may stem from system software, edge com-
puting algorithms, high-level applications or any other kind of computerised software.
It is impossible to determine defenses for all attacks on applications, as they depend on
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the nature and behavior of the specific application. The main protection mechanisms
against malicious code execution are briefly described.

Data security can be enforced with authentication, encryption and integrity mecha-
nisms. This applies to sensitive data and application binaries. Effective encryption and
checksum mechanisms ensure confidentiality and integrity of the device’s data, nullify-
ing data theft and manipulation implications.
Proper access control lists also enforce authorized access to data, ensuring data privacy.
Firewalls can protect the system from undesired external entities, and help preventing
DoS attacks.
Anti-malware software prevents malicious code to be installed and/or launched. It is,
however, not a suitable solution for the IoT. This is due to the heterogeneous nature
of the devices, the additional cost, the overhead and the required update frequency of
such a solution.

The relevant problems identified in this section are:

<P.5> IoT nodes are vulnerable to unauthorized access to resources, leading to data
integrity violations and data theft

<P.6> Software for the IoT is not authenticated nor verified, and cannot be trusted

<P.7> Malware and code injection lead to violations of data integrity, confidentiality,
availability and resource access

2.5.3 Security Goals

IoT devices running services inside a smart space face all the vulnerabilities mentioned
in 2.1 and 2.5. Based on the threat assessment in subsection 2.5.2, the scope of the
security that this thesis aims to provide becomes clearer. The main addressed security
goals, which are of the utmost importance in the analyzed scenario, are:

• application integrity [23]

• authenticity of applications and nodes

• controlled access [22] of IoT resources and interfaces

The countermeasures analyzed in 2.5.2 are mainly based on cryptographic algorithms,
digital signatures, access control policies and automated analysis algorithms.
Given this consideration and the target security goals, several state of the art approaches
need to be analyzed more in depth.

27



Chapter 2: Background and Analysis

2.6 App Security

The architecture of the DS2OS, analyzed in subsection 2.4.1, resembles in many ways
a typical app store paradigm, which is widely used in the industry today. This para-
digm was born in the first decade of the 21st century, when smartphones began being
mainstream.

The term App Ecosystem is used to refer to all activities and infrastructures that sur-
round applications targeting a specific device category. This includes the development
of the apps, the server infrastructure, distribution platform, analytics tools, advertising,
monetisation systems, user feedback, support and more.

Tapping into the knowledge of modern app stores and existing app management systems
helps identifying the required security mechanisms for the DS2OS. This section analyzes
security features provided by existing app ecosystems. The analyzed features lead to
the system requirements or may serve as foundation for fine-tailored mechanisms to be
applied to the DS2OS.
An in-depth comparison with existing app ecosystems will follow in section 3.2.

2.6.1 App Stores

An App Store is a digital distribution platform, meant to store apps and offer them
to its customers from a centralized entity. The set of supported applications typically
targets a specific platform or type of device.

Developers

App StoreConsumer Device

Operating System

Libraries & Frameworks

App Runtime Environment

App
Repository

Security Manager

Store Manager & UI

Analytics

Figure 2.9: Architecture of a typical App store
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An example architecture of a typical app store is depicted in Figure 2.9, with no reference
to a specific vendor.
Applications developed by third party developers are uploaded on a global platform.
The platform is in charge of storing, distributing and keeping apps secure from external
influences. The platform also supports additional features, such as managing analytics
and data generated by the consumers, which is not relevant for this thesis. Consumers
may download app on their devices via a UI, offered by the store.

The introduction of digital distribution platforms solves several problems:

• Users don’t have to cross-search the Internet for the desired application anymore,
but can find it on a centralized platform

• Privacy and security are enforced by the store. No malicious apps can be down-
loaded and the user’s data is not leaked to other parties.

• Applications offered by a store are considered to be trusted, as the company behind
it earns money for it. By extension, the store itself is a trusted party

The architecture of the DS2OS heavily relies on the S2Store component. The S2Store
contains the service repository where all available µ-services are stored and can be down-
loaded from.

The next subsections will focus on several security-related aspects introduced by app
stores. In particular, how the integrity of an app executable is guaranteed, how the
authentication mechanism works, how the access rights are defined and enforced, and
finally how dependencies are handled differently in each system.

2.6.2 App Distribution

The distribution process of an App is essentially the same for most existing app ecosys-
tem (see 3.2).
Each store is part of a unique App ecosystem and therefore offers a different Soft-
ware Development Kit (SDK). Third-party developers have to stick to the supported
programming language(s), file formats and guidelines imposed by the ecosystem when
developing an application. Apart from platform-specific practices, UI design and limi-
tations, the concept behind each ecosystem is fundamentally the same.

Developers upload application packages to an app store using a dedicated UI. Each
package contains the app and additional metadata, required by the store. The metadata
is typically generated via the SDK or other tools provided to developers. The store makes
sure that only authorised developers can do so (see 2.6.3).
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Apps submitted to the store undergo a rigorous review and verification process, to make
sure that no consumer may be harmed by them.
Once the application package has been accepted to the store, it is kept inside a reposi-
tory, accessible to consumers.
The consumers install an application from the store to a target device. To do this,
they access the store UI from the very device on which they wish to install the appli-
cation. Some applications have restrictions and dependencies, such as a specific target
device (e.g. a tablet rather than a smartphone), other hardware or software constraints.
Dependency management is addressed in 2.6.5.

The store seamlessly takes care of performing the necessary checks and makes sure that
the target device meets all requirements and dependencies. If successful, it allows the
requester to download the application bundle.

Developer App Store User

Approved
Rejected

Develop
Package & Sign Upload

Review App Publish Download & Install Use App

Figure 2.10: Exemplary app distribution process

Once an app package has been downloaded, it is unpacked in local storage according
to the installation mechanism. At this point integrity check mechanisms are in place,
needed to guarantee, that the package was not tampered with in any way (see subsec-
tion 2.6.3). After installing an application, the consumer is able to use it and doesn’t
have to communicate with the store any longer. The simplified workflow is shown in
Figure 2.10.

The purpose of the store, is to function as a centralized secure repository and allow
scalable distribution of applications, safeguarding consumers from malicious software.
A store acts as a trust anchor, and users assume that the software coming from it
does not contain malicious code. In a way, stores must ensure accountability for the
distributed applications. Stores enforces security policies and perform code reviews,
verifying the quality and benign purpose of applications.

Distributed Target Devices

The fundamental difference between the DS2OS, and traditional app ecosystems (see
3.2) is that the former does not deploy apps on the same device they were downloaded
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on. In a typical app ecosystem (e. g. iOS), the device downloading the app is also the
device on which the app itself will run.

Within a DS2OS site, nodes do not download a µ-service from the store directly, with
the exception of the SLSM. The SLSM is the only entity responsible for orchestrating
the smart space. Its responsibilities include dynamically distributing µ-services to other
nodes within the site. As a consequence, it is the entity in charge of downloading every
µ-service, that will be run within the DS2OS site.
Figure 2.11 shows the two steps needed to deploy a µ-service, when an administrator
(user) instructs the orchestrator to install a specific service:

1. the SLSM downloads the µ-service, chosen by the user, from the S2Store and stores
it locally;

2. according to internal policies and load balancing strategies, the downloaded µ-service
is sent to a suitable node in the site. The node manager (the NLSM) running on
that node installs the µ-service and runs it.
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Figure 2.11: Microservice installation procedure within a DS2OS site

The described procedure is not initiated by the NLSM itself, but is triggered by the
SLSM. Still, the SLSM acts like a trusted store entity towards the NLSM.
Regular nodes act as slaves within a DS2OS site and do not contain decisional or man-
agement logic. The only entity taking decisions within the site is the SLSM, which is
indirectly controlled by the user.

In terms of usability, in a distributed scenario, such as the DS2OS, it would be inadequate
to have every node install a µ-service directly from the store. There are two main reasons
for this:
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• centralised management of the smart space is not possible, if every node commu-
nicates with the store independently;

• every deployment would require manual intervention, which goes against the idea
of a modern smart space, where nodes are unattended most of the time.

Compared to traditional app distribution, the proposed mechanism is novel and requires
additional management to be effective. Such management logic is not within the scope
of the thesis and is already addressed in [12] and [58]. Rather, the thesis aims to
neutralize potential new attack vectors introduced with this novel distributed service
management.

Some potential risks and factors that need to be kept in mind in a distributed environ-
ment are:

<P.8> Attackers may impersonate the SLSM and trick other nodes into accepting a forged
service bundle, containing malicious code. Nodes must be able to identify and trust
the SLSM

<P.9> Attackers may impersonate an NLSM and obtain a service bundle from the SLSM,
gaining unauthorized access to resources

On one hand the SLSM needs to take on the role of the store, guaranteeing that an
installed service bundle is identical to the original one downloaded from the S2Store and
in no way modified.
On the other hand, the SLSM must be wary of other nodes within the local site. When
deploying a µ-service to a node, the SLSM needs to be sure, that the target node belongs
to the smart space and is not an impostor.

Several other things need to be considered in a self-managing smart space. When trans-
ferring a service package to a different node, it is necessary to verify the requirements,
dependencies and access rights of the service. Especially when nodes are heterogeneous
IoT devices, hardware capabilities and resources are subject to change. The adminis-
trator of a DS2OS site may also have set up different constraints and permissions on
different nodes. This requires proper management, since nodes must not run services,
if they are not authorised to do so.

To sum up the problems, the introduction of a completely distributed network makes
the deployment of applications on heterogeneous nodes intrinsically more difficult. Not
only is it necessary to manage the installation, uninstallation and service migration
process (see section 4.3), but certain security mechanisms need to be put in place to
overcome the introduced risks.
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2.6.3 Code Signing

Applications are usually distributed as bundles (see 3.2), containing an executable,
along with other metadata and resources. Code signing is a well-known technique that
provides both data integrity and authentication of the source. The integrity protection
proves that the code was not modified, while authentication allows to identify who
signed the code.

Raw App
Executable

hash
algorithm

1011010101

Message
Digest

Digital
Signature

Signer's
Private Key

1101000110

encryption

Signer's
Certificate

Code-Signed
App

Figure 2.12: Generic code signing mechanism

A code signing procedure is visible in Figure 2.12. Verifying a signature involves hashing
the original application and checking whether the obtained message digest is equal to the
one contained in the code-signed application. The verification is visible in Figure 2.13.
Message digests are protected thanks to encryption. Public Key Infrastructure (PKI)
key-pairs are used to ensure authenticity.

Code signing is by far the most widely used and effective technique to protect an ap-
plication bundle. As long as the target device supports basic cryptography and digital
certificates, code signing µ-services is a very valid solution.

Integrity Protection

Skilled attackers are capable of running arbitrary code by changing a very limited
amount of bytes inside an executable. This is one of the major risks that app stores
have to mitigate.

33



Chapter 2: Background and Analysis

Original App
Executable

hash
algorithm

1011010101

Message
Digest

Digital
Signature

Signer's
Public Key

1101000110
decryption

Code-Signed
App

1011010101
Message
Digest

Hashes are compared to
verify code signature

Figure 2.13: Code signing verification mechanism

Compromised applications can cause damages to devices and customers alike, leaking
private data to third parties or arbitrarily modifying/deleting existing data. This po-
tentially leads to the violation of every security goal.
Any modern app store is considered a trust anchor, and should not distribute applica-
tions containing dangerous code. Especially in an ecosystem, where apps are paid for,
it is undesirable to deliver any malicious application to the customer. The non-expert
customer assumes that any application coming from the app store, as well as the instal-
lation process, are secure. To make a comparison, untrusted sources (e. g. web pages)
do not give any guarantees, and malicious code is a constant risk.
The reasoning made for application executables also applies to any sort of additional
metadata attached to it.

IoT nodes running third-party services are affected by the mentioned problems, like
any other application. It should not be possible for any attacker, to modify a service
package from the moment the developer uploads it to the store until the moment it is
executed on the target device. It is also worth mentioning, that an application cannot
be considered as not compromised, if already installed on the target device. Necessary
precautions must be taken, to avoid the same application (binary or metadata) to be
modified while on the device.

Identified problems and integrity risks that need to be mapped as requirements are:
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<P.10> Application executables are prone to binary modification from attackers, leading
to arbitrary code execution

<P.11> Unprotected service metadata may be subject to tampering

<P.12> Attackers may modify the service package at any point during the distribution
process

<P.13> An application installed on a device may be modified, leading to to arbitrary code
execution

Code signing relies on the most obvious mechanism for securing the integrity of both
executable and the attached metadata: the checksum (or hash).
Every major app distribution system today relies on code signing techniques to ensure
that:

• the application package does not contain error and was not tampered with;

• the application packages can be distributed along with a signature, which belongs
to a CA or to the developer of the application.

Authentication

<P.14> Third-party applications may originate from untrusted sources and contain mali-
cious code.

Code signing has the purpose of providing code authenticity, therefore guaranteeing the
source of an application.
Code signing relies on developers signing their apps using their private key. This implies
the support of traditional Public Key Infrastructure (PKI).

App stores, as well as target devices and consumers can verify the source of the ap-
plication by checking the signature (shown in Figure 2.13). By assumption, before
submitting app to an app store, a developer has already uploaded their public key to
the store.

2.6.4 Runtime Environment (RTE)

Besides providing integrity checks and authorization policies, applications should also be
run in a safe environment. Proper RTE control can protect against privilege escalation
and undesired damages to unprotected parts of the system.
Modern app ecosystems enforce app sandboxing techniques, to limit the access the app.

35



Chapter 2: Background and Analysis

The focus of the thesis is not to provide a safe RTE, as it is the goal of the SHE. Refer
to chapter 4 for more information.

2.6.5 Dependencies and Access Rights

Applications often have dependencies. These may be hardware or software dependen-
cies. For example, an application for taking photographs requires access to a camera.
The same way, an application that analyzes the room temperature needs access to the
room temperature sensor, or a service that provides this measurement.
Dependencies between applications are managed in different ways, depending on the tar-
get platform. In some cases the control is completely transferred to another application.
In other cases the application leverages an interface, offered by another application, to
get access to more functionalities.
The ecosystems analyzed in section 3.2 propose different approaches to this problem.

In comparison, the DS2OS solves dependencies with a custom mechanism, based on
Context Models (introduced in 2.4.2).
Each µ-service relies on a context model [59] to represent its own data and make it
available to other services over the VSL.
Developers declare the context models for their services using XML notation. A context
model contains a tree hierarchy which represents the resources/properties of the service.

1 <temperatureService type="basic/composed">
2 <currentTemperature type="basic/composed" reader="home"

writer="">↪→

3 <celsius type="basic/number" />
4 <fahrenheit type="basic/number" />
5 </currentTemperature>
6 <sensor type="basic/composed" reader="admin" writer="">
7 <model type="basic/text" />
8 <firmwareVersion type="basic/text" />
9 </sensor>

10 </temperatureService>

Listing 2: DS2OS Context Model for a temperature service, with defined access rights

The example in listing 2 is an extension of the context model presented in 2.4.2. The
context model contains a temperature value in Celsius and Fahrenheit, as well as some
information about the temperature sensor. Services in charge of adjusting the room
temperature, via air conditioners or heaters, require the information provided by the
temperature service. This is considered a dependency. Service bundles requiring data
provided by additional services must declare this within the manifest.
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An important functionality of the DS2OS is to deploy µ-services according to their
dependencies. If a dependency cannot be resolved, a µ-service should not be run. Hence,
if the temperature service was not available within a site, the temperature management
service could not be deployed there either, because of the missing dependency.

The context model shown above describes a temperature service, with additional access
rights set.
Access rights define what resources and dependencies an application is authorized to
access.

<P.15> Directly accessing hardware resources or other apps is a renowned cause for privacy
and security breaches

<P.16> Unauthorized modification of access rights may give attackers read/write access
to arbitrary resources inside the smart space

<P.17> Individual access rights for every service are not intuitive. Generic access groups
should be presented to the user instead

Every major system, capable of running software, enforces access control. Major app
ecosystems do the same, in the form of user permissions. Only users are allowed to
modify these permissions. Once set, user permissions are stored in a read-only directory,
under the control of the system. This makes sure that the access rights cannot be
modified by attackers at any given time.

Services within the DS2OS leverage the Context Model-based mechanism described in
subsection 2.6.5, which allows to manage access rights for each specific dependency
(introduced in subsection 2.4.2).
The VSL guarantees that, given the correct access rights, a service may access the data
defined in the context model of another service.

Access rights are subject to change at any given time. These changes are typically
user-initiated and the user expects them to be applied effective immediately. This is
especially challenging in a distributed scenario and leads to the following necessities:

<P.18> Access rights revocation or changes need to be propagated to all affected nodes

<P.19> It must be possible to update rights changes on nodes that are out of reach (due
to intermittent connectivity) as soon as possible
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2.7 Digital Certificates

In light of the security concept presented in 2.4.10, an analysis of digital certificates is
necessary.
In computer science, digital certificates allow to uniquely identify an entity, be it a
person, an organization or else. This is fundamental in order to establish secure com-
munication channels with other services over the internet, or perform general-purpose
authentication.
The concept was borrowed from real-life scenarios.
An real-life example are identification documents, e.g. passports. These may only be is-
sued by globally recognised authorities (governments in this case), which are considered
trusted by third parties. If a document is signed by a trusted entity, then the document
is, by transitive property, also trusted.

A digital certificate is issued by a trusted Certificate Authority (CA). To prevent coun-
terfeits, strong cryptographic primitives are used. These make sure, that it is compu-
tationally infeasible to steal someone’s identity.

Digital certificates are also called Public Key certificates, as they guarantee that a certain
entity is tied to a unique public key. Private and public keys are at the core of modern
PKI.

<P.20> Digital certificates require cryptographic operations and are have a considerable
size. Their usage should, therefore, be optimized.

2.7.1 Application Certificates

The practice of pinning a digital certificate to a device or an application is well-known,
both in research and in the industry ([71], [42]). In the proposed scenario (see sec-
tion 2.4), each µ-service already needs a valid certificate to connect to the VSL. There-
fore, a valid approach would be to leverage the same functionality to also satisfy other
security goals.

2.7.2 Signed Metadata

Digital certificates support additional information to be attached to it, as signed meta-
data.
The advantage of using a single certificate and attaching metadata to it is manyfold:

• authentication with the VSL is guaranteed
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• code-signing of a µ-service can be combined with the service certificate

• access rights can be embedded as metadata

Since each certificate is issued for a specific service, the control over the metadata
would be much more granular. Ultimately, application integrity, authenticity and access
control can be achieved.

<P.21> Different service management entities and services may require different metadata.

The defined metadata is not required on every node and at every stage of the service
management. For example, user-defined access rights are not available by a user when
the developer submits a service. Therefore, the required metadata must be considered
carefully.

2.7.3 Certificate Authority

A trust anchor is needed, as soon as authentication mechanisms come into play. For
digital certificates, such an entity is called Certificate Authority (CA).
CAs play a critical role in today’s internet. They are in charge of issuing new digital
certificates for servers and service providers. Clients trust the certificates emitted by a
CA, because the CA acts as a guarantor for the service provider.

For the proposed scenario, smart spaces need to rely on a CA for issuing valid application
certificates. Two options are possible:

1. leverage a global CA

2. employ a local CA for each smart space, to improve autonomy

The first option is clearly less scalable, even considering an intermediate authority.
The workload of issuing certificates for every existing smart space can become a huge
bottleneck. Furthermore, a certificate should be issued specifically for a user/device and
not have global validity. A certificate issued in a smart space should not be accepted
as valid in any other Smart Space. Otherwise, this could lead to certificate spoofing in
any network.

The second option seems more fit for this scenario, but imposes the overhead of man-
aging a local CA.

Summing up the identified problems:

<P.22> Issuing service certificates in the DS2OS requires a dedicated trusted entity to take
care of it
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<P.23> Certificates issued by a CA must be tied to a smart space and managed appropri-
ately, to avoid spoofing

2.7.4 Certificate Revocation

Solving problems [P.18] and [P.19] inside a distributed system requires a dedicated mech-
anism.

When metadata is changed, it is necessary to propagate the changes throughout the
smart space and ensure consistency on every node.
In a certificate-based scenario, updating metadata can be tackled in two steps:

1. existing metadata needs to be invalidated

2. new metadata needs to be applied automatically

Invalidation is achieved through certificate revocation. In literature, there are several
documented approaches for successfully revoking a certificate:

• Certificate Revocation List (CRL) [20]

• Online Certificate Status Protocol (OCSP) [67]

• OCSP Stapling [30]

• Certificate Revocation Guard (CRG) [33]

• Certificate expiration [66]

All these approaches target Secure Sockets Layer (SSL) certificates, commonly used for
web browsing.

Certificate Revocation List (CRL)

CRLs were originally used by CAs to publish revoked certificates. Clients would down-
load them and compare them with current server certificates.

While this approach scales poorly in the internet, it would be a valid approach for
a smart space. A smart space is expected to host a reasonable amount of devices,
connected within the same network. Therefore, the CRL scalability should not prove to
be an issue. Valid counterarguments to this approach are:

• It is hard to predict how the size of a CRL would increase over time

• the complexity required for managing CRLs can become high
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• to make a revocation effective, nodes have to check for CRLs updates often

Custom solutions built-in in browsers, such as CRL Sets by Google, use an intermediate
server instead of a CA. While this does improve performance in the internet, it does
not offer any real advantages over traditional CRLs in a smart space.

Online Certificate Status Protocol (OCSP)

OCSP is an improvement to CRLs that checks if a certificate has been revoked, thanks
to an additional request to the CA during a TLS handshake. While this approach is
more performant, an issue still arises: the CA is queried only during a TLS handshake
by default. To make a revocation effective, a service has to re-establish a connection, in
order to get this information. Periodic checks to overcome this limitation can lead to
the same issues discussed for CRLs.

OCSP Stapling

OCSP Stapling is an optimization for the web infrastructure, in which the revocation
information resides also on the server, and not just the CA. With this approach, the
smart space orchestrator would have to fetch and maintain the list of revoked certificates.
This is a valid option, although it requires to implement additional protocol logic for
OCSP.

Certificate Revocation Guard (CRG)

CRG is a solution introduced in [33]. The research approach involves an entity, called
CRG, intercepting a certificate during a TLS handshake between a client and a server.
The entity checks whether the certificate has been revoked, either from a local database
or by fetching it directly from the CA (either CRL or OCSP can be used for this purpose).
If the current certificate has been revoked, the client is notified of this.

This option outperforms solutions based on CRL and OCSP, both in terms of bandwidth
and used storage, but is not as widely used. This approach is valid, and the main
counterarguments are:

• increased software architecture complexity

• the new CRG entity needs to be trusted as well, and requires further protection
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Certificate expiration

The last approach involves leveraging a built-in property of digital certificates: the
expiration date. Every certificate has a validity period, defined by the issuing CA.
Once the certificate has expired, it is no longer valid and a new one needs to be issued.

This built-in feature is very powerful, as it ensures an automatic invalidation of a cer-
tificate, even if a node is not reachable. DS2OS services rely on certificates to be run.

<P.24> If a certificate is invalid, they cannot be run, nor can they connect to the VSL.

A controlled certificate lifetime can also improve security and reduce the damage caused
by key compromise.

The obvious downsides to this approach are:

• Periodically renewing certificates, after they have expired, has a cost, involving
computational resources and network bandwidth

• Concurrent certificate renewals can lead to bottlenecks

• A service with an invalid certificate cannot communicate with the VSL

2.8 Authentication Tokens

Token-based authentication is a widespread technique. The most common use-case for
authentication tokens is to allow an entity temporary access to a resource. Instead of
requesting a resource from a server every time it is needed, the idea is to verify the a
client’s credentials only once.

The token concept is similar to real-world scenarios, in which a complete authentication
can become burdensome if performed continuously. An example is a conference, where
participants first register with their own government-issued ID. Upon registration, they
receive a conference-specific badge (i. e., a token), with its own unique ID. This process
is an authentication, where temporary credentials are generated. These credentials are
valid only at that specific conference and for one specific person. Throughout the course
of the conference, each participant uses their token to get in and out, without having
to show the ID they showed on the first access.

The main digital authentication token protocol nowadays is described in subsection 2.8.1.
The most widely used format for tokens is described in subsection 2.8.2
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Workflow

The workflow for digital authentication tokens is straightforward:

1. A client sends its credentials to a server

2. The server verifies the received credentials

3. If credentials are valid, the server sends a token back to the client

4. For every subsequent request to the server, the client will embed the token inside
the request itself

5. The server can verify whether the received token is valid for every received request

Tokens are simple byte sequences with arbitrary length that have meaning within their
own authentication system. Tokens are generated using a cryptographically strong
Pseudo-Random Number Generator (PRNG), together with the metadata needed for
access control. The data is integrity-protected thanks to a server-generated signature
(e. g. [31]), embedded into the token.

Advantages and Disadvantages

The main advantages of authentication tokens are:

• statelessness, which makes the entire approach scalable

• support for distributed µ-services, as a token generation is decoupled from the token
generation. This means that one service may generate a token, which is used for
many other services. Authentication against multiple servers is also possible

• fine-grained access control, since a different token can be generated for every re-
source a client requires

The main security flaw of tokens, is that they may be stolen. The same problem also
occurs for certificate-based solutions:

<P.25> An unauthorized entity with someone else’s token/certificate gets access to a re-
source, which should be inaccessible to that entity

This problem is dealt with by using tokens with short validity. If the expiration of a
token is very early, then the impact of token theft can be limited to some degree. When
a token expires, a client needs to request a new one. This process is typically seamless
and automated.
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2.8.1 OAuth 2.0

OAuth2 is an open standard protocol (framework) used for resource access delegation
[15].

Application
(Client)

User
(Resource
Owner)

Authorization
Server

Resource
Server

1. Authorization Request

2. Authorization Grant

3. Authorization Grant

4. Access Token

5. Access Token

6. Protected Resource

Figure 2.14: Client resource authorization workflow with OAuth2

OAuth2 defines 4 roles: the resource owner, the resource server, the authorization server
and the client.
The central entity introduced in this solution is the authorization server, which takes
care of generating tokens and storing them.

Figure 2.14 shows the protocol used for granting access to a resource. The first four
steps are required the first time a client needs to access a specific resource.
After obtaining a valid access token, every time the client requires the resource, only
steps 5 and 6 are performed. When receiving a request with access token, the resource
server delegates the verification of the access token to the authorization server.

Authorization servers issue two types of tokens:

• access token, which are used to grant access to a protected resource

• refresh token, kept by the client and used only for requesting a new token, after
the previous one expired. This type of token is not always used.

Both tokens have a limited validity in time and are integrity-protected.

2.8.2 JWT

JSON Web Token (JWT) is an open standard [49] defined for transmitting authorization
tokens in a simple JSON format.
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JWT have a very simple structure, with three fields separated by a dot:

• The header contains information about the used algorithm

• The payload includes the claims of the token. Registered claims, such as expira-
tion time and token issuer are also supported [8]

• The signature is just a pseudo-random sequence of bytes, generated by signing
the encoded header and payload with a secret key. Tokens are signed either using
symmetric shared keys (e. g. [31]) or PKI infrastructure.

For HTTP compatibility, tokens are base64 encoded. An example is visible in Fig-
ure 2.15.

Figure 2.15: Example of a JWT token. On the left, the encoded token. On the right, the three
decoded fields.

JWT may be used together with the OAuth2 protocol described in subsection 2.8.1.
Custom applications and internet services consider using dedicated API on their own
server to manage JWT tokens (this functionality is identical to the one considered for
authorization servers). Web-apps have the advantage of being able to embed a token
inside the Authorization header of any HTTP request. As long as the token is valid, the
client will be granted access.

The benefits of using OAuth2 and JWT together are their portability, thanks to the
well-known JSON format, their simplicity and their scalability, as they can be used in
the internet.
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2.8.3 Authentication for the IoT

While tokens were originally built for the web, to replace sessions IDs, these are now
used for any kind of application (usually still over HTTP).

Tokens are good potential candidates for IoT access control as well. For example,
solutions such as [10] and [4], consider using tokens for MQTT authentication. Both
the JWT and OAuth2 approaches are valid, as they are lightweight, scalable and cross-
platform. This closes the gap between the heterogeneity of IoT devices and traditional
computers.

Similarly to the certificate-based approach, a token-based solution requires a dedicated
authorization server, for distributing and managing access tokens. The other problem,
introduced with tokens, is the necessity to embed the authorization code in every request
to the resource server.

2.9 Requirements

For this thesis, a custom variant of the revocation based on certificate lifetimes is cho-
sen. The main reason for this choice is the possibility to leverage a built-in functionality,
without having to add further complexity on top. The approach is also more documented
in literature (see chapter 3).
The expected outcome is a solution with very low complexity, using simple and consis-
tent security mechanisms.

This section translates the problems, encountered in the analysis, into functional and
non-functional system requirements. For every defined requirement, the addressed prob-
lems are referenced.

2.9.1 Functional

Since the scope of the thesis is to ensure specific security goals (see subsection 2.5.3),
the functional requirements are divided in respective sections.

Integrity

Service integrity is the first security goal to be achieved. Addressing the problems
identified in 2.6, the following requirements are defined:

46



2.9 Requirements

<R.1> Service bundles uploaded to the S2Store cannot be modified or tampered with.
This includes the executable, the context model and the additional metadata
added to the service [P.7] [P.6] [P.10] [P.11] [P.12]

<R.2> Service bundles downloaded from the S2Store to a smart space must be integrity-
protected during the entire distribution process. This includes the executable, the
context model and the additional metadata attached to the service. [P.7] [P.6][P.10]
[P.11] [P.12] [P.13]

<R.3> Services installed on a node, along with their metadata, must be protected against
modification and tampering [P.7] [P.10] [P.11] [P.12] [P.13]

<R.4> Service access rights and any site local metadata must be protected from unau-
thorized modification [P.5] [P.15]

Authentication

The second important security goal is the authenticity of the service and its source.
Additionally, the identity of the nodes within a smart space must also be verifiable, to
avoid spoofing and misuse of access rights. The problems identified in 2.6 lead to the
following requirements:

<R.5> Microservices must be signed by developers in order to be submitted to the S2Store
[P.6] [P.14]

<R.6> Only µ-services certified by the S2Store can be downloaded to a smart space [P.6]
[P.14]

<R.7> Only services signed by a local CA can run within a local site [P.6] [P.8] [P.22]

<R.8> A local CA can issue certificates only for services downloaded by the user from
the S2Store [P.9] [P.6] [P.14] [P.23]

<R.9> Nodes must be authenticated with the smart space orchestrator to obtain new
certificates [P.9] [P.25]

<R.10> Service certificates shall be periodically renewed, to force identity verification of
nodes [P.25]

47



Chapter 2: Background and Analysis

Access Control

The VSL automatically checks the validity and applies access rights when services at-
tempt to access a context node. To enforce access control and allow users to modify
rules at will, the following requirements are defined:

<R.11> Developers can define access groups within a context model, for improved access
rights management [P.17]

<R.12> Access rights for a specific µ-service are defined interactively by the user within a
site [P.15] [P.21]

<R.13> Access rights are bound to a specific service and can only be modified by the user
[P.15] [P.5] [P.16]

<R.14> When access rights for a service change, these changes must be propagated to all
nodes within the smart space, which have installed that service [P.18]

<R.15> Access right revocation and update when node-churn occurs must be guaranteed
[P.2] [P.19]

2.9.2 Non-Functional

Non-functional requirements are defined based on the nature of the scenario and con-
siderations regarding performance issues:

<R.16> Minimize network/resource and computational impact caused by issuing local ser-
vice certificates [P.20]

<R.17> Minimize service down-times caused by missing service certificate [P.2] [P.24]

<R.18> Minimize the complexity presented to the user, while managing the security of the
system transparently [P.17]
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Related Works

IoT security has been focus of research especially in the past few years, as it started
being seen as a real threat to the public. There are many aspects in the IoT that
need protection and it is important to identify existing works that already fulfill the
requirements defined in section 2.9.

This chapter will first introduce some IoT management systems researched over the
years and compare them with the DS2OS in section 3.1. It will then analyze more in-
depth several existing app ecosystems in section 3.2, to point out the main protection
mechanisms used in the industry and make an analogy with the DS2OS. Section 3.3 will
then focus on security-specific innovative approaches for the IoT, especially certificate-
based solutions and token-based authentication.

3.1 IoT Management Systems

IoT management has become increasingly problematic over the years, due to the obsta-
cles analyzed in section 2.1. Several attempts to solve this issue have been documented.
No industry standard exists, as of yet, but many possibilities have been researched in
the past.

The related works presented below focus on different aspects: the usability, the sim-
plicity, the platforms to integrate third-party providers, the security and so on. The
top-level differences between these related works and DS2OS will be briefly analyzed.
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ThingStore

ThingStore [1] is a platform to bring different actors of the IoT cyber-physical world
together. The focus is on an IoT Market Place, where smart services are available for
consumers. Smart services can be dynamically offloaded to edge nodes and interact
with one another (or with the platform) via a custom event query language.

While the offloading approach is valid, the platform heavily relies on the cloud infra-
structure; This is not the focus of the DS2OS, where smart spaces and applications are
decentralized and autonomous.

OpenIoT

Similarly to ThingStore, the OpenIoT proposed in [47] focuses on open platforms, acces-
sible by service providers and clients to enable a global IoT ecosystem for everyone. The
solution is a centralized platform for developing, managing and accessing applications
for the IoT. Users may directly access remote IoT devices by using specific API and web
applications created by developers and service providers.

IFTTT

If This Then That (IFTTT) is a web-service mainly made for personal use [35]. It is
used to connect and automate actions involving different apps, industrial products and
well-known services. It requires ad-hoc service integrations, to allow communication
over a defined interface.
The solution allows users to to set up cause-effect triggers that perform a set of pre-
defined actions (e. g. if the temperature raises above a certain value, enable the air
conditioner).

The solution has a huge potential as it is completely decentralized and enables simplified
management for users. Also, it isn’t limited to a smart space, but covers the entire
gamma of services tied to a user, ranging from social applications to control of smart
devices. It is, however, still somewhat limited and devices need to support its APIs in
order to function.

HomeOS

Microsoft proposed an OS for the home in [17]. HomeOS empowers the non-expert user
to manage a home environment, filled with IoT devices connected to the network, over
a user-friendly UI.
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A centralized application, acts as the controller of the entire home. The heterogeneity
of devices is overcome by offering a set of device-specific drivers, which are run on the
lower layers of the proposed solution.

The UI presented to the user resembles a traditional Desktop UI. The user interacts with
the OS, rather than with the devices and applications themselves. New applications and
devices are considered as plug&play modules from the management layer, similarly to
a desktop OS.

SAVI-IoT

A valid example of an autonomic management system is given in [45], where IoT is
provided as a service. The solution uses a multi-layered architecture: data aggregators
accumulate data and communicate over a middleware, while more complex services can
be deployed on edge nodes or on the cloud, depending on the performance requirements.
Compared to the service management approach chosen for the DS2OS, SAVI-IoT lever-
ages Docker and Swarm to manage services, both in the cloud and on edge nodes. This
is a significant difference, as the management logic and the security mechanisms are
automatically taken care of by these existing engines.

3.2 App Ecosystem study

Security approaches in diverse app ecosystems were introduced in section 2.6.

Different App marketplaces exist nowadays in the industry, with different target devices.
The three main marketplaces that will be analysed and compared are:

• iOS App Store [42]

• Google Play Store [7]

• Ubuntu Store [81]

These specific marketplaces have been chosen because they are particularly significant
for this study and had security-related documentation available. The first two are the
biggest and most widely used App stores nowadays and target mobile devices; the last
one targets any device running Ubuntu but supports distribution on IoT devices running
Ubuntu Core.
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3.2.1 Google Play Store

The Google Play Store is the marketplace, hosted by Google, used for distribution
of apps for the Android platform. The Android ecosystem specifically targets mobile
devices, such as tablets and smartphones, and is the most widely used mobile platform
as of today.

Figure 3.1: Android platform software stack [6]

The mobile platform itself runs on top of a modified Linux kernel and mostly open
source libraries, as visible from the architecture diagram in 3.1. Developers are required
to use the provided Android SDK, which leverages native libraries and can access the
device’s hardware via the HAL.

Applications are packaged by the developer in .apk bundles and contain the elements
shown in 3.2:

• compiled classes in a .dex format, executable by the Android Runtime;

• res folder, containing not compiled images and resources;

• resources.arsc, containing compiled resources such as binary XML;

• META-INF folder, in which the Java Manifest and the application certificate are
stored (more details about the certificate in 2.6.3);
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Figure 3.2: Contents of an Android PacKage (APK), shown using the APK Analyzer [28]

• AndroidManifest.xml, containing metadata such as the App ID, references li-
braries or access rights;

• assets folder, in which additional assets are kept, such as .html files;

• lib folder, where compiled library dependencies are stored

Application bundles (APK) submitted to the Google Play Store undergo a review process
(mostly automated), to verify that the app does not contain malicious code and fulfils
all the requirements imposed by the ecosystem.

Published apps can be controlled by developers via a web-based dashboard UI. This
feature is very similar to the ones offered by other app stores, and includes update
mechanisms, analytics, feedback channels, marketing control and so on.

Code Signing

Each app submitted and distributed to Android devices has a pinned certificate, self-
signed by the developer. The certificate contains a checksum for each file found inside
the APK. The default digest algorithm is SHA-1.
Code integrity and signature checks are performed when submitting an app to the store
and before installing an app downloaded from the store. The checksums contained
inside the APK represent the values that need to be verified against. If the checks fail,
an error is raised and the installation fails.
After a successful installation, a feature called Verify Apps periodically kicks in. It scans
the device for potential harmful apps and verifies that all apps are behaving correctly.
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It is worth mentioning, that within the Android ecosystem, users have the possibility
to install apps from non-trusted sources, i.e. not from the Google Play Store. Integrity
verification is performed even when doing this, but there is no real guarantor. The source
of the app could be anyone and nobody likely ever scanned the code for identifying
threats.

Figure 3.3: Code signing mechanism for Android apps using the signing key stored on Google’s
servers

Figure 3.4: Code signing mechanism for Android apps relying on developer’s key

Google offers two different methods for code signing an application. These are respec-
tively shown in Figure 3.3 and 3.4.
The first one relies on the developer uploading the signing key to the Google servers
(using a dedicated tool for securely encrypting and transmitting the key). A further key
is then created by the developer and registered with Google. The latter is only used for
signing the application before it’s uploaded, but is then re-signed by Google after the
app is verified. The purpose is to keep the real signing key secure, while the developer
holds a key only used for uploading to the store. If this key is ever lost or compromised,
it can be revoked and a new one generated.
The second method rests entirely upon the shoulders of the developer. The developer
signs an app directly with their key, which needs to be kept safe. If the key is ever lost,
there is no way to restore it and no further updates of the app are possible.
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Runtime Environment (RTE)

Apps are run within the Android Runtime (formerly Dalvik Virtual Machine), which
translates byte-code to machine instructions. This behavior is very similar to the one
provided by the Java Virtual Machine (JVM). Each application is associated to a
separate user, given by the unique ID of the app. When launched, the application is
run in a virtual sandbox, to keep it from accessing anything outside itself. This approach
is a step beyond other existing OS, such as Linux, where multiple applications may be
run with same user permissions.

Access rights and dependencies

On Android, apps that require additional functionalities, not available in the sandbox,
require the user to set them, in the form of user permissions. This happens either
at install time or runtime. To allow an app to request permission for a resource, the
required user permissions need to be declared in the manifest. User permissions include
privileged access to hardware resources (e.g. microphone, camera, bluetooth and so on),
user data or other apps.
It is ultimately up to the user, to decide whether a specific permission should be granted
to an app, based on an educated guess. Permissions can be managed from within the
system, giving users the possibility to grant or revoke them later on.
Here is an example of the permission declaration for accessing the SMS functionality
inside the app manifest:

<manifest xmlns:android="http://schemas.android.com/apk/res/android"
package="com.example.test-app">

<uses-permission android:name="android.permission.SEND_SMS"/>

<application>
...

</application>
</manifest>

Apps can rely on other apps for certain optional functionalities. An example is the media
sharing functionality. In order for a camera app to share media content, it redirects the
user to an other app (e. g. a social media app), with the needed metadata.
This dependency mechanism is limited and doesn’t allow apps to directly access other
apps, but rather transfers control over to them. Security-wise, this is a favorable feature,
but doesn’t provide the flexibility that other systems have.
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3.2.2 iOS App Store

The Apple App Store is Apple’s own marketplace, used for distributing Apps for iOS
devices. The ecosystem is completely proprietary and strongly revolves around the
target physical devices, produced and sold by Apple itself. In general, Apple favours
more rigid guidelines, which third-party developers must comply to when building their
Apps.

Cocoa Touch

Media

Core Services

Core OS

Figure 3.5: iOS Software Stack Architecture

The iOS OS itself is Unix-based and only runs on Advanced RISC Machine (ARM)-
based mobile devices produced by Apple. The system software stack is in some ways
similar to the one used by Google (see 3.2.1). As visible in 3.5, the system services and
media libraries (i.e. native C/C++ libraries) run on top of the core OS. Applications
primarily rely on the Cocoa Touch layer, which drives the UI and provides access to
main system functions (touch input, camera and so on). Other services provided by the
Core Services and Media layers are also accessible to some extent. The Core OS layer
offers Bluetooth and Universal Serial Bus (USB) functionality, but the developer has no
direct access to kernel operations.

Similarly to the Android case, within this ecosystem only Apps developed with the iOS
SDK are supported. These may only be installed and run on iOS devices.
The App submission to the store, the review process and the store listing management
are very similar to what was described in 3.2.1. The review process, however, is typically
stricter and with more human intervention.

Code Signing

Before being uploaded to the Apple App Store, an .ipa archive is built [36]. The
structure of such an archive is similar to the structure of an APK bundle. The bundle
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contains iTunesArtwork image and metadata files, which are used for App listing on
the store page, and a Payload folder, where all the App data is kept:

• Info.plist, an XML file containing essential configuration information for a bun-
dled executable (similar to a manifest file), such as the bundle ID, the version, the
required access rights and so on;

• Executable, which is the the compiled executable binary;

• Resource files, such as assets, layout files and so on;

• Localised assets (for multi-language support);

• Icons for the home screen;

Application packages are code-signed, guaranteeing the integrity and authenticity of
apps. The procedure is already shown in Figure 2.12 and involves an Apple-issued
certificate. Apple enforces the code-signing mechanism even more than Google does:
any executable or library that may be run needs to present a valid signature.
The code signature is validated every time an application is launched. Only validated
code can be run on iOS systems, including the system libraries. This feature prevents
apps from loading unsigned code or using self-modifying code.

Besides code-signing apps, Apple also enforces code-signing on compatible IoT devices.
Vendors of IoT devices must sign their embedded software with an Apple-issued certifi-
cate, in order to be compatible with iOS native API. This feature is similar to the one
introduced in this thesis, although the considered scenario is different and the entity
certifying the application is the Apple App store.

Runtime Environment (RTE)

iOS runs third-party apps within a sandbox. Most apps and iOS software run as “mo-
bile“ user. Upon installation, each app is randomly assigned a unique home directory
with restricted permissions. This prevents other apps from reading or modifying files
stored by other apps.

Access rights and dependencies

iOS enforces access control over some hardware resources and personal data. The latter
is taken especially seriously, as it involves personal data and could lead to a privacy
violation. Personal data includes contacts, photos, location, calendar information, social
media accounts and more. Users can grant, view and revoke permissions to an app,

57



Chapter 3: Related Works

similarly to the Android case.
Additionally, Apple offers shared data repositories for specific purposes, such as health
data or smart home appliances. Apps can share domain-specific data over this interface.
The same user permissions apply and are very security-critical.

Figure 3.6: iOS app permission settings; left: a dialog window appearing when the app requires a
resource; right: the complete set of user permissions set by the user for a specific app

Figure 3.7: Android app permission settings; left: a dialog window appearing when the app attempts
to access a resource; right: the complete set of user permissions set by the user for a specific app
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In figures 3.7 and 3.6, the iOS and the Android approaches for granting access rights
to an application are compared. The two models are very similar and provide the same
UI controls to the end-user.
The same dependency mechanisms between apps introduced in subsection 3.2.1 are used
on iOS.

3.2.3 Ubuntu Store

The last application ecosystem worth mentioning in this analysis is Ubuntu Core, de-
veloped and maintained by Canonical. Ubuntu Core is actually the name of the host
OS on which the applications run. It is, however, strictly coupled with a distribution
system called Snappy [73], developed by the same company.

Ubuntu Core is a lightweight version of the popular Linux Ubuntu distribution, built
for IoT devices and with a strong focus on security. It adopts the same kernel as classic
Ubuntu, but with a much smaller footprint and fewer features. The resulting OS image
size is approximately 350 Megabytes (MB). This may still be too big to be run on
micro-controllers, but is fit for small single-board computers, such as the Raspberry Pi.

Figure 3.8: Comparison between Classic Ubuntu application distribution and Ubuntu Core
distribution with Snappy [80]

Snappy is the system responsible for installing and updating applications on devices
powered by Ubuntu Core. Snappy is based on snaps, which are containerised software
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packages, saved in the .snap format. Snaps are language-independent and self-contained
software packages, which run on the target OS as standalone applications.

Every software component running on Ubuntu Core devices must be package as a stand-
alone snap, including the OS and the kernel. Snaps are not submitted to the Ubuntu
archive but to a store, where they can be downloaded from. There is very loose cou-
pling between all the snaps, which may also be updated independently of one another,
without breaking any dependencies.
Snaps are meant to bundle together everything the app needs, to give the developer
better control over the applications’ RTE. The data produced and used by the snap is
kept separate as well.
Similarly to the other solutions analyzed in 3.2.1 and 3.2.2, submitted snaps undergo an
automatic review process. The kernel, OS and gadget snaps require a manual review.
The distribution and update mechanisms also works similarly to Android and iOS.

This particular ecosystem is very relevant for the purpose of this thesis and a valid
comparison to the DS2OS. This is mainly because both target IoT devices and try to
abstract dependencies between application bundles, although using a different method.

Figure 3.9: Packaging workflow of a snap
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Code Signing

In the Ubuntu ecosystem, signed source packages, as well as binaries built from such
signed packages, are checksummed using [65], [43] and SHA-256 [32] algorithms. Pack-
ages also contain metadata defined by the developer in a snapcraft.yml file. Important
information, such as hardware and snap dependencies are contained in this file. The
checksum is attached to the release file, which is then GPG-signed by Ubuntu [62],
before making it available on the store. Snaps are not directly code-signed by the de-
veloper but only by the store.
Figure 3.9 shows the entire snap creation, code signing and distribution workflow.

Compared to Google’s and Apple’s approach, applications on Ubuntu Core are only
verified during installation.

Runtime Environment (RTE)

Snaps run in a restrictive security sandbox and have very limited contact with other
snaps. The parameters for this sandbox are defined within the snap packaging. This
security sandbox is essential, as app snaps are executed with root privileges on Ubuntu
Core. Modification of the security sandbox is not possible, while the snap is being run.

Access rights and dependencies

The Snap ecosystem encourages developers to bundle everything they require within
their snap. Other required hardware and software resources are treated as external
dependencies.

While Android and iOS combine software dependencies management and access rights in
one concept, Ubuntu Core uses an interface-based approach to dependency management.
This is because interactive access control is harder to achieve in Ubuntu Core, since snaps
often run as system services. Dependencies can be accessed via interfaces provided by
the OS or other snaps.
System services and other apps can offer an interface, for other apps (clients) to plug in
to. Natively supported interfaces are mainly tied to system services such as calendar,
bluetooth, networking, firewall, docker and many more. Non-privileged interfaces (e.g.
network binding) are automatically hooked up to the application. Interfaces requiring
privileged access must explicitly be connected by an administrator.

Interfaces follow a client-server architecture, allowing many snaps to use the functional-
ities offered by a single interface. To use an interface, developers declare it as required
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inside the snapcraft.yml file. Multiple interfaces can be used by a single snap. The
requirement declaration, together with privileged interfaces management, represent the
access rights in the Snappy system.
The approach provides high flexibility, similarly to context models (see subsection 2.4.2),
but also increases the snap review overhead.

3.2.4 Comparison

The three analyzed solutions have similar approaches and represent today’s standard in
app security.
Table 3.1 highlights which of the defined requirements are covered by the analyzed
systems.

<R.1> Service Integrity on S2S
<R.2> Service Distribution Integrity
<R.3> Installed Service Integrity
<R.4> Site Metadata Integrity
<R.5> Developer Authentication
<R.6> Download Services certified by S2S
<R.7> Locally Signed Services
<R.8> Authenticate User-downloaded Services
<R.9> Node Authentication
<R.10> Periodic Node Identity Verification
<R.11> Access Groups
<R.12> Interactive Access Rights settings
<R.13> Access Rights unique for a Service
<R.14> Propagate Access Rights changes
<R.15> Support Node-churn
<R.16> Minimize resource impact
<R.17> Minimize service down-times
<R.18> Minimize UX Complexity

Table 3.1: Comparison between requirements covered by existing app management system.
From left to right: Ubuntu Core, Android, iOS

The main difference between the compared solutions and the DS2OS lies in the deploy-
ment target. The DS2OS targets unattended distributed nodes and therefore adds an
orchestrator entity between the store and the nodes.
Even though Ubuntu Core targets IoT devices, the app installation and update mech-
anisms still reside on each target device. Communication with the store is direct and
doesn’t require an intermediary. While this approach is simpler and doesn’t require
additional security mechanisms, the advantages of having a distributed system were
already presented in 2.4.
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While the analyzed stores provide an optimal level of service security, leveraging code-
signing, they fail to address a distributed scenario.

It is worth mentioning, that the file system of both Android and iOS devices is typically
encrypted by default. This additional feature prevents attackers from tampering with
the system by simply gaining physical access to the device.

3.3 Approaches to IoT Service Security

In the analysis, two main approaches for guaranteeing authenticity of services and safe-
guarding application access rights were identified: digital certificates and authentication
tokens.
In both cases, the presence of a dedicated authentication server is a key component. Be
it a CA or an authorization server, this entity is fundamental. It is required both in
a local and in a global scenario, because it shifts the burden of authenticating devices
and services to the trusted entity.

Most of the works analyzed below adopt some authentication server, but with a dif-
ferent scope than in the DS2OS. The scope of the authentication is typically either a
session or a connection between two devices. The goal is two simply allow to nodes
to securely communicate with one another. The DS2OS, instead, aims to authenticate
single services, making the solution more granular.

In [46], a scenario similar to the DS2OS is considered. Devices and sensor nodes have
intermittent connectivity. The solution introduces several software entities, which are
deployed within an IoT network and allow to manage the communication between the
nodes.

Secure communication is achieved by using session keys. Keys are distributed by a
dedicated entity, the Auth server. The server has the task of authenticating and autho-
rizing locally registered entities (i. e., nodes). This fulfills <R.9>. In comparison, the
VSL leverages directly TLS connections (see subsection 2.4.2), to generate session keys.

To obtain authorization in [46], an entity needs to have a valid distribution key, set up
during the registration with the Auth server. If a device is constrained, this distribution
key can be a pre-shared key, otherwise traditional PKI is used.

Like in the DS2OS, the basic assumption is that the Auth entity is under control of
the user and can be trusted. Compared to the DS2OS, the solution supports multiple
authentication entities for improved scalability.
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While communication between two entities within a smart space is secured, the integrity
of the applications running on them is not handled.

3.3.1 Certificate-based Security

Several works leverage digital certificates for creating secure communication channels
between the nodes. Among the research targeting specifically IoT nodes, some works
are worth mentioning.

Panwar et al. propose the usage of COAP over a Datagram Transport Layer Secure
(DTLS) channel in [60]. Compared to traditional TLS, this requires less hardware
resources and may be more appropriate for IoT devices. Instead of pre-shared keys,
traditional PKI is used in this case. A dedicated CA, considered to be the trusted
entity, allows nodes in the network to request a certificate. <R.4>, <R.9> and <R.16>
are tackled, but no application-specific security is considered.

The possibility to store access control rules and other metadata inside certificates is
introduced in Schukat [69]. The authors suggest that a PKI-based certificate solution
for the IoT will become a cornerstone for a more secure infrastructure. However, they
also analyze several problems:

• identifying IoT devices globally and using a valid domain name for them within a
certificate is difficult (IPv6 may be a solution)

• certificates are large and require hardware capable of performing cryptographic
operations

• theft of intermediate certificates is a dealbreaker when billions of IoT devices
affected

• there is no need to globally validate every IoT device. Therefore using a single
tier CA hierarchy can be an advantage

• devices require a pinned certificate before deployment, in order to request further
ones

• proper management is required to sign and replace certificates on a large number
of devices

Some of these issues do not focus on services, but on IoT devices as a whole. This thesis
aims to go beyond the simple device authentication and focus on securing applications.
Most of the analyzed considerations are valid and can be considered during the design
phase, but do not cover directly the functional requirements defined in section 2.9.
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In the mentioned works, the use of pre-shared keys for authentication on IoT devices
is critized. It is argued that pre-shared keys are an insecure solution: the source of a
key is not guaranteed and they may be compromised at any time, without a backup
plan. Having a solution in place, that goes beyond static keys, makes the entire system
dynamic and more secure.

Short-lived Certificates

The possibility to overcome certificate revocation techniques, such as CRL and OCSP,
has been discussed several years ago in [66] and [50].

Topalovic presents an approach [79], based on the two above mentioned works, that
implements this concept. Requirements <R.10>, <R.14> and <R.15> are tackled in
this work.
The key idea is to add security to the certification system, by giving the power back
to the CAs. Certificates in this solution have short lifetimes and compliment Google
Chrome’s CRL. Combining the two techniques, the authors claim their solution to be
more secure than OCSP, while reducing the setup time of TLS connections. It is also
stressed that certificates should be renewed shortly before the expiration date, to have
some safety buffer for the renewal process. This concept is re-introduced as renewal
window in subsection 4.2.5.

Performance Impact

Approaches based on PKI certificates have one major downside: the size and overhead
can be considerable. A certificate can be up to 2 KB large [69], and handling multiple
certificates of that size can be tough on IoT devices.

To overcome this problem, Park [61] introduces the idea of using implicit certificates
to significantly reduce the size of a certificate. This solution is particularly interesting,
as it addresses <R.16> and the certificate renewal described in subsection 4.2.5 could
benefit from it.

3.3.2 Token-based Security

In subsection 2.8.3, the usage of authentication tokens for the IoT was theorized.
These are mainly used for access control and authentication, but are a valid and light-
weight alternative compared to attaching access rules to digital certificates (see subsec-
tion 2.4.10).
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ACE is a solution proposed in [9] by the Internet Engineering Task Force (IETF), that
utilizes Proof-of-Possession (PoP) tokens for constrained environments. Compared to
traditional token systems (see subsection 2.8.3, this solution targets not only HTTP
over TLS, but also COAP. The proposed approach leverages OAuth and covers <R.9>,
<R.13> and <R.15>.

The OAuth-IoT solution proposed in [70] is based on the efforts of the IETF and aims
to improve upon the foundations set in [9]. The solution integrates an IoT gateway,
which acts as an authorization server and routing gateway, to forward resource requests
to the correct IoT node. Harmonizing existing standards together, the OAuth-IoT
framework relies on a single centralized entity for authentication and TLS management.
The current solution does not tackle P2P communication of IoT nodes, while focusing
only on external clients communicating with individual nodes through a gateway.

Another very valid solution for the IoT is proposed in [10]. Bhawiyuga proposes a
lightweight solution based on MQTT with authentication. JWT tokens are used for
authenticating the IoT devices. A dedicated authorization server entity is required for
this purpose. The solution has a different approach from the DS2OS, as it only uses
publish/subscribe mechanism to propagate data across a smart space. Also, the used
technologies target significantly constrained devices. Similarly to previously discussed
works, the proposed mechanisms target <R.4>, <R.9> and <R.16>, but no mechanisms
are considered for protecting the applications and managing the lifecycle of the services.
Other token-based approaches leveraging the OAuth protocol were considered in [48]
and [18].

3.3.3 Comparison

To the best of my knowledge, no other existing works propose an approach based on
code-signing applications for distributed IoT nodes, which also leverages a dedicated
authorization server. Many works approach the network layer threats, introducing au-
thorization server to ultimately enable an efficient creation of secure channels between
IoT nodes. However, service-specific protection is not considered. The solutions ana-
lyzed in section 3.2, instead, focus entirely focused on app management, but target a
different scenario.

Among the analyzed works especially [60] and [61] are meaningful for future works, as
the suggested solutions could allow to decrease the overhead of the approach proposed
in chapter 4.
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Design

The requirements formulated in section 2.9 need to be fulfilled in order to protect
µ-services in smart spaces and ultimately prove the proposed thesis. This chapter focuses
on the design of the solution, target of this work.

The chapter is structured as follows.
The specific protection mechanisms for each µ-service are introduced in section 4.1.
These are put into context in section 4.2, where the automated certificate management
approach is described.
An overview of how the introduced security mechanisms are used to protect service
management operations is given in section 4.3. The setup of the security features within
a distributed system is presented in section 4.4.

4.1 µ-service Security

The functional requirements analyzed in section 2.9 focus on integrity, authentication
and access control security goals. To fulfill these requirements, additional security mech-
anisms for the DS2OS are proposed.

The DS2OS relies mainly on µ-services and high-level service management. Every com-
ponent within the DS2OS runs as a µ-service, with the exception of the VSL and the
SHE. For this reason, the security mechanisms described in this section focus on securing
µ-services and protect the service management features of the DS2OS.
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4.1.1 µ-services in the DS2OS

µ-services in the current DS2OS implementation are simple OSGi [2] services. They
contain library dependencies (if any) and can access interfaces offered by other services
according to the configured access rights. However, the service executables do not
provide any kind of security mechanism by themselves, except the ones defined for the
internal business logic.

As for any other app ecosystem analyzed in section 3.2, application binaries must be
wrapped in a package, along with certificates, potential dependencies and other meta-
data. This is necessary to enforce the protection of the service itself. The app store and
the target device require a well-defined package format to process the service.

The same reasoning applies to the adopted OSGi services, which must be packaged
accordingly in order to be run within a smart space.

4.1.2 DS2OS Service Package

A service package in the DS2OS consists of:

• the OSGi executable of the service

• the context model of the specific µ-service (see subsection 2.4.2)

• the DS2OS manifest of the service

• a service certificate signed by the developer

The contents of the package are strictly kept in the base folder, with no sub-folders or
internal hierarchical structures.

Packages are compressed in ZIP format and saved with .zip extension.

To package a service, developers can leverage a dedicated tool: packager.jar. The
packager tool takes in the executable, a manifest defined by the developer and the
context model. Then it automatically generates a service certificate with the signature
of the developer and creates the service package.

Service Executable

The service executable is a .jar archive, containing generated Java bytecode. It contains
a MANIFEST file, with metadata required by OSGi. All library dependencies are already
contained within the archive.
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The executable must be able to run on a standalone machine without any ulterior library
dependencies.

Context Model

The context model is defined by the developer in an XML file and is unique for a
µ-service. A context model must contain the declaration of the service context node and
all its children, along with their access control rules.

In the current implementation, the S2Store does not perform validation on the context
model, but this is planned for future works.

Service Manifest

The service manifest is essential for a service to be recognized as a valid DS2OS µ-service.
It contains:

• the unique ID of the service

• the ID of the developer

• the version of the service

• hardware resource requirements, such as sensors, CPU or storage constraints

• the required context models (optional)

• the conflicting context models (optional)

• the list of access rights (optional)

• the cryptographic hash of the service executable

• the cryptographic hash of the service context model

A service manifest is not to be confused with the traditional Java MANIFEST.MF, which
is still contained within the executable archive. A service manifest is defined in JSON
format and must contain at least the fields described as non optional. An example of a
valid DS2OS manifest for a temperature service is shown in listing 3.

The service ID allows to uniquely identify a service from the development stage all the
way to the deployment on an edge node. To identify each service, its Java package
name is used. This approach is borrowed from the Android ecosystem.
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1 {
2 "serviceId": "com.bosch.sensor.bme280.temperature",
3 "developerId": "0000042",
4 "versionNumber": "1.0",
5 "hardwareResources": [
6 { "type": "sensor", "value": "BME280" }
7 ],
8 "requiredContextModels": [],
9 "conflictingContextModels": [],

10 "accessRights": [],
11 "executableHash":

"516d0cec88c7fc35c17f5accbc3a76aa5e3c029aa3976cf4dce11a7560042f67",↪→

12 "contextModelHash":
"d68a8f6e846bed651b634dbce9fffee4e0bd5684e5463344bdcbf92b3af30bcd",↪→

13 }

Listing 3: DS2OS Manifest for a Temperature Service

The developer ID is provided by the S2Store, after the developer registered his profile
account. The registration process may involve an additional verification process in the
future, to ensure the identity of the developer.

The cryptographic hashes over the full service executable and context model are
generated with the SHA256 algorithm.

The required and conflicting context models represent the dependencies to other
µ-services. A context model is identified by the unique ID of the service it is defined for.

The list of access rights contains the declaration of access rights, which are needed
to run the service (or certain features). Access rights are described in detail in subsec-
tion 4.1.4.

A service manifest is defined by the developer and cannot be changed by any other entity
afterwards. Only the developer may apply changes in later versions of the service.

Service Certificate

The certificate pinned to a service within a package is one of the cornerstones of the
solution.

There are different types of signature, discussed in subsection 4.1.3. The certificate
contained within the service package is signed by the developer.
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Once verified by the S2Store, a certificate signed by the store itself is added to the same
package. For more details about certificate management refer to section 4.2.

4.1.3 Signatures

Three different types of signatures are considered within the DS2OS. Each signature is
used to generate a different digital certificate, fulfilling its own purpose. Each signing
entity uses a different key for signing a certificate.

The three different types of certificates and signatures considered within the DS2OS are
visible in Figure 4.1. In step 1, a developer certificate is generated. Step 2 considers
a new certificate, issued by the S2Store, while the certificate needed to run a service
within a site is obtained in step 5. The steps are described in more detail in section 4.3.

Developer Certificate

Developer certificates are used to code-sign a µ-service. A certificate is self-signed by
the developer for a specific µ-service, in order for it to be published on the S2Store.

The code signing process has two goals:

• providing authenticity and non-repudiation, ensuring the service really comes from
a certain developer <R.5>

• protecting the data submitted to the S2Store <R.1>

The authenticity is automatically guaranteed, if the S2Store can verify the identity of
the developer.

The integrity is protected by attaching a cryptographic hash of the service manifest
to the certificate. This certifies that no element within the service package has been
modified by third parties from the moment the developer created the certificate onwards.

The exact structure of a certificate is described in section 4.2.

Store Certificate

Once a service has been uploaded to the S2Store, a new certificate is created and added
alongside the developer’s certificate within the service package.

A store certificate contains the same SHA256 hash over the service manifest, contained
in the original developer’s manifest. The purpose of a store certificate is to guarantee
the trustworthiness of the service, after being reviewed and approved by the S2Store.
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This fulfills <R.6>. Furthermore, such a solution is extensible and allows the store to
add more metadata to a service certificate in the future.

The store certificate is signed with the store’s private key. For the proposed solution, the
store is considered a trusted CA and can therefore self-sign certificates. This approach
is also more practical for testing purposes. The key-pair of the S2Store is generated once
and remains fixed. The public key of the store is the trust anchor, which is known to
all smart spaces.

In a future version, the store may just act as an intermediate CA, with the root certificate
being issued by a trusted internet CA.

Site Certificate

Certificates must also be issued within smart spaces, to allow attaching additional meta-
data to a service. When a service is downloaded to a site, a new certificate is issued
within the site.

To be run within the site, only certificates issued by the SLCA are valid.

This approach serves several purposes:

• it allows site local metadata to be attached to a service <R.4>

• provides local service authentication, restricted to the user of the site; i. e., a
local service with specific access rights cannot be migrated to another smart space
<R.7> <R.8>

• offloads the S2Store from the burden of releasing certificates every time a service
is deployed

A site certificate is signed with the site’s private key. The key-pair is generated within
the DS2OS site. The entity in charge of managing the keys and issuing local certificates
is a dedicated SLCA.

Every service running inside a DS2OS site must have a valid site certificate. This includes
the SLSM, the NLSM, the SHE, the SLCA itself and any other service downloaded from
the S2Store.

The specific privileges granted to each service are defined by their access rights.
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Figure 4.1: Security mechanisms in the deployment process of a µ-service in the DS2OS
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4.1.4 Access Control

Access control rules make sure, that the data created by a µ-service can only be accessed
by authorized entities. In the case of the DS2OS, access rights allow to control access
to µ-service context nodes. These may only be visible/accessible to other services, if
declared so by the developer and if the correct access rights are set.

Access Groups

Developers declare access groups for their own µ-services, by setting the reader and
writer properties of a context node (see listing 2). Multiple comma-separated access
groups can be defined for each context node. The context node is accessible to every
service which is part of at least one of the declared access groups.

For example, take a service that can read the temperature from a sensor. The service
offers a context node called currentTemperature. The definition below allows the
currentTemperature of that service to be read only by services which are part of
either the home and/or the temperature group.

<currentTemperature type="basic/composed" reader="home,temperature"
writer="" />↪→

To make a node only accessible to the service itself, the fields must be left empty. In
the example above, currentTemperature values can be set only by the temperature
service itself.

If a field is not specified, the context node will be accessible by anyone.

Access Group Repository

A feature of the DS2OS, is that access groups may be re-used by other developers. Once
a µ-service has been submitted to the S2Store, the declared access groups become part
of a global access group repository. This repository is public and other developers can
freely use existing access group names for their own services.

This enforces re-usability of access groups over different µ-services. The targeted re-
quirement is <R.11>.

For example, a temperature service and an air quality monitoring service could both
support the home access group. A further service could gain access to both these services
by declaring only one access right.
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Access Rights

When submitting a service, developers embed a list of supported access rights into the
service manifest. As shown in listing 3, the accessRights values contains this list.
Each access right declared in the manifest follows the format defined in listing 4.

{
"name": "temperature",
"description": "Allows to read the temperature from various

sensors in the room",↪→

"required": true,
}

Listing 4: Access Right format defined in a DS2OS service manifest

The name of a supported access right must match the name of an access group contained
within the Access Group Repository (including the current service itself). The S2Store
validates the existence of the declared access groups.

The list of declared access rights must contain the comprehensive list of all access groups,
that the service may require. Optional access rights may be declared as well.

Upon installation of a service, these supported access rights will be displayed to the
user via a UI. An sketch of the proposed UI is shown in Figure 4.2. The user ultimately
chooses, which access rights to set and which not <R.12>.

The selected access rights are saved within the VSL of the local site. The access rights
are read-only and can only be modified by the user over a suitable application <R.13>.

When the downloaded service is finally deployed on a node, the access rights will be
read from the VSL and applied to the service. This happens by adding the set access
rights as metadata to a site certificate (see subsection 4.1.3). Such a mechanism ensures,
that the access rights are integrity-protected <R.4>.

4.2 Certificate Management

The approach chosen for this thesis involves using digital certificates for fulfilling the
security goals mentioned subsection 2.5.3.

The reasons for this choice are the following:

• the underlying VSL middleware already provides many security features and is
based on PKI certificates
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Access Rights

12:30

Can automatically schedule tasks in the 
future

Scheduler

Notifications
Allows to send notifications when the air 
conditioner is turned on/off

Required

Optional

Air Conditioning

Allows to read the current humidity inside the 
room

Humidity

Allows to activate and deactivate air 
conditioners in the room

Air Conditioner

Temperature
Allows to read the temperature from various 
sensors in the room

The selected Access Rights determine which 
resources can be accessed by the service.

Figure 4.2: UI concept presented to the user to manage the access rights of a service

• PKI certificates are a standard, widely used and documented

• using one security mechanism to fulfill several security goals keeps the complexity
of the solution to a minimum

While digital certificates are more heavy-weight and not widely used in the IoT, con-
sidering the increasing hardware capabilities, this approach is farsighted. Moreover,
by overcoming basic hardware limitations, it would be possible to reconcile traditional
computing and computing on IoT nodes.

For this work, X.509v3 [20] certificates are used. X.509 is a standard PKI digital certifi-
cation system format, first introduced in 1988 and used by all major organizations and
governments ever since. Also, X.509 version 3 certificates support attaching arbitrary
metadata to them, in the form of extensions. Extensions in X.509v3 are integrity-
protected and authenticated, providing the required functionality for this work.
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4.2.1 Certificate Authority

In the DS2OS concept, three types of entity can issue certificates: the developer, the
S2Store and the Site Local Certificate Authority (SLCA), introduced in subsection 2.4.8.

Developers self-sign their services, without requiring the signature of a public CA.

The S2Store plays the role of a verified CA. It owns either a publicly acknowledged root
CA, or an intermediary code-signing certificate, issued by another public CA.

This SLCA is a fundamental component of the DS2OS and is unique for every smart
space. The current solution does not support multiple CA entities within the same smart
space. This would be feasible, but with an additional management cost. Conflicts
could arise, e.g. due to a service obtaining two valid certificates at once and more
synchronization mechanisms would be required.

The SLCA has an intermediary code-signing certificate, issued by the S2Store. This
certificate is issued when the smart space is first created and stored on the node running
the SLCA.

4.2.2 Certificate Structure

As mentioned in subsection 4.1.3, the system considers three different types of certifi-
cate. All of them have the same format but are signed by different entities and support
different metadata.
The example shown in listing 10 considers a certificate issued by a SLCA for a temper-
ature service, meant to be run within the same local site.

The important fields in a service certificate are: the issuer, the validity, the subject and
the embedded extensions.

Issuer

This field contains information about the CA that issued the certificate.
The issuer may be one of the entities mentioned in subsection 4.2.1.

Validity

Contains information about the start and end of the validity period of the certificate.
The validity start period is always the moment in which the certificate was issued.
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The expiration date depends on the service the certificate was issued for, and on the
currently adopted policy. For example the certificate of a KA has longer validity than
the certificate of a service.

More details about certificate lifetimes are presented in subsection 4.2.5.

Subject

The subject field contains information about the domain of the service. This information
includes common name, organization and so on.

When the certificate is self-signed by the developer, the subject field typically has the
same contents as the issuer field.

Extensions

All issued certificates must include some common extensions, plus some optional ones.

A comprehensive list of the currently supported extensions is shown in Table 4.1. The
third column shows, whether a constraint is required in every DS2OS certificate.

The extensions keyUsage, extKeyUsage and basicConstraints act together to define the
purposes for which the certificate is intended to be used [40]. This mechanism is used
to avoid service certificates to be used for issuing other certificates within the network.

The custom-defined extensions for this thesis are ds2osIsKa, ds2osServiceManifest and
ds2osAccessIds.

The Object Identifier (OID) used for custom DS2OS extensions are currently not regis-
tered on any global authority (such as [34]). For this reason, the OIDs are self-assigned
as experimental under the OID 1.3.6.1.3.18.

Further custom extensions can be defined in the future, using the same OID prefix.

Every certificate has a specific purpose, with specific extensions set.

A Developer certificate has the following extensions to define its purpose:

• basicConstraints: not a CA, as it is a self-signed certificate

• keyUsage: digitalSignature, nonRepudiation, keyEncipherment

• extKeyUsage: code signing
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OID Name R Description
2.5.29.19 basicConstraints Y Can be critical. The CA flag must be

true if the certificate is issued by a CA
2.5.29.14 subjectKeyIdentifier Y Non-critical. Identifies the certified pub-

lic key(s)
2.5.29.35 authorityKeyIdentifier Y Non-critical. Identifies the public key

corresponding to the private key used to
sign the certificate

2.5.29.15 keyUsage Y Can be critical. Contains a bitmask
defining the purposes of the certificate:

• encipherOnly = 1
• cRLSign = 2
• keyCertSign = 4
• keyAgreement = 8
• dataEncipherment = 16
• keyEncipherment = 32
• nonRepudiation = 64
• digitalSignature = 128
• decipherOnly = 32768

2.5.29.37 extKeyUsage Y Can be critical. Indicates the purposes
of the public key. Extended Key usages
defined by [63] are:

• Server authentication
• Client authentication
• Code signing
• Email
• Timestamping
• OCSP signing

2.16.840.1.
113730.1

netscapeCertType N Non-critical. Old extension used instead
of keyUsage for compatibility reasons [77].

2.16.840.1.
113730.1.13

netscapeComment N Non-critical. Additional comment to
display on the certificate.

1.3.6.1.3.18.0 ds2osIsKa N Non-critical. Is TRUE if the certificate is
meant to be used by a KA, FALSE if not.

1.3.6.1.3.18.1 ds2osServiceManifest Y Non-critical. Contains the SHA256 hash
over the service manifest.

1.3.6.1.3.18.2 ds2osAccessIds N Non-critical. Contains a list of comma-
separated access IDs for the service.

Table 4.1: X.509v3 Extensions supported by the DS2OS
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Store certificates have the same purpose as developer certificates, except they use
the store’s signature and have the basicConstraints CA value set to true. In the future,
other extensions may be used as well.

Site certificates all have the same purpose:

• basicConstraints: not a CA

• keyUsage: digitalSignature, nonRepudiation, keyEncipherment

• extKeyUsage: Client Authentication

KAs are not considered as µ-services, but they also require a valid certificate to run.
The certificate must be issued by the same SLCA and contains the following extensions:

• basicConstraints: not a CA

• keyUsage: digitalSignature, nonRepudiation, keyEncipherment

• extKeyUsage: Server Authentication, Client Authentication

Compared to the other described certificates, site certificates require the ds2osIsKa and
the ds2osAccessIds extensions. The ds2osIsKa is set to true only for KA certificates.
The ds2osAccessIds contains the access rights specified by the user for that particular
service. The SLCA issuing the certificate checks the VSL for the correct access rights to
set for a service (see subsection 4.1.4).

All three types of certificates must always include the ds2osServiceManifest extension,
which contains the hash of the service manifest. This feature is essential and fulfills all
integrity requirements <R.1>, <R.2>, <R.3> and <R.4>.

4.2.3 Certificate Request

Every time a new certificate is needed, it must be requested from the SLCA.
The only entity actively requesting certificates is the NLSM, in charge of managing the
lifecycle of services on each node. The workflow is shown in Figure 4.3.

When a new certificate is needed, the NLSM creates a Certificate Signing Request (CSR)
[27]. The CSR is sent to the SLSM.
The SLSM performs a preliminary check on the CSR, to establish whether the request
is valid within the site. This involves:

• checking the origin of the request, identified by the embedded public key of the
requester. If the origin is not known, the CSR is denied <R.9>
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• lookup the service ID given by the common name. If a service with such an ID
is not installed in the smart space, the request is considered invalid <R.8>

A valid CSR is forwarded to the SLCA. The SLCA looks up the access rights set for the
service, then generates a new certificate for the CSR. The generated certificate is sent
back to the requester. A copy of the same certificate is stored locally by the SLCA, for
accountability purposes.
If a CSR was deemed invalid, it is denied and an error is sent back to the requester.

NLSM SLSM SLCA

createCSR()

GET /slsm/certificate

verifyCSR()

GET /slca/certificate

issueCertificate()

certificate

certificate

error

alt [ CSR valid ]

[ CSR invalid ]

Figure 4.3: Sequence diagram of a certificate request

Splitting the functionality between the SLSM and SLCA is a pure design decision. The
purpose is to separate the logic between the two components, so that the SLSM can
check the identity of a node and of a service, while the SLCA takes care of creating a
certificate with the correct access rights.

The choice of using CSRs, instead of requesting static certificates from the SLCA, has
two reasons:

1. the standard PKI approach is a cleaner design solution and preferred, as it allows
to verify the identify of the requester via the public key <R.9> <R.10>

2. a CSR can contain additional metadata, making the solution extensible by design.
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4.2.4 Certificate Lifetime

Service certificate lifetimes are given by their expiration date.

The idea, proposed in this thesis, is the usage of short-lived certificates. This serves
multiple purposes:

• the abolition of more complex mechanisms for certificate revocation, such as CRL
or OCSP;

• it ensures that changes to access rights will be propagated to every node in the
network within a chosen timeframe, even in the case of node churn <R.15>

• the security of the system is improved, as certificates are always fresh <R.10>

Having a validity limited in time, services periodically require a new certificate. The
NLSM is the entity in charge of requesting new certificates before they expire.

Whenever a new certificate is issued, the service needs to be restarted. A restart of the
service is needed, in order to execute the integrity checks and register the service with
the KA again <R.3>.

The restart process causes service downtime. Management-specific services (e. g. SLSM)
require higher up-time and cannot be restarted too often. For this reason, different
certificate lifetimes are used. This approach addresses <R.17>.

Service Required Lifetime Target Timespan
SHE Long days - months
SLSM Long days - months
SLCA Long days - months
NLSM Medium - Long days
Any other service Short minutes - hours

Table 4.2: Target certificate lifetime by service type

The target lifetimes, shown in Table 4.2, are arbitrary and will be the focus of the
evaluation in chapter 6.

4.2.5 Automated Certificate Renewal

The core idea is to combine the refresh mechanism used with authentication tokens,
together with the access rights management introduced in app ecosystems, and em-
bed them into digital certificates. Certificates offer the same advantages that a token
approach does, with the disadvantage of being a more heavyweight solution.
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The resource control is as powerful as a token-based approach, since the amount of
metadata that can be attached to a certificate is virtually unlimited.

Periodic certificate renewals require a certain degree of automation.

The designed solution considers a certificate renewal to be a normal certificate request.
Therefore, a renewal follows the same basic procedure described in subsection 4.2.3.

An NLSM is set up to periodically check the certificate expiration date of all the currently
running services. If a certificate is about to expire (or if it has already), a new CSR for
that specific service is sent to the SLSM.

Different policies are applied to certificate renewal. A renewal window constraint is
enforced by the SLCA and can be used by every NLSM. Other policies, applied by
the SLCA, affect the lifetime of a certificate: fixed lifetimes and random backoff
mechanism. The SLCA can be instructed to prefer one policy over the other by the
SLSM.

Renewal Window

A new certificate may not be requested at any given time, but only within a renewal
window. This window starts at:

windowstart = timeexpiration − lifetimetot ∗ 0.1

The purpose of this time window is to allow an NLSM to fetch a new certificate before
it actually expires. This has two benefits:

• it allows to reduce the downtime of the service to a minimum (given by its restart
time), addressing <R.17>

• empowers an NLSM to dynamically decide when to fetch a new certificate, to
distribute its load over time. Also, in case of scheduled sleep mode or connectivity
loss, the NLSM can take this into account and act accordingly.

Any CSR received before the start of the renewal window is denied by the SLCA. This
also makes sure, that certificate renewals are not spammed and that a node makes full
use of the given certificate.

There is no set end time for the renewal window. Node churn may cause a node to be
offline for some time, before being able to request a new certificate; so the node has
ample time to rejoin the network.
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Fixed Lifetime

The lifetime of every issued certificate is the same (for the same type of service). The
maximum lifetime may be configured by the user over the UI. The mechanism can be
combined with the renewal window policy.

Random Backoff

Whenever a certificate is generated, the SLCA sets the certificate lifetime to be lower
than the maximum certificate lifetime, by a random amount. This is shown in Figure 4.4.

Certificate Lifetime Random BackoffRenewal
Window

65% 75% 100%0%

Figure 4.4: Random backoff mechanism combined with a renewal window

The random lifetime of the certificate is chosen in the timeframe:

lifetimemax ∗ 0.75 ≤ lifetimerandom ≤ lifetimemax

The introduced random backoff is, by default, up to a maximum of 25% of the maximum
set lifetime. This parameter can be tweaked in the reference implementation.

The advantage of the solution is that every service, on every node, will require a new
certificate at a random point in time. This allows for an improved distribution over
time of the certificate renewals within a smart space. It partly addresses <R.16> but
doesn’t fulfill the requirement. The disadvantage of the random backoff mechanism is
that the total amount of certificate renewals in the network increases proportionally to
the cut-off time.
The implications of this mechanism are evaluated in chapter 6.

4.2.6 Certificate Revocation

Certificate revocation is necessary whenever access rights change, and in case a certifi-
cate is compromised. Revocation addresses <R.14> and <R.15>.

The system supports two different types of revocation mechanisms: an active and a
passive revocation.
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Active Revocation

The solution takes advantage of a publish/subscribe mechanism, offered by the VSL, to
achieve active revocation. An NLSM subscribes to a VSL context node owned by the
SLCA. The context node is specific for a service.

When certificate revocation is required, the SLCA publishes the information on the
corresponding context node. This will notify the NLSMs subscribed to that info. Each
notified NLSM will automatically invalidate the current certificate for that service and
request a new one.

Active revocation has an immediate effect, but doesn’t work for non-reachable (offline)
nodes.

Passive Revocation

Passive revocation relies on short certificate lifetimes, introduced in subsection 4.2.4. It
is meant to overcome the complexity of other solutions, such as CRLs and OCSP.

By leveraging short lifetimes, certificates are guaranteed to be revoked, at the latest,
when they expire. This way, certificates on non-reachable nodes are automatically
revoked when they expire <R.15>.

It is worth mentioning that a service without a valid certificate (or a revoked certificate)
may still be run manually (i. e., without the aid of the SHE). However this service cannot
communicate with any KA and cannot, therefore, exploit the functionalities of the VSL
and the DS2OS in any way.

4.2.7 Clock Synchronization

For the automated certificate renewal and revocation mechanisms to work, clocks within
the smart space need to be synchronized. This requirement is not hard, therefore there
is no need to implement complex synchronization mechanisms.
A Network Time Protocol (NTP) [52] solution for a distributed system [85] is definitely
overkill and requires unnecessary complexity.

The chosen approach to clock synchronization is very simple instead. The trusted anchor
inside the site, i. e., the SLSM, dictates the time for all nodes.
Every NLSM periodically sends a heartbeat out-of-band message to the SLSM [58]. If
the message contained a timestamp request, the SLSM responds with the current time,
signed by the SLCA. When receiving the response, an NLSM notifies the SHE to update
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the clock of the local node accordingly. It is important for the SHE to update the clock,
as it is the entity providing the runtime environment and running every other µ-service.

The periodic heartbeat is used by the NLSM as a ping-pong mechanism and the newest
timestamp is requested only once a day.
The clock synchronization mechanism does not focus on extreme precision, but allows
to support the introduced features with negligible errors.

4.2.8 Key Management

Every node running an NLSM generates its own private/public key pair. The public
key is published over the VSL by the NLSM and represents its ID within the network.
This way, the SLSM can uniquely identify nodes and also authenticate CSRs.

Node Certificate Repository

Every node running an NLSM stores their certificates inside a dedicated PKCS12 Key
Store. The Key Store is password-protected.

The Key Store always contains:

• the root certificates of the SLCA and of the S2Store, needed to verify newly issued
certificates;

• an arbitrary number of valid service certificates, corresponding to the number of
services installed on the node.

By design, all certificates are kept within the same Key Store, to avoid fragmentation
and reduce management overhead.

The component in charge of adding/removing certificates from the Key Store is the
NLSM. If, for some reason, the certificate of the NLSM or the SHE was not renewed in
time, a new certificate must manually be issued and stored within the Key Store (see
section 4.4).

SLCA Certificate Repository

The SLCA, on the other hand, must keep a copy of every valid issued certificate in local
storage, for accountability reasons. Also, the current validity of the old certificate is
checked whenever a new certificate is requested.
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The certificates are kept within a certificate repository, accessible only to the SLCA.
The folder structure is as shown in Figure 4.5. Multiple users are also supported, to
allow different users to have different access rights and dedicated service instances.

Figure 4.5: Folder hierarchy of the certificate repository managed by the SLCA

4.3 Service Management

Ultimately, the goal of this thesis is to protect the service management system from
attacks. The service management is entirely based upon the components introduced in
section 2.4.

The procedures that require dedicated protection mechanisms, presented in section 4.2,
are the submission, download and installation of a µ-service. Service migration and
uninstallation rely on the certificate revocation mechanism described in subsection 4.2.6,
followed up by a new installation in case of service migration.

For the detailed service management logic refer to [12] and [58].

4.3.1 Interfaces

The relevant interfaces offered by the service management components are shown in the
respective context models, in listings 5, 6 and 7.

The context nodes relevant for the protection mechanisms are:
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<slsm type="/basic/composed" >
<installService type="/basic/composed" reader="admin" writer="" />
<uninstallService type="/basic/composed" reader="admin" writer="" />
<certificate type="/basic/text" reader="nlsm" writer="" />
<resources type="/basic/text" reader="nlsm" writer="nlsm" />
<ipaddr type="/basic/text" reader="nlsm" writer="" />

</slsm>

Listing 5: Context model interface defined for the SLSM

<slca type="/basic/composed" reader="slsm" writer="">
<certificate type="/basic/composed" reader="slsm" writer="" />
<configuration type="/basic/composed" reader="slsm" writer="slsm" />
<accessRights type="/basic/list" reader="nlsm,slsm" writer="slsm" >

<user type="/basic/list" reader="nlsm,slsm" writer="slsm">
<service type="/basic/text" reader="nlsm,slsm",

writer="slsm" />↪→

</user>
</accessRights>
<addUser type="/basic/composed" reader="slsm" writer="" />
<removeUser type="/basic/composed" reader="slsm" writer="" />

</slca>

Listing 6: Context model interface defined for the SLCA

<nlsm type="/basic/composed" >
<startService type="/basic/text" reader="slsm" writer="" />
<stopService type="/basic/text" reader="slsm" writer="" />
<installService type="/basic/text" reader="slsm" writer="" />
<uninstallService type="/basic/text" reader="slsm" writer="" />
<stoppedServices type="/basic/text" reader="slsm" writer="" />
<runningServices type="/basic/text" reader="slsm" writer="" />
<resources type="/basic/text" reader="slsm,she" writer="" />
<config type="/basic/list" reader="slsm,she" writer="" />
<publicKey type="/basic/text" reader="slsm" writer="" />
<ipaddr type="/basic/text" reader="slsm" writer="" />

</nlsm>

Listing 7: Context model interface defined for the NLSM

• certificate, taking in an encoded CSR. The same endpoint is offered by SLSM
and SLCA, as described in subsection 4.2.3.

• accessRights/<serviceId> (offered by the SLCA), where NLSMs subscribe to,
in order to be notified of certificate revocation.
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4.3.2 Service Submission

Before a service can be downloaded and deployed to a smart space, it must be submitted
to the S2Store.
Before submitting a µ-service, a developer must perform the following actions:

1. Upload their public key to the S2Store. This happens during a one-time registra-
tion process

2. Write a service manifest for the µ-service (see subsection 4.1.2)

3. Generate a developer-signed service certificate

4. Build a valid service package

Actions 2-4 can be performed using the packager.jar tool. The structure of a service
package is described in detail in subsection 4.1.2.
A valid service package can be uploaded to the S2Store, where it will be validated, re-
viewed and eventually made public. This procedure corresponds to step 1 in Figure 4.1.
The validation process includes adding a store certificate along the existing developer
certificate, and repackaging the service. There is no automated mechanism for reviewing
services yet, as the research project is still ongoing.

4.3.3 Service Download

Before deploying a µ-service within a smart space, it must be downloaded from the
S2Store.
The implementation described in [12] considers an additional µ-service to be run on the
orchestrator node: the NLSM UI-server. This service provides a web-UI accessible to
the user for browsing µ-services available on the S2Store. Users can choose a service from
the S2Store and download it to the local site. This corresponds to step 2 in Figure 4.1.

Once downloaded, the SLSM automatically takes care of verifying the integrity and
authenticity of the service package. Invalid packages are discarded and the user is
notified accordingly.

When a package has been verified, the user is asked to set up access rights for that
specific service (see step 3 in Figure 4.1). These new access rights are then stored
within the VSL.
If the downloaded service has dependencies, which weren’t downloaded yet, these are
downloaded as well using the same procedure.
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4.3.4 Service Installation

Downloaded services with configured access rights can be deployed on nodes within the
smart space. The SLSM does this automatically, without any user intervention. Specific
load-balancing algorithms and policies are used for this purpose. For example, a service
may have specific hardware requirements and not be able to run on any node.

Once a target node has been identified, the following operations occur:

• The SLSM initiates a GET request on the installService endpoint of the NLSM
running on the target node

• The NLSM opens a dedicated transmission control protocol (TCP) socket on a
random port and tells the SLSM the number of the port

• The SLSM then connects to the socket and sends the service package, retrieved
from the local service repository (see step 4 in Figure 4.1)

• The NLSM on the target node verifies the integrity and authenticity of the service

• The NLSM requests a site certificate for the new service (see step 5 in Figure 4.1).

Once the service has a valid certificate, the NLSM instructs the SHE to start it.

4.4 System Bootstrap

The original DS2OS design assumes that edge nodes deployed within smart spaces are
already pre-configured and have all the necessary software running on them.

This assumption may be valid in an industrial approach, where IoT devices are setup
with default configurations. For private consumers, this is unlikely, especially consider-
ing the heterogeneity of existing devices. Edge nodes may come without any software
pre-installed at all, or just with a pre-installed OS. Most importantly, services running
on nodes require certificates issued by the SLCA, or they won’t run at all.

From a user perspective, it is unpractical to set up an edge node manually. The proce-
dure would require an expertise that most users do not possess.

This section introduces a simple system setup concept, valid for any new node within
the DS2OS. <R.18> is addressed in this way. The only requirements for such a solution
to be feasible and automated are:

• the device must run a Unix-based OS with a Secure Shell (SSH) server enabled
(or equivalent channel)
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• the user must know the credentials of the device

• the device must have Java installed. This could also be integrated in the auto-
mated process, but is less relevant for a general-purpose solution

4.4.1 Setup Orchestrator Node

The orchestrator node is considered to be a trusted node. When setting it up, it is
assumed that the node is not compromised in any way.

The setup process requires downloading a starter pack from the S2Store, containing the
following bundles: KA, SHE, SLSM, SLSM UI-server (see subsection 4.3.3), SLCA and
NLSM. Additionally, a bootstrap program to startup the system is also included. All
these bundles and applications must be signed and verifiable. The KA is the biggest
source of worries, so it requires an S2Store-issued certificate as well.

Once downloaded, the execution of the bootstrap program performs the following oper-
ations:

1. All downloaded software bundles are checked for integrity and authenticity

2. The user is prompted for a new administrator password, which will be valid for
managing the smart space

3. The local network settings are checked, and a config.txt file for the KA is gen-
erated

4. A new CA key is generated and an intermediate certificate is requested by con-
tacting the S2Store

5. The directory structure for the downloaded services is created

6. Using the openssl tool (or equivalent), a short-lived certificate is generated for
the downloaded services. A new certificate will be issued by the SLCA as soon as
the NLSM runs, replacing the current one

7. The SHE is started, which will automatically run the KA, the NLSM, the SLCA,
the SLSM and the SLSM UI-server (as described in [58]).

Once the UI-server service is running, the user can interact with the system using a
friendly UI. The current implementation of this additional service is described in [12]
and offers a web-based UI.
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4.4.2 Setup Generic Node

Any new node joining the network can be setup and configured using the SLSM UI-
server. The setup process is automated, as visible in Figure 4.6, and the user only
requires to start it via the UI. A discovery mechanism would be needed in the future,
in order to find new IoT devices that require to be set up.

SLSM UI SLSM SLCA Target SHE NLSM

setupNode()

requestTemporaryCertificates()

certificates

createBootstrapPack()

sendBootstrapPack()

setupNode()

setupFolders()

generateKeyPair()

OK

OK

start()

start()

requestCertificates()

certificates

Figure 4.6: Setup of a remote node using an automated bootstrap mechanism

The bootstrap package sent to the target node contains everything the node requires to
start the VSL and the services, including temporary certificates for the SHE and NLSM.

The setup procedure takes place on the node and involves checking network settings,
generating configuration files and so on. The SHE and NLSM shown on the right are
the instances started asynchronously on the target node.

Key stores on every node are password-protected. Since nodes are independent and
unattended, the password needs to be stored locally in a configuration file, on each of
them. For this reason, it is strongly advised to use a different password for each node.
This way, if a single node is compromised, the are nodes remain unscathed.
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Implementation

The chapter provides details about the prototype implementation of the solution de-
signed in chapter 4.

Section 5.1 briefly describes the implementation process and the structure of the code.
Section 5.2 focuses on the workarounds and limitations of the current implementation.
Finally the configuration parameters of different entities are covered in section 5.3 and
section 5.4.

5.1 Code Structure

The designed solution was implemented using Java in collaboration with other two stu-
dents. The themes had some overlaps and required appropriate organization and task
management.
The responsibilities during this phase were shared equally among all participants.
The code is available at https://gitlab.dev.ds2os.org/ds2os-devs/service-management.

The entire solution was split in different Java modules: one module for each management
µ-service, plus a common module, containing shared logic, utilities and interfaces.
The common module contains most of the security algorithms and primitives, required
throughout the system.

The API used for all security operations is contained in the Bouncy Castle Crypto library
[37]. This library is the main Java reference library for all cryptographic operations.
Furthermore, it is the only library natively supporting X.509v3 extensions.
For managing Key Stores, the built-in Java API is used.

https://gitlab.dev.ds2os.org/ds2os-devs/service-management
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The common module is used as a direct dependency by the SLSM, SLCA, SHE and
NLSM modules. This approach enforces maximum code reusability.

Each µ-service implements the logic described in [12] and [58]. The security logic is
implemented on top of the basic DS2OS management functionalities.
Leveraging the defined interfaces (see subsection 4.3.1), each security-oriented block can
easily be replaced by a different concrete class in the future.

The designed bootstrap system, introduced in section 4.4, was not implemented along
the rest of the solution. It is, therefore, to be considered as future work.

5.2 Issues & Known Workarounds

Several workarounds were necessary, in order to get the proposed solution to work with
the current implementation of the VSL.

Base64

GET/SET requests on the VSL don’t support raw binary data. For this reason, CSR
requests and certificates are encoded in base64 format. This workaround was necessary,
to avoid using side-channels for the security mechanisms. Every side-channel opens up
an additional attack vector, which is avoided in this work.

The downside to this approach is an increased payload size during transmission.

Key Stores

The VSL connector requires service certificates to be passed in a standalone Java Key
Store.
The Key Store can only contain one service certificate and one root certificate, as no
alias comparison is used by the connector. As a result each service certificate must be
stored in a separate Key Store. Also the root certificate is contained in each Key Store.
Every node and µ-service communicating with the VSL is affected by this. The side effect
is an increase in used storage space and I/O operations, as well as higher management
complexity.

In a future version of the DS2OS (and VSL), it should be possible for each node to store
all certificates within the same Key Store.
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OID Restriction

The current VSL implementation already uses a custom temporary OID for checking the
access rights of a µ-service. The OID is 1.3.6.1.4.1.X, with X being an incremental
suffix. This OID is officially reserved, and should therefore not be used.
The OIDs presented in subsection 4.2.2 can be considered future work, while the current
implementation adapts to the OIDs used by the VSL.

5.3 KA Configuration

KAs require a config.txt file, to read node-specific configurations. Configuration pa-
rameters are specified in <key=value> pairs. An example configuration is visible in
listing 8.

kor.archive.enabled=0
kor.db.persist=0
kor.db.username=ds2os
kor.db.password=thisMustBeSecure
kor.db.location=hsqldb/db
cache.enabled=0
transport.interfaces=en0
alivePing.senderInterval=3
transport.allowLoopback=0
modelRepository.localPath=models

Listing 8: Example configuration required by a KA

The kor.db.persist line must have value 1 for the node hosting SLSM and SLCA.
This allows to persistently store the access rights and other settings configured by the
user.

The configuration file is automatically generated by the SHE during the first deployment
process (see section 4.4). This is essential to set the correct transport interface to be
used in the future.

5.4 µ-service Configuration

Every service takes a dedicated configuration file as input. Configuration files are stored
in the same format as KA configuration files (see section 5.3).

Every configuration file is expected to contain the mandatory fields shown in listing 9.
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serviceKeystore=ssl-keys/slsm.jks
workingDirectory=run/org.ds2os.vsl.service.slsm
agentUrl=https://192.168.0.142:8081

Listing 9: Example minimal configuration required by a generic µ-service

The workingDirectory represents a path in the file system, where the service has write
access and can store data.

The serviceKeystore is the Unified Resource Identifier (URI) of the service certificate.

The configuration files on distributed nodes are automatically generated by the respec-
tive SHE when the target service is first installed and set as read-only files.

Additional configuration parameters can be set over the VSL. This is done on a per-
service basis, by the SLSM.

SLCA Configuration

Additional configuration parameters required by the SLCA are:

• caCertificate, containing the path of the root certificate

• caKey, containing the path of the private key tied to the root certificate, used for
signing all service certificates

• certificateValidity contains the maximum validity of a certificate in seconds
(e. g. 7200 for 2 hours validity)

• renewalPolicy can be either random or default. If random, then the randomBackoff
parameter is required

• randomBackoff is an integer in the range 0-100, containing the coefficient to be
applied when using the random backoff policy

SLSM Configuration

Additional configuration parameters required by the SLSM are:

• networkInterface, which must be the same one used by the KA. It allows the
SLSM to publish its own Internet Protocol (IP) address, which the NLSM use for
sending heartbeats.
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Evaluation

The chapter contains an evaluation of the designed solution, along with important
considerations regarding the impact on IoT nodes.
The evaluations is two-fold:

1. the security against attacks is assessed in, indicating which implemented counter-
measures protect against which kind of attack

2. the performance of the solution is evaluated in section 6.2, with a focus on addi-
tional resource consumption and scalability.

6.1 Security

The designed solution didn’t undergo a formal security review, but considering the
widespread use of certificates, the security against tampering and the authentication
guarantees can be assumed. The main attacks on the IoT were originally analyzed in
section 2.5.
Table 6.1 summarizes these attacks once again. For each attack, the table shows whether
and how the designed solution offers protection against it.

As expected, the usage of PKI and certificates protects against application-layer attacks,
such as malicious code and malwares. The introduced integrity and authenticity checks
guarantee, that only trusted apps are downloaded from the S2Store and run.
Unauthorized conversation and access to resources is neutralized thanks to the usage of
PKI certificates, with embedded access rights.
The proposed bootstrap mechanism allows only the administrator to introduce new
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nodes in the network, therefore offering protection against node impersonation and
sybil attacks.

Attack Layer Security Measure
Hardware Trojan Phy None
Node tampering Phy None
Node impersonation Phy Bootstrap mechanism and usage of PKI authen-

tication forbids node impersonation. Keys can
be stolen though, if the attacker has physical
access to a node

Eavesdropping Net Encryption provided by the VSL
MiTM Net Secure channels provided by the VSL
Routing Net Encryption provided by the VSL, but no ad-

vanced routing techniques are in place
Sybil Net Authentication, centralized control on SLSM

and bootstrap mechanism deny the forgery of
new identities

Unauthorized Conver-
sation

Net Every entity is authenticated within the DS2OS;
controlled access is enforced via certificates

Virus, Malware and
Spyware

App Only verified µ-services can be installed on
nodes. Every µ-service is code-signed. Authen-
ticity and integrity are checked when a service
is started

Malicious code injection App Applications are enforced to use controlled
DS2OS interfaces

Protocol App Applications are enforced to use controlled
DS2OS interfaces. No further protection for app-
specific protocols is in place

DoS Any Application-level authentication. No protection
on network layer

Social Engineering Any None
Side-channel Any None

Table 6.1: Attacks on the IoT physical layer and countermeasures

6.2 Performance

The design of the solution introduced in chapter 4 revolves around digital certificates.
Certificates are more heavyweight than tokens, and using them as main protection mech-
anism has its tolls on the performance of the system [69]. Furthermore, performance
and scalability are major concerns when using short lifetime certificates (see section 3.3)
and automated certificate renewal.
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Another relevant metric for evaluating this solution is the analysis of the energy con-
sumption and computational load on IoT devices. These resource-constrained devices
are the target nodes of the solution.

With the proposed solution, the automated certificate renewal is the only security mech-
anism that needs to be evaluated. No further mechanisms are in place, making the
solution simple and consistent.

The evaluation focuses on the effects of the proposed automated short lifetime certificate-
based solution in different ways:

1. The effect of different certificate lifetimes on the overall network traffic is evaluated

2. The positive effects of introducing a random backoff to the renewal intervals is
analyzed

3. The computational load and the energy consumed is measured in a representative
IoT setting

4. Finally, the scalability of the solution is evaluated, with respect to SLSM and
SLCA. These represent the bottlenecks of the solution, as they are unique within
the network. For this purpose, the throughput under load of the SLCA is analyzed.

6.2.1 Setting

Software Components

For the evaluation, the reference implementation of the VSL and the implementation
described in chapter 5 were used.

All running software, besides the KAs, is implemented as a µ-service. All µ-services
communicate with each other over the VSL REST interface using HTTPs.

To emulate a real smart space, the deployment shown in Figure 6.1 is considered. Each
node within a local network runs a KA, an SHE, an NLSM and multiple µ-services.

One coordinator node within the network additionally runs the SLCA and SLSM. Com-
bining the two entities that frequently communicate increases the performance.

Hardware Testbed

All tests were performed using real devices, software and processes. Two different test-
beds were used.
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Figure 6.1: Emulation setting with 5 nodes, one of which is the orchestrator node (left-most node)

For the network performance tests (see subsection 6.2.2), a setting of 5 desktop-class
computers was used, with the specifications shown in Table 6.2 on the left. This setup
is most likely beyond the resources of IoT installations in the next years. However, it
enables to evaluate the effects of the solution better as performance side-effects would
not play a big role. For actual IoT hardware those could heavily bias the measurements.

For the computational and energy consumption tests, it made sense to use IoT
hardware. The tests were performed using two Rasberry Pi 3 Model B as representative
IoT devices, with the specifications shown on the right of Table 6.2. In addition, several
desktop-class computers (specifications shown in Table 6.2) were used for generating
more load towards the IoT nodes. This had the purpose of stressing out the IoT nodes
to the maximum.

CPU Intel Xeon E3-1265L V2
@2.50 GHz

RAM 16GB
Storage SSD
OS Debian 9

CPU ARM Cortex A53 @1.20
GHz

RAM 1GB
Storage Samsung micro-SD
OS Raspbian Stretch

Table 6.2: Testbed hardware specifications; left: computer used for emulation; right: Raspberry Pi 3
used as IoT node

Network Configuration

All tests were performed in a LAN network with a 300Mbps router. The network
bandwidth and speed was not limited, in order to have results close to those observable
in a typical LAN network, regardless of the used devices.
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Traffic generated by the VSL is encrypted over HTTP and therefore very hard to analyze.
For this reasons, the data was collected logging the size of a request/response to a
file. Since the communication between the nodes happens over HTTPs, the measured
data doesn’t take the protocol overhead into account. The header of every HTTP
request/response, however, will always be the same and can therefore be ignored.

Communication between the SLSM and SLCA happens locally on the same host. The
overhead of this additional operation is considered negligible for the purpose of the
network evaluation, as local communication doesn’t have latency limitations.

Tested µ-services

Only dummy services were used for the purpose of this evaluation. The services do not
perform any active operations and stay idle forever. This allows to evaluate the raw
performance impact of the automated certificate renewal, without external influences
or spurious data. The amount of services used for each test is variable, depending on
the test itself.

When an emulation is started, all services are already installed on every node within
the network, but have no valid certificates. All services on each node are always started
sequentially, as soon as the NLSM is running.

Certificate Size

Service certificate sizes in the DS2OS depend on various factors:

• the key length

• the name of the service

• the access IDs

The assumed key length is 2048bit. The names of the services used for the tests are:
temperature, airConditioning, temperatureControl and other dummy services named ser-
vice0 through serviceN (N depending on the amount of services). The access ID set for
all services is the name of the service itself, with the exception of the temperatureControl
service, which also adds the home access ID.
Given these considerations, the certificate sizes of the services turn out to be mostly
identical, with some minor differences of only a few bytes.
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6.2.2 Network Impact

The network performance evaluation considered different real-time emulations on 5
nodes, each running 30 µ-services, for a total of 150 µ-services running in the site.

Optimal Certificate Lifetime

The first evaluation aimed to identify a suitable certificate lifetime for further testing
and normal usage. For this purpose, the average traffic consumption with different
certificate lifetimes was measured: 5, 10, 20, 30, 60, 90 and 120 minutes. The same
test was performed for both validity policies: fixed lifetime and random backoff. The
maximum random backoff was 25%. The chosen renewal window in both cases was of
30 seconds.
Each emulated setup was run for 5 certificate renewal periods, without any time accel-
eration.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 0  1000  2000  3000  4000  5000  6000  7000

A
v
e
ra
g
e

 
T
ra
ff
c
 
(B
y
te
s
/s
)

Certifcate Lifetime (seconds)

Figure 6.2: Total average traffic consumption as the certificate lifetime increases

As expected, the average traffic decreases inverse proportional the longer the certificate
lifetime is. Figure 6.2 shows this clearly.
For prolonged period of times, the average traffic would increase by up to 12% for the
solution with random backoff enabled. This small increase is negligible, considering the
already low amount of generated traffic.

From this measurement, 3600s was identified as good compromise between short lifetime
and low traffic. A higher validity can be chosen in IoT scenarios, where the bandwidth
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limitation is more severe. This is not the case for the envisioned scenario, therefore
3600s (1 hour) certificate lifetime was used for following tests.

Traffic and Random Backoff

The main measured metric, for analyzing the network impact, was the instantaneous
network traffic. This was done from the point of view of the orchestrator node, running
the SLSM and SLCA.

Figures 6.3 and 6.4 show a scatter plot of the total traffic produced by certificate renewals
at any point in time. In both plots all services are started roughly at the same time.
Starting all services at the same time is realistic, e. g. after a power outage.

For the case with fixed certificate lifetimes, this results in periodic traffic bursts, as
visible in Figure 6.3. These traffic bursts cause an instantaneous traffic of up to 50KB per
second. This is realistic, considering the size of CSR is 810 Bytes on average, while the
size of a certificate is 1600 Bytes. This amount of data is not entirely optimized, due to
the usage of base64 encoding (see section 5.2). The maximum amount of instantaneous
traffic generated is capped by the SLCA, which can only process a limited amount of
requests per second.
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Figure 6.3: Traffic generated by 150 µ-services using fixed certificate renewal time
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Figure 6.4: Traffic generated by 150 µ-services using certificate renewal with random backoff
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Introducing the random backoff allows to mitigate the traffic from unwanted spikes.
The backoff is chosen by the SLCA after each renewal. Setting a random backoff of 25%
turned out to be a good trade-off between load distribution and minimizing unwanted
additional traffic that is caused by the resulting additional certificate renewals.

Figure 6.4 proves that, as soon as the random backoff mechanism kicks in, the traffic
spikes disappear. After about 12000 seconds, the traffic is well distributed resulting
in peaks of at most 10KB. This behavior is desired for the IoT where instantaneous
bandwidth is limited (e. g. 2G/3G networks).

To verify the distribution, the overall traffic average over both emulations was calculated,
after a runtime of 20 hours. It was 119 B/s for the simulation driven by a random-factor
and 106 B/s for the other case. The slight delta between the two is introduced by the
random factor, which causes more certificate renewals within the experiment run time,
as services do not wait until a certificate is almost expired for requesting a new one.

Node Churn

Node churn was emulated by randomly disconnecting a node from the network.
The resulting impact of node churn on the network depends on the frequency and
length of the downtime period. Considering a length > certificatelifetime, node churn
will always cause a sudden spike in traffic, due to the node requiring new certificates
for all services after re-joining.
For the solution with fixed lifetimes, this actually distributed the spikes over time,
introducing a positive effect. For the solution with random backoff, a prolonged node
downtime would mean a sudden isolated spike in the traffic, introducing an undesired
effect. This effect would be mitigated by the random backoff immediately afterwards.
If a node is absent from the network for a shorter period of time, the consequences are
typically very limited.

6.2.3 Impact on IoT devices

The IoT is resource limited. Key resources are compute power, network bandwidth, and
energy consumption. To measure them, a Raspberry Pi 3 Model B device was used.

Network bandwidth usage was already evaluated in subsection 6.2.2. Two main metrics
were analyzed on IoT devices: computational load and energy consumption.

Two tests were run for this purpose:

1. The Raspberry Pi hosted an NLSM instance and run 20 services
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2. The Raspberry Pi acted as the orchestrator, hosting only the SLCA and SLSM
(no further services). 3 other nodes, running 20 services each, were deployed on
desktop computers

For both tests, very short certificate lifetimes were used (5 minutes maximum validity
period). Random backoff was also enabled. This allows to see the distribution of the
power and CPU spikes, caused by the random backoff mechanism.

The results in Figure 6.5 and 6.6 show the energy consumption on the left y axis, and
the CPU load on the right y axis. Spikes are clearly visible in the CPU load and the
energy consumption where the certificates get replaced and verified.

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

 0.6

00:00 03:00 06:00 09:00 12:00 15:00 18:00 21:00 24:00
 0

 5

 10

 15

 20

 25

 30

 35

 40

In
p
u
t 
C
u
rr
e
n
t 
(A
)

C
P
U

 
U
s
a
g
e

 
(%
)

Time

CPU usage
Input Current

Figure 6.5: CPU load and energy consumption for an NLSM deployed on an a Raspberry Pi

Computational Load

The CPU load was measured using a custom python script and the psutil library. The
script continuously monitors the CPU usage in background and logs the current average
load with a 1 second interval. The values include the sum of the load on 4 CPU cores.

The measurement in Figure 6.5 shows that the total CPU load during certificate renewals
reaches about 30%, saturating one core on the Raspberry Pi. On the node hosting the
SLCA (see Figure 6.6), the load tends to be higher (up to 40%). This is due to the
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Figure 6.6: CPU load and energy consumption for SLSM and SLCA deployed on an a Raspberry Pi

SLSM also being deployed on the same node and performing management operations in
the background.

The SLCA, is visibly overloaded during the initial phase, when all nodes require new
certificates. As soon as the random backoff kicks in, the CPU spikes start distributing
over time.

Apart from the CPU load, an important finding was the Input/Output (I/O) limitation
introduced on the Raspberry Pi. Because of the low speed in storing a new certificate
inside a Key Store and verifying its metadata, a full certificate renewal takes about 2.5s
on the Raspberry Pi. This is significantly slower than on a desktop-class node.

In case of fixed certificate lifetimes, this could lead to prolonged service downtimes, in
case a node is running many services with expired certificates. With random backoff
enabled, however, the renewals are more distributed over time and are less likely to
represent a bottleneck.

After roughly 15 minutes in Figure 6.5, a node churn was simulated, disconnecting the
node from the network. Upon node churn, the device cannot request new certificates. As
soon as the device is reconnected to the network (after minute 21), all certificates have
expired and need to be renewed. The sudden increase in traffic and power consumption
can clearly be seen in the plot.
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Similarly to the reasoning made for the bandwidth consumption, the random backoff
mechanism introduces up to 25% more certificate renewals. Consequently, this also
leads in a slight power consumption increase over time.

Energy Consumption

The energy consumption was measured using an UM25C voltmeter/ammeter [83]. The
UM25C was set between the power outlet and the Raspberry Pi. The UM25C con-
tinuously measured the current voltage and drawn current of the Raspberry Pi. The
samples were taken by the UM25C in a 1 second interval, measuring the average value
within the time period.

When idle, the Raspberry Pi device draws approximately 250mA. This is clearly visible
in Figure 6.5. Heartbeats and other VSL low-level periodic mechanisms lead to an
increase in power consumption by 50 to 100mA.

The main energy consumption spikes, however, occurs during a certificate renewal.
This is clearly visible for both the NLSM and SLCA cases. Cryptographic operations
(CSR and certificate creation) are currently not hardware-accelerated and are executed
entirely in software. The node requires significantly more power in this state, between
400 and 500mA.

When multiple certificates need to be renewed at the same time, an NLSM requests
them sequentially, therefore not exceeding a certain power consumption threshold. The
same reasoning applies to the SLCA, which processes certificate requests sequentially.

6.2.4 Scalability

Scalability is analyzed only for IoT devices, as they represent the target of this thesis.

The presented solution targets IoT nodes capable of running Java, but still with con-
strained resources. Target devices are single-board computers capable of running Linux,
such as Raspberry Pi, Beaglebone, or Intel Galileo. To prove that the solution runs
without excessively increasing the load on existing devices, the following was analyzed:

1. the time taken by an NLSM to renew a certificate on average

2. the amount of certificate renewals that the SLCA could handle per second

For the purpose of this evaluation, automated certificate renewals with random backoff
mechanism were considered.
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NLSM

The main scalability issues introduced for the NLSM are given by the slower I/O and
cryptographic operations. Given the results, some limitations need to be considered.

T represents the time (in seconds) needed by the NLSM to renew a single certificate.
For certificate lifetime M seconds, the total amount of feasible renewals over a period
M is:

M/T

For a Raspberry Pi with T = 3 and M = 3600, the maximum amount of supported
services before slowing down is 1200. Furthermore, the service availability isn’t affected
only if the renewals are perfectly distributed over time.

These considerations are theoretical and consider an ideal system. While an NLSM is
renewing a certificate, it is busy and cannot perform any other active operation. In a
real scenario, the NLSM is in charge of other tasks and cannot be busy 100% of the time
renewing certificates.

For the above parameters, running only 10 services would cause the NLSM to be busy
renewing certificates about 1% of the total uptime.

The best optimization strategies to consider on an NLSM are:

• The total amount of services running on the node must be strictly ≤ M/T

• Installed services should not require a new certificate all at once

• Scale the amount of services running on the node according to the imposed M and
T of the device

SLCA

The node running the SLSM/SLCA represents a potential bottleneck, since it has to
manage all other nodes.

The results reveal that, on a desktop-class SLCA node, the amount of certificates that
can be renewed per second is roughly 15. On a Raspberry Pi, however, this number
goes down to 2, with an average processing time of 500 milliseconds per request. This
data imposes some hard limits on the setup in an IoT setting.

N represents the maximum amount of certificate renewals that the SLCA is capable
of processing per second, before throttling. N increases as the resources of the SLCA
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increase. For certificatelifetime = Nseconds, the total amount of feasible renewals over
a period M is:

N ∗M

This is only true, if the renewals are uniformly and ideally distributed over time. If
every node runs the same amount of services, the total amount of supported services by
each node is:

(N ∗M)/K

In the tested scenario, with M = 3600 and N = 2 on the Raspberry Pi, K = 100 nodes
could potentially run up to 72 services each.

These considerations are theoretical and consider an ideal system. In reality, other
running services take up bandwidth and the node running the SLCA and SLSM might
be busy performing other tasks, such as installing a new service or migrating one. Also,
this ideal scenario would saturate the load on the orchestrator node all the time.

In order to keep the system reactive and avoid queueing certificate renewal requests,
the best strategies are:

• The total amount of services running in the system must be strictly ≤ N ∗M

• The random backoff policy helps distributing the renewals over time. As the
requests become more distributed over time, the necessity to have a higher request
throughput on the SLCA diminishes

• The more services need to be deployed in the system, the longer the certificate
lifetimes should be, to improve the overall performance

6.2.5 Comparison with Authentication Tokens

The metric that needs to be tested when comparing the automated certificate renewal
with authentication tokens is the communication overhead introduced by the two dif-
ferent approaches. This comparison is purely mathematical and the same setup for the
two solutions is considered. A small-sized JWT token with only a couple access IDs as
payload is assumed, with a token length of around 80 bytes. Refresh tokens needed for
renewing access tokens can be smaller. 40 bytes will be considered in this case.

Previous tests showed that a single certificate renewal produced 2.5 KB of traffic. Com-
pared to a total of 120 bytes for a token refresh, the difference is huge.
However, access tokens are transmitted over HTTPs in every request, when nodes com-
municate. This overhead is added on top of the underlying TLS connection. This means
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that if a µ-service were to perform at least 20 requests to other services within the smart
space, during the period of validity of a token, the two solutions would be balanced out
in terms of total communication overhead. The more communication between nodes
is expected, the better the certificate-based solution performs against a token-based
approach. To perform a more realistic comparison, additional information about the
smart space usage is required.

6.2.6 Comparison with OCSP and CRL

The automated certificate renewal is introduced as an alternative to other certificate
revocation schemes, such as OCSP and CRL. The purpose was keep the revocation mech-
anism as simple as possible, without introducing management overhead. The downside
is an increased communication overhead.
A mathematical comparison between the communication overhead over time, produced
by the existing revocation schemes, is now presented. The work presented in [3] is taken
as reference.

In CRLs, a request size of roughly 100 bytes is considered, while a response contains the
list of all revoked certificates, signed by the CA. A signature is around 700 bytes long,
while each revocation entry is as long as the serial number of the revoked certificate. A
serial number is typically 20 bytes long.
In OCSP, the average request is considered to be 140 bytes long, while the average
response is 150 bytes long. For each certificate in the system, an OCSP request needs
to be sent to the server.

The comparison assumes a setting with 5 regular nodes running 10 services each. To
make a fair comparison, the same revocation check frequency of 1 day is assumed: CRLs
are fetched once per day by every node; OCSP requests are sent for every running service
once per day; for the designed solution, certificates are renewed once per day.
If no certificates are revoked during the day, fetching CRLs generates 4 KB, and updates
via OCSP generate 14.5 KB of traffic. Certificate renewals, on the other hand, generate
a total of 125 KB of network traffic per renewal.

In such a scenario OCSP scales very well, while the certificate expiration approach out-
performs CRLs only after roughly 6000 certificates have been revoked. This is hardly to
be expected in smaller smart spaces. However, if the considerations of subsection 6.2.5
are take into account, the certificate expiration approach becomes very valid: the scal-
ability is comparable, but the management complexity is minimized.
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Conclusion

The goals of the thesis were to analyze and improve the security of an IoT management
system, such as the DS2OS.
The main focus was the protection of applications distributed within a smart space.
This included guaranteeing the integrity, authenticity and controlled access of the ser-
vices, along with securing their lifecycle management. This conclusive chapter quickly
covers the results and future works.

7.1 Results

Based on the analysis of the scenario and the existing threats in the IoT world, a PKI-
based approach was taken. While this approach seems less suitable for constrained IoT
devices, the evolutionary pace of these devices points to hardware capable of supporting
such features in the very near-future.
The proposed solution combines a periodic authorization refresh concept, used in token-
based systems, together with a code signing mechanism.
Applications in smart spaces are protected by pinning a certificate to them. The cer-
tificate is signed by a trusted entity in the smart space.
To enforce access control policies and mitigate certificate compromise, an automated
certificate renewal process was introduced.

The designed solution integrates seamlessly with the DS2OS. Certificates go hand-in-
hand with TLS communication channels, provided by the VSL. At the same time, the
same certificates are used for fulfilling the required security goals.
The application lifecycle management system implemented in [12] [58] is automatically



protected by the proposed security features. The system allows only trustworthy services
to be run, similarly to smartphone ecosystems, but in a distributed scenario.
The implemented solution proved to be effective, with a very low design complexity.

The results obtained from the evaluation show that the overhead network traffic gener-
ated by the solution is mainly attributed to the periodic certificate renewal.
This overhead proved to be, in fact, quite limited and easy to mitigate by choosing
longer certificate lifetimes. The trade-off between increased security and lower overhead
represents an important factor to be considered in a real smart space.
The main bottleneck of the solution was attributed to the CA running on a device with
limited hardware resources. This will be addressed in future works.

7.2 Future Work

Some important aspects, that may be addressed in the near future, are:

• The implementation of the system bootstrap procedure described in section 4.4

• Adapting the VSL implementation to better support the designed security features

• A UI for managing the user access rights needs to be implemented

Optimization of the solution is a broader topic and requires further investigation.
One possible solution could be the usage of implicit certificates (see performance impact
in subsection 3.3.1).
A more radical approach to overcome issues identified in the evaluation would be to
address the bottleneck introduced by the single CA. Leveraging multiple CAs could
lead to a fully distributed system. Such a scenario introduces further research questions,
such as the trustworthiness of additional CAs and how to manage network partitioning.
While the complexity of the system would increase, so would the scalability.

Another possible research topic is the automated handling of invalid CSR or certificates.
Using machine learning and other techniques it could be possible to identify threats and
handle them accordingly, with or without user intervention.
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Appendix

A.1 Site Local Service Certificate

1 Certificate:
2 Data:
3 Version: 3 (0x2)
4 Serial Number: 1533934650097 (0x16525a142f1)
5 Signature Algorithm: sha256WithRSAEncryption
6 Issuer: C=DE, ST=Germany, L=Munich, O=TUM, OU=I8, CN=DS2OS CA
7 Validity
8 Not Before: Aug 10 20:57:30 2018 GMT
9 Not After : Aug 10 21:07:30 2018 GMT

10 Subject: C=DE, ST=Germany, L=Munich, O=TUM, OU=I8, CN=temperature
11 Subject Public Key Info:
12 Public Key Algorithm: rsaEncryption
13 Public-Key: (2048 bit)
14 Modulus:
15 00:b3:2c:5f:bb:cf:7f:98:c3:ea:19:02:0f:ec:80:
16 d7:0e:4b:09:35:3e:39:7f:79:50:d6:42:0d:82:ff:
17 32:40:28:45:f8:c6:cf:7d:2e:c6:e7:1c:4a:ca:50:
18 47:36:d7:1f:25:b5:bd:f7:c2:0b:86:03:69:f3:a6:
19 09:95:f7:25:73:1c:68:bd:1e:ce:ba:26:4e:f0:d4:
20 e6:32:12:62:dc:2a:f7:15:2e:cc:97:0c:6e:43:73:
21 15:4f:6f:04:43:65:35:2a:91:14:6e:b2:c0:ca:f3:
22 1a:66:d9:f8:4c:a6:e8:f0:4d:5b:cc:12:6c:11:c3:
23 04:a7:35:e7:0b:ab:db:dd:90:41:86:72:d3:b9:bf:
24 4f:04:33:f1:c6:dc:2f:fc:b6:bc:07:48:c3:76:34:
25 b1:5d:9c:b1:cf:9a:5b:e9:ae:f5:85:d5:5f:86:cc:
26 d6:1d:bd:ad:27:7b:62:fe:3a:da:93:8c:83:d5:66:
27 b1:00:9f:5e:55:9c:ca:f9:b2:85:b8:73:7a:71:3a:
28 57:86:ef:a5:ba:2f:16:6d:e6:62:75:3e:8f:6f:59:
29 4c:35:00:13:2e:af:a4:0d:f0:7d:38:81:fe:ea:b8:
30 8d:59:46:88:7a:8a:18:51:88:3a:f6:74:92:c7:27:
31 37:5c:9b:a2:50:86:44:ef:46:92:be:24:11:75:6c:
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32 3e:bb
33 Exponent: 65537 (0x10001)
34 X509v3 extensions:
35 X509v3 Basic Constraints:
36 CA:FALSE
37 X509v3 Subject Key Identifier:
38 F0:9F:41:A4:9F:6B:38:F3:77:69:AF:C6:F5:58:D3:64:3F:9A:1F:AD
39 X509v3 Authority Key Identifier:
40 keyid:F3:71:14:32:42:C9:17:EA:65:5C:A8:56:FA:3C:9D:7C:05:B0:AD:44
41 DirName:/C=DE/ST=Germany/L=Munich/O=TUM/OU=I8/CN=DS2OS CA
42 serial:01:62:BF:67:0E:B1

43 X509v3 Key Usage: critical
44 Digital Signature, Non Repudiation, Key Encipherment
45 X509v3 Extended Key Usage:
46 TLS Web Client Authentication
47 Netscape Cert Type:
48 SSL Client
49 Netscape Comment:
50 DS2OS service certificate for temperature
51 1.3.6.1.4.1.1:
52 ..sha256:temperatureManifest
53 1.3.6.1.4.1.0:
54 ..FALSE
55 1.3.6.1.4.1.2:
56 ..temperature
57 Signature Algorithm: sha256WithRSAEncryption
58 08:0b:e7:6c:bc:23:36:9e:c7:f4:56:07:d8:21:42:eb:2d:b0:
59 c2:d8:1a:27:ea:76:7f:da:96:d2:1e:33:d3:b0:4e:37:62:f7:
60 28:cc:04:0d:3c:32:51:40:ed:4b:1d:a1:7b:e1:a9:67:f1:0c:
61 a5:69:29:b1:8c:b7:87:64:cd:ee:b6:00:c6:27:22:2e:5f:b4:
62 c5:3c:f0:51:20:db:b2:b6:a1:cd:91:fc:4b:cd:d8:d0:1a:c6:
63 4d:63:27:50:9d:ca:b1:59:82:8f:d5:a9:d3:2e:88:29:73:a0:
64 a9:c3:93:dd:72:5a:09:24:19:24:cf:91:f7:a6:60:20:cd:31:
65 17:de:fd:9b:94:65:09:69:94:d9:3b:95:3e:47:92:57:28:89:
66 2d:2c:41:88:9f:57:99:36:5f:0a:10:88:15:82:9f:45:36:f4:
67 2b:d9:34:9a:29:32:01:1b:d3:69:fb:22:ae:05:08:81:e7:c5:
68 b4:74:a1:1f:fe:e4:02:ce:86:1c:ca:96:79:93:45:59:02:fc:
69 a2:f7:77:fb:83:a0:6f:77:de:e5:55:99:69:aa:c8:e0:b0:bd:
70 3c:75:68:7c:c2:e9:5e:bd:b2:04:13:35:cf:a6:74:d6:c7:b6:
71 1a:ff:d5:41:37:02:17:ff:cb:26:f2:90:85:d9:f5:26:78:7c:
72 c8:9e:b6:a0
73 -----BEGIN CERTIFICATE-----
74 MIIExTCCA62gAwIBAgIGAWUloULxMA0GCSqGSIb3DQEBCwUAMF4xCzAJBgNVBAYT
75 AkRFMRAwDgYDVQQIDAdHZXJtYW55MQ8wDQYDVQQHDAZNdW5pY2gxDDAKBgNVBAoM
76 A1RVTTELMAkGA1UECwwCSTgxETAPBgNVBAMMCERTMk9TIENBMB4XDTE4MDgxMDIw
77 NTczMFoXDTE4MDgxMDIxMDczMFowYTELMAkGA1UEBhMCREUxEDAOBgNVBAgMB0dl
78 cm1hbnkxDzANBgNVBAcMBk11bmljaDEMMAoGA1UECgwDVFVNMQswCQYDVQQLDAJJ
79 ODEUMBIGA1UEAwwLdGVtcGVyYXR1cmUwggEiMA0GCSqGSIb3DQEBAQUAA4IBDwAw
80 ggEKAoIBAQCzLF+7z3+Yw+oZAg/sgNcOSwk1Pjl/eVDWQg2C/zJAKEX4xs99Lsbn
81 HErKUEc21x8ltb33wguGA2nzpgmV9yVzHGi9Hs66Jk7w1OYyEmLcKvcVLsyXDG5D
82 cxVPbwRDZTUqkRRussDK8xpm2fhMpujwTVvMEmwRwwSnNecLq9vdkEGGctO5v08E
83 M/HG3C/8trwHSMN2NLFdnLHPmlvprvWF1V+GzNYdva0ne2L+OtqTjIPVZrEAn15V
84 nMr5soW4c3pxOleG76W6LxZt5mJ1Po9vWUw1ABMur6QN8H04gf7quI1ZRoh6ihhR
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A.1 Site Local Service Certificate

85 iDr2dJLHJzdcm6JQhkTvRpK+JBF1bD67AgMBAAGjggGEMIIBgDAJBgNVHRMEAjAA
86 MB0GA1UdDgQWBBTwn0Gkn2s483dpr8b1WNNkP5ofrTCBjQYDVR0jBIGFMIGCgBTz
87 cRQyQskX6mVcqFb6PJ18BbCtRKFipGAwXjELMAkGA1UEBhMCREUxEDAOBgNVBAgM
88 B0dlcm1hbnkxDzANBgNVBAcMBk11bmljaDEMMAoGA1UECgwDVFVNMQswCQYDVQQL
89 DAJJODERMA8GA1UEAwwIRFMyT1MgQ0GCBgFiv2cOsTAOBgNVHQ8BAf8EBAMCBeAw
90 EwYDVR0lBAwwCgYIKwYBBQUHAwIwEQYJYIZIAYb4QgEBBAQDAgeAMDgGCWCGSAGG
91 +EIBDQQrFilEUzJPUyBzZXJ2aWNlIGNlcnRpZmljYXRlIGZvciB0ZW1wZXJhdHVy
92 ZTAmBgYrBgEEAQEEHAwac2hhMjU2OnRlbXBlcmF0dXJlTWFuaWZlc3QwEQYGKwYB
93 BAEABAcMBUZBTFNFMBcGBisGAQQBAgQNDAt0ZW1wZXJhdHVyZTANBgkqhkiG9w0B
94 AQsFAAOCAQEACAvnbLwjNp7H9FYH2CFC6y2wwtgaJ+p2f9qW0h4z07BON2L3KMwE
95 DTwyUUDtSx2he+GpZ/EMpWkpsYy3h2TN7rYAxiciLl+0xTzwUSDbsrahzZH8S83Y
96 0BrGTWMnUJ3KsVmCj9Wp0y6IKXOgqcOT3XJaCSQZJM+R96ZgIM0xF979m5RlCWmU
97 2TuVPkeSVyiJLSxBiJ9XmTZfChCIFYKfRTb0K9k0mikyARvTafsirgUIgefFtHSh
98 H/7kAs6GHMqWeZNFWQL8ovd3+4Ogb3fe5VWZaarI4LC9PHVofMLpXr2yBBM1z6Z0
99 1se2Gv/VQTcCF//LJvKQhdn1Jnh8yJ62oA==

100 -----END CERTIFICATE-----

Listing 10: X.509 Certificate format of a temperature service
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Chapter B

List of acronyms

AES Advanced Encryption Standard.

AMQP Advanced Message Queuing Protocol.

API Application Programming Interface.

APK Android PacKage.

ARM Advanced RISC Machine.
BLE Bluetooth Low Energy.

CA Certificate Authority.

CMR Context Model Repository.

COAP Constrained Application Protocol.

CPU Central Processing Unit.

CRC Cyclic Redundancy Check.

CRG Certificate Revocation Guard.
CRL Certificate Revocation List.
CSR Certificate Signing Request.

deb Debian package.

DoS Denial of Service.
DS2OS Distributed Smart Space Orchestration System.

DTLS Datagram Transport Layer Secure.

E2E End-To-End.
EM Electromagnetic.



Chapter B: List of acronyms

HAL Hardware Abstraction Layer.

HTTP HyperText Transfer Protocol.

IC Integrated Circuit.

IETF Internet Engineering Task Force.

IFTTT If This Then That.
I/O Input/Output.

IoT Internet of Things.

IP Internet Protocol.
ipa IOS App Store Package.

ISO International Organization for Standardization.

IT Information Technology.

JVM Java Virtual Machine.
JWT JSON Web Token.
KA Knowledge Agent.

KB Kilobytes.

M2M Machine to machine.
MAC Medium access control.
MB Megabytes.

MCU Micro-Controller Unit.
MiTM Man in The Middle.
MMU Memory Management Unit.

MQTT Message Queuing Telemetry Transport.

µ-service Micro-service.

NLSM Node Local Service Manager.

NTP Network Time Protocol.
OCSP Online Certificate Status Protocol.
OID Object Identifier.

OS Operating System.

OSI Open Systems Interconnection. Reference model for layered network archi-
tectures by the OSI.

P2P Peer-To-Peer.
PDU Protocol data unit. Refers to a message at a specific layer of the OSI model

including all headers and trailers of the respective layer and all layers above.
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PKI Public Key Infrastructure.

PoP Proof-of-Possession.
PRNG Pseudo-Random Number Generator.
RAM Random Access Memory.

REST Representational state transfer.

ROM Read-Only Memory.

RTE Runtime Environment.
S2Store Smart Space Store.

SBC Single-Board Computer.

SCTP Stream Control Transmission Protocol. Datagram-oriented, semi-reliable
transport layer protocol.

SDK Software Development Kit.

SDU Service data unit. Refers to the payload of a message at a specific layer of
the OSI model excluding all headers and trailers of the respective layer.

SHA Secure Hash Algorithm.

SHE Service Hosting Environment.

SLCA Site Local Certificate Authority.

SLSM Site Local Service Manager.

SOA Service Oriented Architecture.
SSH Secure Shell.
SSL Secure Sockets Layer.

TCP Transmission control protocol. Stream-oriented, reliable, transport layer pro-
tocol.

TLS Transport Layer Secure.

UDP User datagram protocol. Datagram-oriented, unreliable transport layer pro-
tocol.

UI User Interface.
URI Unified Resource Identifier.
USB Universal Serial Bus.
VSL Virtual State Layer.

XML EXtensible Markup Language.
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