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Abstract

Within the past years computing paradigms like the Internet of Things and Pervasive
Computing led to a broad spectrum of application scenarios. One example are smart
spaces: indoor environments containing smart devices which provide and consume
microservices and which are able to work together in a useful way to create value
for users. In the future, non-experts should be able to install such devices easily in
their homes and to deploy new services to their smart spaces in one click, similar
to the way apps are installed on smartphones. This entails multiple challenges since
smart spaces are distributed systems instead of single devices, and users are going to
expect the same level of usability and dependability as for their smartphones. Also,
the software must have a low footprint since it will be deployed on constrained and
energy-e�cient devices like the Raspberry Pi. This thesis focuses on centralized and
autonomous management of distributed services using the existing Virtual State Layer
(VSL) middleware. An extensive literature review on di�erent research �elds which
deal with autonomous service management is provided in order to extract concepts that
can be applied to the problem domain. Based on the �ndings, a service management
prototype is designed. In the end, the design is implemented and evaluated regarding
performance and applicability in the target domain. Open challenges are discussed to
motivate further research in the area.





Zusammenfassung

In den letzten Jahren sind durch Paradigmen wie das Internet of Things und Pervasive
Computing viele Anwendungsszenarien entstanden. Ein Beispiel hierfür sind Smart
Spaces, also Räume die mit Smart Devices ausgestattet sind, welche Microservices anbie-
ten und konsumieren und dadurch in der Lage sind, zusammenzuarbeiten und dadurch
Nutzen für Anwender zu scha�en. In Zukunft sollten auch Laien in der Lage sein, sol-
che Geräte einfach in ihre Räume zu integrieren und deren Funktionalität durch das
Installieren von Services zu erweitern - ähnlich dem Installieren von Apps auf Smart-
phones. Diese Vision bringt allerdings einige Herausforderungen mit sich, da es sich
nicht um einzelne Geräte sondern um komplexe verteilte Systeme handelt, während
Nutzer eine vergleichbare Zuverlässigkeit und Nutzbarkeit wie auf ihren Smartphones
erwarten werden. Auch sollte die Software performant arbeiten, da diese typischerweise
auf Geräte mit eingeschränkten Ressourcen verteilt wird, zum Beispiel den Raspberry
Pi. Diese Forschungsarbeit beschäftigt sich mit zentralisiertem und autonomem Mana-
gement von verteilten Services am Beispiel der Virtual State Layer (VSL) Middleware.
Verschiedene Forschungsgebiete, welche sich mit autonomem Service Management
befassen, werden in einer umfangreichen Literaturrecherche vorgestellt. Ziel ist hierbei
die Identi�kation von Konzepten welche auf die Problemdomäne dieser Arbeit anwend-
bar sind. Basierend auf den Ergebnissen wird ein Design für einen Service Management
Prototypen erarbeitet. Zum Schluss wird der Prototyp implementiert und hinsichtlich
seiner Performanz und Eignung für den Einsatz in der Problemdomäne evaluiert. O�ene
Herausforderungen werden diskutiert um für weitere Forschungsarbeit in dem Gebiet
zu motivieren.
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Chapter 1

Introduction

Over the past years, Internet of Things and Pervasive Computing have become very
popular computing paradigms with the potential of changing the interaction between
users and computers fundamentally. The idea is to connect small constrained devices
and to let them work together in a way that the devices themselves are not directly
recognized anymore. Emerging applications target companies as well as private end
users. A good example are smart homes or smart spaces where rooms are equipped with
numerous distributed devices providing services like closing the shutters or turning on
the lighting. Although many of those applications are easily viable today, many open
issues exist in research. On the one hand, controlling smart spaces should be as easy
as possible for end users. In the best case, services can be installed to the environment
with one click, similar to smartphone apps. The problem is that we are facing complex
distributed systems composed of heterogeneous hardware and running a variety of
services which must work together somehow without requiring users to deal with
complex con�gurations or error handling. Promising research can be found in the �eld
of autonomous computing, for example.
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1.1 Thesis Goals

This thesis focuses service management in smart spaces consisting of distributed, het-
erogeneous nodes which run services that control the environment via sensors and
actuators. From a user perspective, managing services in such a scenario is currently a
complex task because of hardware requirements, dependencies between services and
error handling. The ideal future smart space management system should manage itself
completely autonomous, without requiring users to intervene. Deploying and starting
new services should become an easy task one day - similar to installing and running
apps on smartphones. With this in mind, the following thesis goals can be formulated:

1. Providing an extensive literature review on autonomous service management in
di�erent application areas.

2. Identifying concepts and mechanisms suitable for the presented problem domain
and deriving a list of requirements for a service management solution.

3. Developing a comprehensive system design based on the requirements.

4. Developing a prototypical solution and evaluating it regarding applicability to
the problem domain.
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1.2 Methodology and Outline

The topic of this thesis cuts across several research areas, since mechanisms for the
management of services and distributed systems are widely used and applicable. Because
of this, a clear methodology for the literature review is even more necessary in order to
stay on top of things. Figure 1.1 shows the process which has been conducted in order
to �nd relevant literature. Most of the papers cited in this thesis were found in the IEEE
Xplore Digital Library [7].

The �st step involved an unstructured keyword search which brought up papers in a
variety of research areas. From this collection, relevant areas could be extracted.

Figure 1.1: Literature Search Process

For each area, the goal was to �nd existing literature reviews, since they often provide
good overview over a topic and help in �nding relevant primary work. The identi�ed
primary papers were then examined and the relevant ones were used as the basic input
for the analysis and related work of this thesis. If more speci�c information on a topic
was sought, similar papers could be easily derived via forward and backward search.

The thesis is structured as follows. In chapter 2 important aspects used in the remainder
of this work are analyzed and relevant research is presented. Based on this research,
requirements for the solution design are collected. In chapter 3 a selection of existing
approaches and solutions is presented. These ful�ll multiple of the identi�ed require-
ments and have similar goals to this thesis. Therefore di�erences to this work and
eventually our research contribution will be worked out. A concrete solution design
based on previous theoretical research �ndings is constructed in chapter 4. A feasible
prototype ful�lling a subset of the requirements is de�ned and interesting implemen-
tation details are documented. In chapter 5 the prototype is evaluated and setup and
results are presented. In the end a conclusion and outlook to future work is provided.
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Chapter 2

Analysis

This chapter analyzes important building blocks of the topic and derives important as-
pects and requirements from existing research. In chapter 2.1 the problem domain and
related research �elds are introduced. Chapter 2.2 analyzes the DS2OS system which
will be designed and implemented in the course of this thesis as well as the existing
underlying Virtual State Layer (VSL) middleware. In chapter 2.3 basics around service
quality and dependability are explained. Chapter 2.4 presents two common technolo-
gies for service lifecycle management. Afterwards, self-management or autonomous
computing are introduced and a classi�cation of di�erent approaches is provided in
chapter 2.5. As monitoring and the management of the produced data are important
features of the planned solution, chapter 2.6 presents interesting research around these
topics. All derived requirements are listed and condensed into higher-level research
questions in chapter 2.7. The chapter also de�nes which components and aspects of the
DS2OS system are focused in this thesis, and which not.
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2.1 Problem Domain

This section presents the problem domain and an introduction to existing issues. Also,
related research areas are shortly introduced.

2.1.1 Smart Space Service Management

This thesis addresses smart spaces and smart devices as well as related open challenges.
A typical challenge with smart devices is their heterogeneity, as there are di�erent
manufacturers and platforms, as well as di�erent data formats, facing a still existing
lack of standardization [8, p. 732]. Certainly connecting the devices and bene�ting
from their data and functionality implies the existence of a standard or abstraction,
in order to create a common language and understanding between them. There are
several service-oriented approaches which create an abstraction over the speci�c func-
tionality from the device level. Two examples which provide a comprehensive Service
Management in the form of a middleware are Gaia OS [9] and the Distributed smart
space Orchestration System (DS2OS) [1]. The latter will serve as the system for the
design and implementation part of this thesis, and will be analyzed in chapter 2.2.

One set of issues with existing systems concerns the management of microservices in IoT
scenarios. For example, the installation or deployment of services still requires system
experts in most cases, since there is no easy way to install distributed services without
complex con�guration. In the future, users will want to change the functionality of
their smart spaces easily by installing, removing or combining services. This is already
possible on our smartphones, where services are bundled as apps and installed through
a central software store. Transferring the concept of apps to smart spaces entails some
challenges, as we have to deal with a distributed system instead of a single device.
Instead of keeping one app on a single device running, services must be executed on
di�erent distributed nodes and could even be composed in order to model complex use
cases. End users in that case should not be aware of the system architecture behind
it and experience a high dependability, similar to software running on single devices.
Autonomous computing research shows that there is promising work regarding complex
systems that are able to manage themselves to a high degree. These self-management
capabilities are a main concept which will be analyzed in chapter 2.5.

2.1.2 Related Research Areas

The unstructured literature search for this thesis brought up multiple research areas
which are relevant to the topic. Although use cases sometimes di�er signi�cantly from
our topic and speci�c algorithms are not directly applicable, suitable approaches and
mechanisms can be found in any of these research areas. Figure 2.1 visualizes the
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identi�ed research areas which will be introduced in the following. It will be pointed
out how each area contributes to this thesis by presenting similarities.

Figure 2.1: Related Research Areas

The Internet of Things (IoT) is a wide technological �eld covering many applications.
Basically it means that smart objects are connected to the internet [10, p. 11]. This
thesis targets smart spaces, where smart objects could be light controllers, regulate the
heating or be fridges equipped with sensors for controlling their contents. Therefore
IoT as a research area is obviously relevant to this thesis. Services will not be running
on powerful servers, but on a multitude of constrained devices which are connected to a
loosely coupled distributed system. These restrictions have to be considered throughout
this thesis.

As already mentioned, this research focuses on managing microservices in distributed
IoT systems. In contrast to monolithic applications, service-oriented computing (SOC)
or service-oriented architectures (SOA) propose providing functionality via loosely
coupled, small services which can be composed to more complex applications. We
assume knowledge of basic SOA concepts which will be important throughout the
thesis. We refer to [11] which provides a good basis on the topic.

Self-organizing Networks (SON) research is mostly concerned with cellular networks
like LTE, though there are applications in other areas like sensor networks, for example.
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A typical issue in SON research are cell outages in mobile networks and how to deal
with them. In such a case, the system should be able to heal itself in order to maintain
the signal quality and therefore the service quality for the end users. [12] provides an
extensive survey over the topic and de�nes three key attributes of self-organization.
These include adaptive behavior, distributed control and emergent behavior [12, p. 338].
The �rst attribute means that SON need to adapt their state or behavior when the
system changes. Second, control must be distributed, there is no central administrative
component. Emergent behavior includes that "patterns [...] can be observed in a system
without being explicitly programmed to exhibit that behaviour" [12, p. 338]. It is obvious
that there are several intersections and similarities between SON research and the topic
of this thesis:

1. Both research focuses on distributed systems.

2. Autonomy respectively self-management are central issues in each case.

3. There exist similar typical tasks like load balancing, error detection and system
con�guration.

These similarities are not meant to be exhaustive but prove the relevance of SON research
for this thesis.

Opportunistic Networking (ON) focuses on distributed networks where nodes are highly
mobile. An example could be networks formed by private persons’ smartphones. When
those people are walking, driving car or taking the bus, their phones are moving with
them all the time. Communication channels between devices are often only available in
the order of seconds, resulting in a highly dynamic network structure. According to the
survey in [13, p. 1102], it would require a signi�cant amount of energy to keep the de-
vices scanning for surrounding nodes all the time in order to create a complete network
topology. Therefore ON relies on short-term network paths, enabling communication
between nodes even if there is no end-to-end path available [13, p. 1101]. The survey
focuses on neighbor discovery, which is a basic feature in ON. It provides three basic
challenges which have to be tackled. First, nodes need to recognize the presence of
other nodes in their neighborhood. Second, mobility models must be developed in order
to understand when and where nodes are present. Third, the system must be able to
learn occurring patterns and store this knowledge which can be reused in future similar
situations. Thus, the better a node is able to anticipate where and when a connection
becomes available, the less resources are wasted. Another interesting survey in the area
of ON is presented in [14]. The paper targets opportunistic o�oading which describes
ONs where nodes are able to o�oad network tra�c or computational tasks. Tra�c
o�oading helps reducing the load on cellular networks: some nodes transfer data via an
ON to several subscriber nodes, so that there is no need for each one to download the
data via the internet [14, p. 1]. Computational o�oading can be used to transfer tasks
from constrained devices to nodes with free capacities, which send the result back as
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soon as computation is �nished [14, p. 2]. These mechanisms are interesting for smart
space research since devices are constrained and load can be distributed unevenly. In
the case of multi-hop smart space networks, also routing and neighbor discovery are
interesting concepts which could be valuable to our research.

Cloud Computing is a paradigm where infrastructure (IaaS), platforms (PaaS) or soft-
ware (SaaS) are outsourced into global data centers. Computing tasks are executed by a
resource pool consisting of multiple machines utilizing virtualization techniques and
can be provided on a pay-per use basis [15, p. 347]. Customers have the great advantage
that con�guration and maintenance tasks are outsourced. Also the usage is dynami-
cally scalable based on the customer’s demands and agreed Service Level Agreements
(SLAs) must be satis�ed by the cloud provider. To make this possible, a lot of resource
management on the provider’s side is necessary. The survey in [15, p. 352] speci�es
three tasks related to resource management:

1. Resource Provisioning assigns resources to customers.

2. Resource Allocation distributes resources between multiple users or programs.

3. Resource Scheduling takes care of the temporal assignment of resources.

Other research focuses on energy-e�cient resource management in clouds. A compre-
hensive survey can be found in [16]. The paper states that the goal is to minimize the
number of active machines in order to reduce energy consumption. It di�erentiates two
major categories of cloud resource management systems: reactive approaches which
act after a speci�c symptom has been monitored, and proactive or predictive ones which
try to anticipate future system states like the workload of a server.

A related paradigm to cloud computing is fog computing. It can be seen as an extension
to the cloud, where processing is partly moved to the edge of the network, resulting in
a lower latency between applications and the devices at the network edge [17, p. 416].
Although some work di�erentiates fog and edge computing, we will use these terms
interchangeably. There exists a lot of research regarding the management of services
and devices in this area. [17] provides a comprehensive overview and a classi�cation
of existing research. Many papers are concerned with resource management in this
area. Similar to opportunistic networking research, fog nodes are often considered to be
highly mobile, resulting in a continuously changing network topology. Devices could
stop service execution suddenly due to errors. Therefore service allocation and migra-
tion are important management functions. Interesting research handles deployment
and requirements matching [18], migrations and related algorithms [5] and resource
provisioning using virtualization [19].
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2.2 The Distributed Smart Space Orchestration System (DS2OS)

In the following section, the Distributed smart space Orchestration System will be
analyzed. Its functionality and design is based on the Virtual State Layer (VSL), a
middleware which enables the implementation of smart space services. The main
source for this chapter is the dissertation in [1].

2.2.1 The Virtual State Layer

The VSL is a µ-Middleware. This means it provides only basic, non domain-speci�c
functionality and extensibility at runtime through services [1, p. 246]. One major prob-
lem with existing middleware is that it often implements domain-speci�c functionality,
which leads to middleware silos - this prevents that services running on di�erent mid-
dleware can interact with each other [20, p. 3]. However the design of the VSL enables
dynamic extensibility at runtime through domain-speci�c services [1, p. 246], only pro-
viding the basis for running these services. The system’s architecture will be analyzed
in the following.

2.2.1.1 The VSL Architecture

The VSL is a self-organizing unstructured peer-to-peer middleware; each peer is called
Knowledge Agent (KA) in this context [20, p. 3]. Figure 2.2 visualizes the VSL architec-
ture. Each KA is running on one network node, all nodes are connected over a Local
Area Network (LAN). On top of each KA, di�erent services can be started, which imple-
ment domain-speci�c functionality. A typical case would be a service reading sensor
data from peripheral devices connected to the machine it is running on. Depending on
measured environmental parameters, the service can execute actions in order to adjust
the smart space by sending commands to connected actuators.

The VSL is written in Java, what makes it highly portable since it can be run on di�erent
machines. Services are accessed via an API using Remote Procedure Calls (RPCs) which
provides 13 di�erent operations [1, p. 251]. Thus, language-speci�c Service Connectors
can be implemented. The advantage is that only the connectors have to be adapted to the
speci�c language, and developers can freely choose their favorite language [1, p. 251].
A Java connector has already been implemented and will be used for implementation
later. The interface is described in subchapter 2.2.1.3.

The VSL separates data from the service logic [20, p. 4]. Data is stored outside the
services in the Context Model Repository (CMR). This simpli�es coupling of services
as well as sharing data [1, p. 253]. The CMR contains the service’s context models
and is designed as part of the global S2Store, which provides service packages. For
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Figure 2.2: The VSL Architecture following [1, p. 249]

each service, exactly one context model is created [20, p. 4]. These context models are
based on the Extensible Markup Language (XML) and serve as an interface between the
services [20, p. 4].

2.2.1.2 Self-Organization Features

The VSL takes care of several tasks autonomously, which facilitates the design of the
service management solution. Some useful autonomous features are taken from [1, ch.
6.4] and will be explained in the following.

Service Registration When a service is started, it is registered at one KA by the VSL.
This includes that the service’s certi�cate is checked and a service identi�er is
generated. Also the VSL checks if a context model already exists for that service,
and instantiate it if necessary.

Context Handling Each knowledge agent persists context data in a local database.
Context is only stored locally at the KA where the service is connected to and
is not distributed. KAs are directly contacted when context is requested. The
node structures and related access rights are synchronized regularly between all
agents.

Virtual Node Handling Virtual context nodes can be registered easily via the API
described in the next chapter. When a virtual node is requested, a callback is
triggered at the service de�ning the node. In the background the VSL handles all
required context operations transparently.
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Agent Discovery Agents send periodic alive pings to each other for discovery. When
a new agent is started, an authentication routine is triggered. This includes that
the agent’s certi�cate is checked autonomously. With each incoming ping the
time to live of the agent is updated. If this time is up, the agent is removed from
the VSL overlay network.

Self-Management The VSL implements all four self-management properties. These
are explained in detail in chapter 2.5. New KAs are automatically added to the
VSL overlay, and new services are automatically registered. Therefore the VSL is
self-con�guring. Self-healing applies since agents keep the network topology up-
to-date and are able to recognize node failures, a network partitioning or a merger
of two separate networks. The VSL is self-optimizing when removing unreachable
context and recording unreachable KAs. Self-protection The VSL implements
features like access control for context models and encrypts communication
between agents.

2.2.1.3 Service Connectors and API

Each service connects to exactly one KA when started. The respective KA instantiates
a context model for each service, which act as abstract interfaces for the services [20, p.
4]. This concept separates the service or application logic from the data each service
produces. The XML-based context models provide an extensible data typing system.
Each service is able to read and write another service’s context nodes, unless it doesn’t
have the permissions needed to perform the operation.

The VSL provides a simple API for context access, and managing access of di�erent
services to the system ( [1, ch. 5.3]). This Service Interface provides simple operations
like get and set for reading and manipulating context nodes. There are 13 functions for
context access, access control and virtual node handling [1, ch. 5.3.1]:

Context Access This includes simple operations like get and set for reading and manip-
ulating data stored in context nodes. Also, subtrees can be locked (and unlocked)
for temporary exclusive access. Another useful function are subscriptions, where
the subscribing service is noti�ed via callback as soon as the respective node has
changed.

Access Control A service can be registered at a speci�c KA. Other functions allow to
add and remove certi�cates for a service.

Virtual Node Handling Virtual nodes can be registered via the API. In case the node
changes, the service is noti�ed via callback.
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2.2.2 Site-Local Service Management

One goal of this thesis is to create a smart space service management solution which
runs on the site level. The solution design will be based on the DS2OS system which
is built upon the VSL middleware. DS2OS is part of the dissertation in [1, ch. 7.2].
First, we will discuss the architectural concept of the system (see �g. 2.3). The DS2OS
system comprises three important components: the nodes which are each managed by
the Node-local Service Manager (NLSM), the Site-local Service Manager (SLSM), which
manages all nodes in the smart space, and the S2Store which acts as a central service
repository - similar to an app store for smartphones. This thesis is concerned mainly
with the design of the SLSM. Other theses focus on the NLSM [21] and the distribution
of certi�cates via the S2Store [22]. The speci�c requirements for the solution based on
the SLSM concept are collected in the course of the analysis chapter.

The Run Time Environment (RTE) for executing services on each node is based on
Java. On top of the RTE, one can �nd the Service Hosting Environment (SHE), which is
responsible for starting and stopping the services. The prototype from the PhD thesis
uses an OSGi implementation in order to perform these service lifecycle operations.
This choice is analyzed in chapter 2.4 and compared to widely used containerization
approaches. The Node-Local Service Manager (NLSM) represents the next level on
each node. It is responsible for monitoring services, hardware metrics and errors on its
local machine, and reporting the data to the SLSM. The SLSM in turn regularly passes
directives to each NLSM, which executes them.

Therefore the interface between the NLSM and the SLSM will be used constantly for
managing the smart space. The SLSM is mainly concerned with collecting information
about the network and service states and making decisions in order to maximize the
dependability of the whole system. The second interface lies between the SLSM and
the S2Store. The SLSM downloads service packages from the global store and manages
them inside its smart space site. According to the o�cial concept in [1, ch. 7.2.4] it
is responsible for a number of tasks, which will be explained hereafter. Several basic
requirements can be adopted unchanged from the DS2OS concept.

Service Repository The SLSM must store all service packages which are downloaded
from the S2Store [R3.2]. This makes sense because a package needs to be down-
loaded only once and can be deployed to any number of nodes. Therefore the
SLSM "acts as site-local repository for DS2OS services" [1, p. 280]. For a simpli�ed
handling of services, it makes sense to pack services into one single �le, because
they must be transferred between di�erent components [R3.1]. These packages
include all application code and dependencies as well as potential meta data about
the service.

Service Deployment One of the most common tasks of the SLSM is installing services
in the smart space. This comprises multiple requirements which have to be
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Figure 2.3: The DS2OS Architecture following [1, p. 277]

ful�lled. First, the SLSM must be able to communicate with the S2Store in order
to request a list of available services and related meta data as well as to download
and store the services inside the smart space when requested by the user [R4.1].
Since it is unclear in which form services will be handled, it should be possible to
transfer any type of binary data between the two components. If the solution will
be based on OSGi, the services could be in the form of jar packages, for example.

The next step for installing a service requires deploying it to an available node
in the VSL network [R3.3]. This comprises sending the service binary to the
designated node, as well as directives which tell the NLSM what to do with it. For
example, whether to run the service package instantly or just to store it for later
use.

Service Migration and Replication The VSL separates the service logic from its
state, which simpli�es the migration of services - this enables a strong mobility
of services [1, p. 281]. That means that services can "dynamically be moved to
other computing hosts" [1, p. 281]. Obviously several situations could require
such a migration routine, e.g. if a node running a service fails due to some reason.
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Therefore the SLSM must be able to migrate services from one node to another
[R3.4]. The decision on which service to move to which node is part of the
SLSM’s self-management capabilities discussed in chapter 2.5.

A similar functionality is service replication, where a service’s context is synchro-
nized regularly between two service copies. In case the original service fails, the
second one can be started by the NLSM containing the surrogate service [1, p. 282].
The SLSM should feature a replication mechanism because it helps increasing the
dependability of services [1, p. 282] [R3.5].

Service and DS2OS Updates As e�ort for smart space owners must be minimized,
service updates should be checked and installed automatically when available
[R3.6]. The service package is downloaded from the S2Store and sent to the node
where the service is currently installed or running. The NLSM tries to start the
new service; in case of an error the SLSM is informed [1, p. 283].

An automated update mechanism is important not only for the services, but also
for all DS2OS components. This contributes to a good usability, and improves the
security of the system [1, p. 283]. Since the SLSM and NLSM will be implemented
as services themselves, they can be updated like every other service. In any case,
service interruption should be avoided or at least minimized as far as possible.

Statistics Collection smart space optimization can only be performed if the SLSM has
certain information about the system. This includes knowledge of available nodes
and services with their lifecycle state as well as performance data, for example.
Besides being input for optimization algorithms, data is prepared and sent to the
S2Store, in order to provide feedback for developers [1, p. 283]. Therefore SLSM
and S2Store must be able to exchange data bidirectionally - for sending feedback
data to the store and for sending service meta data to the service manager [R4.2].
Research around monitoring in distributed systems and derived requirements are
analyzed in chapter 2.6.

Optimization Strategies If multiple nodes are available for deployment, the SLSM
needs to make a decision regarding where to deploy the service. This node se-
lection requires a speci�c strategy; according to [1, p. 284], the SLSM collects
performance data from the nodes, and selects the node with the most free re-
sources. This represents a classic load balancing algorithm. For experienced
users, it could be bene�cial to have control over the node selection. However an
unexperienced, non-expert user is considered as the typical smart space user in
this thesis. Services can have complex requirements regarding available sensors
or dependencies to other services, for example. Checking manually if require-
ments are met can be a complex task and should be executed autonomously. This
can be achieved through autonomic computing or self-management approaches,
which will be analyzed in chapter 2.5. Other tasks like migration and replication
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could also be executed autonomously in order to improve system dependability
and user experience.

Security The system design includes securing the microservices with X.509 certi�-
cates. The idea is to extend the SLSM by autonomous certi�cate management
functionality. This topic is covered in Donini et al. [22] and will not be discussed
further in this work.
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2.3 Service Level Agreements and Dependability

Research in Service-oriented Computing shows that service quality is a crucial issue.
Especially when services are managed autonomously, there is a need to measure the
execution quality of the services. Adellina et al. [23] conducted an interesting review
around the term of dependability. The result involves a list of criteria which are "expected
from a dependable system" [23, p. 3]:

• Availability: The system must be available on request.

• Reliability: The system must complete running tasks without failures.

• Safety: The system execution must not lead to danger.

• Integrity: The system state cannot be altered unauthorized.

• Maintainability: The system can be maintained with reasonable e�ort.

Burkert et al. [6] refer to the norm EN 50126 de�ning the abbreviation RAMS as reli-
ability, availability, maintainability and safety. It de�nes availability as time intervals
where no failures occur. Availability is de�ned as the ratio of time where the system
is available and total time. The paper de�nes the time needed to repair a system as
a measure for maintainability. Examples where safety is crucial are �re alarms and
evacuation systems [6]. These criteria are high-level de�nitions of the goals which
should be achieved by a dependable system. In order to de�ne dependability on a more
speci�c and technical level, especially between customers and service providers, service
level agreements (SLAs) have established [24].

In the Smart Space scenario the system should be able to manage services autonomously.
Therefore it depends on input regarding which dependability targets to achieve by exe-
cuting optimization algorithms. For example, service developers could be constrained
to categorize each service regarding the expected availability. A service controlling an
alarm system should have a higher availability than services regulating the color of the
lighting. It is obvious that a service management system needs to be able to understand
such requirements and to align its strategy to meeting those:

[R5.5] A service management solution should be able to interpret depend-
ability requirements and to align its optimization strategies to meeting
them.
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2.4 Service Lifecycle Management

2.4.1 Overview

One important requirement to service management is that the system must be able
to manage the lifecycle of services. This lifecycle includes installing services, starting
and stopping as well as uninstalling them. Research shows there are two prevalent
approaches for managing the lifecycle of microservices, which di�er substantially. The
�rst approach uses an implementation of the OSGi speci�cation - formerly known as
Open Services Gateway initiative. Applications of OSGi in the �eld of service manage-
ment can be found in [25] and [26]. The latter makes use of an OSGi-based service
registry, where service bundles are registered and can be discovered.

The deployment of software often includes packaging the application code and the
dependencies into a single �le which can be distributed to di�erent computers easily.
This is considered as a requirement for this research to enable an easy handling [R3.1].
An example are Android apps, which are bundled into one .apk �le, which contains
everything needed to run the app. OSGi instead uses jar �les which contain a manifest
�le for storing service meta data. Storing service related data inside the package makes
sense since data cannot get lost and is always available in place when it is needed. So
next to storing all dependencies in one single �le, storing meta data inside it is another
important requirement for handling services [R2.1].

The second approach to enable service management are Docker containers. It is a
more lightweight alternative to established virtual machines and enables application
in microservice environments and on constrained devices. Instead of having jar �les
which are managed by a language-speci�c framework, Docker allows free choice of
programming language for each service, since the execution environment can be shipped
inside each container. For example, one could deliver a service implemented in Java on
top of a Java Runtime Environment in a speci�c version - all in one container.

As de�ned in the DS2OS concept in [1], the services are bundled using an OSGi imple-
mentation. Hereafter both approaches will be analyzed, presenting some relevant work.
In the end a conclusion will be provided as a basis for the concrete solution design in
chapter 4.

2.4.2 Docker

Docker is a virtualization software which allows to package applications or services
into containers. Compared to existing virtualization techniques, there is no need to
virtualize a complete operating system, because Docker containers are running on
the host system directly. Figure 2.4 illustrates the di�erence between the two. VMs
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depend on a hypervisor, which manages the physical computing resources and simulates
a separate hardware for each Virtual Machine. Each VM then has to run its own
operating system on top of it. In contrast, Docker containers do not need to include an
own operating system, since they run directly on the host OS kernel. This makes it a
lightweight solution and therefore suitable for use cases where we want to encapsulate
microservices. Even though containers run on the same kernel, the access of each
container is limited [27, p. 27]. Smart spaces usually contain constrained devices
with low computing power. There are several papers which suggest using Docker
virtualization for service management, e.g. [28], [29] and [30].

(a) Virtual Machine Architecture (b) Container Architecture

Figure 2.4: Comparison of Virtual Machines and Containers following [2]

Prerequisite for running Docker containers is a machine running the Docker Engine,
which manages the allocation of the available resources to the containers, using Linux
kernel features like cgroups and namespaces. These enable isolation of processes and
host �lesystem [27]. Nevertheless, Docker Containers cannot access each other unless
they are con�gured that way. One has to explicitly de�ne port mappings or shared
volumes to open containers to their environment.

Figure 2.5 shows the lifecycle of a Docker container. All information can be taken from
the o�cial documentation in [31]. The lifecycle starts with a Docker�le, which de�nes
the content and con�guration of each container. This �le can then be built, resulting in a
Docker image. Images can be seen as a blueprint for Containers, similar to a Java Object
which is generated from a Java Class. They can be distributed to di�erent machines
directly or via a Docker registry.

This registry acts as a central image repository where images can be pulled from and
pushed to. An o�cial public registry can be found under [32], containing many prede-
�ned images with open source software like Apache Tomcat. The registry can otherwise
be downloaded and deployed in a local environment. Once an image is available on a
client, any number of containers can be instantiated from it. These containers can then
be controlled via simple commands, for example start and stop. Although containers
can be compared to Java objects, they di�er in keeping their state when being stopped.
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Figure 2.5: Docker Container Lifecycle

When a container changes over the time being executed, for example because it pro-
duced some data it could be interesting to have a snapshot of that exact state. This is
possible by committing the container, which produces an image from it. This image
can then again be distibuted and instantiated into any number of exact copies of the
original container.

If we think about introducing Docker into a smart space environment, where we consider
running lots of microservices on a number of constrained devices, there is a need to
examine the performance of this approach. As our literature search shows, there are
several papers concerned with evaluating the performance of Docker containers. [33]
compared the performance of Linux Containers (LXC) to the virtualization software
Xen in the �eld of High-performance Computing. As Docker is based on LXC, this paper
can be seen relevant for this survey. As their results show, Linux Containers are faster
than Xen for CPU, memory and disk performance, and even similar to native execution
without virtualization.

In [34], the performance of Docker executed on a Raspberry Pi 2 using Hypriot [35] -
a Docker distribution running on ARM processors - is analyzed. The paper provides a
comparison of executing benchmark tests once native and once using Docker virtualiza-
tion. The results show that the di�erences in performance are minor. For example, the
CPU performance di�ers by only 2.67 percent [34, p. 1]. This shows the relevance of
Docker to the Internet of Things, because it is possible to run containers on constrained
hardware like the Raspberry Pi.
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The paper [36] presents an extension to the Hypriot project, the Hypriot Cluster Lab.
It o�ers cloud functionality similar to platforms like Kubernetes, while running on
constrained devices [36, p. 1]. The paper demonstrates two interesting use cases. First,
an overlay network is created, in order to access a web server running on one node
from another node. The second use case shows that a load balancer can be instantiated,
which distributes requests to other nodes in the cluster [36, p. 2].

Besides all performance-related work, [28] analyzes some interesting functional advan-
tages of using containerization in microservice architectures:

1. The software and all its dependencies are packed into a single image, which
is highly portable.

2. Docker simpli�es service deployment. In case of errors, rollbacks can be easily
performed.

3. Containers are more e�cient compared to virtual machines and enable good
scalability of cloud infrastructure services.

The use of containerization for smart space service management could de�nitely make
sense under certain circumstances. The advantage of having images which contain all
meta data, application code, dependencies and even the runtime environment clearly
has some advantages like freedom regarding programming languages. Also, the risk that
required software is not installed (e.g. minimum Java version) one the target machine
is minimized since the approach only depends on a working Docker engine. In addition
Docker provides basic lifecycle management functions and an open source registry
implementation. However, depending on the runtime environment needed to execute
the service each images become bulky and performance su�ers, especially if multiple
Java Runtime Environments are executed simultaneously on a node. In smart space
scenarios this can become a real problem since everything is running on constrained
devices.

2.4.3 OSGi

The Open Service Gateway initiative (OSGi) speci�es a platform to support modular-
ization of Java applications. It provides a service registry for managing the lifecycle of
services. These services are called bundles and are simply jar �les with a special mani-
fest �le [21, chp. 2.2.1]. Bundles and their lifecycle can be managed by the framework
during runtime. They can be installed, started and stopped for example. According
to [21, chp. 2.2.1], OSGi provides various advantages which are summarized in the
following:

Modularization OSGi enables better encapsulation of functionality than standard Java
possibility of restricting access through private and protected modi�ers.
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Versioning OSGi features semantic versioning which enables co-existence of di�erent
versions of a bundle.

Dynamic Updates Services can be installed and updated during runtime without the
need to restart the whole system.

Size OSGi has a small overhead.

More information about the suitability of OSGi for node-local service management can
be found in [21]. The decision is not relevant to the SLSM - the choice on how to manage
the service lifecycle mainly a�ects the SHE and NLSM.
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2.5 Self-Management

This section presents a summary of self-management or autonomic computing basics.
In this thesis, these two terms will be used interchangeably. Concrete related work will
be presented in detail in chapter 3.

2.5.1 Introduction

The foundation for autonomic computing has been created in 2001, when IBM proposed
a reference architecture for autonomic computing [37, p. 25]. IBM has anticipated a
tremendous increase in the complexity of software systems, especially in distributed
systems [38, p. 41]. One can easily comprehend this complexity from today’s perspective,
where many tasks are automated because the manual e�ort would be far too high.
Considering the Internet of Things, where vast amounts of small computing devices
are connected and are expected to work together in order to ensure a high quality of
service, the IBM reference model has become a widely used standard for autonomic
computing.

According to [38], IBM stated four aspects of self-management, which are part of the
autonomic computing vision. First, Self-con�guration aims at systems that can con�gure
themselves. The only input they need are high-level business objectives, that "specify
what is desired, not how it is to be accomplished" [38, p. 43]. Self-optimization implies
that the system regularly checks if there is optimization potential. For example, if a load
balancing algorithm identi�es a high load on one machine, it could migrate one running
application to another machine. Self-healing refers to a system’s ability to detect failures
and handle them autonomously. Considering the smart space scenario, one would not
expect a non-expert user to browse log �les in order to �nd what caused the error
and to �x it by changing complex con�guration or even the application’s source code.
Self-protection implies that the system anticipates possible problems and tries to avoid
them [38, p. 43].

The concept of autonomous computing is highly relevant for this thesis, since smart
spaces can be large and complex systems, running a variety of services which require
continuous con�guration and optimization. Since the users are considered non-experts,
these tasks must be automated wherever possible - although it will not be possible to
handle every single situation autonomously.

2.5.2 The IBM Reference Model

The term autonomic comes from the autonomic nervous system, which monitors and
controls important body parameters without human e�ort. This reactive behavior was
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transferred to computer science as the MAPE-K control loop, which stands for monitor,
analyze, plan, execute and knowledge. It is executed by autonomic managers in order to
control any type of resource in the system.

Figure 2.6: The MAPE-K loop, based on [3, p. 7:6]

The loop starts with the manager monitoring a speci�c resource, for example a database,
a web service or a hardware device. Typical parameters could be the CPU load or the
reaction time of a software component. Next the collected data is analyzed in order to
learn and derive decisions on what to do. The concrete actions which will be executed,
are selected in the planning step. In the end, the planned actions are executed. The
term knowledge stands for a knowledge source, which is used by the managers. It can
be a registry, database or repository storing information like policies, which will be
applied by the managers [39, p. 12]. According to [3, p. 7:6], autonomous systems
can ideally be con�gured by entering high-level objectives - in most cases, these are
event-condition-action (ECA) or utility function policies. The paper states that con�icts
can occur between two or more ECA rules. In such a case, the system will not know
how behave unless there is another rule handling the speci�c con�ict. According to
the paper, utility functions can be a solution, since they de�ne a "quantitative level of
desirability".

2.5.3 Self-Management in Practice

Self-management features are applied in many di�erent research areas. This chapter
will present categorizations of approaches and algorithms in these areas. Table 2.1
summarizes the �ndings. Aliu et al. [12] provide a classi�cation of algorithms utilized
in SON research. Among learning algorithms, Bayesian networks (BN) represent a pop-
ular approach. In cloud computing, [40] uses BN in order to manage resources. They
propose a decision making module which is able to predict future system states. Jules
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et al. [41] present a framework for choosing a reliable cloud provider and meeting SLA
requirements. Their model is based on a Bayesian inference engine which computes
the probabilities of violating SLAs for each provider. An example for mathematical opti-
mization can be found in [42]. The paper proposes an Integer Linear Programming (ILP)
approach for cloud application placement consisting of multiple optimization objectives
like minimizing number of migrations and number of computation nodes. Kientopf et
al. [43] propose using the Dijkstra algorithm combined with some performance metrics
like hop count for making service migration decisions in fog networks. Arabnejad et
al. [44] di�erentiates four categories for auto-scaling in clouds. In the threshold-based
approach, rules and conditions are de�ned by cloud providers or users over di�erent
load metrics. Control theory is concerned with aligning the output of the system with
de�ned goals, e.g. SLAs. Time series analysis uses prediction models which operate
on historical data. The paper mainly deals with reinforcement learning (RL), where an
agent tries to maximize its reward by executing speci�c actions. RL does not need prior
knowledge and is able to learn from observing the environment [44, p. 66]. Khazaei et
al. [45] propose using a function model which incorporates CPU, memory and network
usage in order to scale services based on the load. The function incorporates adjustable
parameters which assign a weight to each load variable.

Area Paper Classi�cation
Self-organizing Networks Aliu et al. [12] Supervised and unsupervised

learning, mathematical opti-
mization, stochastic optimiza-
tion

Cloud Computing Arabnejad et al. [44] Threshold-based rules, control
theory, time series analysis, re-
inforcement learning

Lu et al. [16] Predictive vs. reactive ap-
proaches

Fog Computing Mouradian et al. [17] Exact algorithms, graph-based
algorithms, heuristics, policies,
schemes

Table 2.1: Algorithm Classi�cation According to Di�erent Surveys

Lu et al. [16] analyze approaches to cloud resource management and divide them into
reactive and proactive ones. They state that most predictive algorithms use time series
data in order to make predictions. Anticipating the future state of a system can be
quite unreliable in some cases, because not all events are predictable. Because of that,
reactive approaches are also proposed in research [16, p. 34]. For interested readers,
Mouradian et al. [17] provide a very comprehensive survey of fog computing algorithms.
The paper classi�es algorithm types over di�erent applications like resource sharing
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and o�oading.

One can see that there is a variety of speci�c algorithms for di�erent domains and
applications. An idea to implement a variety of algorithms is proposed by Velasquez et
al. [5]. The paper presents a service migration solution for fog computing. Their service
orchestrator module is able to apply di�erent strategies depending on the system’s
needs which are de�ned by the administrator [5, p. 108]. We will adopt this idea
of exchangeable algorithms as the next solution requirement [R5.1] and refer to this
concept as Optimization as a Service (OaaS). In DS2OS, the SLSM as the central managing
component should have control over all available algorithms and activates or disables
them. They could be handled like any other service package and provided via the S2Store.
This clearly brings some advantages. The developer community can contribute not only
by providing smart space services, but also by uploading and enhancing management
and optimization algorithms. Also, algorithms perform di�erently under varying service
compositions, node conditions etc. - so switching between them can be bene�cial under
certain circumstances. This process could even be automated, for example by de�ning
rules. In this case the SLSM could be enabled to react to environmental changes by
switching its strategy.

As the SLSM is a standard VSL service, it can also fail due to some reason. If this
happens, there is no optimization and service management. Because of that, it makes
sense to have a number of self-repair features for the SLSM implemented. The VSL
autonomously recognizes when peers enter and leave the network. Since the SLSM
regularly updates its network representation, the same applies if the leaving node is
not the one running the SLSM service. If the SLSM node is leaving, this can have two
reasons. Either there is a network split since one or more communication channels are
unavailable, or the single node failed due to some internal error. In the �rst case, the
network transformed into two P2P networks where the node running the SLSM will
remain in one of the two networks depending on the location of the split. In both cases,
a new SLSM instance must be started immediately to ensure that service management
interruption time is minimized [R5.2]. If the network split is temporary, one must
expect that the two subnetworks merge back after a time. As soon as this happens, there
would be two SLSM instances running in one network. This must be handled since two
leading components could impede each other without recognizing. The solution would
be to kill one running SLSM in that case to ensure there is only one instance running
[R5.3]. These actions could be executed by one of the NLSMs, for example.

An interesting self-managing solution from the fog computing domain is Fogernetes
[18]. Since fog computing devices are considered heterogeneous (like in smart spaces),
services must be deployed to nodes which meet their hardware requirements. The
paper proposes a mapping between node capabilities and service requirements by using
labels. These are controlled during service deployment in order to meet the service’s
requirements. In DS2OS, we propose to enrich service packages with meta data [R2.1].
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This data should contain hardware requirements, which are compared to each node’s
hardware capabilities [R5.4]. This could be implemented as a pre-�ltering mechanism
for the exchangeable OaaS which ensures that only nodes that meet the minimum
requirements can be chosen by the algorithm. Other nodes are eliminated, in the worst
case leading to services not being deployed at all. Labeling the packages could also
used for matching service dependencies. This is the case if stand-alone services are
composed in order to build a more complex application. For example, there could be
numerous services which just need to turn on a green LED in the smart space as a
signal that an operation was successful. Each of these would have a dependency on the
LED service in that case - if the latter is not running at the same time, the functionality
of the composed application is not complete. There are numerous other options for
integrating self-managing behavior into the SLSM, but due to limited time we picked
the most interesting features from our view.
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2.6 Monitoring and Data Infrastructure

This thesis focuses on creating a basic service management infrastructure which enables
running services as well as exchangeable management strategies on top of it. Running
microservices in general results in a continuously changing architecture; therefore in-
formation must be created and kept up to date automatically [46, p. 66]. Comprehensive
monitoring must be enabled, which regularly collects data from the distributed nodes.
Since there is a variety of parameters which could be measured, the goal of this chapter
is to identify which data must be collected. Basically, in a DS2OS smart space two
components must be monitored. First, each node must be monitored since the SLSM
needs to know if they are still alive [R1.3]. Also hardware parameters like CPU load
are interesting for load balancing. Second, the services running on each node must be
controlled regularly regarding their lifecycle status [R1.2].

Interesting research on monitoring can be found in the area of cloud computing. A
main goal there is to manage resources e�ciently in order to decrease operational
costs and to meet service level objectives or to decrease operational costs or improve
energy e�ciency. One interesting paper about monitoring cloud environments is [47].
Their approach is based on adaptive monitoring, which means that monitoring can be
dynamically adjusted to current requirements while at the same time, certain levels
of QoS must be guaranteed. The paper shows that monitoring can have signi�cant
impact on the whole system performance, making it necessary to enable con�guration
at runtime. In smart spaces, mainly constrained devices will be installed due to their
low energy consumption. This requires that service management does not introduce a
high overhead since this could completely compensate the performance improvements
achieved by service management itself. The suggested solution from [47] is based on
a publish-subscribe mechanism, where consumers can subscribe to di�erent channels.
The monitoring component pushes monitored data into each channel. Using higher-
level policies, di�erent monitoring parameters can be adjusted. This comprises what
should be monitored in which detail, how to deliver and process measured data, and how to
control monitoring systems [47, p. 127]. This adaptive monitoring will be incorporated
as next requirement for the service management solution:

[R1.1] Adaptive monitoring must be implemented to minimize overhead.

Therefore it is not required to de�ne a set of �xed monitoring parameters in the begin-
ning. Instead, optimization services inform the SLSM about required monitoring data.
The SLSM then asks each NLSM to monitor exactly these required parameters, collects
the data and passes it to the currently running algorithm.

As already mentioned, it is bene�cial that feedback data is collected and sent to the
S2Store. This enables developers to �nd bugs and improve the stability of their services.

[R4.2] The SLSM must be able to generate statistics from monitored data



2.6. Monitoring and Data Infrastructure 29

and send it to the S2Store on a regular basis.

This data should be collected over a period of time and regularly transmitted to the
store. The SLSM is therefore required to store the collected data in a structured and
e�cient way. We propose that all collected data should be stored inside a site-local
database [R2.2]. This brings several advantages. Optimization services which apply
time series analysis could request historical data as input for algorithms. As monitoring
will produce a lot of data over time, a database represents an e�cient way for data
storage and access. Also, statistical feedback information for the S2Store can be better
extracted, �ltered and manipulated from a database than from log �les, for example.
There are a lot of possibilities for the speci�c design of the monitoring solution. A
database type must be selected and the communication mechanisms for collecting the
data must be discussed. See chapter 4 for design details.
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2.7 Boundaries and Research Questions

In the following section the research questions are derived from the collected require-
ments. Before that, the focus of the thesis and its boundaries are de�ned.

2.7.1 Focus and Boundaries

This thesis focuses on service management on the smart space site level. The correspond-
ing functionality shall be realized by the Site-Local Service Management component
(SLSM) according to the o�cial concept in [1]. There are interfaces to other components
in the DS2OS system architecture, that need to be de�ned. This is important because
other components rely on the SLSM’s functionality, and vice versa.

Figure 2.7: The SLSM in the DS2OS Context

Figure 2.7 visualizes the interfaces on a conceptual level. The �rst interface lies between
the SLSM and the S2Store, which is like an App Store for service packages. In one
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direction, the SLSM depends on the S2Store in terms of providing the service packages
in any form. Also, it will need to access meta data about the packages - for example
to provide a list of available services to the user. In the opposite direction, the S2Store
needs to receive usage data from the SLSM regularly. This data will be forwarded to the
developers as a feedback ( [1, p. 287]).

Another interface is located between the SLSM and the NLSM. Service packages must
be sent to the NLSM, which has to be able to execute them. In return, usage data
is transmitted on a regular basis back to the SLSM. This data is necessary for the
automated management capabilities of the SLSM and as feedback for the developers. The
functionality to start, stop and pause packages will not be part of this thesis. We assume
it is possible to trigger these actions by sending simple commands to the respective
NLSM.

In this thesis, a solution for the SLSM will be designed and implemented as a prototype.
The other components and their inner functionality will not be part of the designed
solution. The inner design of the NLSM is targeted in another current thesis [21]. For
evaluation purposes, a simple prototype of the S2Store will be implemented. Further
features regarding app store functionality will be future work. Security mechanisms
concerning the whole lifecycle of services from the S2Store to deployment on nodes is
targeted in [22].

2.7.2 Research Questions and Requirements

This chapter will provide a classi�cation of the identi�ed requirements. These will be
mapped to higher level research questions in order to gain a comprehensive overview
over the whole topic. Figure 2.8 summarizes �ve central aspects derived from the
requirements. The �rst class of requirements concerns the data infrastructure of the
solution. We identi�ed the need to label services with meta data, for example to provide
static information like the service version. This kind of meta data must be bundled
inside each service package, in order to provide an easy handling and to prevent that
data gets lost somehow. All data that is monitored by the SLSM should be stored
inside a database. On top of that, a simple API must be provided so that strategies
can easily access monitored information. This is a prerequisite for autonomous service
management, since all algorithms require data; some even need historical data for
learning.

The second class involves monitoring the distributed system. Since DS2OS is based on
a P2P network, nodes must be monitored continuously in order to know if they are still
alive or overloaded, for example. Also it is important to monitor the lifecycle state of
services. Without these information, the optimization strategies running on top of the
SLSM cannot work properly. The execution of management decisions requires that basic
deployment routines are available. This forms the third class of requirements. These
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Figure 2.8: Requirements classi�cation

comprise deployment, migration, replication and service updates. The intended solution
must be able to communicate with the S2Store. This store can be compared to an app
store on smartphones since it is a global, stand-alone component providing packaged
services in an easy way. The deployment of services requires bidirectional data and
binary exchange, since the SLSM needs to download service packages and meta data (e.g.
a list of services available). In the other direction, usage statistics should be reported back
to the S2Store as a feedback for service developers. Autonomous service management
forms the �fth class of requirements. This comprises self-repair features of the SLSM
itself, as well as extensibility regarding optimization strategies. Also, the matching of
service dependencies and requirements is classi�ed here. A superior non-functional
requirement is usability of the solution. We assume smart space users are non-experts
which expect high service dependability, quick and easy service installations and no or
minimal con�guration e�ort. Based on the classi�cation, the following �ve research
questions can be formulated. In table 2.2, each requirement is directly mapped to one
of the research questions in order to provide a clear structure.
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[Q1] Which entities, parameters and
metrics in a smart space should be
monitored to which extent by a service
management solution?

[R1.1] Adaptive monitoring must be imple-
mented to minimize overhead.
[R1.2] Services and their lifecycle state
must be monitored.
[R1.3] Nodes must be monitored regarding
their alive status, available hardware and
performance metrics.

[Q2] How and where should meta data and
monitoring data be stored and used by a
service management solution?

[R2.1] Service packages must be shipped
with service meta data.
[R2.2] Collected monitoring data should be
stored in a site-local database for e�cient
and secure access.

[Q3] Which functional features regarding
deployment are must-have functionality for
a service management solution?

[R3.1] Services must be packed into one
single �le for easy handling.
[R3.2] The solution must hold a service
repository.
[R3.3] The solution must be able to deploy
a service to a speci�c node.
[R3.4] The solution must be able to migrate
a service from one node to another.
[R3.5] The solution must be able to repli-
cate services.
[R3.6] The solution must be able to update
services and system components.

[Q4] How can services be easily deployed
from a global service store to a smart space
and which data should be provided as
feedback for service developers?

[R4.1] The solution must be able to down-
load service packages from the S2Store to
the smart space.
[R4.2] The solution must be able to ex-
change service meta data with the S2Store
bidirectionally.

[Q5] Which features regarding
self-management are important for the
solution design?

[R5.1] The solution must be extensible re-
garding optimization strategies.
[R5.2] A new SLSM instance must be
spawned in case of the node running it
leaves the P2P network.
[R5.3] If multiple P2P networks merge via
the VSL, only one SLSM instance may re-
main running.
[R5.4] The solution must be able to ful�ll
service dependencies and match hardware
requirements with node capabilities in order
to meet each service’s conditions.
[R5.5] The solution must be able to inter-
pret SLAs stated by developers and smart
space users.
[R5.6] The solution must o�er a good us-
ability and dependability, while minimizing
e�ort for smart space users.

Table 2.2: Summary of all Requirements
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Chapter 3

Related Work

This chapter will give an overview about relevant related work. The papers presented
in this section address related problems and propose approaches that are considered
relevant to this thesis.

3.1 Related Research

Cao et al. [4] propose a design for an operating system for the Internet of Everything
called EdgeOS. One focus of the paper is managing data produced by heterogeneous
devices. The design consists of di�erent layers. The communication layer is responsible
for forwarding commands to devices and to collect data from them. Data is processed
on the data management and self-management layer by an event hub and stored in
a database. The data is used by a self-learning engine to create a user model based
on usage behavior in order to provide better user experience [4, p. 1759]. Also, a
comprehensive API for service development and registration is proposed. Context
data storage, service registration and a service API are already made available by the
VSL. Interesting insight for SLSM design can be taken from self-management features
of EdgeOS. The paper di�erentiates two phases of device monitoring. The �rst one
is concerned with checking if a device is alive at all. The second phase checks the
status of alive devices to see if there are other execution problems. When a device
fails the proposed system suspends all services executed by the device [4, p. 1760].
EdgeOS has the capability to restore con�guration of the failed device to a replacement
device. Occuring con�icts between services are solved by assigning priorities to each
service. This mechanism could be useful in DS2OS, if a service A wants to turn on the
lights and a second service B wants to do the opposite, for example. Via meta data,
priorities could be added to services and utilized for decision making by exchangeable
strategies. Autonomy in EdgeOS is based on self-learning from monitored data about
user behavior. Exchangeability of algorithms enables applying such machine learning
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algorithms in DS2OS. This requires e�cient storage and access of time series data in a
database. EdgeOS focuses on smart home applications with non-expert users. However,
the paper states that user experience is still an open issue regarding simple installation,
con�guration and good user interfaces [4, p. 1762]. The solution manages devices and
services autonomously through machine learning algorithm.

(+) (-)
Centralized solution Open usability issues
Device and service monitoring No app store / app concept
Self-learning
E�cient data storage

Table 3.1: EdgeOS [4]

Velasquez et al. [5] propose a service placement solution designed for fog computing.
The goal is to reduce service latency by migrating services to optimal locations. The
proposed architecture consists of three main modules. The �rst module is a service
repository. It stores all services as well as related meta data and is located centralized
in the cloud. The second module is concerned with monitoring the fog network. The
solution is based on the Application-Layer Tra�c Optimization (ALTO) protocol which
enables creation of an overlay network. It provides a network map and a cost map
describing the topology of the network as well as di�erent networking metrics. The
third module is the service orchestrator which implements di�erent strategies that use
monitoring data and service meta data in order to make decisions regarding service
placement [5, p. 108]. The proposed architecture and the SLSM have similar features.
Both are centralized solutions which target management of services on distributed and
unattended nodes. Exchangeable algorithms for optimizing service quality are executed
during system runtime. These make decisions based on monitored data re�ecting the
network state as well as restrictions de�ned in service meta data, for example resource
requirements or dependencies to other services.

(+) (-)
Centralized solution Only network distance metrics covered
Network monitoring Administration tasks done by system experts
Processing of service requirements No app store / app concept
Exchangeable strategies

Table 3.2: Velasquez et al. [5]

However, the paper targets multi-hop networks where mainly topological metrics are
interesting for optimization. The paper states that algorithms are installed through
administrators [5, p. 108]. In DS2OS, there are no system experts to perform such
adjustments to the system. Therefore it is crucial that strategies are easily exchangeable
as part of the app concept.
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Several papers suggest a rule-based approach to realize a MAPE control loop [48], [6].
The latter targets autonomic self-management in IoT scenarios as well as meeting de-
pendability requirements for building automation systems including heating, ventilation
and alarm systems among others. Like in the smart space problem domain, one target
is to enable heterogeneous devices to work together through services. The main focus
of the paper lies on self-management capabilities of the management system with the
main goal to "get human out of the management loop" ( [6, p. 2]). It provides several
interesting concepts which could be applied to the smart space scenario as well:

Dynamic service associations These allow to change associations between services
at runtime. A service association in DS2OS could be a relation of type depends
on, for example. If a service dependency fails, a service copy could be started
on another node, providing the same functionality to the consuming service.
This exchange needs to be done at runtime, requiring the management system
to dynamically change the association between two services. In DS2OS, service
requirements and dependencies could be de�ned in the service meta data inside
packages, which can be interpreted by the SLSM [R5.4]. The SLSM itself or the
active optimization strategy can then use this information in order to satisfy these
conditions. If those requirements cannot be ful�lled, appropriate actions could
be initiated like starting a service dependency autonomously.

Data model The paper proposes an "implementation and protocol-independent de�ni-
tion of management data" and that data must be accessible in a "homogeneous and
well-de�ned manner" [6, p. 5]. There is a need to handle services equally in order
to enable an e�cient and partly autonomous management. Homogeneous service
meta data is a basic requirement for this. Exchangeability of di�erent strategies
requires that they can access monitoring data homogeneously via a well-de�ned
interface. In our design a database will be used for e�cient data access [R2.2].
The speci�c data model will be discussed in chapter 4.

Management tree Data is exchanged between di�erent management agents via a hi-
erarchical tree structure. This provides an overview over the whole system’s state.
It contains con�guration variables, which can be changed by the management
system to change a component’s behavior. In DS2OS, we can use VSL context
nodes that represent a similar concept. The VSL provides the possibility to con-
struct hierarchical structures via XML, as well as CRUD (create, read, update,
delete) operations. VSL agents can subscribe to speci�c context nodes in order to
receive noti�cations over changes and adapt their behavior.

Rule-based runtime management The paper proposes a rule engine, which is able
to execute rules based on changes in the management tree. On the one hand,
rules could be a good solution as long as there is a comprehensive set of rules
for most situations. There could be problems if the set of rules is insu�cient to
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handle common error situations. A second issue is that such a solution requires
input - either the rules are directly entered into the system or the speci�c rules
are automatically derived from higher-level speci�cations. This is the case in [6],
which depends on the input of requirements entered by system experts. In the
case of smart spaces, one cannot expect end users to create sophisticated input in
the form of requirements or speci�c rules. However a rule engine could be added
to the SLSM as a service in order to optimize the smart space via rules that are
created by the user [R5.1].

(+) (-)
Tree-based data structure Management rules created by system experts
Service monitoring No app store / app concept
Processing of service dependencies
Extensibility through rules
OSGi-based service management

Table 3.3: Burkert et al. [6]

Dai et al. [48] provide another interesting approach for autonomous service management
in industrial control systems. The central component is the Autonomic Service Manager
(ASM) which communicates with a number of external services responsible for tasks
like monitoring, discovery and authorization. The proposed system is based on a MAPE-
K loop, where the knowledge base is realized as a Web Ontology Language (OWL)
ontology. Domain-speci�c entities are modeled in this ontology which form the basic
process steps in the control loop. These include symptoms which are created from
monitored system data. For example, if a resource is not responding in a speci�c time
window, a symptom of type alarm would be created. For lower priority symptoms
like the discovery of a new resource, the symptom type info would be used. Based on
these symptoms, administrators need to specify rules which tell the system what to
do in case a symptom occurs. These rules are written in the Semantic Query-Enhanced
Web Rule Language (SWQRL) which is both machine and human-readable and easily
extensible [48, p. 729]. The paper states that ontologies can become quite large which
is problematic because devices have low memory capacity. The rule-based knowledge
ontology is highly extensible, but there could be signi�cant e�ort to apply it to other
domains. One can see that although semantic web rules are human-readable, it de�nitely
requires experts to create or modify them. The paper focuses on monitoring [R1.2],
[R1.3] and implements a management knowledge base [R2.2]. The rule-based approach
o�ers good extensibility [R.5.1]. However, the paper does not target basic service
management functionality like deployment and migration. Also, self-repair features of
the ASM itself are not clearly stated and adaptive monitoring is not mentioned although
these are crucial features of the SLSM design.
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(+) (-)
System monitoring Complex semantic rule engine
Extensibility Domain-speci�c ontology

Table 3.4: Dai et al. [6]

3.2 Conclusions

The presented papers have been selected out of a multitude of candidates. Since au-
tonomous service management is relevant to various research �elds like cloud and
edge computing, the amount of related work is not surprising. Many solutions are
based on MAPE or MAPE-K loops which can be seen as de facto standard in the area of
autonomous computing. Interesting approaches regarding monitoring, data infrastruc-
ture, service lifecycle management and self-management can be found. However some
research gaps around the topic of this thesis could be identi�ed:

• Many solutions focus on node-local management only, e.g. in opportunistic
networks.

• Many papers focus on approaches or algorithms for speci�c application domains
and use cases, e.g. improving network latency in multi-hop networks.

• Most papers do not target smart space scenarios, where end users have no or little
knowledge about technical details of the system.

• A comparable design of a service store, from which services can be downloaded
and deployed to a smart space easily, has not been found in the literature review.

• Some related work does not target constrained devices.

This thesis focuses on developing a design for a centralized service management solution
for IoT smart spaces. Speci�c algorithms are not directly interesting - instead the basic
infrastructure should be analyzed and designed here. Key features include monitoring,
data infrastructure, communication mechanisms, extensibility and self-management
properties. Another important point is that non-expert end users are targeted by trans-
ferring the concept of an app store to a distributed smart space system. The system is
designed towards running on constrained hardware. Therefore approaches from areas
like cloud computing might not be suitable since some algorithms could require too
much computing power.
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Chapter 4

Design

The following chapter describes the design of the smart space management solution. In
chapter 4.1 a subset of the identi�ed requirements is chosen for design and evaluation.
Chapter 4.3 deals with the overall system architecture and communication infrastructure.
In chapter 4.2, service lifecycle management and service package structure are explained.
The inner architecture of the SLSM is developed in chapter 4.4. In the end, chapter 4.5
covers interesting details on implementation.

4.1 Solution Requirements

Implementing all identi�ed requirements would go far beyond the scope of this work.
Therefore a subset will be selected and implemented as a prototype which can be
evaluated in view of the goals of this thesis. The requirements were selected in a
way that enables to test the complete process beginning with the S2Store to deploying
services to a speci�c node. Also, the optimization through exchangeable strategies
is a core feature which has to be implemented. Every decision made by the SLSM is
based on accurate data about the network - therefore monitoring capabilities are an
essential requirement. Table 4.1 summarizes the selected requirements. The intended
service management solution must be able to monitor nodes regarding performance
metrics and services and their lifecycle state. This monitoring is a crucial basis since
no self-managing algorithm works without up-to-date system data. Monitoring must
be adaptive, since continuous measurement of many metrics on each node could cause
signi�cant performance issues. Monitoring requires that data is stored so that it can be
accessed e�ciently. Some machine learning algorithms utilize time series data in order
to make predictions on the system’s state, for example. Storing monitored data and
accessing historical data must therefore be possible in an e�cient way. Services and
their meta data should be stored inside one single �le to simplify their transfer between
the distributed components. This requires that the solution is able to unpack and parse
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Req. # Requirement Description
[R1.1] Adaptive Monitor-

ing
Monitoring overhead should be kept as low as
possible.

[R1.2] Service Monitoring The SLSM must keep an up-to-date view
over all services.

[R1.3] Node Monitoring O�er monitoring as many di�erent metrics as
possible.

[R2.1] Service Meta Data Service packages must be enriched with meta
data.

[R2.2] Monitoring
Database

Monitoring data should be stored in a DB for
e�cient access.

[R3.1] Service Package
Format

Services and meta data must be stored in one
single �le.

[R3.2] Service Repository Services are stored at the node running the
SLSM.

[R3.3] Service Deploy-
ment

The SLSM should o�er functionality to deploy
services.

[R3.4] Service Migration The SLSM should o�er functionality to migrate
services.

[R4.1, R4.2] Communication
with S2Store

The SLSM must be able to communicate withs
the S2Store.

[R5.1] Optimization as a
Service

The SLSM can be extended with management
algorithms.

[R5.4] Check Service Con-
straints

Service requirements and dependencies must
be checked.

Table 4.1: Solution Requirements

the meta data. All service packages that are downloaded to a computing node must be
stored and registered in a service repository.

Node managers and SLSM should be able to easily check if a package is already available
locally in order to prevent unnecessary �le transfers. The prototype should support ser-
vice deployment and migrations for a start. Other mechanisms like service replications
and updates are not considered. Communication with the S2Store is necessary since the
full deployment process should be evaluated - from the user triggering the installation
until the deployment and start of the service on a speci�c node. During system runtime,
the monitored network status must be regularly checked by one optimization strategy.
In case optimization can be achieved by migrating services, the necessary actions are
triggered by the currently active strategy. These strategies must be easily exchange-
able. Service dependencies and hardware requirements of each service must be ful�lled
any time, regardless of the active strategy. Therefore the system needs to check these
constraints before calling the strategy to ensure minimum service requirements.
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4.2 Service Lifecycle Management

In chapter 2.4 two alternatives for service packaging and lifecycle management have
been presented: Docker and OSGi. To compare suitability one has to examine the target
environment where technology should be applied to. Although the VSL is language-
independent [1, p. 251], the DS2OS prototype will be completely written in Java since
VSL service connectors are available in that language. These connectors provide an
easy-to-use API for interacting with the VSL overlay. Methods for registering services
and virtual node handlers are available, for example. This facilitates deployment in the
beginning. Another reason is that VSL agents are implemented in Java, too - so each
computing node requires an installed Java Runtime Environment anyway. Docker has
the great advantage that services can be shipped inside images which also contain all
dependencies and the execution environment. This would enable freedom of choice
regarding implementation language of services. However using Docker for deploying a
Java-based DS2OS system would imply a signi�cant overhead, since each container has
to run an own Java Runtime Environment inside.

In contrast to Docker, OSGi does not imply virtualization and runs directly on the host
computer. It provides functionality for controlling the lifecycle of service bundles and a
service registry for management. Details on the choice of OSGi for the Service Hosting
Environment implementation can be found in [21].

service.zip

service.jar.........................................OSGi Service Package
META-INF

MANIFEST.MF ................................OSGi Service Manifest
service ....................................................Class File Dir

manifest.json....................................DS2OS Service Manifest
service.xml............................................VSL Context Model

Figure 4.1: Service Archive Structure

OSGi bundles are simple jar �les containing a manifest �le with dependencies and meta
data. These �les can be easily transferred between the DS2OS components via TCP,
for example. However, additional meta data needs to be stored to add domain-speci�c
information like the service identi�er, hardware requirements and the required VSL
context model. When developers upload their OSGi-conform jar bundles to the S2Store,
they are prompted to enter all meta data required. This process avoids that mandatory
data could be accidentally omitted. The store puts all information together into a DS2OS-
speci�c manifest �le and creates an XML-based VSL context model. Figure 4.1 shows
the structure of such a zip �le. The OSGi bundle is not modi�ed and only copied into
the zip archive. For the DS2OS manifest, JSON is chosen since it is human-readable and
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can be easily processed by JavaScript for displaying meta data in user interfaces. JSON
can be converted into Java objects and back easily with the Google Gson library [49].
This enables DS2OS components to easily extract meta data from the zip archives and
create service representations as Java objects. The service context model is needed for
registration in the VSL and is the basis for creation of context nodes for interacting with
other services.

Once a node receives a package, the service executable and manifest are extracted to
the NLSM’s working directory. The context model must be extracted to a location
matching the path from the VSL agent’s con�g �le. The bundle is started using the
OSGi framework implementation and the service registers to the agent running on the
node. Design of the NLSM and runtime environment on the nodes is not part of this
thesis but targeted in [21].
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4.3 DS2OS Architecture

The proposed design is based on the VSL middleware and uses available functionality as
far as possible. All components running inside the smart space are implemented as VSL
services which communicate over VSL context nodes, which results in loosely coupled
actors with few interfaces. This decreases complexity by separation of concerns and
improves maintainability and testability. Any text-based information is exchanged via
context nodes. However the transfer of service packages is done via a side channel, since
the VSL implementation currently does not support transferring binaries. We consider
it best practice to handle binary exchange via the VSL as soon as this functionality
is available. The S2Store is designed as global stand-alone web server which runs
outside any VSL network. Therefore communication between smart space services and
the S2Store does not run over the VSL but via Representational State Transfer (REST)
services.

Figure 4.2: DS2OS Deployment Process

Figure 4.2 visualizes the deployment process in DS2OS. The site-local UI server provides
a user interface for managing the smart space. It communicates with the S2Store via
HTTP requests in order to obtain meta data of all available services. The user can
trigger installation with one simple click in the web-based user interface. Since both
UI server and SLSM are implemented as VSL services, the installation is triggered by
calling the SLSM’s virtual context node /installService containing the service identi�er.
The SLSM then checks its local service repository for a service package with the same
identi�er. If it does not exist, it is directly downloaded from the S2Store via HTTP GET.
As soon as the package is available, the currently active management strategy chooses a
node for deployment based on the service’s hardware requirements and dependencies to
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other services. The package is deployed to the selected node through a TCP socket side
channel if it is not already available locally. The NLSM starts the service and returns
a success or error message which is forwarded through SLSM to the UI server and
presented to the user. The SLSM updates its network model accordingly. The whole
deployment process requires only one click from the user since all communication and
decisions are executed autonomously.

Figure 4.3: DS2OS Migration Mechanism

The migration or optimization process is visualized in �gure 4.3. During runtime, the
SLSM regularly updates its network state by requesting information from the nodes.
Based on this latest network information, the currently active strategy determines if
optimization can be achieved through migrating one or more services. The migration
itself involves stopping the service on the current node, transferring the service package
if necessary and starting the service on the new node. Afterwards, the SLSM updates
its internal network representation accordingly. The migration process is completely
autonomous. No interactions with the UI, S2Store and users are required.

Figure 4.4 visualizes the heartbeat mechanism of DS2OS. The SLSM must always stay
updated about the state of each node. If one node fails, actions ensuring service qual-
ity must be triggered in a minimum of time. The reaction time mainly depends on
the heartbeat rate and update cycle length. The NLSMs use UDP sockets for sending
heartbeat messages to the SLSM, each containing the node identi�er. Each heartbeat
received by the SLSM is directly stored in the node model. It checks if a node with the
identi�er already exists in the model, creates a new node object if necessary and updates
its latest heartbeat timestamp. In each update cycle, this timestamp is checked for each
node. If it is older than a prede�ned threshold, the node’s state is set to FAILED. As a
consequence, services that were running on the failed node must be migrated to another
node immediately. Heartbeat rate, update frequency and the node failure threshold are
interesting parameters for testing di�erent con�gurations regarding service downtime
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Figure 4.4: DS2OS Heartbeat Mechanism

and monitoring overhead that should be evaluated in future work. In the sequence dia-
gram, the NLSMs send a heartbeat every three seconds, and the SLSM updates every ten
seconds. If only one heartbeat gets lost on the way, the sending NLSM is not considered
as failed immediately. Instead, the heartbeat must fail multiple times. Here, it takes
two failed heartbeats and about eight seconds for the SLSM to recognize node NLSM2
has failed. It is bene�cial to have a high heartbeat and update frequency to improve
reaction times. However, each update cycle triggers optimization strategy algorithms
which could produce certain overhead if executed within short spaces of time.

Table 4.2 summarizes all communication channels to be implemented. All VSL nodes are
implemented as virtual nodes, which provide callback functions that are executed when
a get or set is performed on them. Most management activities are executed behind the
scenes, requiring no human input. Only four actions are interesting for users: instal-
l/uninstall and start/stop services. The simplicity of this interface is intended as users
are considered non-experts and the goal of this thesis is to enable self-management to a
high degree. The actions are controlled via the user interface provided by the UI service
and are communicating solely with the SLSM. This is intended as complexities of the
smart space being a distributed system should be hidden from the user. All interaction
concerning the NLSMs must be performed by the SLSM autonomously. It determines
the a�ected nodes and triggers the respective actions on them. Two virtual nodes are
utilized for hardware monitoring. As adaptive monitoring is required, the SLSM is able
to con�gure which parameters should be monitored by setting /con�g/metrics node with
a string containing all resource types. It makes sense for future development to include
other con�guration options via this node, for example the monitoring frequency. In turn,
the NLSM regularly updates the /metrics node with new measurements, for example
the current CPU usage. These measurements are requested by the SLSM in each update
cycle and forwarded to the strategy to make decisions on service migrations.
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Component Node Address Method Parameters
SLSM /installService GET /serviceId=*
SLSM /uninstallService GET /serviceId=*
SLSM /startService GET /serviceId=*
SLSM /stopService GET /serviceId=*
NLSM /installService GET /serviceId=*
NLSM /uninstallService GET /serviceId=*
NLSM /startService GET /serviceId=*
NLSM /stopService GET /serviceId=*
NLSM /metrics GET none
NLSM /con�g/metrics SET CPU&RAM&...

Components Purpose Side Channel Type
SLSM - NLSM Heartbeat Mechanism User Datagram Protocol

(UDP)
SLSM - NLSM Package Transfer Transmission Control Pro-

tocol (TCP)
S2Store - SLSM Package Transfer Hypertext Transfer Proto-

col (HTTP)

Table 4.2: VSL and Side Channels Communication
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4.4 Site-Local Service Manager Architecture

This chapter will describe the most important classes of the SLSM and the interfaces to
the NLSM and S2Store. Management functionality is distributed over three classes. The
NetworkDataCollector is responsible for monitoring the nodes in the network. It pro-
vides methods for querying data from the VSL context, for example a list of connected
agents and running NLSMs. The ServiceLifecycleManager contains methods which ex-
ecute service deployments and migrations. The StrategyManager acts as repository
for optimization strategies and o�ers funtionality for switching between them. The
MongoDBConnector is used for connecting to the MongoDB and storing and querying
monitoring data. Since service packages are not stored in the database, these �les are
deposited on the �lesystem under the SLSM’s working directory. Here, the SiteSer-
viceRepository class deals with extracting the packages, reading the contained service
meta data and creating representations as Java objects.

Figure 4.5: Class Structure of the SLSM and Interfaces to NLSM and S2Store

The S2StoreConnector class contains methods for calling the REST resources of the
S2Store HTTP server - for example for downloading a service package. The S2Store
logic provides a similar service repository implementation like the SLSM in order to
read meta data. For deploying packages to the NLSMs, sender and receiver classes exist.
The binaries are transferred via a TCP socket. Another class pair for communication
between NLSM and SLSM implement UDP sockets for sending heartbeats on a regular
basis. Smaller helper classes and logic for managing certi�cates are omitted here. The
class structure has been created under the idea of separation of concerns. Future changes
and extensions should be easily possible. For example, the temporary side channels for
heartbeats and package transfer can be easily exchanged without changing core code
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on both SLSM and NLSM side. The StrategyManager implementation follows a strategy
pattern - therefore new strategy implementations can be added and activated without
great e�ort.
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4.5 Implementation

The DS2OS prototype implementation is the result of a collaboration with two related
research projects. Donini et al. [22] targets autonomous management of certi�cates
and access rights. Ohlenforst et al. [21] focuses on node-local service management and
developed a design for the runtime environment (SHE) and the NLSM. In total, seven
modules have been developed:

ds2os

*common.......................Common classes used in multiple modules
she...........................................Service Hosting Environment
*nlsm..........................................Node-local Service Manager
*slsm............................................Site-local Service Manager
slca.........................................Site-local Certi�cate Authority
*s2store........................................................Service store
*uiserver............................................Smart space UI server

Figure 4.6: DS2OS Project Structure

Relevant modules regarding the topic of this thesis are marked with an asterisk.

4.5.1 Optimization Strategies

The current implementation features a strategy manager class which holds a map
of all available strategies and enables the SLSM to switch between them by calling
the setActiveStrategy(int strategyId) method. The strategies themselves have to ex-
tend the abstract class OptimizationStrategy in order to guarantee that the methods
optimize(Map<String, SiteLocalNode> nodes) and deployServicePackage(Map<String, Site-
LocalNode> nodes, String serviceId) are implemented. The �rst method takes all node
representations as parameter and has to implement a logic that checks if the current net-
work status could be optimized. As an example, a load balancer has been implemented
that adjusts the number of services running on each node. The second method is called
by the SLSM as soon as a service should be installed. The strategy is accountable for
�nding the optimal node for deployment. Strategies can trigger both deployment and
migration after internal calculations via an interface callback that is implemented by
the SLSM.

4.5.2 Network and Service Representation

Most management functions rely on a Java object representation of the current network
status. For this, classes and interfaces exist for representing nodes and services. The
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SLSM holds a map of node objects. Each node object holds a map of service objects
that are available locally and implements the INode interface which contains common
methods, for example for starting and stopping services. Each SLSM and NLSM hold
own classes implementing the node interface, since di�erent logic is required. From the
perspective of the SLSM, a service is started by requesting the corresponding VSL context
node at the NLSM. From the node manager perspective, this is done by communicating
the action to the SHE. Another example concerns the timestamp of the last heartbeat
sent by a speci�c node - this information is only relevant to the SLSM and therefore
only implemented in the SiteLocalNode class.

4.5.3 Database and Data Structure

In the current VSL implementation, nodes persist their context in a local HSQLDB [50].
However we decided to use a MongoDB for storing the SLSM’s data because of several
reasons:

Popularity MongoDB is widely used today, especially in web applications.

Web interfaces Since we implement two web-based user interfaces for the S2Store
and the DS2OS UI service, JSON-based data structures are a good choice for being
processed with JavaScript in the frontend.

Performance comparison We are interested in a performance comparison between
the VSL context which is stored in a relational HSQLDB database, and a document-
oriented database like MongoDB.

Data model Using relational data structures requires a strict data model design in
advance. Instead, data model in document-oriented databases can be changed
freely over time. This will become handy in the future when new metrics can be
monitored and need to be stored in addition to existing ones, for example.

As a wide range of optimization algorithms should be supported by the SLSM, it must
be able to provide detailed data about the network. Also, the SLSM could restore
con�gurations from the database after it failed. We plan to store representations of the
current network state each time the SLSM updates its network information. Therefore
each data set is stored with a current timestamp as its identi�er. The data itself contains
all relevant data that can be collected in the current implementation. If additional
monitoring metrics are added in the future, no redesign of the database is necessary
since documents stored in the same collection may di�er in their structure. The structure
of the prototype’s data model can be abstracted from the following document:
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1533717095 : {
d n 8 9 r 3 4 3 8 h 3 i r 3 2 9 3 3 9 r u r 9 u 3 9 3 r j i r 3 3 8 : {

agen tRoo t : " / agen t1 " ,
nodeManagerRoot : " / nlsm1 " ,
r u n n i n g S e r v i c e s : [ " l e d s e r v i c e " , " u i s e r v e r " ] ,
s t o p p e d S e r v i c e s : [ ] ,
hardware : {

CPU : 1 2 0 0 ,
RAM: 2000

}
} , r r h 4 h r 4 9 8 3 9 3 j f u i h 3 9 r h f r h 4 8 t r h 4 t k 3 n : {

agen tRoo t : " / agen t2 " ,
nodeManagerRoot : " / nlsm2 " ,
r u n n i n g S e r v i c e s : [ ] ,
s t o p p e d S e r v i c e s : [ " h e l l o w o r l d " ] ,
hardware : {

CPU : 7 0 0 ,
RAM: 512

}
} ,
. . .

}

The network state is stored under the current timestamp. Each node is identi�ed by its
certi�cate’s public key. The data stored about each node comprises its VSL agent and
service address, running and stopped services as well as node hardware capabilities.
Service meta data is not persisted in the database, since it can be obtained from the
service packages on the �le system. Therefore it is su�cient to store only service
identi�ers in the database.
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Chapter 5

Evaluation

This chapter describes evaluation of the SLSM implementation. Criteria are speci�ed in
chapter 5.1. An isolated evaluation of write and read latencies is provided in chapter
5.2. Performance evaluation is described in 5.3.

5.1 Evaluation Criteria

Evaluation of the presented design includes quantitative criteria which are concerned
with performance of the prototype as well as qualitative criteria targeting quality of the
design. In particular, the following points are evaluated:

1. [Quantitative] Measurement and comparison of read and write latencies Mon-
goDB versus VSL context nodes.

2. [Quantitative] Measurement of performance metrics on the node running the
SLSM in a realistic scenario.

3. [Qualitative] Quantitative evaluation will show how the system behaves in
realistic situations and if the proposed design is suitable.

The database is applied to store relevant data about the network state as described
in chapter 4.5. The data size increases with number of nodes, services and measured
metrics in the network. If machine learning algorithms are applied, historical data
could be valuable which again increases size of the data to be read. Therefore it makes
sense to evaluate how fast data can be stored and read using the database. The same
tests are applied to a VSL node in order to have a relation on how performant the
MongoDB works. The main evaluation includes testing common system functionality
under realistic conditions. The results will reveal the applicability of the system in real
world scenarios, both quantitatively regarding performance as well as qualitatively.
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5.2 Data Storage and Access Latencies

For data storage latency evaluation, information about the current network state is
used. In case of the MongoDB, the data must be transformed into a speci�c Document
object before it can be stored via the Java connector. For VSL, exactly the same data
is converted into a comparable JSON string before being stored in the context node.
Data is stored on the agent running on the same node to achieve comparable results.
Both data preparation steps are excluded from measuring write latencies. Also, no
deserialization is included in the measurements of read latencies. For testing a higher
number of nodes, the measured node data is multiplied by the number of nodes needed
before storage. In any case, all current nodes are serialized and written to the MongoDB
or VSL node under the current timestamp. Reading data always includes the node set
stored under the latest timestamp.

Figure 5.1: Read and Write Latencies of VSL Context and MongoDB

Figure 5.1 shows the measured latencies in milliseconds for di�erent dataset sizes. One
can see that read and write latencies are comparable for up to 50 nodes. However, the
test data currently contains only few services and monitoring values so in a typical smart
space the values would start di�ering signi�cantly already under a lower number of
nodes. Read latencies stay comparable over large data sizes. Signi�cant di�erence makes
writing larger data to the VSL. Latencies increase up to the order of two seconds, which
is extremely ine�cient considering realistic update cycles of the SLSM in the order of ten
seconds. In contrast, MongoDB write latency remained clearly under one second and is
therefore much more e�cient. Also we observed the problem that setting VSL nodes
with large strings generates errors in some cases. The results show clearly that using
a separate database for storing large amounts of data improves system performance
and reliability. Since data is only stored and used by the SLSM, there is also no need
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to store it in the VSL overlay because no distributed access is required during normal
system execution. However, replicating the data in case the SLSM fails and needs to
be migrated to another node is considered important future work. There may be more
e�cient database systems compared to MongoDB, but document-orientation is adequate
for storing data about a continuously changing system that can be extended at runtime
through additional services. For example, if nodes are extended by additional monitoring
capabilities, these values can be added to the data model without any problems.
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5.3 Performance Measurements

5.3.1 Experimental Set-Up

For quantitative measurements we created the testbed displayed in �gure 5.2 which
features typical IoT hardware. The main device running all services relevant for site-local
management is a Raspberry Pi 3 Model B. It features a 1.2GHz 64-bit quad-core ARMv8
Cortex-A53 and 1024 MiB of RAM. With its low power consumption it is considered
suitable for IoT and smart space scenarios. It is used as the smart space management
node running an agent, the SLSM, the MongoDB, an NLSM instance and the UI server
service. The second node is a relatively old Raspberry Pi 1 Model B with 700MHz ARM
CPU and 512 MB of main memory. Such hardware could lead to interesting results
regarding minimum hardware requirements. It will only run an agent and an NLSM
service instance. The third network node is a standard laptop, which is used for running
another NLSM, but mainly for monitoring the DS2OS via the console service and for
executing the S2Store. Also, a browser is running on the laptop for accessing the S2Store
and UI server web interfaces and triggering service installation. Running a browser
on one of the Raspberry Pis would use signi�cant hardware capacities and distort the
measurements. All nodes are connected to the same router so the agents are able to
discover each other for building the VSL overlay network.

Figure 5.2: Evaluation Testbed

5.3.2 Execution and Results

A typical application scenario of the DS2OS involves a number of constrained devices,
each running VSL agents and DS2OS components. On top of this con�guration, several
service instances must be executed. Therefore the resource usage of the DS2OS system
is an interesting aspect which is evaluated in the following. Services are not executed
but only deployed to the respective nodes, since the Service Hosting Environment
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implementation is not �nished currently. DS2OS components are exported as runnable
jar �les and executed manually via terminal, instead of being started over OSGi by the
SHE. Overhead of the SHE must therefore be evaluated separately in the future. As
typical performance metrics, CPU load and RAM usage are measured to show which
minimum hardware is required to run the basic DS2OS system and how much resources
are left to run services in the end. Performance metrics are measured on both Raspberry
Pis; additionally power consumption is monitored on the RPi3. Energy consumption is
mainly interesting because in a real life scenario multiple devices are running day and
night and should not cause severe energy costs.

The following charts display the results for CPU and RAM usage on both Raspberry
Pis as well as energy consumption on the newer device. The test process begins with
starting the MongoDB service on the RPi3 (event M). Next, all three agents are started
successively on each node (A1, A2, A3). SLSM and UI server service are started on
the RPi3 after the agents have formed the VSL overlay network. Afterwards the three
NLSMs are started subsequently on each node (N1, N2, N3). As soon as all node
managers are started and the SLSM discovered them via heartbeat mechanism, a test
service package is installed (SRV). The node manager of the chosen target node is then
terminated to see if the service package is deployed to another node and how fast this
migration process is executed.

Figures 5.3 and 5.4 show CPU and RAM usage on the Raspberry Pi 3 (node number 1).
Starting the VSL agent A1 temporarily increases CPU load up to almost 70 percent and
uses around 90 megabytes of main memory. The following discovery process between
the agents does not produce signi�cant CPU load and uses no further RAM. Starting
the SLSM and NLSM 1 also has a mainly temporal e�ect on the processor. In contrast
the UI server creates continuous stress. All three events increase main memory usage
signi�cantly. The SLSM uses roughly 160, the UI server around 110, and the NLSM
around 150 megabytes. The strategy selected NLSM 1 for service deployment, so this
node is manually terminated (X1). Since services are not started currently, the decrease
in RAM is completely caused by the terminated NLSM service. The migration process
is triggered shortly afterwards. It took 37 seconds until the package was received by
NLSM 2.

Performance on the Raspberry Pi 1 brought very clear results. After starting the agent
A3, CPU load already increased to nearly 100 percent, leaving no resources left for node
manager or additional services. This became apparent when the NLSM was terminated
because of a timeout during connecting to the VSL agent (T3). RAM usage had a
maximum of 400 megabytes leaving only few bu�er for running more services.
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Figure 5.3: CPU Usage on the RPi3

Figure 5.4: RAM Usage on the RPi3
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Figure 5.5: CPU Usage on the RPi1

Figure 5.6: RAM Usage on the RPi1
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Figure 5.7: Power Consumption on the RPi3

Power consumption measurements are displayed in �gure 5.7. Slight increases can be
observed after starting of agent A1, NLSM N1 and when NLSM 1 is terminated (X1).
Consumption reaches its peak at around 3.738 watts. The Raspberry Pi 3 Model B
o�cially requires up to 2.5 ampere current. Assumed that voltage is constant at �ve
volts the device has a maximum power consumption around 12.5 watts. Therefore
measured power consumption is considered moderate.

5.3.3 Conclusion

Evaluation showed that hardware performance of typical IoT devices can be su�cient for
executing the Java-based DS2OS system on top of the VSL. However, modern hardware
like the Raspberry Pi 3 is required, especially if a number of services should be executed
on top of the evaluated con�guration. Also additional overhead must be considered for
the currently lacking Service Hosting Environment. Power consumption of the device
turned out adequate for continuous operation.

Future work should consider another programming language for DS2OS implementation
in order to improve system performance. The JVM certainly adds some signi�cant
overhead compared to native languages like C.
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Chapter 6

Conclusion and Future Work

The goal of this thesis was to analyze service management approaches from di�erent
research areas and to apply the results to IoT smart spaces using the Virtual State Layer
middleware as basis. A comprehensive literature review revealing di�erent research
areas with similar problem statements has been presented. Various requirements and
solution approaches have been identi�ed and presented in detail. A solution design has
been developed based on the requirements. In the end, a prototype was implemented
and evaluated regarding applicability in the presented problem domain.

The presented solution design provides a foundation for centralized service management
in distributed smart space environments. The basic data infrastructure, deployment
mechanisms and communication channels between the di�erent component as well as
important management features have been developed. However, the design does not
provide a completely operational solution - plenty of future work is required to create
such a dependable system:

1. Provide further monitoring metrics to support many di�erent optimization strate-
gies.

2. Improve user interfaces of SLSM and S2Store, e.g. by implementing a smartphone
app.

3. Provide further management functionality like service replication and updates.

4. Analyze and evaluate speci�c optimization strategies and algorithms regarding ap-
plicability and performance in the problem domain. Especially machine learning
algorithms are interesting in our context in order to enable autonomy.

5. Send error reports to the S2Store as feedback for service developers.

6. Implement optimization strategies as VSL services and enable users to easily
switch between them.
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7. Improve performance of the whole system to support older hardware.

The possibility of exchanging management strategies has been implemented, but fur-
ther research is required to examine di�erent speci�c algorithm types and evaluate
applicability and performance in the problem domain. The current implementation only
features CPU and RAM usage data which limits the range of algorithms that could be
applied. Other interesting metrics could be network bandwidth, free storage capacity
or connected sensors and actuators. The strategy implementation currently features
node selection for service deployment and migration. However there are other impor-
tant functional features which should be considered, too. These include replication of
services to reduce downtime in case a node fails and services have to be restarted. Also
automated updates for services and the DS2OS system should be implemented. Espe-
cially distributed systems should be up-to-date to maximize dependability and security.
Further research has to be conducted to improve usability and user interfaces of the
smart space. Also, user experience, power consumption and support of older hardware
can be improved regarding performance of the components.

One can see there are many open challenges which have to be met in the future to realize
the idea of a fully autonomous, reliable and easy to use smart space. If the concept of
having a service store becomes prevalent for such distributed systems, its success and
user experience will depend in a large part on developers which contribute by providing
innovative services and help improving service management continuously by creating
e�cient and reliable optimization strategies. However applications of the Internet of
Things in homes or o�ces de�nitely have the potential of permanently changing the
way we perceive technology and interact with it and to improve quality of living by
automating and simplifying our daily tasks.
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