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Abstract

The core of the Internet of Things is the ability of a growing number of devices equipped
with communication capability to participate in a network (Smart Devices). The e�ort
to limit their access and control their data results in the creation of Smart Spaces. Their
main characteristic is the observe-control interaction between sensors and actuators
to run automated services. The emerging problem in this context is the demand for
management of these services through software where Smart Space Orchestration (S2O)
comes into play.
The application of a middleware such as the Virtual State Layer is the approach pursued
by the distributed S2O system (DS2OS). However, the communication between DS2OS
and the services including the management of their lifecycles has to be enabled via a
hierarchical service management. This is split into a bottom-up and a top-down part.
This thesis proposes a runtime environment to improve the availability of services and
covers the bottom-up service management part including the lifecycle management of
services. Therefore, system resources of the nodes are continuously monitored. Consid-
ering the capacities of the nodes, services are migrated before downtimes occur. Thus,
the system can recover from service failures or Service Level Agreement violations.
Furthermore, the services run autonomously after being installed once even in case
of disconnection from the middleware. Domain speci�c challenges are identi�ed and
compared to related systems. After designing a runtime environment �tting speci�c
service management requirements in terms of service availability a prototype is evalu-
ated. The results show how the integration of a runtime environment ameliorates the
disposability of services and contributes to an autonomous local service management.





Zusammenfassung

Der Grundstein des Internets der Dinge ist die Fähigkeit einer steigenden Anzahl von
Geräten, die imstande sind zu kommunizieren, Teil eines Netzwerks zu sein (Intelligente
Geräte). Das Bestreben ihren Zugri� zu beschränken und ihre Daten zu kontrollieren
bringt die Entstehung von intelligenten Räumen mit sich. Deren wesentliche Eigen-
schaft liegt in der Wechselwirkung zwischen Sensoren und Aktoren, um automatisier-
te Dienste laufen zu lassen. Die dabei auftretende Problemstellung einer benötigten
Software-gestützten Verwaltung dieser Dienste bringt die Orchestrierung dieser intelli-
genten Räume (Smart Space Orchestration - S2O) ins Spiel.
Der Einsatz einer Middleware wie die Virtual State Layer ist der Ansatz, der vom verteil-
ten S2O System (DS2OS) verfolgt wird. Die Kommunikation zwischen diesem System
und den einzelnen Diensten einschließlich der Verwaltung deren Lebenszyklen muss
jedoch über ein hierarchisches Service-Management gewährleistet werden. Dieses ist
in einen bottom-up und einen top-down Teil unterteilt.
Diese Arbeit untersucht den Einsatz einer Laufzeitumgebung auf die Verbesserung
der Verfügbarkeit von Diensten und deckt den bottom-up Service-Management Teil
einschließlich der Lebenszyklus-Verwaltung der Dienste ab. Daher werden die Sys-
temressourcen der Knoten kontinuierlich überwacht. In Anbetracht der jeweiligen
Knotenkapazität werden Dienste migriert bevor deren Ausfall eintritt. Somit kann das
System sich auch von Service-Ausfällen und Service Level Agreement Verletzungen
erholen. Überdies laufen die Dienste selbstständig nachdem sie erst einmal installiert
wurden, sogar bei Verbindungsausfällen zwischen der Middleware. Herausforderungen
werden identi�ziert und mit ähnlichen Systemen verglichen. Nach dem Entwurf einer
Laufzeitumgebung, die den speziellen Anforderungen im Hinblick auf die Verfügbarkeit
der Dienste gerecht wird, wird diese anhand eines Prototyps evaluiert. Die Ergebnis-
se zeigen wie die Integration einer Laufzeitumgebung die Verfügbarkeit der Dienste
verbessert und zu einem autonomen lokalen Service-Management beiträgt.





I

Contents

1 Introduction 1
1.1 Goals of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Analysis 5
2.1 Runtime Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1.1 Terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.1.2 Hierarchical Service Management of DS2OS . . . . . . . . . . . 7
2.1.3 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.1.4 Autonomous Computing . . . . . . . . . . . . . . . . . . . . . . 11
2.1.5 Security . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.1.6 Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.1.7 Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.2 Runtime Environment Approaches . . . . . . . . . . . . . . . . . . . . 18
2.2.1 OSGi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.2.2 Jigsaw . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.2.3 Docker . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.2.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.3 Research questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3 Related Work 35
3.1 Comparable Approaches in Sensor Networks . . . . . . . . . . . . . . . 36

3.1.1 RESTful Smart Space Gateway (RSSG) . . . . . . . . . . . . . . 36
3.1.2 REST vs OSGi . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.2 Service Level Agreement Violations . . . . . . . . . . . . . . . . . . . . 38
3.3 OSGi based Environments . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.4 Dynamic Updates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.5 Availability through Service Migration . . . . . . . . . . . . . . . . . . 47
3.6 Integrity checks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
3.7 Autonomous Service Management . . . . . . . . . . . . . . . . . . . . . 52

3.7.1 Availability through Service Replication . . . . . . . . . . . . . 52
3.7.2 The MAPE-K Control Loop . . . . . . . . . . . . . . . . . . . . 55



II Contents

4 Design 57
4.1 OSGi Embedding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.1.1 VSL Connection . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
4.1.2 Module Invocation Sequence . . . . . . . . . . . . . . . . . . . 60
4.1.3 Resource Monitoring . . . . . . . . . . . . . . . . . . . . . . . . 60

4.2 Interaction between SHE and NLSM . . . . . . . . . . . . . . . . . . . . 61
4.3 Communication between NLSM and SLSM . . . . . . . . . . . . . . . . 63
4.4 SLA Violations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
4.5 Autonomous Service Management Scenarios . . . . . . . . . . . . . . . 67

4.5.1 Node Failure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
4.5.2 VSL Disconnection . . . . . . . . . . . . . . . . . . . . . . . . . 67
4.5.3 SLA Violation Recovery . . . . . . . . . . . . . . . . . . . . . . 67

5 Implementation 69
5.1 OSGi Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
5.2 SHE-NLSM Interaction . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

6 Evaluation 73
6.1 Testing Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
6.2 Availability / Resilience . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

6.2.1 Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
6.2.2 Expected Results . . . . . . . . . . . . . . . . . . . . . . . . . . 75
6.2.3 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

6.3 Self-Healing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
6.3.1 Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
6.3.2 Expected Results . . . . . . . . . . . . . . . . . . . . . . . . . . 80
6.3.3 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

6.4 Autonomy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
6.4.1 Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
6.4.2 Expected Results . . . . . . . . . . . . . . . . . . . . . . . . . . 82
6.4.3 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

6.5 Resource Usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
6.5.1 Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
6.5.2 Expected Results . . . . . . . . . . . . . . . . . . . . . . . . . . 84
6.5.3 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

7 Conclusion 87

8 Future Work 89

Bibliography 91



III

List of Figures

2.1 Hierarchical Service Management adopted from [1, p. 277] . . . . . . . 8
2.2 Service Management Overview adopted from [1, p. 286] . . . . . . . . . 10
2.3 Service Replication adopted from [2] . . . . . . . . . . . . . . . . . . . 14
2.4 Simple Convergence Characterization . . . . . . . . . . . . . . . . . . . 18
2.5 OSGi Framework adopted from [3] . . . . . . . . . . . . . . . . . . . . 19
2.6 OSGi Bundle Lifecycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.7 Coexistence of Di�erent Version Modules adopted from [4, p. 342] . . . 23
2.8 Di�erence between Containers and Virtual Machines adopted from [5] 29
2.9 The Docker Lifecycle adopted from [5] . . . . . . . . . . . . . . . . . . 29

3.1 Service Oriented Interactions . . . . . . . . . . . . . . . . . . . . . . . . 43
3.2 Service Replacement adopted from [6] . . . . . . . . . . . . . . . . . . . 45
3.3 Service Updates with Proxies adopted from [6] . . . . . . . . . . . . . . 46
3.4 SCANDEX network adopted from [7] . . . . . . . . . . . . . . . . . . . 47
3.5 Service Dependency and Migration Strategy adopted from [7] . . . . . 48
3.6 Model of the Android Installation Process for an App Package (APK)

adopted from [8] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
3.7 Service Replication adopted from [9] . . . . . . . . . . . . . . . . . . . 53
3.8 Context Model for Self-Adaptive Service Activation adopted from [10] 53
3.9 MAPE-K cycle in DS2OS adopted from [1, p. 90] . . . . . . . . . . . . . 55

4.1 Communication Work�ow . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.2 Interaction Model between NLSM and SHE . . . . . . . . . . . . . . . . 62
4.3 Worst and Best Case Scenario of Node Failure Detection . . . . . . . . . . . 64

6.1 Service Availability Experiment from [11] . . . . . . . . . . . . . . . . . 76
6.2 Service Downtime relating to Number of Failed Services . . . . . . . . . . . 77
6.3 Service Availability relating to the Network Size . . . . . . . . . . . . . . . 78
6.4 Convergence Time between Dis- and Reconnection to the VSL . . . . . 81
6.5 SLA Violation Triggering Time . . . . . . . . . . . . . . . . . . . . . . . 83
6.6 Resource Consumption of SHE . . . . . . . . . . . . . . . . . . . . . . . 85





V

List of Tables

2.1 Bundle States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.2 Target/Performance Comparison OSGi . . . . . . . . . . . . . . . . . . 25
2.3 Target/Performance Comparison Jigsaw . . . . . . . . . . . . . . . . . . 28
2.4 Target/Performance Comparison Docker . . . . . . . . . . . . . . . . . 31
2.5 Target/Performance Comparison OSGi, Jigsaw and Docker . . . . . . . 32

3.1 Comparison between OSGi and REST based service management . . . 37
3.2 Reconciliation of Requirements with [12] . . . . . . . . . . . . . . . . . 40
3.3 Reconciliation of Requirements with Smart House project by [13] . . . 41
3.4 Reconciliation of Requirements with SOCAM by [14] . . . . . . . . . . 41
3.5 Reconciliation of Requirements with Oscar by [15] . . . . . . . . . . . . 42
3.6 Reconciliation of Requirements with [16] . . . . . . . . . . . . . . . . . 42
3.7 Reconciliation of Requirements with [17] . . . . . . . . . . . . . . . . . 43
3.8 Reconciliation of Requirements with [18] . . . . . . . . . . . . . . . . . 44

4.1 SHE and NLSM Context Model Nodes . . . . . . . . . . . . . . . . . . . 61





1

Chapter 1

Introduction

The extension of the existing Internet to the Internet of Things (IoT) represents an
emerging new paradigm in our connected society because a growing amount of basi-
cally simple physical entities is equipped with communication capability like light bulbs
or heaters, thus becoming part of a network with the ability to be remotely controlled
via WLAN, Bluetooth or ZigBee [19–21]. This concept proceeds on the assumption that
these so-called smart devices are connected to the Internet on a large scale. In order to
hide the data of Smart Devices from unauthorized access from outside, there is a stronger
focus on Smart Spaces as a subunit of the IoT. These are physical environments like a
hotel suite o�ering automated services where sensors receive contextual information
and actuators execute context-aware responses [22, 23]. The observe-control interac-
tion between sensors and actuators enables devices to provide an environment to suit
individual preferences through services (e.g. to provide a constant indoor temperature)
as realized by the HomeKit framework from Apple [24].

This requires, however, an interoperability of the diverse devices to integrate also
appliances with heterogeneous protocols in contrast to Apple’s homogeneous HomeKit
Accessory Protocol. Smart Space Orchestration (S2O), an extended management of
Smart Devices through software [23], represents a promising solution to overcome
this heterogeneity of the devices by managing the contexts provided by the devices
such as the current state of a lamp (on/o�). An example for such an S2O approach is
the Distributed Smart Space Orchestration System (DS2OS) by [1] with a distributed
middleware - the so-called Virtual State Layer (VSL) - as the core of the system.

However, the services for enabling interaction between DS2OS and the several devices
have �rst to be deployed, installed, controlled and continuously monitored so that their
availability can always be guaranteed even in case of node failures or node isolation
after disconnection from the middleware. This is the task of the service management
whose hierarchical structure is outlined in �gure 2.1 and which will be explained in some
detail in the following chapter. In the context of DS2OS, the service management is split
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into a top-down and a bottom-up approach. While the site-local service management
(top-down) is responsible for resource allocation, load balancing and the deployment
of services to the nodes of the distributed peer-to-peer system, the node-local service
management (bottom-up) manages services (start, stop, migrate, update). It is on this
level where a runtime environment creates the basis for a reliably working Smart Space
Orchestration System such that services are highly available at any time and external
user intervention is limited to a minimum even after service or node failures.

1.1 Goals of the thesis

The goal of this thesis is to investigate the properties of an optimal runtime environment
for bottom-up service management to guarantee high availability of services even in
case of disconnection from the middleware and to de�ne what ’optimal’ means in this
context. This includes the implementation of the Service Hosting Environment (SHE)
which is “a fundamental component for autonomous management of services" [1].
Due to the multiple interfaces and interdependencies this thesis is to be considered
in the context of the work of [25] and [5]. While the former provides an autonomous
certi�cate management for the services, the latter is concerned with the top-down
service management approach and controls the load balancing of the nodes. Thus, the
design of the prototype incorporates these aspects and the evaluation of speci�c runtime
environment properties uses their infrastructure components.
Di�erent approaches how runtime environments for smart spaces meet the requirements
for a seamlessly working and resilient peer-to-peer ecosystem are presented and their
advantages and disadvantages in terms of required features are considered. The most
crucial ones are availability, dynamic updates, monitoring and migration capabilities.

1.2 Outline

The thesis is structured as follows:
In Chapter 2 we will analyze the requirements for providing a remotely manageable
runtime environment for IoT services with focus on the bottom-up service management
approach.
In Chapter 3 we will have a look at subproblems derived from chapter 2 which are
already addressed in other works.
A runtime environment solution is designed in chapter 4 where the questions de�ned
at the end of chapter 2 are addressed to guarantee that the requirements are met.
After the design phase, the implementation speci�c details of the runtime environment
are described in chapter 5.
The evaluation of the prototype implementation is conducted in chapter 6.
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Finally, the thesis is concluded in chapter 7 where we summarize our �ndings followed
by a short outlook on potential future work in this area in chapter 8.
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Chapter 2

Analysis

The focus of this thesis is on improving the availability of services by providing au-
tonomous local service management for a distributed Smart Space Orchestration (S2O)
software through a runtime environment. Di�erent runtime environment approaches
are introduced and their strengths and weaknesses are presented.

A short introduction of Smart Spaces and S2O for a better understanding of the existing
Distributed Smart Space Orchestration System (DS2OS) is given. DS2OS consists of
three main components. The Smart Space Store (S2Store) is a global App store and is
therefore responsible for the distribution of the services plus supports crowdsourced
software development. The Smart Space Service management is in charge of managing
the services and is described in detail afterwards. Finally, the core of DS2OS should
not be forgotten: the peer-to-peer based knowledge management middleware called
Virtual State Layer (VSL) [1, p. 275]. It consists of several Knowledge Agents (KAs)
being connected to each other. Services can connect to the VSL overlay via the KAs and
store or access content. Thus, the VSL is responsible for storing and providing the state
of the S2O services [26].

The chapter is structured as follows:
Section 2.1 motivates and introduces runtime environments in the context of the hier-
archical service management.
Section 2.2 analyzes and compares di�erent promising runtime environment approaches.
Finally, section 2.3 lists the research questions this thesis aims to address.
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2.1 Runtime Environment

This section gives an overview of various runtime environment requirements which are
necessary for enabling the node-local service management (bottom-up) by providing a
seamlessly and reliably working environment for microservices in a distributed peer-
to-peer system even after disconnection from the middleware. Di�erent approaches are
considered and evaluated by weighing their pros and cons.

2.1.1 Terminology

Before elaborating the requirements and comparing the diverse concepts, the de�nition
of a runtime environment is given and the intersections with other domains is explained.

According to Blom [27], a runtime environment is de�ned as the set of components
that are required to run applications. Runtime environments allow a user to execute a
computation, communicate and store data [28] . Local implementations might range
from simple Unix accounts to sandboxing technologies to virtual machines.

[29] emphasizes the execution environment provision of a runtime environment to an
application or software and the possibility to access system resources like RAM or CPU.

Combining the de�nitions of [27] and [29] a runtime environment can be summarized
as follows:

A runtime environment is the set of components that are required to support the execution
of an application or software by giving them the access to system resources.

Implicitly, the need for recon�guration can be read in this de�nition if the underlying
system changes. Especially for heterogeneous devices this can be a big problem. There-
fore, this thesis emphasizes the dynamic character of runtime environments and its
capability of recon�guration and reallocation of resources.

A runtime environment is the recon�gurable set of components that are required to sup-
port the execution of applications or software by giving them access to and if applicable
dynamically reallocating the system resources.

The concept of runtime environments has to be distinguished from that of operating
systems. Their job is to “provide for an orderly and controlled allocation of the processor,
memories, and I/O devices among the various programs wanting them” [30, p. 5].

A Smart Device is hardware like a sensor or actuator being capable of interacting with
its environment and being connected to larger networks [31, p. 15].
The amount of all Smart Devices combined in a common network and usually restricted
to a particular range represents a Smart Space [31, p. 15].
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Smart Space Orchestration is the approach to manage Smart Devices within a Smart
Space through software [31, p. 16].

In general, a service is a self-contained unit of software performing a speci�c task
composed of an interface, a contract and implementation. The way how a provider of
a service performs request from a consumer of the service is de�ned by the interface
and the interaction between the provider and the consumer of a service is determined
in the contract [32].
Throughout this thesis, software being capable of interaction with a DS2OS Smart Space
to support Smart Space Orchestration is called service [31, p. 18].

Service Management is responsible for enabling the use of services to authorized users
including con�guration, access to the service and the management of continuous com-
munications [33]. This includes the provision of high disposability of services as well
as their deployment, installation, controlling and monitoring.

Besides merely preventing services from failures or at least ensuring that their down-
times are limited to a minimum, statements about their qualitative properties should
not be ignored. A Service Level Agreement (SLA) is de�ned as a contract between the
provider and consumer of a service in which the Quality of Service (QoS) terms are
speci�ed [34].

With respect to DS2OS, service management is split into two parts: a top-down and a
bottom-up approach. While the site-local service management (top-down) is responsible
for resource allocation, load balancing and the deployment of services to the nodes of
the distributed peer-to-peer system, the node-local service management (bottom-up)
manages services (start, stop, migrate, update).

2.1.2 Hierarchical Service Management of DS2OS

As already mentioned in the introductory part, the main characteristic of DS2OS is its
VSL µ-middleware which, however, achieves its full potential only in conjunction with
a sophisticated service management being able to exploit the advanced functionalities
and capabilities of this middleware. Thus, before diving into the motivation for the
elaboration of a suitable runtime environment for the node-local service management,
a description of the overall hierarchy is given for better illustration.
As shown in �gure 2.1, there are the following architecture components [1, p. 276]:

Service Hosting Environment (SHE) / Runtime Environment (RTE)
The SHE and the runtime environment merge smoothly so that they can be con-
sidered as a unit. Its role is on the one hand to provide the execution environment
for running services. On the other hand, it is supposed to monitor and control
running services in order to manage them on a low level.
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Node Local Service Manager (NLSM)
The NLSM is the �rst service running on the SHE and establishes the connection
to the SLSM via the DS2OS connector. Thus, it collects all necessary information
about all running services on its node and forwards them to the SLSM.

Site Local Service Manager (SLSM)
The SLSM is responsible for the resource allocation on DS2OS site such that the ca-
pacities of all participating nodes are balanced. It requests resource metrics about
all running services on every node from the respective NLSM to run optimization
algorithms.

Smart Space Store (S2Store)
The S2Store contains all services available to be downloaded by the SLSM. It is the
central entity to which all SLSMs are connected. It contains the Context Model
Repository (CMR) over which context models as abstract service interfaces are
shared.

On the top left of �gure 2.1, the service management hierarchy is depicted. The NLSM
manages the computing node including the running service while the SLSM is responsi-
ble for the management on DS2OS site. The communication between NLSM and SLSM is
done via the knowledge agents of the VSL where data about locally managed services is
sent to and service executables and commands are received from the SLSM. The DS2OS
connector enables services to be started, stopped and paused and provides the basis for
transferring their context.
Another view on the hierarchical structure is shown in �gure 2.2. The blue arrow
indicates the service update propagation initiated by the SLSM. Thus, a new service
package is downloaded from the S2Store and transferred via the SLSM to all NLSMs
where the service is �nally locally managed on the distributed node and executed on
the SHE/RTE.
In the opposite direction, the NLSM collects usage statistics and failure reports which
are aggregated by the SLSM and sent to the S2Store.

2.1.3 Motivation

Peer-to-peer (P2P) systems are distributed systems based on the concept of resource
sharing by direct exchange between peer nodes, i.e. nodes having the same role and
responsibility [35]. This decentralization results in a high amount of �exibility and
scalability on the one hand, but represents on the other hand a risk in case of node
failures.

DS2OS is built on a P2P overlay of so-called Knowledge Agents (KA) spanning the
Virtual State Layer (VSL) [26]. In case of failures of such peer nodes services residing on
these nodes fail due to the lack of communication with the node managing middleware.
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Figure 2.2: Service Management Overview adopted from [1, p. 286]

The provision of a runtime environment could contribute to an improved availability of
services by providing an autonomous local service management. Techniques to achieve
this are presented in the next section.
Apart from the scenario of middleware disconnection, the degree of user intervention
is increased by ordinary tasks in connection with service management decisions. But
the users of Smart Spaces should not be bothered with service management issues such
as to decide to which node a service has to be deployed or be prompted to restart or
stop a service after its failure. The use of a suitable runtime environment promises to
reduce this degree because of its self-healing capacities to autonomously manage the
lifecycles of the services under the hood.

Finally, the ability of a runtime environment to recover from and the timely reaction to
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possible SLA violations is of paramount importance for a qualitative service manage-
ment and minimization of user intervention.

2.1.4 Autonomous Computing

2.1.4.1 MAPE-K Control Loop

The MAPE-K autonomic management control loop is the basis for many autonomic
systems. It consists of the following operations: Monitoring (M), Analysis (A), Planning
(P) and Execution (E). The K indicates the shared knowledge base supporting these
operations. To provide a better description each MAPE-K component is explained in
the following [36, p. 4].

Monitoring
The monitoring component is in charge of managing the several sensors providing
information in terms of the system performance. In the context of DS2OS, this
means that sensor services can retrieve the current resource consumption like
CPU or memory and other performance metrics such as the request process
latency.

Analysis
The analysis component takes charge of processing the information received by
the monitoring component and generating high level events. It can, for instance,
combine the CPU and memory usage metrics to indicate an overload condition.

Planning
The planning component’s task is to select the actions to be executed to correct
deviations of the original operational behavior. The planning component relies
on a high level policy describing an adaptation schedule for the system. These
policies may be described using Event Condition Action (ECA) rules de�ned by a
high level language. Such an ECA rule describes what actions to be executed for
a speci�c event and a given condition.

Execution
The execution component directs the actions selected by the planning component
to the target components.

Knowledge Base
The knowledge base component stores information to support the other compo-
nents.

Applied to DS2OS and its hierarchical service management, this means that the monitor-
ing component is essential to decide, for instance, if nodes are overloaded. The metrics
are generated by the SHE and are transferred to the SLSM that is able to plan further
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actions. Finally, the decisions made by the SLSM are executed by the SHE. Important
information such as the running and stopped services are saved in the context model
where they can be continuously accessed by the SLSM. Thus, the system is capable to
react to other circumstances like the overloading of some nodes.

Thus, the MAPE-K control loop can be applied in the monitoring of resource consump-
tion metrics in the context of an autonomous service management. Therefore, node
congestions can be anticipated by migrating services in time.
Besides, SLA violations can be e�ectively triggered.
Finally, the MAPE-K control loop can be applied in the triggering and execution of the
autonomous reconnection mechanism after the node disconnection from the middle-
ware.

2.1.4.2 Migration

Spontaneous disconnection of IoT resources from a middleware makes the service
management an error prone process. One key goal is therefore to guarantee a high
degree of availability which is de�ned by [37] as follows:

Availability is the degree to which a service is operable; that is capable of
producing responses to submitted requests.

High availability includes in this context constraints in terms of “the time window
allowed for any response to arrive or the time window allowed for the system not to be
operable” [37].

Migration is widely seen as a measure to ameliorate service disposability by evacuating
services to new nodes so that they resume running with minimum downtime [37].
Service migration is about “moving an instance of a service that is currently interacting
with a client to a new node in a non-disruptive manner” [38].

Based on this de�nition, it can be stated that DS2OS provides the best conditions
for service migration since the service state is separated from the service logic by
distributing the VSL on all hosts and due to its strict decoupling of entities [26]. This
separation enables services to be restarted without losing their states by starting a copy
of the migrated service on another computing node in paused state and transferring the
current context (i.e. the service state) from the connector to the copy [1, p. 281].

The combination of the MAPE-K autonomic management control loop and migration
can already achieve auspicious results in improving service availability. However, in
case of migration possible delays in terms of the deployment process can lead to longer
periods of service downtime. The previous provision of services that are supposed to
be migrated on the destination nodes is capable of reducing this time.
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2.1.4.3 Replication

Thus, Su et al. attempt to support failover in the sense of “deploy once, run forever” by
proposing a decentralized fault tolerance mechanism for intelligent IoT middlewares
being capable of detecting failures, recovering from them and recon�guring the system
autonomously [2]. The two major components of this mechanism are service replication
and decentralized fault recovery. Instead of achieving redundancy through storing
replicas on neighboring nodes, their dynamic replication approach is about random
distribution of replicas within a prede�ned range. The deployment of a service onto
several nodes is called service replication in this context. Each node tracks the host of
the replicated service through a so-called strip being a list headed by the service and
followed by the hosted nodes. Each node keeps a set of local strips and a set of monitored
ones. Whereas local strips represent the services hosted locally and replicated on other
nodes, monitored strips are the local strips replicated from the node which is monitored
by the actual node.

Figure 2.3 illustrates an example for local and monitored strips on the nodes N1, N2

and N3. The arrows indicate how each node monitors the functionality of another one
through heartbeat signals. Each service is replicated on three nodes, thus the redundancy
level is 3. SA is replicated on N1, N2 and N3 and active on N1 while inactive on the
other nodes. The services on N2 and N3 will be sequentially activated if the service on
N1 fails. Monitored strips contain the local strips of monitored nodes to recover from
node failure. Here, N1 monitors N2 duplicating its local strip to the monitored strips.
If N2 fails, N1 will know that SB was active on N2 and is to be reactivated on N6. The
hosts in the monitored strips are noti�ed by N1 that N2 failed and the strips are to be
updated. Since N2 was responsible for monitoring N3, this task is now carried out by
N1.

The decentralized fault recovery is used in case of broken communication links. It is
split into the decentralized failure detection and its recovery.
Decentralized failure detection is supposed to avoid single point of failures such that
the failure of one system component does not cause the whole failure detection system
to collapse. Failures are detected through heartbeats being periodically transmitted
messages such that nodes are presumed to have failed when other nodes no longer
receive messages from it after a prolonged period of time. The heartbeat protocol
applied by [2] makes each node transmit a ping to the previous node as indicated by
the arrows in �gure 2.3.
If a failure is detected, the recovery process runs through two phases: Initially, the
system has to ensure that all nodes carrying the strips of the failed node have consistent
view of the strips to pick a replacement node and execute the recovery algorithm. Then,
the changes have to be propagated to recon�gure other nodes.

However, storing strips with the replication chain and the service copies creates a lot
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Figure 2.3: Service Replication adopted from [2]

of overhead. Nonetheless, the idea of heartbeats to actively monitor the functionality
of nodes is a promising approach to trigger the deployment of replicas.
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2.1.5 Security

The idea of DS2OS as an architecture for community based software development
for Smart Spaces to take Smart Space users into the development loop and to create a
foundation for the user community by providing code and uploading service applications
to an App Store implies malicious contributers and malware trying to corrupt the
bene�ts of open source Smart Space services.
Thus, it is a matter of trust to download provided service apps. However, a multi-
dimensional rating system can at least give some conclusions what secure applications
are by providing metrics like the amount of service downloads or crashes leading to
natural selection [39].

Nonetheless, the peril of cyber attacks is omnipresent and even after a successful in-
stallation of non-malicious service software the update process of this application can
lead to a gateway for attacks which raises the question how the integrity of the service
binaries can be guaranteed. In this context, the thesis of [25] comes into play and
provides the basis for a secure service deployment.

2.1.6 Requirements

Since the advantage of using a runtime environment is obvious, the question remains
which features it should combine and which prerequisites it has to meet in order to
enable autonomous computing and provide service availability. The following points
are elaborated to create a basis for the most important aspects.

Security
Runtime environments have to protect the underlying system resources from
unauthorized access. Since open source applications can easily be downloaded,
their execution in the runtime environment can result in unwanted behaviors if
the underlying operating system is not secure enough to detect malicious attacks.
Therefore, the validation of binaries can at least guarantee that the downloaded
application or service is acknowledged or registered. Thus, the integrity of these
binaries has to be periodically checked.

Migration
Runtime environments must be �exible enough to enable services to migrate from
one node to another in a swift and reliable manner if other nodes are more ap-
propriate, for instance in terms of system resources. Since services often interact
with or are dependent on each other, runtime environments have to support an
architecture of high cohesion and low coupling, i.e. services should be responsible
for only a few particular functionalities and should be independent from other
services as far as possible.
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Communication with Middleware
Since the site-local service management is responsible for the allocation of re-
sources and the deployment of services to the nodes within the distributed peer-
to-peer system, the communication between the node-local and the site-local
service management in case of connection has to work quickly and reliably such
that all resources are perfectly used and information is continuously exchanged.

Autonomous Service Management
In case of a disconnection form the middleware the services have to continue to
run autonomously on other nodes such that no external intervention through the
user is required. The shift to a local service management for the unattended nodes
has to be made instantly while guaranteeing a steady behavior. Upon reestab-
lishment of the connection, the runtime environment has to care about the right
state of the services to provide a seamless switching. Apart from node failures,
service failures and SLA violations have also to be addressed and handled by an
autonomous service management so that user intervention becomes obsolete.

Continuous Monitoring & Control
The runtime environment has to know at each moment the current system re-
source usage like CPU, RAM, storage or network bandwidth such that load bal-
ancing can be applied if necessary. It is crucial that the current state of the service
is always available and can be traced so that in case of a system failure the ser-
vices start automatically without manual intervention. Continuous monitoring is
accompanied by controlling services (e.g. start, stop, pause, migrate) in terms of
the control-observe interaction between sensors and actuators.

Availability
The runtime environment has to guarantee a high level of availability of services.
Thus, an elaborated failure detection mechanism is required such that services
can be rebooted instantly after service failures or the runtime environment is
reset after a node failure. In addition, services need also be available in case of
low system resources.

Service Discovery / Plug&Play
Runtime environments need to discover services and integrate them such that
they are immediately available without recon�guring the system.
In order to deploy newer versions of services, the runtime environment must
support a plug-and-play mechanism where services can be dynamically added to
or removed from the system.

Dynamic Update
Updates are inevitable to enhance performance and security or to provide further
functionality. Firmware systems shut down all open programs to install new
updates. In the context of smart spaces, this practice can be fatal if vital services
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like reanimation systems in hospitals are interrupted. The same is true for normal
service updates. System and service updates have therefore to be applied in the
background without interrupting the operability of essential services and devices.

2.1.7 Metrics

This section introduces the metrics to evaluate the quality and e�ectiveness of an applied
runtime environment implementation described in chapters 4 and 5.

The service availability metric is adopted from [40]:

De�nition 2.1. Availability = MTT F
MTT F+MTTR

where MTTF is the expected time that the service will run before the �rst failure occurs
indicating the average time which a service can run continuously and MTTR is the
average time required to repair a service, i.e. the average time a service needs to recover
from a failure to rerun it as requested.

The service response time is de�ned as the elapsed time between a service inquiry and
the response to that inquiry.
The network load refers to the tra�c carried by the network.
The service discovery is de�ned in this thesis as the elapsed time between the service
download from a repository and its registration being available on node site.
The service recovery is de�ned as the elapsed time between the service downtime after
node or service failure and its rebooting.
The convergence time is the measure of how fast the network converges after a change
in its topology, i.e. how quick the network’s new topology is adopted on reconnecting.
Figure 6.4 depicts a simple convergence characterization.

Figure 2.4: Simple Convergence Characterization
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2.2 Runtime Environment Approaches

This subsection gives an overview of several runtime environment approaches which
seem suitable to ful�ll the requirements listed above. The sequence of the approaches
corresponds to the degree of their application in related frameworks and their state-
of-the-art level. Exemplary projects are presented in the related work where these
technologies are used.

2.2.1 OSGi

The Open Services Gateway Initiative (OSGi) framework is the state-of-the-art execu-
tion environment for service-oriented architectures in Java being the dynamic module
system for Java.
The original mission was to enable Java to be used in networked and embedded devices
using core Java constructs like classloaders and manifests.
It provides functionalities like service registration, service discovery, component man-
agement or Java class loading [15]. This section is intended to present the basics of OSGi
at a high level and its peculiarities in terms of service management because covering
OSGi in its entirety would go beyond the scope of this thesis.

2.2.1.1 OSGi Framework

The core elements of OSGi are bundles, lifecycle management and service infrastructure
which are supported by the OSGi layered framework as depicted in �gure 2.5.

Figure 2.5: OSGi Framework adopted from [3]
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The security layer provides extensions to the Java security architecture adding some
constraints and �lling some of the blanks that Java leaves open. In addition, it de�nes a
secure packaging format and the runtime interaction with the Java security layer.
The module layer de�nes the modularization model for Java having strict rules for
sharing Java packages between bundles or hiding packages from other bundles.
The provision of a life cycle API for bundles by the life cycle layer enables a runtime
model for bundles.
A dynamic, concise and consistent programming model for developers of Java bundles
is provided by the service layer, thus facilitating the development and deployment of
service bundles by decoupling the service’s speci�cation (being a Java interface) from
its implementations.
The execution environment de�nes what methods and classes are available in a speci�c
platform.

2.2.1.2 Bundle Life Cycle

The most basic component of OSGi are bundles. These ordinary JAR �les with some
extra headers contain additional metadata in its manifest to identify them as OSGi
bundles. A special dependency management and classloading behavior allowing greater
modularity is only one feature making these constructs stand out from normal JARs.
Another aspect is that they have their own lifecycle.
Being a dynamic platform by dividing classloading responsibility among several class-
loaders OSGi bundles are not static entities living on the classpath inde�nitely unlike
most JAR �les on the standard Java classpath [4, p.15]. Thus, bundles may be installed,
started, updated, stopped and uninstalled at any time during the running of the frame-
work. In the following the possible states of an OSGi bundle are listed. [4], [41]

The following lifecycle state diagram shows the OSGi bundle lifecycle as adopted from
[41, p. 83].

The installation is the process where new bundles are added to an existing OSGi frame-
work at runtime. To install a bundle the BundleContext can be used using a URL
pointing to a bundle �le.
After the installation into a framework, the OSGi bundle is in the installed state. It
should be mentioned that an installed bundle does not have a classloader, neither can
it provide code or packages.
The real “magic” of OSGi is the resolution process where the framework resolver tries to
“resolve” the bundle when all bundle dependencies are available in the OSGi framework.
This is where �xed wires between package imports and exports are created obeying
the versioning criteria declared in the metadata. If a consistent set of wires can be
generated for a bundle, this bundle is called resolved having now a classloader. Thus,
dependencies are available at runtime and the risk of a NoClassDefFoundError can be
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Table 2.1: Bundle States

Status of OSGi Bundle Description
INSTALLED The bundle has been installed into the OSGi container

but some of the bundle’s dependencies have not yet been
met. The bundle requires packages that have not been
exported by any currently installed bundle.

RESOLVED The bundle is installed and the OSGi system has con-
nected up all the dependencies at a class level and made
sure they are all resolved. The bundle is ready to be
started. If a bundle is started and all of the bundle’s de-
pendencies are met, the bundle skips this state.

STARTING A temporary state that the bundle goes through while
the bundle is starting after all dependencies have been
resolved.

ACTIVE The bundle is running.
STOPPING A temporary state that the bundle goes through while

the bundle is stopping.
UNINSTALLED The bundle has been removed from the OSGi container.

Figure 2.6: OSGi Bundle Lifecycle
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After entering the resolved state, a bundle is suitable for being started. Apart from
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the invocation of a bundle’s BundleActivator (if it has one) and moving the bundle to
the active state, the crucial change on starting a bundle is the creation of an active
BundleContext for interaction with the framework, in�uencing the life cycle of other
bundles and accessing the OSGi service registry where the management and discovery
of services is handled.
As expected, stopping a bundle is more or less the inverse of starting it. The bundle is
moved back into the resolved state by the framework, the stop method is called on the
bundle’s BundleActivator and it is ensured that any services registered by the bundle
are unregistered from the service registry.
When a bundle is no longer needed in a runtime it can be uninstalled which does not,
however, remove it from the runtime. Rather, uninstalled bundles are marked so that
they are no longer suitable for providing packages when the framework resolver tries to
resolve new bundles. Nonetheless, they resume providing packages to existing bundles.
Uninstalled bundles are only able to be discarded by the framework when no other
resolved bundle is wired to them.
After a bundle has been uninstalled, the framework is usually refreshed to resolve any
bundles using packages from an uninstalled bundle, thus allowing the framework to
tidy up the uninstalled bundles.
The update process is like an atomic uninstall/reinstall operation allowing the bundle
content to be changed. The full description would go beyond the scope of this thesis but
common side e�ects resulting from the behavior when uninstalling bundles demonstrate
its impact. Given bundle A1 being updated to A2 and providing packages to another
bundle B. Then the old version of A1 cannot be removed without breaking B. Thus, A1

and A2 are available at the same time while B keeps using A1 until it is refreshed but
all future resolutions will wire to A2. Similarly to uninstalling bundles, refreshing the
framework after an update allows to tidy up old bundle versions.

2.2.1.3 Selected OSGi Features

The core of OSGi is its component system. There are a lot of advantages resulting from
this architecture.

Modularization
Modularity is the base for service oriented architectures because modules are in
control of which classes are completely encapsulated and which are exposed for
external use by creating a logical boundary. Thus, each service being handled
as module can access other services via provided APIs while encapsulating its
classes and explicitly declaring its external dependencies.
Java’s object orientation enables partially modularity at the class and package
level by declaring methods and classes public or restricting access to the owning
class or members of its package. However, if classes are packaged together in
a JAR �le, encapsulation is not provided because every class inside the JAR is
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externally accessible.
OSGi solves this lack of encapsulation through its components called bundles
which is the same as modules. Thus, their internal can be hidden from other
bundles and communicate via well-de�ned services.
Apart from the insu�cient encapsulation of Java’s existing modularity, OSGi also
addresses the so-called classpath hell problem. This phenomenon occurs because
of Java’s dynamic linking mechanism. Most JAR �les depend on other libraries
or frameworks but due to Java’s �rst encountered policy (i.e. if di�erent versions
of the same class appear in several libraries, Java uses the �rst it encounters)
unknown ordering dependencies can lead to problems. OSGi handles this error-
prone process by using metadata in the JAR manifest de�ning the imports and
exports as shown in line 6 and 7 of Listing 2.1 so that bundles are wired on a
per-package basis.

1 Mani f e s t −V e r s i o n : 1 . 0
2 Bundle−M a n i f e s t V e r s i o n : 2
3 Bundle−Symbol icName: s e r v i c e H o s t i n g E n v i r o n m e n t
4 Bundle−V e r s i o n : 1 . 0 . 0
5 Bundle−Name: S e r v i c e Hos t ing Environment M a n i f e s t
6 Import−P a c k a g e : smart . a p i . pkg ; v e r s i o n = " [ 1 . 0 . 0 , 2 . 0 . 0 ) "
7 Export −P a c k a g e : she . pkg ; v e r s i o n = " 1 . 0 . 0 "

Listing 2.1: Simple Bundle Manifest

Versioning
OSGi recommends a scheme called semantic versioning where each version con-
sists of four parts: major, minor, micro and quali�er. In case of change of the major
part (e.g. 2.3.0 to 3.0.0) the code change is not backward compatible as is the case
with removing methods or changing argument types. If the minor part changes,
backward compatibility is guaranteed for consumers of an API but not for the
implementation providers (for instance if a method is added to an interface). Bug
�xes and other changes that do not a�ect the externals are re�ected in the micro
version. The addition of information like a build date is indicated by the quali�er.
The bene�ts of this semantic versioning are on the one hand the guarantee of com-
patibility (modules are bytecode compatible with any versions of its dependencies
where only the minor or micro versions di�er). On the other hand, versioning
allows di�erent versions of a module to coexist in the same system [4, p. 341].
Thus, OSGi classloading allows each module to use the version of its dependencies
that suits best as depicted in �gure 2.7.

All bundles being versioned in the OSGi environment only bundles which are
able to collaborate are wired together in the same class space. Hence, the JAR
hell problem is solved where libraries can often only work with other libraries of
special versions.
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Figure 2.7: Coexistence of Di�erent Version Modules adopted from [4, p. 342]

Dynamic Updates
According to [42], dynamic updates are de�ned as follows:

Dynamic update is a mechanism that allows software updates and
patches to be applied without loss of service or down-time.

This de�nition implies that updates are made on the �y, i.e. no interruption of
the running service occurs. In fact, the OSGi Alliance indicates that the installa-
tion/uninstallation, starting, stopping and updating of bundles is possible without
requiring a reboot of the whole system and Cummins et al. explicitly mention
that bundles can be dynamically updated removing previously exported packages
or introducing new package requirements [4, p. 353]. In fact, the reason for this
“magic” feature lies in the above mentioned versioning system. Thus, both the
old and updated version of the same bundle can reside on the framework which
implicitly refreshes the wiring of classes between bundles. The speci�c manner
how this process works would go too much into detail but a simple example is
supposed to demonstrate its impact.
Assumed there is an interface de�nition Log in bundle LogInterface providing
the method logMessage(String message), a LogProvider bundle providing an
implementation of the interface and a LogUser bundle using the interface function-
ality. All three bundles are installed and started in the OSGi framework as bundle
versions 1.0.0. Now suppose that the new method logMessage(int severity,

String message) is added to the interface de�nition so that LogInterface version
1.1.0 and LogProvider version 1.2.0 are installed and started. The LogUser would
now no longer be able to retrieve the newly provided service from the service
registry registered by the LogProvider because it is still wired to LogInterface
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version 1.0.0 while the new LogProvider is loading its interface de�nition from
LogInterface version 1.1.0. In this case a bundle refresh has to be performed to the
LogUser in order update to the new interface version. This means, however, that
the LogUser bundle has to be stopped, rewired to the new LogInterface version
1.1.0 and restarted.

Size
The OSGi Release 6 Framework can be implemented in about a 300KB JAR �le.
Therefore, the overhead of the deployed service is very small. In addition, OSGi
requires only a minimal Java Virtual Machine (JVM) to run on top of it.

Isolation
Being built on top of the JVM the OSGi framework supports not only code-level
isolation, i.e. the internal types of a module cannot be accessed by another one
unless it is explicitly allowed by that module to do so, but also true isolation [43, p.
29]. However, there is no recipe against badly behaved modules (for instance
services congesting the heap memory). Nonetheless, this security aspect can be
handled by integrity checks which are, though, not yet supported by OSGi.

Miscellaneous
OSGi enables a direct connection between services via sockets and provides
features related to dynamic life cycle management. Together with its modular
architecture, service migration is facilitated because bundles can be easily and
quickly deployed and their states can be synchronized. This implies the control-
ling and monitoring of services (e.g. in which state the bundle currently is). The
monitoring quality of OSGi has been extended by a resource monitoring package
observing the CPU, memory, disk storage and the network bandwidth.

The table below gives an overview of the provided features of OSGi and compares them
in terms of our runtime environment prerequisites.

Table 2.2: Target/Performance Comparison OSGi

Features OSGi
Security —
Availability —
Migration X
Continuous Monitoring/Controlling X
Dynamic Update X
Autonomous Service Management —
Service Discovery / Plug&Play X
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2.2.2 Jigsaw

After OSGi has been investigated in detail with focus on the most important features in
terms of contributing to an adequate remotely manageable runtime environment within
a distributed peer-to-peer system, another concept is presented which represents the
�agship feature of Java 9.

The most widely used runtime environment is the Java Runtime Environment (JRE).
It provides the minimum requirements for executing Java applications and consists
of library classes and the Java Virtual Machine (JVM). This abstract machine makes
Java platform independent, thus contributing to overcome the heterogeneity of smart
devices by providing access transparency [44]. Project Jigsaw was developed under
Open JDK and now adds the new scalable module system to Java 9 by applying the
module system to the Java Development Kit (JDK) called Java Platform Module System
(JPMS) [43, p. 20]. This modularization of the Java platform was overdue because the
JDK has grown so much since its �rst release that installing JDK on small devices can
be awkward due to a lack of CPU, memory or disk space (JDK 1.1 was less than 10MB
in size, JDK 8u77 for Mac OS X is 227MB). Apart from that, installing the entire JDK can
be a waste of memory if requiring only a fraction of it (e.g. when using microservices).
The Java Linker (Jlink) coming with Java 9 uses this modularization to dynamically link
modules [43, p. 105]. Therefore, targeted JREs can be created containing only modules
and their dependencies which are really required, thus conserving system resources.

With OSGi and JPMS two module systems are now available for Java. Thus, the question
arises as to whether OSGi has become redundant. The following comparison in some
aspects show which approach is preferable when focusing on certain features:

Versioning
In OSGi versioning is completely supported. Bundles and exported packages are
versioned. Imports of packages refer to compatibility ranges, usually represented
with an inclusive lower bound and an exclusive upper bound (e.g. [1.0.0,2.0.1),
i.e. every version from 1.0.0 up to but excluding 2.0.1). OSGi uses semantic
versioning. This means that the �rst segment is the major version indicating
pioneering changes in functionality and interfaces while the second segment
stands for the minor version denoting less important improvements and the
third segment denotes only patches to existing functionalities. In addition, OSGi
allows the simultaneous deployment of several versions of a module in a single
application so that it is no problem if dependencies have transitive dependencies
to di�erent versions of a common library [45]. Services can thus be updated to
newer versions. In JPMS, however, the version can only be de�ned as a meta
attribute. JPMS modules can only require other modules but not by version.

Dynamic Behaviour
Due to OSGi’s class loader based design for implementing isolation dynamic
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updating, loading and unloading of bundles at runtime is supported. It provides
direct support for on-the-�y updates with no reboot required by only sending the
bundles which actually changed. In addition, services in OSGi can come and go
and components bound to services are noti�ed in real time because of the dynamic
service registry [45]. JPMS, by contrast, does not provide dynamic downloads
and loading of modules from a repository while a service and the the JVM are
running [43, p. 29].

Isolation
Isolation is the most crucial feature of any module system. Both OSGi and JPMS
provide code-level isolation, i.e. the internal types of a module cannot be accessed
by another module unless it is explicitly allowed by that module to do so. But
OSGi o�ers true isolation being built on top of the platform while the modules in
JPMS are built inside the platform and only provide isolation programmatically
according to the way they are designed into the platform. However, neither OSGi
nor JPMS can protect the system against badly behaved modules (e.g. blocking
the available memory in the JVM, spinning up a myriad of threads or taking up
the CPU with a busy loop) [46].

Miscellaneous
Besides these features, OSGi o�ers an upgraded security model and provides some
features related to dynamic life-cycle that are not supplied by JPMS [43, p.29].
However, JPMS o�ers modularity at compile time and built-in support for native
libraries which OSGi does not support. While the security mechanism of OSGi
can be bypassed this is not the case for JPMS.

However, Jigsaw is not intended to replace OSGi. While OSGi is a good option for o�er-
ing application and service modularity, the contribution of JPMS is the modularization
of the Java platform itself such that small runtime images can be constructed which
contain only necessary pieces of the Java platform for a speci�c workload. In fact, they
can cooperate very well by running OSGi on top of JDK 9. According to Jecan [43, p.
29], OSGi should even be capable of treating Jigsaw modules as OSGi bundles. In a blog
post, a proof-of-concept is described how OSGi is running on JPMS [47] where OSGi
bundles denote dependencies on particular JPMS modules.

The table below searches for matches between the JPMS characteristics and our runtime
environment requirements.
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Table 2.3: Target/Performance Comparison Jigsaw

Features Jigsaw
Security —
Availability X
Migration —
Continuous Monitoring/Controlling X
Dynamic Update X
Autonomous Service Management X
Service Discovery / Plug&Play X

2.2.3 Docker

The underlying concept of DS2OS is that the heterogeneity of devices is overcome by
enabling service portability. This means that the service executables do not have to
consider the system speci�cations of the devices such that the same result is achieved
for di�erent device systems (e.g. the same service controlling the air conditioning leads
to the same result for di�erent air conditioners). To achieve this portability, the use of
the JVM as intermediate platform independent format for executables is selected [1, p.
248].
So far our focus on �nding adequate runtime environments was therefore restricted
to Java speci�c technologies. However, the concept of containers in contrast to virtual
machines o�ers another perspective how to provide autonomous computing.

The following section relies on the research work of [5] and is adopted in most parts.
Docker is a virtualization software enabling applications and their dependencies to be
packaged into lightweight containers. These can start up quickly and are isolated from
each other. Docker containers run directly on the host system. Thus, the operating
system (OS) is not required to be virtualized in contrast to other virtualization techniques.
The di�erence between the container and virtual machine architecture is depicted in
�gure 2.8.

Virtual machines (VM) require a hypervisor managing the system resources and simulat-
ing separate hardware for each VM. On top of that, each VM is to run its own operating
system. Docker containers, however, are not required to incorporate their own OS run-
ning directly on the host OS kernel. However, containers have a limited access although
running on the same kernel. Therefore, they are suited for encapsulating microservices.
Nonetheless, a machine running the Docker Engine is required to run Docker contain-
ers. This is responsible for managing the allocation of the disposable resources using
Linux kernel features like namespaces or cgroups. Thus, processes are isolated from
each other as well as from the host �le system. Unless explicitly con�gured, Docker
containers do not have access to each other. To make them available to the environment
port mappings or shared volumes have to be de�ned.
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Figure 2.8: Di�erence between Containers and Virtual Machines adopted from [5]

The lifecycle of a Docker container is presented in �gure 2.9.

Figure 2.9: The Docker Lifecycle adopted from [5]

It starts with a Docker�le de�ning the content and con�guration of each container. The
outcome of its build process is a Docker image which can be considered as a blueprint
for containers. These can be distributed either through a Docker registry or directly to
the several machines.

The registry can be considered as a central image repository. It can be downloaded and
applied in local environments. If an image is provided on a client, an arbitrary amount
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of containers is able to be instantiated from it. Their control is carried out through
straightforward commands such as start and stop. At each moment, the state of the
running container can be saved by committing the container, thus producing a Docker
image. This is ready for distribution and instantiation in copies of the original container.

The following summary is intended to extract the most important features of Docker.

Creation
Docker containers can be built using a simple script. Thus, the container itself
can be shared and reproducibly rebuilt with a single text �le (Docker�le).

Versioning
The Docker container itself can be versioned and forked, similar to a Git repository,
and shared directly using Docker’s hosted repository, the Docker Hub.

Consistency
Unlike virtual machines, the content of the Docker container is restored to its orig-
inal condition each time it is launched, thus ensuring a consistent computational
environment.

Service Discovery
According to [48], a basic service discovery functionality is provided by Docker
via so-called service links which are based on Docker Compose links. They create
environment variables allowing containers to communicate with each other or
other services. The directional links are recorded in the environment variables.
After their discovery, the services can automatically be installed and started.

Continuous Monitoring/Controlling
The state of the Docker containers can be monitored using a third party open-
source systems monitoring and alerting toolkit called Prometheus [49]. The
Docker deamon can be controlled and interacted with through Docker’s REST
API using scripting or direct command line interface commands.

Miscellaneous
Docker has a high overhead shipping each time the whole JVM and a suboptimal
dependency management.
Its security mechanism is based on its encapsulation capability. In addition,
Docker does not provide dynamic updates because the container has �rst to be
stopped before being replaced by the updated version which can then be started.
Although Docker provides lifecycle management of containers, it does not include
the internal management of the contained services. However, special orchestra-
tion tools like Docker Swarm can undertake this job.
Due to the monitoring and controlling capability migration of services is possible.
Containers can easily be deployed elsewhere while keeping their states.

The table below compares the Docker qualities with the required runtime environment
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features.

Table 2.4: Target/Performance Comparison Docker

Features Docker
Security —
Availability —
Migration X
Continuous Monitoring/Controlling X
Dynamic Update X
Autonomous Service Management —
Service Discovery / Plug&Play X

Before reviewing the results and drawing a conclusion which technology to use, it
is worth noting that OSGi and Docker are not mutually exclusive. By contrast, they
can complement each other. In the research of [50], Docker is used as Platform as a
Service (PaaS) model, thus isolating the application components from each other and
the components from the underlying infrastructure. OSGi is adopted as the modulariza-
tion technology being responsible for the lifecycle management of the services. Their
middleware orchestration is OneM2M.
The idea is that the generation of a JAR �le containing the OSGi implementation, ser-
vices, resources and con�gurations is accompanied by the creation of a Docker image of
the application component containing all dependencies which is deployed as container.
After the installation, the container registers the o�ered services. The approach of [50]
seems promising, but the concrete way of interaction between OSGi and Docker is not
mentioned. In addition, nothing is said about the bene�ts (if there are any) of using
both technologies. Thus, there is no evaluation in terms of response time, network load
or discovery time for instance. Finally, the authors do not address possible drawbacks
like the overhead produced when shipping a whole JVM each time a component is
deployed.
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2.2.4 Conclusion

After the collection of preselected potential runtime environment approaches, this
section compares them with respect to enable autonomous computing and providing
service availability.

The short target/performance comparisons at the end of each technology provides a
brief overview of how well the runtime environment requirements are met.
The following table summarizes the insights.

Feature OSGi Jigsaw Docker
Security — — —
Availability — X —
Migration X — X
Continuous Monitoring/Controlling X X X
Dynamic Update X X X
Autonomous Service Management — X —
Service Discovery / Plug&Play X X X

Table 2.5: Target/Performance Comparison OSGi, Jigsaw and Docker

It is obvious that Jigsaw drops out as runtime environment candidate. Being very novel
at the time this thesis is written the bene�ts of Java 9 are yet to be proven. Thus it is
too daring to use it. However, the chance of combination with the other approaches
remains.
The choice between OSGi and Docker is more di�cult than expected. Both have an
architectural based original security mechanism due to their encapsulation capability.
Nevertheless, the requirement is not met because the integrity of the binaries cannot
be guaranteed. None of the technologies allows to draw conclusions on the degree of
service availability. This depends, however, on several factors like service complexity,
used infrastructure etc. Due to the variability of this quality no statement can be made
as to which approach provides a better availability.
In contrast, the migration capability is provided by both OSGi and Docker because of
their lifecycle management so that service states can be restored. The same is true for
the continuous monitoring and controlling property.
While OSGi supports dynamic updates at least to a certain degree, Docker does not.
This implicitly allows conclusions to the availability property. If each time a service
is updated the container is replaced, it can take signi�cant time until a new container
is deployed. Finally, OSGi provides via its framework and bundle registry a dynamic
service discovery and plug&play mechanism once the services are installed. Docker
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also provides service discovery and plug&play and allows to run multiple containers at
the same time and to start and stop them as required. However, orchestration software
is needed for further service and container management.

To sum up, OSGi supports most of the required features compared to the other ap-
proaches. Therefore, it is considered as optimal runtime environment and is applied in
the creation of the prototype.
However, it may be interesting to compare the di�erent technologies with respect to
the assessment of autonomous computing and service availability.
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2.3 Research questions

This part summarizes the elaborated elements which are necessary to realize autonomous
service management. After the analysis of runtime environments for Smart Spaces is
done, the research questions this thesis aims to address are presented. The main goals
can be summarized as follows:

<R 1> How can an autonomous and local service management be provided (→unattended
nodes after disconnection from the middleware)?

<R 2> How can migration of services without loss of information quickly be performed?

<R 3> How can the monitoring/controlling quality and response time be optimized
(→real-time system)?

<R 4> How can updates after deployment be installed on the �y?

<R 5> How can the overhead be kept to a minimum?

<R 6> How can the recovering of a Service Level Agreement (SLA) violation or service
failure be performed?

<R 7> Which information should be exchanged between the node-local and the site-local
service management via a well-de�ned interface?

<R 8> How can the integrity of the binaries of the services be ensured?

These research questions are cited throughout the thesis when topics related to them
are addressed.
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Chapter 3

Related Work

This section summarizes work with a similar problem domain to this thesis.

There are several partial solutions to subproblems this thesis aims to solve but there is
no comparable overall approach.

This chapter is structured as follows:
Section 3.1 gives a short comparison between OSGi and REST based approaches and
sensor networks.
In section 3.2 the propagation and handling of Service Level Agreement Violations is
addressed.
Section 3.3 has a look at other IoT systems using OSGi.
Section 3.4 investigates other approaches how to enable updates on the �y.
Section 3.5 covers the migration topic.
Section 3.6 is about the way other systems perform integrity checks to prevent unau-
thorized access.
Section 3.7 has a look on how to enable a working system despite of disconnection from
the middleware.
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3.1 Comparable Approaches in Sensor Networks

3.1.1 RESTful Smart Space Gateway (RSSG)

As the name indicates, a RESTful Smart Space Gateway (RSSG) represents a gateway for
RESTful operations. It is the proposition of an IoT-based user-driven service modeling
environment for smart space management systems.

The goal of RSSG is to provide interoperability of devices from di�erent manufacturers
in spite of the data heterogeneity generated by di�erent communication protocols and
networks. In addition, RSSG provides continuous monitoring.

RSSG provides multiple communication protocols, data aggregation, object management
and translation functions. In addition, it uses both Bluetooth and Zigbee as interface
drivers to support many types of wireless communication protocols. The devices are
discovered by the RSSG and the sensor data and device information are received. The
latter is listed in the device Information database. The device information includes the
device type and the required data type of the relevant device to manage the connected
devices.

RSSG is situated in a space where it aggregates device information which is sent to a
service platform where the information is managed and processed for context awareness.

All devices send their sensor data within a certain time interval to the RSSG. RSSG
classi�es devices into sensors and actuators and proposes an object data format which
is depicted below. While sensor data consist of uniform resource identi�er (URI), unit,
type, value, accuracy, ownership and location, actuator data comprise URI, status, name,
location, ownership and a function list.

The object data is addressed by the URI and can be accessed via RESTful operations.

When the RSSG receives the data transmitted by the detected sensor nodes, the data are
analyzed by the sensor information contained in the device information database. The
data are encoded according to the object data format as shown in table 1 and stored in
the measurement information database. In case of a request received through a URI, the
RSSG web server processes the request via RESTful operations and the query manager
gets the information from the measurement database.

However, RSSG does only cover the acquisition and transmission of sensor data. The
observe-control interaction between sensors and actuators is performed via RESTful
operations, but service management such as updating or installing a service is not
addressed.
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3.1.2 REST vs OSGi

A comparison of architectures for service management in IoT and sensor networks by
means of OSGi and REST is done by [51]. They state that the OSGi-based approach is
better suited for homogeneous sensor networks while REST-based frameworks seem
suitable for heterogeneous and widely distributed IoT devices and services. Their out-
come is presented in the following table.

Table 3.1: Comparison between OSGi and REST based service management

Requirement OSGi based service management REST based service management
Registering the device X X
Providing service management (start, stop etc.) X X
Real-time monitoring of device state X X
Device allocation X X
Device orchestration X X
Device administration X X
Library sharing X X
Managing distributed access X X

However, the authors’ focus is on providing an implementation for an IoT middleware
with centralized service management of distributed resources which contradicts our goal
of providing manageable runtime environments for the bottom-up service management.
Therefore, they come to the conclusion that the OSGi-based approach is better suited
for sensor networks and REST-based frameworks are more convenient for dynamic
environments because their primary research goal is the provision of distribution of
proxies and devices and the device/service orchestration like device registering and
allocation which is managed by the Virtual State Layer in the DS2OS. Diving deeper
into service management is, however, not covered.
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3.2 Service Level Agreement Violations

The ability to recover from and the timely reaction to possible SLA violations was brie�y
sketched in the analysis part. However, before the recovering from a SLA violation can
be executed the system triggering this process needs �rst of all information about the
failure sources responsible for this violation to decide about reactive actions <R 6> .

Brandic et al. try to address in this context the problem of mapping low-level resource
metrics to high-level SLA parameters and provide a concept how SLA violations can be
identi�ed and propagated [52]. Their layered approach for SLA violation propagation
in self-manageable cloud infrastructures (LAYSI) is embedded into the FoSII project
(Foundations for Self-governing ICT Infrastructures) for developing self-adaptable Cloud
services.

Furthermore, they introduce the concept of threat thresholds being more restrictive
than the SLA violation thresholds for detecting future SLA violation threats. Whereas
a violation threshold is a value indicating the least acceptable performance level for a
service, e.g. a response time ≤ 2ms, the threat threshold could be about 1.5ms allowing
the system to have 0.5ms of reaction time. For our purposes this can e.g. mean that
threat thresholds are determined lying below the actual Service Level Objectives so that
migration of services can be triggered before SLA violations arise.

The decision making in terms of executing the appropriate reactive actions by utilizing
case based reasoning (i.e. solving problems based on past experience) is applied by
retrieving the information from knowledge databases. The current case is solved by
searching for similar cases from the past and reusing these cases. In the active mode
of the knowledge database the SLA parameters are continuously stored. Hence, cases
are received based on observed violations and correlated system states. In addition, the
quality of the reactive actions can be evaluated based on the utility functions and threat
thresholds can be generated. In the passive mode the SLA manager sends noti�cations
and invokes the self-management interface of the upper layer if the announced SLA
violation threat cannot be solved by the current layer’s SLA manager.

The autonomic manager receives noti�cations from the lower level and tries to �nd
reactive actions in the database once the SLA violation threat is detected. Its decision
components decide whether to defer the SLA violation threat. If it cannot be deferred,
they are propagated and all listeners (the components of the upper layer) are noti�ed.
If the SLA violation threat cannot be handled at layer n, the SLA manager publishes it
to layer n + 1 until the meta negotiator is reached informing the user about the issue of
a possible renegotiation or stopping the service.

Thus, monitored low-level metrics are periodically mapped to the high-level SLA pa-
rameters based on the prede�ned mappings stored in a database. For instance, if the
resource metrics uptime and downtime are continuously monitored, the service avail-
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ability can be calculated so that the mapping rule is the following:

Availability = (1 - downtime
uptime ) × 100

The recovery from a SLA violation <R 6> can, however, only be made via service
migration which is discussed in detail in chapter 3.5.

However, for our test purposes this goes far beyond because the relevant Service Level
Objectives are stated in the meta data �les of each service. Thus, in case of SLA violations,
the relevant service is migrated to another node containing more resources.
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3.3 OSGi based Environments

OSGi has seen a remarkable growth in its adoption as basis to build Smart Space systems
upon providing a managed and extensible framework to connect various services and
devices around. Thus, it serves as solid grounds for several research projects. An extract
of some of these projects is presented in the following giving a glimpse of the di�erent
deployment scenarios.

The idea to build Smart Homes based on an OSGi-based architecture has often been
realized through a client-server paradigm, thus being a server-centric model with a
single point of failure risk in the home gateway.
The shift from the traditional client-server architecture to one of mobile agents in
distributed networks using OSGi is investigated by [12].
They propose a service-oriented architecture based on a peer-to-peer interaction model
with several OSGi hosts and mobile agent technology so that the resources in the Smart
Home environment are e�ciently used by distributing the workload among the di�erent
platforms. Compared to DS2OS, the knowledge agents are represented by the mobile
agents dealing with dynamic situations. The agent hosts are implemented as service
bundles so that they can be dynamically downloaded by the devices, thus building the
execution environment for the mobile agents.
However, the approach of [12] does not incorporate a strategy for unattended nodes
or the recovery from SLA violations. Security aspects are neither considered. Since
migration is not provided, service availability cannot be guaranteed. The monitoring
and controlling of the states of the devices is supported by the so-called device agents.
Nevertheless, they do not monitor or control the states of the running services. The
discovery of services is provided by the OSGi framework. A concept for dynamic updates
does, however, not exist. The following table compares the speci�ed requirements with
the features realized by [12].

Features Approach by [12]
Security X
Availability X
Migration X
Continuous Monitoring/Controlling —
Dynamic Update X
Autonomous Service Management X
Service Discovery / Plug&Play X

Table 3.2: Reconciliation of Requirements with [12]

Lee et al. recognized very early the bene�ts of the concept of bundle collaboration
through service registry and applied it in a Smart House case study [13].
They adopted OSGi completely as their own execution environment without any exten-
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sions. However, their project is not a P2P based architecture but rests on a server-centric
model. Thus, autonomous service management is impossible for lack of migration pos-
sibilities so that service availability is only limited supported. Using the �rst release
version of OSGi dynamic updates are not supported. Additional security mechanisms
are neither implemented. The same applies to the monitoring and controlling of the
services. Their discovery, by contrast, is covered from the very beginning. The following
table shows how the applied features match our requirements.

Features Smart House by [13]
Security X
Availability X
Migration X
Continuous Monitoring/Controlling X
Dynamic Update X
Autonomous Service Management X
Service Discovery / Plug&Play X

Table 3.3: Reconciliation of Requirements with Smart House project by [13]

Other pioneers in using OSGi were Gu et al. who have also seen the advantages of this
technology like platform independence, various levels of system security, the hosting
of multiple services or the support for several home-networking technologies [14].
Their Service-Oriented Context-Aware Middleware (SOCAM) is one of the �rst ap-
proaches to create an OSGi based infrastructure for context-aware services. Thus, a dis-
tributed network is generated. Nevertheless, SOCAM does not incorporate autonomous
computing. The migration of services is considered just as little as their availability.
Although the gateway is monitored, this is not the case for services. The main focus
here is on service discovery as in the case of the Smart House project from [13]. The
following table illustrates the correspondence between the applied features and our
requirements.

Features SOCAM by [14]
Security X
Availability X
Migration X
Continuous Monitoring/Controlling X
Dynamic Update X
Autonomous Service Management X
Service Discovery / Plug&Play X

Table 3.4: Reconciliation of Requirements with SOCAM by [14]

Another project integrating OSGi in a middleware architecture is the Gator Tech Smart
House (GTSH) from [53].
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This approach does, however, not di�er signi�cantly from SOCAM. Therefore, the upper
table also applies to the GTSH.

Ahn et al. focus on the reliability issue OSGi was lacking at that time in terms of network,
device and service failure. Furthermore, they propose a proxy-based approach to make
the OSGi framework more reliable [15]. The concept is implemented into Oscar, an
open source OSGi implementation.
This proxy wrapper enables OSGi to monitor the status of each service instance, isolate
failed services and provides an advanced recovery mechanism. Although considering a
service-oriented architecture (SOA), Ahn et al. do not apply a distributed environment.
Thus, their fault detection extension is only limited to one local platform. Therefore,
autonomic computing or migration issues are not covered.

Features Oscar by [15]
Security X
Availability X
Migration X
Continuous Monitoring/Controlling X
Dynamic Update X
Autonomous Service Management X
Service Discovery / Plug&Play X

Table 3.5: Reconciliation of Requirements with Oscar by [15]

The autonomic aspect of OSGi in terms of its lifecycle management is investigated
by [16]. Their research environment was a home area network with a home gateway as
central managing device instead of a P2P network. The autonomic element is therefore
limited to the home gateway using the MAPE-K loop. Thus, the states of the services
are monitored and failures can be handled within the scope of the gateway. However,
autonomous computing is not achieved. Therefore, service availability is only partially
provided.

Features Approach by [16]
Security X
Availability —
Migration X
Continuous Monitoring/Controlling X
Dynamic Update X
Autonomous Service Management X
Service Discovery / Plug&Play X

Table 3.6: Reconciliation of Requirements with [16]

The application of OSGi for heterogeneous networks is addressed by Cheng et al. high-
lighting the discovery and plug-and-play characteristics. They state that OSGi can be
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Figure 3.1: Service Oriented Interactions

Service Registry

Service
Description

Service Provider Service Requester

Bundle

DiscoverPublish

Bind

divided into two main elements: the services platform and the deployment infrastruc-
ture. The former is a software platform supporting the service orientation interaction as
depicted in �gure 3.1. Thus, service providers publish service descriptions and service
requesters discover services based on a service description to bind them to the service
providers. The deployment procedure, however, follows the bundle lifecycle as already
explained in 2.6 [17].
Nonetheless, their focus on discovering services within a heterogeneous network envi-
ronment excludes special consideration of security or monitoring issues. In addition,
their infrastructure is not distributed so that autonomous computing including migra-
tion is becomes irrelevant. The following table gives a quick overview of the issues
covered by [17].

Features Approach by [17]
Security X
Availability X
Migration X
Continuous Monitoring/Controlling X
Dynamic Update X
Autonomous Service Management X
Service Discovery / Plug&Play X

Table 3.7: Reconciliation of Requirements with [17]

Finally, Kim et al. emphasize the device discovery mechanism of OSGi, i.e. the plug
and play of heterogeneous devices during runtime which in case of DS2OS is handled
by the VSL [18]. Besides, they contribute a semantic model of a Smart Home system
to achieve semantic interoperability. However, they do not use a P2P system. Thus,
neither availability nor migration are addressed. Therefore, autonomous computing is
not an option. The other focus on access control only refers to devices. The table below
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represents their contribution.

Features Approach by [18]
Security X
Availability X
Migration X
Continuous Monitoring/Controlling X
Dynamic Update X
Autonomous Service Management X
Service Discovery / Plug&Play X

Table 3.8: Reconciliation of Requirements with [18]
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3.4 Dynamic Updates

Although the OSGi framework o�ers a policy to update components without bringing
down the whole system, it does not mean that updates are made on the �y. Indeed, the
updated cooperating bundles have temporarily to be shut down and the state of the
services gets lost.

Pohl and Gerlach study the use of the bridge design pattern to decouple service replace-
ment from bundle updates by registering only references to instances of automatically
generated bridge classes instead of services. Thus, the problem of dangling references
is solved and the stopping and restarting of dependent bundles can be avoided [54].
However, this approach does not provide dynamic updates because it still requires the
updated bundle to temporarily shut down.

Chen and Huang study the problem of dynamically updating service bundles in the
context of OSGi applications by two techniques <R 4> . The �rst one is simply replacing
the outdated service by its updated version selecting the ideal time to process the update
while simultaneously �nishing the state transfer.
The new service with the same name as the outdated one is registered in the OSGi
framework because the coexistence of services with the same name but di�erent versions
is possible as already mentioned in 2.2.1. From that moment, the client resolving the
name gets a reference to the new version. The update point has then to be speci�ed
for the correct state transfers between the di�erent versions. However, the way how to
determine this point is not explicitly mentioned. Assuming that the update point has
been identi�ed the state is transferred via a State Transfer Function (STF) which takes
the state of the outdated service and writes it into the new one. Finally, the old client
bundles are restarted getting references to the new versions of the updated service as
depicted in �gure 3.2.

Figure 3.2: Service Replacement adopted from [6]

The other technique is about adding an indirection level through dynamic proxies act-
ing as intermediaries between the clients and service bundles. They wrap the current
references to the service bundles. If no updates have to be performed, the client invo-
cations of the service methods are simply forwarded to the service bundles. When a
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dynamic update has to be applied, these proxies are noti�ed and refresh the references
by discarding the old ones and getting new updated ones, thus hiding the update from
client code as illustrated in �gure 3.3.

Figure 3.3: Service Updates with Proxies adopted from [6]



3.5. Availability through Service Migration 47

3.5 Availability through Service Migration

The bene�t of service migration and its prerequisite on DS2OS site have been discussed
in section 2.1.4 <R 2> .
The base for decision whether to migrate and which parts is investigated by [7]. SCAN-
DEX (Service Centric Networking for Challenged Decentralized Networks) is a straw
man service centric network architecture for deploying and managing services in decen-
tralized networks. Services are modeled as unikernels which are small virtual machines
dedicated to execute special tasks that can be in a stored or instantiated state. The
�rst state is not running whereas the instantiated state is running and able to accept
service execution requests. These services are produced by publishers and requested by
subscribers.

A SCANDEX network consists of Service Execution Gateways (SEG), Forwarding Nodes
(FN), Edge Gateways (GW) and Brokers. The SEGs are the points of attachment for
clients and servers hosting and executing services on behalf of its attached client. FNs
are responsible for routing requests for services towards available copies caching ser-
vices locally. GWs are responsible for connecting di�erent domains like two separate
networks. They can also serve as publishers and subscribers of services. Brokers per-
form the service resolution and are responsible for performing intra domain forwarding.
SEGs, FNs and GWs have �rst to register with the Broker.

Figure 3.4: SCANDEX network adopted from [7]

The operation of SCANDEX can be best explained by an example as depicted in �gure
3.4. The client node in island A wants to access a services located in island B where
each client is attached to its local network through a SEG. Thus, service requests are
�rst passed from the client to the SEG.
If the SEG contains locally a copy of the service in its cache, the request is simply passed
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to the local service instance and is executed immediately. If, though, the SEG does not
have a local copy, the request must be forwarded on. This service interest is then passed
through the network via FNs to a broker being in charge of indexing all services that
are locally disposable in the network (intradomain). Thus, services hosted by SEGs
must be registered with the broker. If the broker knows an intradomain instance of
the service, it requests the device with the instance to migrate the service to the SEG.
After the migration of the service instance, the SEG instantiates the migrated service
and forwards it to its client. If the broker is not aware of any service copy within its
own network, the interest is forwarded on an interdomain level to the GW such that
the interest is passed into island B. The interest is then passed by the GW of island B
to its network broker. If the service is located in island B, the service is discovered by
the broker instructing the host to pass it to the GW which has now the the migrated
instance locally in its cache. The GW is then instructed by the broker to forward the
service instance to the GW of island A caching and publishing it to its own broker. The
broker recognizes that a pending interest exists and instructs the GW to pass the service
instance to the subscriber.

The interdependency of services and the resulting challenge in terms of migration is also
addressed by [7]. Service dependencies can be represented as directed acyclic graphs.
Explicitly embedded in the header of a service interest the interaction with only the
root of a service directed acyclic graph is required.
Figure 3.5 illustrates an example. Service A is the requested root service relying on B
and C which depend on D. Each service is located in a separate SEG node represented by
dashed squares. The cost of running a node is indicated as its weight and the tra�c cost
between communicating services is shown as the weight of an arrow. Due to signi�cant

Figure 3.5: Service Dependency and Migration Strategy adopted from [7]

tra�c from both C and D to D tra�c footprint can be reduced by duplicating D at both
nodes of B and C through migration.
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The explicitly recorded cost combined with the directed acyclic graph of dependent
services is the decision basis for a SEG whether to migrate, and if so, which parts of the
service.

The task of the broker is realized by the SLSM in DS2OS which has the knowledge over
all available nodes and makes the migration decision based on the available resources.
Nonetheless, in a second stage the cost aspect in terms of tra�c can be thought of a
decision criteria for the migration strategy. However, this requires the SLSM to not
only know all service dependencies but also their costs. Even if such information can
be obtained, the overhead is in�ated and state synchronization becomes even more
di�cult.
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3.6 Integrity checks

The security mechanism of the analyzed runtime environments are mostly based on
their encapsulation property resulting in the creation of bundles or containers. However,
this does not protect the integrity of the binaries itself as already sketched in section
2.1.5 <R 8> .

Android’s security decision made during the app installation process is based on update
integrity, i.e. whether to treat the installation as a new app or as an update overwriting
previous versions.

App signing is the primary security mechanism of Android that protects the integrity
of the app after it is released by the developer ensuring that only he or she can issue
an update to an already installed app. One alternative to the entire reputation-based
model of Android is to use a full-�edged public key infrastructure where developers
prove their identity to a certi�cate authority (CA) and are issued a certi�cate.

Figure 3.6: Model of the Android Installation Process for an App Package (APK) adopted
from [8]

Android’s app installation process from the Google Play Store begins with the approval
of permissions and the veri�cation of the app package validity where it is assured
that it has not been altered or corrupted since its signature and that it comprises a
valid certi�cate for the signing key [8]. Then, it is decided whether the app is a new
installation or an update according to the package attribute in the manifest. In case
of an update, the certi�cates are compared and the installed binary is replaced if the
signature keys are identical. Otherwise, the app is handled as a new installation.
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After that, Android assigns a unique Linux user ID (UID) to the app. In case of an initial
installation, it is veri�ed if the manifest comprises the sharedUserId. Otherwise, the
UID of the overwritten app is used. The permission assignment is the last step where
permissions listed in the manifest are assigned to the UID. The whole process is depicted
in �gure 3.6.

The update integrity concept is roughly sketched in the following. A self-signed cer-
ti�cate is generated by the developer including X.509 attributes like organization,
name or validity period usually using RSA as signature algorithm. For every �le
in the app package (binary, app manifest) a manifest is created by the jarsigner in
META-INF/MANIFEST.MF including an entry with the path and an SHA1 hash for each
�le. The signature �le META-INF/NAME.SF is also generated by the jarsigner including
a hash of META-INF/MANIFEST.MF and an individual hash of each entry in MANIFEST.MF.
So, Android can verify the signature in NAME.SF using the public key in NAME.RSA and
the hashes in NAME.SF and MANIFEST.MF during installation.
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3.7 Autonomous Service Management

The goal of high availability of services at any time and the approach to migrate services
if necessary has already been discussed in section 2.1.4. However, in order to talk about
autonomous service management this method is only one side of the coin because
possible delays during the migration process can lead to longer periods of inactivity.
Therefore, di�erent research papers address another aspect in terms of autonomous
service management promising to guarantee continuous running of services even in
case of node failures <R 1> .

3.7.1 Availability through Service Replication

Thus, Guerrero-Contreras et al. apply autonomic computing techniques to improve
service availability in dynamic network topologies. Their self-adaptive context-aware
architecture provides a distributed approach to support dynamic service replication and
deployment. While following a component-based design, �ve subsystems are provided:
the Monitor subsystem, the Context Manager, the Replica Manager, the Communications
subsystem and the service itself as depicted in �gure 3.7.

The Monitor subsystem contains components monitoring device and network capabili-
ties. Whereas device capabilities are easily obtained being local information, collecting
network topology information is expensive in terms of bandwidth and energy consump-
tion. Routing protocols such as the Optimized Link State Routing Protocol (OLSR) seem
to be suitable to estimate the network topology building and providing the routing
tables which contain the reachable nodes and for each node the gateway as well as the
number of hops.
The Context Manager is responsible for storing and processing the information from the
monitors being used by the Replica Manager to adjust the service deployment according
to the changes in the execution context. The exchange between the Replica Manager is
twofold: on the one hand, the Replica Manager is noti�ed about events by the Context
Manager (publish-subscribe); on the other hand, the Context Manager is requested about
information to assess the node quality by the Replica Manager (request-response). The
diagram in �gure 3.8 demonstrates the context model managed by the Context Manager.

To reduce the bandwidth consumption, only the score of the nodes is shared between
each other while sharing the same context model with locally stored information. Taking
into account node features such as battery, CPU or memory allows to choose the most
suitable nodes as service hosts.
Moreover, the consideration of speci�c computational service requirements enables the
system to �nd the best matching between services and nodes. Guerrero-Contreras et
al. propose an XML structured data model containing the optimal, critical and normal
values for each computational service requirement as shown in Listing 3.1.
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Figure 3.7: Service Replication adopted from [9]

Figure 3.8: Context Model for Self-Adaptive Service Activation adopted from [10]
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1 <resourceName = "CPU"
2 r e s o u r c e I D = " TS03 "
3 optimumValue= " 2MHz"
4 normalValue = " 1MHz"
5 c r i t i c a l V a l u e = " 0 . 5MHz" / >

Listing 3.1: Data Model for Computational Service Requirements

Furthermore, the service computational requirements part includes the number of clients
(e.g. other services), dependencies between services and the number of service replicas
as relevant information to provide an adjusted service deployment solution.
The number of direct links for each node to provide a coordinated activation con�gura-
tion of the replicas within the network is part of the network topology.
The relevance of the context information is assessed by an election algorithm performed
by the di�erent replicas of the Replica Manager [10]. This algorithm enables the nodes
to exchange their score calculated by the evaluator of the Replica Manager, a server
request to establish client-server connection between the requesting and receiver node
as well as a server rejection and acceptance depending on whether the receiver node of
a server request accepts or rejects the request to act as server for the sender node.
The Communications subsystem allowing the Replica Manager to communicate with
other nodes of the framework and the service itself being passive or active replica ac-
cording to the decision of the Replica Manager does not require any further explanation.
The Replica Manager embedded in each service replica encapsulates the adaptation
logic in terms of the service replication and deployment. The evaluator component
of the Replica Manager implements the evaluation function used by the coordinator
component to assess whether the node is suitable to host a speci�c service based on
the information of the Context Manager. The trigger policies indicate through a rule-
based system under which circumstances a service should be replicated or migrated
(e.g. battery power is below 10%). The coordinator organizes the replicas in the system.
If a change context threatens the service availability based on the trigger policies, each
coordinator votes for the node evaluated to be most suitable to host the replication
service.

Replications are e�cient by just restarting a service but also expensive because each
node has to carry service implementations [1, p.282]. This contradicts the goal of
keeping the overhead to a minimum <R 5> . Therefore, the prototype does not contain
any replication mechanism. The implementation of a promising replication strategy
taking into account <R 5> would demand a sophisticated probabilistic approach that
would go beyond the scope of this thesis.

DS2OS uses periodical alive pings exchanged between knowledge agents via the mul-
ticast transport to discover each other and synchronize the context repository node
structure [1, p.260]. Thus, the disconnection of a node from the middleware generates an
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isolated island without pings being exchanged. After the removal of the disconnection
reason, this island is merged into DS2OS again <R 1> .

Apart from migrating services, the concept of ad hoc environments can also be seen as
a solution for unattended nodes or disconnection from a middleware [55, 56] However,
this requires mulit-hop overlays whereas the current VSL architecture is limited to a
single-hop architecture.

3.7.2 The MAPE-K Control Loop

The MAPE-K autonomic management control loop as basic technique for autonomous
computing has been explained in section 2.1.4.

DS2OS applies the MAPE-K control loop as depicted in �gure 3.9. The example shows
the observe-control interaction between a sensor (thermometer) and an actuator (air
conditioning) until the desired room temperature of 24◦C is reached.

Figure 3.9: MAPE-K cycle in DS2OS adopted from [1, p. 90]

The data represented as �oating-point number of the monitoring component (ther-
mometer), i.e. the current room temperature, is retrieved by a sensor service. The value
is interpreted by the analysis component (e.g. a converting service) as 33 degree Celsius.
This information is squared with the context of the knowledge agent indicating that
the desired temperature is 24◦C. The deviation of 9◦C is recognized by the planning
component which instructs the execution component (air conditioning) to further cool
down the air.





57

Chapter 4

Design

In this section the embedding of the OSGi framework as underlying execution envi-
ronment into the DS2OS context (particularly the SHE) and the connection between
the top-down and bottom-up service management are designed. Since the focus of
the runtime environment is on the provision of service availability, the architectural
elements to achieve this goal are especially stressed <R 3> . The challenge is, on the
one hand, to integrate the OSGi framework into the DS2OS architecture and, on the
other hand, to synchronize the communication between the NLSM and the SLSM via a
well-de�ned interface <R 7> .

The self-healing capabilities of the generated autonomous service management are
made transparent by showing the concrete treatment of SLA violations <R 6> .

Finally, di�erent scenarios for autonomous service management in Smart Spaces are
introduced to create test cases for the evaluation part.

This chapter is structured as follows:
Section 4.1 outlines the interaction between SHE, NLSM and SLSM and describes how
the resources are monitored.
Section 4.2 describes the publish-subscribe mechanism via callbacks between NLSM
and SHE.
Section 4.3 de�nes the interface between SLSM and NLSM.
The treatment of SLA violations is discussed in section 4.4.
Finally, this chapter ends with the description of three autonomous service management
scenarios in Smart Spaces in section 4.5
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4.1 OSGi Embedding

The OSGi framework is integrated in the SHE and handles the lifecycle of the services
under the hood. The concrete interaction mechanism with the VSL and the communi-
cation between SHE, NLSM and SLSM is described in more detail in the next section.
Afterwards, interface speci�c design decisions are discussed.

4.1.1 VSL Connection

The VSL connector is responsible for the communication with the KAs. It is extended
with functionality for service management. Virtual Nodes provide the interface to the
additional functionality through an additional context model being instantiated if a
service is started using the DS2OS connector [1, p. 278].

Since the purpose of the runtime environment is to provide high availability of the
services, a quick communication via the knowledge agents contributes to this goal.

The sequence diagram 4.1 shows the desired communication �ow between SHE, NLSM
and SLSM.

Before users can install and start services, the setup of the environment has �rst to be
prepared. This begins with the initialization of the SHE by invoking its main method.
There, the con�guration details are parsed from the con�guration �le including the
agent URL where the SHE is running, the service keystore where the certi�cates are
retrieved from and the working directory. After that, the knowledge agent is started
and the manifest for the VSL service is generated. Finally, the ServiceHostingRunner
is triggered where an instance of the SHE is created and run where the Apache Felix
framework as the implementation of the OSGi framework is set up and the NLSM as
�rst service is installed as OSGi bundle and started. Thus, the execution environment is
established being ready for further services to run on it.

The real work�ow begins with the user installing a service. This triggers the UI Server
sending the install request to the SLSM. This entity checks if the service is already
available on the SLSM or NLSM site. If it is not available, a GET request to receive the
service package for the installation is sent from the SLSM to the S2Store transmitting
the package back to the SLSM. This is now in charge of �nding the optimal node to run
the service on. If the load balancing strategy calculated the optimal node, the service is
deployed there and the service is installed and started on the SHE. If everything went
well, a callback with the success information is sent to the SLSM, which updates its
network model to know each node capacity, and �nally via the UI Server to the user.

In case of disconnection from the VSL the SHE can automatically reconnect to the
middleware. This is realized through the connector. However, the problem that arises
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Figure 4.1: Communication Work�ow

is how to decide if a disconnection exists.
Therefore, the context model is extended by a connection entry. Immediately after the
SHE initialization, a VSL node is created indicating that the connection is given. During
the remaining execution time, GET requests are continuously sent to the node to check
if the connection still exists. If the request fails due to connection failure, the connector
is reactivated and the virtual nodes are registered again. Thus, the SHE is reconnected
to the VSL without any user intervention.
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4.1.2 Module Invocation Sequence

The structure that the NLSM triggers the SHE may be considered logical from the point
of view of the deployment process. However, this contradicts the idea that the NLSM
can start the SLSM in case of its failure. In addition, the NLSM is an autonomously
running service itself so that it seems reasonable to be started as the �rst service by the
SHE.

If initializing the NLSM before the SHE, the former would need an instance of the latter.
This, however, leads to cyclic dependencies between the NLSM and the SHE because
both NLSM requires the SHE module and vice versa. This loop is not allowed in Maven.

4.1.3 Resource Monitoring

The frequent and accurate exchange of metrics to monitor the state of the di�erent
nodes (CPU load, memory usage, storage allocation and bandwidth usage) <R 3> is
essential for knowing when and where to migrate services.

The obvious idea to use OSGi’s own interfaces (CPUMonitor, DiskStorageMonitor,
MemoryMonitor and SocketMonitor) to measure these metrics turned out to be problem-
atic. Although the speci�cation of OSGi describes their features and functions, nothing
could be found about their usage. Even the response of one of the speci�er of the
resource monitoring feature did not lead to the desired perception.
Therefore, the workaround via Java Management Extensions (JMX) is applied. This
standard component of the Java platform is a technology supplying tools for managing
and monitoring applications. Therefore, it can also measure the CPU and memory
consumption of the JVM. To draw conclusions about the impact of running services, the
consumption of the resources is measured before and after the starting of services. Thus,
the di�erence represents the current resource consumption. A detailed storage for each
service is not necessary for only deciding when to migrate. Apart from that, only the
CPU consumption could be measured for each service by summing up the monitored
CPU usage of each thread created by the bundle. However, this approach does not
apply to the memory consumption. The de�nition of how much memory a thread and
a bundle is using is controversial because Java threading uses shared memory so that
memory is not strictly owned by any particular thread.
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4.2 Interaction between SHE and NLSM

To enable the communication between NLSM and SLSM the well-de�ned interface has to
be considered. However, the information come originally from the SHE. Therefore, the
publish-subscribe mechanism is used on requests of the SLSM. Thus, an intermediary
abstraction is created by the NLSM to match the information from the SHE with the
interface de�nition of the SLSM.
This allows, on the one hand, to make counterchecks of the NLSM data against the SHE
data. On the other hand, the extension through new requirements or the change of
existing data can easily be performed. Instead of matching objects, context models of
the knowledge agents have to be matched which involves more abstraction.

Both SHE and NLSM have their own context models. The context model of the NLSM is
tailored to support SLSM invocations. Thus, there is little scope to make changes here.
Even another SLSM interface de�nition would lead to major modi�cations in the NLSM
and SHE architecture.
Therefore, the collection of information is outsourced in the SHE context model. This
can be extended and changed regardless of the interface requirements between NLSM
and SLSM. If, for instance, a new feature is added to the SHE, the code on NLSM side
is not a�ected. Furthermore, new resources can be easily monitored without changing
the NLSM logic.

An extract of the SHE and NLSM context model is given by table 4.1. The nodes run on
the knowledge agents and can be accessed via GET requests followed by some optional
parameters.

Component Node Address Method Parameters
NLSM /installService GET /serviceId=*
NLSM /uninstallService GET /serviceId=*
NLSM /startService GET /serviceName=*
NLSM /stopService GET /serviceName=*
NLSM /resources GET —
NLSM /stoppedServices GET —
NLSM /runningServices GET —
SHE /isServiceStopped GET /serviceName=*
SHE /isServiceRunning GET /serviceName=*
SHE /stoppedServices GET —
SHE /runningServices GET —
SHE /startService SET /serviceName=*
SHE /stopService SET /serviceName=*
SHE /updateService SET /serviceName=*
SHE /resources GET —

Table 4.1: SHE and NLSM Context Model Nodes
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The sequence diagram 4.2 depicts the way from receiving the query of the SLSM, redi-
recting the request to the SHE and calling the result back to the NLSM.

Figure 4.2: Interaction Model between NLSM and SHE

The interaction is triggered by the SLSM GET request of the memory resource consump-
tion on a node. The NLSM context model node resources on the running knowledge
agent is invoked which is further processed by the NLSMServiceRunner. This makes
a callback on the NLSM which is redirected via get request to the SHE context model
node resources of the agent. The ServiceHostingRunner is responsible for dealing with
this request and opens a callback on the SHE where �nally the main logic is executed.
The resource consumption information are collected and written back to the SHE node.
From there, the NLSM can access the data and transfer them to NLSM node. The SLSM
can then read the String and parse it into its parts.
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4.3 Communication between NLSM and SLSM

The interaction between NLSM and SLSM has already been sketched in �gure 4.1. The
focus was on the simple work�ow of installing a package. Beside the installing process,
the communication between NLSM and SLSM goes much further.

One of the most important communication issues is the transmission of monitoring data.
These are generated by the SHEs and collected by the SLSM. Containing the resource
consumption for each node the SLSM can then perform load balancing and decide to
which node services are to be deployed. Furthermore, in case of node overloads or node
failures the services involved can be migrated to other nodes with more capacity. In
terms of an autonomous service management, this information can help to prevent
bottlenecks and thus user intervention.

Another information exchange consists of updating the alive signals of the NLSMs. The
knowledge whether a node is still alive and its update frequency is of utmost importance.

One possibility would be to use pings. The SLSM transmits periodically a ping signal
to all NLSMs within short intervals. Each NLSM then sends the message back to the
SLSM. If the signal arrives at the SLSM within a given period, the NLSM is considered
alive and the update procedure starts again.
This mechanism is very resource consuming. The update cycle demands a lot of band-
width and can lead to network congestions so that other operations are blocked by
sending and receiving pings.

Therefore, the concept of heartbeats is applied in the prototype which seems more
suitable.
Each NLSM sends a message containing its state (i.e. being alive) to the SLSM. While
the SLSM has to send back a signal when using pings, this is not the case for heartbeats.
Thus, less bandwidth is required, the overhead can be severely reduced <R 5> and
other method calls are not blocked. The heartbeat frequency can be modi�ed so that
according to the current circumstances the optimal frequency can be set resulting in
reduced network congestion while optimizing the update cycles.
Graphic 4.3 shows the worst and best case scenarios of the occurrence of node failures
and their detection.

Two NLSMs are running and connected to one SLSM instance. Each of the NLSMs
periodically emits a heartbeat signal which is received by the SLSM to indicate whether
they are still alive.
In case of NLSM1 a node failure occurs immediately after sending the heartbeat. Thus,
the SLSM receives NLSM1’s last sent heartbeat shortly after its failure. The period
between the failure and its detection due to the absence of the heartbeat signal is
indicated by tw.
This is the worst case scenario with a maximum downtime until the failure is recognized
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Figure 4.3: Worst and Best Case Scenario of Node Failure Detection

and the node becomes a migration candidate.

The best case scenario, by contrast, is demonstrated by NLSM2. Here again, heartbeat
signals are sent to the SLSM indicating the status. The signal is received by the SLSM
after NLSM1’s. However, this time the node fails at the end of the heartbeat period, i.e.
shortly before the emission of the new signal. Thus, the time between the failure and
its detection indicated by tb is minimized.

The outcome of this re�ection suggests that the heartbeat frequency should be set
very high to undermine this e�ect. However, this con�icts with preventing network
congestion and application responsiveness.
Finally, the increase of the heartbeat frequency can even have the opposite e�ect. Node
failures may be detected where this is not the case because the bandwidth cannot
support the frequency. Thus, the reception of the heartbeat signals is expected before
they can be transmitted.
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4.4 SLA Violations

The provision of an autonomous service management is characterized by little user
intervention. Thus, the treatment of SLA violations can be seen as an indicator to
achieve this goal.

The SLA parameters are recorded in the OSGi bundle manifest. Their implementation as
dictionary allows to retrieve the values for each key. But before reading the information,
the entries have �rst to be accessed. This is done by retrieving the bundle manifest
headers calling bundle.getHeaders(). The following listing 4.1 depicts an exemplary
bundle manifest containing SLA parameters.

1 Mani f e s t −V e r s i o n : 1 . 0
2 Bundle−M a n i f e s t V e r s i o n : 2
3 Bundle−Symbol icName: s e r v i c e H o s t i n g E n v i r o n m e n t
4 Bundle−V e r s i o n : 1 . 0 . 0
5 CPU−R e q u i r e m e n t : 3 . 23%
6 RAM−R e q u i r e m e n t : 5 . 2 3 E7
7 Bundle−Name: S e r v i c e Hos t ing Environment M a n i f e s t
8 Import−P a c k a g e : smart . a p i . pkg ; v e r s i o n = " [ 1 . 0 . 0 , 2 . 0 . 0 ) "
9 Export −P a c k a g e : she . pkg ; v e r s i o n = " 1 . 0 . 0 "

Listing 4.1: Simple Bundle Manifest

This means that the bundle requires at least 3.23% of the available CPU and at least 52.3
Megabytes of memory.

The examination of whether an SLA violation exists is made by comparing the required
resources with the actual resource consumption.JMX allows only to measure the per-
centage of the CPU so that both the SLA parameters and the resource consumption
recording have to be content with this measurement unit. This is a serious disadvantage
of JMX because the CPU data should be represented as absolute value in Hertz because
each hosting environment has di�erent capacities. However, in order to assess whether
SLA violations are properly propagated and recovered the information in percent is
su�cient, particularly when testing in a homogeneous environment like the iLab.

Another drawback resulting from using JMX is that the current resource consumption
for each bundle cannot be accurately retrieved. Nevertheless, the application of a
threshold alleviates the impact of this data.

The selection of which service to migrate is kept simple for test purposes and follows
the LIFO (Last In First Out) principle. That means that among the running services
those which have only been installed at the end are migrated �rst.
A more sophisticated approach would be to iterate through each bundle and read their
SLA parameters. The bundle with the lowest resource requirements is the �rst to be
migrated. However, this implies that each SLA parameter has the same priority and
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that the bundle with the lowest resource requirements is always the best choice for
migration. But this implies that the service with the least resource requirements is also
the least important one. This is an assumption that is not true because the importance
of services is a very subjective matter. While some consider a service crucial, the same
service can be insigni�cant for others.
Therefore, the mandatory indication of the priority expressed as a �oating point is
suggested as an additional bundle manifest entry.
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4.5 Autonomous Service Management Scenarios

This section introduces three di�erent scenarios for autonomous service management in
Smart Spaces. They are chosen because they cover the most frequent cases where user
intervention is very high. However, they represent scenarios that can occur in every
sort of Smart Spaces and that can be made more comfortable by an autonomous service
management. The evaluation of the runtime environment designed in the previous
sections is based on these scenarios.

4.5.1 Node Failure

The most harmful event is certainly the failure of a complete node. It implies that all
services running on the failed node become unavailable. This means that the services
need a new host until the node is rebooted.
The autonomous service management is responsible for bringing theses services back
to life. The SLSM is informed about the node’s failure by not receiving its heartbeat any-
more. It then migrates the a�ected services to other nodes according to their capacities.

The service failure scenario without explicit node failure cannot be realized. The lifecycle
management of the runtime environment takes care of the failed services under the
hood so that an intervention of the SLSM is not necessary and the process cannot be
monitored.

4.5.2 VSL Disconnection

In contrast to node failures, the de�cit of a VSL disconnection assumes that the a�ected
nodes keep working.
The disconnection is autonomously repaired by reconnecting to the middleware. The
connector is reactivated and callbacks are brought back to life.

4.5.3 SLA Violation Recovery

Services or nodes do not have to fail to make user intervention necessary. It su�ces
that SLA parameters cannot be guaranteed.
Such SLA violations are propagated to the SLSM which �nally decides what to do, i.e.
which service is to be migrated and where it is to be migrated.
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Chapter 5

Implementation

This section provides a brief overview of interesting implementation details of the
integration of the OSGi framework into the SHE and the connection between SHE
and NLSM. To enable the communication between NLSM and SLSM the well-de�ned
interface has to be considered. However, the information come originally from the
SHE. Therefore, the adapter design pattern is used on requests of the SLSM. Thus,
an intermediary abstraction is created by the NLSM to match the information from
the SHE with the interface de�nition of SLSM. This allows, on the one hand, to make
counterchecks of the NLSM data against the SHE data and, on the other hand, to easily
react to changed or new requirements. Instead of matching objects, context models
have to be matched which involves more abstraction.

This chapter is structured as follows:
Section 5.1 presents the setup of the OSGi framework embedded into SHE.
Section 5.2 describes the publish-subscribe interaction between SHE and NLSM.
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5.1 OSGi Setup

The OSGi framework as the selected execution environment is embedded into the
SHE. Each lifecycle relevant operation is handled by OSGi under the hood. The OSGi
framework is implemented with Apache Felix.

The Felix framework is implemented by the org.apache.felix.framework.Felix

class. Listing 5.1. shows the initialization of the Felix environment in the run() method.

1 public void run ( ) throws E x c e p t i o n {
2
3 th i s . v s l N o d e F a c t o r y = th i s . c o n n e c t o r . g e t N o d e F a c t o r y ( ) ;
4 Map conf igMap = new HashMap ( ) ;
5 th i s . a c t i v a t o r = new H o s t A c t i v a t o r ( ) ;
6 L i s t l i s t = new A r r a y L i s t ( ) ;
7 l i s t . add ( th i s . a c t i v a t o r ) ;
8 conf igMap . put ( F e l i x C o n s t a n t s . SYSTEMBUNDLE_ACTIVATORS_PROP , l i s t ) ;
9

10 try {
11 / / I n i t i a l i z e F e l i x
12 framework = new F e l i x ( conf igMap ) ;
13 framework . s t a r t ( ) ;
14 th i s . c o n t e x t = framework . g e t B u n d l e C o n t e x t ( ) ;
15 / / I n v o c a t i o n o f NLSM as f i r s t bund l e
16 Bundle nlsm = th i s . c o n t e x t . i n s t a l l B u n d l e ( " f i l e : "
17 + th i s . w o r k i n g D i r e c t o r y + " / nlsm . j a r " ) ;
18 nlsm . s t a r t ( ) ;
19 } catch ( E x c e p t i o n e ) {
20 System . e r r . p r i n t l n ( " Could ␣ not ␣ ␣ c r e a t e ␣ framework : ␣ " + e ) ;
21 e . p r i n t S t a c k T r a c e ( ) ;
22 }
23
24 . . .
25
26 }

Listing 5.1: OSGi Framework Initialization

The start() method is used to start the framework instance which implicitly invokes the
init() method. While init() transfers the framework instance in the Bundle.STARTING
state, the start() method results into the Bundle.ACTIVE state. The init() method is
necessary because the framework does not have a BundleContext when being created
for the �rst time, so a transition to the Bundle.STARTING state is required to acquire its
context for performing various tasks, such as installing bundles.
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5.2 SHE-NLSM Interaction

The communication between SHE and NLSM is done using the publish-subscriber design
pattern. Thus, both SHE and NLSM have their own context models to exchange service
information.

Listing 5.2 shows a characteristic SHE context model node invocation triggered by the
NLSM.

1 public void i n s t a l l S e r v i c e ( S t r i n g serv iceName ) {
2 try {
3 th i s . c o n n e c t o r . g e t ( connec tedAgent + " / " + SHE_NAME
4 + " / i n s t a l l S e r v i c e / serv iceName = " + serv iceName ) ;
5 } catch ( V s l E x c e p t i o n e ) {
6 e . p r i n t S t a c k T r a c e ( ) ;
7 }
8 }

Listing 5.2: SHE Node Invocation by NLSM

The node installService is invoked on the SHE context model. The get() method triggers
a callback function on the SHE side which is depicted in listing 5.3. Finally, the OSGi
framework is invoked here by installing and starting the bundle.

1 @Override
2 public void i n s t a l l B u n d l e ( S t r i n g serv iceName ) {
3 i f ( j a r L o c a t i o n != null ) {
4 try {
5 Bundle bund le = th i s . c o n t e x t . i n s t a l l B u n d l e ( " f i l e : "
6 + serv iceName ) ;
7 bund le . s t a r t ( ) ;
8 } catch ( B u n d l e E x c e p t i o n e ) {
9 e . p r i n t S t a c k T r a c e ( ) ;

10 }
11 }
12 }

Listing 5.3: Callback on SHE Side

The communication via service connectors does not only allow to use callbacks but also
to provide a better transparency for service requests.
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Chapter 6

Evaluation

In this chapter the service management with a focus on the runtime environment
designed in chapter 4 is evaluated. Simulating di�erent failure scenarios the in�uence
of the runtime environment and the autonomous service management on the service
availability is tested <R 1> . The results prove that the runtime environment has a
positive in�uence on the resilience of the service management <R 2> and that service
downtime can be reduced.

This chapter is structured as follows:
Section 6.1 introduces the testbed used for the evaluation.
Section 6.2 assess the impact of the runtime environment on the availability of the
services, thus on the resilience of DS2OS.
In section 6.3, the convergence time is measured between the dis- and reconnection of
a node to the VSL.
The autonomy on a local level is assessed in section 6.4 by examining the triggering of
SLA violations.
Finally, section 6.5 analyzes the performance of the SHE and the embedded runtime
environment in terms of their resource consumption.
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6.1 Testing Environment

This section describes the hard- and software setup used to assess the runtime environ-
ment embedding in the following sections.

For the measurement, a computer with the following speci�cation is used: Intel Core
i5 processors with 2.5 Ghz, SSD drive and 16 GB of main memory where the macOS
operating system is running on. A knowledge agent is running on the computer for
each experiment.

All experiments are conducted with di�erent VSL services. Furthermore, OSGi services
as variable units with almost the same size are used. They are created via the OSGi
framework and contain di�erent characteristics such as special entries in their manifest
�les. The way in which these services are used for experiments are described in the
following sections 6.2-6.4.
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6.2 Availability / Resilience

Autonomous service management enables services to remain available even if the nodes
on which they are located fail and become disconnected from the middleware <R 1> ,
thus increasing the resilience of DS2OS. This experiment makes the attempt to assess
the advantages of the runtime environment in the failure scenario described in section
4.5.1.

6.2.1 Setup

This experiment utilizes a computer to simulate the interaction between SHE and NLSM
running on it. The SHE initializes automatically an NLSM instance. The used computer
has a 2.5 GHz Intel Core i5 processor and 16 GB of main memory.
The test is repeated 20 times to reduce random factors. After each run, the bundle cache
is deleted to reinstall and restart the services. The metrics are logged and prepared to
be visualized as diagrams.

6.2.2 Expected Results

Mission-critical systems often have goals of 4 nines (99.99% availability), which is less
than an hour downtime per year, or even 5 nines (99.999% availability), which is 5 min-
utes of downtime per year. This is, however, not realizable for a constantly changing
network topology such as DS2OS.
The service replication mechanism by [11] has already been mentioned in the related
work. Their distributed self-adaptive system is broadly similar to DS2OS’s. They mea-
sure the service availability under both TCP and UDP which is a�ected by the time
to choose a host acting as server. Thus, latency in the communication is crucial for
the performance. Both TCP and UDP result in a similar service availability depending
on the number of nodes the network consists of. Thus, the metric under UDP ranges
between 99.84% for a network of 4 nodes and 97.51% in case of 16 nodes as depicted in
�gure 6.1.

However, their experiment does not mention any node or service failures. Their de�-
nition of service availability is therefore the time in which a node can access a service
replica when being connected to other nodes. This corresponds to the case how long
the SLSM needs to choose a node and to deploy a service on that node.

But even without such a replication mechanism the service availability for the au-
tonomous service management of DS2OS is expected to be better than 97% for a P2P
network of 4 to 16 nodes in case of one node failure due to its migration capability. The
performance is supposed to depend in this case on the deployment time, thus also on
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Figure 6.1: Service Availability Experiment from [11]

the latency. Furthermore, it is expected to depend on the heartbeat frequency, i.e. how
frequently the nodes send their status messages to the SLSM.

6.2.3 Evaluation

Before assessing the service availability of the autonomous service management system,
the in�uence of the number of services on the downtime is investigated. To exclude the
impact of the deployment time, the services have nearly the same size and the SLSM is
mocked.

Figure 6.2 illustrates the impact of the number of failed services on the total downtime.
The services have nearly the same size so that their deployment time should not di�er
signi�cantly. The downtime of the services is simulated by stopping them and rein-
stalling as well as restarting them on another node. The downtime is adjusted by the
period of manual interaction.
Migrating and starting only one service produces a downtime between 35 ms and 51 ms.
The combination of two services, however, increases the range of the total downtime
partially signi�cantly. While the minimum downtime is 54 ms, thus almost the upper
bound of the downtime of one service, the maximum is 320 ms. The declaration is that
in the latter case two services are installed which interact. The HelloProvider bundle
in this example provides the logic of a simple Hello World output. The receiver of this
logic is the HelloConsumer service where the string is printed by the BundelActivator.
The partial unilateral dependence can also be recognized in the case of three failed
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Figure 6.2: Service Downtime relating to Number of Failed Services

services. The minimum of 56 ms is very low because the failed services do not depend
on each other while the other values range between 274 ms and 313 ms where at least
two services interact. In case of four failed nodes the two dependent services are always
involved.
This small example demonstrates the impact of the unilateral dependence of services
on their downtime. The number of failed services itself, by contrast, does not have such
an e�ect. Thus, it can be concluded that the deployment time and the dependence of
services a�ect their downtime regardless of the network size or number of node failures.

Keeping this in mind the evaluation of the impact of node failures on the availability has
to be done without dependent services. The same amount of non-dependent services
has to run on all nodes.
For comparison purposes, the time of the simulated execution is also one hour as in the
case of [11]. Furthermore, the number of nodes ranges under these conditions between
4 and 16. The simulation has been performed 20 times to eliminate the in�uence of
random factors. The availability is measured by recording the downtime and uptime. If,
for instance, a service has 3 minutes downtime during the measurement of one hour,
the availability is calculated as follows:
1 hour corresponds to 60 minutes. The downtime expressed as a percentage is therefore
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(3/60 ∗ 100) = 5%. Thus, the availability equals 100% − 5% = 95%.
If several services are running, their availability is measured by adding them up:

Total Availability =
n∑
i=1
(1 −

downtimei
uptimei

) × 100% (6.1)

where n is the number of failed services.

The impact of the SLSM has not been considered yet. The migration was mocked
and the timestamps adjusted so that an ideal SLSM is simulated which immediately
deploys the failed services on preselected nodes without any computation time. Thus,
the variations in the heartbeat frequency and in the choice of the migration strategy
are hidden. Furthermore, the variability of latency is bypassed.

Since the network size does barely have an e�ect on the service load balancer, i.e. the
decision to which node a service is to be migrated according to [5], the consideration
of a heartbeat frequency of 5 seconds and a deployment time of 10 seconds could lead
to the output as depicted in the following graph.

For lack of preparation time for an integration test of this work and that of [5] the
interaction between SLSM on the one hand and NLSM as well as SHE on the other hand
is not investigated in detail in the iLab.

However, the following graph shows a possible simulation of the whole system in terms
of service availability in dependence of the network size considering the partial results
of both measurements.

Figure 6.3: Service Availability relating to the Network Size
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The measured values with a mocked SLSM are represented as blue line. The variability
are due to measurement inaccuracies. However, the ideal mocked SLSM instantly knows
after the absence of the heartbeat signal that the node failed and migrates the service
to a prede�ned node. The red line indicates the forecasted service availability in case of
interaction with the real SLSM. Due to the deployment time and the heartbeat frequency
the graph will be under the mocked SLSM line. The line gradually decreases due to the
network size. However, the descent is very small due to the performance of the service
load balancer.

As already explained in section 4.5.1 the treatment of failed services is not able to be
monitored due to the inner OSGi processes. However, during the experiments where
SHE and NLSM instances were running an hour without interruption, the log �le did
not produce any service failures.
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6.3 Self-Healing

The ability of the SHE to reconnect to the middleware in case of connection failure has
already been discussed in section 4.1. The emphasis in this case is on its autonomous
function.
In contrast to node failures where the instances crashed for some reasons, the reconnec-
tion scenario requires a working node with the limitation of temporary disconnection
from the middleware.
This section evaluates the convergence time between the disconnection of a node and
its reconnection to the VSL.

6.3.1 Setup

This experiment utilizes a computer to simulate the dis- and reconnection of the SHE
to the middleware. The SHE initializes automatically a separate NLSM instance with its
own process id to eliminate side e�ects of the SHE-NLSM communication. The used
computer has a 2.5 GHz Intel Core i5 processor and 16 GB of main memory.
The disconnection is simulated by shutting down the connector (connector.shutdown()).
From then on, the system time is measured. Immediately after that, the connection
node is tried to be requested. Due to its failure the reconnection mechanism is triggered
(connector.activate(), connector.registerService(manifest)). After successful
reconnection, the time is stopped and recorded.
The test is repeated 20 times to reduce random factors. After each run, the bundle cache
is deleted. The convergence time is calculated and logged to be visualized as box plot.

6.3.2 Expected Results

The requests answered by a local KA have a delay of some milliseconds [44]. The delay
of the reactivation of the connector and the registering of the virtual nodes should also
lie within the range of milliseconds.

6.3.3 Evaluation

The outcome of the experiment is depicted in �gure 6.4.

The test series con�rms that the reconnection mechanism works reliably whenever the
SHE becomes disconnected from the VSL.

The box plot shows that the expected results apply. The range of the convergence
time lies between 270 ms and 441 ms. Thus, the downtime of the a�ected services
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Figure 6.4: Convergence Time between Dis- and Reconnection to the VSL

running on the disconnected node is insigni�cant because the bundle cache prevents
their redeployment.



82 Chapter 6. Evaluation

6.4 Autonomy

The autonomous service management has already been qualitatively evaluated in section
6.2. However, the recovering from SLA violations seems suitable to assess autonomy
on a node level. Therefore, the following experiment assesses whether SLA violations
are properly treated <R 6> in the failure scenario described in section 4.5.3.

6.4.1 Setup

This experiment utilizes a computer to simulate the triggering of the SLA violation on
which a KA, SHE and NLSM are running. The SHE initializes automatically an NLSM
instance. The used computer has a 2.5 GHz Intel Core i5 processor and 16 GB of main
memory. After each iteration, the bundle cache is deleted to reinstall and restart the
service with a memory requirement of at least 3.8 GB (SLA parameter). Thus, the SHE
which provides a maximum of 3.8 GB of main memory is expected to detect the SLA
violation and trigger the migration of the last installed service.
The test is repeated 20 times to reduce random factors. The time between bundle
initialization and migration invocation is logged and prepared to be visualized as box
plot.

6.4.2 Expected Results

As qualitative outcome, the continuous detection of the SLA violation is expected as
well as the triggering of the migration of the last installed service.
The quantitative measurement is dependent on the runtime of the SHE and therefore
on the embedded runtime environment. The delay between installation and migration
as inner processes should therefore be low.

6.4.3 Evaluation

The qualitative result con�rms the expectation that SLA violations are reliably detected
and the reactive actions in terms of migration triggering are properly propagated.

The quantitative result of the experiment is illustrated in �gure 6.5. It shows that the
delay between the installation and the triggering of the migration of the service whose
SLA is violated ranges between 200 ms and 1430 ms.

Due to the simple and fast access of the SLA parameters by just reading the manifest
headers, the variability can be explained by the size of the tested services resulting in
di�erent installation times.
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Figure 6.5: SLA Violation Triggering Time

This experiment demonstrates that SLA violations are not only qualitatively treated
(i.e. they are reliably detected and propagated), but also that the period between bundle
installation and the triggering of the service migration is quickly processed. Thus,
service availability in a broader sense can be guaranteed by the local autonomous
service management <R 1> .
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6.5 Resource Usage

The decision when and which services to migrate depends not only on node failures
but also on their capacity. Thus, nodes operating to full capacity should not receive
new services. Instead, their load is to be reduced. Therefore, the monitoring of speci�c
metrics like memory or CPU is crucial to assess the functionality of the nodes <R 3> .
This experiment tries to evaluate the resource consumption of the runtime environment
embedding SHE.

6.5.1 Setup

This experiment utilizes a computer to simulate resource consumption of the SHE
running on it. The SHE initializes automatically a separate NLSM instance with its own
process id to eliminate the in�uence of NLSM speci�c resource consumption. The used
computer has a 2.5 GHz Intel Core i5 processor and 16 GB of main memory.
The test is repeated 20 times to reduce random factors. After each run, the bundle cache
is deleted to reinstall and restart the services. The metrics are logged and prepared to
be visualized as diagrams.

6.5.2 Expected Results

The use of JMX instead of OSGi’s proper resource monitoring allows only to measure
the JVM as a whole. The starting process of SHE is supposed to consume most resources,
especially in terms of CPU.

6.5.3 Evaluation

The results are qualitatively checked by comparing them to the output of Java’s embed-
ded jconsole. The metrics were recorded during a period of 20 minutes.
Figure 6.6a depicts the CPU consumption during this time. The big amplitude at the
beginning up to 40% characterizes the instantiation of the Apache Felix framework.
Other signi�cant �uctuations thereafter ranging between 9% and 15% are due to the
installation and starting of services.

The memory counterpart is depicted in �gure 6.6b. Both heap and non-heap memory
of the JVM are recorded. It can be seen that the measurement values range between 50
MB and 100 MB. The high variability can only be explained by the internal processes
of the execution environment. In the beginning, the Apache Felix framework creates
the bundle cache. This is a separate cache only for installed OSGi bundles which is
internally managed by the framework. The OSGi documentation [3] gives a hint that the
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creation of a class loader for each bundle starting can signi�cantly increase the memory
footprint. At the same time, the JVM garbage collector may try to shrink the heap size
or not for very sound CPU optimization reasons. The comparison of the results with
jconsole show the same picture.

(a) CPU Consumption of SHE

(b) Memory Consumption of SHE

Figure 6.6: Resource Consumption of SHE
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Chapter 7

Conclusion

The main goal of this thesis was to assess whether the embedding of an execution
environment in the context of an autonomous hierarchical service management can
improve service availability. For this purpose, di�erent runtime environments have
been investigated and compared in chapter 2 in terms of the collected requirements for
an autonomous service management.

Chapter 3 has analyzed di�erent projects which already used OSGi as runtime environ-
ment. These demonstrated that the utilization of a runtime environment can provide
more or less an autonomous system depending on its architecture and the network
environment. Furthermore, approaches of other research areas have been investigated
separately for each elaborated requirement. Thus, concepts could be adopted or com-
pared to other solutions to �nd the best suitable results.

Keeping in mind the research questions formulated in chapter 2 and considering the
research results from the related work in chapter 3 a runtime environment to be em-
bedded into an autonomous service management was designed in chapter 4.
The implementation of OSGi was done via the Apache Felix framework to provide the
lifecycle management of the services. Thus, the system is always aware of the states of
the services and can react appropriately to changes <R 3> .
The monitoring of the resources of the underlying hosting environment enables to trig-
ger migration requests so that node congestions are prevented <R 2> . This capability
provides autonomous service management without user intervention so that services
continue to run on other nodes increasing their availability <R 1> .
Furthermore, the recovering of SLA violations is triggered in time resulting in an au-
tonomous local service management <R 6> . The interface between SLSM and NLSM is
provided <R 7> . Using OSGi allows services to be updated on the �y, thus improving
their availability <R 4> .
Finally, the overhead is kept to a minimum <R 5> by using heartbeats instead of
pings and the integrity of the service binaries is guaranteed by a separate certi�cate
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management system developed by [25] <R 8> .

Chapter 6 evaluated a prototype implementation of the bottom-up service management
including the runtime environment. The results proved that the runtime environment
ameliorates the availability of services within a distributed S2O system. The comparison
of the results for this metric with those of a related work with a similar architecture
like DS2OS shows that the created bottom-up autonomous service management with
an embedded runtime environment performs better in terms of service availability than
the comparative project resulting in values above 97%. Thus, the lack of a replication
mechanism due to the overhead does not reduce the service disposability. Thus, the
resilience of DS2OS can be increased while reducing user intervention.
In this context, the e�ect of dependent services emerges as a signi�cant factor compared
to the amount of services to be migrated apart from their deployment time.
Finally, the triggering of SLA violations and the resource consumption of the SHE with
the embedded runtime environment is measured.

To sum up the major results of this thesis, the embedding of a runtime environment
into a hierarchical service management can increase service disposability and reduce
user intervention. Therefore, further investigation is promising as the development of
S2O systems proceed.
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Chapter 8

Future Work

The implemented prototype contains the core features for a resilient and remotely
manageable runtime environment with a focus on providing availability. However, the
spectrum of additional and advanced features around service management in general
an runtime environments in particular which occurred while working on this thesis is
very broad.
Therefore, the very last part of this thesis is supposed to recommend some selected
suggestions for future work in this area.

The selection of OSGi as runtime environment was discussed in 2.2.4. However, there
were sometimes only slight di�erences between the other suitable approaches. There-
fore, comparing the other technologies with regard to the prerequisites should be an
interesting aspect.
The interaction of Docker and OSGi was already mentioned in the analysis and related
work. Nonetheless, this approach is very new and the research has only just begun.
There are already some open source projects like Amdatu-Kubernetes making the Ku-
bernetes1 REST API available to Java and which is tailored to work with OSGi [57]. But
it covers only a small part of the possible applications of Docker.
To take yet another step forward, the combination of OSGi, Docker and Java 9 could
bring to light surprising results.

Another research area which is promising for service management in terms of guaran-
teeing higher availability of services is to provide a probabilistic node failure detection
to implement a replication mechanism such that services are deployed or migrated to
new nodes immediately prior to the failure of the current nodes. This would reduce
the downtime of services signi�cantly. However, this requires to collect empirical data
before a forecast of node failures can be made. For this reason and because the de-

1Kubernetes is an open source container orchestration platform allowing a large number of Docker
containers to work together seamlessly by interacting with the Docker engine to coordinate the scheduling
and execution of the containers
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velopment would go beyond the scope of this thesis a replication mechanism is not
implemented.

Heartbeats as indication if a node is still alive are already realized in the prototype. A
more sophisticated approach would, however, be to generate dynamic heartbeats. That
means that the nodes de�ne their own heartbeat intervals according to their capacities
in terms of bandwidth, CPU or memory for instance. Thus, the frequency of heartbeat
signals can be optimized such that node failures can be detected earlier.

Finally, future work could also include machine learning approaches identifying SLA
violations before they happen, e.g. by collecting data about node capacity utilization to
predict future bottlenecks.
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