
Technische Universität München
Department of Informatics

Bachelor’s Thesis in Informatics

Optimization of Quality Criteria
Through Usage of Overlay Networks on

the Internet

Stefan Fochler

Technische Universität München
Department of Informatics

Bachelor’s Thesis in Informatics

Optimization of Quality Criteria Through Usage of Overlay
Networks on the Internet

Optimierung von Qualitätskriterien durch den Einsatz von
Overlay-Netzen im Internet

Author Stefan Fochler
Supervisor Prof. Dr.-Ing. Georg Carle
Advisor Dipl.-Inf. Stephan-A. Posselt

Dipl.-Inf. Johann Schlamp
Date August 15th 2015

Informatik VIII
Chair for Network Architectures and Services

I con�rm that this thesis is my own work and I have documented all sources and material
used.

Garching b. München, August 15th 2015

Signature

Abstract

Overlay networks are used to deliver personalized contents over the Internet in situa-
tions where techniques such as caching are not possible due to the kind of data being
transmitted. By measuring and comparing routes in the Internet, it is often times possi-
ble to �nd better routes featuring lower round trip times and therefore also enabling
higher throughputs.

This work uses the PlanetLab project to instrument distributed measurements on up to
100 nodes doing round trip times measurements for regular Internet routes and routes
through the Akamai overlay network. This network, even though only using links
of the public Internet, promises improvements over the regular Internet route where
possible by selecting the ideal route.

It is concluded that the overlay network manages to improve round trip times by up to
15 % (40 ms) for nodes with a very large distance to the web server. Measurement nodes
that are connected using an already optimal route, on the other side, only experience
an overhead of up to 5 ms of additional round trip time because of the processing time
required by the Akamai Servers.

Finally, case studies examine both transport ways for three exemplary routes and analyze
the di�erent paths taken and the general di�erences for various cases of overlay routing
acceleration. Interestingly, the case studies �nd an example where a route with 32 IP
hops features lower round trip times than its plain Internet counterpart with only 15
hops.

Zusammenfassung

Overlay Netzwerke werden im kommerziellen Rahmen dazu eingesetzt, um personali-
sierte Inhalte schneller über das Internet auszuliefern, wenn auf Grund der Bescha�en-
heit der Daten kein caching durchführbar ist. Durch das Vermessen und Vergleichen
von Routen im Internet kann in vielen Fällen eine bessere Route gefunden werden, die
die Round-Trip Zeit reduziert und dadurch schnellere Übertragungen ermöglicht.

Diese Arbeit nutzt das PlanetLab Projekt, um von bis zu 100 verteilten Messknoten
aus Zeitmessungen über reguläres Internet Routing und das Akamai Overlay Netzwerk
durchzuführen. Letzteres nutzt zwar ausschließlich ö�entliche Internet Verbindungen,
verspricht aber durch die Wahl der optimalen Route eine Beschleunigung gegenüber
der regulären Route.

Es wird festgestellt, dass das das Overlay Netzwerk bis zu 15 % (40 ms) kürzere Round-
Trip Zeiten für Messknoten mit sehr großer Distanz zum Web Server ermöglicht. Mess-
knoten mit bereits optimaler Anbindung über das normale Internet Routing hingegen
benötigen bei Nutzung des Overlay Netzes bis zu 5 ms zusätzliche Zeit durch die Verar-
beitung der Packete durch Akamai Server.

Abschließend werden für drei exemplarische Routen beide Transportwege in Einzela-
nylsen verglichen und verschiedene Fälle der Beschleunigung durch Overlay Netze
sichtbar gemacht. Das deutlichste Beispiel ist dabei eine Overlay Netzwerk Route mit
32 IP Hops, die bessere Round-Trip Zeiten bietet als ihr Gegenstück über das normale
Internet mit nur 15 Hops.

Acknowledgements

I would like to express my gratitude to my supervisors Dipl.-Inf. Johann Schlamp, Dipl.-
Inf. Stephan A. Posselt and M.Sc. Nadine Herold who have spend many hours guiding
me through the learning process of this bachelor thesis. They always kept their ears
open and critically challenged my results in order to ensure their correctness.

I also would like to thank my father Manfred Fochler and his supervisor Ralf Gehrke
at Akamai Technologies GmbH in Munich for making this thesis possible. By not only
providing access to the services necessary, but also spending time for con�guration
and evaluation of the technical setup, they played an important role in enabling the
measurements needed.

Furthermore, I would like to thank all the sta� at chair 8 at the Technische Universität
München with special focus on Prof. Dr.-Ing. Georg Carle for accepting this thesis in
the �rst place, and the systems administrator Dipl.-Inform. Andreas Korsten for the
technical support and the supply of necessary infrastructure.

Lastly, a big thanks goes to my loved ones, family and friends, who showed great
support during the time of this thesis. They stood behind me and accepted my choice of
priorities when it came right down to it and time was needed to work on this project.

I

Contents

1 Introduction 1
1.1 Research Questions . 1
1.2 Structure . 2

2 Background & Related Work 5
2.1 Background . 5

2.1.1 Internet . 5
2.1.2 Overlay Networks . 10
2.1.3 Akamai Web Performance Solutions 12
2.1.4 PlanetLab . 14
2.1.5 Masurement Tools . 14

2.2 Related Work . 15
2.2.1 Overlay Networks . 15
2.2.2 Latency Measurement . 16
2.2.3 Route Similarity & Comparison 17

3 Design 19
3.1 Overlay Routing . 19
3.2 Answering the Research Questions . 20
3.3 General Requirements . 21
3.4 Technical Requirements . 23

3.4.1 Web Server . 23
3.4.2 Software . 24

4 Implementation 27
4.1 Server Setup . 27

4.1.1 Webserver . 27
4.1.2 Hosting . 28
4.1.3 Akamai SureRoute . 28

4.2 Measurement Tools . 31
4.2.1 htping . 31
4.2.2 Measurement Instrumentation 34

II Contents

4.3 Post-Processing . 38
4.3.1 Data Collection . 38
4.3.2 Data Processing . 39
4.3.3 Visualization . 40

5 Evaluation 43
5.1 Experimentation Setup . 43

5.1.1 Node Availability . 43
5.1.2 System Versions . 44
5.1.3 Node Distribution . 45

5.2 Non-Accelerated Route Measurements 47
5.2.1 Measurement Overview . 47
5.2.2 Results . 48
5.2.3 Conclusion . 49

5.3 Accelerated Route Measurements . 50
5.3.1 Measurement Overview . 50
5.3.2 Results . 51
5.3.3 Conclusion . 58

5.4 File Download Measurements . 59
5.4.1 Measurement Overview . 59
5.4.2 Results . 59
5.4.3 Conclusion . 62

5.5 Case Studies . 63
5.5.1 Germany . 63
5.5.2 France . 67
5.5.3 Thailand . 70
5.5.4 Summary . 73

6 Conclusion 77
6.1 Future Work . 77

6.1.1 Overlay Networks . 77
6.1.2 Overlay Network Measurements 78

6.2 Answering the Research Questions . 78

Bibliography 83

III

List of Figures

3.1 Example of diverging transport ways when using Akamai Overlay Net-
work routing and plain Internet routing 19

4.1 Illustration of using the nearest Akamai Edge Server for overlay network
routing . 30

5.1 Scatter plot of htping-measured RTTs using HEAD requests 48
5.2 Linear regression plot of htping-measured RTTs using HEAD requests 49
5.3 Scatter plot of htping-measured RTTs using GET requests 51
5.4 Linear regression plot of �rst quartile, median and second quartile RTTs

measured by htping using GET requests 52
5.5 Scatter plot comparison of 25th and 75th HTTP GET percentile 53
5.6 Regression lines of all hosts but separated by network e�ects 54
5.7 Box plot of selected node groups’ round trip times 56
5.8 Box plot of selected node groups’ round trip times with and without

network jitter . 58
5.9 Scatter plot of 100 kB total download times median values 60
5.10 Scatter plot of 100 kB transfer only times 61
5.11 100 kB transfer only times by node group 62
5.12 Graphical comparison of regular Internet and overlay network route

from Hamburg to Munich . 66
5.13 Graphical comparison of regular Internet and overlay network route

from Paris to Munich . 75
5.14 Graphical comparison of regular Internet and overlay network route

from Bangkok to Munich . 76

IV List of Figures

V

List of Tables

4.1 htping options . 32

5.1 PlanetLab Node Availability Summary 44
5.2 PlanetLab Node Kernel Versions . 45
5.3 PlanetLab Node Operating System Versions 45
5.4 PlanetLab Node Distribution by Country 46
5.5 Plain Internet route from Hamburg to Munich 64
5.6 Overlay network route from Hamburg to Munich 65
5.7 Plain Internet route from Paris to Munich 67
5.8 Excerpt of plain Internet route from Paris to Munich using only Max-

Mind location data . 68
5.9 Overlay network route from Paris to Munich 69
5.10 Plain Internet route from Thailand to Munich 71
5.11 Overlay network route from Thailand to Munich 72

VI List of Tables

1

Chapter 1

Introduction

As the Internet has grown over the years, professional demands grew stronger because
more and more business is done over the Internet. Companies require their website or
service being delivered to anywhere in the world—quickly and dependably.

To match these demands, various content delivery network companies have become
operational with Akamai1, Limelight2 and Cloud�are3 only being a few of them. These
networks are used to deliver large amounts of data into every region in the world using
caching and other, more sophisticated, technologies.

Some of the CDNs also provide accelerated delivery of non cachable contents, for
example individual personalized pages for online shop systems etc. They try to achieve
a performance advantage by splitting the transmission path into segments. To this end,
tra�c is sent to the Web server through multiple of their own servers so that some
of the segments can then be rerouted to avoid known congestion nodes. This route
optimization can only happen through a large overlay network, which the servers of
the CDN form, and can be seen in the example illustrated in �gure 3.1.

This thesis focuses on measuring the potential bene�ts of route optimization through
overlay network routing and di�erent routes will be analyzed for di�erences.

1.1 Research Questions

There are many aspects that can be explored regarding overlay networks. Using mea-
suring methods for latency and other metrics, the thesis tries to answer the following
research questions:

1http://akamai.com
2http://limelight.com
3http://cloudflare.com

http://akamai.com
http://limelight.com
http://cloudflare.com

2 Chapter 1. Introduction

How does optimized routing within an overlay network a�ect the latency of
small sized data units?

Taking content editors working on centrally hosted real-time publishing platforms as an
example. They edit documents using technologies such as Operational Transformations
which are sensitive to latency and network failure, because every action gets sent to
the server or the participants as an operation that transforms the old state into new
state. Ultimately, this means that a lot of small packets are sent across the Internet on a
frequent basis [1].

What impact does overlay network accelerated routing have on frequent but small
packets when compared to common Internet routing using BGP?

How much jitter is observable on both transmissions?

How does optimized routing within an overlay network a�ect the download
time of medium sized objects over HTTP?

Customers sur�ng the world wide web require individualized web site contents from
centrally hosted shopping systems. When this content is used on an important page like
the store’s front page, the visitors should get fast results in order to be kept engaged.

What impact does overlay network acceleration have on medium sized packets around
100 kB?

Is there a bene�t from optimizing the overlay network’s TCP parameters?

How relevant is overlay routing when compared to other acceleration factors like
transparent compression within the overlay network?

Howsimilar are the transport routes that bene�t themost fromOverlay-Network-
Acceleration?

When tracing overlay network and regular Internet routes, how similar are they?

How much di�erence can be observed in actual geographic location of intermediate
hops, and how does the choice of network operator a�ect performance criteria such as
round trip times?

1.2 Structure

This chapter just described a high level overview over the topic this thesis is about and
poses research questions to be answered.

1.2. Structure 3

Chapter 2 provides background information by explaining terms used in this work and
also lists related pieces of work and what di�erences there are when compared to this
thesis.

While chapter 3 speci�es the requirements that are necessary to do measurements
that yield reliable results, chapter 4 will describe the implementation chosen to answer
the questions from chapter 1. Since there were tools implemented to perform the
measurements, these are explained in detail.

Chapter 5 focuses on the actual results and discuss various aspects found while doing
measurements.

Finally, chapter 6 answers the research questions by summarizing the results found in
chapter 5.

4 Chapter 1. Introduction

5

Chapter 2

Background & Related Work

2.1 Background

For a better understanding of this thesis, this section describes the most relevant con-
cepts that are frequently used throughout the following chapters.

2.1.1 Internet

Autonomous System

While the Internet is commonly perceived as a single entity, it is actually composed of
thousands of networks of di�erent sizes. These networks can be of di�erent types, like
for example conventional Internet Service Providers (ISPs) that provide access to
end users or content providers, or transit networks that exist to connect other networks.

Networks under a common administration are also called Autonomous Systems or short
AS. Autonomous Systems don’t only di�er in the properties described above, but also
in the way they are able to handle tra�c, which is what Peering is for.

Peering

As outlined in the previous section, users and content servers oftentimes are not part
of the same network. Therefore, the transit points between the autonomous networks
play an important role for ISPs trying to provide a good service to their customers.

When two, possibly commercial, networks are connected and agree to not charge the
other company for incoming tra�c, the process is called peering. Peering is only meant
to exchange tra�c regarding the ISP’s own customers, though—a network will never

6 Chapter 2. Background & Related Work

route incoming tra�c from a connection the ISP pays for (i.e. the upstream connection)
to one of his peering partners.

When an ISP is able to reach every host on the Internet without paying for tra�c, the
network operator is a so called tier 1 provider. Smaller ISPs are typically tier 2 or 3
providers that peer with other ISPs from the same tier. They are required to purchase
upstream bandwidth from tier 1 providers or so called upstream providers in order to
be fully connected to the Internet.

Peering negotiations, though important for the Internet’s performance and health, can
be of di�cult nature when company policies are in con�ict and the parties disagree on
who is allowed to charge fees.

These negotiations exist at least since the late 1990s and are explained in detail in [2].

Upstream

While peering is one method of exchanging data between coequal networks, smaller
ISPs with limited connectivity are required to pay for exchanging tra�c with bigger
networks.

These larger networks act as Upstream Providers and usually provide access to the whole
Internet. As mentioned before, purchasing upstream bandwidth is the only way for
non-tier-1 providers to achieve full connectivity to the whole Internet.

For better performing and more reliable connectivity, autonomous systems can be
multihomed. That means that the ISP either uses multiple IP addresses on the same link
or even separate independent links for his upstream connection.

Internet tra�c is generally assumed to obey the concept of valley free routing, which
means that a network provider will not use its paid upstream connection to accept
or transmit packets originating from or destined for one of its peering partners. This
is an important assumption for algorithms extracting knowledge about the Internet’s
topology from data �ows and routing information.

Problems of Best E�ort Routing on the Internet

No money in the middle mile is one possible name for problem that may prevent packets
from taking the ideal path across multiple networks. This problem typically results
from the economical aspects of inter-network peering.

When building Internet infrastructure, companies can sell data links to end users (last-
mile) or to data centers (�rst-mile) which follow the rules of free markets. Faster con-

2.1. Background 7

nections earn the ISP more money because there is an advantage over the competition,
and the same holds true for data center up-link connections.

And indeed, performance of these links is improving steadily, as reports like [3] show.
However, peering quality in terms of bandwidth, latency and availability are more or
less hidden from the customers because while peering to one network may be excellent,
other networks may be hard to reach and even encounter packet loss because of router
overload.

Because of the peering agreements mentioned earlier, networks are not necessarily
optimized to use the fastest paths for routing packets, but to be cost-e�cient while still
providing the service level that was sold to its customers.

BGP

The Border Gateway Protocol is an inter-domain routing protocol which means that
autonomous systems operators exchange information about what part of the IP address
space is reachable over a given router.1

BGP is a path vector protocol which means that routers include the complete paths
when exchanging their own reachability information. This solves the count-to-in�nity
problem which is a common problem in distance vector protocols.

However, not all reachability information will be advertised by a router. Policies de�ned
by a network’s operator can prioritize certain routes and exclude other routes from
being published. Otherwise, a network could announce its upstream connection to
the peering partners which would be very costly and in�uence the networks stability
because of a potentially higher load. On the other side, operators could choose to accept
routes for the entire Internet only from its upstream providers but not from peering
partners in order to avoid miscon�guration.

Nevertheless, a complex BGP setup can introduce serious outages or massively ine�-
cient routing willingly or accidentally. Detecting routing problems could therefore lead
to an improved stability and performance, as promised by some commercial overlay
network providers.

IP

The Internet Protocol (IP) de�nes a rather simple mechanism for addressing hosts using
globally unique addresses.2

1BGP Version 4: RFC 4271 – https://tools.ietf.org/html/rfc4271
2RFC 791 – https://tools.ietf.org/html/rfc791

https://tools.ietf.org/html/rfc4271
https://tools.ietf.org/html/rfc791

8 Chapter 2. Background & Related Work

The commonly used IP version 4 features an address length of 32 bits and therefore
allows up to 4.29 ∗ 109 globally unique addresses available to address hosts. In reality,
this number however is smaller because there are certain reserved IP address ranges
that can not be used for addressing hosts. Additionally, companies from the early days
of the Internet managed to each reserve a big chunk of the IP address space. This is
because address space was handed out in blocks of 224 ≈ 16.77 ∗ 106 addresses (Class A
IP address ranges) before Classless Inter-Domain Routing was introduced in 1993, which
made allocating IP address space more e�cient.

Because of the growing number of Internet users and the limited IP address space, IPv6
presented a simply enormous address space of 2128 possible addresses.

This thesis will focus on IP version 4, and hence IPv4 addresses. However, nodes
connecting via IPv6 are not expected to behave any di�erent and will therefore not be
analyzed separately.

TCP

The Transmission Control Protocol (TCP) is well known and used for most commu-
nication in the Internet. Working one layer above the Internet Protocol, it enables a
stream-oriented communication between hosts over packet switched networks, such as
IP networks.3

It also introduces mechanisms for multiplexing packet switched connections using port
numbers, and allows the retransmission of lost segments and therefore enables reliable
connections where packet loss is detected and corrected.

Finally, the protocol tries to avoid congestion at points within the network and at the
receiver by e�ectively adapting the sender’s data rate when packet loss is detected. The
parameters for this behavior can be varied for di�erent use-cases and network scenarios.

The downside of using TCP on a connection is the reduced performance because of two
factors, which make opening a new TCP connection a quiet costly operation in terms
of total transmission time:

1. Establishing a TCP connection requires exchanging 3 packets before the �rst real
data can be transmitted4

2. The amount of data to be sent without waiting for a con�rmation (congestion
window) starts at a very small number and only then increases with the number of
packets sent over the connection as long as the network supports the throughput

3RFC 793 – https://tools.ietf.org/html/rfc793
4TCP Fast Open, IETF draft at time of writing but already implemented in recent versions of the Linux

kernel, accelerates this process

https://tools.ietf.org/html/rfc793

2.1. Background 9

HTTP

Based on TCP/IP, HTTP (HypterText Transfer Protocol) has long become a standard
protocol for exchanging hypertext content on the Internet.5

HTTP itself is a rather simple and generally stateless protocol that is extensible via
custom headers. There are only few requirements when implementing a working subset
of HTTP that works for most purposes, even though sometimes not being feature
complete as per speci�cation. This circumstance enabled its role as a transport protocol
for not only hypertext but also media downloads or interactive communication. For
example, AJAX is used for sending data in JavaScript Object Notation asynchronously
within a web browser, even from low-pro�le hardware and embedded systems using
HTTP.

In practice, there certainly are more complex features to be implemented for a HTTP
server such as being able to serve the requested content type and encoding, respect
caching requirements and more. Still, software like the Apache HTTP Server or NGINX
among many others ful�ll these requirements and are wildly available.

Keep-Alive, a feature of HTTP/1.1, is an important step towards an improved browsing
or application experience, since it enables sharing of TCP connections for multiple
HTTP requests. Using this feature saves round-trip times and enables higher throughput
because of already warmed up connections.

DNS

The Domain Name System is used to resolve domain names like spectre.net.in.tum.de
to an IP address like 131.159.14.85.6

The system can be seen as a large distributed database where domain names can be
resolved step by step for each label. Starting from the end of a domain name, a hierar-
chical tree of so called name servers is being traversed until a server that can answer
the speci�c request is found.

Each name server is authoritative for his so called zone, which contains information
about immediate sub-domains and the servers that are authoritative for those sub-
domains.

The iterative process of query evaluation is usually not done by the end user itself, but is
given to a resolver server instead. DNS resolvers have better connectivity to the Internet
than end users and used by many people so that responses can be cached as long as the
authoritative name server allows doing so.

5RFC 2616 – https://tools.ietf.org/html/rfc2616
6RFC 1034 – https://tools.ietf.org/html/rfc1034

https://tools.ietf.org/html/rfc2616
https://tools.ietf.org/html/rfc1034

10 Chapter 2. Background & Related Work

2.1.2 Overlay Networks

When studying literature regarding overlay networks, one will �nd di�erent meanings
for the term.

Peer-to-Peer Networks

One of the prevalent uses of Overlay Networks is their notion as a network for peer-to-
peer �le exchange services like Kazaa and Gnutella [4, section 3.2, p. 3].

These networks tend to be highly dynamic and usually only consist of the end-user
machines that are on-line momentarily. They are not purposed for the improvement of
a given service but establish a completely new service themselves.

For the individual clients, their respective network and performance characteristics are
not very important when participating in the network, because the goal is not to achieve
great performance and low download times, but to distribute a large �les at a very low
cost by leveraging the participation of every user in the network. Also, distributing �les
across many users drastically improves availability and reduces single points of failure.

Using only the users’ home Internet up-link connection still enables reasonable down-
load rate for other users without renting infrastructure like servers.

Content Delivery Networks

Another popular area of overlay networks are content delivery networks, which are
intended to improve a given existing web service by delivering data to a large amount
of users.

They achieve content acceleration by various techniques, such as caching and compres-
sion of static assets on a server that is close to the customer. This leverages lower round
trip times and more reliable connections so web sites load faster and companies can
distribute much greater amounts of data, because the actual delivery is spread widely
across the Internet.

This meaning can be found in [5, p. 8] where the Akamai Network is described as an
“high-performance overlay network” multiple times.

In contrast to the average Peer-to-Peer network, these networks are highly organized
with well performing hardware located at strategically chosen, highly interconnected
data centers.

While technically dealing with the same problem as more dynamic networks, like
dysfunctional or temporarily unavailable hosts, the networks’ nodes are more stable
and participation changes less than with personal end-users.

2.1. Background 11

Other

Because there are many other kinds of overlay networks, giving a comprehensive listing
is neither possible nor intended for this work. However, a few more types shall now be
described brie�y.

• TOR (The Onion Routing)7 is a project featuring an overlay network providing
anonymity for its users. This is achieved by routing packets through multiple
intermediate hops (relay nodes) before reaching the actual target server within
the TOR network. But not only TOR internal servers are reachable without being
noticed by e.g. totalitarian regimes. Servers on the public Internet are contacted
using TOR exit nodes after which tra�c is yet again observable in the clear.

Anonymity is provided by wrapping the original packet in multiple layers of
encrypted routing information. Only one layer can be decrypted by each TOR
node so that the ultimate target location is obfuscated for all intermediate nodes.
TOR is, however, susceptible for attacks via tra�c analysis by collecting usage
data over a longer period of time [6]. Safe and anonymous communication for an
individual is therefore not absolutely guaranteed.

• VPN (Virtual Private Network) software is available from many commercial and
open source maintainers. VPNs provide an encrypted connection between two
computer systems or networks and behave like a physically existing connection to
the network stack’s higher layers. The newly created virtual private network then
forms a logically decoupled overlay network over public Internet infrastructure.

• 6in48 is one of the many technologies used to master the migration from IPv4 to
IPv6. A host that has only IPv4 connectivity, but wants to use the IPv6 protocol,
can append that IPv6 packet to an ordinary IPv4 header with its protocol �eld
set to 41(10) . It can then be sent through a precon�gured tunnel while only adding
20 Bytes of additional data because of the IPv4 header.

• RON (Resilient Overlay Network) is an application layer architecture built by
distributed servers on the Internet that measure interference and disconnects
between each other. It aims at detecting outages faster than the currently used
routing protocols and therefore providing a more stable network for distributed
applications.

The Massachusetts Institute of Technology’s RON project is one well-known
implementation of a resilient overlay network and its project page9 features many
resources like research papers and actual measurement data.

7https://www.torproject.org
8RFC 4213 – https://tools.ietf.org/html/rfc4213
9http://nms.lcs.mit.edu/ron/

https://www.torproject.org
https://tools.ietf.org/html/rfc4213
http://nms.lcs.mit.edu/ron/

12 Chapter 2. Background & Related Work

2.1.3 Akamai Web Performance Solutions

Akamai o�ers a variety of services to improve companies’ Internet presences.

For example, Akamai o�ers cloud storage systems and web application �rewalls that
reduce the load on a company’s web server and protect it from threats like hacking
attempts and denial of service attacks. Next to that, there are services that accelerate
website delivery and downloads by combining multiple methods using transport- and
content optimization.

The Akamai Edge Network consists of 170,000 servers in 102 countries within over 1,300
networks [7], but these numbers have grown further since.

Content Delivery Network

To deliver content to a large number of users, Akamai Globalhost (GHost) Servers, which
is the technical name for servers in the Akamai Edge Network, perform load balancing,
caching and video live streaming.

For download services and delivery of static data, a caching hierarchy is used in order
to grant fast transmissions and avoid passing requests through to the origin server in
times of high demand.

For video live streaming, a technology emulating IP multicast is used to keep tra�c
close to the origin to the minimum and replicate the data as late as possible on the route
to the client [5].

Akamai Overlay Network

The servers of the Akamai Edge Network form an Overlay Network over the Internet
which is fully interconnected using public Internet infrastructure only.

Even though any node can potentially speak to any other given node, only certain
connections with good performance between nodes with high network capabilities are
used.

TCP Optimization

At Akamai, TCP is used for GHost-to-client, GHost-to-GHost, GHost-to-origin, GHost-
to-netstorage communication and therefore is an essential subject for optimization. This
is why TCP parameters regarding the congestion window and retransmission times,
among others, are modi�ed [8].

2.1. Background 13

Even though TCP connection handling is usually part of the operating system’s kernel,
the optimizations can be used in di�erent settings for each customer. The chosen degree
of optimization for non-cachable content depends on the service level agreed on.

For example, a highly optimized con�guration can be optimized to set an initial con-
gestion window size so that a typical packet can be transmitted without waiting for
acknowledgments. Also, TCP’s slow start phase can be avoided for a new connection if
there currently are connections in use, because values like the congestion window are
remembered to bene�t additional connections.

The Edge Server con�guration allows the con�guration of almost every TCP parameter
regarding waiting times, retransmission protocols and the handling of inactive con-
nections. However, remembering and modifying the congestion window as mentioned
above is probably the most important factor for standard TCP optimization.

Persistent TCP Connections

As described before, TCP is important for communication between GHost servers. For
improved performance, Akamai uses persistent TCP connections between GHost servers.
These connections are established on demand and can time out when not used after a
certain amount of time.

Without persistent TCP connections, any new communication �ow between two points
in the overlay network would �rst have to perform the TCP three-way handshake. With
persistent connections, there is a good chance of a connection already being available
and therefore no overhead is generated.

As opposed to regular Internet routing where packets are forwarded directly, multi-hop
overlay routing would be bound to deliver a worse performance—simply because of all
the handshakes needed for each segment in a route.

SureRoute

SureRoute is a service available for higher customized and more expensive Akamai
contracts. It enables the acceleration of non-cachable contents by in�uencing the trans-
portation route between client and origin server. While still using connections of the
public Internet, packets are sent from one Akamai Edge Server to another until there is
no improvement possible anymore and the origin server is contacted.

To enable the SureRoute service, there is a set of highly interconnected nodes steadily
measuring connection performance between each other. Congestion points or link
failure on the Internet can thereby be identi�ed quickly using frequent probing.

14 Chapter 2. Background & Related Work

By intentionally forwarding packets to another Akamai Edge Server, these congestion
points are avoided and performance is expected to be better than with conventional
routing via BGP [9]. This is expected to hold true even though usually more IP hops
than on the conventional route are traversed.

To determine the best path to the origin server (i.e. the next Akamai Edge server to
contact), SureRoute races are started by requesting the SureRoute Test Object at two
preselected parent nodes and the origin server. For these races, the response time is
measured and the result is cached for the next requests.

Because waiting for the initial SureRoute result should be avoided, the �rst request
always hits the origin server directly. SureRoute acceleration will then be used for
the following requests afterwards, but is not bound to always contact another Akamai
Edge Server. If no optimized route can be found, the Edge Server can simply forward
the request to the origin server and wait for the reply, which will also use an overlay
accelerated route back to the client.

2.1.4 PlanetLab

PlanetLab is a scienti�c computer network to test and deploy new network services or
applications in a large scale environment.

Since the start of the project in 2003, more than 1000 researches have tested applications
for distributed storage, network mapping, peer-to-peer systems, distributed hash tables
and more. At the time of writing, PlanetLab consists of 1353 nodes at 717 sites.10

While a large portion of nodes are located in Europe and North America, fewer nodes
also exist in Australia, New Zealand, Asia, South America and even Africa.

Creating an account requires participating in the project by providing two nodes oneself.
After that, PlanetLab o�ers shell access on computers around the world so that own
software can be installed and run.

2.1.5 Masurement Tools

ping

Generally available in all GNU/Linux-, BSD-, and Windows-based computer systems,
the ping program sends ICMP (Internet Control Message Protocol) ECHO_REQUEST
packets to a given network host and measures the time it takes to receive the response
packet. There is no retry mechanism and therefore a lost packet is no uncommon event.

10https://www.planet-lab.org/

https://www.planet-lab.org/

2.2. Related Work 15

The tool is used to measure the RTT (Round Trip Time) between the current computer
and another host, given that no intermediate router or �rewall will drop the packet
because of �lled bu�ers or ICMP-avoiding �lter rules.

cURL

cURL is a popular tool used to perform HTTP requests from the command line.

It is is widely available and allows not only the exact con�guration of passed parameters
for the HTTP call, but also provides a compact syntax to specify an output format of
request meta-data like elapsed time and number bytes downloaded.

traceroute

traceroute is another fundamental network administration and Internet measurement
tool. It gathers the IP addresses of IP hops between the executing host and a target host
by provoking ICMP TTL-exceeded errors for each hop. The response IP addresses are
recorded and displayed in order so that the route can be understood.

Traceroute is available on most platforms as traceroute or as more advanced programs
that essentially feature the same functionality like mtr and pathping.

2.2 Related Work

2.2.1 Overlay Networks

In [10], the authors compare the e�ects of best-path probe-based reactive overlay routing
in contrast to redundant multi-path routing.

The former is an approach that is very closely related to the technical background
behind Akamai’s SureRoute service where periodic probes are used to gain information
about the current state of routes. In the paper, this approach is primarily focused on
the detection on packet loss or host and link failures. Because probing overhead is seen
as a big problem of this routing approach, timing methods are explained to reduce the
tra�c generated by probing nodes.

Another approach on reducing the probing overhead of overlay networks is described in
[11] where algebraic methods are used to �nd an upper bound of monitoring O(n logn)
linearly independent routes being su�cient for a network consisting of n nodes. Also,
[12] focuses on this problem and tries to reduce the number of connections that need
to be monitored for packet loss while still getting a good overview over the current
network conditions.

16 Chapter 2. Background & Related Work

It is also pointed out in [10] that frequent probing and the thereby implied overhead
may be unbearable for lightweight data streams, but de�nitely justi�able for large data
streams. The e�ciency depends on the kind of constraint experienced in the network
and can therefore vary between no bene�t and great bene�t. It is emphasized that routes
with a low loss rate may not also feature low latency and the other way around.

The second method for improving transmission reliability presented involves sending
packets over both the regular Internet and, additionally, over a randomly chosen node
that acts as a relay station. The authors explored that choosing this method reduces
the chance of losing two packets sent over an intermediate nodes only by 10 % to a still
high chance of 60 % when compared to sending the two packets back-to-back on the
same path with a chance of losing of 70 %.

Choosing the correct strategic positions for nodes in an overlay network is described
as an NP-hard problem in [13], but it is also shown that around 100 nodes are enough
to enable routing over shortest paths from a single source into all autonomous systems.
Also, the average path length is reduced by 40 %, which is a very important �gure for
TCP optimization and use cases demanding very low latency.

2.2.2 Latency Measurement

Since latency measurements are an important part of this thesis, related work in this
�eld can enhance the work�ow and the result’s consistency and signi�cance.

The very recently published [14] presents a method for latency measurements on a
very large scale. It uses statistical methods to collect latency data very e�ciently
computation and memory wise. However, the proposed COLATE system is designed to
also be implemented in the network itself and focuses on the storage e�ciency. For this
work, a simpler approach can be taken that relies on classical timestamping but can be
evaluated without sophisticated statistical analysis.

Because of its target to measure HTTP transaction latency, [15] is an interesting article
on passive measurements of the time-to-�rst-byte in situations where active probing
cannot be used. The authors present various metrics and estimations based on values
that are easier to measure, like the round trip time. Round trip time measurements in
this theses have the advantage that active probing is not only possible but in fact the
only source of tra�c that can be observed, since both web server and clients used for
this work serve no real-world purpose. Also, the article’s focus lies on the comparison
of di�erent connection technologies for mobile users like UMTS, LTE & co., and not on
the comparison of di�erent transportation routes.

2.2. Related Work 17

2.2.3 Route Similarity & Comparison

Paxon et. al. discuss end-to-end Internet route properties like stability, symmetry and
also similarity in [16], which is highly relevant for this thesis as well. In order to compare
the similarity of two routes, a normalized version of the Levenshtein Edit Distance is
used. That means that the Levensthein distance is divided by the length of the longer
route being compared, because it would otherwise positively correlate with the routes’
lengths.

The article studies the e�ect of load balancers on route diversity and also compares
di�erent hop identi�ers like country, autonomous system, city, address pre�x and IP
hop and compares these metrics between 2006 and 2009.

While featuring impressive accuracy and profound results, the focus is on changing
metrics over a long period on time. For the comparison between overlay network
routes and plain Internet routes, the article achieves to give interesting ideas, especially
regarding the variety of choices for the hop identi�cation.

The iPlane Nano system described in [17] is representing enough of the Internet’s
topology in a database of 7 MB with an update stream of approximately 1 MB per day.
Using only this data, it is capable of predicting 70 % of AS paths exactly, estimate latency
within 20 % for over 60 % of paths and also predict loss rates very accurate for over 80 %
of paths. It can be used to implement Internet scale peer-to-peer applications that need
to estimate routes between participants in order to exchange data e�ciently.

The article also goes into depth on how to model the complex process that Internet
routing is. While the proposed iPlane Nano surely works great under the assumption of
valley free routing under normal conditions, it is probably rather useless for predicting
routes between the same points when it comes to overlay routing, as it would be needed
for this thesis.

18 Chapter 2. Background & Related Work

19

Chapter 3

Design

For answering the questions posed in the beginning of this work, this chapter describes
which steps are necessary in order to perform measurements revealing the e�ects of
overlay routing on a higher level.

3.1 Overlay Routing

This section will explain the most basic concept of why overlay routing is expected to
yield performance bene�ts compared to regular Internet routing. To do so, �gure 3.1
shows a very high level schematic view of some connections through the Internet.

Akamai Edge Server

Web Server

DFN/X-WiN

Global Upstream

Router A

Akamai Edge Server

User in China

GÉANT

User in France
Akamai Edge Server

Figure 3.1: Example of diverging transport ways when using Akamai Overlay Network
routing and plain Internet routing

On the left side of the �gure, there is a web server which acts as the central part in
delivering content to the test nodes throughout this thesis. The web server is not only
reachable over a global upstream connection, but is also connected to the European

20 Chapter 3. Design

scienti�c network GÉANT. Using this scienti�c network, many universities in Europe
and the whole world can be reached using a high bandwidth infrastructure.

A hypothetical user in a location far away from central Europe, for example a user
in China, would connect to the web server using the upstream provider and many
intermediate IP hops, simply because of the long geographic distance. On this route,
there would be a lot of intermediate routers so that, when transmitting data to the web
server, there is a realistic chance of traversing a router that is congested because of high
load. In the �gure, this would be Router A which is used by the red dashed line that
represents regular Internet routing using BGP (see 2.1.1).

An overlay network, for example the one instituted by Akamai, can gain an overview of
Internet congestion and packet loss rates by constantly monitoring connections between
strategically placed servers. When found that the transport way that uses Router A is
slower than the best known route, explicit hop-to-hop routing between the Akamai
servers can be used to actively avoid congested network routes. The blue continuous
line represents the way data takes when routed through the Akamai Overlay Network.

Note that the blue Akamai route is almost certain to be longer than the original route
(if not because of di�erent intermediate routers then because of the hops introduced by
the Akamai servers themselves). However, it can still be faster than the original route
because of reduced latency and packet loss since congested routers are being avoided.
This is the expected case for long transport routes with many IP hops, for example with
clients in countries that are far away and connected using the public Internet only. Even
when the �gure displays the Akamai route to go through an Akamai server immediately
before reaching the web server, this would not be necessary and Akamai servers on the
right could also directly contact the web server themselves.

As seen in the lower branch, it’s also possible that the transport ways for Internet and
Akamai don’t di�er at all, if the route found using BGP is already very good. This is the
expected case for clients residing at academic institutions that are connected to the web
server using an optimal connection already.

3.2 Answering the Research Questions

How does optimized routing within an overlay network a�ect the latency of
small sized data units?

The �rst research question asks for overlay routing latency bene�ts when compared
to the regular Internet routes. Generally spoken, the question can be answered by
collecting and analyzing round trip time measurements over both transport ways.

What makes measuring RTTs harder in this scenarios is, that Akamai severs only act

3.3. General Requirements 21

as very sophisticated HTTP proxies (as opposed to IP relays or VPN servers), so layer
3 round trip times can’t be measured for the whole way through the overlay network.
Instead, only the path between the client an the �rst Akamai server can be measured
using ordinary tools such as ping.

The only way to measure end-to-end round trip time is by measuring the duration of
small sized HTTP requests sent over an already established TCP connection. By using
payload sizes small enough to �t into one packet per request, round trip times that
closely approximate the underlying layer 3 latency can be measured.

How does optimized routing within an overlay network a�ect the download
time of medium sized objects over HTTP?

For the second question, a similar approach can be taken.

Once more, completion times of HTTP requests have to be compared for both routes to
the origin web server. Instead of transmitting payload data that �ts into one packet, a
larger payload should be used to simulate a real download.

Howsimilar are the transport routes that bene�t themost fromOverlay-Network-
Acceleration?

This research question can be answered by comparing both the regular Internet and the
overlay network route on a large scale. As some of the papers in the second chapter’s
Related Work explained, a distance metric such as the Levensthein Edit Distance can be
used to compare routes by their IP hops, AS hops and other criteria.

Although anticipating implementation details of this work, it can be said that it is only
possible to trace routes through the overlay network by using manual lookups, which
cannot be automated. Still, by combining traceroute measurements with the manual
lookups, it is possible to do a certain number of case studies where characteristic routes
can be examined at a hop-to-hop level.

3.3 General Requirements

In order to gain solid knowledge about the e�ects of overlay network routing, there are
several demands regarding the measurement setup and execution.

22 Chapter 3. Design

Diversi�ed Measurement Locations

The potential performance bene�ts from overlay routing has to be measured from as
many di�erent locations as possible to gain a good overall picture and receive reliable
average values of the di�erences to regular BGP routing.

When evaluating the data, it may be important to select a group of nodes sharing
certain properties, i.e. a long path to the target server or a certain geographic location.
However, this selection has to be possible after collecting the data, so it’s important
that the experiment isn’t restricted to a certain set of nodes unnecessarily.

The computers made available as servers which can be used for experimentation are
usually much better interconnected than the devices of typical home or mobile users.
This has to be kept in mind when working with commercial overlay networks that in
general aim to improve the average user’s Internet experience.

Su�cient Measurement Period

Since the Internet’s performance strongly depends on time-dependent tra�c character-
istics, measurements have to be taken over a longer period of time spanning a few days,
a whole week, or even longer.

Capturing a whole week of measurement data potentially enables recognizing usage
patterns based on time of day and day of the week. This prevents coming to a conclusion
that is only true for a certain point of time.

Simultaneous Start

When using a large number of test nodes, the measurement setup has to be able to con-
nect to all of them as simultaneously as possible in order to facilitate the comparability
of measurement data.

Larger di�erences in the starting time of continuous measurements would result in
increasingly di�erent network conditions which would in�uence the performance that
was being measured.

Fault Tolerance

Since nodes are expected to be unavailable from time to time, the setup has to be resilient
against unavailable nodes and failing executions.

The experimentation progress must not be stopped by a failing node while data integrity
has to be maintained. That means that the experimentation tool must not crash when

3.4. Technical Requirements 23

trying to contact many nodes at the same time with some of them failing to respond.
On the other side, it also mustn’t deliver wrong or outdated results when newer ones
would be missing.

3.4 Technical Requirements

3.4.1 Web Server

A server running a standard web server application that can serve the required amount
of page hits—both bandwidth- and CPU-wise.

Number of Requests per Second

The average number of requests should be estimated in advance by roughly following
the formula:

Requests per Second = 2 ∗ Number of Measurement Nodes
Interval Between Requests in Seconds (3.1)

The number of measurement nodes is multiplied by 2 because both request durations—the
default path’s through the Internet and the overlay network routed path’s—should be
measured at the same time.

The number of requests per seconds is reduced by an interval duration which de�nes
the number of seconds to wait between sending new requests.

Outgoing Bandwidth

For download tests that generate a mentionable amount of outgoing tra�c at the origin
server, its uplink capacities should be known in advance.

Similar to the formula above, the average outgoing bandwidth can be calculated accord-
ing to:

Outgoing Bandwidth = 2 ∗ Number of Measurement Nodes ∗ Object Size
Interval Between Requests in Seconds (3.2)

The factor 2 is, again, because of the comparison of the two di�erent transport routes,
overlay network routed and default Internet routing.

Object Size could be a typical downloadable object from the World Wide Web and
measure around 100 kB. However, for very small objects and many test nodes, the

24 Chapter 3. Design

transmission overhead created by IP, TCP and HTTP should be taken into account.

A quick back-of-the-envelope calculation with around 16 Bytes on Ethernet based sys-
tems, at least 20 Bytes for the IP(v4) header, 20 Bytes for the TCP header and additional
30 Bytes for HTTP requests or 200 Bytes for HTTP response headers. Adding those
numbers up leads to about 70 additional Bytes for requests and 240 Bytes for responses.

The Interval Between Requests in Seconds again describes the duration between requests.
For larger download payloads it would typically be set to a larger duration than for
smaller latency tests.

Admittedly, these calculations are only true under the assumption that the incoming
requests are distributed evenly and don’t come in bursts. However, this assumption
should hold true because of di�erent latencies and slightly varying starting times for
the nodes of the experiment.

Hosting

While the server’s location is not the highest priority, uplink diversity can play an
important role when measuring the advantages of overlay network optimized routing.

High end data centers usually have multiple uplink providers for increased availability.
An overlay network routing system has to detect link failure and switch to another link
if possible. However, these link failures would typically occur in the middle mile of the
transport route and the overlay work should then be able to reroute tra�c accordingly.
Enabling multiple completely independent routes starting from the data center can still
be an important criterion for enterprise grade services.

When benchmarking the performance of overlay networks, it may therefore be inter-
esting to look at the ability to direct requests to the origin server over a di�erent uplink
once failure on the original link is detected.

3.4.2 Software

Design

In order to make the results of this thesis as reproducible as possible, as many openly
available tools as possible should be used.

If possible, these tools should have been used in network engineering and administration
for a long time to make sure they produce reliable outputs and are well understood by
a wide audience.

3.4. Technical Requirements 25

Still, own software has to be implemented when the available tools lack support for
features needed to investigate the questions posed in this thesis. When writing new
software, it has to be kept in mind that all code written should be easy to understand for
verifying the results of this thesis. This also enables reuse in potential future research
projects and includes documenting the code and choosing a permissive open source
license.

File Format

Measurement data should be collected in a format that not only contains the raw time
values, but also metadata regarding the time of measurement, the nodes’ IP address and
the interval between requests.

For analysis, these documents may be converted to a more suitable format after ensuring
data integrity and plausibility.

26 Chapter 3. Design

27

Chapter 4

Implementation

This chapter describes what precise steps where taken to gain the information described
later in the thesis and follows the requirements described in chapter 3.

4.1 Server Setup

The �rst steps towards the experimentation setup is setting up a web server used to
deliver the HTTP objects when doing round trip time measurements. This section lists
in detail which software has been used and what con�guration has been altered.

4.1.1 Webserver

For delivering the HTTP objects used for the measurements, a virtual server running
Debian GNU/Linux 8.0 with one multi-threading CPU core running at 2.67 GHz and
1 GB RAM equipped was used. Swapping was enabled but not necessary due to the low
memory requirements of the installed software.

The web server software was Nginx1 in version 1.6.1 serving the default index.html or
binary �les that were generated at the beginning of the experimentation setup using data
from /dev/urandom. Nginx was preferred over the Apache HTTP Server because the
former is known for performing particularly well in simple con�gurations for delivering
static �les. However, the decision between any commonly used HTTP servers should
hardly matter with today’s hardware capabilities2.

The server has gzip compression disabled in order to deliver the same amount of bytes
regardless of the requesting client’s capabilities to avoid accidentally distorting mea-

1http://nginx.com
2Using NGINX as the web server produced less than 5 % CPU load while serving around 300 requests

per second during early tests

http://nginx.com

28 Chapter 4. Implementation

surement data. Also, the clients will include no information regarding the HTTP cache
control mechanism, which means that every request gets served the same way.

For HTTP-Pings, persistent TCP connections (HTTP keep-alive header) is used. The
server is con�gured to deliver up to 1 000 000 requests and will wait up to one hour of
inactivity between requests before closing the connection.

The number of worker threads have been limited to 1 with a maximum connection
limit of 4096 connections per worker. This was done to provide a linear performance
impact when the number of test nodes increases. Otherwise, more active test nodes
could result in a better average performance because of more workers serving requests
simultaneously, which means that workers would be less busy each and therefore
respond to requests faster.

4.1.2 Hosting

While the web server is physically located with a direct connection to DE-CIX Frankfurt,
it is logically part of the chair’s network, including the IP address. The actual upstream
providers are the Leibnitz-Rechenzentrum (LRZ) which is connected to the Deutsches
Forschungsnetz (DFN/X-WiN) which is one of the providers peering at DE-CIX and
which is connected to other upstream providers in order to reach out to the whole
Internet.

Because of this setup, data will always be routed through the chair’s infrastructure before
being sent back to the DE-CIX using a transparent tunneling mechanism. However,
these connections are stable and powerful enough so that the di�erence between the
logical and physical location of the server only adds a static o�set to all the round-trip
time measurements.

Due to having the DFN as a direct upstream provider, there is an excellent connection to
other academic networks in Europe and Northern America, where many of the Planetlab
test nodes are located.

The physical up-link bandwidth of 200 Mbit/s is enough to sophisticate the requirements,
the server’s fully quali�ed domain name is spectre.net.in.tum.de.

4.1.3 Akamai SureRoute

For the comparison between regular routing and Akamai’s implementation overlay
network routing implementation, a customer account has to be created, which thankfully
was enabled through the company’s cooperation.

spectre.net.in.tum.de

4.1. Server Setup 29

Con�guration

Keeping in mind that the routing bene�ts should be the only di�erence to be measured,
any other possible optimizations have to be turned o�.

In particular, this required changing the con�guration to re�ect this state:

• Disabled TCP optimization

• Disabled caching

• Disabled (potentially transparent for the end-user) compression (within the Aka-
mai network) via gzip

As required by Akamai, a typical web site with a size of 33KB is used as the SureRoute
test object when Akamai servers perform their races determining the best route.

The web server’s SureRoute accelerated version was reachable under spectre-akamai.
net.in.tum.de.

Usually, HTTP keep-alive sessions are closed after a given total time, a maximum time
of inactivity or a maximum number of requests. This is done to prevent too many open
connections that block resources on the web server or intermediate proxy servers.

While Akamai Edge servers support persistent connection for multiple HTTP requests
over one TCP connection, the connection will be terminated after answering 2000
requests, as early tests showed.

DNS Setup

In order for Akamai to serve requests from their Edge Network instead of from the
origin server, the end-user has to be pointed to a suitable Edge Server, which is done
using DNS.

When a customer starts using Akamai services to accelerate its web contents, he changes
the public DNS name for his site to not point to the origin server directly anymore, as
it would be the case with a common website setup.

Instead, it points to a customer speci�c Akamai domain. For example

spectre-akamai.net.in.tum.de

does not resolve to the origin server’s IP address, but is instead a CNAME entry pointing
to

spectre-akamai.net.in.tum.de.edgesuite.net

spectre-akamai.net.in.tum.de
spectre-akamai.net.in.tum.de

30 Chapter 4. Implementation

which is within the authority of the Akamai name-server (edgesuite.net is a domain
owned by Akamai).

Real world customers would of course not su�x the domain name with an Akamai
speci�c label, but instead introduce a new domain for internal use that points directly to
the origin server. This work uses -akamai to clearly di�erentiate the accelerated server
from the regular web server.

The Akamai DNS server is now responsible for resolving the intermediate domain name
(ending in edgesuite.net) to an actual Akamai Edge server that can serve the origin’s
content.

Naturally, choosing an Edge Server is a crucial step that relies on a sophisticated decision
process considering not only the end-users distance to the Edge Server, but also the
availability of already cached contents for the given origin [5].

Client

Akamai Overlay Network

Nearest
Edge Server

Edge Server

Edge Server

Edge Server

Edge Server

Web Server

HT
TP

HTTP

Optimized Route

HTT
P

Figure 4.1: Illustration of using the nearest Akamai Edge Server for overlay network
routing

Figure 4.1 shows why this complex DNS setup is required. Only when using the Edge
Server which is closest to the client, �nding an optimized route through the Akamai
overlay network can bring an advantage over simply connecting to the web server
directly. This works because the domain that is intended for end users (in this setup
spectre-akamai.net.in.tum.de) is actually a CNAME chain resolving to to the closest
Akamai Edge Server which is then used as an entry point into the overlay network.
After contacting it, the requests gets passed to either another Edge Server or the origin
web server.

4.2. Measurement Tools 31

4.2 Measurement Tools

4.2.1 htping

The section Answering the Research Questions in chapter 3 already explained why
performing ICMP-style pings over persistent HTTP connections are required to measure
the performance bene�t. The tool htping was implemented to ful�ll this task.

Features

htping supports measuring against multiple target hosts and will send the speci�ed
number of requests to all hosts synchronized at the same time using the given time
interval to wait between sending.

The round trip time is recorded using precision timers that are based on the systems
steady clock and are not a�ected by �uctuating CPU clock rates etc..

To support evaluation based on time slices, the start time of a measurement is saved to
the output �le. Because nodes may di�er largely in their system time, the time-stamp
is requested using a HTTP based web service. The expected di�erence of up to one
second because of network and HTTP processing latency is within a passable range
and much less than without this external synchronization.

Additionally, the public IP of the measurement node is recorded and saved, so test nodes
can be �ltered or grouped by their location afterwards.

htping is implemented in the Rust3 programming language, which provides low level ac-
cess and performance to ensure correct time measurement and access to TCP connection
with minimal overhead.

Di�erent to compilers for C or C++, the Rust compiler has the advantage of o�ering a
greater level of memory safety and program correctness in concurrent environments.

Options

Table 4.1 shows all options options are available and are printed when the program is
invoked with --help.

The program also expects to �nd at least one hostname to be measured as in the example
invocation in listing 4.2.

Furthermore, it will refuse to run when neither --out nor --verbose are given to
prevent faulty operation by the experimentator.

3http://rust-lang.org

32 Chapter 4. Implementation

Option Shorthand Default Value Description
--count -c 10 Number of requests to make per target
--interval -i 1000 Send request with this interval in ms
--out -o Write measured data to �le at path
--verbose -v Be more verbose
--help -h Print this table

Table 4.1: htping options

When htping receives a SIGINT signal, it will stop sending requests, save the measure-
ment data collected until the signal occurred and shut down. This feature can be used
when an earlier measurement should be replaced by a freshly started one during the
experiment.

Program Flow

A typical execution �ow:

1. The program starts and determines the test node’s public IP and fetches the
current time from an external webservice.

2. The program sequentially initializes a TCP connection to both hosts and waits
until they are established.

3. For each connection, it starts a receiver thread that

(a) reads from the respective connection

(b) saves the time-stamp when a response was received

4. Then, it starts a sender thread that, as long as the target count has not been
reached and both connections are alive:

(a) sends a HTTP request on each connection, save the current timestamp

(b) calculates duration until the (n+1)th request should be sent by comparing the
current time with the target time of (absolute_start+(n+1)∗interval_length)

(c) sleeps for that duration

5. Finally, the program substracts the received-response timestamps generated in (3b)
and the sent-request timestamps from (4a) to get the duration for each request.

6. It generates and saves the output �le.

4.2. Measurement Tools 33

Measurement File Format

For postprocessing, a plain text format is useful because it is easier to integrate with
common Unix/GNU tools such as gnuplot or text processing tools.

However, measurement data collected by htping contains metadata including the start
time, the test nodes public IP address and the used interval between requests.

JSON4 was chosen as the measurement �le format because of its �exibility, lightweight
syntax and availability in every environment.

For each given origin, the time needed to establish the TCP connection is stored next to
the IP address the hostname resolved to. While that is the same for the origin host over
plain BGP routing, the IP address will vary greatly when using the Akamai hostname.

The data array contains the raw time values of each successive request in milliseconds,
but with a resolution on the nanosecond level.

Listing 4.1: Example htping JSON �le
{
"timestamp": "2015-05-07T21:32:53Z",
"public_ip": "80.165.237.10",
"interval": 5000,
"results": [
{
"host": "spectre.net.in.tum.de",
"target_ip": "131.159.14.85",
"time_connect": 170.641152,
"data": [
110.585038,
163.588215,
// ...

]
},
{
"host": "spectre-akamai.net.in.tum.de",
"target_ip": "80.165.238.9",
"time_connect": 191.029369,
"data": [
238.465119,
160.055152,
// ...

]
}

]
}

Example

For this thesis, this invocation was used multiple times:
4http://json.org/

http://json.org/

34 Chapter 4. Implementation

Listing 4.2: Example htping invocation
$./htping spectre.net.in.tum.de spectre-akamai.net.in.tum.de \

--verbose --count=2000 --interval=5000 --out=htping.json \
> htping.log &

This invocation includes the following speci�cs:

• Measure the hosts spectre.net.in.tum.de and spectre-akamai.net.in.tum.de

• Perform 2000 requests and exit afterwards

• Wait 5000 ms between requests

• Save the structured measurement data to htping.json

• Save the whole output containing status messages and possibly errors to htping.log

• Start the program in the background so the measurement orchestration software
(gplmt) can terminate before waiting until all requests have been made

Because of the 2000 requests per connection limit on Akamai Edge servers, the htping

is restarted every 2 hours (less than the run time of 2000 ∗ 5s = 2.77h) to avoid gaps
between the continuous measurements of the di�erent runs.

4.2.2 Measurement Instrumentation

While not directly relevant for the measurements’ results, the process of instrumenting
the measurement process itself turned out to be more complex than originally estimated.
As described below, network usage limitations and software incapabilities required a
major change of the toolchain from an existing project towards custom made shell
scripts. The individual components are now being described in detail.

GPLMT

The GNUnet Parallel Large-scale Management Tool (GPLMT) is a tool to deploy and
run experiments remotely on a large number of systems in parallel.5

To orchestrate the experiment and instruct the test nodes to setup and run the measure-
ments, GPLMT uses a XML description of the commands to execute on the nodes over
SSH. A collection of commands is called a tasklist.

In addition to executing tasks, GPLMT supports transmitting data from and to the
test nodes using SCP or SFTP. This can be used to retrieve results after the tasklist is
completed.

5GPLMT user guide

4.2. Measurement Tools 35

What makes GPLMT speci�cally useful for this work is its ability to retrieve the list of
nodes directly from the PlanetLab API and run a task�le on around 1000 nodes within
a few minutes when using maximum parallelism.6

Because of the Keep-Alive limit on Akamai hosts, the experiment has to be restarted
about every two hours, which also yields the bene�t of activating hosts that were
temporarily unreachable at an earlier try.

SSH Connections

Because of the large number of nodes, a large number of SSH connections have to be
instantiated every time a new round of measurements is started. Also, these connections
should be created within a small amount of time, because the measurements on all nodes
should all cover the same period of time. Delaying connections would mean varying
measurement periods which results in more di�cult post-processing.

Coming to a conclusion, these requirements mean the creation of 1000 SSH connections
within a few minutes, every two hours.

Even though the experiment instrumentation server was white-listed at the university’s
Internet provider, this behavior resulted in automatically triggered abuse e-mails to
the chairs network administrator and associated instances. While not critical, this
circumstance is highly unwanted because it shows the chair in a bad light and should
be avoided. As a side e�ect, using persistent SSH connections as described in the next
section also enable more accurate measurement instrumentation because of the faster
access to the PlanetLab nodes.

SSH ControlMaster

In order to solve the problem of frequently instantiating a great number of SSH con-
nections, SSH o�ers a mechanism called ControlMaster. ControlMaster enables the
sharing of multiple sessions over a single network connection.7 Setting the option to
auto instructs SSH to use an existing socket �le for communication to the host but will
create a new connection if necessary.

Unfortunately, as GPLMT is written in Python, it uses the Python library paramiko8,
which does not recognize the ControlMaster settings in the SSH con�g �le. Since
working through the source code of GPLMT/paramiko and �xing the problem there
would have been a complex task and not much functionality of GPLMT was needed

6Given that the ISP allows the creation of that many SSH connections within a short period of time,
which is typically not the case with home Internet connections

7man ssh_config
8http://www.paramiko.org/

http://www.paramiko.org/

36 Chapter 4. Implementation

anyway, the decision was made to use custom shell scripts to do the measurement
instrumentation.

sshed

Using ControlMaster does not per se solve all the requirements—SSH connections still
need a few seconds each to be established. Therefore, running an experiment would
still cause the creation of a lot of connections simultaneously.

Instead, a new bash script is introduced, sshed. Its whole purpose is the maintenance
of the ControlMaster connections. The script accepts a list of hosts and tries to bring
up as many connections as possible within the given interval of e.g. one minute.

In order to avoid bursts of connections, the actual connection time for each host is
randomized within the interval window. Once a connection is established, it is kept
alive by sending a simple echo command. For unreachable hosts, however, the script
would try to build an new SSH connection in every interval, which would result in an
even higher number of connection attempts than the original approach using GPLMT.
Since the number of unreachable hosts is expected to be even greater that the number
of working hosts, this poses a real problem.

Borrowed from established network systems such as Ethernet9, a binary exponential
backo� mechanism is implemented. This means calculating a probability P for every
host h which in each interval is used to decide whether to attempt connecting to the
host or not:

Pr[“visit host h”] = 1
min{2n ,1024} (4.1)

In this formula, n is the number of unsuccessful connection attempts which gets reset
when the connection attempt succeeded and that is initialized to 0 to produce a 100 %
chance of checking a host once when in the �rst interval. If the number of hosts is really
large, n can also be initialized to e.g. 2 in order to reduce the number of connections
when �rst starting sshed. This, however, increases the time until the connection pool
is saturated and experimentation can start.

As can be seen in the formula, the smallest possible probability is 1
1024 , which would

result in checking a maximal inactive host every ≈ 8.5 hours on average, given an
interval time of one minute.

In addition to the sshed script, the SSH con�g is set up to detect failing connections
within the time slot of 60 seconds by using the ServerAliveInterval 60 option for all
hosts.

9IEEE 802.3

4.2. Measurement Tools 37

Command Templating

Now that maintaining SSH connections are taken care of, a simple script can be used to
repeatedly execute the measurement command on every host and start the measurement
segments.

When re-running a command after some time, result �les from an earlier run must not
be overridden. As it turns out, there is no particularly simple and compatible way to
automatically write to �les with incrementing �lenames on a given Linux system.

That means that one can’t simply run a command
ping spectre.net.in.tum.de > ping.log

every two hours, because the result would get overwritten. The desired output would
be generating �les such as ping_00.log, ping_01.log etc., but as said above, this is
hardly possible.

Instead, a simple substitution step is implemented that converts an command template
�le to the actual command �le by replacing a de�ned placeholder such as {{n}} with
the number of the current measurement.10

Hereby, a command template �le is nothing else than a shell script containing a set of
placeholders, such as {{n}} which will get replaced by real values in order to retrieve
the actual command �le.

Listing 4.3: Example command template �le before substitution
run htping on origin
./htping spectre.net.in.tum.de spectre-akamai.net.in.tum.de \
--count=2000 --interval=5000 \
--out=htping_{{n}}.json -v > htping_{{n}}.log &

ping origin
ping -c 2000 -i 5 -s 800 spectre.net.in.tum.de \
> ping-origin_{{n}}.log &

ping akamai
ping -c 2000 -i 5 -s 800 spectre-akamai.net.in.tum.de \
> ping-akamai_{{n}}.log &

Listing 4.4: Resulting command �le with run number 42 inserted
run htping on origin
./htping spectre.net.in.tum.de spectre-akamai.net.in.tum.de \
--count=2000 --interval=5000 \
--out=htping_42.json -v > htping_42.log &

ping origin
ping -c 2000 -i 5 -s 800 spectre.net.in.tum.de \
> ping-origin_42.log &

10This can be achieved using the sed - stream editor for �ltering and transforming text command

38 Chapter 4. Implementation

ping akamai
ping -c 2000 -i 5 -s 800 spectre-akamai.net.in.tum.de \
> ping-akamai_42.log &

While this process seems complicated at �rst, it is very easy to implement and e�ciently
solves the problem of consecutively numbering result �les, as in the example above.

Of course, the parameters could have passed in to the script when executing, but for
compatibility reasons, creating the �nal script with all variables already �lled in was
preferred.

Command Execution

Taking the processed command �le from above, it now has to be run on all the hosts
that are currently reachable. This is done using a rather simple SSH script that, every
two hours, asynchronously runs a function for every host, that:

1. Checks whether the SSH connection for the host is currently available

2. Runs the processed command �le by passing its content as an argument to SSH

4.3 Post-Processing

In order to utilize the data generated in the measurement steps for knowledge discovery,
post processing is a crucial factor.

4.3.1 Data Collection

Collecting the data is completely decoupled from experiment instrumentation, even
though it works very similarly. For starting measurements, a script will iterate over
all hosts and check whether a SSH connection currently exists and if that is the case, a
command will be issued.

For result collection, scp is used because it can be instructed to use the SSH ControlMas-
ter feature and therefore work very fast on existing connection. Since the data being
transferred is usually plain or structured text, compression can speed up the process
dramatically. scp can be told to use compression via the -C �ag.

In practice, measurement data segments can be collected at any point, even while an
experiment is still running. This allows early-on insights revealing problems that would
otherwise have gone unnoticed until the �nal data exploration.

4.3. Post-Processing 39

4.3.2 Data Processing

After collecting the data as described above, the large amount of request times has to
be processed in order to gain insights into the di�erent transport routes.

Processing Pipeline

To do the di�erent steps in post-processing, a processing pipeline has been implemented
in Python. The core of it is a very simple script that just loads a JSON con�guration
�le, loads the tasks referenced and runs each tasks with the previous task’s output as
an argument.

Additionally, every task can have an own options hash where speci�c settings matched
to the relevant data set can be speci�ed. This design enables the reuse of the processing
pipeline in future projects because tasks can be swapped as needed and the base is easy
to understand.

Processing Steps

To only give a short overview over the steps taken to produce the graphs that can be
seen in chapter 5, this is a high level explanation of one processing pipeline:

1. Glob for a speci�ed �le pattern belonging to the current data set in order to create
a nested list of directory names (hosts) and �le names (measurement segments).

2. Concat all JSON �les belonging to one node, producing a list of tuples containing
the response time measured for both transport routes and an absolute timestamp.

3. Create time slices from the list of measurement times by selecting exactly one
tuple from each node for each time slice of the measurement’s sampling duration.
A time slice then contains one list for both transport ways containing the RTTs
from each node.

4. Calculate statistics such as the median, �rst quartile, third quartile etc. for each
time slice.

5. Plot the time slices’ statistical values in the appropriate way, outputting a .pdf

graphic for embedding in this thesis.

When comparing multiple node groups using box plots, nodes can be preselected before
the �rst step or �ltered by top level domain.

40 Chapter 4. Implementation

4.3.3 Visualization

Data visualization is an important step in the process of knowledge discovery. Choosing
the appropriate visualization technique can lead to the discovery of correlations and
support the creation of hypotheses. On the other side, graphics can also be misleading
and make the viewer recognize properties that aren’t representative for the rest of the
data.

For generating graphs, the Python library pyplot is used which is part of matplotlib11.
Its dependency, numpy12 is a package that brings many basics for scienti�c computing
in Python such as data structures and algebraic functions.

Scatter Plots

Scatter plots are a good starting point when exploring a dataset because it can show
points on a two dimensional plane and even compare a low number of di�erent data
sets by using color coding or di�erent symbols for each set.

For this work, the x-axes in scatter plots are always used for indicating the time that
passed since the start of the experiment. The y-axis on the other hand displays the
round trip times that were measured for the requests at a given time.

Generating scatter plots can give a good overview over the data contained in a set
because one can easily see how much points are spread or condensed at any point in
time. When comparing di�erent sets in one �gure, it is also possible to tell whether
both sets are a�ected by an irregularity or not.

Unfortunately, scatter plots become hard to read when a larger amount of data is shown.
As soon as points starts overlapping each other, very dense areas tend to become one
continuously �lled area. It is then impossible to estimate a di�erence between two
regions within such areas.

Also, when comparing di�erent data sets with similar values, they typically overlap and
later sets may be drawn over other sets. This problem increases with the number of
data sets to compare and even using transparency and blending to create new colors
where points overlap becomes confusing quickly.

Regression Lines

An obvious solution to the problem of overloading a graph is to reduce the number of
data points being displayed by combining values in a meaningful way. When only the

11http://matplotlib.org/
12http://www.numpy.org/

http://matplotlib.org/
http://www.numpy.org/

4.3. Post-Processing 41

overall trend matters, for example when the overall performance of both routes should
be compared, its favorable to use a linear regression function.

A linear regression line is a polynomial with a degree of 0 that approximates a set of
points as good as possible. In practice, that means that the calculated line minimizes
the squared error by comparing the interpolated point p (x j) with the actual point yi for
every point (x j ,yj) in the data set of length k . The error itself is calculated according to
the formula

E =
k∑
j=0
|p (x j) − yi |

2 (4.2)

Of course the polynomial function can be of any degree to interpolate a corresponding
signal, but for analyzing a trend, grade 0 is the appropriate choice.

Box Plots

When drawing a regression line combining a large amount of data segments, one has
to choose which value to represent per x-value. This can be for example the median,
�rst quartile, third quartile, minimum value or others.

In order to represent as much information as possible while not loosing overview
because of the growing number of lines, box plots can be used to represent several
aspects of a data set on the y-axis while using only one unit on the x-axis.

Typically, a box will be drawn that has its bottom line on the �rst quartile and its top
line on the third quartile. In between, the median is marked by another horizontal line.

Above and below the box there are the whiskers that mark the 5th and 95th percentile13.
These are typically connected to the box using a dashed line that is horizontally centered.

Box plots are great to compare di�erent selections of a data set because they o�er a lot
of information while using limited space.

13Other works may use whiskers to display the 1st and 99th percentiles

42 Chapter 4. Implementation

43

Chapter 5

Evaluation

This chapter evaluates the results collected in the experiments regarding the di�erent
research questions. Additionally, a short evaluation of the PlanetLab network featuring
some statistics collected for this thesis is given.

5.1 Experimentation Setup

Over the course of this thesis, PlanetLab was a substantial part for collecting measure-
ment data as it provided computers that were accessed in an automated way using SSH.
Unfortunately, it also brought up multiple problems which had to be solved in order
to perform scienti�cally accurate measurements. Of course, some of the concerns are
referable solely to the large amount of node, like the large number of SSH connections
that con�ict with the university’s network policy.

PlanetLab itself is divided into two projects that are heavily connected. Nodes in Europe
are organized under the PlanetLab Europe (PLE)1 project while organizations outside
of Europe belong to PlanetLab Central (PLC)2. However, members of any of the two
projects can also use all the other testbed’s nodes as well and organize them over one
single web interface.

5.1.1 Node Availability

A rather surprising fact when testing PlanetLab functionality was the portion of nodes
that was actually available.

1https://www.planet-lab.eu/
2https://www.planet-lab.org/

https://www.planet-lab.eu/
https://www.planet-lab.org/

44 Chapter 5. Evaluation

Of the 1048 nodes that were added to the slice using PlanetLab’s web-based control
interface, at most 311 were reachable at the time these statistics were created, which
equals around 29.7 %.

A short analysis on the reason why a large majority of nodes was unavailable was done
and is represented in table 5.1 (PlanetLab Node Availability Summary).3

Amount Status Comment
311 Working
414 Timeout Establishing the SSH connection timed out
140 Not Found Resolving the node’s hostname failed
84 Authentication Failed The SSH key was not accepted by the node
71 Connection Refused The node or its �rewall refused the connection
19 Unreachable The node or its network was not reachable
9 SSH Error The node’s SSH server produced an error

1048 total

Table 5.1: PlanetLab Node Availability Summary

This evaluation shows the importance of a fault tolerant measurement instrumentation
setup. However, also the post processing process needs to deal with missing measure-
ment segments for certain nodes because of temporal unavailability that collided with
starting a new measurement segment.

5.1.2 System Versions

The nodes’ system versions are an important criterion for choosing available tools or
even developing own software. The following data is extracted from the 311 available
nodes but the numbers don’t add up to that amount because as with every experimen-
tation made, some nodes may have been unavailable at the time of measurement or
executing the command simply failed.

Kernel Version

Using the uname -r command prints the operating system kernel’s release. Table 5.2
(PlanetLab Node Kernel Versions) shows the raw data when counting occurrences of
the di�erent releases.

As it can be seen, 284 of the 292 nodes (97.3 %) are running on the Linux kernel in
version 2.6.32 or higher. Even though version 4.1 has been released by now, this is a
solid foundation for a large scale facility such as PlanetLab to run on and should not
interfere with working with modern tools.

3Failure comments are deduced from status codes and may in parts represent a temporal condition

5.1. Experimentation Setup 45

Count Kernel Release
158 2.6.32-20.planetlab.i686
79 2.6.32-36.onelab.x86_64
28 2.6.32-36.onelab.i686
12 3.11.10-100.fc18.x86_64
8 2.6.27.57-33.planetlab
5 2.6.32-34.planetlab.x86_64
2 2.6.32-131.vs230.web10027.xidmask.2.mlab.i686

Table 5.2: PlanetLab Node Kernel Versions

The kernel release string also yields some information over the systems architecture. 96
of 292 nodes (32.9 %) are running a 64-bit system while the vast majority of 67.1 % are
running a 32-bit system. It it therefore absolutely necessary to compile own software
in a manner that is compatible with both architectures, i.e. that runs on 32-bit systems.

Operating System Versions

Next to the kernel versions, the operating system plays an at least equally important role
because it de�nes which versions of common software is available from the repositories
without having to compile it from source.

Table 5.3 (PlanetLab Node Operating System Versions) shows the two versions of Fedora
Linux4 that are used on PlanetLab nodes. While it is positive for the developer that
there are only two versions in use, the operating systems are rather old. According to
the list of Fedora releases and historical schedules5, version 8 (Werewolf) was released
around 8 years ago in November of 2007 and version 14 (Laughlin) only three years later
on November 2nd 2010. This makes it more di�cult to work with up to date software.
On some systems installing new software even fails because of outdated SSL certi�cates
and requires extra work for enabling the use of software repositories without SSL.

Count Fedora Version Codename
174 8 Werewolf
112 14 Laughlin

Table 5.3: PlanetLab Node Operating System Versions

5.1.3 Node Distribution

While not necessarily being relevant for every experiment that happens on PlanetLab,
the geographic location of test nodes plays an important role when performing latency

4https://getfedora.org/
5https://fedoraproject.org/wiki/Releases/HistoricalSchedules

https://getfedora.org/
https://fedoraproject.org/wiki/Releases/HistoricalSchedules

46 Chapter 5. Evaluation

measurements against a single location. Since the later is the case for this thesis, the
node locations are inferred from the nodes’ DNS top level domain part and shown in
table 5.4 (PlanetLab Node Distribution by Country).

Also, a rough di�erentiation into PlanetLab Europe (PLE) and PlanetLab Central (PLC)
is made, although there are some nodes di�ering in its umbrella project even though
the TLD is clearly European or non-European. The bottom entries with only one or two
nodes per top level domain are combined into one row each for the sake of brevity.

Count Project Estimated Location
94 PLC/PLE USAa

16 PLE France
16 PLE Germany
16 PLC China
14 PLE Spain & Catalonia
12 PLE Poland
11 PLC .com domains, not country bound
11 PLE United Kingdom & Ireland
10 PLC Japan
9 PLE Greece
8 PLC/PLE .org domains, not country bound
7 PLE Portugal
7 PLC/PLE .net domains, not country bound
7 PLC Canada
6 PLC New Zealand
6 PLE Italy
6 PLE Finland
6 PLE Czech Republic
6 PLE Belgium
5 PLC Argentina
4 PLC Brazil
3 PLC Singapore
3 PLE Norway
3 PLC Hong Kong

7 × 2 PLC/PLE Thailand, Sweden, Russia, Mexico, South Korea, Israel &
Australia

8 × 1 PLC/PLE Slovenia, Romania, Netherlands, Hungary, Ecuador, Den-
mark, Cyprus & Switzerland

Table 5.4: PlanetLab Node Distribution by Country
aPossibly including institutions in other countries with .edu domains registered before 2001

It can be seen that 103 of 308 nodes (33.4 %) are located on the continent of North
America, 120 nodes (38.9 %) in Europe and 26 nodes (8.4 %) in Asia, so these continents
account for at least 80 % of available nodes. However, the share is likely to be higher

5.2. Non-Accelerated Route Measurements 47

because of the 26 nodes (8.4 %) that can not be located precisely because the domain
names belong to either the .com, .org or .net TLD. On the other side, there are two
nodes in the .fr TLD that are actually located on La Réunion in the Indian Ocean.

These statistics were created in the beginning of this work in order to evaluate the
expressiveness of measurements on the PlanetLab nodes. Just before starting the �nal
series of measurement however, it seemed like PlanetLab Europe started to experience
problems regarding the federated login mechanism that allows members of PLE to
access nodes belonging to PlanetLab Central. As a result, only the nodes from table 5.4
that are marked with PLE were available for performing measurements.

5.2 Non-Accelerated Route Measurements

For the �rst experiment, the goal was to �nd out about the static overhead that using
an overlay network from an outside client (i.e. a home computer) would in�ict. That
means, the amount of time it takes to contact the overlay network’s nearest server and
do the processing that is required to route the request—regardless of whether a possible
acceleration would happen afterwards or not.

Because of the chair’s internal infrastructure setup, arrangements have had to be made
in order to keep the latency between the web server used during the experiments and
the public Internet as steady as possible. Therefore, all round trip time measurements
will show an additional overhead, originating from inside the chair’s network.

Nevertheless, measurement accuracy when comparing transport ways or node groups
is always guaranteed because each and every request was a�ected the same way.

5.2.1 Measurement Overview

To gain information about the typical delay the extra hop would cause, HTTP HEAD
requests were sent over both the plain Internet and the overlay network’s route. Mea-
suring the response times then gives the pure RTTs6 because requests were sent over
an already established TCP connection and therefore avoided performing the typical
handshake which would distort the results. For executing the experiment, the htping

tool has been created from scratch and is described in section 4.2.1.

HEAD requests were chosen for this experiment because the overlay route’s RTT bene�t
was to be explicitly excluded from the measurement values and Akamai does not accel-
erate HEAD requests using SureRoute. This way, the Akamai Ghost server simply takes
the public Internet route as well and the overhead of contacting the overlay network’s
server �rst can be measured.

6except for a very short processing time needed by the web server

48 Chapter 5. Evaluation

For �guring out that overhead baseline, 103 PlanetLab nodes performed HTTP HEAD
requests every 5 seconds for 14 continuous hours for both routes. The round trip
times were measured and stored in blocks of 2 hours each which results in 721 possible
segments at maximum. In fact, 711 (98.6 %) of those segments actually completed
successfully which results in the number of total requests being 2 047 680 for both
transport routes combined.

5.2.2 Results

Figure 5.1: Scatter plot of htping-measured RTTs using HEAD requests

In �gure 5.1, round trip times collected as described above are plotted with each data
point marking one median value of all RTTs measured within a time slot of 5 seconds.
Red pluses mark a RTT median value measured over the plain Internet route, blue crosses
stand for a value measured over the Akamai accelerated route. The gray line at the
bottom of the graph shows the amount of nodes that were measuring both routes at
any point in time.

It is clear that many of the blue Akamai times are greater than most of the red regular
Internet times which would mean that overlay routing does not provide any bene�t here.
Still, it is very hard to de�ne the exact di�erence because plotting a large amount of
data often results in misleading graphics where the process of drawing suggests wrong
conclusions. Figure 5.1 features so many data points that it is impossible to gain further
insights.

5.2. Non-Accelerated Route Measurements 49

As this problem has already been described in 4.3.3, the logical consequence is to use
linear regression function instead to gain more insight on the data. Creation of such a
function is explained in section 4.3.3 and won’t be discussed any further in this place.

0 2 3 5 8 10 11 13

Hours into Experiment

0

50

100

150

200

R
T

T
in

m
s

0

200

400

600

800

1000

S
am

p
le

S
iz

e

spectre

spectre-akamai

Figure 5.2: Linear regression plot of htping-measured RTTs using HEAD requests

After this modi�cation, it is now possible to determine the maximal and minimal di�er-
ence between the both routes’ RTTs in �gure 5.2.

Reading from the chart, requests taking the overlay network routed path are, in their me-
dian, between 3.3 ms and 4.0 ms slower than their counterparts over a regular Internet
connection.

5.2.3 Conclusion

This overhead in round trip times that was measured while doing head requests seems
rather unexpected at �rst, not only because it seems to invalidate the presupposition ex-
plained in section 3.1 (Overlay Routing), but also because it contradicts the propositions
made by companies such as Akamai.

However, the intention of this experiment was to quantitatively measure exactly this
initial overhead, which can be seen nicely in �gure 5.2. When evaluating round trip
times with acceleration, this baseline has to be kept in mind in order to assess the actual
round trip time bene�ts.

50 Chapter 5. Evaluation

5.3 Accelerated Route Measurements

To answer the �rst research question, “How does optimized routing within an overlay
network a�ect the latency of small sized data units?”, round trip time measurements
featuring HTTP requests to a web server have been made as described in the section
3.2.

5.3.1 Measurement Overview

For measuring round trip times over both regular Internet routing and the Akamai
overlay network, a set very similar to the �rst experiment (Non-Accelerated Route
Measurements). Again, htping is used to send HTTP GET requests over persistent
connections to the web server and measures the response times.

Measurements were planned to be running over a period of at least one week so that
it would have been possible to identify a di�erence in the measured values between
working days and the weekend. Unfortunately, these measurements turned out to be
more complex than originally thought. Not only the measurement instrumentation
setup, which had to be switched from GPLMT to the custom SSH shell scripts, but also
outages and planned maintenances at the university’s infrastructure interfered with
long-time measurements.

In the end, it was possible to collect data over 32 continuous measurement segments
lasting 2 hours each which means that data has been collected over the course of 2.5
days. In total, 103 test nodes produced 2839 segment �les equaling round 27.56 segments
per node. If every node had been reachable all the time and no errors during the
measurement had occurred, the total number of segments should have been 32 ∗ 103 =
3296 �les. Compared to the actual number of successfully retrieved measurement
segments, the measurement process showed a reliability of 86.13 %.

Of course, the amount of measurement segments alone is not that interesting. Extrapo-
lating from the numbers stated above, 4 088 160 HTTP requests have been performed
for each transport way. This number is calculated by multiplying the number of mea-
surement segments with the number of requests made during each measurement period
of two hours, which itself can be found by dividing the duration of 2 hours by the 5
seconds interval between each two requests.

Counting both the requests made over the unmodi�ed Internet route and the Akamai
accelerated route, the web server served 8 176 320 requests used for RTT measurement.

5.3. Accelerated Route Measurements 51

5.3.2 Results

To gain an overview over the collected data, �gure 5.3 shows the scatter plot of each
time slice’s median value.

Figure 5.3: Scatter plot of htping-measured RTTs using GET requests

As can be seen, the amount of nodes that were taken into account while calculating
the time slices’ median values are �uctuating quiet a lot where at some point only 25
nodes delivered a measurement result. Most of the time however, around 90 points per
time slice and route have been used which grants an overall reliable result. The gap
between hours 14 and 15 denotes an actual gap in the measurements where less than
5 nodes were reachable and therefore left out of the evaluation because the results in
that timespan would not be substantive.

The graphics also shows that there is an enormous variance in response time in certain
periods of the experimentation. Concluding from the fact that the graph shows median
values instead of average values, which would be more susceptible to outliers, it can
conjectured that the problem causing the deviation a�ects all nodes in a similar matter.
It is therefore most likely that there was an issue lying close to the web server, for
example in the chair’s network which gets passed-trough by every packet going to the
web server.

As seen with the scatter plot of HEAD requests, no de�nite conclusions can be made
from �gure 5.3 as it is too crowded and imprecise. For this reason, another form of
plotting the data has been chosen and is presented in �gure 5.4.

52 Chapter 5. Evaluation

0 2 3 6 8 9 12 14 15 18 20 21 24 26 27 30 32 33 36 38 39 42 44 45 48 50 51 54 56 57 60 62 63

Hours into Experiment

0

50

100

150

200
R

T
T

in
m

s

0

200

400

600

800

1000

S
am

p
le

S
iz

e

spectre

spectre-akamai

Figure 5.4: Linear regression plot of �rst quartile, median and second quartile RTTs
measured by htping using GET requests

In addition to the both median regression lines shown in red and blue having nearly
the same values, also the �rst and third quantile are shown by using dashed lines. The
lower two lines represent the trend lines for plain Internet and Akamai 25th percentile,
the upper two lines stand for the 75th percentile.

That means that when starting from the bottom of the graph, for each transport way,
the �rst line marks the round trip time that is greater than 25 % of all the RTTs and the
middle line the value that is greater than 50 % of all RTTs. Finally, 75 % of all round trip
times of each transport route are lower than the topmost dashed line of the respective
color.

Evaluating the Trend Lines

Comparing the trend lines of �gure 5.4 reveals an interesting circumstance.

First of all, there is virtually no di�erence between the two median lines in the middle,
which is not particularly surprising since the data consists of both kinds of nodes:
The ones that are close to the web server which should perform best using regular
Internet routing, but also the nodes farther away that should perform better using the
optimized route. Therefore some nodes will pro�t by using overlay network routing
by experiencing decreased round trip times and others will measure increased RTTs
because of the overhead explained in 5.2 (Non-Accelerated Route Measurements).

5.3. Accelerated Route Measurements 53

However, neither the �rst quartile line nor the third quartile line conforms with the
intuitive expectation that good routes with low response times should bene�t less from
overlay network acceleration than the routes with a higher response time. Instead, it
may seem like already good RTTs are getting better when using the overlay network’s
route and rather bad RTTs become even worse.

As already mentioned, this is a highly unexpected result which demands an explanation.

To investigate this discrepancy, �gure 5.5 shows a scatter plot of both 25th and 75th

percentile RTTs for the same data set shown in 5.3 and 5.4. Obviously, the center of data
points in �gure 5.5a is below the center of 5.5b. The more interesting fact can quickly
be seen is the di�erent deviation shown by the two plots.

While the 25th percentile’s points are fairly concentrated and don’t show a high variance,
the points on the right graph vary at lot with a strong drift towards times over 200 ms.

(a) 25th percentile (b) 75th percentile

Figure 5.5: Scatter plot comparison of 25th and 75th HTTP GET percentile

Inspecting the left graph in �gure 5.5, the overlay network route performs better than
the standard Internet route when analyzing the time slices’ low round trip times. Since
this behavior is shown is when looking at the 25th percentile, that means examining
the median of the lower half of measured values in a time slice. As seen in the previous
regression lines, the overlay network actually perform better because it has more points
below the plain Internet route, which is consistent with the graphic above.

On the other side, the overlay network route performs worse than the standard Internet
route when analyzing the time slices’ high round trip times. In contrast to the 25th

percentile, the 75th percentile is the median of the upper half of measures values, i.e. the
slower performing requests. However, it cannot be said with certainty that the overlay
network performs signi�cantly worse in this sector, which means that the outliers must
have greater values and therefore in�uence the overall quartile line.

54 Chapter 5. Evaluation

On the Informative Value of Regression Lines

The previous section tried to reason about an easy to make misconception regarding
the expressiveness of the regression lines shown in �gure 5.4, but without leading to
any reasonable explanation.

To avoid these misconceptions, it is very important to understand that the di�erence in
�rst and third quartiles does not in any way mean that routes with already low RTTs
are getting accelerated even more and routes with high RTTs get even longer. Instead,
it shows that choosing the overlay network route only increases the deviation of round
trip times when there is a source of jitter on the way, as it is the case for the respective
time periods seen in �gure 5.3.

To support that statement, �gure 5.6 compares the regression lines for the same set of
nodes but with 5.6a only showing values where no jitter was observable and 5.6b only
uses data from periods with great in�uence.

0 2 3 6 8 9 12 14 15 18 20 21 24 25 27 30 31 33 36 37 40 42 43

Hours into Experiment

0

50

100

150

200

R
T

T
in

m
s

0

200

400

600

800

S
am

p
le

S
iz

e

spectre

spectre-akamai

(a) Only segments without jitter

0 2 3 5 8 9 11 14 16 17 20 22 23 26 28 29 32 34 35 37 40 41 43 46 48 49 52 54 55

Hours into Experiment

0

50

100

150

200

R
T

T
in

m
s

0

200

400

600

800

1000

S
am

p
le

S
iz

e

spectre

spectre-akamai

(b) Only segments with jitter

Figure 5.6: Regression lines of all hosts but separated by network e�ects

In 5.6a it can be seen clearly that the lines match the expected outcome of overlay
routing: Some node gain an advantage and therefore the round trip times in general are
a little lower, which is why the blue 25th percentile and median lines are a little lower
than the corresponding red ones.

The fact that the overlay network’s 75th percentile is higher than the plain Internet
one’s in 5.6b is very interesting, because looking back at �gure 5.4, it turns out that the
overall regression lines look more similar to the regression lines in the right graph seen
above.

Since there are around 3 times more segments experienced the network e�ects than the
ones that don’t, it is no surprise that calculating an average value over inhomogeneous
data can be misleading when there really are separate cases to be compared individually.

5.3. Accelerated Route Measurements 55

Analysis by Geographic Location

An important aspect of analyzing the round trip time bene�ts overlay routing can bring
is of course the comparison of di�erent geographic locations. Table 5.4 (PlanetLab
Node Distribution by Country) already gave an overview of how well countries are
represented in the PlanetLab projects.

In order to �nd groups of nodes that should share a common distance to the web server,
a traceroute measurement was run that yielded the path length between each of the
test nodes and the web server measured in IP hops. However, these numbers were not
as meaningful as expected, because nodes within one country varied just as much in
their path length as when compared to nodes in completely di�erent countries.

Having in mind the fact that most nodes are located within Europe, it makes sense that
route lengths, while naturally being di�erent from node to node, don’t vary as much
as needed for this di�erentiation. Perhaps, with more nodes that are distributed all
over the world, the path length in IP hops would have been a more signi�cant decision
criterion.

Luckily, the top level domain of each node’s host name can be used to di�erentiate
nodes into their estimated home countries. Figure 5.7 compares a set of di�erent box
plots, showing two at a time for one group of nodes. The red box on the left is the box
plot for the plain Internet’s route and the blue box on the right symbolizes the values
measured through the overlay network. Lastly, the gray bar in the middle of each pair
indicates the numbers of hosts in the particular group.

This short description and analysis of the plotted boxes in 5.7 brie�y explains the
information contained and possible reasons why the result may look di�erent than
expected. From left to right:

• German nodes are connected to the university’s network and therefore to the web
server using the X-WiN network administrated by the Deutsches Forschungsnetz
association. Of course, this is also the group of nodes with the lowest physical
distance to the web server, which is, combined with the good connectivity, the
main reason why general performance is already very good and overlay routing
can only add a delay to the packets because of the extra processing time needed.

Additionally, most universities in Germany should be able to reach the web server
without ever leaving the X-WiN/DFN or one of its regional allies such as the
Leibnitz-Rechenzentrum in Munich, but sending packets to an Akamai server
�rst may require leaving and reentering the DNF. Remembering the di�culties in
peering contracts, switching between di�erent autonomous systems makes the
overlay network perform even worse in comparison.

• The French nodes surprisingly show a rather bad median RTT of around 80 ms,

56 Chapter 5. Evaluation

D
E FR

ES
&

PT

RO
, PL, SI

&
H
U

N
O
, FI,

SE
&

D
K

G
R

&
CY TH al

l
0

50

100

150

200

250

300

350
R

T
T

in
m

s

0

20

40

60

80

100

N
o
d

es
in

G
ro

u
p

spectre

spectre-akamai

Figure 5.7: Box plot of selected node groups’ round trip times

compared to below 49 ms for the German nodes. This, and the drastic improve-
ment granted through overlay network routing, is a very unexpected result, be-
cause in general, connectivity to the German scienti�c network should already
be very good.

In contrast to the next group, this result suggests rather selective network in-
e�ciencies at the universities hosting the French PlanetLab nodes, which only
feature a low number of nodes in total.

• Compared to the French nodes, connectivity Spain and Portugal is again slightly
worse—just as it can be expected because of the higher geographic distance. Simi-
lar to the the nodes in Germany, overlay routing can only add a few milliseconds
of delay to the packets, which is again surprising because even from France there
is a bene�t in round trip times when choosing the overlay route.

• The same holds true for the nodes in Romania, Poland, Slovenia and Hungary.
Interestingly, median Internet latency is around 10 ms lower than from the French
nodes. However, the distance to most of the eastern European countries is lower
in reality than perceived in the minds of the people. For example, Ljubljana
(Slovenia) is only 400 km away from Munich by car, Budapest (Hungary) around
670 km and Warsaw (Poland) around 1000 km. Madrid (Spain), on the other hand,
is nearly 2000 km away from Munich and Lisbon (Portugal) even farther.

5.3. Accelerated Route Measurements 57

Of course, Internet routes don’t follow the European highways and there are a
many more factors in�uencing latency than just the geographic distance, which
can only act as an indicator but nothing more. In the end, this results may just
not be as surprising as it seems at �rst.

• Nodes from northern Europe in Norway, Finland, Sweden and Denmark be-
have as expected given their distance to the web server. The overlay network
achieves to reduce latency by about 10 ms, which is a solid improvement for this
distance.

• The nodes in Greece and Cyprus show a slightly better median plain Internet
latency than the Nordic states. Also, overlay network routing can not improve
latency and only adds its static overhead. Once again, these �ndings suggests a
good connectivity of scienti�c networks between Germany and Greece.

• Fortunately, two nodes in Thailand were part of the PlanetLab Europe project
and were widely available for measuring latency. Being the location with the
highest distance to the web server, it is not surprising to see the high overall
latency and next to the solid improvement made by overlay routing. After all,
median latency through he overlay network is over 40 ms lower, which equals a
relative advantage of around 15 %.

• Finally, all numbers of all nodes have been combined and plotted into one single
box for each transport route. It turns out that overlay routing only features a
very slight advantage over the plain Internet routing and in general increases
the deviation of measurement values because of the problem with network jitter
described above.

Analysis by Geographic Location and In�icted Network Jitter

While the previous section used all data collected over the measurement period, it still
is interesting to compare the di�erent nodes groups with and without the network jitter.
To do that, segments were selected just as in �gure 5.6 but instead of regression lines,
the box plots seen in �gure 5.7 were plotted.

Figure 5.8 shows data from segments that did not experience any jitter on the left,
and the ones containing signi�cant outliers on the right. The box plots show a very
consistent and also expected behavior:

In times of good network conditions, both boxes are about the sames size which means
that using the overlay routing either improves the round trip times for nodes in that
region or it can only add a small overhead, which consistently a�ects all 25th percentile,
the median and 75th percentile.

In the other periods where a lot of jitter was observable, the quartile lines for both

58 Chapter 5. Evaluation

D
E FR

ES
&

PT

RO
, PL, SI

&
H
U

N
O
, FI,

SE
&

D
K

G
R

&
CY TH al

l
0

50

100

150

200

250

300

350
R

T
T

in
m

s

0

20

40

60

80

100

N
o
d

es
in

G
ro

u
p

spectre

spectre-akamai

(a) Only segments without jitter

D
E FR

ES
&

PT

RO
, PL, SI

&
H
U

N
O
, FI,

SE
&

D
K

G
R

&
CY TH al

l
0

50

100

150

200

250

300

350

R
T

T
in

m
s

0

20

40

60

80

100

N
o
d

es
in

G
ro

u
p

spectre

spectre-akamai

(b) Only segments with jitter

Figure 5.8: Box plot of selected node groups’ round trip times with and without network
jitter

routes are drawn farther apart, so RTTs are more spread. Furthermore, in the rightmost
group of the left graphic, the third quartile lines are exactly on par. In the jitter a�ected
data however, there is a small disadvantage observable for overlay network routing in
the third quartile line, although median RTT is the same.

Measuring worse RTTs over the overlay network than over plain Internet routing
is actually the same phenomenon that was discussed in the section 5.3.2, where one
possible explanation was given. This comparison supports the theory presented there,
because the small overhead only seems to exist in periods of bad network stability, but
in the ideal case, it doesn’t.

5.3.3 Conclusion

In practice, services such as Akamai’s SureRoute would typically include more optimiza-
tions, for example on-the-�y compression and others, which would improve the actual
performance for real world use-cases. Since these are not part of this thesis and would
produced misleading results, these optimizations been turned o� so that the round trip
time di�erences on their own can be observed.

Concluding from the comparison of network routes in 5.7, it can be said that there
in fact is a bene�t that can be gained by simply7 choosing a di�erent route than the
one advertised over BGP, depending on the location of test nodes and web server. For
longer geographic distances, the routing bene�t is clearly visible while for short distance
connections the initial overhead can even produce slightly larger round trip times.

The bene�t, while being clearly visible for certain locations, is a little less signi�cant
than originally assumed by the author. Keeping in mind that most of the nodes used

7Simply actually understates the technical di�culty of measuring Internet routes’ RTTs and enabling
accelerated routed through overlay networks on a larger scale, of course.

5.4. File Download Measurements 59

for measuring the latency were hosted by universities that are interconnected using
exclusively scienti�c networks however, the results de�nitely show a solid improvement
when performing HTTP GET requests against an overlay network routing accelerated
web server.

5.4 File Download Measurements

Sending small amounts of data with the expectancy of low round trip times over persis-
tent connection certainly has multiple applications, but not all data being transmitted is
below 1 kB so it can �t into one packet just as in the previous experiment. For example,
a typical use case for overlay network acceleration would be the delivery of a customer-
tailored page for an on-line shop displaying individual items based on prior shopping
behavior. The data could be generated in a central server cluster where access to the
database is fast and then served to the client.

In this experiment, this scenario is modeled by requesting 100 kB of random data using
regular HTTP GET requests, performing the full connection handshake and teardown.

5.4.1 Measurement Overview

The experiment took place over the period of 140 hours with the same nodes used in the
�rst two experiments. These nodes would use curl to download 100 kB of data every
30 seconds over both plain Internet and overlay network routes and log the duration of
the download to a text �le. This process is continuously restarted every two hours, as
in the previous experiments. In addition to the total download time, the measurement
process also captured the time until the TCP connection was established. These times
were measured by curl itself and can be output by using the --write-out option.

Over the time, 79 nodes were able to collect a total of 4993 segments containing down-
load durations of 2 396 640 requests in total. As a side-note, this implies that 239.664 GB
of payload data has been sent by the web server, half over plain Internet routing and
half over the Akamai overlay network.

Overall, the success rate of delivered segments per time is about 15 % lower than in the
second experiment, but still enough to conclude reasonable statements.

5.4.2 Results

The comparison of round trip times for small data units in Accelerated Route Measure-
ments showed a mixed e�ects on round trip times where bene�ts where possible to

60 Chapter 5. Evaluation

achieve for certain node groups. However, the di�erences were rather small and often
times, overlay routing even in�icted a small overhead.

When measuring download times for larger objects as they would be typical on the web,
even one single look at �gure 5.9 reveals a much more signi�cant bene�t. Across the
whole measurement period, download times of requests made over the Akamai overlay
network are much faster than over the plain Internet routing.

Figure 5.9: Scatter plot of 100 kB total download times median values

Noticeably, there are no severe network problems like jitter observable in the graph,
except for a few sections where times are up to 10 % higher than usual for the direct
Internet route. Next to the possibility that there were in fact no disturbances on the
network, there is another di�erence to the previous experiment: Transferring 100 kB
of data requires the use of around 69 packets, possibly more depending on the path’s
MTU and used header options. Therefore, performing even only one request already
gives an average over many individual packets so that individually occurring jitter gets
absorbed.

Since the overlay network’s median values are drastically lower than plain Internet’s,
�gure 5.10 shows the same measurement but corrected for the time needed to establish
the TCP connection. That means that only the pure transfer duration is shown, but not
the time it takes to perform the TCP handshake for each request.

It can be seen that when compensating the time needed for the TCP handshake, the
resulting transfer times are much more closely together. Still, the overlay networks
achieves the delivery faster throughout the whole measurement.

5.4. File Download Measurements 61

Figure 5.10: Scatter plot of 100 kB transfer only times

In order to compare the di�erent node groups introduced in 5.3.2, the same box plot
is shown in �gure 5.11. The graph essentially shows a very consistent improvement
of transfer times across all node groups, even the ones that were not accelerated by
overlay network routing for single packets.

It is surprising that even nodes in Germany, which should not really pro�t from overlay
routing, do so according to the �gure. While this would be reasonable for most node
groups that have the potential to have their routes optimized, this advantage for the
German nodes suggests, that the experiment did in fact not only measure routing
bene�ts but other in�uences, too.

The earlier chapters of this thesis already described the optimizations used by Akamai
and mentioned that the TCP optimizations in general have been turned o�. Unfortunately,
it can’t be con�rmed that default values and default procedures are still in place that
accelerate the use of TCP connections between the Akamai servers. That means, even
without the explicit use of TCP optimizations, it is possible that the congestion window’s
size and similar parameters are recorded and re-used between the periodic requests.

Avoiding the typical TCP slow-start phase would result in a measurable bene�t for
overlay network routes when compared to completely new connections over the plain
Internet. Since these factors cannot be completely excluded, the data of this experiment
is not suitable to investigate routing di�erences any further.

62 Chapter 5. Evaluation

D
E FR

ES
&

PT

RO
, PL, SI

&
H
U

N
O
, FI,

SE
&

D
K

G
R

&
CY TH al

l
0

50

100

150

200

250

300

350
R

T
T

in
m

s

0

20

40

60

80

100

N
o
d

es
in

G
ro

u
p

spectre

spectre-akamai

Figure 5.11: 100 kB transfer only times by node group

5.4.3 Conclusion

As mentioned above, it cannot be said with absolute certainty, that the bene�ts in
download times of the 100 kB over the overlay network are solely founded by possible
routing advantages.

Separating the TCP connection times from the total download duration gives a hint
towards the explanation of the large di�erence in download times. It can be seen that
the distance between client and �rst server plays an important role because of the initial
RTT required to perform the TCP handshake. Deploying a large overlay network with
nodes at strategic locations can surely help accelerating this aspect.

Even without more aggressive TCP optimization settings, there is a clear advantage in
the overlay network delivery. This shows that, for transferring larger amounts of data
as in this experiment, there are e�ective techniques in addition to using an optimized
routed, especially in the area of tweaking TCP parameters for more e�ective delivery.

In practice, on-the-�y compression and caching with proactive requests of referenced
resources could bring even more acceleration than seen in this experiment.

5.5. Case Studies 63

5.5 Case Studies

To �nish the exploration of overlay routing, three case studies have been made. The aim
is to gain more insight into why certain locations bene�t more from overlay routing
than others by comparing their routes to the web server.

The traceroute tool was used to gather all IP hops between the client and the web
server over the plain Internet and also following the route packets take when accelerated
by Akamai SureRoute. Obtaining these traces is usually not possible for neither clients
nor Akamai customers, but was thankfully permitted for this scienti�c exploration.

The process of obtaining traces over the Akamai network starts with initiating a regular
HTTP request to the web server over the overlay network. It then involves looking up
that speci�c request in the HTTP logs of the �rst Edge Server that was handed out to
the client via DNS. The log �le contains information revealing the next hop that was
chosen, which can be either the origin server itself or another intermediate Akamai
server. This manual lookup can be repeated from Edge Server to Edge Server until all
the anchor points of the overlay network’s route are found.

After that, an Akamai tool also available to paying customers can be used to perform a
traceroute between each pair of Edge Servers on the route that was identi�ed before-
hand. That way, the actual IP level trace can be assembled and compared with the one
measured by the client itself.

The tables showing the individual hops also include AS number, network provider and
geographic location, where possible. For performing AS lookup, the whois.cymru.com

whois-server was used8 and geographic locations where resolved using the MaxMind
GeoIP2 demo website9. Both sources were augmented and checked for consistency with
Akamai internal data sources not available to the general public, where needed.

It is still possible that hops are out of alignment with the geographic location or the
autonomous system displayed and actually belong to the corresponding entry in the
row above or below. However, the routes themselves should be respectably represented.

5.5.1 Germany

For the �rst route analysis, a node in Germany is chosen. This group of nodes was
expected to show low round trip times over plain Internet routing without any gain by
overlay routing and Accelerated Route Measurements already con�rmed that assumption.
The web server is a logical part of the chair I8’s network at TU München, so all packets
are bound to traverse the universities network. For this network, upstream is provided

8http://www.team-cymru.org/IP-ASN-mapping.html
9https://www.maxmind.com/de/geoip-demo

http://www.team-cymru.org/IP-ASN-mapping.html
https://www.maxmind.com/de/geoip-demo

64 Chapter 5. Evaluation

by the Leibnitz Rechenzentrum in Munich which in turn is connected to the X-WiN/DFN
scienti�c network that spans over nearly all of Germany10.

The node chosen as a client for the traceroute measurements was the PlanetLab node
mars.planetlab.haw-hamburg.de at the Hamburg University of Applied Sciences (HAW
Hamburg).

Plain Internet Route

Table 5.5 shows the route as measured from the client to the web server using standard
tools and default Internet routing.

IP AS RTT Estimated Location
1 141.22.213.33 680 0.535 HAW Hamburg
2 141.22.4.148 680 0.360 HAW Hamburg
3 188.1.231.165 680 0.865 X-WiN/DFN, Hamburg
4 188.1.144.1 680 0.445 X-WiN/DFN, Hamburg
5 188.1.146.145 680 5.053 X-WiN/DFN, Hanover
6 188.1.144.141 680 14.172 X-WiN/DFN, Frankfurt
7 188.1.37.90 680 20.933 X-WiN/DFN, Munich
8 129.187.0.150 12816 20.893 LRZ Munich
9 131.159.252.1 12816 20.617 TU Munich

10 131.159.252.150 12816 20.413 TU Munich

Table 5.5: Plain Internet route from Hamburg to Munich

Given the short distance, the route has relatively many hops, as the comparison with
the other cases will show. However, the �rst and last two hops are within the nodes’
own universities’ networks and don’t add signi�cant latency to the previous hop, as the
table shows.

Apart from the high quota of short-distance hops like the �rst two and the last four,
the route o�ers no interesting �ndings—the route goes as expected from north to south
across Germany.

Overlay Network Route

Retrieving the complete overlay network route is a little more complicated, as explained
above. Examining the route from client to the �rst Edge Server is of course no problem,
the second half from Edge Server to spectre.net.in.tum.de on the other hand had to
be done via Akamai internal tools.

10https://www.dfn.de/fileadmin/3Beratung/Betriebstagungen/bt62/Plenum-Neues_zum_X-WiN.
pdf

https://www.dfn.de/fileadmin/3Beratung/Betriebstagungen/bt62/Plenum-Neues_zum_X-WiN.pdf
https://www.dfn.de/fileadmin/3Beratung/Betriebstagungen/bt62/Plenum-Neues_zum_X-WiN.pdf

5.5. Case Studies 65

Table 5.6 shows the compound route from the same node in Hamburg to the web server
in Munich using the overlay network, the highlighted row marking an Akamai Edge
server. The round trip times are absolute values as measured from the PlanetLab client.
For route segments measured beginning at an Akamai Server, they were added to the
previously measured RTT to produce a consistent series, but without adding processing
and computation time that would be usually needed for the Akamai Edge Servers to
choose the following intermediate target. It can be seen that hops later on the path may
feature lower RTTs than previous hops, because only few RTTs measurements were
made for this comparison and the results are therefore of limited signi�cance.

As requested by Akamai, the IP addresses of Akamai deployments are not disclosed.

IP AS RTT Estimated Location
1 141.22.213.33 680 0.412 HAW Hamburg
2 141.22.4.148 680 0.366 HAW Hamburg
3 188.1.231.165 680 0.858 X-WiN/DFN, Hamburg
4 188.1.144.1 680 0.448 X-WiN/DFN, Hamburg
5 188.1.146.145 680 5.185 X-WiN/DFN, Hanover
6 (�ltered) 680 4.156 Akamai Edge Server, Hanover
7 (�ltered) 680 5.764 Akamai Deployment, Hanover
8 188.1.144.141 680 14.761 X-WiN/DFN, Frankfurt
9 188.1.37.90 680 22.294 X-WiN/DFN, Munich

10 129.187.0.150 12816 22.262 LRZ Munich
11 131.159.252.1 12816 28.746 TU Munich
12 131.159.252.150 12816 21.757 TU Munich

Table 5.6: Overlay network route from Hamburg to Munich

The table immediately reveals the enormous resemblance of the overlay network’s route
to the plain Internet route. Only hop number 6 and 7 are used exclusively in the overlay
network route and originate in the fact that the client has to initially connect to one
Akamai Edge Server which decides over the following routing procedure. Because of
the already optimal route to the web server in Munich, the Edge Server decides not to
route the packets over another Edge Server closer to the target, but instead just uses
the plain Internet route again.

It can also be seen that the exact same autonomous systems are used to deliver the
packets. This circumstance would usually reduce the overhead from using overlay
routing because fewer AS-transitions have to be made, but in this case there really is
no improvement to be made over the existing route.

Conclusion

In addition to the tables, the routes are graphically compared in �gure 5.13.

66 Chapter 5. Evaluation

Client (mars.planetlab.haw-hamburg.de)

HAW Hamburg141.22.213.33

HAW Hamburg141.22.4.148

DFN Hamburg188.1.231.165

DFN Hamburg188.1.144.1

DFN Hanover188.1.146.145

Akamai Edge Server, Hanover

Akamai Deployment, Hanover

DFN Frankfurt188.1.146.141

DFN Munich188.1.37.90

LRZ Munich129.187.0.150

TU Munich131.159.252.1

TU Munich131.159.252.150

Web Server (spectre.net.in.tum.de)

AS680

AS12816

Figure 5.12: Graphical comparison of regular Internet and overlay network route from
Hamburg to Munich

Because of the good connection between the client and the web server through the X-
WiN/DFN, the �rst and the last 5 hops are exactly the same. By including two extra hops,
one of which of course is not a router but an Akamai server, this route is a good example
of why overlay routing adds a small overhead for clients in this region. Summing up

5.5. Case Studies 67

the RTTs from client to Edge Server and Edge Server to web server even leads to nearly
the same value for this overhead that has been measured in the �rst experiment.

Studying this route, while not resulting in any noteworthy insights, provided a plausible
explanation of the values measured earlier. Also, it illustrates the principles of route
analysis on a simple example.

5.5.2 France

A possibly more interesting result was received from the nodes in France. Figure 5.7
showed that the overlay network achieved a solid improvement of round trip times
compared to regular Internet routing, which had proven to be unexpectedly bad, given
the relatively low distance between the nodes and the web server.

While there actually were nodes that did not bene�t from overlay routing, this case
study focuses on one that is more typical for the group’s box plot. The node used
for traceroute measurements is plewifi.ipv6.lip6.fr located at the Pierre and Marie
Curie University (UPMC) in Paris.

Plain Internet Route

As with the node in Germany, a simple traceroute measurement was enough to �nd
out all the IP hops between the node and the web server on the regular Internet route.
Table 5.7 contains the results of this traceroute.

IP AS RTT Estimated Location
1 132.227.62.65 1307 0.477 UPMC, Paris FR
2 10.1.1.1 1307 1.938 Internal Router
3 134.157.167.125 1307 2.676 UPMC, Paris FR
4 134.157.254.124 1307 3.396 UPMC, Paris FR
5 195.221.127.181 2200 2.530 RENATER, Paris FR
6 193.51.181.102 2200 2.978 RENATER, Paris FR
7 193.51.177.117 2200 2.220 RENATER, Paris FR
8 193.51.177.24 2200 6.810 RENATER, Paris FR
9 62.40.124.69 20965 2.923 GÉANT, Paris FR

10 62.40.98.76 20965 8.369 GÉANT, London GB
11 62.40.98.81 20965 15.987 GÉANT, Amsterdam NL
12 62.40.112.146 20965 32.429 GÉANT/DFN, Berlin DE
13 188.1.144.186 680 42.543 X-WiN/DFN, Erlangen DE
14 188.1.241.194 680 45.874 X-WiN/DFN, Garching (Munich)
15 131.159.252.1 12816 45.938 TU Munich
16 131.159.252.150 12816 45.183 TU Munich

Table 5.7: Plain Internet route from Paris to Munich

68 Chapter 5. Evaluation

The route starts at the UPMC where on hop 2, a probably miscon�gured router sends
ICMP messages containing a private IP address. After the �rst 4 hops, the national
research network RENATER is entered which adds another 4 hops inside Paris before
the European research network GÉANT is entered. Until that point, not at lot of time
was added to the RTTs measured, although the values vary a lot from hop to hop.

The interesting part of the route is the way tra�c is routed from Paris from there
on: While it can’t be con�rmed with absolute certainty, packets seem to be routed
over London, Amsterdam and Berlin before entering the German scienti�c network
X-WiN/DNF. The increasing round trip times as well as the GÉANT topology map11

support this information and make this measurement more reasonable.

Using location data from the MaxMind database only, the questionable IP hops can only
be located as shown in table 5.8. It can be seen that the location data for all hops in
the GÉANT and W-WiN/DFN is imprecise and the entries in 5.7 therefore have to be
handled with care.

IP AS RTT Estimated Location
...

9 62.40.124.69 20965 2.923 GÉANT, GB
10 62.40.98.76 20965 8.369 GÉANT, GB
11 62.40.98.81 20965 15.987 GÉANT, GB
12 62.40.112.146 20965 32.429 GÉANT/DFN, DE
13 188.1.144.186 680 42.543 X-WiN/DFN, DE
14 188.1.241.194 680 45.874 X-WiN/DFN, DE
...

Table 5.8: Excerpt of plain Internet route from Paris to Munich using only MaxMind
location data

After entering the DFN, the route to Munich is rather simple and comprehensible,
including its round trip times and intermediate hops, given the accuracy of its location
information.

Overlay Network Route

In order to compare the overlay network’s route, the same process as described above
was used. Table 5.9 shows this route, again highlighting the Akamai Edge Servers that
did actively choose the next intermediate hop.

Round trip times are again in absolute values but not containing possible processing
delay introduced by the Akamai servers.

11http://www.geant.net/Resources/Media_Library/Pages/Maps.aspx

http://www.geant.net/Resources/Media_Library/Pages/Maps.aspx

5.5. Case Studies 69

IP AS RTT Estimated Location
1 132.227.62.65 1307 0.220 UPMC, Paris FR
2 10.1.1.1 1307 0.941 Internal Router FR
3 134.157.167.125 1307 2.034 UPMC, Paris FR
4 134.157.254.124 1307 1.978 UPMC, Paris FR
5 195.221.127.181 2200 1.508 RENATER, Paris FR
6 193.51.181.102 2200 2.214 RENATER, Paris FR
7 193.51.177.114 2200 6.441 RENATER, Paris FR
8 (�ltered) 2200 2.180 Akamai Deployment, Paris FR
9 (�ltered) 2200 2.460 Akamai Edge Server, Paris FR

10 193.51.224.33 2200 3.846 RENATER, Paris FR
11 195.10.62.25 1273 3.121 CW Cable and Wireless, Paris FR
12 195.2.22.166 1273 3.121 CW Cable and Wireless, Paris FR
13 64.125.27.78 6461 11.789 AboveNet, Frankfurt DE
14 94.31.37.122 6461 11.850 AboveNet, Frankfurt DE
15 (�ltered) 20940 11.660 Akamai Edge Server, Frankfurt DE
16 (�ltered) 20940 11.826 Akamai Deployment, Frankfurt DE
17 94.31.37.121 6461 11.873 AboveNet, Frankfurt DE
18 80.81.192.222 6695 23.013 DE-CIX/DFN, Frankfurt DE
19 188.1.37.90 680 20.304 X-WiN/DFN, Munich DE
20 129.187.0.150 12816 20.309 LRZ Munich
21 131.159.252.1 12816 20.075 TU Munich
22 131.159.252.150 12816 19.969 TU Munich

Table 5.9: Overlay network route from Paris to Munich

The �rst 6 hops are exactly the same as on the public Internet route. After that, an
Akamai deployment hosted within the academic network RENATER is contacted instead
of routing tra�c to the GÉANT network, which, in fact, is not used at all on this route.

The Akamai Edge Server at 9 chooses to route the packets to another Edge Server (hop 15)
in Frankfurt and for that purpose uses the Cable & Wireless Worldwide12 infrastructure.
In Frankfurt, the Akamai deployment is hosted by AboveNet13, which is why the hops
before and after 15 belong to AS 6461. AS 20 940, on the other side, is an AS owned by
Akamai International which is used to host Akamai Servers and work with the BGP
announcement stream at various strategic locations on the Internet.

After the hops in Frankfurt, the route to Munich is again straightforward, even though
hop 18 can’t be identi�ed and explained without a doubt.

12Acquired by Vodafone in 2012
13Acquired by the Zayo Group in 2012

70 Chapter 5. Evaluation

Conclusion

In addition to the tables, the routes are graphically compared in �gure 5.13.

This case study shows an example client where overlay routing does not only yield a
certain round trip time bene�t, but where the routes taken are drastically di�erent.

Routing tra�c from France over London can make sense when seen from the architec-
tural side of the GÉANT network, because the focus may be on throughput to enable
the exchange on large amounts of data. Granted, latency is always an important aspect
when designing networks, but the point is that there may exist meaningful reasons to
route tra�c the way it was done in table 5.7.

For this particular connection, a route that goes from Paris directly to Frankfurt, as seen
in the overlay route, is clearly advantageous—even though it contains 6 more hops, two
of which are actually not routers but servers needing additional computation time.

5.5.3 Thailand

The third case study involves the PlanetLab node ple1.ait.ac.th located at the Asian
Institute of Technology (AIT) in the north of Bangkok, Thailand.

The two nodes at AIT showed the most signi�cant improvement in round trip times
for packets routed through the overlay network, which is not very surprising given the
functioning of overlay routing. The initial presumption was that long routes can bene�t
more from overlay routing, and the RTT measurements seemed to con�rm this point.

Plain Internet Route

The route used with regular Internet routing was found by running a traceroute

measurement from the node in Bangkok to the web server in Munich. Table 5.10 shows
this route.

The �rst two hops happen within the university’s own network and therefore show
very good round trip times. The path continues into �rst the UniNet and then ThaiREN
network, which are both nationally deployed Thai research networks. This behavior
is the same as in the other two case studies and of course an unsurprising choice in
network architecture.

An interesting part starts at hop 6, where packets are handed over to TEIN3, the Trans-
Eurasia Information Network. Even though ip-to-location lookups for hops 6 to 8 are
indicating those three nodes would be located in Beijing, China, it is more likely that the
nodes whose hostnames are sg-ge-03-v4.bb.tein3.net, mb-so-01-v4.bb.tein3.net

5.5. Case Studies 71

IP AS RTT Estimated Location
1 203.159.63.254 4767 0.811 AIT, Bangkok TH
2 203.159.63.77 4767 0.631 AIT, Bangkok TH
3 202.28.214.45 4621 4.275 UniNet, Bangkok TH
4 202.28.218.6 4621 3.916 UniNet, Bangkok TH
5 202.29.12.13 24475 1.263 ThaiREN, Bangkok TH
6 202.179.249.65 24490 31.859 TEIN3, Singaporea
7 202.179.249.54 24490 90.846 TEIN3, Mumbai INa

8 202.179.249.118 24490 201.997 TEIN3, Central Europeab
9 62.40.98.67 20965 221.646 GÉANT, Zürich CH

10 62.40.98.109 20965 230.577 GÉANT, Frankfurt DE
11 62.40.124.218 20965 230.768 GÉANT/DFN, Frankfurt DE
12 188.1.37.90 680 238.476 X-WiN/DFN, Munich DE
13 129.187.0.150 12816 238.476 LRZ Munich
14 131.159.252.1 12816 250.019 TU Munich
15 131.159.252.150 12816 238.254 TU Munich

Table 5.10: Plain Internet route from Thailand to Munich
aGeoIP databases suggest Beijing, China, but hostnames and submarine cables suggest otherwise
bHostname suggests Madrid, Spain, but stops of common submarine cables hint at Marseille, France

and eu-mad-pr-v4.bb.tein3.net are actually located in Singapore (SG), Mumbai (MB)
and Madrid (MAD), although this last city could also easily be Marseille.

So even though the geoip lookups are not consistent with the very little information
contained in the hostnames (which have to be handled with care, too), looking at com-
mon submarine cables14 reveals multiple cables that have stops in Singapore, Mumbai
and �nally Marseille as the only ending point of presence that is reasonable in this
context:

• SEA-ME-WE 4 (South-East Asia – Middle East – Western Europe)

• SEA-ME-WE 5

• AAE-1 (Asia – Africa – Europe)

After the route has reached the European main land, the tra�c is handed over to GÉANT
and takes a comprehensible route to Munich.

Overall, this route contains only 15 hops, one less than the plain Internet route from
Paris to Munich, even though the greater distance is clearly visible in the latency which
is many times as high as in the earlier case study. Still, it’s a good example why path
length in IP hops is no suitable metric for clustering nodes into groups for analysis like
the one in section 5.3.

14http://www.submarinecablemap.com

http://www.submarinecablemap.com

72 Chapter 5. Evaluation

Overlay Network Route

The plain Internet route from Bangkok to Munich did not reveal any great indirections
as seen on the route from Paris to Munich. To �nd out why the overlay network
accelerated route features lower round trip times nevertheless, table 5.11 shows the
combined traceroute results over two Akamai Edge Servers.

IP AS RTT Estimated Location
1 203.159.63.254 4767 0.733 AIT, Bangkok TH
2 203.159.63.77 4767 0.678 AIT, Bangkok TH
3 202.28.214.45 4621 1.824 UniNet, Bangkok TH
4 202.28.218.22 4621 3.038 UniNet, Bangkok TH
5 122.155.253.161 N/A 2.057 Thailand
6 122.155.253.230 N/A 3.888 Thailand
7 203.144.193.81 7470 3.706 TrueInternet, Bangkok TH
8 (�ltered) 7470 3.669 Akamai Deployment, Bangkok TH
9 (�ltered) 7470 3.463 Akamai Edge Server, Bangkok TH

10 (�ltered) 7470 3.977 Akamai Deployment, Bangkok TH
11 61.90.191.142 7470 3.971 TrueInternet, Bangkok TH
12 203.144.144.10 7470 4.108 TrueInternet, Bangkok TH
13 103.3.177.190 7470 4.745 TrueInternet, Bangkok TH
14 122.144.25.193 38082 7.631 True Internat. Gateway, TH
15 113.21.245.110 38082 33.523 True Internat. Gateway, SG
16 180.87.96.29 6453 32.867 TATA, Singapore
17 180.87.96.22 6453 210.579 TATA, Mumbai IN
18 180.87.15.146 6453 209.589 TATA, Mumbai IN
19 80.231.217.17 6453 209.970 TATA, Marseille FR
20 80.231.217.2 6453 211.278 TATA, Marseille FR
21 80.231.200.78 6453 211.940 TATA, Frankfurt DE
22 195.219.87.18 6453 212.921 TATA, Frankfurt DE
23 (�ltered) 6453 210.389 Akamai Deployment, Frankfurt DE
24 (�ltered) 6453 208.583 Akamai Edge Server, Frankfurt DE
25 (�ltered) 6453 210.421 Akamai Deployment, Frankfurt DE
26 195.219.50.193 6453 208.967 TATA, Frankfurt DE
27 195.219.50.50 6453 209.118 TATA, Frankfurt DE
28 N/A N/A N/A N/Aa

29 212.162.4.6 3356 210.565 LEVEL3, Frankfurt DE
29 188.1.37.90 680 217.613 X-WiN/DFN, Munich DE
30 129.187.0.150 12816 218.077 LRZ Munich
31 131.159.252.1 12816 228.992 TU Munich
32 131.159.252.150 12816 217.476 TU Munich

Table 5.11: Overlay network route from Thailand to Munich
aNo reply was recieved from this router

5.5. Case Studies 73

It is apparent even at �rst sight, that the route features an enormous number of IP
hops—more than the default limit of 30 in most traceroute implementations.

The route starts as expected until hop 4 and even though hops 5 and 6 were couldn’t be
identi�ed, it is clear from that fact that the Akamai Edge server in 9 is still in Bangkok,
that 5 and 6 surely are within Bangkok, too. For this route however, the Akamai
deployment happens to not be within the national scienti�c network like in Germany
and France, but hosted at a larger national ISP, TrueInternet.

The Edge Server decides to route the tra�c to Frankfurt, which is a not very surprising
fact, and packets travel through the international gateway of TrueInternet in order
to reach the network of Tata Communications. The hops from number 16 to 19 are
very clearly following the same route as the plain Internet, probably using one of the
submarine cables listed above. After landing in France, the data is routed to the next
Akamai Edge Server in Frankfurt (24), completely without leaving the autonomous
system.

The packets only have to change network after the next routing decision in Frankfurt,
where they are handed over to Level 3, which is one of the upstream providers for the
X-WiN/DFN15.

Conclusion

In addition to the tables, the routes are graphically compared in �gure 5.14 where the
Akamai deployments are compressed into one line each for the sake of brevity.

This case study shows that gaining a round trip time advantage does not necessarily
require �nding a complete new physical way to the target. It can only be speculated
why the plain Internet route through the academic networks is signi�cantly slower in
RTTs, perhaps there was more load on the routers and inter-network transit points. But
again, this cannot be said with certainty and is open for discussion.

5.5.4 Summary

The case studies compared routes in completely three di�erent situations:

• German nodes already had good round trip times over regular routing and only
a few milliseconds of overhead were added by the overlay routing.

This results conforms with the expectancy of direct and already e�cient routes
not being able to gain any bene�t through route optimization.

15https://www.dfn.de/�leadmin/3Beratung/Betriebstagungen/bt62/Plenum-Neues_zum_X-WiN.pdf

74 Chapter 5. Evaluation

• French nodes showed surprisingly bad RTTs for the plain Internet route, even
though the nodes are geographically close to Germany and peering between the
scienti�c networks is expected to be good.

However, it turned out that tra�c probably gets routed over London, Amsterdam
and Berlin in order to reach Munich. It comes to no surprise that this route can
be optimized and the overlay network showed the potential of a route that goes
from Paris to Frankfurt and then to Munich, even though the scienti�c network
had to be left in between.

• Thai nodes performed worst over regular Internet routing and gained a lot from
overlay network routing.

The case study showed that both paths generally take the same route, but the
di�erence in network operator can of course result in di�erences in round trip
times and throughput. Acceleration through overlay routing therefore comes
from a di�erent reason than in the French case study.

5.5. Case Studies 75

Client (plewifi.ipv6.lip6.fr)

UPMC, Paris FR132.227.62.65

Internal Router10.1.1.1

UPMC, Paris FR134.157.167.125

UPMC, Paris FR134.254.124

RENATER, Paris FR195.221.127.181

RENATER, Paris FR195.221.127.102

RENATER, Paris FR
193.51.177.117

RENATER, Paris FR
193.51.177.24

GÉANT, Paris FR
62.40.124.69

GÉANT, London GB
62.40.98.76

GÉANT, Amsterdam NL
62.40.98.81

GÉANT/DFN, Berlin DE
62.40.112.146

X-WiN/DFN, Erlangen DE
188.1.144.186

X-WiN/DFN, Garching DE
188.1.241.194

RENATER, Paris FR
193.51.177.114

Akamai Deployment, Paris FR

Akamai Edge Server, Paris FR

RENATER, Paris FR
193.51.224.33

Cable and Wireless, Paris FR
195.10.62.25

Cable and Wireless, Paris FR
195.2.22.166

AboveNet, Frankfurt DE
64.125.27.78

AboveNet, Frankfurt DE
94.31.37.122

Akamai Edge Server, Frankfurt DE

Akamai Deployment, Frankfurt DE

AboveNet, Frankfurt DE
94.31.37.121

DE-CIX/DFN, Frankfurt DE
80.81.192.222

X-WiN/DFN, Munich DE
188.1.37.90

LRZ Munich
129.187.0.150

TU Munich131.159.252.1

TU Munich195.221.127.181

Web Server (spectre.net.in.tum.de)

AS1307

AS2200

AS20965

AS680

AS12816

AS2200

AS1273

AS6461

AS20940

AS6461

AS6695

AS680

AS12816

Figure 5.13: Graphical comparison of regular Internet and overlay network route from
Paris to Munich

76 Chapter 5. Evaluation

Client (ple1.ait.ac.th)

AIT, Bangkok TH203.159.63.254

AIT, Bangkok TH203.159.63.77

UniNet, Bangkok TH202.28.214.45

UniNet, Bangkok TH202.28.218.6

ThaiREN, Bangkok TH
202.29.12.13

TEIN3, Singapore
202.179.249.65

TEIN3, Mumbai IN
202.179.249.54

TEIN3, Central Europe
202.179.249.118

GÉANT, Zürich CH
202.179.249.118

GÉANT, Frankfurt DE
202.179.249.118

GÉANT/DFN, Frankfurt DE
202.179.249.118

Thailand, 122.155.253.161

Thailand, 122.155.253.230

TrueInternet, Bangkok TH, 203.144.193.81

Akamai Edge Server, Bangkok TH

TrueInternet, Bangkok TH, 61.90.191.142

TrueInternet, Bangkok TH, 203.144.144.10

TrueInternet, Bangkok TH, 103.3.177.190

True Internat. Gateway, TH, 122.144.25.193

True Internat. Gateway, TH, 113.21.245.110

TATA, Singapore, 180.87.96.29

TATA, Mumbai IN, 180.87.96.22

TATA, Mumbai IN, 180.87.15.146

TATA, Marseille FR, 80.231.217.17

TATA, Marseille FR, 80.231.217.2

TATA, Frankfurt DE, 80.231.200.78

TATA, Frankfurt DE, 195.219.87.18

Akamai Edge Server, Frankfurt DE

TATA, Frankfurt DE, 195.219.50.193

TATA, Frankfurt DE, 195.219.50.50

N/A, N/A

LEVEL3, Frankfurt DE, 212.162.4.6

X-WiN/DFN, Munich DE188.1.37.90

LRZ Munich129.187.0.150

TU Munich131.159.252.1

TU Munich131.159.252.150

Web Server (spectre.net.in.tum.de)

AS4767

AS4621

AS24475

AS24490

AS20965

AS680

AS12816

N/A

AS7470

AS38082

AS6453

N/A

AS3356

Figure 5.14: Graphical comparison of regular Internet and overlay network route from
Bangkok to Munich

77

Chapter 6

Conclusion

Summarizing the results that were discussed in the previous section, this chapter will
give answers to the research question posed in the beginning. Also, interesting prospects
for future work that derives from the content of this thesis are given.

6.1 Future Work

Even though di�erent experiments and case studies have been made, the research area
of practical overlay networks and the e�ects of optimizing transport routes o�ers many
more interesting topics that expand well beyond the area covered by this thesis. Some
of these are listed below and hopefully inspire future research on this topic.

6.1.1 Overlay Networks

How can �nding optimized routes be realized?

Designing and implementing an overlay network that has practical bene�ts over classic
BGP routing is a complex task.

What metrics are to be collected, how to probe only the most promising ways instead
of every connection through the Internet and how are results ranked in order to �nd
the best route?

What e�ect does overlay network routing have on a providers upstream poli-
cies?

While network providers exchange tra�c for free to their peering partners, upstream
connections are paid for and one provider will never accept tra�c targeted to one of

78 Chapter 6. Conclusion

his peerings through its upstream.

Is is possible for overlay networks to leverage a potentially better route through a
providers upstream connection, even though the client is not a customer of the operator
itself, but instead customer of one of its peering partners’ networks?

6.1.2 Overlay Network Measurements

Using a larger set of test nodes

During this work, it was possible to use test nodes that were distributed across Europe
and a few at more distance locations. Usually, PlanetLab allows accessing nodes on a
world-wide base, but at the time the experiments where made, there seemed to exist
a problem with using PlanetLab Europe accounts to log onto servers belonging to
PlanetLab Central.

When using a larger group of nodes, for example when using nodes that are distributed
all over the world, the resulting comparison would show clearer di�erentiation when
grouped by distance, country or continent. Also, more case studies could be made to
explore the situation of di�erent long-ranged connections.

Simulate link failure and measure reaction times

Companies like Akamai also advertise the enhanced availability of web services when
the hosting data center or an intermediate connection experiences link failure, given a
possible alternative route of course.

It would be an interesting experiment to simulate such a link failure and continuously
measure the availability of the web server via both the regular Internet route and the
overlay network route. How long does it take to recover and how much is the round
trip time a�ected by this?

6.2 Answering the Research Questions

Coming back to the research questions from the beginning of this work, it can be said
that all three questions have been answered through the experiments and measurements,
which shall now be summarized.

6.2. Answering the Research Questions 79

How does optimized routing within an overlay network a�ect the latency of
small sized data units?

This question was asked with uses cases in mind that required the rapid exchange of
small sized data units, for example in collaborative live editing scenarios, but also for
quick interactive web transactions over persistent connections.

As described in section 5.3, there has been a great number of requests made over a
persistent TCP connection for both the regular Internet route and the Akamai overlay
network. Since all other optimizations have been disabled, it can be said that, depending
on the node location, there is a noticeable advantage for round trip times of routes using
the overlay network to avoid congestion points on the Internet.

It turned out that the result heavily depends on the location of the test nodes chosen.
For example, nodes within the same country as the web server did not bene�t from
overlay routing and instead experienced a small overhead of up to 5 ms originating in
the extra hops required by connecting to an overlay network’s server �rst. On the other
hand, test nodes located far away received a round trip time bene�t of up to 15 %, which
can be quite notable improvement and represents a noteworthy result for just choosing
another route and not applying any other optimizations.

These results were obtained using nodes primarily located on scienti�c networks that
are expected to feature a good connection to other scienti�c networks and furthermore
already use good routing schemta and links loaded well under maximum capacity. For
regular clients on home Internet connections, there may be even greater bene�ts because
it would only seldom be the case that content provider and client are connected to the
same network. On top of that, routing choices or commercial network providers are
a�ected stronger by economical decisions and policies, which can result in suboptimal
indirections and ine�ciencies.

How does optimized routing within an overlay network a�ect the download
time of medium sized objects over HTTP?

This next questions aims towards the same optimization as in the �rst question, but for
a slightly di�erent use case. For users sur�ng the world wide web, connections are often
times not already established but have to be set up before making the actual request.
When serving a web page that includes individualized content, this can be a problem
that should be accelerated.

To simulate this use case, an experiment similar to the one answering the �rst question
was made, but with slightly changed parameters. Instead of probing the connection
very frequently, requests were made every 30 seconds and the requested payload had a
size of 100 kB.

80 Chapter 6. Conclusion

Evaluating this measurement in section 5.4 revealed that there is a great bene�t for
overlay network routing for all node groups, even the ones that are geographically close
and did not bene�t in the previous experiment.

When measuring the complete download time, results were up to 40 % better using the
overlay network, or around 80 ms lower in absolute values. Removing the time needed
to perform the initial TCP handshake reduced the overlay network’s advantage to ca.
15 %, but still is a surprisingly good result given the unevenly distributed nodes.

Because this measurement did not absolutely exclude any other form of optimization
next to rerouting the tra�c, it is possible that other factors used by the Akamai Overlay
Network and its SureRoute service improved the download times measured during the
experiment.

This shows what great impact from using acceleration techniques on download times
can be, even without statically caching the content on distributed servers.

Howsimilar are the transport routes that bene�t themost fromOverlay-Network-
Acceleration?

To answer this question, case studies comparing di�erent characteristic routes have
been made and are described in section 5.5.

The analysis of three di�erent routes showed several interesting aspects:

• In situations where the default Internet route is already optimal, like for most of
the nodes within the same country as the web server for example, overlay routing
adds a few milliseconds overhead. This is not because it tries to �nd an alternative
route at any cost, but because there is just an extra amount of processing required,
and of course a few extra hops to reach the Akamai server in the �rst place.

• There may be test nodes not too far away that show surprisingly bad plain Internet
round trip times, because their route takes unnecessary hops that increase both
physical transport way and the number of hops on the route. Overlay networks
can in these cases �nd better routes by using completely di�erent paths over
di�erent networks and hops in di�erent cities compared to the original route.

• When measuring round trip times from locations with a great distance to the web
server, it may be su�cient to choose a di�erent network operator but essentially
using the same path nevertheless.

The case study showed that there are di�erent scenarios where an overlay network’s
routes can either be exactly the same if there is no better route available, which means
that there is no bene�t to be gained from pure overlay routing for those clients.

6.2. Answering the Research Questions 81

In another case, the routes could be completely di�erent from the default Internet route
where only the �rst and last few hops are shared between both routes. For clients with
highly di�erent routes, a bene�t in round trip times is de�nitely expected, otherwise
the overlay network would not have chosen such a di�erent path.

The last case study showed that converse correlation between di�ering paths and in-
creased performance does not need to be true: Even routes that take the same physical
path can be faster if the hops are on di�erent networks and therefore use di�erent
hardware that has an advantage of being faster or less used.

Finally, it has been showed that a overlay network accelerated route with 32 hops can
still be faster than a plain Internet route with only 15 hops, which is a truly astonishing
result and proof of overlay network’s capabilities.

82 Chapter 6. Conclusion

83

Bibliography

[1] C. A. Ellis and S. J. Gibbs, “Concurrency control in groupware systems,” in
Proceedings of the 1989 ACM SIGMOD International Conference on Management of
Data, ser. SIGMOD ’89. New York, NY, USA: ACM, 1989, pp. 399–407. [Online].
Available: http://doi.acm.org.eaccess.ub.tum.de/10.1145/67544.66963

[2] P. Baake and T. Wichmann, “On the economics of internet peering,” NETNOMICS,
vol. 1, no. 1, pp. 89–105, 1999. [Online]. Available: http://dx.doi.org/10.1023/A%
3A1011449721395

[3] Akamai Technologies, Inc., “State of the inter-
net q1 2015,” https://www.stateoftheinternet.com/
resources-connectivity-2015-q1-state-of-the-internet-report.html, 2015, [Online;
accessed June 5 2015].

[4] S. Saroiu, K. P. Gummadi, R. J. Dunn, S. D. Gribble, and H. M. Levy, “An analysis
of internet content delivery systems,” SIGOPS Oper. Syst. Rev., vol. 36, no. SI, pp.
315–327, Dec. 2002. [Online]. Available: http://doi.acm.org/10.1145/844128.844158

[5] E. Nygren, R. K. Sitaraman, and J. Sun, “The akamai network: A platform for
high-performance internet applications,” SIGOPS Oper. Syst. Rev., vol. 44, no. 3,
pp. 2–19, Aug. 2010. [Online]. Available: http://doi.acm.org.eaccess.ub.tum.de/10.
1145/1842733.1842736

[6] P. Manils, C. Abdelberri, S. Le Blond, M. A. Kaafar, C. Castelluccia, A. Legout, and
W. Dabbous, “Compromising Tor Anonymity Exploiting P2P Information Leakage,”
ArXiv e-prints, Apr. 2010.

[7] Akamai Technologies, Inc., “Facts & Figures,” http://www.akamai.com/html/about/
facts_�gures.html, 2015, [Online; accessed April 12 2015].

[8] ——, “TCP Optimizations,” https://developer.akamai.com/stu�/Optimization/TCP_
Optimizations.html, 2015, [Online; accessed May 27 2015].

[9] ——, “Akamai feature SureRoute,” http://www.akamai.com/dl/feature_sheets/fs_
edgesuite_sureroute.pdf, 2003, [Online; accessed April 12 2015].

http://doi.acm.org.eaccess.ub.tum.de/10.1145/67544.66963
http://dx.doi.org/10.1023/A%3A1011449721395
http://dx.doi.org/10.1023/A%3A1011449721395
https://www.stateoftheinternet.com/resources-connectivity-2015-q1-state-of-the-internet-report.html
https://www.stateoftheinternet.com/resources-connectivity-2015-q1-state-of-the-internet-report.html
http://doi.acm.org/10.1145/844128.844158
http://doi.acm.org.eaccess.ub.tum.de/10.1145/1842733.1842736
http://doi.acm.org.eaccess.ub.tum.de/10.1145/1842733.1842736
http://www.akamai.com/html/about/facts_figures.html
http://www.akamai.com/html/about/facts_figures.html
https://developer.akamai.com/stuff/Optimization/TCP_Optimizations.html
https://developer.akamai.com/stuff/Optimization/TCP_Optimizations.html
http://www.akamai.com/dl/feature_sheets/fs_edgesuite_sureroute.pdf
http://www.akamai.com/dl/feature_sheets/fs_edgesuite_sureroute.pdf

84 Bibliography

[10] D. G. Andersen, A. C. Snoeren, and H. Balakrishnan, “Best-path vs. multi-path
overlay routing,” in Proceedings of the 3rd ACM SIGCOMM Conference on Internet
Measurement, ser. IMC ’03. New York, NY, USA: ACM, 2003, pp. 91–100. [Online].
Available: http://doi.acm.org.eaccess.ub.tum.de/10.1145/948205.948218

[11] Y. Chen, D. Bindel, H. Song, and R. H. Katz, “An algebraic approach to
practical and scalable overlay network monitoring,” in Proceedings of the 2004
Conference on Applications, Technologies, Architectures, and Protocols for Computer
Communications, ser. SIGCOMM ’04. New York, NY, USA: ACM, 2004, pp. 55–66.
[Online]. Available: http://doi.acm.org.eaccess.ub.tum.de/10.1145/1015467.1015475

[12] Y. Ren, Y. Qiao, X.-s. Qiu, and S.-a. Wu, “Scalable deterministic end-to-
end probing and analytical method for overlay network monitoring,” in
Proceedings of the 7th International Conference on Network and Services
Management, ser. CNSM ’11. Laxenburg, Austria, Austria: International
Federation for Information Processing, 2011, pp. 460–464. [Online]. Available:
http://dl.acm.org.eaccess.ub.tum.de/citation.cfm?id=2147671.2147756

[13] R. Cohen and D. Raz, “Cost-e�ective resource allocation of overlay routing relay
nodes,” IEEE/ACM Trans. Netw., vol. 22, no. 2, pp. 636–646, Apr. 2014. [Online].
Available: http://dx.doi.org.eaccess.ub.tum.de/10.1109/TNET.2013.2260867

[14] M. Shahzad and A. X. Liu, “Noise can help: Accurate and e�cient per-�ow
latency measurement without packet probing and time stamping,” in The 2014
ACM International Conference on Measurement and Modeling of Computer Systems,
ser. SIGMETRICS ’14. New York, NY, USA: ACM, 2014, pp. 207–219. [Online].
Available: http://doi.acm.org.eaccess.ub.tum.de/10.1145/2591971.2591988

[15] E. Halepovic, J. Pang, and O. Spatscheck, “Can you get me now?: Estimating
the time-to-�rst-byte of http transactions with passive measurements,” in
Proceedings of the 2012 ACM Conference on Internet Measurement Conference, ser.
IMC ’12. New York, NY, USA: ACM, 2012, pp. 115–122. [Online]. Available:
http://doi.acm.org.eaccess.ub.tum.de/10.1145/2398776.2398789

[16] V. Paxson, “End-to-end routing behavior in the internet,” SIGCOMM Comput.
Commun. Rev., vol. 36, no. 5, pp. 41–56, Oct. 2006. [Online]. Available:
http://doi.acm.org.eaccess.ub.tum.de/10.1145/1163593.1163602

[17] H. V. Madhyastha, E. Katz-Bassett, T. Anderson, A. Krishnamurthy, and
A. Venkataramani, “iplane nano: Path prediction for peer-to-peer applications,”
in Proceedings of the 6th USENIX Symposium on Networked Systems Design and
Implementation, ser. NSDI’09. Berkeley, CA, USA: USENIX Association, 2009, pp.
137–152. [Online]. Available: http://iplane.cs.washington.edu/nsdi09.pdf

http://doi.acm.org.eaccess.ub.tum.de/10.1145/948205.948218
http://doi.acm.org.eaccess.ub.tum.de/10.1145/1015467.1015475
http://dl.acm.org.eaccess.ub.tum.de/citation.cfm?id=2147671.2147756
http://dx.doi.org.eaccess.ub.tum.de/10.1109/TNET.2013.2260867
http://doi.acm.org.eaccess.ub.tum.de/10.1145/2591971.2591988
http://doi.acm.org.eaccess.ub.tum.de/10.1145/2398776.2398789
http://doi.acm.org.eaccess.ub.tum.de/10.1145/1163593.1163602
http://iplane.cs.washington.edu/nsdi09.pdf

	Introduction
	Research Questions
	Structure

	Background & Related Work
	Background
	Internet
	Overlay Networks
	Akamai Web Performance Solutions
	PlanetLab
	Masurement Tools

	Related Work
	Overlay Networks
	Latency Measurement
	Route Similarity & Comparison

	Design
	Overlay Routing
	Answering the Research Questions
	General Requirements
	Technical Requirements
	Web Server
	Software

	Implementation
	Server Setup
	Webserver
	Hosting
	Akamai SureRoute

	Measurement Tools
	htping
	Measurement Instrumentation

	Post-Processing
	Data Collection
	Data Processing
	Visualization

	Evaluation
	Experimentation Setup
	Node Availability
	System Versions
	Node Distribution

	Non-Accelerated Route Measurements
	Measurement Overview
	Results
	Conclusion

	Accelerated Route Measurements
	Measurement Overview
	Results
	Conclusion

	File Download Measurements
	Measurement Overview
	Results
	Conclusion

	Case Studies
	Germany
	France
	Thailand
	Summary

	Conclusion
	Future Work
	Overlay Networks
	Overlay Network Measurements

	Answering the Research Questions

	Bibliography

