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Abstract

Current smart spaces often su�er from a lack of interconnectivity between devices or
from security issues. The Virtual State Layer is a middleware which mediates between
devices and services of di�erent vendors. It is currently written in Java and de�nes a
�xed set of operations which are used by services to interact with the middleware. In
this thesis, a RESTful service interface is speci�ed using standardized and interoperable
network technologies, for the development of native connectors in other programming
languages than Java. The interface uses HTTP and several standardized serialization
formats (XML, JSON, CBOR, Google protocol bu�ers) through content negotiation. Se-
curity is required with TLS 1.2 or higher and client certi�cate authentication, to prevent
accidentially insecure deployments. This speci�cation is implemented and evaluated in
Java, C and Python to provide native connectors for further service development.





Zusammenfassung

Smart Spaces sind heutzutage oft von fehlender Interkonnektivität oder Sicherheitspro-
blemen betro�en. Die Virtual State Layer ist eine Middleware, die zwischen den Geräten
und Diensten verschiedener Anbieter vermittelt. Sie ist momentan in Java programmiert
und de�niert eine feste Menge von Operationen, die Dienste nutzen, um mit der Midd-
leware zu interagieren. In dieser Arbeit wird eine RESTful gestaltete Dienstschnittstelle
mithilfe von standardisierten und kompatiblen Netzwerktechnologien spezi�ziert, um
die Entwicklung nativer Anbindungen in anderen Programmiersprachen als Java zu
ermöglichen. Die Schnittstelle nutzt HTTP und einige standardisierte Serialisierungsfor-
mate (XML, JSON, CBOR, Google protocol bu�ers) durch die Content Negotiation von
HTTP. Sicherheit ist vorgeschrieben mittels TLS 1.2 oder neuer und Authentisierung
mittels Klientenzerti�katen, um versehentlichen unsicheren Betrieb zu unterbinden.
Diese Spezi�kation ist in Java, C und Python umgesetzt und stellt native Anbindungen
für weitere Dienstentwicklung bereit.
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Chapter 1

Introduction

With the emergence of the internet, interconnectivity between electrical devices has
grown each year. Starting with the mainframes of research centres, universities and
big corporations, taking over all PCs in corporate and also private environments and
then going further to mobile phones, televisions, watches and even household devices,
more and more devices are connected to the internet. Using the new possibilities
of communication between devices, access to these devices from anywhere and the
possibility to control the devices from powerful ”cloud” servers, interaction with the
devices can be automated or driven by more intuitive user interaction �ows.

Figure 1.1: Smart home illustration from [1]

These advanced methods of control over
real devices turn a box with a simple
on/o� switch into a smart device that
”knows” what the user wants without di-
rect interaction (i.e. through a switch), by
allowing control through voice recogni-
tion, presence detection or remote control
from other devices. These smart interac-
tion mechanisms provide a seamless and
intuitive interaction between humans and
the smart devices around us.

This vision of a smart space, where every
smart device connects to the needs of its
owner, knowing its owner’s intention also from mimic or gestures, like for example
adjusting the room temperature after detecting someone shivering, has not yet arrived
at everyone’s home. There are however very advanced research projects around speci�c
applications or functions and automation in o�ce buildings is usually already quite
advanced.

The term smart space does not just apply to home automation (”Smart Home”, shown
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in �gure 1.1), but also for example to industrial automation (”Smart Factory”). This
situation of having any kind of device connected to the internet, from television (smart
TV), cars (connected car) to everyday devices such as light bulbs, is often referred to
with the generic term ”Internet of Things” (IoT).

In recent years, the whole market of smart devices or connected things has risen rapidly
and is expected to grow even further. Gartner for example predicts, that in 2017 the
number of connected IoT devices will grow by 31% to 8.4 billion devices [3]. Based on
this rapid growth, a lot of new technologies and challenges emerge, on the one hand to
technically handle this large number of devices in the Internet infrastructure and on the
other hand to develop devices and device software which can connect to the Internet
without using too much power or requiring powerful processors.

In addition to the challenge of getting that many smart devices connected, there are also
challenges with the controlling of several connected devices so that they actually do
smart interactions with the user. This management of many smart devices is also called
orchestration, where complex �ows are executed, which involve interactions with many
smart devices. Also the con�guration of who has access to the device and when or for
which interactions certain devices can be used needs to be adjustable in complex smart
spaces.

For example, a simple setting like ’the lighting in conference room 1 can only controlled
by those employees, which are currently in the room’ involves a lot of interaction
between the devices: First of all, it needs to be determined who is in the room, for
example through a facial recognition camera or an indoor localization service. Then
the access rights to the lights in conference room 1 need to be adjusted accordingly and
devices which do the interaction, for example a smart phone of an employee, needs to
know which lights are in conference room 1 so it can display controls accordingly, like
for example for the main lights, front lights and window shutters. The whole scenario
gets even more complex when for example an energy saving service additionally ful�lls
the rule ’the lights in all conference rooms, which are empty, must be turned o�’. In that
case there is a potential con�ict between the setting of the last person which controlled
the device (i.e. an employee leaves the lights on when he left the room) and the energy
saving service, which sets all lights in the empty room to o�. This particular example
does not lead to a con�ict, because the employee only has access to the lighting when
he is in the room and the energy saver is only active when the room is empty, but in
some cases these rules can collide. For example if the rule would be ’after 6 PM (end of
working hours), all lights should be turned o�’, a prioritization between these rules is
required to allow an employee, which is doing overtime, to still turn on the lights when
needed.

This challenge of smart space orchestration can be tackled with middleware, which
enables such con�gurations to be performed, to deploy custom apps which add func-
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tionalities or �ows to the smart space and to interact with all devices regardless of the
vendor or technology. One middleware developed for this purpose is the Distributed
Smart Space Orchestration System (DS2OS), which is extended in this thesis and de-
scribed in more detail in section 2.1.2. It features a general abstraction of devices, their
sensor data and actuators, through the Virtual State Layer (VSL, see 2.1.2.1) in which
also pure orchestration services can derive data and perform actions. Additionally there
is a service management layer, which features an app distribution infrastructure, high
level management of the enabled services and tools for closer cooperation between
developers to prevent incompatibilities between services and devices.

The next section illustrates common problems of smart spaces today, which led to the
goals of my thesis which are presented in the section thereafter. This chapter then
concludes with an outline of the thesis.

1.1 Common problems of smart spaces

There are several common problems which arise in smart spaces today and which a�ect
the devices which are on the market or still in use. Some of these are:

Lack of interconnectivity
Currently most devices on the market are connected using vendor speci�c technology,
which often leads to problems with communication and control of the devices across
di�erent vendors. In other cases the devices are connected to one speci�c cloud of a
single provider and therefore rely on (1) all devices being connected to the same cloud
and (2) the cloud provider to be accessible in order to communicate at all. This leads to
isolated applications and a strong reliance on a speci�c vendor or cloud to still deliver
the service, replacement devices and software updates.

For instance, a very popular product nowadays is a smart TV, which delivers video on
demand services through the internet and can for example, be controlled remotely using
a smartphone app. Additionally, someone could have a robot vacuum which can be
controlled using a smartphone app, too. While the user is able to control both devices
with his smartphone and both devices are connected to the Internet, these two devices
are currently not connected. This leads to annoying user experiences, as for example
the vacuum starts cleaning the living room based on a time schedule, although the smart
TV in the same room is currently streaming a TV show, which means that a user in that
room is watching TV and obviously does not want to be disturbed by the robot vacuum.

This problem is caused by having separate cloud infrastructures for these di�erent
devices and although the apps are installed on the same smartphone, they don’t interact
with each other. Additionally the current software usually lacks support for specifying
rules to deny this kind of malfunction or for arti�cial intelligence or facial gesture
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recognition to realize on its own that this behavior is not desired by the user. This is
exactly the kind of problem which is solved by using an independent middleware with
extensibility through smart space apps.

Security issues
Many device vendors are not yet prepared to develop software and embedded device
�rmware that meets the security requirements of modern Internet applications. Fre-
quent software updates, state of the art encryption techniques and good authentication
and access control using a safe setup procedure are often not provided by the vendor.
This led to many security incidents in recent times, often a�ecting thousands of devices,
where usually even basic measures to protect the infrastructure were neglected.

A recent example is a security scan performed by security researcher Lucas Lundgren,
which scanned for unprotected devices using the Message Queue Telemetry Transport
(MQTT) protocol without authentication. The scan revealed in less than two days more
than 59,000 insecure devices, ranging from devices in cars over an emergency news
distribution system to medical equipment, �ight information, ATMs and other critical
systems, that could be read and partly controlled by anyone on the internet. The details
were revealed at DEF CON 24 in 2016 [4].

Especially in critical public infrastructure, insecure smart devices can pose a serious
risk for example if terrorist hackers use the security issues to trigger o� a dangerous
malfunction of the devices. An example scenario was investigated by researchers at the
Georgia Institute of Technology, in which they made a proof of concept malware, which
was able to infect the controllers of valves in a water treatment plant. They could then
increase the amount of chlorine added to the water while displaying wrong data to the
operating sta�. This attack, which was performed in an isolated environment with a
nontoxic addition instead of chlorine, shows that similar approaches could be used for
ransom or terrorist attacks [5].

Privacy concerns
There are many privacy concerns related to smart spaces, �rst of all due to the afore-
mentioned security issues, many devices provide their data to everyone on the Internet,
which is of course unacceptable. But further issues arise for example if devices provide
all their raw data to a cloud infrastructure and the provider might have regulations
which are too open in its data privacy statement or in some countries the privacy of
these services is compromised by statutory requirements to provide data for example
to public authorities. This is especially concerning with many of these devices, like
cameras or microphones for presence detection or voice recognition, providing audio
and video recordings from within private property and therefore potentially violating
the sanctity of the home. In order to secure private data, the amount of data exposure
to systems of the vendor must be controllable by the user and substantial functionality
and data processing should be provided by the devices within the smart space, to make
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it independent of third party servers or cloud systems.

1.2 Goals of the thesis

The primary goal of the thesis is to create native connectors to di�erent programming
languages and platforms for the Virtual State Layer middleware. A secondary goal that
derives from this primary goal is to standardize the network communication between
the connector and the middleware (the service interface, more on this term in 2.1.1)
using interoperable technologies, so that the implementation of these connectors is
possible and maintainable.

Regarding the common problems of smart spaces I mentioned before, this is how my
work relates to them:

Interconnectivity between devices is already improved a lot with the Virtual State
Layer middleware itself, regarding the cooperation between devices and a vendor in-
dependent layer to provide orchestration work�ows which can incorporate all smart
devices of a smart space. In order to make all these devices actually be able to connect
to the VSL middleware, currently they would have to use the Java Virtual Machine as a
platform and developers would be limited to this choice. With my extensions to provide
native connectors and a standardized service interface which allows other developers to
easily create more connectors, the overall interoperability rises and more devices could
be connected regardless of their platform.

Security issues are often related to insecure network protocols, for example because
they lack encryption or reliable authentication methods. It is part of my requirements in
2.1.3 to only consider technologies that can be deployed securely and to use them with
current best practices for Internet communication. Additionally, the Virtual State Layer
middleware provides sophisticated access control methods and a service management
layer to give authorized users the ability to control which devices and services are
allowed to do what.

Privacy concerns are addressed in two ways, �rst of all because there is a high level of
security to prevent unauthorized access and secondly, the Virtual State Layer performs
local processing inside your smart space and gives the user control over how and
what speci�c data are for example transmitted to cloud systems. It can also be operated
completely local, but still o�ers the ability to use cloud connectors for advanced features.

To sum up, in this thesis a

• service interface with standard network protocols is designed and evaluated and

• native connector implementations for other languages than Java are implemented
and evaluated, to ease the development of services on other platforms.
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This work contributes to solving common problems of smart spaces today and the
detailed requirements of my work are elaborated in 2.1.3.

1.3 Outline

The thesis is structured into seven chapters, the �rst of them being this introduction.

The next chapter, chapter 2, contains the analysis of the problem domain and existing
technologies which can be used for solving these problems. It begins with the problem
statement in 2.1, in which the relevant de�nitions and the Virtual State Layer middleware
are introduced and then the speci�c problems to solve and requirements of the solution
are derived. The rest of the analysis describes existing technologies which can be used
for ful�lling parts of the requirements or solving a part of the problem. In each of the
sections, a particular family of technologies is introduced and afterwards assessed to
what extent they can be used or which technology is more suitable.

Chapter 3 presents related work, where other researchers worked with similar or related
problems and analyses the results and �ndings and how they can be applied to my
approach as well.

After this assessment of existing technologies and research, the design of the service
interface is speci�ed in chapter 4 based on the technologies which were identi�ed as
suitable to ful�ll my requirements. This chapter is closely followed by chapter 5, which
describes my experiences from actually implementing the native connectors and the
problems which were solved during the implementation, as well as giving some insights
to implementation details like the used libraries.

Chapter 6 aggregates the details on how I evaluated the implemented connectors if they
actually meet the requirements based on quantitative measurements of the serialization
modules and qualitative analysis of whether the requirements are ful�lled and how easy
to use and interoperable the service interface actually is.

Finally, the results are concluded in chapter 7, where the �ndings are summarized and
put into context with the introduced smart space scenario.
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Chapter 2

Analysis

In this chapter, the problem domain and the requirements are introduced and then
relevant technologies that propose solutions to individual requirements are analyzed
and assessed.

First, the term service interface is de�ned with relation to middleware and the role
of service interfaces in large scale software systems is emphasized. In that part, the
motivation why native interfaces for multiple programming languages or operating
systems are important for widespread use of a middleware is reasoned. Then the speci�c
middleware for which I create a service interface is introduced and the functions which
the interface needs to cover are provided. A speci�cation of the requirements for the
native service interfaces is derived and speci�ed in detail to conclude the �rst part of
this chapter.

In the second part, technologies which can be used to ful�ll some of the requirements
are analyzed. This starts with an introduction to di�erent architectural paradigms which
are also compared with regard to their �eld of appliance and their representation of
required functionalities.

As the interface is required to be usable via network connections, di�erent network tech-
nologies which are suitable candidates for the creation of this interface are presented.
The representation of data structures in network communication, called data serializa-
tion, is analyzed in depth with di�erent serialization formats that are assessed for this
purpose. Following the serialization formats, the standard protocols which are suited
for the requirements are presented and assessed. A deeper look into di�erent ways how
callbacks are realized with these protocols rounds up the discussion of suitable network
technologies.

In order to create native interfaces to a lot of programming languages, standardized
interface description languages and code generation can be useful. The term interface
description language is de�ned and put into the context of code generation. Then,
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di�erent approaches to code generation with or without the usage of interface descrip-
tion languages are analyzed and compared with a focus on generating code for a lot of
programming languages with the required functionalities.

Finally a summary concludes this chapter with an overview of the analyzed technologies
and which ones are useful for the development of the service interface.

2.1 Problem statement

This section motivates the topic of this thesis and leads to a de�nition of the requirements
for the interface. The �rst subsection de�nes the term service interface and the role of
service interfaces for a middleware in large scale software systems.

2.1.1 Service interfaces for a middleware

The W3C working group de�nes a service interface as

“[...] the abstract boundary that a service exposes. It de�nes the types of messages
and the message exchange patterns that are involved in interacting with the service,
together with any conditions implied by those messages.“ [6]

A middleware is a general-purpose interface between platforms (e.g. operating system)
and applications. It can be used by a wide variety of applications and enables these to
run on all platforms which the middleware supports. The applications don’t interact
with the operating system directly and instead only use the middleware’s application
programming interface (API) [7].

A middleware is also distributed, it can be accessed remotely or enables applications
to be remotely accessible. Normally it builds up on standard network protocols like
the TCP/IP stack and allows applications to access these remote resources without
handling the network connections on their own. So by just using the middleware’s API,
applications can interact with the operating systems and applications on the local or
remote machines [7].

This is a very important property for large scale software systems where a middleware
greatly increases the ease of application development and deployment [8]. By interact-
ing with the middleware only, applications can be enabled to operate in a distributed
computing environment at any scale which the middleware e�ectively supports.

The network communication of a middleware is de�ned by its service interface. Mid-
dleware components that communicate to each other on the di�erent platforms and
maybe using di�erent programming languages need to implement this service interface.
The choice of the service interface is very important for the potential platform coverage
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and portability of the middleware itself and therefore also the applications that can run
on the middleware.

In the next subsection, the speci�c middleware is presented, for which a service interface
is developed in this thesis.

2.1.2 DS2OS - the Distributed Smart Space Orchestration System

The Distributed Smart Space Orchestration System (DS2OS) is a system for orchestration
of devices in a smart space.

A smart space is a room or an area, in which embedded computing devices can interact
with the space by sensing its state with sensors and interacting with the space by
performing actions through actuators. This could be for example temperature sensors
in a room measuring the temperature and adjusting the heating to raise or lower the
temperature to a desired level. The devices communicate with each other and can
interact with the users in the smart space. Even a device or software can change its
functions based on the space it is in, like for example an app on a smartphone being
able to control the room where the device is located in, but only this room at the time
when the device is actually there [9].

Orchestration of these di�erent devices which each run their own software and oper-
ating system for controlling their sensors and actuators requires a high degree of data
exchange between these devices [9]. In DS2OS, two main components faciliate this: the
service management component manages the di�erent services and the the virtual state
layer (VSL), a middleware for the interaction between these services. This middleware
is the component of DS2OS, which is extended in this thesis and explained in more
detail in the next sections.

I also worked as a student research assistant on this project before and contributed for
example to the architecture of the knowledge agent, which is described in more detail
in 2.1.2.3. Some of the statements in this subsection are based on my knowledge of the
code and architecture and are not based on published papers listed in the references.

The most relevant parts of the system are now presented in detail, beginning with the
Virtual State Layer (VSL) middleware and its special concept of virtual nodes.

2.1.2.1 Virtual State Layer

The Virtual State Layer (VSL) is a tree structure of nodes containing typed information.
The information of a node represents a state of a resource in the smart space, which
can be state of a physical entity or a state information inferred by software [10].
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This node can be accessed using a set of standard methods (described in 2.1.2.4) with
an unique address which is valid on all devices which are connected to this DS2OS
instance. In order to change a value in the VSL, it is only necessary to have access to one
knowledge agent (KA), which are the entities which each manage a subtree of the VSL.
Using the connection to this KA, all knowledge in the VSL is accessible to the client
using the VSL middleware, as long as the client has the required access rights [10].

Similar to a �le system, the nodes in the VSL form a tree structure based on the addresses,
where address components are separated by a slash. Every service connected to the
VSL via one of the knowledge agents can register a private subtree of the VSL, which is
a node of a speci�ed type. The types are derived from basic types like either primitive
types (string, number, ...) or a composed type. In case of the composite type, it declares
a set of child nodes with the corresponding child types. This way the node is the root
of a subtree where all subnodes are known from the type information. An exception
to these statically known children are lists, where nodes can be added or removed at
runtime, but in that case the type of the list’s root node is list, so the list behaviour of
that node is known by its type. In most cases, a service will instantiate a composite
node with children for the di�erent attributes or functions of the service which might
represent a device or a management functionality [10].

2.1.2.2 Virtual Nodes

The data in the VSL can be dynamically overlayed by the service which provides the
data with live data in realtime. This can be transparently achieved by the service
by registering a virtual node with the knowledge agent. Other services will not be
in�uenced by this action but the knowledge agent forwards the requests directly to the
service. The service can then provide live data instead of frequently pushing changes to
the knowlege agent’s knowledge base, allowing for less interactions as the data is only
updated when it is actually requested and also allowing for realtime data access [11].

This is technically achieved by using callbacks to the service which registered the
virtual node. Upon registration, the callback is provided to the knowledge agent and
the knowledge agent will then use the callback to forward the requests of other services
to the service which registered the virtual node. Additionally, the knowledge agent
saves the data provided by the callback to the local knowledge base, but only every time
the data is requested by another service. This allows the knowledge agent to provide
data from the knowledge base again if the callback becomes unavailable, for example
because the service which registered the virtual node is suspended or defect. The same
happens when the service unregisters a virtual node: the node’s data will be provided
by the knowledge agent from its knowledge base which stores the value which is the
most current value that is available for this node. It is no longer a realtime value but at
least the most recent one that is known. Once a service registers the virtual node again



2.1. Problem statement 11

Figure 2.1: Knowledge agent architecture
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it will be served directly with the callback again [11].

This design improves the resilience of the smart space especially if services frequently
change its availability, for example for power saving or because of network migrations
of moving devices. Outdated values can be detected by the requesting services, for
example via the timestamps. So services that rely on realtime data can verify whether
the data is recent enough or not.

2.1.2.3 Current knowledge agent architecture

The architecture of the most important entity of the Virtual State Layer (VSL) middle-
ware, the knowledge agent (KA), as shown in �gure 2.1. It features the knowledge
object repository (KOR) for storing the local VSL subtree data, but also metadata of
the whole VSL and state information of local services like which nodes are registered
as virtual. Furthermore, this instance also provides access control checking and invokes
callbacks for example on virtual node accesses in the local VSL. All requests that access
the local VSL subtree are passed to the KOR.

The knowledge agent also has local management services, that deal with di�erent
high-level system management functions. While they usually act similar to normal
services, some of them use direct access to the KOR to allow for special operations like
type search. Requests from these or other services are routed by the Request Router
�rst, to destinguish between local and remote requests and to get the request handled
by the responsible component of the KA. This part represents the inner working of a
KA to get the requests executed and the other part, which is described in more detail,
deals with the request communication via network.
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In this architecture, support for multiple di�erent network ”transports”, i.e. speci�c
implementations of a protocol, is already provided with the Transport Manager. The
Transport Manager manages the available transports and delivers requests to other
knowledge agents by selecting a suitable transport module for the communication.
Secondly, the transports can also receive requests, either from other KAs or from services,
and pass them to the Request Router for further processing. There are two kinds of
transport, that serve di�erent purposes:

• unicast transports: these serve the peer to peer communication of KA to KA or
service to KA and allow to execute one of the requests described in 2.1.2.4. This
kind of transport is the one to be developed or improved in this thesis.

• multicast transports: the purpose of these is to maintain the overlay network,
which is formed by the knowledge agents. So it is only used for KA to KA
communication and only for speci�c operations like agent discovery, heartbeats
respective keep alive pings and multicast-based exchange of VSL metadata. The
current implementation uses IPv4 broadcast and IPv6 multicast for this purpose.

The only unicast module, that is currently available, is an implementation with the
HTTP 1.1 protocol and JSON data serialization (see 2.4.2 on HTTP and 2.3.2 on JSON).
By adding more transport modules, services are able to use di�erent protocols and even
if the request was received using HTTP 1.1 and needs to be sent to another KA for
processing, the usage of a di�erent protocol for the KA to KA communication is possible.
This makes testing di�erent protocols and implementations easily possible even within
the same instance of a KA through con�guration or client changes.

For realizing some features like the virtual nodes from 2.1.2.2, callbacks are very essential.
As it can be seen in the architecture diagram in 2.1, callbacks that were registered
from a transport module at the local KOR will be directly called from the KOR to
the transport module. The transport module is then responsible for doing the actual
callback invocation and to maintain the callback’s availability (i.e. disable it if a service
disconnects). Currently, the HTTP 1.1 transport uses a WebSocket (see 2.4.5) for the
callbacks.

The next part describes the service interface of the virtual state layer in detail, stating
the di�erent methods used by services to access the VSL. These are also implemented
in the existing HTTP 1.1 connector.

2.1.2.4 VSL interface

Access to the data in the VSL is provided by a �xed set of methods, which are de�ned
in the VSL interface. Every interaction with the smart space can be done by using one
or more calls to these methods.
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The methods used by the services - there are only few extensions for the communication
between agents - which are used for all VSL accesses are these:

• get(address): VslNode - Used to retrieve a VSL node by its address.

• set(address, data) - Used to set data on a VSL node by its address.

• notify(address) - Used to notify the KA about changes on a virtual node, so it
can notify the subscribers.

• subscribe(address, callback) - Subscribes to changes to the node at this address.

• unsubscribe(address) - Removes subscriptions at this address.

• lockSubtree(address, lockCallback) - Locks a VSL subtree to track changes
made by this service in a transaction.

• commitSubtree(address) - Commits the changes done to a locked subtree.

• rollbackSubtree(address) - Rolls back the changes of a locked subtree.

• registerVirtualNode(address, virtualNodeCallback) - Creates a virtual node
at this address - see 2.1.2.2 for a description of virtual nodes.

• unregisterVirtualNode(address) - Removes the virtual node from this address.

• registerService(manifest): String - Instantiate this service’s instance with the
speci�ed service manifest. It returns the service’s instantiation address and mul-
tiple invocations lead to one instance at one address.

• unregisterService() - Remove this service’s instance from the VSL.

This interface consists of very simple data manipulation methods and special methods
that utilize callbacks for real time communication with the service. The service itself can
control whether the data accesses are based on requesting the data explicitly upon need
(pull) or whether a callback is triggered upon interaction (push). Advanced functions
like the virtual nodes rely on the callbacks, so a reliable callback mechanism is crucial
for the VSL interface.

These are the DS2OS features which are most relevant for this thesis and many more
features exist and can be discovered in [10] [11]. The next section will provide an
overview of the requirements for a service interface which implements these methods
to provide an API to the VSL.

2.1.3 Requirements of the service interface

The primary requirements of the VSL service interface derive directly from the func-
tional interface described in 2.1.2.4. The functions listed in the interface must be usable
via network connections for connectivity between multiple smart devices. It is the main
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goal of this thesis to make these functions natively available in many programming
languages and on many platforms. This will ease service development as programs
written in those languages can be adopted to connect to the VSL middleware natively
in that language.

In order to achieve this, a high interoperability of the used technology is crucial for
having many existent implementations or libraries on various platforms. The interoper-
ability can already be provided by a standardized network protocol which has already
been used in a lot of other projects. The smart devices will communicate via network,
which allows the devices to also use di�erent programming languages and still connect
to instances written in other languages. It is also easier to implement the connector
to the interface using standard libraries of the respective language for standardized
network protocols. As part of this thesis, di�erent standard protocols are evaluated and
compared with qualitative analysis and quantitative performance metrics.

The quantitative key performance indicators are used to measure the e�ciency of the
protocol for usage in a smart space. As the embedded devices usually do not have high
computing performance and some of them might even be battery driven, a low protocol
overhead is important to reduce the amount of data, that needs to be transmitted,
encrypted and processed. Another important aspect is the latency, as the controlling
of devices should have an immediate response to user interaction. Therefore, a low
latency improves the user experience and is an important metric for the technology
comparison.

For the qualitative comparison, the most important aspect is the usability during im-
plementation and its simplicity. With only nine methods of the interface itself, the
implementation should not yield a complex client binding. Additionally, a simple bind-
ing will involve less maintenance e�ort and is easier to port to more platforms or
languages.

Furthermore, security is very important in a smart space environment, where potentially
insecure devices might share a network. This could be for example due to guests in an
o�ce or private network, hacked devices or reduced physical network security. The
protocol should therefore support strong encryption and sophisticated cryptographic
authentication mechanisms. While in some speci�c cases it might be useful to disable
encryption, it should be part of the transport by design and enabled by default.

In addition to the mentioned requirements, these properties are very desirable in speci�c
use cases:

• Protocol support for callbacks, especially through pushing mechanisms. Four
methods of the service interface use callbacks, especially the virtual nodes make
havy use of callback invocations. The di�erent possiblities how to implement the
callbacks e�ciently will be an important characteristic for choosing the protocols
and the way to implement the callbacks.
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Table 2.1: Table of requirements
# Requirement Analysis criterea

1 standardized network protocol standard accepted by IETF
2 interoperability supported languages and platforms
3 low overhead of data transfers actual data per transmitted byte
4 low latency of a full operation number of round trips

processing need
5 simplicity of the implementation lines of code needed per language

easy to use APIs available
6 security: encryption, authentication strength of supported cryptography

e�ort to include it
7 callback support e�ciency and ease to use callbacks
8 asynchronous operations e�ort to achieve them
9 stateless/suspendable protocol number of round trips to reactivate

• Asynchronous request execution: the data requested from the VSL can in some
cases be very large, which leads to substantial transmission times depending on
the network speed. If asynchronous operations are not possible in the protocol,
services would not be able to execute small requests during the transmission of
one large data chunk. A solution could be to establish multiple client connections,
but native support for asynchronous operations would be better.

• Stateless or suspendable protocol: smart devices might have an unreliable power
source, run out of battery or hibernate for the reduction of power consumption.
In these cases, re-establishing the whole communication is far more expensive
(in terms of time, energy consumption) than having a stateless protocol or a
suspendable protocol that does not need a full reconnection in these cases.

These requirements are structured and numbered in the table 2.1 for later references.

2.1.3.1 Native interfaces to provide

The actual programming languages, for which native interfaces are developed in this
thesis are chosen based on popularity and the goal to choose a set of not too similar
programming languages. For measuring the popularity, the TIOBE index of 2016 (12
month avarage) [12] gives a good overview based on the number of search engine results
for this language.

The top ten of the TIOBE ranking in 2016 (12 month average) is:
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1. Java
2. C
3. C++
4. C#
5. Python
6. PHP
7. JavaScript
8. VisualBasic .NET
9. Perl

10. Assembly

For my thesis I choose the following three programming languages for the actual im-
plementations based on the following reasons:

• Java: number one on TIOBE and it is the language in which the knowledge agent
is already written in.

• C: number two on TIOBE and it is also a base language for C++, which is number
three, and partly also for C# on the fourth place. C is also commonly used for
embedded programming.

• Python: having risen to number �ve on TIOBE in the recent years, it is a popular
script language which di�ers from Java or C.

The next part of the chapter will analyse existing technologies that can be used to ful�ll
these requirements.

2.2 Service interface architecture

In this section, di�erent approaches to the architecture of service interfaces and service
interaction are presented. These architectural principles present an idea of how data is
transferred, how methods are invoked and what maintains the state of the system as a
whole. Depending on the architecture, the role of certain entities in the system di�er
and with that the di�erent tasks it has to ful�ll to make the system working properly.
In each subsection, the relation of this architectural principle to the VSL middleware (cf.
2.1.2.1) and the design of the service interface is shown. The �rst introduced principle
is the well known Service Oriented Architecture.

2.2.1 Service Oriented Architecture

In a Service Oriented Architecture (SOA), a system is split up into services that communi-
cate via network. These services encapsulate a speci�c functionality into an independant



2.2. Service interface architecture 17

unit that hides its internal working from the service’s consumers. In order to achieve a
complex task – in SOA terms referred to as ”business process” – the service consumer
may also use the functionality of other services, leading to a combination of services
that is composed for this task [13].

Among the principles of SOA service design is the loose coupling of services. It implies
that the functionality of a service, which is speci�ed by its interface, can be o�ered by
more than one implementation or service provider. Combined with a mechanism to �nd
services that implement a speci�c interface, this allows services to be added, removed
or moved to di�erent network locations. This can be achieved with a service repository
or directory service which can be queried for services [13].

Depending on the speci�c implementation, there are standards how a directory service
works. One important example is UDDI which is used in combination with SOAP (see
2.4.7) [14]. Also DS2OS (see 2.1.2) has a service management component which amongst
other functionality also serves as a service directory: one way is the App Store, which
serves as a global directory for available service implementations and another is the
type search functionality which allows to �nd instances (= service implementation) of
a model (= abstract service de�nition) [15].

In many cases of a SOA implementation, the service interface de�nes methods that can
be called by others in the interface. In contrast, DS2OS uses a �xed set of methods and
the interface is the data structure of the service de�ned by the service’s type [15]. This
is described by an architectural principle called data-centric design, which is presented
in the next subsection.

2.2.2 Data-Centric Design

Data-centric design moves away from the idea of using di�erent methods to interact with
di�erent object types, but instead describes all object properties as data, which can be
accessed using a set of standard methods. This allows service consumer implementations
to only implement a �xed set of methods, but to apply them to di�erent data [15].

There are several technologies based on this design principle, which is sometimes also
referred to as ”Information-Centric”, ”Content-Centric” or ”Data-Oriented”. A well-
known example is ”Content-Centric Networking”, which is an approach of reorganizing
computer networks to make data requests not for a speci�c location like a URL, but
instead for a speci�c named data object (NDO), which can be provided by any node that
cached this object. If a particular data object is requested, the request can be satis�ed by
any network node knowing the data. Especially even nodes which do not interpret this
speci�c data type can still cache and forward the data, without knowing the meaning
of the data or loading code with speci�c support for this data object [16].

This design principle has several advantages and disadvantages, that are now discussed
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in relation to the distributed smart space orchestration system (DS2OS, see 2.1.2), which
uses a Data-Centric Design with the �xed interface methods described in 2.1.2.4.

One advantage is the location independance of data objects. The data structure from
the DS2OS model has the same meaning in di�erent locations of the virtual state layer
(VSL), allowing services to be instantiated on any knowledge agent (KA). The type
search functionality allows to search for data in the whole VSL tree, to allow �nding
data instances location-independant in the whole VSL. This enables service mobility
and an interesting use case of service composition, in which case the individual services
are subnodes of the composed service [15]. A practical example from smart spaces
would be a light bulb with an integrated temperature sensor, which could use a subnode
”temperature” in its model that is instantiating the model for temperature measurement
devices and another subnode ”light” which is instantiating the model for light bulbs.

A problem arising from the Data-Centric approach is the realization of inheritance as in
the Object-Oriented Programming (OOP, see [17]). The problematic part is extending
a data structure without breaking code that does not support this speci�c extension.
Apart from the composition approach from the previous paragraph, DS2OS supports
type inheritance to solve this issue, as shown in [15].

Another important bene�t is the centralization of access control in a Data-Centric
designed software: Access rights and restrictions can be easily attached to data objects
without knowing the actual meaning of the data. Everyone accessing the data object
with any of the �xed methods is required to have access to the data globally in the system.
Compared to this, a Service Oriented Architecture (SOA) with di�erent service interfaces
for each service requires every service to implement access control to its data on its
own or to restrict access to calling a method, but without control of which data actually
is used within this method’s execution. This leads to a way easier implementation of
reliable access control mechanisms in a Data-Centric designed SOA [10].

2.2.3 Event Driven Architecture

In subsection 2.2.1, the Service Oriented Architecture (SOA) was introduced with ser-
vices that expose a service interface of methods to other services or consumers. The
Data-Centric Design of the previous subsection proposes a SOA implementation where
data objects instead of methods are used to represent the individual service behavior. A
third popular method of service communication and service design in SOA is presented
here, the Event Driven Architecture (EDA).

In the Event Driven Architecture, the communication of services is not modeled by
method calls but with events. A service produces events and other services can receive
or listen to these events. The program logic of a service is usually triggered by incoming
events and then possibly produces further events to other services. In some cases, events
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might not even be listened to at all, so they eventually have no e�ect. Data exchange
between the services only happens through the data stored in an event, not by any
shared data structures or databases [18] [19].

One of the major bene�ts of an Event Driven Architecture is that because all data is
encapsulated into the events, it is very easy to parallelize the processing of events
without the need to synchronize data access. This leads to a high scalability of the
whole system, as horizontal parallelism can be easily achieved [18]. Also it infers an
extremely loose coupling of the services, as the event producing service does not even
know how an event will be processed later on [19].

On the other hand, the traditional request and response work�ow is not that easy in
an Event Driven Architecture: an event can be used to represent a request and another
(response) event can be raised by the service that handled to request, but matching the
individual requests and responses to each other is more di�cult in case many requests
of the same type have been raised at the same time. The matching can be performed
using the event data and client logic to identify the correct response. If a lot of speci�c
requests to other services are required, it is a good option to mix the Event Driven
Architecture with a traditional SOA [20] [19].

Another important application of EDAs are real-time applications, which pro�t from
several properties of the EDA: First of all, events can be reordered by priorities or
deadlines in their processing, allowing to meet deadlines more easily. Secondly, an
event can be dropped (no longer processed) if its deadline expired without harming the
operation of other parts of the system. With the asynchronous and very lightweight
behavior of events, very e�cient real-time systems can be developed using an EDA [20].

Network communication between the services usually models the events as simple
messages, that are passed to other services of the system. The distribution of the
events is done by event routers, that distribute the event to the listeners and processors.
These simple messages can be passed using almost any network protocol and are very
lightweight [18] [20].

The Distributed Smart Space Orchestration System (DS2OS, see 2.1.2) has three com-
ponents that represent events: the subscription mechanism that noti�es other services
about changes in the VSL (see 2.1.2.1), the virtual nodes (see 2.1.2.2) that emit noti�ca-
tions on changes and the callbacks of the locking mechanism. So most of the callbacks in
DS2OS are used to promote events to other services. Protocols and mechanisms of EDAs
are good candidates for the realization of the callback mechanism and subscription’s
noti�cation emission.
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2.2.4 Remote Procedure Call

After the introduction of the Service Oriented Architecture (SOA) and the more speci�c
architectures of service interaction in a SOA, a deeper analysis of network commu-
nication architectures is now performed. The �rst presented approach is the Remote
Procedure Call (RPC), which provides a very simple architecture for service communi-
cation via network.

The basic idea of the Remote Procedure Call is to do a call similar to a normal call in a
high-level programming language, just that the execution of the procedure takes place
on another computer in the network. This is achieved by sending a network packet
specifying the procedure to call and the arguments to the host of this call. The response
is a packet containing either the result of the procedure or an exception, in case there
occurred an exception on the callee [21].

The main bene�t of this architecture is its simplicity and easy integration into existing
programs. On the other hand, the blocking nature of these calls tend to slow down
parallel workloads and the very simple architecture does not transparently map the
semantics of objects or standard operations, for which extensions exist [22] [23].

For the network architecture of the DS2OS service interface, a more advanced architec-
ture like the Representional State Transfer, which is presented in the next subsection,
seems to be more suited. Still, RPC based protocols are analyzed like for example
XML-RPC (see 2.4.6), as they are a viable method for the implementation of the service
interface. Especially for the callback mechanism, the RPC architecture is highly suited
to invoke the callback methods on the service.

The next subsection will present the Representional State Transfer (REST) in detail.

2.2.5 Representional State Transfer

Representional State Transfer (REST) is a term introduced by Roy Fielding to describe
the architecture of web services [24]. A web service is considered RESTful if it meets
the architectural constrains de�ned in his thesis. REST is a hybrid architecture which
combines several architectural principles:

• Client-server: Data is stored on the server and the client is only a user interface.
Additionally, both sides can evolve independently, increasing the interoperability.

• Stateless server: The request performed by the client contains all necessary
information for the server to process the request. The server does not maintain a
state for the client.

• Cacheability: Each response must state wether it is cachable or not and if it is
cachable, a client may reuse the response without further con�rmation.
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• Uniform interface between components: Decoupling of implementations and
services, divided into these subconstraints:

– Identi�cation of resources: Every resource must be indenti�able by a re-
source identi�er, but its concrete format is not speci�ed.

– Every resource must be representable by data and metadata which describes
this data, possibly the state of the resource and control information like the
requested cache behaviour.

– The data format of the representation must be included in the message,
known as media type.

– Hypermedia as the engine of application state: As REST request are stateless,
the state must be maintained by the requests and their follow-up requests,
making the sequence of requests a �nite automaton. This is only possible if
the resource contains possible follow-up requests as hypermedia references
and clients can locate each resource from a single entry resource. This allows
clients without detailed knowledge of the available resources or possible
operations to use the service, which improves long-term maintenance [25].

• Layered system style: Services may be composed of hierarchical layers but a
component does not know what or how many layers are behind the component
they are interacting with.

• Code on demand (optional constraint): In order to ease the implementation of
a client, a server may provide additional code snippets or applets which extend
the client software.

The constraint that RESTful interfaces must be uniform is often not adhered, which is
why many REST services that implement an RPC (Remote procedure call) architecture
are regarded as REST-RPC hybrid services and not properly RESTful [25] [26]. There
has been multiple aproaches to judge the ”RESTfulness” of services, for example the
Richardson Maturity Model [27] and an analysis of several impacting factors by NORD
Software Consulting [28]. The Richardson Maturity Model is explained in more details
now.

2.2.5.1 Richardson Maturity Model

The Richardson Maturity Model (explained by [27], based on the slides of Richardson’s
talk [29]) arranges HTTP (see 2.4.2) based web services on a scale from zero to three,
with zero being not RESTful at all and three being RESTful according to Fielding’s thesis.
It is only used for HTTP based services and is an extension to the REST de�nition, not
part of it, i.e. true RESTfulness is only reached at level three, which is full conformance



22 Chapter 2. Analysis

to the de�nition. The di�erent levels in detail (all higher levels include the conditions
of all previous levels, so only the new conditions of each level are listed):

• Level 0: The service is using HTTP, but it is not RESTful. For example, it only
uses POST operations to a single URI and all content is put into the POST bodies,
like XML-RPC (see 2.4.6) and SOAP (see 2.4.7) do.

• Level 1: Di�erent URIs are used to identify resources, but still only one operation,
usually POST, is used. In this Level, resources act like objects in object oriented
programming; the URI points to an instance of the object and the POST operations
are like calls to a method of this instance.

• Level 2: HTTP operations are used in their intentional meaning and not for
tunneling custom methods. This usually includes using many di�erent HTTP
operations and POST operations only in cases of complex modi�cation of a re-
source. In addition, the HTTP rules for these operations, like idempotency of
GET, must be adhered and HTTP error codes must be properly used instead of
error messages in the response body.

• Level 3: Hypermedia is used as the engine of application state, i.e. all URIs can
be discovered by previous operations, so that all resources can be reached from a
single entrance URI. Addtionally, the operations (esp. POST semantic) should be
documented and this documentation should be delivered by the service.

This model can be used to improve the understanding of REST and assist in the devel-
opment of RESTful services, by allowing a step-by-step development of the interface,
rising the design from level zero (a simple RPC approach) to level three, with clear steps
what can be done next (i.e. to go from level zero to one, one must identify resources
respectively objects and transform the global RPC calls to object oriented methods) [27].

2.2.5.2 RESTful VSL

By looking at the structure and interface of the Virtual State Layer (VSL, see 2.1.2.1 and
2.1.2.4), many similarities to the REST architecture can be discovered: the addressing
of VSL nodes for instance, is very similar to the REST URI addressing, also following
the principle of having a unique address per resource or in this case, service instance.
Furthermore, interface methods like get and set directly map to the HTTP operations
GET and PUT, while the other methods can be done in an RPC style.

In the Richardson Maturity Model of the previous chapter, reaching a Level 2 maturity
is straightforward by using the HTTP operations for the VSL operations as applicable.
About the other REST criteria, the client-server architecture is already achieved with
the knowledge agent holding the data of the service, i.e. the knowledge agent is the
server and the services are clients in REST terminology. The statelessness of services
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(clients) is only achieved as long as no callbacks are registered, as maintaining callback
information is a client-speci�c state. Cacheability and a layered system style are already
part of the existing architecture, with a caching mechanism integrated into the VSL
and services being agnostic of the connections between di�erent knowledge agents and
instead they just communicate with their KA.

Regarding the uniform interface, the criteria of resource identi�cation and metadata to
describe it is given with the VSL type information. The data format of the representation
would be done at the actual protocol level, which will be discussed in the design of the
service interface. Not using Hypermedia as the engine of application state is �nally the
only real violation of REST in the VSL design, as the linking of one resource to the other
does not exist without speci�c implementation knowledge about the type search, the
working of these references and the model of a service (which is not provided with the
data yet but only by separate requests).

This shows that the VSL middleware’s architecture highly relates to a RESTful archi-
tecture, while not being strictly RESTful yet. Therefore, the REST architecture is an
important guide for designing the service interface of the VSL. Additionally, protocols
and other technologies which are frequently used to implement RESTful services are
especially suited for this project. The next sections contain a detailed analysis of these
protocols and related technologies such as the data serialization.

2.3 Data serialization formats

Data serialization (or sometimes called object marshalling) describes the process of
presenting data from an application in a textual or binary representation. It is used to
expose data via input / output to other processes, or to store this information persistently
for future instances of the same process. This data is then either represented as a string
(textual serialization) or as a byte array (binary serialization) [30] [31].

Inside the program, the data is usually represented using an object in Object-Oriented
Programming (OOP) or for example a structure in C. In software engineering design
patterns, the Data Transfer Object (DTO) pattern is used to express an object that
describes data that can be transferred for example via network or other means in a
serialized format [32] [33].

The selection of the presented serialization formats in this section (XML, JSON, CBOR
and Protocol Bu�ers) is based on the following criteria: XML and JSON are chosen based
on a very high popularity, in speci�c implementations as well as in scienti�c research.
They both are the de-facto standard of an era (XML �rst in the 2000s, switching to JSON
in recent times). This marks high interoperability, good availability of libraries on every
programming language and lower e�ort needed by an application developer to adopt
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this technique. The other two are mainly selected because they show promising results
in producing compact results that lead to lower overhead, while still being popular for
applications with this speci�c goal. First, XML is introduced.

2.3.1 XML

The eXtensible Markup Language (XML) standard has been proposed in 1998 and ac-
cepted by the W3C. It evolved from the Standard Generalized Markup Language (SGML)
with the goal to make it more suitable for the internet. The serialized representation of
a data object is called an ”XML document” in XML. It is a textual representation of the
data, that is quite extensive in its description of the data structure and therefore also
easy to read for humans [34].

The structure of XML consists of elements, that can be empty, contain other elements
or contain text data. The document is formed of a root element and optional an XML
declaration or the document type, which speci�es an XML document type de�nition
(DTD) for the validation of the document. Additionally, the elements may have attributes
assigned to it, with the main di�erence that an element can have an attribute of a
speci�c type either once or not at all, while child elements may occur arbitrarily often,
as long as no validity constraint restricts it [34]. After the initial de�nition of XML
with DTD for document validation, newer de�nitions for checking XML document
validity were created, most notably XML schema and RELAX NG. They both focus
on allowing additional data validity constraints, i.e. what may be used as text data
inside and element and more complex restrcitions of when elements may be used inside
another element [35]. The following listing shows an XML example using DTD:

Listing 2.1: XML example with embedded DTD
<?xml version="1.0"?>
<!DOCTYPE person [

<!ELEMENT person (name,age)>
<!ELEMENT name (#PCDATA)>
<!ELEMENT age (#PCDATA)>

]>
<person>

<name>John Doe</name>
<age>18</age>

</person>

The information shown in the ”<!DOCTYPE” part can be extracted to a special DTD �le,
which is then only referenced by the document type tag. This is speci�cally useful for
larger documents or if many documents of the same type exist, which is very common
in applications. Also the document type is optional, as also any restrictions on text
values are up to the applications using the document or an extra schema de�nition [35].
That allows to use weak typing in combination with XML, although many developers
use strict schemas and de�nitions, especially in a context like SOAP (see 2.4.7).
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Espcially together with SOAP and other technologies which were commonly used in the
eraly 2000s, XML gained high popularity and was the lingua franca of many computer
systems. Even today, it is very common for human-edited con�guration or speci�cation
�les and it is still used in many applications. In recent years, especially with modern web
technologies like JavaScript, application developers started to prefer JSON for machine
to machine communication (and especially browser to web server communication). This
serialization format is now presented in detail.

2.3.2 JSON

The JavaScript Object Notation (JSON) is a data interchange format originally speci�ed
by Douglas Crockford [36]. It is derived from ECMAScript [37] and was proposed to
the IETF as RFC7159 [38] in March 2014. The format is text-based, human-readable,
language-independent and designed as a lightweight alternative to XML for data trans-
mission on the web.

JSON supports four primitive and two structured types, whereas the whole serialized
JSON text should be one of the structured types. The supported types are [38]:

• null [primitive]: This is a null reference as known from various programming
languages and must be lower case without enclosing quotation marks.

• false and true [primitive]: Boolean values which must be lower case without
enclosing quotation marks.

• Numbers [primitive]: Any numerical value represented using decimal digits,
but in�nity or NaN values are not permitted (they are usally translated to null).
Fractions are separated with a single point or exponential notation and negative
values are pre�xed by a minus sign (e.g. 1.05, 2e-5 or -1.3e+8). Numbers have
no minimum or maximum boundaries and can be of arbitrary precision, but the
values might be rounded during deserialization.

• Strings [primitive]: Any unicode string, enclosed by quotation marks and using
C-style escaping for all control characters, quotation marks and the reverse solidus.
Other unicode characters may be escaped as well.

• Objects [structured]: A pair of curly brackets surrounding zero or more name/-
value pairs (also referred to as members) is an object. Multiple members are
comma-separated and the names should be unique within a single object (it is not
speci�ed how an implementation behaves on non-unique member names). The
name must be a string, though many implementations allow to omit the enclosing
quotation marks if the name does not contain any whitespaces. Each name is
then followed by a : and a value, which can be of any JSON type (of course, the
members of an object may have values of di�erent types).



26 Chapter 2. Analysis

• Arrays [structured]: Zero or more elements surrounded by square brackets form
an array, with a comma separating the elements. The elements may be of any
JSON type and even multiple elements in the same array may be of di�erent types.
Examples: [] (empty array), ["foo","bar"] (array containing two string elements
"foo" and "bar"), [null, "foo", 2] (mixed array)

Whitespace characters may be placed around separators, between elements or around
any of the brackets. They are completely ignored and therefore it is possible to print
arbitrarily complex JSON objects on a single line [38]. For improved readability, objects
and arrays are often printed with identation and a single member or element on each
line, like in this example:

Listing 2.2: JSON example
{

"name": "John Doe",
"age": 18,
"isMale": true,
"location": {

"latitude": 13.37,
"longitude": -4.2e+1

},
"driverLicense": null,
"siblings": [

"Jane Doe"
]

}

A big advantage of JSON is its schema-free design, which is achieved through the weak
typing of the data �elds, which works exactly like in JavaScript. Validation of the input
values is usually either done during the mapping, i.e. if a JSON �eld is mapped in Java
to an object’s �eld of integer type, the Jackson parser [39] will fail to map if the JSON’s
value can’t be translated to an integer. It could be a string stating ”7” or an integer
7 though, this case would be automatically handled by the weak-typed nature. This
allows for an easy extensibility of the format and input validation is solely done at the
reader’s side, which on the other hand accepts any JSON object, that can be translated
to valid input data.

However, although JSON does not need a schema, there are extensions like JSON schema
that allow to de�ne the input validation rules in JSON, if a stricter parsing at the
expense of less portability is intended [40]. This can also be very useful if multiple
implementations are required to do the same validations.

After the JSON format gained high popularity, derivatives of it were created, mostly to
add more data types like binary chunks or to achieve a more compact binary storage of
the same information. One of these is the Concise Binary Object Representation (CBOR)
which is presented in the next section.
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2.3.3 CBOR

The Concise Binary Object Representation (CBOR) is described as an evolution from
JSON (see 2.3.2). It requires that all JSON documents can be represented as CBOR and
this CBOR data can be mapped back to the same JSON without extra information. On
the other hand, CBOR supports some extensions (mainly a primitive type for binary
blobs) which JSON doesn’t support natively [41].

The design of CBOR integrates other goals, mainly from the �eld of embedded or
resource constrained devices. Another important aspect is to foster a very high interop-
erability, also with future extensions. To cite [41], ”the format is designed for decades
of use [...] [and] must be able to be extended in the future by later IETF standards.”

Speci�cally, CBOR adopts the weak-typing of JavaScript to allow named �elds to map
to one of the primitive types, without making �xed assumptions about the binary
representation of the value. Parsers of CBOR can read the structure and the values out
of the binary blob without the need of a schema or a de�nition �le. The extensibility
might lead to reading an unknown value because of not having the implementation for
a new type of binary representation, but the rest of the object can still be read dropping
just this single �eld. This leads to having the same possibilites as with JSON, being able
to just read an object and then map it to the expected datastructure, ignoring potential
new �elds or slight type changes, but with even some additional features like mainly
the embedding of binary data [41].

For resource constrained applications, CBOR on the one hand aims to have very compact
code with a low memory requirement and low code complexity. On the other hand,
it also aims to make a compact binary representation with small object sizes, but this
goal is declared as secondary to the �rst one. One big advantage that derives from
this compared to JSON is, that parsers don’t rely on reading one character after the
other, but larger chunks of bytes can be processed at once depending on the binary �eld
representation [41].

Like JSON, CBOR is also schema-free although JSON schema [40] can be used with
CBOR as well, but like with JSON it only adds little value. Most other binary formats
rely on a de�nition of the binary data layout, making their usage more cumbersome
than CBOR’s. A popular example of one of these formats are Google’s Protocol Bu�ers,
which are now described in more detail.

2.3.4 Protocol Bu�ers

Protocol Bu�ers (often just called ”Protobuf”) were developed by Google internally
for organizing binary data exchange between servers and then published as an Open
Source project in 2008. They evolved from the need of having a compact and e�ciently
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parseable binary representation of data, while maintaining forward and backward com-
patibility through an interface description language (IDL, see more in 2.6), which is
used for the de�nition of the binary structure. While it maintains compatibility if �elds
are added or removed in a future version, it is not possible to interpret the binary data
without knowing the structure [42].

The de�nition of a protocol bu�ers message is done with a proto �le which contains a
de�nition of required, optional or repeated �elds, assigning types and numerical tags
to them. These tags must be unique throughout all versions of this message, so the
�eld will never be confused with another �eld. Required �elds will always be required,
making it harder to adopt the message to later needs, which is why it is often advisable
to use optional in combination with validation logic inside the application if needed.
Repeated allows the �eld to appear any number of times, including zero and preserving
order, making it technically a list [43] [44]. An example proto �le looks like this:

Listing 2.3: Proto �le example
message Person {

required string name = 1;
optional int32 age = 2;
repeated Person children = 3;

}

The types are similar to those in JSON (see 2.3.2), but with a C type to map the value to,
like int32 being an unsigned integer with 32 bit and sint32 the signed variant. For other
languages like Java the closest matching type is used. The types are interchangeable as
long as they have the same base type like numbers, �oating point numbers, strings etc.,
so it is possible to interchange int32 with sint64 if needed, but not possible to make a
string �eld an int32 in a later version [44]. Compared to CBOR, this leads to a slightly
lesser interoperability.

Which worsens the interoperability is the need of the proto schema de�nition �le. An
application may use an extended (i.e. newer) schema, but an application not having
the schema or using an incompatible schema �le is not able to properly deserialize
the data [44]. On the other hand, protobuf promises a very high compactness of data,
making it suitable for the VSL middleware.

These four analyzed serialization formats are now assessed and compared.

2.3.5 Assessment of data serialization formats

Various criteria is eligible for the assessment of the aforementioned serialization formats.
The most obvious is the separation in text and binary serialization formats and looking
at the standardization, inception dates and prevalence of the formats. All of the four
presented formats are widespread enough to o�er various libraries for all programming
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languages that are used during the implementation, so availability of libraries is not
very distinctive. So for these formats, the goal of interoperability is met and a detailed
rating of the interoperability is not very useful for the decision.

An interesting aspect is the need and availability of schemas or de�nition �les, which
can be useful for code generation as discussed in 2.6. The available and commonly used
schemas are referenced here and a more detailed discussion follows in 2.6.

Related especially to the need for a schema, but generally very important is the weak
parsing of the input data or the possibility to adapt data representation to future needs
without breaking the compatibility. The bene�ts and risks of weak typing in pro-
gramming languages is still somewhat disputed and the most often used programming
languages contain some weak and some strict typed languages, leaving good arguments
for both [45]. For data serialization formats however, weak typing and weak parsing
has strong advantages over strict parsing and restrictive schema application. Using very
weak parsing, the interoperability of reading the data is enhanced, especially if types or
data structures are altered over time. These examples can illustrate this:

• Assume a �eld used to have a single number as a value, but future implementations
require the option to accept more than one number as a value there. So the
type is changed to an array of numbers, while some legacy applications still
send only a single number. Weak implementations can read the single number
values as a single element array and accept multi element arrays from modernized
applications as well.

• A date �eld used to be represented as a timestamp for compactness reasons. Now
it turns out, the implementation needs to support ancient dates like February
23rd, 1786. Date strings conforming to ISO 8601 should be used now but numeric
timestamps were used before. For example JSON parsers can parse both formats
into suitable date representations of the corresponding programming language.
Even if it does not support automatic conversion between these formats, a simple
”if” after the deserialization could handle both cases properly.

• Adding more �elds to an object is a very common extension, but this case is more
tricky: Assuming a person object as in some of the examples before contained a
required �eld ”Full name”. For improving the separation between multiple �rst or
last names, it was split into ”First name” and ”Last name”, both being mandatory.
In some formats or schema languages, it would be hard to express that it is either
mandatory to have the full name but not �rst and last name or to have last and
�rst name but no full name speci�ed. Weak formats would accept everything �rst
and the application logic can either specify this requirement or convert the older
format into the newer, by e.g. splitting the full name at the last space.

Schema de�nitions are often de�ned too strict in order to suit for data validation as
well. This leads to many problems with interoperability, which is why most experienced
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software engineers advise against it, e.g. also for protobuf de�nitions [44]. The input
validation should occur after the deserialization and potential conversion of deprecated
data formats, but of course before actual usage of the data. This validation should be
restricted to the actually used data �elds, as unused �elds might contain future features
and ignored parts of the data don’t pose any harm and can be disposed.

A downside of weak parsing can be confusing e�ects for unaware users, e.g. if ”1.0e3”
can be interpreted as integer (1000) or ”0x3e8” being the same integer value. This
is only relevant when user input is checked, which should be done with immediate
feedback to the user and more strict to avoid confusion. In case of computer to computer
communication, an attacker could use these values but later validation (like it has to
be an integer value between 0 and 1000) still applies regardless of how the data was
represented, so with reasonable validation after deserialization this does not pose harm.

All of the four discussed data serialization formats allow for weak parsing to some
extend, but with di�erences in detail. Protobuf for example can only handle two of
the three examples above if best practices for proto �le design are followed (like never
using required [44]), but fails at the date/timestamp example. JSON would be able to
handle the date/timestamp case as well, even with allowing the old implementation
that expected a timestamp to parse the ISO 8601 date if it is in a range that can be
converted to a timestamp. XML’s weakness highly depends on the best practices used,
e.g. many software engineers advise to never use XML attributes because of their bad
extensibility [46]. On the other hand, XML contains just text values, leaving the value
interpretation very weak.

Schemas with included validation can on the other hand be used to port validation
rules to di�erent programming languages and ensure consistent validation. That is a
case where validation is uni�ed in a multi language environment (otherwise just the
validation code could be shared) but at the expense of reduced extensibility. In case of
the Virtual State Layer (VSL) middleware, validation is done inside the KOR (see 2.1.2.3)
and services can rely on the knowledge agent to provide valid data, as it validates
everything it processes. This makes using a very weak serialization format advisable.

The criteria for the assessment and a structured comparison of the four candidates is
done in table 2.2 to summarize the results. Further evaluation of the formats, especially
on compactness and performance is done in the evaluation section 6.1. The next section
analyses the network protocols that can be used to transport the serialized data.
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Table 2.2: Comparison of serialization formats
Format XML JSON CBOR Protocol

Bu�ers
Encoding various text

encodings [34]
UTF-8 or UTF-
16/32 [38]

binary [41] binary [44]

Standards W3C
recommenda-
tion [34]

RFC 4627 [47],
RFC 7159
(standard) [38]

RFC 7049 [41] No standard,
developed by
Google [44]

Published 1996 (draft),
1998 (1.0) [34]

2006 [47],
2014
(standard) [38]

2013 [41] 2001 (internal
only),
2008 [44]

Media type application/
xml or
text/xml [48]

application/
json [38]

application/
cbor [41]

not o�cial,
application/
octet-
stream [49]

Intended
purpose,
design goals

high standard-
ization,
reliable data
exchange [34]

high
portability,
simplicity [36]

binary JSON
variant,
compactness
[41]

e�ciency,
extensibility
[42]

Schemas and
de�nition
�les

DTD, XML
schema,
others

schema-free,
JSON schema
ino�cial1

schema-free,
could adopt
JSON schema

proto �le
(always
required)

Self-
describing2

Yes Yes Yes No

Type
weakness

No types,
everything is
just text

Very weak weak3 representation
weak, but
basetype strict

Human
readability

Very good,
IDE support
for DTDs

Good Only when
converted to
JSON

No4

1. JSON is designed without versions or schema on purpose [36], but some people disagreeing with this
design created JSON schema as an extension [40]
2. Being parseable and somewhat interpretable without further structure or schema de�nition
3. CBOR is rated less weak then JSON because the di�erent binary representations might be extended and
some parsers might be unable to read the new representations
4. Tools could read the protobuf data if the proto �le is loaded, and convert it into a custom human readable
view; this cumbersome but possible process is not rated as ”human-readable”
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2.4 Suitable network protocols

After the data has been serialized, suiteable network protocols are needed to transfer the
data to other applications using the architectural design approaches which are presented
in 2.2. Applied to the Virtual State Layer middleware (VSL, see 2.1.2.1), the protocol
is needed for the communication of services to the knowledge agents, but also for the
communication between kowledge agents.

Security considerations (cf. requirement #6 from table 2.1) are very crucial in this section,
especially encryption and authentication. That is why the most common security
protocol, the Transport Layer Security (TLS), also known as Secure Socket Layer (SSL),
is presented �rst. In this subsection also some special aspects like certi�cate based
authentication or datagram TLS (DTLS) are described in detail, as these are important
for the other protocols, which mostly use TLS to secure the communication.

The next subsection focuses on the Hypertext transfer protocol (HTTP), which is on
the one hand also used as a base for other high level protocols like XML-RPC, but on
the other hand it can also be directly used especially for RESTful architectures. The
new HTTP/2 version is compared to its predecessor and the main improvements are
highlighted.

Afterwards, the Constrained Application Protocol (CoAP) is presented, which is similar
to HTTP but based on datagram communication instead of streams, also utilizing other
methods to reduce the protocol overhead. Additionally, the WebSocket protocol is
introduced, a technology that builds up on HTTP to provide a bidirectional message
based communication similar to plain sockets.

Then, two Remote Procedure Call (RPC) style protocols are analyzed. First the simple
XML-RPC protocol and then SOAP, a very common RPC protocol for service oriented
applications.

Now the SSL/TLS protocol family for encrpyted and authenticated network communi-
cation is indroduced in detail.

2.4.1 SSL/TLS

The Transport Layer Security (TLS) protocol is a very commonly used protocol to add
cryptographic security to a network connection on the transport layer, i.e. underneath
the actual protocol implementation. It originates from the Secure Socket Layer (SSL)
protocol, which was originally invented at Netscape and patented as US patent number
5,657,390 [50]. The current version of TLS is 1.2, which is standardized in RFC 5246 [51].
The whole family of protocols starting with SSL 1.0 in 1994 to TLS 1.2 and further to
future version is often referenced as SSL/TLS [52].



2.4. Suitable network protocols 33

The functionality of TLS is provided by two main components: the TLS Record Protocol
which serves as a low level channel with encryption and message integrity throughout
a TLS session and the TLS Handshake Protocol which performs peer authentication and
negotiates the used features and encryption methods. The handshake can also negotiate
additional properties like the protocol used on top of the TLS connection. TLS can be
used as a transport protocol for any application layer protocol [51].

Due to the negotiation of the actually used TLS features and the high age of some
protocol versions and features, it is very important that both peers require certain fea-
tures like strong encryption or authentication during the handshake, as otherwise the
intended security level is not reached [52]. The di�erent approaches for authentication
and especially the X.509 certi�cates are described in more detail in 2.4.1.2. During the
handshake, a symmetric key is exchanged and then used for encryption and session
integrity, except if encryption is disabled by negotiation of the NULL cipher [51]. Using
proper requirements during the handshake, integrity and secrecy of the data trans-
ported via TLS is thereby provided [52]. In 2.4.1.1, some additional negotiable session
parameters of TLS are introduced.

TLS requires a reliable stream-based communication in which data reordering and losses
of application payload must not occur [53]. So usually TLS is based on a TCP or similarly
reliable connection. In order to use TLS features in datagram based communication for
example via UDP, the Datagram Transport Layer Security (DTLS) protocol provides very
similar functionality to TLS while preserving the datagram communication style [53].
This means speci�cally, that each datagram message can be received individually even if
previous messages got lost or arrive at a later time (reordering), but DTLS still provides
a reliable handshake mechanism and an optional replay protection [53]. Most of the
features work excactly the same from a high level perspective, which is why the further
parts do not speci�cally distinguish between these two protocols.

Now some additional TLS features which can be negotiated during the handshake are
described in more detail.

2.4.1.1 Additional negotiable TLS features

While the TLS handshake mainly serves the authentication, key exchange and negotia-
tion of the used cryptographic algorithms, it can additionally negotiate other features.
Some of these add additional functionality to TLS while others are even needed by
certain application layer protocols [51].

One of these features is session resumption using TLS session tickets. With these tickets,
a client which already negotiated a TLS session with a server can reuse the exchanged
keys in a future session with the same server. This can be used to speed up multiple
connections to the same server by doing a shorter handshake for session resumption
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and to require less entropy due to less key exchanges [54]. Especially scenarios with
lots of reconnections or embedded devices can pro�t from this extension.

Some features also exist to overcome shortcomings of application layer protocols, like
the TLS compression [55] to add compression to TLS in case of uncompressed but
highly redundant application layer data or the heartbeat extension [56] to support
active keep alive on the TLS layer if the application layer does not support handling
of NAT timeouts. While these features on the one hand add valuable functionality to
TLS for special applications, it can on the other hand lead to security issues that arise
from improper usage or implementation. In case of the compression, the general issue if
information leakage through the packet size even on encrypted channels is known for
a long time [57] and proved severly bad in case of the TLS encryption feature [58]. The
heartbeat extension gained most attention for an implementation error in the OpenSSL
library, which lead to many vulnerable servers which did not even actively use the
extension [59]. These examples illustrate that these extension can be useful in special
cases but also inhibit a risk of security issues which should be considered carefully,
especially as these features could also be provided by the application layer protocol.

Another additional feature of the TLS handshake is the optional negotiation of the
application layer protocol which will be used on top of TLS. This feature is called
Application Layer Protocol Negotiation (ALPN). The major current application of this
feature is the upgrade to HTTP/2 via ALPN [60]. In this case, if ALPN is not supported
by one of the peers or one of the peers only announces earlier protocol versions, HTTP/2
is not used. HTTP/2 is described in more detail in 2.4.3.

The next section describes the authentication methods during the TLS handshake in
more detail.

2.4.1.2 Authentication and X.509 certi�cates

TLS also supports many di�erent authentication schemes, the main RFC names anony-
mous authentication, server only and client and server authentication using X.509 cer-
ti�cates with asymmetric cryptography [51]. Additional extensions added features like
pre-shared key (PSK) authentication [61] or for example Kerberos authentication [62].

In case of anonymous handshaking or if additional security is wanted, the handshake
also includes a Di�e Hellman (or similar) key exchange. This feature is called ”perfect
forward secrecy” to emphasize that the session key can not be derived from a leak of the
private keys. On the contrary, if no key exchange is applied, the key exchange happens
with the client sending a part of the key encrypted using the server’s public key, which
allows to decrypt the session if the server’s private key leaks [51].

The certi�cates, if used, are usually X.509v3 certi�cates unless explicitly negotiated
otherwise [51]. This format allows to specify many details on the authenticated entity,
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apart from the subject identi�er with the common name also alternative names, optional
attributes, validity timespan of the certi�cate and much more. One of the very big
advantages is, that the certi�cate itself can be signed by an issuer, whose X.509 certi�cate
is also delivered by the server or already known to the client. This can be used to
validate servers or clients without the need of a list of all valid certi�cates, as only by
knowing the public key of the so called ”certi�cate authority” (CA), which is also part
of the certi�cate, all certi�cates issued from this CA can be veri�ed by their certi�cate
signature. Additionally, the CA can also distribute certi�cate revocation lists (CRL) to
revoke certi�cates that should no longer be trusted. This allows very �exible o�ine
veri�cation (i.e. without asking a server for the validity of the information) of even a
large number of entities [63].

Unless explicitly negotiated otherwise, the TLS server sends its server certi�cate and
relevant issuer certi�cates to the client. The client validates the information and does
usually not provide a certi�cate, which is the server only authentication. But the server
can also include a CA certi�cate to challenge the client to authenticate with a certi�cate
from this particular issuer. The client provides a cert�cate of this CA if possible and the
server can decide if a client without a valid certi�cate may procedd or not. If this client
certi�cate mechanism is used, server and client authenticate against each other and a
very high level of integrity of the authentication information is granted [51].

The next section covers the HTTP protocol, which is also commonly used with SSL/TLS.

2.4.2 HTTP

The Hypertext Transfer Protocol (HTTP) was originally developed for the transfer of
websites to the browser and is still used for this purpose but additionally for a lot more,
like as a transport protocol for other protocols like XML-RPC (see 2.4.6) or SOAP (see
2.4.7) or as a communication protocol for RESTful applications (see 2.2.5 on REST) [64].

HTTP has mainly three versions, 1.0, 1.1 and 2. HTTP 1.0 and 1.1 are compatible to
each other in the way, that HTTP 1.0 clients receiving a HTTP 1.1 answer could read
relevant information from it and vice versa. The HTTP 1.1 standard was revised and
extended in 2014 to the six RFCs 7230-7235 [64]. The new version 2 uses the same
high level semantic of HTTP 1.1 but with a very di�erent low level transport mainly
to enhance the performance of HTTP. It is standardized in RFC 7540 [65]. The general
semantic of HTTP is described �rst and then in section 2.4.3 the speci�c changes of
HTTP/2 are introduced. An additional extension to HTTP, the WebSocket protocol,
which establishes a messaging channel through an HTTP request, is presented in 2.4.5.

The general semantic of HTTP is a client sending a request to the server, which responds
with a reply to the client. The request is stating an HTTP method (like GET), a uniform
resource identi�er (URI, like /index.html) and the HTTP version (like HTTP/1.1). After-
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Table 2.3: Common HTTP status codes as described in [2]
# Name Description

101 Switching Protocols Switching to a new protocol like WebSocket (see
2.4.5)

200 OK Request is OK with body
201 Created A new resource was created
202 Accepted Request accepted but is processed in the back-

ground
204 No Content Request is OK without body
301 Moved Permanently The resource now resides on another URI
400 Bad Request Request header or syntax is invalid
401 Unauthorized HTTP authentication required (see 2.4.2.3)
403 Forbidden Access to the resource is denied
404 Not Found Resource does not exist or the server does not

disclose its existence
405 Method Not Allowed The used HTTP method (see 2.4.2.2) is not allowed
406 Not Acceptable Content negotiation (see 2.4.2.1) failed, no ac-

cepted format is available
415 Unsupported Media Type The client proposed a request body with an un-

supported Content-Type or Content-Encoding
500 Internal Server Error Error in the server’s request processing

wards, the request can include HTTP headers and an HTTP body. The response states
the HTTP version, a status code (like 404) and a textual reason phrase (like Not found).
It can also include HTTP headers and a response HTTP body. While strictly speaking,
the headers are not mandatory, it is very usual that both include headers which specify
the body or further details of the method. The inclusion of a body mostly depends on the
executed HTTP method and the response status code. Each of the methods is executed
on its own and therefore stateless, following the principles of the REST architecture
(see 2.2.5) [65].

The next sections explain more details on central aspects of the HTTP protocol. Section
2.4.2.1 explains HTTP’s content negotiation feature, section 2.4.2.2 describes the purpose
and proper usage of the di�erent HTTP methods and section 2.4.2.3 describes important
HTTP headers which are also used in the protocol design (see 4.3). Table 2.3 shows a
list of common HTTP status codes and their meaning.
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2.4.2.1 Content negotiation

One of the features of the HTTP protocol which I highlight for the later usage in the
design is the content negotiation feature of HTTP, namely the Accept-* and Content-*
request and response headers. The purpose of these headers is to allow the client to
specify and weight which data format (speci�cally: MIME type, charset, encoding and
language) of the requested resource is preferred and which formats are also acceptable
to the client. The server then communicates the selection which it has made using the
headers Content-Type, Content-Encoding and Content-Language. These headers are
usually also sent, if no accept headers were used in the request, to allow the client to
identify the type of the content (HTTP body) [2].

An example how this actually looks like: if a browser sends the request below (listing 2.4),
it speci�es very detailed what it accepts using the ”;q=weight” parameters to speci�y the
weighting of preferences (1.0 = highest, >0 = lowest, 0 = not acceptable). The asterisk * is
a wildcard for any, but for example ”text/plain, text/*” would give text/plain precedence
although text/* has the same weighting. The default weighting 1.0 can be ommited [2].

Listing 2.4: HTTP request with Accept headers
GET / HTTP/1.1
Accept: text/plain;q=0.5, text/html, text/*;q=0.5, */*;q=0.1
Accept-Charset: utf-8, *;q=0.8
Accept-Encoding: gzip, identity;q=0.5, *;q=0
Accept-Language: en-gb, en;q=0.8

A possible response from a server, which has for example an index.txt and an index.csv
�le for the path /, would choose index.txt and recode it to UTF-8 if supported. Lets
assume the server only supports de�ate compression, it would have to deliver the �le
unencoded (identity is not encoding, if *;q=0 is missing the server would actually be
allowed to use any encoding, which is a special rule for Accept-Encoding) [2]. If the
�le has a language and multiple version exist, the British english version would be
preferred over any english version which is still preferred over any other language.
Assuming the server has an english version, but only US english, the response would
look like in listing 2.5. Note that there is no Content header but only Content-Type,
which also includes the charset if and only if the MIME type is not binary, and that
Content-Encoding is left out because no encoding was applied.

Listing 2.5: HTTP response to listing 2.4
HTTP/1.1 200 OK
Content-Type: text/plain;charset=utf-8
Content-Language: en-US
[...]

This content negotiation feature is very important for clients which only support a
subset of the HTTP functionality, for example because they are implemented on an
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embedded device, as they can demand speci�c formats from the server. It is also an
important feature for resources which can be represented using multiple serialization
formats (see 2.3), as the format can be negotiated using these headers.

2.4.2.2 HTTP methods

The HTTP protocols allows di�erent methods for the interaction with a resource and
each of the methods has its own de�nition how to interact with the resource. The
methods which are commonly used are listed with their properties here:

• GET: The GET method is used to retrieve a resource from the server. The request
should not contain a body and the execution of a GET request must not change
the resource or other resources. This way, the operation is idempotent unless
another method was executed in between, which changed the resource. Usually
the response to a GET request is cached for later reuse, unless the Cache-Control
header (see 2.4.2.3) denies it. There is also the HEAD method as a variant of GET
which does only request response headers without the actual content. Otherwise
the HEAD method works the same [2].

• PUT: The PUT method is used to replace an existing resource with a new version
or to create a new resource on the server. In the request body, the resource
must be included and properly speci�ed using the Content headers (see 2.4.2.1
on the content negotiation). The server can then respond with 201 Created if the
resource was newly created or 200 OK/204 No Content in case of replacing an
existing resource. Optionally the server can include information on the resource
in the response, but it must not redirect to another URI where the resource
was create instead of the PUT URI (example: PUT /list/add must not redirect to
/list/element1 where it was created; POST must be used instead for this kind of
operation). Normally after putting a resource, a subsequent GET will return the
same data, but the server might recode or transform the resource for example to
a common media type. What usually can be expected is that multiple PUTs with
the same data to the same resource will not alter the resource further, i.e. that
PUT also behaves idempotent [2].

• POST: The more generic POST method can be used for many interactions with a
resource or for creation of a resource in a server-controlled location. It is often
also used for RPC style interactions (see 2.2.4 on RPC), using the request and
response bodies for the invocation and result payloads. POST requests can be
used quite freely, but the REST architecture demands it to be only used if the other
methods cannot be used to represent the operation. If a POST request creates a
resource, it should also answer with 201 Created and specify the new resource’s
location in the Location header. A POST request may only be cached if it speci�es
how to be cached, and even that is uncommon and often not implemented [2].
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• DELETE: This operation deletes the resource if it exists. It may respond with
200 OK and information about the deletion status in the body, 202 Accepted if
the deletion will be performed or 204 No content if the deletion is completed.
By its nature, a DELETE request cannot be cached, but caches can delete cached
information if they encounter a DELETE request [2].

• OPTIONS: The OPTIONS request is used to determine possible interactions with
a resource and to detect server capabilities. Usually the request and respons
only contain HTTP headers, especially also containing special headers like Allow
which are used speci�cally for the OPTIONS method (see 2.4.2.3), it is however
allowed to include bodies in both, request and response. There is also a special
OPTIONS request on the URI ”*” which is used to generally determine server
capabilities without a speci�c resource. The answer however can di�er from
resource to resource, which is why strictly speaking a request to every interacted
resource would be required, but using OPTIONS at all is optional, so it varies
between clients how much it is actually used. It is practically useful to determine
the possibilities of using PUT, POST or DELETE requests (GET can normally be
expected to work or just gives an error and it is as e�cient to just probe GET
instead of doing OPTIONS beforehand). An OPTIONS request is responded to
using 200 OK and a Content-Length header with the value 0, unless there is an
actual body content. OPTIONS requests must not change or interact with the
resource at all and they are also not cachable [2].

Other methods exist for special purposes and they are listed in [2]. Now those of the
HTTP headers, which are important for many applications, are introduced in more
detail.

2.4.2.3 HTTP headers

RFC 7231 [2] speci�es in detail which standard headers HTTP clients and servers should
understand and there is the possibility to add custom headers or for advanced techniques
like the WebSocket (see 2.4.5) to specify headers for their speci�c purposes. This section
introduces some of the HTTP headers, which were not discussed in the previous parts
but are relevant for many applications which use HTTP or for my protocol design.

One important aspect is dealing with caching and having control over when a cache
answers on behalf of the server to the client, without asking the server for updated
information. On the one hand, speci�c resources which are highly volatile need to
be excluded from the caching or speci�c rules for the caching need to be applied, for
example to prevent the exposure of an access protected resource to unauthorized clients
through the cache. On the other hand, very static resources, especially large resources,
can be cached very well and might not even contain any private information, allowing
for the cache to be even shared amongst di�erent users [64] [66].
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The header which con�gures how a resource may be cached is the ”Cache-Control”
header, which contains a list of caching directives, which control how the resource may
be cached. Important values are: no-cache demands to not respond with a cached value,
no-store demands to never store the value (privacy/secrecy rule), private tells to never
share the resource with another client and public declares the exact opposite. There
are more directives on validation of cached resources or maximal ages, but these are
only relevant if �ne-grained caching is intended. There are more headers associated to
caching like the ”Expires” header which sets an absolute date after which a resource
must not be delivered from a cache or the ”Pragma” header which an be used with the
value ”no-cache” to prevent caching on HTTP 1.0 caches [66].

All of this is explained in high detail in RFC 7234 [66], but for most private RESTful
APIs the most important information is to deny caching with ”no-cache, no-store” in
the ”Cache-Control” header and to maybe include the HTTP 1.0 ”Pragma: no-cache”.

Another important HTTP header is the ”Authorization” header which allows to pass
identity information of the client to the server, which can be used for authentication
and authorization. It contains an authorization type (like basic or something else)
and a usually base64 encoded authorization, which depends on the type (actually 68
tokens are allowed, but base64 is commonly used). The authorization can either be
just presented by the client or challenged by the server by providing a 401 error with
an WWW-Authenticate header which speci�es the challenge. The whole process is
documented in detail in RFC 7235 [67].

There are also special headers mostly used with the OPTIONS method (see 2.4.2.2) or
speci�c kinds of requests. One of these is the ”Allow” header, which lists the HTTP
methods which are allowed with the speci�c resource or the whole server in case of an
OPTIONS * request. The Allow header is also included in the HTTP error 405 method
not allowed [2].

Additionally there is a set of headers for so called cross-origin requests which are
executed inside a browser usually by JavaScript. The ”Cross-Origin Resource Sharing”
(CORS) de�nes in depth how these requests are secured using additional headers and
a ”pre�ight” OPTIONS request before executing the actual request. A cross origin
request is a request from a website to another website with a di�erent URL, so for
example HTML and JavaScript loaded from example.com and then a request executed
to other.com [68].

There are several headers involved in the pre�ight request, �rst of all the client spec-
i�es the original site without resource path as ”Origin” and the method that will be
executed using ”Access-Control-Request-Method”. Additional headers which are explic-
itly added by the client (e.g. JavaScript, the browser will set more headers implicitly
anyway) are named in the ”Access-Control-Request-Headers” list (just naming the head-
ers without values). The server answers with ”Access-Control-Allow-Origin” which
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speci�es the allowed origin (* for all or one speci�c origin - if the server supports
multiple, only the one provided by the request), ”Access-Control-Max-Age” sets the
seconds for how long the pre�ight may be cached for subsequent identical requests and
”Access-Control-Allow-Methods” with a list of methods which are allowed. The methods
list is actually the same as in the ”Allow” header, but CORS requests are required by
speci�cation to ignore the ”Allow” header and to only use the ”Access-Control-Allow-
Methods” header. The server also uses additional headers to further specify allowed
HTTP headers using ”Access-Control-Allow-Headers”, if credentials may be included
in the request using ”Access-Control-Allow-Credentials” with the only value ”true”
and ”Access-Control-Expose-Headers” for the exposition of response headers to the
JavaScript, which otherwise would not be allowed to access the response headers [68].

The actual request after the pre�ight still has to include some of the headers, namely
”Origin” from the client and from the server ”Access-Control-Allow-Origin” and ”Access-
Control-Allow-Credentials” if credentials are allowed. The other headers are only used
in the pre�ight [68]. This proper handling of CORS requests is important for modern
web applications which connect to di�erent backend APIs and in the speci�c scenario of
the Virtual State Layer middleware (see 2.1.2.1) it is required to allow web applications
to access a knowledge agent.

The next section introduces the changes of HTTP/2 compared to HTTP/1.1.

2.4.3 HTTP/2

The HTTP/2 protocol version was designed to overcome known performance issues of
HTTP/1.1. These are mainly the lack of asynchronous operations (like in requirement
#8 of table 2.1), leading to the head of line blocking problem and the excessive overhead
of some verbose HTTP headers, which on the one hand increases the overhead but also
leads to worse TCP performance [65].

There are multiple approaches on how to deal with many operations and especially
asynchronous operations in HTTP/1.1, but all of them have disadvantages.

First of all, it is possible to use multiple concurrent (TCP or TLS) connections to the
server, so that each connection can execute one request and depending on the number
of connections, multiple requests can be executed concurrently. There are multiple
issues with this approach, �rst of all multiple connections must be established leading
to additional handshakes, more resource consumption and more mangement overhead.
In case of TLS connections (see 2.4.1), the handshake is even more complex, altough
mechanisms like session tickets (see 2.4.1.1) can reduce the TLS handshake complexity
if many connections to the same server are established. A second big issue with this
approach is less e�cient TCP congestion, as the parallel connections each perform
individual congestion control unless there is speci�c optimization for this use case in
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the operating system’s TCP stack. Especially each connection usually does a slow start,
which leads to high ine�ciency in fast networks [65] [69].

Another solution is to use HTTP keep-alive, which was introduced with HTTP 1.1 and
allows to reuse the connection of a previous request for further requests. This avoids
doing a handshake for each of the requests, but it su�ers the head of line blocking
problem, i.e. a request (or response) can only be transmitted if the transmission of the
previous request (or response) is completed, which does not really allow asynchronous
operations but can speed up sequential operations a lot [65].

Most advanced HTTP 1.1 clients like browsers implement a mix of these two by using
a keep-alive connection pool which can increase the number of connections depending
on how many parallel operations are needed. The management of the pool is however
very expensive and still su�ers from the aforementioned issues.

HTTP/2 solves all these issues by using one connection with binary message frames
which support multiplexing, so every request and response is split into small frames and
they are sent using the same connection. The frames are associated to streams, in which
the order of the individual frames matter while frames of multiple streams can be mixed
in any order. This allows processing of HTTP/2 streams similar to concurrent HTTP 1.1
connections. Using this method, TCP’s congestion management is utilized better as a
single connection can ramp up to the full network performance without being disturbed
by parallel connections to the same server. Also asynchronous operations are possible
as parallel requests form streams, which can run in parallel, e�ciently transmitting
multiple requests at once. This is especially useful if one very large request is performed
concurrently to a batch of small requests [65].

The issue of the header overhead is solved by header compression using binary headers
which are also packed more e�ciently. Still HTTP/2 supports the same headers as
HTTP 1.1, especially also arbitrary custom or extension headers [65].

HTTP/2 connections are usually established using TLS with ALPN (see 2.4.1.1)), requir-
ing TLS 1.2 by design. An alternative establishment via the ”Upgrade” HTTP header
(more on protocol upgrade in 2.4.5) or by knowing in advance, that the server supports
HTTP/2, for example via SVC DNS records. The establishment using TLS ALPN is the
preferred way of using HTTP/2 [65].

Another noteworthy extension of HTTP/2 is the server push functionality, which allows
to push updates to a requested resource to clients whenever they occur without needing
another request for this resource. Server push works as follows: if the client sent a
request which is cachable without request body (e.g. a simple GET), the server can make
push promises on resources it will push. These resources do not need to be requested
by the client, as the server keeps its promise and will push these resources. This can
be used for example to push images, which are referenced in an HTML �le, directly
after the HTML �le which contained the push promises. The server’s promise also
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includes pushing updates to the resource once it changes, easing the caching of the
resources and avoiding the need of an auto refresh from the client. The whole server
push functionality can of course also be disabled by the client if it does not want to use
it [65].

The next section introduces another RESTful protocol, CoAP.

2.4.4 CoAP

The Constrained Application Protocol (CoAP) is designed to provide a protocol for
RESTful designed (see 2.2.5) applications to constrained devices or networks. These
could be embedded devices with very low memory or CPU power or networks with
low bandwidht and high error rates. CoAP is designed to keep the overhead of the
operations very low and to make requests similar to HTTP requests (see 2.4.2), but very
compact and with less e�ort for the parsing of the headers [70] [71].

In order to achieve this, it uses UDP as the underlying transport or DTLS (see 2.4.1) if
encrpytion or X.509 certi�cate authentiation (see 2.4.1.2) is needed. Due to the datagram
communication the CoAP nodes interact in a peer-to-peer network style, not relying
as much on server and client as for example HTTP. This means on the other hand,
that every node must be able to accept incoming messages, which might cause issues
with unaware �rewalls or NAT gateways. Based on this datagram messaging layer,
CoAP builds a request and response layer which can then execute requests and identify
responses as in a classical server/client architecture [71].

In order to allow reliable request execution, CoAP nodes have to implement similar
things like the TCP protocol stack, for instace congestion control, message deduplication,
retransmissions, acknowledgements etc. Also requests and responses need to be mapped
based on the individual and potentially asynchronous messages to form the request and
response layer [71].

On the request and response layer, CoAP allows very similar operations to HTTP, it
also has the same common methods for RESTful interaction, URIs, content negotiation
and similar headers. The headers of CoAP are however binary options and do not allow
for the addition of custom headers or protocol upgrades. Based on this similarities,
CoAP also o�ers a stateless HTTP mapping which can be done by CoAP to HTTP
proxies [70] [71].

CoAP also o�ers some extra features like a builtin resource discovery feature, which can
be used to ful�ll the HATEOAS constraint of RESTful design (see 2.2.5). Additionally it
supports unreliable requests which might get lost without retransmission or multicast
requests which can be answered by any of the servers in the multicast group [71].

The next section describes the WebSocket protocol, which establish a stateful connection
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for bidirectional communication over HTTP.

2.4.5 WebSocket

The WebSocket protocol was introduced to allow bidirectional communication between
client and server using HTTP (see 2.4.2), for stateful connections and message exchange.
It uses a normal HTTP request with some extension headers to establish the connection,
also using potential HTTP authentication mechanisms (see 2.4.2.3) or underlying TLS
security (see 2.4.1). After this initial request which makes use of the HTTP protocol
upgrade header, the underlying TCP or TLS connection can be used by the websocket
for bidirectional communication [72].

The opening of the WebSocket is done using an upgrade request like in listing 2.6, which
is taken from [72].

Listing 2.6: HTTP request with WebSocket upgrade
GET /chat HTTP/1.1
Host: server.example.com
Upgrade: websocket
Connection: Upgrade
Sec-WebSocket-Key: dGhlIHNhbXBsZSBub25jZQ==
Origin: http://example.com
Sec-WebSocket-Protocol: chat, superchat
Sec-WebSocket-Version: 13

The request is �rst of all a GET request to /chat on server.example.com, coming from
the origin http://example.com (CORS, see 2.4.2.3). The ”Upgrade: websocket” header
requests a protocol upgrade to the WebSocket protocol and ”Connection: Upgrade”
declares that the connection will be afterwards used for the upgraded protocol’s com-
munication. The WebSocket speci�c headers are those starting with ”Sec-WebSocket-”,
where the client challenges the server with a key (to avoid confusion with normal GET
requests, clients must deny WebSocket connections which do not properly respond
to their challenge), provides multiple choices (chat, superchat) for the sub protocol
negotiation and requests the standardized WebSocket version 13 instead of previous
draft versions [72].

An answer to this request is shown in listing 2.7, which is also taken from [72].

Listing 2.7: HTTP response with WebSocket upgrade
HTTP/1.1 101 Switching Protocols
Upgrade: websocket
Connection: Upgrade
Sec-WebSocket-Accept: s3pPLMBiTxaQ9kYGzzhZRbK+xOo=
Sec-WebSocket-Protocol: chat

Here the HTTP status code 101 signals the protocol switch with ”Upgrade: websocket”
con�rmation of the websocket protocol and ”Connection: Upgrade” con�rmation on



2.4. Suitable network protocols 45

using the underlying TCP or TLS connection for the websocket. The ”Sec-WebSocket-
Accept” contains a SHA-1 hash of the clients key (without trailing spaces) and the
constant GUID ”258EAFA5-E914-47DA-95CA-C5AB0DC85B11” concatenated and then
base64 encoded. This security mechanism ensures that the server knows what its doing.
”Sec-WebSocket-Protocol” is the result of the sub protocol negotiation, which is now
explained in more detail [72].

As the WebSocket provides a generic messaging layer, the actual purpose and structure
of the messages could be anything. To allow for a protocol negotiation similar to TLS’
ALPN (see 2.4.1.1), the client sends a list of protocols it would support to the server
and the server accepts one of the protocols or denies the request. A sub protocol name
should be an ASCII string without whitespaces and contain the reversed domain of
the protocol’s creator as pre�x (similar to Java package names). The names of the sub
protocols can be registered with the IANA and may be treated case sensitively, but two
di�erent protocols should not just di�er in case to allow for case insensitive matching
as well [73] [72].

An establishment of a WebSocket connection is indicated by using a ”ws://” or ”wss://”
URI instead of ”http://” and ”https://”, respectively. On the wire, WebSocket uses a
message framing after the handshake, which can transport several message types. For
payload, it supports text or binary messages which can be send in any direction. Ad-
ditionally there are control frames for ping and pong, which can be used for active
keep-alive and the closing message with an optional reason [72].

Using this set of functions, many protocols can be tunneled through a WebSocket and
bidirectional communication with a stateful connection including keep-alive is possible.
The next section introduces XML-RPC, a protocol for Remote Procedure Calls (RPC).

2.4.6 XML-RPC

XML-RPC is a remote procedure call (RPC) mechanism which uses XML for standardized
message bodies (see 2.3.1 on XML). The messages are exchanged with the HTTP protocol
using POST operations (see 2.4.2 on HTTP) [74] [75].

One of the most interesting features is that the messages encode their data structure
in the message body using XML-RPC types. These o�er a variety of common types
like integer, double, string and additionally aggregates like arrays and structures. An
extension even allows the usage of the ”nil” type, which is referred to as ”null” in many
languages [76].

The XML-RPC client (usually ”caller”) sends an XML encoded request in a HTTP POST
body, which contains a single XML <MethodCall> element. This element contains a
method name and parameters, which are described with their type and value, but not
with parameter names unless they are put in a structure. The server then answers with
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a <MethodResponse> element in the POST response body, containing the XML-RPC
response which consists of a set of response parameters which are structured as in the
requests [75].

Because of the XML structure, a server can always decode the request but it may not
provide a method of this name or require di�erent parameters. In this case, the server
sends a XML-RPC response containing a <fault> element with some error value, which
is not standardized at all [74].

An example method call which is put in the HTTP POST request body:

Listing 2.8: XML-RPC method call
<?xml version="1.0"?>
<methodCall>
<methodName>sum</methodName>
<params>
<param>
<value><int>42</int></value>

</param>
<param>
<value><int>1337</int></value>

</param>
</params>

</methodCall>

A response for this request, returned in the HTTP response body or with an error:

Listing 2.9: XML-RPC response
<?xml version="1.0"?>
<MethodResponse>
<params>
<param>
<value><int>1379</int></value>

</param>
</params>

</MethodResponse>

<?xml version="1.0"?>
<MethodResponse>
<fault>
<value>
<struct>
<member>
<name>errorCode</name>
<value><int>1</int></value>

</member>
<member>
<name>errorMessage</name>
<value><string>Invalid parameters.</string></value>

</member>
</struct>

</value>
</fault>

</MethodResponse>
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2.4.7 SOAP

Based on the idea of XML-RPC (see 2.4.6), Microsoft developed a more extensive standard
which was intended to suit the needs of all web applications, named SOAP. This was
initially an acronym for Simple Object Access Protocol, but SOAP 1.1 was submitted
to the W3C on May 8, 2000 and on July 9, 2001 the W3C published SOAP 1.2 with the
note that it is no longer intended as an acronym [77].

SOAP de�nes a whole ecosystem for web services, with many components [77]:

• Various operations like: RPC, direct messaging, queued messaging, noti�cations

• Standardized error messages with well de�ned content

• The Web Services Description Language (WSDL, see 2.6.1) for well-de�ned service
speci�cations

• Universal Description, Discovery and Integration (UDDI), a central registry of all
web services which is itself accessible by a SOAP interface

• Even other transports than HTTP are supported, but not commonly used (e.g.
SMTP)

Some of these components, especially UDDI, are not used by many SOAP users and are
even considered dead [78].

Every SOAP message uses a speci�ed envelope, which is the same for requests, responses,
error messages and unidirectional messages. This envelope is an XML document which
is versioned using XML namespaces (SOAP 1.1 uses ”http://schemas.xmlsoap.org/soap/
envelope/”, SOAP 1.2 uses ”http://www.w3.org/2001/09/soap-envelope”) and consists of
an optional message header and a required message body [74].

The header allows to add some metadata to the messages like e.g. a digital signature
or transaction management information [77]. It is possible to set attributes on header
elements, like the mustUnderstand attribute which indicates that this message must
not be accepted by the reciptient, if it does not handle this header. Big web services use
the optional header for authorization and payment purposes, but many, esp. smaller
services, do not utilize headers at all [74].

The envelope body can either contain a fault element, or the content of any message
like an RPC request or response. In case of a fault, the format of the fault is speci�ed to
have one or multiple of the prede�ned fault �elds, e.g. faultCode, which is a prede�ned
code like SOAP-ENV:MustUnderstand. The SOAP message body contains an own XML
namespace which can either use a simple type (such as string, boolean, long) or a
compound type. Implementations di�er in how they provide the type information, it
may be supplied by an XML schema de�nition or directly using xsi:type attributes on
each value [74].
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Listing 2.10 shows a sophisticated example of a SOAP message including headers, taken
from [77]:

Listing 2.10: SOAP message example
<?xml version="1.0" encoding="UTF-8"?>
<SOAP-ENV:Envelope
SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
<SOAP-ENV:Header>
<td:TargetDepartment
xmlns:td="http://www.skatestown.com/ns/partnergateway"
SOAP-ENV:actor="urn:X-SkatesTown:PartnerGateway"
SOAP-ENV:mustUnderstand="1">
Purchasing

</td:TargetDepartment>
<ai:AuthenticationInformation
xmlns:ai="http://www.skatestown.com/ns/security"
SOAP-ENV:actor="urn:X-SkatesTown:PartnerGateway"
SOAP-ENV:mustUnderstand="1">
<username>PartnerA</username>
<password>LongLiveSOAP</password>

</ai:AuthenticationInformation>
</SOAP-ENV:Header>
<SOAP-ENV:Body>
<doCheck>
<arg0 xsi:type="xsd:string">947-TI</arg0>
<arg1 xsi:type="xsd:int">1</arg1>

</doCheck>
</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

Now an assessment of the analyzed network protocols follows.

2.4.8 Assessment of network protocols

The Transport Layer Security (TLS, see 2.4.1) protocol can be optimally used to ful-
�ll the security constraints from requirement #6 from table 2.1 also with su�cient
authentication methods.

Three protocols which are designed for RESTful applications (see 2.2.5) are good candi-
dates for the implementation of the service interface:

• HTTP/1.1 (2.4.2): Old traditional HTTP, probably not the fastest but de�nitely
supported everywhere.

• HTTP/2 (2.4.3): New low level transport for HTTP to overcome performance
limitations. On the high level fully compatible with HTTP/1.1.

• CoAP (2.4.4): Specialized protocol for constrained applications, but with a map-
ping to HTTP operations. Can be used instead of HTTP but is more restricted in
extensibility and network conditions.
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Additionally, two RPC protocols, XML-RPC (2.4.6) and SOAP (2.4.7), can be used for
Remote Procedure Call communication. While XML-RPC uses a very simple and straight-
forward apprpach, SOAP has a massive complexity and lots of additional features, which
also strongly recommend the usage of WSDL (see 2.6.1) for the interface speci�cation.
SOAP is most likely too complex for the purpose of the service interface, but using
XML-RPC for callbacks is a considerable option.

Another analyzed technology is the WebSocket (2.4.5) a bidirectional messaging channel
based on HTTP, which can be used to overcoe a strict client server architecture and
to provide communication from server to client as well. It is considered in 2.5.3 as a
suitable technology for callbacks using a stateful connection.

2.5 Callback handling

In this section, di�erent techniques how callbacks can be realized, using the various
network protocols, are described.

The general issue with callbacks is, that clients send requests to a server, and by protocol
design, the server sends one response. If the request registers a callback, the server
must be able to execute a request against the client, which it can answer back to the
server. This is usually not builtin to the protocols, especially not the RESTful protocols
(see 2.2.5 on REST and 2.4.8 for the suitable protocols) we are mainly looking at.

2.5.1 Double server

The most straightforward approach to solve the client/server issue of callbacks is to
simply run a server on the client as well. The client can then provide its address or URL
to the server in the callback registration request and the server can later during callback
invocation act as a client and call the client’s server using the provided address or URL.
This simple solution does usually not have a speci�c name, it is simply common sense
to come up with this solution.

For later references I will refer to this technique as the ”Double server” as instead of
having one server (at the server side), we now have two servers (on client and server).
Doubling the server is actually also where the problems of this technique arise: Normally,
clients can use mobility and come and go as they like, they only execute stateless requests
to the server in a RESTful design. This is also demanded by requirement #9 from table
2.1, stateless and suspendable protocol, that the client should be able to suspend its
operation.

Thinking of a device like a smart phone, also further issues arise: the device might
be behind NAT gateways or �rewalls, which causes issues due to blocking incoming
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connections, and mobility of the device like changing networks and also IP addresses is
very common. Maintianing the state of the callback to keep it reachable under these
circumstances is very cumbersome.

On the one hand, this issue is the reason why this section exists and the further tech-
niques described here were developed, on the other hand, this ”Double server” pattern
is a good option in local networks were no IP mobility is needed.

2.5.2 Long polling

A traditional solution with the HTTP protocol (see 2.4.2) is the so-called long polling.
The basic idea behind it is to send a request to the server, but the server does not answer
the request yet. The server waits for a callback invocation to happen and keeps the
open request open till this happens [79].

In practice, the clients have timeouts which means the request has to be frequently
reexecuted to have a fresh connection for the callback. This requires �ne-tuning of
the server and client to actually identify a good timeframe for how long a request is
open [79].

The management of long polling requests is quite cumbersome and the frequet but
useless requests if no callback invocation happens creates additional network overhead
[79].

2.5.3 Stateful connections

Stateful connections are connections which are actively kept alive by the client so the
server can use the connection to monitor the clients availability and send a callback invo-
cation to the client. This is actually one of the main purposes for which the WebSocket
protocol (see 2.4.5) was initially created [72].

The e�ort to maintain this stateful connection is way less than with the long-polling
(see 2.5.2) and an open WebSocket for example creates less network tra�c than the
frequent long polling requests. Also WebSockets and similar connections preserve the
client server architecture.

2.5.4 Server push

Newer protocols like HTTP/2 (see 2.4.3) but also CoAP (see 2.4.4), include a feature
called server push. The idea behind it is to push resoures to the client which it would
otherwise have requested anyway, for example images which are referenced in an
HTML �le [65].
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This feature is originally not designed to create callbacks, but it would be possible to
abuse the push promises to push callback invocations to the client, which then executes
a reply request using some custom request and response mapping. An implementation
of this feature would probably be quite hacky and have issues to maintain a state of the
callback, i.e. know if it is still possible to invoke it, without invoking it. Using the push
feature for this purpose is not intended by the standard, and should therefore be used
with care [65].

2.5.5 Assessment of callback techniques

The ”Double server” approach provides a clean and practical way to provide callback
functionality if there is no need to stick with the client server architecture and the client
can easily provide a server. The clients needs more resources and changing IP addresses
of the client can be an issue, but otherwise the method is usable.

Long polling has a lot of issues and is considered obsolete given the options of WebSock-
ets or similar stateful connections, which provide a clean way to maintain a callback
channel within the client server architecture. The client can also reconnect to the
websocket after it changed its network, allowing for a smooth handover which is also
transparent to the server in terms of callbak state maintenance, i.e. the server knowing
if a callback can still be used.

The new server push feature could be used for callbacks, but is not actually designed
for this purpose, so it is advisable to stick with the other solutions.

2.6 Interface description for code generation

With the goal to create interfaces for many programming languages, code generation
techniques could be useful to automate the development of the bindings for further
languages. A common method which is usable with many programming languages
is using a dedicated language or tool to describe the interface of the code and then a
compiler or other tool can generate the language speci�c code.

In this section, two suitable techniques are analyed: Using Interface De�nition Lan-
guages (IDLs) of technologies which are already considered in this chapter and the
Simpli�ed Wrapper and Interface Generator (SWIG).

Interface De�nition Languages (IDLs) originate from the Common Object Request
Broker Architecture (CORBA), a binary communication protocol which allows RPC
calls (see 2.2.4 on RPC). It was needed to describe the binary data layout to generate
code which properly reads the binary data, similar to the proto �les from Google protocol
bu�ers (see 2.3.4) [80].
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The description language described now is the Web Services Description Language
(WSDL).

2.6.1 Web Services Description Language

The Web Services Description Language (WSDL) can be used to describe a web service
(esp. SOAP service via HTTP) with an XML document [81]. It essentially describes
three fundamental properties of a webservice: what a service does, how it is used and
where it is located [77].

There are six major elements for describing a service:

• portType [what]: This is an abstract interface having abstract operations with
abstract messages. The bindings describe concrete implementations of a portType.

• message [what]: De�nes a set of parameters with concrete types, structure and
order which are used in the message bodies. This is referenced by the portType,
in order to describe the interface of the abstract messages.

• types [what]: All types used by any message of this service, therefore referenced
by the messages.

• binding [how]: A binding is a concrete implementation of a portType, especially
what messages form an operation, possible fault messages, etc.

• port [where]: Where a binding is deployed, i.e. its speci�c network location (e.g.
URL).

• service [where]: A collection of ports which form a service.

WSDL can be used to generate code, e.g. Java code, for the server and client sides of
a SOAP service, so that the service is only speci�ed using the WSDL document and
the interfaces used by various programming languages match automatically [77]. The
usage of WSDL would be recommended for a SOAP interface, otherwise it is not usable.

2.6.2 Simpli�ed Wrapper and Interface Generator

The Simpli�ed Wrapper and Interface Generator (SWIG) is a tool which builds wrappers
for native system libraries which are written in C or C++. It can then generatenative
language bindings for many popular scripting languages and also native languages like
Go or D [82].

It works by creating a native wrapper system library �rst, which wraps the original
library with some SWIG generated helper functions and conversions for error handling,
allocation handling etc. Then it automatically creates a native binding in the target
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programming library which uses methods like the Java Native Interface (JNI) or native
library loading in Python to loadthis wrapper system library. The native language
wrapper then exposes native functions in the target language and encapsulates all the
management logic for loading and using the native wrapper library within the target
language wrapper module [82].

The supported target languages of SWIG are: Allegro CL, C#, CFFI, CLISP, Chicken,
D, Go, Guile, Java, Javascript, Lua, Modula-3, Mzscheme, OCAML, Octave, Perl, PHP,
Python, R, Ruby, Scilab, Tcl, UFFI and some dialects and variants of these [82].

Basically the SWIG mapping can be done by providing an interface description �le which
simply imports the C header �le, but additional instructures for detailed type mapping,
translation of C errors to target language exceptions and many more is supported in
this �le [82]. An example �le which simply imports a C header is shown in listing 2.11.

Listing 2.11: SWIG interface example
%module simpleswig
%{
#include "some-library.h"
%}

%include "some-library.h"

While it provides a very simple starting point, SWIG can also generate �exible wrappers
with advanced features for the target language [82].

2.7 Summary

After introducing the problem domain with speci�c requirements in 2.1.3, various
technologies which can solve parts of the problem were analyzed step by step.

The analysis of design principles for the service interface architecture showed that the
Representional State Transfer (REST) principle is very suited for the service interface
of the Virtual State Layer middleware.

The technology comparison was �rst performed on serialization formats, where all four
analysed formats showed speci�c �elds where it could be applicable. The results of
this assessment are summarized in 2.3.5. Afterwards, suitable network protocols were
analyzed and it was discovered that the Transport Layer Security (TLS) protocol serves
well to ful�ll the security requirements of the service interface. The RESTful protocols
HTTP (in version 1.x and 2) an CoAP could both be used to implement the service
interface. This assessment is summarized in 2.4.8.

Then, di�erent callback techniques were researched and assessed to analyze di�erent
methods how the callbaks in the VSL service interface can be realized. The assesmment
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of the callbacks is summarized in 2.5.5. Finally two methods for automated code gen-
eration were analyzed to automate parts of the implementation in this thesis. It was
speci�cally discovered that the Simpli�ed Wrapper and Interface Generator (SWIG) can
be used to create a Python connector by wrapping the connector for C.

The next chapter now presents the related work.
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Chapter 3

Related work

In this chapter, related work is analyzed where similar problems were identi�ed and
their results are compared and incorporated into the design of my service interface.
This is grouped based on the main focus of the related work, starting with related work
on RESTful design.

Afterwards, related work on the network technologies is analyzed, such as comparison
of serialization formats, examples of using or adopting standard protocols for embed-
ded devices and comparisons of di�erent network protocols. Also examples of native
interfaces for many programming languages by using network communication and by
using the Simpli�ed Wrapper and Interface Generator (SWIG, see 2.6.2) are presented.

The �rst section analyzes the RESTful design on the example of a high performance
computing web interface.

3.1 RESTful design

While there are many applications which chose a RESTful design (see 2.2.5 on RESTful
design), the particular project of the National Energy Research Scienti�c Computing
(NERSC) Center used the RESTful design paradigm to create an interface to their exist-
ing not RESTful High Performance Computing (HPC) grid. With the resulting ”NERSC
Web Toolkit” (NEWT), direct access to the HPC resources via a RESTful interface is
granted, which coexists with other access methods [83]. This relates to the Virtual
State Layer (VSL, see 2.1.2.1) middleware’s ability to support di�erent transport con-
nectors (cf. 2.1.2.3) which can also use di�erent protocols and architectures based on
their speci�c requirements. The goals of the NEWT project also show similarities to
the requirements de�ned in 2.1.3, like an easy usability for programmers due to the
well-known architecture and technologies or the high portability for support of many
platforms [83].
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The client of their REST service is a HTML5 web interface which utilizes JavaScript
requests for the operations. In order to support normal web browsers, they utilize
the HTTP protocol (see 2.4.2) with JSON data serialization (see 2.3.2) and SSL/TLS for
encryption (see 2.4.1). For authentication, a form based login with session cookies is
used, although this violates the RESTful design, in order to achieve a higher usability
for normal users without high technical knowledge [83].

A performance evaluation showed ”very little overhead for most standard Grid opera-
tions in the NEWT layer” [83] and therefore proves the e�ciency of the design approach
and the used protocols. The exposure of the HPC resources via URIs and the mapping
of the operations to the HTTP verbs showed to be simple and straightforward, although
some operations could only be mapped using the POST operation. The resulting design
is very �exible and extensible, for instance, the possibility to include new functionalities
in new resource subtrees was emphasized [83].

Speci�c to the use case of using normal browsers for the access to the RESTful HTTP ser-
vice, the challenge of doing Cross Origin Resource Sharing (CORS) requests is addressed.
It is a security mechanism of modern browsers which denies JavaScript accesses to other
URLs unless the speci�cally allow it in their HTTP headers. The NEWT project ad-
dresses these issues and describes their approach for CORS handling using the respective
HTTP headers, which is useful for the creation of REST clients inside a browser [83].

In a nutshell, the NEWT project successfully provides a web service interface to the
existing HPC grid infrastructure using the RESTful design principles. The challenges
are addressed and the performance analysis shows promising results. For the imple-
mentation, HTTP and JSON are used because they can be directly used in a normal web
browser. Especially native clients that can use a broader variety of formats, can utilize
di�erent serialization formats, so the next section analyzes comparisons of serialization
formats.

3.2 Comparison of serialization formats

The choice of the serialization format (see 2.3) and the speci�c library used during
implementation is often in�uenced by the performance of this combination. Many
comparisons and measurements have been conducted that provide an overview of the
performance to expect. Based on the four analyzed formats in 2.3, I performed my own
measurements to evaluate them in 6.1 using my Java implementation which is described
in 5.1. The choice of the libraries used in the Java implementation is in�uenced by the
results of this existing research. The papers which are referenced here, [31] and [84],
conducted broad measurements of di�erent text and binary formats using multiple
libraries and provide a broad overview as a base for my decisions.
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While the two papers evaluated some additional formats to those which I presented in
2.3, they both analyzed XML (see 2.3.1), JSON (see 2.3.2) and the protocol bu�ers (see
2.3.4). As CBOR (see 2.3.3) is very young (published 2013), it was not yet included in
these two benchmarks (2011 and 2012). The used programming language of all tests
was Java, using di�erent libraries for most of the formats [31] [84].

During the measurements, the throughput performance and the size of the serialized
data were captured. While [31] uses size of raw object divided by time needed for
serialization to give a throughput of bytes per second, [84] measures the time needed
to serialize 500 instances of the same reference object, i.e. the total seconds per test
run. The size of the serialized data was measured very di�erently, [84] took an avarage
of ten di�erent reference data objects in bytes and secondly the size in bytes of a very
small object. In contrast, [31] used a small reference object with absolute overhead in
bytes, being serialized size minus data size, and two larger objects where the overhead
is described in percentage which the serialized data is larger than the original object.

Regarding the serialized data size, both papers come to the conclusion that XML is the
largest format with the most overhead and that JSON is way more e�cient in contrast.
Both also conclude, that the binary formats and especially protobuf are more compact
than the text formats. More speci�cally, protobuf also performs very well compared
to other binary formats, although compressed formats or Apache Avro can sometimes
perform better than protobuf [31] [84].

The results of the throughput vary a lot more depending on the test and evaluation
method, library and format. Both papers agree, that binary formats and especially the
protocol bu�ers usually have the highest throughput and in both protobuf is a lot faster
than the other binary formats [31] [84]. Potentially due to the special test setup and
data structure, XML outperformed JSON by a large factor in [31], while [84] shows a
way better performance with JSON than with XML. This is even still the case if only
the Jackson library, which performed best amongst the JSON libraries, is compared.
Another notable result from [31] is the very high performance of the WoodStox XML
library compared to other XML libraries. So these two libraries, Jackson and WoodStox
for XML, seem to be good choices on Java for e�cient serialization.

On compression of serialization formats, [31] identi�es a reduction of the overhead but
at the expense of a very big performance impact. So compression can be used to further
reduce the data size, but at the expense of a lot more calculations during serialization.
Also [31] points out how having separate objects generated from a schema like for
example with protobuf leads to copying of objects before the serialization compared to
the handy direct serialization of Java objects using re�ection functions from libraries
like Jackson. This process can be further speci�ed using annotations but provides a
slight overhead at runtime during initialization of the library for parsing the object [31].
The parsing itself can however access cached information on the object, which leads to
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less impact at runtime with repeated serializations. [84] even used a dedicated warm-up
phase before the measurements start to get the runtime code generation to perform the
optimizations before the measurements.

The key results of these related benchmarks show, that binary formats should be con-
sidered if a low size and e�cient serialization is intended. The text formats provide
a good readability on the one hand [84], but at the expense of more overhead on the
other hand. For the measurements, di�erent ways to calculate the throughput and other
setup speci�c details can lead to contradicting results and a warm-up of the Java Virtual
Machine is required to get representative data for a real runtime operation.

The next section analyses related work on comparisons of network protocols for the
operation on embedded or resource constrained devices.

3.3 Comparison of network protocols

The di�erent protocols which are analyzed in 2.4 are used very frequently and therefore
others have already performed comparisons of the protocols.

For example [85] presents the Californium library for CoAP (see 2.4.4) and performed a
performance evaluation of the Californium CoAP library compared to common CoAP
and HTTP libraries and implementations. The tested other systems are: Initial-Cf,
Sensinode, nCoAP, OpenWSN, Vert.x, Jetty, Grizzly, Tomcat, Node.js and Apache with
PHP.

For the measurment, many clients were used which execute requests parallely on the
test system. The Californium library showed the highest performance of all tested
library and exceeded the other CoAP and HTTP libraries. HTTP/2 (see 2.4.3) was not
enabled on any of the tested HTTP servers, so the test compared to HTTP/1.1 only [85].

Amongst the tested Java web servers, Vert.x, Jetty, Grizzly and Tomcat, Vert.x and Jetty
showed the best performance. Vert.x was faster for smaller number of clients but shows
a certain instability with high performance deviations. Jetty performed very stable and
could handle the maximum number of 10,000 concurrent clients very well [85].

A comparison of SOAP (see 2.4.7) and RESTful HTTP (see 2.2.5 and 2.4.2) using XML
(see 2.3.1), JSON (see 2.3.2) and Google protocol bu�ers (see 2.3.4) has been performed
by [86]. SOAP only used XML as per de�nition of SOAP and four example operations
were tested using the four protocol and serialization format combinations [86].

Every combination with RESTful HTTP performed better than SOAP, using less round
trips and a smaller operation latency. The di�erent serialization formats which are
used with RESTful HTTP showed similar performance for XML and JSON and a better
perofrmance using Google protocol bu�ers [86].
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The measurement of [86] clearly shows that SOAP is not recommendable if low latencies
or low overhead is intended. Both papers show the high practical �tness of the RESTful
desing with HTTP or CoAP, where compared to the old HTTP/1.1 CoAP performed
way better [85] using the Californium library and comparable using the other CoAP
libraries. Also [86] showed as in 3.2, that Google protocol bu�ers are more e�cient
than JSON or XML.

3.4 Native interfaces for multiple programming languages

The goal of transferring an existing implementation in a single language to many
programming languages by providing a native interface for the other programming
languages has also been pursued by other research projects as well.

In [87], a cloud runtime for High Performance Computing (HPC), which originally only
supported Java, was extended to support native bindings to C, C++, C#, Python and R.
The selection of languages is very similar to my case. To allow the accessibility of the
Java runtime in these languages, a bridge was created which either used a TCP network
transport or a system pipe for the communication [87].

While they considered the usage of SWIG (see 2.6.2) in their related work, the im-
plementations for the languages were all developed individually. The reason for this
decision was the wish to have a more direct control over the typing in the di�erent
languages [87].

Another project which provided a native connector to a C++ cheminformatics tollkit to
Python actually used SWIG to perform the mapping [88]. In this case SWIG was used
to map a C++ library, where SWIG is also capable to map C++ classes to Python objects.
The issue of having less control over the types was not considered an issue there [88].

The performance measurements of the network bridge show a higher performance
with local pipes than using TCP and a lot higher performance with compiled languages
than script languages like Python and R [87]. The SWIG binding for Python was not
evaluated for its performance, bu worked as expected in the tests. Also the usage of
SWIG was seen as convenient for the mapping [88].
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Chapter 4

Design

This chapter explains the design considerations for the service interfaces developed
in this thesis and shows the structure of the components that are implemented. The
suitable approaches and technologies identi�ed in chapter 2 and the results of related
work from chapter 3 are incorporated into these considerations.

First, the intended architecture of the service interface is explained and reasoned. The
architectural principles from 2.2, especially the RESTful design (see 2.2.5), plays an
important role in this process. Additionally, the required components for the Knowledge
Agent (see 2.1.2.1) and the di�erent service interfaces are described.

Afterwards, the �rst required component is speci�ed, the data serialization unit which
translates the data structures into transmittable transport data (see 2.3 on serialization).
The most important data structure, the VSL node (see 2.1.2.1) which stores the actual
VSL data and metadata, is precisely speci�ed. Multiple serialization formats can be used
with this speci�cation and are compared in the evaluation section 6.1.

Then the network protocol for the actual communication using HTTP (see 2.4.2) and
HTTP/2 (see 2.4.3) is described. The concept of this RESTful HTTP interface is also
transferrable to other RESTful protocols like CoAP (see 2.4.4), for which the relevant
transfer steps are outlined in 4.3.9. Multiple protocols can even be deployed to a single
knowledge agent instance, as the Transport Manager (see 2.1.2.3) handles the presence
of multiple transport modules. An important detail of this speci�cation is the callback
handling following the techniques described in 2.5, which is described in detail in 4.3.7.
The HTTP interface with di�erent serialization formats is then implemented in chapter
5 and evaluated in 6.2.

The �rst section now proceeds with the architectural design of the service interface.
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4.1 Service interface architecture

As already discovered in 2.2.5.2, the current design of the Virtual State Layer (VSL, see
2.1.2.1) has many similarities with the Representional State Transfer (REST) architecture
(see 2.2.5). Following the Richardson Maturity Model (see 2.2.5.1), VSL reaches level
two (with level three being RESTful), mainly missing the ”Hypermedia as the engine of
application state” (HATEOAS, see 2.2.5) principle, which is also discussed in 2.2.5.2.

One of the possible advances which could be made in the direction of being RESTful is
to adopt the HATEOAS principle. This would require a service to be able to reach all
VSL information, that is accessible by the service, by following links from a single entry
URL. Locating data in the VSL, especially available services, normally works by using
either the type search to search for instances of a speci�c service type or by enumerating
all child nodes of a parent node, which could also be a whole knowledge agent. The
current functions however do not allow to enumerate all knowledge agents, making
enumerating all services by requesting each knowledge agent a di�cult process. In
addition, it would be preferable to organize services by type and not by location, as the
latter is randomly decided by where the service connected and services can also move
from one knowledge agent to another. For searching by type however, an enumeration
of all available types is currently not easy to reach1, so an extension to the VSL is needed
to ful�ll the HATEOAS principle. It needs an entry point where either available types
or all available knowledge agents can be listed. Using the type list for service discovery
seems more reasonable.

On the other hand, it might not even be useful in practice to have this kind of functional-
ity as services usually know the types of other services with which they can interact. So
they can use the type search directly, even without listing all available types, getting an
empty result if a type is not available. Still the addtional funtionality of listing available
types can be useful for certain purposes, and it can simply stay unused in other cases.
Another detail to add to this is the enumeration of search providers, as also other ways
to search for services can exist. For now it seams reasonable to leave the current state
as it is and accept a little violation of the HATEOAS principle.

Another design consideration which also leads to violations of the REST principle is
the callback handling. Once a service registers a callback with the knowledge agent,
by using one of the operations (listed in 2.1.2.4) that provides a callback as argument,
the service starts to have a state by providing the callback. This functionality is an
important part of the VSL design but the state is kept transparently without changing
the behaviour towards other services, so the VSL can be used stateless as long as no
callbacks are registered by the service which wants to stay stateless.

1Actually, there is the site-local context model repository, which can be queried for all available types
if the access rights are granted. However, it does not state whether services actually use this type and it
has to be located via type search �rst, making this process cumbersome and not suitable for this purpose.
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Once callbacks are registered, the execution of a callback from the knowledge agent
to the service is a Remote Procedure Call (RPC, see 2.2.4). So at this speci�c detail,
the RPC architecture is important for understanding the callback mechanism and its
implications, especially with regard to state. Both sides need to maintain a state about
the callback, the knowledge agent that the callback is registered at all, what for and how
the service can be reached for the callback and the client where the callback function is
and the registration state so it can be registered again after connection losses. It is also
very useful if both sides monitor the availability of the callback, so that the service can
register it again after the knowledge agent changed or restarted and for the knowledge
agent to cleanup callbacks that are not reachable anymore, for example because the
service is no longer running. The speci�c callback handling techniques used and the
general considerations for maintaining this state is discussed in detail in 4.3.7.

The next section provides details about the used data structures and the design of their
serialized representaions in di�erent serialization formats.

4.2 Data structures and serialization

The most important data structure of the Virtual State Layer (VSL) is the knowledge
node (or VSL node), which is a node in the knowledge tree as described in 2.1.2.1. These
nodes store data and metadata about the virtual state of services in the smart space.
Additionally, as the structure is a tree, each node can have children and is usually the
child of a parent node, unless it is the root. The di�erent possibilities how these nodes
can be structured are discussed in 4.2.1, with a resulting design that is most useful in
practice.

Other data structures exist as well, most notably the callback invocation and callback
response messages used by the callback handling, which is described in more detail in
4.3.7. Addtionally, there is the description of post operations used for extended VSL
operations that are mapped to HTTP POST and a description of VSL exceptions in
case an error occured. The detailed handling of the HTTP operations and errors is
designed in 4.3.2 and 4.3.3. These additional data structures and even some more with
their corresponding serialized forms are discussed in 4.2.2.

The last part of this section describes some specialities of certain serialization formats
and how I dealt with them. This applies mostly to XML and protobuf, as for XML there
are di�erences between attributes and child elements and some structures like lists or
maps require special handling. Protobuf uses the proto �les for schema description (see
2.3.4), which also needed some special considerations which are discussed there. Now
the serialization of the VSL node structure is desribed in detail.
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4.2.1 Serialization of VSL nodes

The node of the virtual state layer has two basic types of content, data and metadata.
The data is a simple string which represents the value of the node, with any further
semantic of this string value being described by the VSL node’s type. This type is part of
the node’s metadata and represented as a list of the type and its supertypes (see 2.1.2.1
for more on the types).

Addtional to types, the metadata contains a version number, which counts up for newer
versions of the node, and a timestamp of when this value was set. Furthermore, there is
a map of restrictions with restriction types and their restriction value, represented as a
map of strings to strings with the former being unique in this map. These restrictions
apply to the value of the node and are derived from the type internally. The access to
the node is also described as either ”r” (read only), ”w” (read and write) or ”-” (no access),
which di�ers depending on the service which accessed the node, as every service can
have di�erent access rights to the node.

The data is stored in a �eld called ”value”, the metadata in the �elds ”types”, ”version”,
”timestamp”, ”restrictions” and ”access” respectively. The metadata as well as th value
itself can also not be present, most speci�cally if only data (or metadata) was requested
or for example if a node does not contain a value, which is also possible. To optimize
the compactness of the nodes, �elds that are empty or contain the default value are not
serialized at all and the deserializer just inserts the default or null value instead.

Now the tree structure has to be considered; requests to the VSL might request a node
with all its children or with its children up to a certain depth as sepci�ed in 4.3.1, so the
result should always be a VSL subtree structure of nodes, which might also be just a
single node. To represent this tree structure, two main methods are favored in computer
science, listed below.

• Recursive embedding of children: the recursive approach is based on serializ-
ing the node which is the root of the (sub)tree and to include the direct children
of it in a relative address to child map. These children may then include further
children, also by their relative address. Written with brackets surrounding a
node, the example would look like this: (root: path1->(child1: sub1->(child 1.1),
sub2->(child1.2)), path2->(child2: sub1->(child2.1)), path3->(child3)).
This recursive structure is on the one hand quite intuitive to read and use in the
code, but on the other hand it requires a recursive implementation of the parser as
well. A huge bene�t of this structure is that each substructure (like ”child1” in the
example above) is by itself a valid subtree, that can be easily passed to functions
that deal with this subtree as if it was requested directly. Another bene�t is the
easy iteration of the children with di�erent iteration patterns (like depth-�rst or
breadth-�rst) and their intuitive implementation and handling. But the downside
of this approach is, that in order to reach a certain path like ”path1/sub2”, multiple
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resolutions of children are required, namely one for each path component.

• Address to data map: this approach does not nest children into their parents,
but just provides a mapping of all addresses (which need a path separator to
add multiple path components to one path; mostly / is used for this purpose) to
the node data. The example would look like this in an address to data map: /-
>(root), /path1->(child1), /path1/sub1->(child1.1), /path1/sub2->(child1.2), /path2-
>(child2), /path2/sub1->(child2.1), /path3->(child3).
The bene�t of this structure is an easy access to all subpaths, especially the deep
ones (like /a/b/c/d/e/f/g) and a �at parsing of the structure (one map, then only
�at nodes without children). On the other hand, the extraction of a subtree is a
very cumbersome process: an iteration of the whole structure needs to select all
childs that meet the subpath’s pre�x (e.g. /path1) and then this subpath pre�x
must be stripped from all paths (making /path1/sub1 only /sub1 and so on). All
of this would have to create a new address to data map, also leading to additional
allocations. Another pitfall of this strcuture is the access to the requested node (the
”/” node; in some cases this is even the only requested node), as a resolution of this
path is required to access its data, so instead of ”deserialize(rawData).getValue()”
one would need ”deserialize(rawData).get("/").getValue()” to access a single value
request’s value. This is important to consider as just accessing one value is a
common use case of the VSL middleware.

After the evaluation of these two structural approaches, I considered to build a hybrid
using the root node directly and then providing an address to data map for all children,
regardless of the depth inside the root node. This would avoid the usage of a recursive
parser as the parsing depth would always be one and solve the issue of accessing the
requested node directly. On the other hand it showed, that using a recursive parser is
even more handy than having two ways of parsing the root with children and then the
children as leaves without further recursion and especially it showed, that translating
the tree strcuture used for internal processing to a �at children map needs copying of all
nodes which have children. This is due to the issue, that the serializer would serialize a
node with children as a root node, e�ectively repeating the children, and that the paths
need to be built with nodes that do not have any children to prevent this.

Finally I abandoned this idea and decided that the recursive embedding of children is the
most usable approach for the use cases of the VSL middleware, where each subtree in
its own has a valid type and meaning, which can be delegated to other components that
deal with this speci�c subtree only. Avoiding any copying of the tree structure avoids
redundant memory allocations and potential race conditions if a node is removed or
added to the tree (which is however a rather rare case in the VSL, as it can only happen
with lists). Also this format is more intuitive and human-readable, easing the debugging
of VSL data accesses.
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The plain node data and metadata without children would look similar to listing 4.1 in
JSON format (see 2.3.2 for the description of the JSON format):

Listing 4.1: Example VSL node data as JSON
{

"value":"1234",
"types":[

"/basic/number"
],
"version":123456789,
"timestamp":1356217200000,
"restrictions":{

"regex":"[0-9]+"
},
"access":"w"

}

A node structure with children is presented in listing 4.2 also in the JSON format, but
in this case without metadata:

Listing 4.2: Example VSL node structure as JSON
{

"value":"this is root",
"children":{

"child1":{
"value":"child1 value",
"children":{

"child1.1":{"value":"foo"},
"child1.2":{"value":"bar"}

}
},
"child2":{

"value":"child2 value",
"children":{

"child2.1":{"value":"value of child2.1"}
}

},
"child3":{"value":"123"},

}
}

The real node serializers will create less whitespace (as it does not have meaning in
JSON) and probably change the order of the �elds, but apart from that, these example
are real JSON examples. Now some other data structures are brie�y discussed.

4.2.2 Serialization of other data structures

There are a bunch of other objects used by the VSL middleware, for example for the
callback invocation (see 4.3.7.1) or in the KA to KA communication. They are described
in this document as ”objects” with �elds as almost all of them are just �at datastructures.
These objects can be canonically translated to JSON or the other serialization formats
with the general rules and considerations of this section.
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One datastructure which is more complex are the KOR updates which are used in
KA to KA synchronization (see 4.3.8). They contain the VSL node structure metadata,
which is very similar to the VSL nodes but containing the internal metadata. The same
serialization rules as for the nodes in 4.2.1 are applied.

Now the serialization in the other formats than JSON is speci�ed.

4.2.3 Special handling of serialization formats

The aforementioned design considerations are valid not just for JSON, but also for all
other serialization formats. However, some of the formats require special considerations
that are discussed in detail here.

For instance, the XML document (see 2.3.1) lacks a distinction between value �elds and
array �elds, with both being represented by a tag when following the advice from [46]
not to use attributes. For the array representation, one option is to repeat the tag just
multiple times for each array element, which is called the unwrapped mode. The other
option is to make a tag for the array which contains the array elements and then include
the array elements each with a separate element tag. This is called the wrapped mode
then and usually regarded as cleaner design, because an empty array has an explicit
representation (just empty wrapper tags) and the array elements must be grouped
together and cannot spread everywhere inside the node (like in the unwrapped exampe
below, listing 4.3).

Listing 4.3: XML unwrapped array
<?xml version="1.0"?>
<root>

<somefield>foo</somefield>
<arrayfield>1</arrayfield>
<arrayfield>2</arrayfield>
<anotherfield>bar</anotherfield>
<arrayfield>3</arrayfield>

</root>

Listing 4.4: XML wrapped array
<?xml version="1.0"?>
<root>

<somefield>foo</somefield>
<arrayfield>

<value>1</value>
<value>2</value>
<value>3</value>

</arrayfield>
<anotherfield>bar</anotherfield>

</root>

Another structure which needs special considerations for XML is the map. Maps should
be always wrapped, but inside it could use a tag which then has the subtags key and
value or it could use key as the tag type and value as the value inside the key tag. While
the former is a very exact representation of the map in XML, the latter is nicer to read
for humans and a more natural representation of a key to value map. Two pitfalls are
important when using key-tags: document type de�nitions (DTD) have to mention
all possible map keys as tags as the document does not conform to it otherwise and
the map keys must be valid XML tag names. If these two are not a problem, the more
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natural key-tag representation (see listing 4.6) is favorable and otherwise the clean
representation (see listing 4.5) is needed.

Listing 4.5: XML map (clean)
<mapfield>

<item>
<key>key1</key>
<value>foo</value>

</item>
<item>

<key>key2</key>
<value>bar</value>

</item>
</mapfield>

Listing 4.6: XML map (key-tags)
<mapfield>

<key1>foo</key1>
<key2>bar</key2>

</mapfield>

In order to make this design very standardized, interoperable and easy to implement
with di�erent languages and libraries, the clean map solution and the wrapped arrays
are used. An example XML node similar to the JSON example in listing 4.1, but with an
additional child node with just a value, is shown in listing 4.7.

Listing 4.7: Full XML example of a VSL node
<?xml version="1.0"?>
<node>

<value>1234</value>
<timestamp>1356217200000</timestamp>
<version>123456789</version>
<access>w</access>
<restrictions>

<item>
<key>regex</key>
<value>[0-9]+</value>

</item>
</restrictions>
<types>

<type>/basic/number</type>
</types>
<children>

<child>
<address>childpath</address>
<node>

<value>1234</value>
</node>

</child>
</children>

</node>

Regarding the binary formats, CBOR (see 2.3.3) uses exactly the same structure as JSON
without any changes or special adoptions. However, adopting the protocol bu�ers (see
2.3.4) is not so trivial, as the proto �les for the schema de�nitions need to be created.

The proto schema needs explicit �eld names which are not written to the serialized data,
so weak map structures like an XML key-tag map or the JSON representation of the
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children is not possible. To solve this, a very explicit structure like in the XML design
above is needed, just with the di�erence that the ”repeated” type is used for arrays and
map items. For example for the VSL node structure, the proto �le is shown in listing 4.8.

Listing 4.8: Proto �le for VSL nodes
message VslNode {

repeated ChildAt children = 1;

optional string value = 2;
repeated string types = 3;
optional sint64 version = 4;
optional uint64 timestamp = 5;
optional string access = 6;
repeated MapEntryStringString restrictions = 7;

message ChildAt {
required VslNode node = 1;
required string address = 2;

}

message MapEntryStringString {
required string key = 1;
required string value = 2;

}
}

With these additional considerations, the design of the data strcutures can be used with
all four implemented serialization formats (and potentially a lot more). The consider-
ations for the VSL nodes presented here are also applied to the other data structures
from 4.2.2. In the next section, the RESTful service interface protocol is speci�ed.

4.3 Protocol of the service interface

This section speci�es the protocol of the RESTful service interface using HTTP (see
2.4.2) for the Virtual State Layer (see 2.1.2.1). Both HTTP versions 1.1 and 2.0 (see 2.4.3)
are supported because the high level protocol is the same and HTTP/2 mainly promises
a higher e�ciency for the same operations. The security requirements (requirement #6
from table 2.1) are provided by using TLS 1.2 only (see 2.4.1) with ALPN (see 2.4.1.1)
support for HTTP/2. Authentication is done using X.509 client certi�cates under a
common certi�cate authority (see 2.4.1.2) of the knowledge agent and the services (see
2.1.2.3 for an overview of the knowledge agents and services).

In the �rst step, the resource paths and URIs are de�ned, followed by the de�nition of
the methods which can be used with these resources and which VSL operations they
represent (see 2.1.2.4 on the service interface operations). Afterwards, some speci�c
details are de�ned mmore precisely, like the error handling, the usage of HTTP content
negotiation (see 2.4.2.1 on HTTP content negotiation) and some details on the usage of
important HTTP headers (see 2.4.2.3 for an introduction to these headers).
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The next section describes the usage of SSL/TLS with client certi�cate authentication.
Then, the implementation of callbacks using the WebSocket protocol (see 2.4.5) and
how they are managed is elaborated.

Finally the to last sections describe the extensions which are needed to use the same
transport module also for KA to KA communication and what steps and considerations
are needed to implement a RESTful interface using other protocols than HTTP.

Now the resource paths and URIs are de�ned.

4.3.1 Resource paths and URIs

The heart of the VSL middleware is the tree of VSL nodes, which are already described
in detail in the serialization section 4.2.1. The tree is built up from a root nodes and
each child has relative addresses, which are also compatible to URI paths. See also the
examples of this addressing in 4.2.1.

This make the indenti�cation of URIs for the VSL nodes very straightforward, the only
extension is to add a /vsl/ pre�x, which is done to allow other resources to exist without
potentially colliding with nodes in the VSL tree. So the VSL address ”/agent1/service/
someValue” is represented in the resource path ”/vsl/agent1/service/someValue”. The
VSL addresses can also have parameters in the style of URL query strings. The param-
eters are depth for how many children should be included (<0: all, 0 the default: no
children, >0: this many level of children) and scope (”metadata”: only metadata and no
values, ”value”: the default to just get the value, ”complete”: value and metadata) [89].
The parameters are simply included as query string in the resource path. An example
URL with parameters: ”/vsl/agent1/service/someValue?scope=complete&depth=2”

Additional resources are used for every operation which is not executed on a speci�c
VSL node, i.e. it does not have an address parameter. This is for example the case
with the registerService and unregisterService methods (see 2.1.2.4). These methods get
speci�c resource paths, in this case ”/service/register” and ”/service/unregister”. The
usage of these resources is explained in section 4.3.2 and further special resources are
de�ned in the next sections for speci�c purposes like the callbacks (see 4.3.7).

Another kind of extra resources is the ability to deliver static �les or resources through
the same interface, in order to ful�ll the RESTful principle of code on demand (see 2.2.5).
They must reside in the path ”/static/” or use common HTML names like ”index.html”
to avoid collisions with future extensions to the additional resources. Also the path
”/” may deliver the index.html if the accept header speci�es it, but this special case of
”/” is de�ned more detailed in 4.3.4. The usage of paths with the pre�x ”/static/” or
paths like ”index.*”, ”robots.txt” or ”favicon.*” is denied for other purposes than static
�le delivery. While the actual inclusion of static �les is optional like also the whole
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code on demand REST constraint is optional, it is an interesting possibility to serve for
example a webinterface directly from the KA to common browsers.

In order to provide HATEOAS (see 2.2.5) links to all resources, the resource ”/resources”
provides an index of all available resources with their intended usage (”service” for
resources for the services, ”ka” or resources which are only used in KA to KA commu-
nication and ”static” for static �les). With the subresources like ”/resources/client” or
”/resources/static”, only resources of this type are listed, using the same listing format.
The format is an object which is serialized as described in 4.2.2, containing the list ”links”
to resource description objects with the �elds ”path” (like ”/service/register”), ”type”
with the intended usage and ”name”, which provides a name that can be matched for
resource discovery. Optionally this per-entry object may contain a ”description” �eld,
which must be ignored by implementations but can be used for developers to identify
the usage of the resource.

These links can also be speci�cally queried using ”/resource/name” with the name which
is also stored inside the resource description object, to allow clients to speci�cally query
the path of a named resource. The paths de�ned in this chapter for the basic service
interface can always be accessed to the known paths directly without querying for the
path, but additional developed extensions should require the services to query the path,
so that collisions between independently developed extensions can be avoided. Also
the names should always have a unique extension pre�x which includes the vendor
to avoid collisions in the names. Lookups of the resource paths can be cached by the
clients for the whole service lifetime. An extension might be hotplugged, so it could be
added or removed, but it must never change its path within the lifetime to allow for the
caching.

Nonexistent resources (also requests to ”/resource/name” in case no resource with this
name exists) raise the error 404 not found to allow clients to detect missing functionality
(more on errors in 4.3.3).

The URIs are composed with a base URL, which must be known to the client in order to
communicate with the knowledge agent. It is always an https URL with usually the IPv4
or IPv6 address or a host name of the knowledge agent. In many cases the knowledge
agent will use a nonstandard port, which must also be added unless the standard port 443
is used. A subpath inside the base URL should normally not be needed, but can be done.
Examples how knowledge agent URIs to the VSL address ”/agent1/service/someValue”
could look:

• https://agent.example.com/ka/vsl/agent1/service/someValue
global DNS name agent.example.com, port 443, subpath /ka/

• https://192.168.0.1:8080/vsl/agent1/service/someValue
local IPv4 address 192.168.0.1, port 8080, (no) subpath /
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Table 4.1: Mapping of VSL operations to PostOperation names
Operation Name Callback?

notify NOTIFY no
subscribe SUBSCRIBE yes
unsubscribe UNSUBSCRIBE no
lockSubtree LOCK_SUBTREE yes
commitSubtree COMMIT_SUBTREE no
rollbackSubtree ROLLBACK_SUBTREE no
registerVirtualNode REGISTER_VIRTUAL_NODE yes
unregisterVirtualNode UNREGISTER_VIRTUAL_NODE no

• https://[::1]:8088/vsl/agent1/service/someValue
loopback IPv6 address ::1, port 8088, (no) subpath /

The next section describes the HTTP methods which can be used with these resources
and to which operations they map.

4.3.2 HTTP operations

The HTTP methods (see 2.4.2.2) on VSL tree resources (see 4.3.1) are mapped to VSL op-
erations (see 2.1.2.4) as follows: GET on one of the VSL nodes executes the ”get(address)”
operation and PUT executes the ”set(address, node)” operation. The node data gets
serialized in the GET response body and PUT request body according to the negotiated
content type (see 4.3.4) and the serialization as described in 4.2.1. The address (including
parameters) can extracted from the request URI by removing the pre�x. These VSL
operations conform also to the HTTP an REST restrictions (see 2.4.2.2), so this mapping
is acceptable.

The other operations on VLS nodes of the service interface are all mapped to the POST
method, using a ”PostOperation” object in the request body to further describe the
executed VSL call. The PostOperation object contains the �elds ”operation” which is
the operation name from table 4.1 and ”callbackId” or ”callbackUrl” depending on the
callback technique which is used. The callback techniques are described in detail in
4.3.7 and the speci�cation of callback is only done, if the operation includes a callback
parameter. All of the methods don’t return any data, so the response body is left empty
using 204 no content.

The operations performed on the additional resources outside of the VSL tree (see 4.3.1)
highly depend on the resource and its purpose, of course. For instance, ”registerSer-
vice(manifest)” on ”/service/register” and ”unregisterService()” on ”/service/unregister”
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are both using the POST method. The registration call serializes the manifest in the
request body and sends the address string in the response body, while the deregistration
sends an empty object in the requests and gets no content in the response (the empty
object is needed to make it a not simple POST request for CORS; see 4.3.5 for details).
Still, the POST method is used as DELETE would be inadequate because the resource
still persists and only the service deregisters. The HATEOAS resource routes and all
static resurces only support the GET method and the interaction with the other special
resources is described where they are de�ned.

Every resource which supports the GET method also supports the HEAD method,
executing excactly th same request just without delivering the content. This is however
practically useless with the VSL nodes. The OPTIONS requet is also supported for all
of the resources to allow clients to identify the possible interactions. The result of the
OPTIONS request does not change depending on the node, if it is executed on the VSL
tree. It actually does not even check the existence of the node and does not need to be
executed on each of the nodes, as its reponse can be seen as valid for all nodes in the
VSL tree.

Using this mapping, all operations of the service interface as listed in 2.1.2.4 are mapped
to corresponding HTTP methods using the resource path scheme from 4.3.1. The next
section describes the error handling and the used HTTP error messages.

4.3.3 Error handling

If errors occur during the execution of a VSL request, a corresponding HTTP error
response is generated (see table 2.3 on common HTTP status codes). This of course
happens if the corresponding HTTP error conditions directly apply (for example: ”400
Bad Request” if the request is actually malformed), but also if a VSL exception is similar
to the HTTP error condition (for example: NodeNotFoundException being represented
as ”404 Node not found”, as the error message is customizable in HTTP). Other internal
exceptions which do not have an equivalent error in the HTTP protocol are mapped to
”500 Detailed error message” (instead of ”Internal Server Error” the actual error message
is provided, if possible).

Additionally, in order to allow detailed parsing of errors and to improve debugging, the
response body of the error message contains an ”ErrorMessage” object. This object con-
tains the error ”code”, ”message” and ”type” being the Java exception type. Stack traces
are omitted to prevent leaking of sensitive information in production environments
and to save bandwith. The object is then serialized using the negotiated content type
(see 4.3.4), if the content type negotiation could already take place, otherwise JSON is
used as a default fallback. Outside of the VSL tree (the ”/vsl/” resource path, see 4.3.1),
the error message may be presented as HTML if the content negotiation leads to an
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explicit allowance of HTML. This can be used by static �le resources which present a
web interface.

Using these ”ErrorMessage” objects, clients can automate the interpretation of errors
automatically and even if clients don’t parse the object, the HTTP status code will
always re�ect that an error occured and at least what generic kind of error it was. The
next section de�nes how content negotiation is handled by the server and clients.

4.3.4 Content negotiation

The content negotiation is based on HTTP’s content negotiation feature (explained in
detail in 2.4.2.1), but using some extended rules for cases in which multiple formats are
acceptable.

Generally the service interface contains objects in the HTTP bodies, which are serialized
using one of the serialization formats from 4.2 or potentially a future extension might
even add more formats, which are not yet considered. A client can accept as many of
these formats as it wants and also put a weighting on the di�erent formats to express
its preference. The server can then choose from these formats, honoring the clients
preference and its own preference if the client did not prefer one of the top choices to
the other.

More special conditions apply if a client did either not include an accept header (which
means accept anything) or it accepts ”*/*” as the highest supported format. For example
some browsers send accept headers like ”text/html,*/*;q=0.8”, and as ”text/html” is not
provided as a serialization format, the ”*/*” would be considered. This would allow the
server to choose any format of its choice according to the HTTP speci�cation, but the
problem is that these clients are not able to parse data of any kind. Especially to save
bandwidth, many servers would have a preference on the binary formats like CBOR or
protobuf, but especially protobuf is not even self-descriptive. So these are only a good
preference if the client explicitly accepts these formats, which means it would also have
the ability to actually parse them. To prevent this issue, the server has to prefer JSON
as the fallback format, if the client does not speci�cally accept one of the supported
formats. This implies, that every server implementation (i.e. the knowledge agents)
must support JSON if it uses this HTTP interface.

It is usually advisable to have a lot of supported formats on the server side and only
the needed ones at the client side. The question which remains is, in what format a
client sends its data for example with PUT or POST operations, because no content
negotiation happens with the request body. The solution is that a client may use any
format which was previously accepted by the server, for example on a GET request.
This implies that a server must also accept data in the format in which it delivers data,
which usually should not be a problem but it also implies that serialization formats may
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only be used if they allow for complete serialization and deserialization of all objects.
If the client did not have any content negotiation beforehand, it coud either try its
preferred format and try another one if ”415 Unsupported Media Type” is replied by the
server or it uses JSON as a safe fallback. This JSON fallback is also relevant in KA to
KA communication, which is described in detail in 4.3.8.

The choice for JSON as the fallback is based on its self-descriptiveness, human readability
(useful in browsers) and its very high popularity, especially with RESTful HTTP services.
A client is however not required to accept the JSON format at all, but it then needs a
connection to a knowledge agent which is able to accept the format, which the client is
using.

The used MIME types of the formats are those from table 2.2, with one exception for
protbuf: Normally, protobuf does not have a real MIME type and uses ”application/octet-
stream”, but this also applies to other binary formats, which is why a speci�c type
for the explicit negotiation of protobuf is required. Looking at some discussions on
Stack Over�ow [90] [91], the usage of ”application/x-protobuf” or application speci�c
MIME types is quite common. To identify also the proto �les which are needed for the
communication (i.e. those for the VSL objects as described in 4.2.3), I decided to use
”application/x-protobuf-vsl” to clearly identify the format in the content negotiation.

Static resources (see 4.3.1), if they exist, are only delivered with their respective MIME
type and no transformation is done. If the type is not acceptable based on the clients
”Accept” header, the HTTP error ”406 Not Acceptable” is used. The JSON default does
of course not apply to these static resources.

The last exception is done for requests to ”/”. It should devliver the HATEOAS resources
index (see 4.3.1) to API clients but an ”index.html” (or similar) static resource to browsers,
which is solved using these rules: If the client includes ”text/html” or the MIME type of
the index document (could also be ”application/xhtml+xml” for example) in its Accept
header, it is delivered. Of course the index document must not have a type which is also
a serialization format. Otherwise the ”/resources” index is serialized using the format
which is negotiated using the aformentioned rules.

The next section describes the usage of important HTTP headers in detail.

4.3.5 HTTP headers

Some of the important HTTP headers (see 2.4.2.3) require special considerations for the
design of the HTTP service interface. The most important consideration is to secure
Cross-Origin requests (Cross-Origin Resource Sharing, CORS, see 2.4.2.3). Additionally,
the Cache-Control header can be used to prevent caches from answering requests on
the behalf of the knowledge agent and to prevent insecure storage of private data.
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The caching of all VSL data should be denied with ”Cache-Control: no-cache, no-store”
(see 2.4.2.3). Including ”Pragma: no-cache” is only needed if a HTTP 1.0 cache could
be used, but given our TLS 1.2 usage with client certi�cates (see 4.3.6) e�ectively only
allows caches which also support TLS 1.2 and they are extremely unlikely to be HTTP
1.0 only, given the ages of these technologies. So the ”Pragma” header is considered
redundant in this case. Static resources (see 4.3.1) can usually be cached and don’t
require speci�c authentication, so to them a ”Cache-Control: public, must-revalidate”
could be applied. It is up to user con�guration and the speci�c implementation if such
�ne tunings are desirable.

The Cross-Origin request handling is done by having a whitelist of acceptable origins
con�gured in the knowledge agent. Whenever a client sends a request which includes
the ”Origin” header, the CORS speci�c headers are included in the response. If the
origin of the client is whitelisted, it is sent in the response ”Access-Control-Allow-
Origin” header, otherwise one of the whitelisted origins is mentioned to provoke a
CORS violation. The allowed methods are always set to the same as in the normal
OPTIONS ”Allow” response and ”Access-Control-Allow-Credentials: true” must be used
to allow the SSL client certi�cate. The allowed and exposed headers can be adjusted to
the actual client need, also the maximum age can be set to a suitable value depending
on how likely the allowed origins will change. Using multiple origins with whitelisting
actually raises a chaching issue [68], which is solved with the header ”Vary: Origin”
in the response to make the cache aware of the reliance of the response on the actual
origin. These rules mainly apply to the handling of the pre�ight request (OPTIONS),
but also to the actual request except that only the response headers ”Access-Control-
Allow-Origin” and ”Access-Control-Allow-Credentials: true” are needed in the actual
request’s response.

These headers deal with the proper allowance of valid Cross-Origin requests, but it is also
required to consider invalid Cross-Origin requests as well for security. If the request
requires a pre�ight, the actual request will not be performed because the pre�ight
response does not allow the origin. But there are so called simple requests [68], where
the actual request is executed without prior pre�ight. The response is only exposed to
the origin if it is afterwards allowed, but the tricky part is, that the request was already
executed and only the answer is not exposed if the origin is denied. This is why it is
important to check, that simple requests are not able to execute privileged operations
but only read data which is then not exposed.

The request is simple if it is a GET, HEAD or POST, so for GET and HEAD it is acceptable
because they never change a resource and the answer, i.e. the actual data, is not exposed.
POST however is very dangerous, but it is only a simple request if the included request
body has a Content-Type of ”application/x-www-form-urlencoded”, ”multipart/form-
data” or ”text/plain” [68].
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It is therefore important, that every POST requires a request body object (even if it
is just an empty object) with a proper serialization format which must not be one of
these above. Not obeying these rules would lead to Cross-Site Request Forgery (CSRF)
vulvnerabilities [92], as after a user once accepted the client SSL certi�cate in a browser
tab, malicious websites in other tabs could execute simple Cross-Origin requests to
modify for example a node in the VSL.

The next section now de�nes how TLS is used, when the client authentication is required
and how the services are identi�ed using their certi�cates.

4.3.6 TLS usage and authentication

The usage of TLS is always required to use this service interface, a plain HTTP version is
not o�ered. Additionally, to ensure the usage of modern and secure encrpytion methods,
the usage of TLS 1.2 or higher is mandatory. The requirements are derived from those
de�ned in the HTTP/2 protocol speci�cation [65], except that ALPN (see 2.4.1.1) is
only required for HTTP/2. Additional rules for the TLS usage and how the X.509 client
certi�cates are used for authentication is now described in detail.

TLS has su�ered from a long list of security issues due to bad con�guration of the servers
or the improper usage of extensions like the TLS compression like already mentioned
in 2.4.1.1 and [58] [59]. This is why additionally to the forced usage of TLS 1.2 or newer,
features like compression or heartbeats should generally not be used. Also the usage
of perfect forward secrecy (see 2.4.1.2) is highly recommended to reduce the impact
of a private key compromise. Certi�cates should have at least 2048 bit RSA public
keys and only the secure hash family of SHA-256 and newer is allowed. These rules
need to be frequently updated to re�ect the current state of research, but also potential
compatibility issues with older devices may arise. In question, having a minimal security
level which is considered secure at the current state of the art is more important.

For the authentication, a whole DS2OS instance uses one CA certi�cate which is known
to all services and agents (see 2.1.2). Every service and agent gets an individual X.509
certi�cate (see 2.4.1.2) for authentication towards the others. During the TLS handshake,
the server has to provide a valid SSL certi�cate and demands a certi�cate from the client.
The connection is actually allowed if the client does not provid a client certi�cate,
but only special unprivileged operations are allowed in this case. These include the
OPTIONS request and the fetching of static resources (see 4.3.1) if they allow to be
publicly fetched. Another exception is the establishment of WebSocket connections (see
2.4.5), as some clients do not properly support client certi�cates. In this case the client
has to provide a token in the Authorization header of type ”WSAUTH” (see 2.4.2.3),
which it previously fetched using a POST operation with an empty object in the body
to ”/websocket/auth-token” while using the client certi�cate there. This workaround
is added to overcome the shortcoming of some Websocket clients. The server must
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store the X.509 certi�cate information per token which it generates at least for the
short time till the token is used. The client always has to request a new token directly
before establishing the Websocket connection. More on the usage of the Websockets is
discussed in 4.3.7.

Either way, the server always has access to the X.509 certi�cate information when
accepting a request which is not one of the public resources or operations. In the X.509
certi�cate, the common name is used to identify the service’s or agent’s name and
additional �elds provide this extra information:

• IsKA (OID 1.3.6.1.4.1.0): true or false whether this is a KA. Needed to safely
identify KAs which may use the extra methods of the KA to KA communication
speci�ed in 4.3.8.

• Manifest (OID 1.3.6.1.4.1.1): the service manifest hash, if this is not a KA.

• AccessIDs (OID 1.3.6.1.4.1.2): the service access IDs, if this is not a KA.

The mentioned OIDs are currently taken from a development range and should be
replaced with OIDs which are o�cially registered with the IANA.

The next section de�nes how callbacks are registered and invoked and how the callback’s
state is maintained.

4.3.7 Callback handling

Based on the analysis of callback techniques in 2.5.5, the two recommended methods
for callback handling is either following the ”Double server” approach (see 2.5.1) or to
establish a stateful connection (see 2.5.3) like a WebSocket (see 2.4.5).

As the WebSocket protocol builds up on HTTP it can be very well used in this scenario.
Also the double server approach can be used, if its constraints are acceptable to the
client. This leads to the �rst design decision, that it is up to the client to decide how it
wants the callbacks to be handled.

This section is further devided into four parts: The �rst part illustrates the high level
design of the callback invocation following the RPC architecture (see 2.2.4). Afterwards,
the high level management of the callback state is discussed for services and the Knowl-
edge Agent. The third part speci�es how the callback invocations using the double
server approach works. Finally the fourth part speci�es the usage of a WebSocket for
the callbacks.
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4.3.7.1 Callback design

The callbacks follow the design paradigm of the Remote Procedure Call (RPC), in the
reverse direction, i.e. the server invokes a client procedure. During a PostOperation
(see 4.3.2), the client either speci�es a ”callbackId” (which is the procedure identi�er)
or a ”callbackUrl”. If the client speci�es a URL, the double server technique is used and
the knowledge agent relies on this URL to be available for future invocations of the
callback. If the client speci�es a callback identi�er, it has to establish a WebSocket for
the callback to be invoked.

The general invocation could be based on a standard RPC protocol like XML-RPC (see
2.4.6) or SOAP (see 2.4.7), but the methods are all quite similar and so a custom RPC
message is the easier approach. The callback is always invoked using a ”CallbackInvo-
cation” object (no matter which of the functions is used - they feature only two kinds
of parameters anyway: an address and in case of virtual node set the node data), and
then replied to with a ”CallbackResponse” object.

The ”CallbackInvocation” object has the following �elds: ”invoke” the method to invoke,
”address”, ”identity” is the identity of the requesting service which caused the callback
to be invoked and in case of a set operation on a virtual node, the node data as ”data”.
The ”CallbackResponse” object has the �eld ”error” which is an error message like in
4.3.3 and only set if the callback failed and ”data” which contains the response data in
case of a get operation on a vitual node.

Depending on the callback technique, more �elds are used on this object but this is the
common base of all callback implementations.

4.3.7.2 Callback state maintenance

The Knowledge Agent has to maintain the callback state, as all other requests of a
service are stateless and the service may suspend during operation, so the callback can
be unreachable without the service deregistering from the Knowledge Agent. In order
to clean up unreachable callbacks, everytechnique allows to check the reachability of
the callback frequently and the Knowledge Agent cleans up the callback. In some cases,
the callbacks unreachability is only discovered during the invocation, usually with a
timeout. As this slows down the operation because they are waiting on the callback to
timeout, the state maintenance is important to reduce occurances of timeouts.

Once a timeout occurs or a callback is known to be dead, the transport module tells the
Knowledge Agent that this happend and the Knowledge Agent can take the measures
like removing the callback. Clients are allowed to reconnect if they use a WebSocket,
so new WebSocket connections which are made within the callback timeout lead to an
invocation of the callback on the new channel. More on the WebSocket handling in
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4.3.7.4.

4.3.7.3 Callback invocation via URL

The callback invocation via URL following the double server technique is very easy: The
Knowledge Agent executes an HTTP POST operation on the URL with the ”Callback-
Invocation” object in the request body and gets back a ”CallbackResponse” object. An
error during the callback execution is indicated using the ”error” �eld in the response,
not using the HTTP status code. Getting an HTTP error is considered a failure of the
reachability of the callback, not an error during invocation (which is technically still an
invocation which worked).

Callbacks must be managed by the client so it actually knows via the URL which callback
to invoke. The client is advised to use the paths below ”/callbacks/” for the callbacks. If
the client is another KA, it has to store it under ”/callbacks/” but does not enumerate
callbacks in the resource index (see 4.3.1). More on callbacks between KAs in 4.3.8.

Keep-alive checks can be done using HTTP OPTIONS method, to detect unreachable
callback URLs early.

4.3.7.4 Using a WebSocket for callbacks

If a WebSocket is used to transfer all callback invocations, �rst of all the ”CallbackIn-
vocation” and ”CallbackResponse” objects need to be extended to perform request and
response mapping. For this purpose, the two �elds ”callbackId” which is the identi�er
de�ned at registration and ”serial” which is a serial number used by the server to match
request and response.

A client usually uses one WebSocket for all callbacks, identifying the callbacks by
id. If a client has to reconnect, it can simply establish a new WebSocket. The server
must resend all outstnding callback invocations using the same serial, so the client
can do deduplication. The callback timeout is always awaited even if no WebSocket is
established, to avoid races between socket establishment and callback registration. To
avoid always hitting timeouts wih dead clients, the Knowledge Agent does frequent
keep-alives using WebSocket ping and pong messages (see 2.4.5). If a client did not
establish any WebSocket connection for the duration of the callback timeout or if
all WebSockets are found dead by alive ping for that amount of time, all WebSocket
callbacks of that client are considered dead.

The client is identi�ed only by its SSL client certi�cate which it uses for the WebSocket
connection. If a client establishe multiple connection (for example during roaming),
the Knowledge Agents sends callback invocations via all connected WebSockets and
treats the invocation as successful once one of the connections sends a response (with
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or without error). This can lead to issues if the certi�cate is used multiple times by
di�erent services, which should be avoided.

Another issue with the WebSocket is the head of line blocking problem similar to the
case of HTTP/1.1 vs. HTTP/2 (see 2.4.3). It actually only occurs during transmission of
data in virtual node get and set operations, as otherwise the message is very small and
no further steps are needed. The Knowledge Agent can decide if at a certain data size
or other criteria, it wants to deliver or receive the data not inside the message, but via a
drop zone. In case a drop zone is used, the ”data” �eld is replaced with a ”dropzone”
�eld containing an URL to the drop zone at the calling Knowledge Agent. The URL
is under the subpath ”/dropzone/” and not listed in the resource index (see 4.3.1). Per
invocation, the knowledge agents reates a sub URL of the drop zone where the client
can receive the data for virtual node set from the invocation using HTTP GET or deliver
the whole ”CallbackResponse” object using HTTP PUT on virtual node get invocation.
Only the virtul node get and set callbacks may use the drop zone. The HTTP operation
on the drop zone can be executed in parallel to the WebSocket and does not block the
callback channel in this case. The Knowledge Agent has to authenticate the client which
acceses the drop zone using its SSL client certi�cate.

4.3.8 Extensions for KA to KA communication

The speci�ed service interface is also usable for the communication between Knowledge
Agents, using these small additions.

To authenticate a service in a KA to KA request which is forwarded on behalf of the
service, the KA’s internal ”ServiceIdentity” object derived from the client certi�cate
is serialized as JSON, base64 encoded and put into the HTTP Authorization header
(see 2.4.2.3) with type ”VSL”. As there is no content negotiation possible there, JSON is
always used. KAs can trust each other to have performed su�cient authentication with
the service, which is part of the VSL middleware design.

Two additional requests are needed for the KA to KA communication only: the hand-
shake and the request for KOR updates. These are executed as usual using HTTP POST
on ”/ka/handshake” and ”/ka/requestKorUpdate”’.

As KAs need an HTTP server implementation anyway, they can use the double server
pattern for callbacks, but they are also allowed to use a WebSocket (see 4.3.7). Addition-
ally, KAs may use the virtual node notify operation instead of a provided subscription
callback, if a KA subscribed.

For the KA to KA requests, content negotiation can be used as usual but every KA has
to accept JSON, not necessarily as the favorite, but it has to be included in the Accept
header and the other KA must accept it if the negotiation does not yield a better choice
that works for both.
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4.3.9 Usage of other RESTful protocols

The speci�cation of this chapter is mostly focused on HTTP, but a transfer to other
RESTful protocols like for example CoAP (see 2.4.4) should be easy to perform based on
this speci�cation. Especially CoAP already provides a CoAP to HTTP mapping, which
should be applicable for this purpose. In case of CoAP, DTLS would be required instead
of TLS for the encryption.
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Chapter 5

Implementation

This chapter summarizes how the implementation of the service interface designed
in chapter 4 is implemented. First, the Java modules for the Knowledge Agent (see
Knowledge Agent architecture in �gure 2.1) are described. They are split into the
serialization unit (see 4.2) with extensions to support for the four supported formats
XML (see 2.3.1), JSON (see 2.3.2), CBOR (see 2.3.3) and protobuf (see 2.3.4) and the
transport modules, which are used for the connector and the server side for the KA.

For each of the three required languages (Java, C and Python, see 2.1.3.1), a connector
to the VSL is implemented and an example code using the connector is presented. Each
of the sections also describes the used implementation approach, libraries and other
development tools.

5.1 Java modules

The di�erent modules of the Java implementation are individual Maven submodules of
the existing VSL parent project. Maven allows to manage the dependencies of a Java
project and its build process using a central repository of the available dependencies
and build modules [93]. For the VSL project, each component is an own Maven module
to allow modular building and replacement of KA components for di�erent purposes.
Using the VSL parent project, the modules can inherit common con�guration for the
VSL project.

For the serialization with the di�erent formats, the module ”databind-mapper” provides
generic functionality. The actual serialization is done using the Jackson library [39]
with its databind functionality, which uses Java introspection to automatically read
an object’s structure and then serializes it. Annotations allow the �ne-tuning of the
process and a runtime cache for the object structure is used to speed up subsequent
serialization of the same object type. The ”databind-mapper” module supports JSON by
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default, as it is already included in the Jackson core and also it is anyway the fallback
format (see 4.3.4). The other formats are available as extra modules, which are loaded
dynamically at runtime by the ”databind-mapper” module, if they are available on the
Java classpath.

To allow for the proper serialization of the VSL nodes according to the speci�cation in
4.2.1, some Jackson annotations are needed on the ”VslNodeImpl” class. These anno-
tations are available separately without using the ”databind-mapper” module and are
directly added to the main VSL code, as these annotations take no e�ect without using
Jackson and also don’t add much overhead.

The other serialization formats are supported by the three optional modules ”databind-
mapper-xml”, ”databind-mapper-cbor” and ”databind-mapper-protobuf”. They use the
respective Jackson plugins for XML, CBOR and protobuf generation. Additionally, the
XML module is con�gured to use the WoodStox XML generator, which was already
recommended in the related work in 3.2. Simply adding or removing these modules on
the Java classpath automatically enables or disables the respective format.

Based on these serialization modules, the actual implementation of the service interface
is done in the modules ”rest-connector” and ”rest-transport”. The connector implements
the client connector for services and the transport is based on some common code in
the connector, but adds the whole server side as de�ned in 4.3 and extensions for KA to
KA communication (see 4.3.8).

The transport uses the Jetty webserver implementation [94] for the HTTP server (see
2.4.2) and the Jetty HTTP client library for the connector. Jetty allows for asynchronous
I/O implementations, has client and server extensions for the WebSocket protocol
(see 2.4.5), which is used for the callback implementation as de�ned in 4.3.7.4. Jetty
uses thread and resource pools for e�cient management of many parallel connections.
Support for TLS (see 2.4.1) is already builtin to the Java Virtual Machine (JVM), but also
integrated to the Jetty library.

Using the Jetty library, a full HTTPS server with TLS client auth, special handling
of the content negotiation (see 4.3.4) and additional headers (see 4.3.5), which also
supports callback channels via websockets (see 4.3.7.4), is running. Additionally, the
”rest-transport” module is able to execute KA to KA requests using a modi�ed connector
variant and to register callbacks to other KAs.

The next section describes the ”rest-connector” module in more detail.

5.2 Java connector

The ”rest-connector” Java module is also based on the ”databind-mapper” module and
uses the Jetty client library only without the server parts (see 5.1). This allows the
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connector to also load additional serialization formats at runtime using the extension
modules to the ”databind-mapper” (see 5.1).

Listing 5.1 shows an example how the Java connector can be used:

Listing 5.1: Example using the Java rest-connector
// wire everything
KeyStore keystore = SSLUtils.loadKeyStore("service.jks", "jkspassword");
JettyContext jettyContext = new JettyContext(keystore, "jkspassword");
JettyClient jettyClient = new JettyClient(jettyContext);
VslNodeFactory nodeFactory = new VslNodeFactoryImpl();
VslMapperFactory mapperFactory = new DatabindMapperFactory(nodeFactory);
VslRestConfig config = StaticConfig.DEFAULT_REST_CONFIG;
VslConnector connector = new RestConnector(jettyClient, "https://localhost:8080/",

config, mapperFactory, nodeFactory);

// start Jetty thread pool
jettyClient.start();

// do example request
VslNode node = connector.get("/agent1/service/test");
System.out.println("Test value: " + node.getValue());

// cleanup
jettyClient.stop();

The next section describes the C connector and its usage.

5.3 C connector

The C connector uses CMake [95] to manage the build process and its libraries in a
platform independent way. For the serialization, JSON is used with the json-c library [96],
and for the HTTP client, the curl library [97] provides great functionality.

The main part of the project is the ”vslconnector” library, which boxes the whole
handling of the connector inside the library and never exposes headers, data structures
or functions of the used libraries like curl. This way it is possible to build di�erent
versions of the library, which for example use a di�erent HTTP client than curl or other
serialization formats like CBOR, without breaking the API or ABI. Also the memory
management of the very dynamic VSL node strucuture is completely done inside the
library using atomic reference counting and accessor methods for the node’s values and
children. This allows future versions to even change the in-memory representation of
the VSL node without breaking compatibility.

Listing 5.2 shows an example how the C connector (installed as libvslconnector.so on
Linux) can be used:
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Listing 5.2: Example using the C libvslconnector.so
#include <stdio.h>
#include <stdlib.h>
#include <vsl-connector.h>

int main() {
vsl_connector *connector = vsl_new_connector();
if(vsl_select_ka(connector, "https://localhost:8080/", NULL)) {

fprintf(stderr, "Error: %s!\n", vsl_error(connector));
return 1;

}
if(vsl_load_identity(connector, "ca.crt", "service.crt", "service.key")) {

fprintf(stderr, "Error: %s!\n", vsl_error(connector));
return 1;

}
vsl_node *node = vsl_get(connector, "/agent1/service/test");
if(node == NULL) {

fprintf(stderr, "Error: %s!\n", vsl_error(connector));
return 1;

}
printf("Test value: %s\n", vsl_get_value(node));
vsl_put_node(node);
vsl_put_connector(connector);
return 0;

}

The next section describes how SWIG was used to generate a Python binding for the C
connector.

5.4 Python connector

The Python connector is also built by the CMake project of the C connector as a separate
submodule. It uses SWIG (see 2.6.2) to create a wrapper library and Python module
which load the original libvslconnector.so into the running Python instance. The public
interface of the library (from vsl-connector.h) is exposed as native Python methods in
this module.

The SWIG generated wrapper automatically takes care of all required management
mechanisms for type conversion (for example the C char arrays are native strings in
Python), memory management and loading and unloading of the library itself. In case
of Python, the e�ort for the memory management is considerably low and the boxed
approach of the C connector eases this even further. The result is a native Python
library which exposes the same functions and data types (less relevant as Python does
not require explicit types) as the C connector.

Listing 5.3 shows an example how the python vslconnector module is used:
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Listing 5.3: Example using the Python vslconnector module
import sys
from vslconnector import *

connector = vsl_new_connector()
try:

if vsl_select_ka(connector, "https://localhost:8080/", None) != 0:
raise Exception(vsl_error(connector))

if vsl_load_identity(connector, "ca.crt", "service.crt", "service.key") != 0:
raise Exception(vsl_error(connector))

node = vsl_get(connector, "/agent1/service/test")
if node is None:

raise Exception(vsl_error(connector))
print("Test value: %s" % vsl_get_value(node))
vsl_put_node(node)

except Exception as e:
print("Error: %s!" % str(e))

finally:
vsl_put_connector(connector)

The Python scripting style allows for a more compact and readable representation of
the above C code, although on the low level it uses exactly the same C libraries, which
should also lead to an equal performance.

The Python connector is just one example out of many languages for which SWIG can
easily generate bindings (see 2.6.2 for a list), so the required steps to add more language
bindings are minimal.
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Chapter 6

Evaluation

This chapter presents the evaluation which I performed to verify that the solution imple-
mented in chapter 5 following the design of chapter 4 actually full�lls the requirements
of 2.1.3.

For each of the sections, the taken approach is reasoned with a prediction of the expected
results. Then the setup of the measurements or the methodology of the qualitative
analysis approach is described. Afterwards, the data is summarized, analyzed and
interpeted in the context of the previous expectations. To summarize the key results, a
small comparison table concludes each of these sections.

The �rst section evaluates the four serialization formats, which are described in 4.2, and
compares them to provide further guidance when which of the formats is preferrable.
Two measurements analyze the size of serialized data to discuss the overhead of the
format and analyze the serialization performance with the provided Java implementa-
tions (see 5.1) to get insights into the required processor power for each of the formats.
Based on the results of these measurements and the conducted assessment in 2.3.5,
recommendations for the usage of the di�erent formats with di�erent use cases are
given.

The second section performs a qualitative evaluation of the whole service interface
design by �rst reviewing the requirements from 2.1.3. Then the e�ort which was
required to implement a connector in another programming language using the provided
interface design from 4.3 is evaluated. Also the practical bene�t gained from using
additional tools like SWIG is reviewed in this part.

Now the evaluation of the serialization formats is presented in detail.
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6.1 Evaluation of data serialization formats

The four serialization formats XML (see 2.3.1), JSON (see 2.3.2), CBOR (see 2.3.3) and
protocol bu�ers (see 2.3.4) are compared in this section using measurements of the
overhead and the serialization speed. These measurements are very similar to those
performed by the related work on serialization which is presented in 3.2, but using the
actual VSL node datastructure from 4.2.1. As this data structure is the only payload
of the main operations of the Virtual State Layer, the actual e�ciency when using
this particular data structure is very important, wich is why these measurements are
conducted with all four candidates.

Depending on the use cases of the services and smart devices which are eventually
using the format, the smallest size on the wire or the lowest power consumption during
serialization might be more criticial, while in other cases a very common format might
be easier to support or human readability might be wanted for debugging purposes.
Based on the results of the measurements, the subsection 6.1.4 provides an overview
when each of the formats is suitable or not recommended.

The measurement setup and the expected results are presented �rst, with a comparison
to the setups and results of the related work. Afterwards the results are presented and
analyzed and then a result assessment concludes this section with speci�c recommen-
dations when to use which of the formats. Now the setup is explained in detail.

6.1.1 Measurement setup

The VSL node data structure can host a wide variety of information, depending on what
was actually requested from the middleware. The di�erent types of information stored
in the node are described in 4.2.1. Additionally, a node may contain child nodes, which
may even contain further child nodes, depending on the information depth that was
requested (see 4.3.1 for the address syntax with parameters like depth).

In order to test di�erent variants of nodes, the following information is either present
or left out of the example node data:

• Value: the actual value of the node, which can be data payload of any size. It is
tested with a small and a considerably big value (1MB, random text).

• Metadata: additional metadata of the node, which can either be explicitly re-
quested or sent together with the value. The metadata’s complexiy can also vary,
for example a simple type would be ”/basic/number” and a complex type can be
derived multiple times and have long type names. Also the restrictions could be
just one restriction or a set of many restrictions that apply.
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Table 6.1: Example VSL nodes for serialization measurements
# Name Data (value) Metadata Children

1 simple data node simple value none none
2 big data node big data (1MB) none none
3 simple node simple value simple metadata none
4 metadata node no data complex metadata none
5 big node big data (1MB) complex metadata none
6 simple data structure simple value none child structure
7 big data structure big data (1MB) none child structure
8 simple structure simple value simple metadata child structure
9 metadata structure no data complex metadata child structure
10 big structure big data (1MB) complex metadata child structure

• Children: the node can additionally have child nodes, which ususally contain
the same data as the parent (so also metadata only, data only, etc.).

These di�erent possibilities are combined to ten example node structures, which are
listed in table 6.1. The child structures which are added to some of the examle nodes
always use the structure presented in �gure 6.1. The �lled nodes in this �gure are the
children which also contain the same data and metadata as the parent node (denoted
with ”/” in the �gure). The nodes which have a dashed line around them and no �lling
are just path components without any data or metadata. This can happen in some cases
like for example if only data is requested and the nodes do not have data (in this case,
the node would have metadata which was not requested) or if the requesting service
does not have the access rights to query the node itself, but has access rights on one of
its children. In order to construct a node’s path, the separator ”/” is added. So the path
of ”child2.1” in �gure 6.1 would be ”/child2/child2.1”.

Each of the ten example nodes from table 6.1 is tested separately with each of the four
serialization formats. This way, the impact of the data to metadata ratio can be analyzed
with each of the formats and it is possible to spot performance problems that arise with
speci�c elements of the node like the child structure or having complex metadata. With
the 1MB data chunk in the big (data) nodes, speci�c problems that arise when handling
larger data structures can be identi�ed, although this data chunk is intentionally still
small enough for e�cient in-memory storage on the test system, as VSL nodes should
currently not contain data chunks that are too large to handle for the services which
use these. A streaming extension is considered to handle node values, which are larger
than the memory of the services which use it, in future versions of the VSL.
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Figure 6.1: VSL child node structure
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With regard to the related measurements of serialization formats that are presented in 3.2,
there are multiple approaches to measure and compare the overhead and throughput or
serialization speed. For the overhead, I compare the absolute sizes of the reference data
structures for the four evaluated serialization formats and the relative sizes compared
to one reference format. As the reference format I choose JSON because it will most
likely have an average size and is highly popular and therefore also generally a good
reference. The �nal recommendation table lists the average of this relative overhead
averaged across all ten example data structures.

The throughput or serialization speed can be de�ned in many di�erent ways, as also the
two related works show (this is described in more detail in 3.2): One measurement, [31],
used the raw data size per second as the throughput metric, while the other, [84],
measured the time to serialize 500 instances of the same reference object. For my
measurements I use the JMH framework in Java [98], which provides very detailed
support for benchmarking of Java operations, inluding things like JVM forking for
multiple runs, warm-up phases to get Java’s code cache and run time optimizations
applied and di�erent measurement and data collection variants. The mode which I use
for the performance measurements executes several iterations of each of the benchmark
methods which each use one of the example structures with one of the formats, writing
the content to a preallocated byte array. This way only the actual serialization time
without any I/O performance impact is measured. JMH is con�gured to run the method
in a loop for a whole second in each of the iterations and then average then needed
time per serialization call in microseconds per iteration.

The measurements were performed on a laptop with an Intel® Core™ i7-4750HQ CPU
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@ 2.00GHz with 16 GB DDR4 memory. The Linux 4.4.50 system was idle except for the
benchmark, which was performed on Java 1.8.0_121 using an icedtea 3.3.0 build.

6.1.2 Expected results

I expect the results to be similar to the related measurements from 3.2. The overhead
of the formats ranging from highest overhead to lowest will be: XML, JSON, CBOR,
Protobuf. For XML I expect a massive overhead, while JSON and CBOR will be quite
ok with CBOR being smaller because it is binary. The protocol bu�ers will be slightly
smaller than CBOR, because the provided schema replaces the self-describing parts
which are still needed in CBOR.

For the serialization performance, I expect the Jackson library and the WoodStox XML
generator to perform overall very well after the JVM warm-up, as they utilize runtime
code generation and structure caches to enhance repeated serializations of the same
data structures, even with di�erent data values. The complexity of XML will likely
make it the slowest format, with JSON being already way faster than XML, but still
signi�cantly slower than the binary formats. The two binary formats will likely perform
very similar, although protobuf could be faster because it generates less output data and
the actual data copying can already have an impact at that level.

6.1.3 Measurement result analysis

The �rst surprising result that came up during the benchmarks is an instability in the
Jackson protobuf implementation, causing exceptions on successive invocations (not
the �rst invocation) when serializing the structures with big data, i.e. big data structure
and big structure. I tried di�erent versions of the library but the problem persisted.
The size of the protobuf serialized structures can be measured as the �rst invocation
succeeds, the performance measurement of these two out of ten structures was not
possible on protobuf. Additionally, this is by itself already a result and the project page
of the Jackson protobuf plugin states: ”With release 2.6.0 (Jul-2015), this module is
considered stable, although number of production deployments is still limited” [99]. So
it seems to be not mature enough for this application. Other libraries for protobuf were
not tested but are likely to produce more stable results.

The total run time of the benchmark was almost two hours (01:57:28). The results are
now presented in detail, starting with the measurements of the overhead.
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Figure 6.2: Absolute sizes of small example VSL nodes

sim
ple

dat
a n
od
e

sim
ple

no
de

me
tad
ata

no
de

sim
ple

dat
a s
tru
ctu
re

sim
ple

str
uct
ure

me
tad
ata

str
uct
ure

0

512

1024

1536

2048

2560

3072

3584

4096
siz

e
in

by
te
s

XML
JSON
CBOR

protobuf

6.1.3.1 Results of the overhead measurement

Figure 6.2 shows the abolute sizes of the four measured formats for all example data
structures that do not contain the big data, as otherwise the scale would be too large.
For example, the values of the simple data node are: XML 32 bytes, JSON 16 bytes,
CBOR 13 bytes and protobuf 6 bytes. The value of the metadata structure for XML was
too large for this graph, it is actually 6816 bytes compared to 3645 bytes of JSON.

What the measurement clearly shows is that the amount of structural information leads
to increasing di�erences between the serialization formats. So the more metadata or
child structures are involved, the di�erences between the formats get bigger. It is also
clearly visible that without large payloads, the formats clearly order from XML with
the highest overhead, over JSON and CBOR being quite close yet CBOR always being a
bit smaller, to protobuf with the lowest overhead.

The examples with big values stored inside the node are listed as raw data in table
6.2. Intersting is, that JSON and CBOR perform worse because they need to escape
special characters like line breaks. This even applies unexpectedly to CBOR, which still
performs better than JSON but still worse than XML. XML can embed almost any string
data, as long as it does not contain ”<”, without escaping. Protobuf was again the format
with the lowest overhead, but shows an odd result with the big data structure and the
big structure: although the big data structure contains less metadata, its total size is
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Table 6.2: Absolute sizes of big example VSL nodes
Name XML JSON CBOR protobuf

big data node 1048604 1062206 1049375 1048580
big node 1049285 1062588 1049703 1048887
big data structure 9438006 9560052 9444533 9355002
big structure 9444135 9563490 9447485 9227356

Figure 6.3: Relative sizes of example VSL nodes compared to JSON
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greater, but only for protobuf.

Additionally an evaluation of the relative sizes compared to a reference format is per-
formed. As the reference format I choose JSON due to it being middle-sized and very
popular and therefore a good reference. The relative sizes are shown in �gure 6.3.

The last column in �gure 6.3 shows the average of the relative sizes of all ten example
VSL nodes. These avarages will be used in the recommendation table in 6.1.4. The
percentual values for the formats are: XML 158%, JSON 100%, CBOR 88% and protobuf
67%. Now the results of the performance measurement are presented.
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Figure 6.4: Serialization performance of example VSL nodes without big data
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6.1.3.2 Results of the serialization performance measurement

The performance measurement e�ectively performed 100 samples per serialization
format and data structure after the JVM warm-up. Each sample ran a loop to serialize
the data structure for one second into the same byte array, to avoid reallocations of
the I/O bu�er, and then the average serialization time in microseconds was averaged
per sample and then the average of these 100 samples are used. Figure 6.4 shows the
results for the data nodes and structures without big data and �gure 6.5 shows the
results for the big data nodes and structures. Note that in �gure 6.5 for the big data
structures, protobuf results are missing due to the aforementioned bug in the library.
The con�dence interval of all values is less than +/- 1.5 %, which means that even the
minima and maxima are so close to the average value, that a further look at the value
distribution does provide valuable insights.

The actually most impressive result is the extreme performance of the CBOR serial-
ization, exceeding all other formats signi�cantly. For example the simple node was
serialized with CBOR in 0.613 µs, while JSON needed 4.729 µs and protobuf needed
2.964 µs. Also interesting is that JSON even takes longest (even longer than XML) when
serializing the big data nodes, most likely because of the need to properly escape the
string, while XML needs way less escaping. This can be seen in �gure 6.5, while for
all other data structures in �gure 6.4 JSON is always faster than XML. But this e�ect
could also be just caused by the output size, as the size measurement in 6.1.3.1 already
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Figure 6.5: Serialization performance of example VSL nodes with big data
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revealed a similar e�ect: While JSON is usually more compact than XML, in case of the
big data nodes, it actually uses more space than XML.

Protobuf also shows an interesting result in �gure 6.4: Usually it is performance wise in
between of JSON and CBOR, but with higher complexity of the node (structure instead
of just one node) and higher complexity of the metadata (especially metadata structure),
it gets even worse than JSON and relatively performs worse than it did with the simpler
structures. This could maybe be already related to the bug in the library, although it did
not occur even once with these small structures, or it is related to the way how protobuf
handles recursive data structures. Anyway, even for the simple data node, CBOR already
proofs that it is the better choice for those aiming at lowest power consumption.

As for the sizes, also the performance is shown relative to the reference format JSON in
�gure 6.6. Also in this graph the two values for protobuf which could not be measured
are excluded from the comparison and also from protobuf’s average value, which is
why this value has to be taken with care in case of protobuf.

6.1.4 Result assessment and recommendations

The presented results from 6.1.3 mostly match the expectations from 6.1.2.

For the sizes, the predicted order from XML being the worst to protobuf being the
best is also the order which I actually measured. One small exception is related to the
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Figure 6.6: Relative serialization performance compared to JSON
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rather uncommon use case of very long 1 MB data strings inside the nodes, where XML
surprisingly performed better than JSON due less escaping in the value.

The performance evaluation showed that protobuf does actually not perform comparable
to CBOR but actually way worse and even on a similar level to JSON. Apart from this,
the expectations were met, as all formats performed quite good due to the high level
of optimization in the Jackson and WoodStox libraries and the performance of XML,
JSON and CBOR being in the expected order although CBOR suprised with even better
values than expected.

The protobuf implementation shows serious issues and also some odd results like the
smaller size of the big structure compared to the big data structure (see 6.1.3.1 and
table 6.2). Also some performance issues with node structures could be related to the
implementation instead of the format in general (see 6.1.3.2). At its current state the
implementation is too unstable to be actually used.

Compared to the measurements from the related work in 3.2, most of the results are in
line with the expectations which I derived from their results except for the protobuf
results. The results were reproduced for simple data structures but the more extreme
examples of deeply nested nodes and big node values behaved di�erently for proto-
buf. Also the importance of a JVM warm-up was visible in the live output during the
measurement, showing extreme variations of the values during the �rst few warm-up
iterations.
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Finally it can be concluded that JSON and CBOR are both good choices as the serial-
ization format for an interoperable service interface. Their self-descriptiveness, good
(or in case of CBOR, acceptable) human readability and a good performance supports
extensibility, compatibility and the usage on constrained devices. It can be said that
while JSON has a higher usage degree on the web, CBOR can improve the resource
usage a lot which is particularly useful for embedded devices.

In a browser environment, for example with JavaScript, or on languages where no robust
CBOR implementation exists yet, JSON can be used as a safe default which is always
supported. Also the translation of the CBOR data to JSON is needed for debugging, so
that humans can actually read the data without additional tools.

Binary formats which use a schema like protobuf can be used to reduce the serialized
size even further, but loosing a lot of interoperability and compatibility, which is why
their usage should be considered carefully. XML mostly serves for improved human
readability but its high overhead makes it a bad choice for on the wire serialization.

In consequence, the implementation of the transport module for the knowledge agent
(see 5.1), is con�gured to prefer CBOR over JSON where applicable, but leaving JSON
as the fallback format for cases where CBOR support is not explicitly advertised (see
4.3.4 for details on the negotiation of the formats and the JSON fallback). XML support
is included for requests which explicitly want to use XML, but not actively used by the
services or in KA to KA communication (see 4.3.8). The protobuf module is disabled
and would need to be replaced by a reliable version of it.

Table 6.3 summarizes key results and extends table 2.2 with the measured results and the
actual usage of the formats. The next section evaluates the protocol on a real network
connection.

6.2 Evaluation of the service interface

The Java modules from 5.1 are already integrated into development builds of the Knowl-
edge Agent and showed a stable behaviour (except for the protobuf module, as already
discovered in the previous section). All three connectors have been successfully tested
with running knowledge agents to execute several get requests. None of the implemen-
tations showed particular de�cits in performance or stability during these requests.

The following two subsections evaluate the two main goals of the thesis, the creation of
a service interface using standardized technologies and the creation of native connectors.
Section 6.2.1 performs a review of the requirements which are de�ned in 2.1.3. The next
section 6.2.2 evaluates the native connectors, how much e�ort it was to create them
and if proper interoperable libraries could be used.
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Table 6.3: Recommendations for serialization formats (extends table 2.2)

Format XML JSON CBOR Protocol
Bu�ers

Media type application/
xml

application/
json

application/
cbor

application/
x-protobuf-vsl

Size of
simple node

32 bytes 16 bytes 13 bytes 6 bytes

Serialization
time of
simple node

8.899 µs 4.729 µs 0.613 µs 2.964 µs

Relative
overhead1

158 % 100 % 88 % 67 %

Relative
serialization
time1

185 % 100 % 34 % 99 %

Strengths high human
readability

compact text
format,
good human
readability

compact,
very fast

very compact,
fast

Weaknesses very high
overhead,
slow

string
escaping
needed for
string values

young,
not so popular

schema
needed,
not self-
describing,
broken
libraries

Used by the
service
interface

only when
explicitly
requested

as a fallback if
no speci�c
format is
requested or if
CBOR is not
supported

as the favorite
format when
available

currently
never

Currently
supported
implementa-
tions

Java Java, C,
Python,
JavaScript2

Java No stable im-
plementation

1. compared to JSON as the reference format, average value of all tested example nodes
2. JavaScript implementation in the VSL WebUI project, developed by Andreas Hubel
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6.2.1 Review of the requirements

The requirements from 2.1.3 are summarized in table 2.1. They are now analyzed
individually and what part of the service interface design re�ects the requirement.

1. standardized network protocol: all protocols which are used in the design
(chapter 4) are standardized in a respective RFC of the IETF. Protocol Bu�ers
would be an exception here but they are no mandatory part of the interface and
are currently disabled anyway.

2. interoperability: all parts of the service interface in 4 are designed independent
of programming language or platform.

3. low overhead of data transfers: the RESTful design has shown to have a low
overhead in the related work (3.3), additionally is the desing not �xed to HTTP,
so CoAP (see 2.4.4) could be adopted to further reduce the overhead. The content
negotiation feature allows for clients to select a suitable data serialization format,
so if low overhead is the main goal of the client it can use CBOR or protobuf
serialization following my recommendations in 6.1.4

4. low latency of a full operation: using a follow up HTTP request after the �rst
request with HTTP/1.1 keep alive or HTTP/2, a full operation only requires one
round trip, sending the request and receiving the response as per de�nition in the
HTTP standard (see 2.4.2). The implementations also reuses existing connections
properly. The �rst operation requires full authentication with the TLS handshake
and a TCP handshake, which is a lot more but only for the �rst request.

5. simplicity of the implementation: the next section 6.2.2 evaluates this in
detail.

6. security: encryption, authentication: the usage of TLS 1.2 or newer with
client certi�cates (see 2.4.1) is required by the design (see 4.3.6) and used in the
connector and knowledge agent implementions. TLS provides a very high level
of encrytion and secure authentication with these settings.

7. callback support: the callbacks were one of the tricky parts during the adop-
tion of the RESTful design. The section chapter 4.3.7 shows very detailed how
callbacks be realized, with one simple to use approach following the ”Double
server” technique from 2.5.1 and one approach which preserves the client server
architecture of HTTP using a WebSocket (see 2.4.5 and 4.3.7.4) for the callbacks
following the technique with stateful connections from 2.5.3.

8. asynchronous operations: are provided by HTTP and even handled very ef-
�ciently in HTTP/2 (2.4.3) with frame multiplexing. For the callbacks based on
WebSockets, the drop zone provides asynchronous operations of virtual node
invocations (see 4.3.7.4).
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9. stateless/suspendable protocol: a RESTful service interface is by design state-
less (see 2.2.5), but if a full TLS handshake is needed the initial request still takes
a few more roundtrips, but at least no complex registration process is required.

To summarize, the requirements from table 2.1 are met by the service interface design in
chapter 4 and the implementations from chapter 5. The next section takes a deeper look
at the native connectors and requirement #5, the simplicity of the native implementation.

6.2.2 Evaluation of the native connectors

The implementaion of the native connectors was an overall straightforward task. For
HTTP and JSON, libraries in any programming language can be found within seconds
of googling and thousands of examples and other projects using them are available.
Especially for C, the process of �nding the libraries and connecting the components
was surprisingly easy. The C implementation is also considerably compact, the code to
execute a GET request and perform the JSON mapping has a total of 68 lines of code
handling CURL and JSON-C, although some initialization and other stu� is done in
other functions before that.

With using SWIG for the creation of a Python wrapper around the connector for C,
there was literally no development e�ort involved for Python. The SWIG interface
de�nition for the Python wrapper is excactly like the example in 2.6.2, only including
the main header �le in a total of �ve lines of code. Even creating the example program
in Python was a more complex task (18 lines of code).

So it can be concluded that the implementation of native interfaces for the service
interface design is simple and the generation of wrappers for the C library using SWIG
a very successful approach for fast extension of the number of supported programming
languages.
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Chapter 7

Conclusion

In this thesis, a RESTful service interface for the Virtual State Layer middleware is
speci�ed and implemented with support for multiple serialization formats based on
content negotiation and �exible callbacks using websockets or callback URLs following
the ”double server” technique. Service connectors are implemented and tested on
di�erent programming languages, using Java, C and Python. With the SWIG wrapper
generation, the language binding for Python was automatically created and the same
approach can be used with a lot more programming languages.

For the design of the service interface, di�erent architectural principles were considered
and the RESTful design was identi�ed as the best �tting architecture. Other architectural
principles could be used as well, like the Remote Procedure Call (RPC) architecture, but
I think they are less suitable to represent the VSL service interface. I still used RPC
in one part of my service interface design, the callbacks. This combination of mainly
RESTful design with RPC for callbacks showed to be useful for the design.

As part of the analysis, di�erent formats for data serialization are compared and all of
them are available using content negotiation. A detailed evaluation of these formats
showed when which of the formats is more suitable for the needs of the service like
lower network overhead, less processing power or higher interoperability. The im-
plementation of the Google protocol bu�ers turned out to be practically too unstable,
although it could still be evaluted with small example data structures.

Multiple protocols and callback techniques are analyzed, but based on the architectural
decision, only some of them are actually usable for the service interface design. To
reach the highest interoperability and to use a well standardized protocol, the choice
was made to use HTTP as the protocol for the RESTful service interface. CoAP is an
acceptable choice as well, and it can be implemented as future work (see 7.2). The design
of the service interface should be easy to reuse for CoAP as well, as CoAP provides a
direct mapping to HTTP. CoAP can potentially provide better results in a local network
infrastructure, but there are less NAT boxes, proxies, etc. which can deal with CoAP.
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Also the number of libraries and existing deployments is far lower than for HTTP,
leading to potential interoperability issues.

The most important operations of the service interface are working and have been
tested for obvious performance issues. These implementations for Java, C and Python
serve as a working base for the further development of services and the specialization of
the connectors for particular service needs. Adding more extended or optional features,
like more serialization formats for the C connector or improving the handling of special
cases with callbacks like the drop zone are the next steps to make the connectors more
usable in extended use cases. Especially for the usage of the C connector on embedded
devices, the reference implementation’s API design should be a good choice, but the
actual implementation currently relies on having a kernel, which is not suitable for very
small microprocessors. More optimized variants of the C connector can be developed
for this speci�c use case, even using the same API design.

The now completed design speci�cation is the starting point for the development of
further connectors in lots of programming languages, with speci�c platform optimized
variants, to allow service development in all common programming languages. The
existing implementations can be used to verify the new implementations against this
reference design. Furthermore, the creation of the C connector was straightforward,
showing that the portability of the interface is very high, especially as many languages
have more handy libraries and builtin functions for HTTP and serialization than C.

Finally, the requirements which are listed in table 2.1 are met by the design and imple-
mentation. The protocol is usable with the VSL middleware and already integrated into
the latest development builds of the Knowledge Agent and connectors.

7.1 Goal achievement and resulting artifacts

Looking back at the declared goals in 1.2, the two main goals of the thesis were to design
and evaluate a service interface with standard network protocols for the Virtual State
Layer middleware and to implement and evaluate native connector implementations
for other languages than Java. These two goals were fully achieved, with the exten-
sive design in chapter 4 which uses only thoroughly standardized and interoperable
technologies and with the native implementations of C and Python connectors.

What I did not do is to provide full implementations of all possible combinations of
RESTful low level network protocols, serialization formats and programming languages,
as all these combinations expand to a very large list. Those which are implemented
provide some of the most common combinations with reasonable choices to prove that
it is possible to implement all of these combinations, given enough time and e�ort.
Also the testing of the di�erent operations and especially callback methods in di�erent



7.1. Goal achievement and resulting artifacts 105

networks, like mobile networks, wireless LAN, etc., would provide valuable insights for
which network conditions which of the choices are more appropriate. Detailed testing
in real smart space deployments is therefore valuable future work.

This list concludes the main resulting artifacts of my thesis:

• Speci�cation of the RESTful service interface for the VSL: speci�ed in detail
throughout the whole chapter 4, providing detailed information on aspects like
the serialization using di�erent formats (4.2) and the protocol speci�cation (4.3)
with amongst other things speci�es approaches on callback handling (4.3.7).

• Java reference implementation: provided for the Knowledge Agent and ser-
vices, the Java reference implementation can be used to test other connectors and
of course it can be used in Java development (see 5.1 and 5.2).

• Native connector for C: the native connector for C extends the Distributed
Smart Space Orchestration System (DS2OS) beyond the boundaries of the Java
Virtual Machine and can also serve as a blueprint for other native connectors (see
5.3).

• Native Python connector (SWIG wrapped): proved that the C connector can
actually also be used in common scripting languages, to allow the development of
services with several popular languages like for instance, Python. The approach
is described in 5.4.

• Recommendation guide on serialization formats: backed by the analysis and
evaluation from 2.3 and 6.1, recommendations on the usage of the four selected
serialization formats are given in 6.1.4.

Regarding the common problems of smart spaces which are discussed in 1.1, here is
how my work contributes to solving these issues as part of the Virtual State Layer
middleware:

By making the VSL middleware more usable to developers which use di�erent program-
ming languages and platforms, the VSL’s goal of privacy preserving smart spaces is
faciliated by raising the motivation for developers to use the system, which would lead
to a higher adoption rate and more control over data which leaves the local instance.

The integrated high level of security using Transport Layer Security (TLS) with client
certi�cates for authentication as a mandatory part of the service interface design avoids
accidential deployments with insu�cient security settings like in the mentioned exam-
ples in the introduction. Additionally, the TLS protocol is extendable and frequently
updated to the current state of the art in cryptography, so there is an easy upgrade path
to newer algorithms and more secure authentication methods.

Regarding the interconnectivity of smart spaces, the usage of a standardized and
interoperable service interface increases the ease to actually use the VSL middleware
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and with the native connectors, more devices and services can directly connect to the
VSL, even if they use other programming languages than Java.

Now some ideas on future work are summarized.

7.2 Future work

Some further research can be conducted in this �eld and also more connectors and
protocols could be implemented and evaluated. This list summarizes some ideas for
future work:

• Creation of more native connectors in more languages, either using SWIG or
native libraries of that language

• Implementation and evaluation of the RESTful service interface with other REST-
ful protocols, like especially CoAP

• Further evaluation of the di�erent callback methods, showing when they are
recommendable to use

• More testing and evaluation of the service interface in di�erent networks like
WLAN, mobile networks, Bluetooth, etc.

As the direct next steps, the connector implementations are further tested and polished,
including more source code level documentation and examples.
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