
Technische Universität München
Department of Informatics

Bachelor’s Thesis in Informatics

Crowdsourced IoT Data Modeling

Friederike Groschupp

Technische Universität München
Department of Informatics

Bachelor’s Thesis in Informatics

Crowdsourced IoT Data Modeling

Crowdsourcing für loT Datenmodellierung

Author Friederike Groschupp
Supervisor Prof. Dr.-Ing. Georg Carle
Advisor Dr. Marc-Oliver Pahl, Stefan Liebald, M.Sc.
Date March 15, 2018

Informatik VIII
Chair for Network Architectures and Services

I con�rm that this thesis is my own work and I have documented all sources and material
used.

Garching b. München, March 15, 2018

Signature

Abstract

The multiplicity of devices on the Internet of Things demands the transparent orches-
tration of smart spaces. The Distributed Smart Space Orchestration System (DS2OS)
proposes the crowdsourced creation of abstract interfaces of smart devices, called con-
text models, to provide independence from the heterogeneity of physical interfaces. A
meta model for describing context models has already been developed, but mechanisms
that allow collaborative crowdsourcing are still missing. This paper develops the design
of the Context Model Repository (CMR), a central server storing all valid models in use
and accepting the submission of new ones.

While identifying the overall requirements for the Context Model Repository, we fo-
cus on its main responsibility: ensuring the correctness of models before they can be
submitted to the CMR. A model needs to be validated and minimized to be considered
correct.

Context models are described using XML. Existing standards for XML validation and
minimization are not �t to interpret the semantic properties of context models. There-
fore, we implemented a custom validation and minimization process for context models
that is deployed in the CMR. We present the modular design of our solution. We show
that our implementation ful�lls the demands on the context model repository in terms
of correctness, performance, and usability. With this work we lay the foundation for
the crowdsourced creation of context models.

Zusammenfassung

Die Vielfalt von Geräten im Internet der Dinge (Internet of Things) verlangt nach einer
Möglichkeit, viele solcher Geräte durch eine Software zu steuern. Um die Heterogenität
der physischen Schnittstellen zu umgehen, wird im Rahmen des Distributed Smart
Space Orchestration System (DS2OS) die Einführung von abstrakten Schnittstellen
vorgeschlagen. Solche Schnittstellen werden Kontextmodelle genannt. Kontextmodelle
sollen zukünftig mit Hilfe von Crowdsourcing erstellt werden. Ein Metamodell zur
Beschreibung von Kontextmodellen wurde bereits entwickelt, aber eine Komponente,
die Crowdsourcing ermöglicht, existiert noch nicht. In dieser Arbeit wird das Context
Model Repository (CMR), ein zentraler Server, der alle verwendeten Kontextmodelle
speichert und verwaltet, entwickelt.

Wir identi�zieren in dieser Arbeit die Anforderungen, die das Context Model Reposi-
tory erfüllen muss. Das Hauptaugenmerk dieser Arbeit liegt auf dem Design und der
Implementierung der Prozesse, die entscheiden ob ein Kontextmodell in das Context
Model Repository aufgenommen werden darf. Ein Kontextmodell muss valide sein und
minimiert werden.

Kontextmodelle werden in XML beschrieben. Die Standards, die zur Validierung und
Minimierung von XML Dokumenten existieren, genügen nicht, um die semantischen
Aspekte von Kontextmodellen zu bewerten. Deswegen haben wir einen an unsere
Kontextmodelle angepassten Validierungs- und Minimierungsmechanismus entwickelt,
der vom Context Model Repository verwendet wird. Wir präsentieren den modularen
Entwurf unserer Lösung und zeigen, dass die Implementierung unsere Erwartungen an
die Korrektheit, Performanz und Benutzbarkeit erfüllt. Mit dieser Arbeit legen wir den
Grundstein für die gemeinschaftliche Erstellung von Kontextmodellen.

I

Contents

1 Introduction 1
1.1 Outline . 2

2 Analysis 5
2.1 Goals . 5
2.2 The Internet of Things, Smart Devices, and Smart Spaces 6
2.3 The Distributed Smart Space Orchestration System 7

2.3.1 Virtual State Layer . 7
2.3.2 Smart Space Store . 8

2.4 The VSL Information Model . 9
2.4.1 Hierarchical Addressing System and Namespaces 10
2.4.2 Typing, Composition and Multi-inheritance 10
2.4.3 Restrictions . 14
2.4.4 Access Rights . 15
2.4.5 Semantic Invariants . 16
2.4.6 Representation in Markup Scheme 17

2.5 Context Model Repository . 18
2.5.1 Crowdsourced Creation of Context Models 18
2.5.2 Design principles of the CMR 19
2.5.3 Context Model Validation and Minimization 20
2.5.4 Standardization of Context Models 21

2.6 Requirements Analysis . 25

3 Related Work 29
3.1 Ontologies . 29

3.1.1 RDF and OWL . 30
3.1.2 Collaborative Ontology Design 32
3.1.3 Summary . 33

3.2 Project Haystack . 33
3.2.1 Project Haystack’s Meta Model 34
3.2.2 Tag Database . 35
3.2.3 Haystack Tagging Ontology . 36

II Contents

3.2.4 Evaluation . 38
3.3 The CellML Project . 39

3.3.1 CellML Modeling Language . 40
3.3.2 The CellML Model Repository 40
3.3.3 Evaluation . 42

3.4 Summary . 43

4 Design 45
4.1 Structure of the CMR . 45
4.2 Data Layer . 47
4.3 Processing Layer . 47

4.3.1 Parsing . 48
4.3.2 Validation . 50
4.3.3 Resolving . 56
4.3.4 Error Reporting . 58
4.3.5 Minimization . 60

5 Implementation 63
5.1 Data Model Transformation . 63

5.1.1 JDOM Framework . 63
5.1.2 Java Class "Node" . 64

5.2 AccessID Repository . 65

6 Evaluation 67
6.1 Correctness . 67
6.2 Performance . 68

6.2.1 Creation of Test Models . 68
6.2.2 Execution Time . 71
6.2.3 Summary . 77

6.3 Usability . 77
6.4 Ful�llment of Requirements . 79

7 Conclusion 81
7.1 Future Work . 82

Bibliography 83

III

List of Figures

2.1 The VSL as a middleware between adaptation and orchestration services
[1]. 8

2.2 Usage scenarios for the CMR. 26

3.1 Brief concept of Haystack Tagging Ontology. 37

4.1 Rough structure of the CMR. 46
4.2 Steps and artifacts in the parsing process. 49
4.3 The creation of the temporary node and validation steps for the context

model "myMultiInheritanceModel". 53

5.1 Structure of JDOM object trees. 65

6.1 Time in milliseconds required for resolving context models with inheri-
tance depth 10, 100, and 200. 73

6.2 Time in milliseconds required for validating context models with 21,
341, and 5461 nodes. 75

6.3 Time required for validating the context model "type_degree4_depth6". 76
6.4 Time in milliseconds required for minimizing context models with 5461

nodes. 76

V

List of Tables

2.1 Overview of the basic types, their properties, and restrictions. 15

3.1 Comparison how Project Haystack and the CMR ful�ll the required
capabilities. 39

3.2 Comparison how the CellML Repository and the CMR ful�ll the required
capabilities. 42

3.3 Comparison how Project Haystack, the CellML Repository, and the CMR
ful�ll the required capabilities. 43

5.1 Overview of the variables of class "Node" that are directly derived from
the XML representation. 66

6.1 Time in milliseconds for performing only validation 1000 times for the
inheritance depths 10, 100, and 200. 73

6.2 Number of the correct answers for each context model, together with
the rating of those participants who answered correctly. 78

6.3 Ful�llment of the requirements identi�ed in Section 2.6. 80

1

Chapter 1

Introduction

More and more smart devices are coming into our daily lives, and with them more and
more opportunities to enrich, facilitate and enhance the day. This includes all parts of
our lives: from a smart home increasing comfort and decreasing energy consumption,
to factories optimizing procedures with the help of smart embedded systems, to whole
cities being shaped by intelligent sensors and actuators. From your fridge ordering food,
to a system of devices measuring and redirecting tra�c �ows without the intervention
from a human. In every setting, the combination of numerous smart devices is the most
e�ective, as you can gather as much information about the environment as possible and
in�uence it through multiple actions.

"Ubiquitous computing" – this is the term used by Mark Weiser in 1991 in his article
"The computer for the 21st century" [2] to describe the omnipresence of computational
devices. In Weiser’s vision, ubiquitous computing forms the base of a world in which
computational devices are so well integrated into our daily life that we use them without
thinking about it. All we notice is that these devices display information, in�uence the
environment, or perform actions at the right time and place. The underlying complex-
ity, the e�ort to reach orchestration goals, the connections between devices that are
necessary – all this is invisible to the user.

Smart spaces – environments containing multiple smart devices – are controlled by
complex systems. One of them is the Distributed Smart Space Orchestration System
(DS2OS) [3]. The DS2OS o�ers services that can easily be deployed and adapt smart
spaces in numerous ways. Such services customize the functionality of smart spaces for
the user’s needs, with very low e�ort on the part of the user. This mechanism is similar
to the personalization of smartphones, which led to wide adoption of the devices.

These services need to communicate with smart devices in order to both control their
actions and retrieve information from them. The means of this communication is deter-
mined by the interface of the smart device. The interface de�nes the communication
protocol used, the data and its semantic value that can be retrieved, and the actions that

2 Chapter 1. Introduction

the device is able to perform. The service controlling the device needs exact knowledge
of those properties and needs to be speci�cally implemented for this device – one service
may not be able to orchestrate the same kind of device of di�erent manufacturers.

However, services like the ones proposed by the DS2OS are designed to be used in
many di�erent smart spaces, on many di�erent smart devices from many di�erent
manufacturers with many di�erent interfaces. All those interfaces would have to be
considered in the implementation phase of an orchestration service to make it compati-
ble to di�erent smart spaces. Instead, to enable the seamless integration of services in
di�erent smart spaces, the DS2OS introduces abstract interfaces, so-called context mod-
els. Context models represent the logical and semantic structure of a device and make
it possible for a service to access smart devices transparently. This access is provided
by adaptation services which are implemented once for a device and are interfaced by
context models. The orchestration service implementation now only has to consider
one abstract interface for any type of device, instead of the numerous interfaces of all
existing devices.

As well as proposing context models, Pahl pushed forward the idea of collaborative
crowdsourced creation of context models [4]. The goal of this thesis is to enable this
crowdsourced creation by designing and implementing a central repository storing all
context models in use, called context model repository (CMR).

Besides storing and o�ering context models for retrieval, the CMR must also process
context models. It must ensure that a context model is valid before it is committed and
transform it to a minimized form. The implementation of this processing logic is the
main task of this work.

1.1 Outline

To understand the problem domain the CMR is placed in, we analyze the DS2OS and the
role the CMR plays in the framework in the next chapter. We see how context models
are used for smart space orchestration and infer the capabilities that the framework
managing context models should provide. We analyze the information model that is
used to describe context models precisely, as this knowledge is the base for the design
and implementation of the CMR. Concluding we will identify the requirements for the
CMR.

In Chapter 3, we identify work related to our research. We discuss current approaches
to semantic modeling and ontology building and point out why these approaches do not
su�ce our requirements. We compare our work to other projects aspiring to structure
and standardize their domain information and providing a framework for community-
driven content creation.

1.1. Outline 3

In Chapter 4, we discuss the general design of our solution. This includes the back-end
design and the procedures necessary to validate context models and conform them to be
stored in the CMR. We point out alternatives to our approach together with the reasons
why we chose the present design.

Chapter 5 is a brief overview of the key points of the implementation. This includes
external frameworks that are used as well as the transformation of the information
model into a representation that is automatically validatable.

In Chapter 6, we evaluate our implementation. We show that our implementation
accepts only valid data models and that its performance complies with the requirements.
We also evaluate the feedback returned to the developer for usability and helpfulness.

We conclude in Chapter 7, and propose future work based on our results.

5

Chapter 2

Analysis

In this chapter we will de�ne the research goals of this work. After doing so, we will
analyze the general problem domain and de�ne important terms in the realms of the
Internet of Things in Section 2.2. We present the Distributed Smart Space Orchestration
System and the key components relevant for this work in Section 2.3. The most relevant
component, the information model that is used to de�ne context models, is presented
in Section 2.4. Section 2.5 discusses the crowdsourced creation of context models and
the role the CMR has to ful�ll. Finally, we identify the requirements for the CMR in
Section 2.6.

2.1 Goals

To enable the crowdsourced creation of context models as proposed by [4], the context
model repository is required as a central component accepting and storing the context
models created. The goal of this thesis is to design and implement the basic functionality
of the CMR.

This task requires several steps:

1. Analyze how the CMR is embedded in the context of DS2OS.

2. Analyze the properties of the VSL information model and the rules that context
models need to comply with.

3. Identify the requirements of the CMR.

4. Design and implement an automated validation process for context models.

5. Design and implement an automated minimization process for context models.

With the information obtained in step 1 and 2, we are able to formulate the requirements
in step 3. We will see that one of the main purposes to be ful�lled by the CMR is the

6 Chapter 2. Analysis

validation and minimization of context models. The design and implementation of those
processes is the main contribution of this work.

2.2 The Internet of Things, Smart Devices, and Smart Spaces

De�ning the term Internet of Things (IoT) is not a trivial task. In 2015, IEEE proposed
the following de�nition for small environment scenarios [5]:

An IoT is a network that connects uniquely identi�able “Things” to the
Internet. The “Things” have sensing/actuation and potential programma-
bility capabilities. Through the exploitation of unique identi�cation and
sensing, information about the ‘Thing’ can be collected and the state of the
“Thing” can be changed from anywhere, anytime, by anything.

In this thesis and in the scope of the embedding project, the Distributed Smart Space
Orchestration System (DS2OS) [3], such a “Thing” is called smart device. With its
features, it is possible to both sense and a�ect the environment remotely, integrating
the physical world into computer-based systems.

An environment containing smart devices that interact with each other and o�ering to
control those devices via software is called smart space. Smart spaces can be implemented
in various settings, for example o�ces, homes, or public spaces. Within those smart
spaces, smart devices provide extra functionality, like automatically controlling the
room temperature, locking or unlocking doors, or o�ering a custom lighting.

The term smart space orchestration refers to the management of smart devices using
software with a particular goal in mind. Typically that goal is reached by orchestrating
several smart devices. The information that is required to ful�ll the orchestration goal
is called context.

An adaptation service o�ers access to smart devices. Through it context can be retrieved
or modi�ed. We introduce context models, which are used to de�ne the structure of
context. Adaptation services can provide uniform access to similar devices by using the
same context model.

An orchestration service, or smart service, is implemented to ful�ll the orchestration goal.
Instead of addressing each device individually, which would require knowledge about
the physical interfaces, orchestration services can work on the context models used by
the adaptation services.

2.3. The Distributed Smart Space Orchestration System 7

2.3 The Distributed Smart Space Orchestration System

The variety of smart devices that can either be bought or built can make smart space or-
chestration a complex and time-consuming task. With these problems in mind, Pahl [3]
envisioned and implemented the DS2OS. The goal of DS2OS is to overcome the hetero-
geneity of smart devices, allow the easy orchestration of smart spaces, and encourage
the development and usage of orchestration services. Besides the Virtual State Layer
(VSL) middleware, which o�ers an abstraction of smart devices and their orchestration,
it o�ers additional components like an app store for orchestration services, a directory
and repository for data models, and a service management framework.

In the following, the word "developer" describes a person implementing an orchestration
or adaption service or creating a context model. The word "user" refers to a person
residing in a smart space and deploying orchestration services. A person can be both a
developer and a user.

2.3.1 Virtual State Layer

The Virtual State Layer (VSL) is the centerpiece of the DS2OS. It o�ers various assistance:
the management, acquisition, and storage of context, the abstraction of smart devices,
and an overview of the devices and functionality present in the smart space. Context
acquisition, which includes multiple sophisticated subtasks, is made transparent to
service developers, just as context manipulation, which is done by using a set of �xed
API functions o�ered by the VSL.

The VSL is designed as a self-managing peer-to-peer system of computing nodes, or
Knowledge Agents (KAs). At start-up time, a service connects to one of the KAs. KAs
are also responsible for communicating with smart devices and retrieving and storing
context. Orchestration services are connected through the KA they are run on to
the entire smart space. They can retrieve previously stored context, request current
context and manipulate the environment. Services can communicate with each other
by accessing each others context. The KAs of a smart space connect with one another
and span the VSL overlay, which is transparent to both orchestration services and smart
service developers.

Figure 2.1 visualizes the VSL’s functionality as a middleware between the real and the
virtual world. The real world is determined by physical features that can both be sensed
and in�uenced by the smart devices contained in it (1). The communication between
these devices and the VSL is handled by an adaptation services (2a). An adaptation
service is developed speci�cally for each context model of a device and is speci�c for the
interface of the device and the mode of communication it uses. It also determines which
abstract interface is used with this device. Both the functionality of the device and the

8 Chapter 2. Analysis

Figure 2.1: The VSL as a middleware between adaptation and orchestration services [1].

data it generates is structured by the VSL (3): devices are represented as virtual data
nodes, and raw data is converted into meaningful information (e.g. the temperature scale
the device works with internally is transformed to the Celsius scale). This standardized
information is then used by the orchestration services (2b). The properties of the
underlying hardware are not important to them.

The center of this design is data. Data needs to be structured to enable the exchange
between applications. We use context models to structure data. The language used to
de�ne context models is described in Section 2.4.

The VSL o�ers the possibility to search for certain types of context models, allowing
a service to look for possibly available context. For example, it can be checked if and
how many instances of the context model "lamp" are present in the smart space.

To support portability, the points of interaction – the context models – are desired to
be standardized. Only standardization of context models will abolish the heterogeneity
of the hardware.

2.3.2 Smart Space Store

Considering the choice to let third-party developers provide application for smartphones
as one of the factors for the success of these devices [6], the DS2OS chooses a similar
approach for orchestration service creation and distribution.

The DS2OS features the Smart Space Store, a component similar to an app store for
smartphones. Everyone can implement an orchestration service and o�er the executable
on the Smart Space Store. End-users are then able to easily deploy those executables in
their smart space.

2.4. The VSL Information Model 9

The Context Model Repository (CMR) is designed to be an independent part of the Smart
Space Store. The CMR stores all context models that are in use. A smart service may
only use models that are stored in the CMR. This way context models can be reused.
Just like with smart services, everyone can submit context models. For a service to be
accepted, all context models it references must be de�ned and stored in the CMR. The
design and implementation of the CMR is the focus of this work. A detailed analysis of
the demands on the CMR is conducted in Section 2.5.

The Smart Space Store does not only provide orchestration services and context models,
but also evaluates meta data concerning the usage of smart services and context models.
This data includes which context models a service uses, the relationships between
services, and statistics about the quality and usage of both services and models. This
data can be interesting when considering convergence mechanisms for context models
(Section 2.5.4).

2.4 The VSL Information Model

The information about the environment required by services to ful�ll their orchestration
goal is called context. Context needs to be structured and represented in such a way
that humans can easily understand it and machines can process it. In the VSL, context
is structured by context models, which abstract the features and properties of device
types. The properties and structure of context models are de�ned by the VSL information
model.

To suit the needs of the DS2OS, the information model used needs to ful�ll various
requirements: It must be easy to understand, so that that developers can create context
models without a high obstacle; it must be dynamically extensible, so that new context
models can be added continuously; both its syntax and semantics must be validatable
in order to provide safety; and it should be e�ciently parsable.

Therefore, the VSL information model was designed as a hybrid of Key-value pairs,
object oriented models, markup schemes and logic based models [4]. With the comprised
advantages of those approaches, the VSL information model features:

• fast accessibility of context models through a hierarchical addressing system;

• semantics through the implicit dependencies created by namespaces;

• a typing system, which is dynamically extensible and allows computer-based
validation and supports the human understanding of context;

• multi-inheritance and composition, through which dependencies between context
models are represented and context model creation is facilitated.

10 Chapter 2. Analysis

The properties of the information model relevant for this work are introduced in more
detail below.

2.4.1 Hierarchical Addressing System and Namespaces

The VSL uses a hierarchical addressing system in order to identify context models. Each
context model is identi�ed by a unique quali�ed address. Models are addressed similarly
to �les in a �le system: /root/.../parent/child. This addressing system brings several
advantages.

First of all, it is easy to understand, as users are used to this scheme from �le systems.
Additionally, the hierarchical addressing scheme gives the context models semantic
meaning: Composition can be shown by aggregating several context models under the
same pre�x or subtree; containment is expressed by the logical tree structure. The
address smartDevice/liдhtSensor/irradiance implies that the smart device contains a
light sensor, which can measure the irradiance.

This hierarchical addressing scheme automatically creates namespaces. If two di�erent
context models share a subaddress, they can still be clearly distinguished by their full
address. For example, the context models car/lamp and room/lamp can be clearly
distinguished. In the CMR, this addressing scheme divides the context models into sub-
branches and facilitates �nding a certain type of context model, an important property
for the reuse of context models.

For better readability, we will shorten the typenames of context models in the text below.
However, in listings we may use exemplary, sometimes abbreviated, paths.

2.4.2 Typing, Composition and Multi-inheritance

The entities of the semantic type system in the CMR are context models. A context
model has exactly one outer node, the root node. This node can contain further modes,
called subnodes. Root and subnodes share the same properties in the VSL information
model. Every description that is given for a "node" applies to them.

Nodes can carry a value, contain subnodes and specify meta information restricting this
semantic information. It can also be de�ned which access groups are allowed to access
their context.

In the VSL information model, each node is of one or multiple types. When a new
context model is added, it automatically de�nes a new type that can be reused. This
type is identi�ed by the fully quali�ed address of the context model. This implements a
dynamically extensible type system.

2.4. The VSL Information Model 11

Using types has two incentives. Firstly, types constrain the values a node can adopt, as
well as if and what kind of subnodes they can contain. This gives each context model a
semantic meaning that can be computer-validated during both context model creation
and runtime. Secondly, types support the general understanding of the functionality of
a node by adequate naming. A node of type "light sensor" reveals its rough properties
without requiring a closer look at its speci�cation.

All types in the type system must be derived from at least one of the four basic types.
The four basic types are:

• Number : The value of nodes of type number is a signed integer.

• Text: The value of nodes of type text is a string.

• Composed: Nodes of type composed can contain other nodes, called subnodes or
elements. Subnodes are also of at least one type and have the same properties as
nodes. The number and type of those subnodes is prede�ned by the speci�cation
of the context model and cannot be changed during runtime.

• List: Nodes of type list can contain subnodes as well. In contrast to the composed
type, the number and type of subnodes can be changed during runtime. List is
the only type that can adapt its structure during runtime.

Note that nodes can only specify values if they inherit from number or text types, and
they can only contain subnodes if they inherit from composed or list types. In the
following, those basic types are referred to as "basic/[type]".

We will use examples to support the understanding of the properties of the VSL infor-
mation model. For this, we will use a very simple syntax, which makes use of key-value
pairs. In Listing 2.1, for example, "type" and "value" are keys.

Listing 2.1 shows the de�nition of a simple context model which consists of only one
node, the root node. The root node is of type "basic/number" and speci�es the value
"42". If we add this context model under the name "myNumber" to the type system, we
can reuse it to directly de�ne a new node with this properties.

type: basic/number

value: 42

Listing 2.1: De�nition of a simple context model. The context model’s root node is of
type "basic/number".

Listing 2.2 shows a context model that contains three nodes, the root node and two
subnodes contained by it. When a node contains subnodes, they are structured in an
ordered list. The subnode itself is of type "basic/number" and may therefore contain a
value. Note that subnodes need to be clearly identi�able, consequently they are assigned

12 Chapter 2. Analysis

a tag which is unique in the containing node. This name does not in�uence the node’s
properties.

type: basic/composed

subnodes:

|-tag: subnode1

type: basic/number

value: 12345

|-tag: subnode2

type: basic/text

value: thisIsAValue

Listing 2.2: De�nition of a simple context model. The context model’s root node is of
type "basic/composed".

We will extend the expressiveness of the VSL information model for more powerful
type creation. This is achieved by introducing di�erent actions that are described below
and can be performed on existing types to create new ones.

The existing entities of the type system are reused to create new types. New types can
be created through subtyping, (multi-)inheritance, and composition.

With subtyping, new data types can be de�ned by altering restrictions (2.4.3), informa-
tion that limits the possible values and subnodes of a node. For example, a boolean type
can be de�ned as being of type number, but only allowing the values "0" and "1". Listing
2.3 de�nes this type "boolean". Furthermore, subtyping can be used to give a semantic
meaning to nodes. The switch of a lamp can be implemented as a node called "isOn",
which in turn directly inherits from the previously de�ned boolean type. The result is
a new type with the same properties as boolean, but with a new name describing the
speci�c functionality. This type can still be accessed through the types from which it is
derived. A service that does not know the type "boolean" can still access the instantiated
node as being of type "basic/number".

type: basic/number

restriction: value isElementOf {0,1}

Listing 2.3: De�nition of the type "boolean".

After type "boolean" is added to the type system, we can reuse it to de�ne the type
"switch" as shown in Listing 2.4. "switch" has the same functionality as boolean but an
extended semantic.

type: "boolean"

Listing 2.4: De�nition of the type "switch". It subtypes the type "boolean" without
making any changes to its properties.

2.4. The VSL Information Model 13

Composition can be used in order to create complex context models consisting of al-
ready existing simpler context models. Representing a smart device that contains a
temperature sensor, an LED, and a speaker is an easy task. The developer de�nes a new
context model called "mySmartDevice" which is of type composed and contains three
subnodes: "temperatureSensor", "led" and "speaker". For this implementation, it is of
course necessary that the three context models used are already de�ned and stored in
the CMR.

To continue our example, we de�ne the type "lamp" in Listing 2.5. The root node is of
type "basic/composed". It contains a subnode which is named "switch". Note that the
name has no in�uence on the node, we might as well give it a random identi�er. What
determines the properties of the node is the type. Through it, we can determine that
the node is a "number", a "boolean", and has the semantics of a "switch".

type: basic/composed

subnodes:

|-tag: switch

type: switch

Listing 2.5: De�nition of the type "lamp". The root node contains a subnode of the
previously de�ned type "switch".

Multi-inheritance is the most complex concept here. It is necessary as one component
in smart environments can have diverse functionality, and this diversity needs to be
represented in its type. Consider a lamp which can be switched on and o�, but also
o�ers the additional functionality of dimming the light intensity and changing the light
color. In the running system, a smart service may be implemented to work with the
type "dimmableLamp", but not with the type "dimmableAndColorfulLamp". Another
more basic smart service is implemented to control the type "lamp", as it only wants
to switch the light on and o�. We want all those context models to be re�ected in the
context model type.

We de�ne the new context model "dimmableAndColorfulLamp" to be of type "dimmable-
Lamp, colorfulLamp, lamp". Again, all three referenced context models need to be stored
in the CMR. The new context model now inherits all properties – default values, subn-
odes, restrictions and access rights – from all three context models. This happens from
the rightmost to the leftmost type. As a result, default values or subnodes with the same
identi�er are overwritten by the leftmost context model that speci�es them.

The de�nition in Listing 2.6 shows how easy and straightforward the de�nition of this
complex context model is.

type: dimmableLamp, colorfulLamp, lamp

Listing 2.6: De�nition of the type "dimmableAndColorfulLamp". Multi-inheritance is
used to facilitate the de�nition.

14 Chapter 2. Analysis

The context model with the modelID "dimmableAndColorfulLamp" can now be accessed
by smart services through all of its types in its inheritance chain (which also contains
the basic type composed). For a service accessing the node as the "lamp" type, it is
transparent that the context model has to o�er more context than the simple "isOn"-
switch. This feature represents the functional diversity of smart devices and supports
portability.

During runtime, all dependencies of a context model are fully resolved. This leads to
faster processing of context models.

2.4.3 Restrictions

As mentioned above, the value as well as the subnodes of a context model can be re-
strained by restrictions. Di�erent restrictions are de�ned for the four basic types. A
context model can specify all restrictions from the basic types it inherits from. Through-
out an inheritance chain, restrictions may only be narrowed or stay the same; they may
never be relaxed. This provides type safety, as a type can always be accessed as the
types it inherits from.

The value of a node of type number is a signed integer. Its value can be limited through
the restrictions "minimumValue" and "maximumValue", which de�ne an upper and a
lower bound for the value. Throughout an inheritance chain, the interval of allowed
values can only stay the same or be made smaller. Now we can de�ne the type boolean,
which we have used before, with the methods used by the VSL information model as
shown in Listing 2.7.

type: basic/number

restriction: {minimumValue:0, maximumValue:1}

Listing 2.7: De�nition of the type "boolean" in accordance with the VSL information
model.

The value of a node of type text is a string. This string can be restricted by a regular
expression, denoted by "regularExpression". As restrictions may only be narrowed
throughout inheritance, a node should only be allowed to specify a regular expression
that describes a subset of the language that is described by the regular expression it
inherits. However, the inclusion problem for regular expressions was shown to be
PSPACE-complete [7]. The class of PSPACE-problems contains all problems that can be
solved with memory polynomial in the size of the input. PSPACE-complete problems
are suspected to lie outside the complexity class NP. It is no e�cient method known to
decide whether a regular expression is a subset of an other. Therefore, it is not feasible
to validate this restriction. We will suggest a solution for this problem in Section 4.3.2.

2.4. The VSL Information Model 15

Basic Type Description Restrictions
Number value is a signed integer minimumValue

maximumValue
Text value is a string regularExpression
Composed can contain subnodes; their number, type and

tags is �xed by the context model speci�ca-
tion

List contains subnodes; their possible types are
�xed by the context model speci�cation; subn-
odes can be added and removed during run-
time

minimumEntries
maximumEntries
allowedIDs

Table 2.1: Overview of the basic types, their properties, and restrictions.

The subnodes of a list can be restricted in the following ways: Their minimum and their
maximum numbers can be de�ned, as well as which types they are allowed to be of.
The corresponding tags are "minimumEntries", "maximumEntries", and "allowedIDs".
Those restrictions have to be met both on runtime and committing the context model.
Nodes can only be removed or added, if the number of subnodes will be in the accepted
range after the operation.

Currently, the type composed does not de�ne any restrictions.

When a node inherits from several basic types, all restrictions of the inherited basic
types can be speci�ed. If restrictions are already de�ned in several types when using
multi-inheritance, restrictions are merged in the order of inheritance (from right to left).

Table 2.1 gives an overview of the basic types and their properties.

2.4.4 Access Rights

The VSL implements access control that is based on accessIDs for read and write access
of services. A service is assigned with access identi�ers through the VSL certi�cates
used for authentication.

Users can de�ne new accessIDs. There are two types of IDs: readerIds, which grant
the right to read certain context, and writerIds, which grant the right to write certain
context. The de�ned accessIds are stored in a central database, the accessID repository.
Each entry consists of a key, which is the name of the accessId group, and a textual
description of the accessID.

For each subnode, the set of readers and writers can be de�ned. The respective tags are
"reader" and "writer". When a service wants to read context, the VSL �rst ensures that
the intersection of the node’s readerIDs with those of the service is non-empty, i.e. that

16 Chapter 2. Analysis

they share at least one identi�er. Only in this case access is granted. The same applies
to write access, where writerIDs are checked.

For allowing every service access to a node, the asterisk (*) is used. If the set is left
empty, only the owning service may access this context. The default is public access.

2.4.5 Semantic Invariants

The de�nition of the VSL information model makes the semantic validation of context
models possible. Every type can be traced back to at least one basic type, which makes
iterative or recursive validation possible. To ensure the safety of running systems, the
integrity of all context models in the CMR must be ensured. Therefore, only well-de�ned
context models will be accepted by the CMR.

For a context model to be well de�ned, it must be syntactically valid and the following
semantic invariants have to apply:

• De�nition of types (R1.1):
All types that are referenced in the context model – including the types that are
speci�ed in the context model’s type, as well as those of the context model’s
subnodes – need to be de�ned and stored in the CMR. If one type cannot be
resolved, the entire context model must be rejected.

• De�nition of access identi�ers (R1.2):
All access identi�ers that are de�ned in both reader and writer for the root node as
well as for its subnodes, need to be de�ned and stored in the access ID repository.
If one identi�er cannot be resolved, the entire context model must be rejected.

• Restrictions (R1.3):
Restrictions have to ful�ll several restraints that must in turn be ful�lled either in
a single context model itself or between several context models when inheritance
is used:

– Only restrictions that are allowed for the type: A node may only specify
restrictions if it inherits the right to de�ne them from the basic type.

– Restrictions must be valid themselves: Restrictions de�ning a lower or upper
bound (number and list type) must leave an interval with valid numbers.
A lower bound may not be higher than an upper bound. Consequently,
a newly de�ned lower bound may not be higher than an inherited upper
bound – and vice versa for the upper bound.

– Restrictions may only be narrowed through inheritance: The set of valid
values may only stay the same or be reduced. Accordingly, a newly de�ned

2.4. The VSL Information Model 17

lower bound may never be lower than the inherited lower bound – and vice
versa for the upper bound.

• Default value (R1.4):
If a default value is speci�ed for a node, this value must match the basic type(s)
of the node. It must also be in compliance with the restrictions de�ned for this
node. A node may only specify a value if it inherits from number or text type.

• Subnodes (R1.5):
Subnodes that are already de�ned in a parent model need to comply with the
de�nition in the parent. Subnodes, inherited and newly speci�ed, need to ful�ll
all of the above invariants as well. If the node containing subnodes is of type
list, numbers and type of the subnodes need to comply with the restrictions, if
speci�ed. A node may only contain subnodes if it inherits from composed or list
type.

2.4.6 Representation in Markup Scheme

Until now we have discussed the VSL information model – the design ideas, how context
is structured, how it is described in the VSL, and which formal restrictions we can impose.
It is necessary to express these structures with a data model, so that humans are able to
create new context models that machines can interpret.

The VSL has previously only worked with a data model based on the Extensible Markup
Language (XML) [8]. However, every other data model supporting the concepts of
naming entities and associating properties could theoretically be used to represent the
underlying VSL information model.

An XML document consists of hierarchically structured elements. An element can con-
tain content, which can be textual information and/or further elements. Each element
is identi�ed by a tag, which is enclosed by "<>". An element can be described using
further information called attributes. Listing 2.8 visualizes this structure.

<tag attribute1="attributeValue1" attribute2="attributeValue2">

textualInformation1

<elementtag1 attribute1="attributeValue3">

textualInformation2

</elementtag1>

</tag>

Listing 2.8: Basic properties of XML documents.

We transfer the aspects of the VSL information model to the possibilities that XML
o�ers. Each node corresponds to an element, which is identi�ed by a tag. The type,

18 Chapter 2. Analysis

restrictions, and accessIDs of a node are described by the attributes "type", "restriction",
"reader", and "writer", respectively. Subnodes are modeled as elements contained by a
node. The textual information a node can hold represents its value. Listing 2.9 shows a
context model de�nition in XML using the example of type "boolean".

<tag type="basic/number" restriction="minimumValue=’0’,maximumValue=’1’">

0

</tag>

Listing 2.9: Formal de�nition of the type "boolean" in XML.

2.5 Context Model Repository

The goal of this theses is to implement a central instance for storing all context mod-
els in use, called Context Model Repository (CMR). The CMR is a necessity for the
crowdsourced creation of context models. This section discusses why the crowdsourced
creation of context models is reasonable, but also which problems it creates. It further
analyzes which requirements crowdsourcing imposes on the CMR, as well as methods
that lead to a standardization of context models.

2.5.1 Crowdsourced Creation of Context Models

Crowdsourcing the creation of context models means that there is no single institution
providing context models to be used for the implementation of orchestration services.
Instead anyone can create a context model. To enable the crowdsourced creation of
context models, a central server, the Context Model Repository, is required to control
the submissions of context models and to store all context models in use.

Crowdsourcing allows a variety and quantity of context models that no single manufac-
turer, institution, or developer would be able to provide. Using a central institution to
create context models would not work, as its ability to create context models would not
scale with the diversity of smart devices and the speed of their development [9].

With the decision to use a crowdsourcing mechanism several problems can arise that
must be considered and avoided:

1. A newly added context model may not be syntactically valid.

2. A newly added context model may not ful�ll the semantic invariants (Sec. 2.4.5).

3. Several similar context models may exist to describe the same functionality.

2.5. Context Model Repository 19

4. Devices that share features may not be described by a common context model 1.

Problems (1) and (2) exist due to either a lack of skills or the malicious intentions of
a developer. Measures taken against these problems, namely an automatic validation
mechanism, are discussed in Sec. 2.5.3. Problems (3) and (4) arise due to the nature
of crowdsourcing; if no convergence mechanisms are enforced, a heterogeneous set
of context models will likely emerge. This is because a central force coordinating the
creation of context models is missing. Ideas for the standardization of context models
are presented in Sec. 2.5.4.

2.5.2 Design principles of the CMR

The CMR is conceptualized as an independent part of the Smart Space Store. It is
open to the public, which means that anyone can commit a (valid) context model and
everyone is able to browse all existing context models and use them in an orchestration
service. An implication of this public access is that context models need to be validated
before they are accepted. For e�cient browsing and reuse of context models, semantic
meta-information about context models is required.

The design of the VSL does not support the creation of multiple versions of context
models 2. As soon as a context model is committed and accepted as valid, it can no
longer be renamed, altered, or removed. This is because a context model may be used
by a service that expects the existence of a context model of its name with the speci�ed
properties. This also implies that a context model is identi�able by only its quali�ed
address. A context model may only be committed when no context model with the
same address already exists.

The CMR stores only validated context models in a minimized form (Sec.2.5.3).

To e�ciently reuse context models and prevent unnecessary heterogeneity of context
models, the set of context models ideally converges. A converging set of context models
has two implications:

• If several context models for the same functionality exist, one should become the
generally used one.

• If part of the functionality of a new context model is already de�ned in the CMR,
this part should be reused through composition, subtyping, or multi-inheritance.

1For instance, all electrical devices with an on/o�-switch should be �ndable and accessible by a service
through a common type describing this functionality. This service could for example turn o� all devices in
a smart space. If not every device inherits from a common type (e.g. "switchable"), the service would need
to search for all possible device types (e.g. "lamp", "fridge", "TV").

2Implicit versioning is possible for extending context models. For an existing "model1", one can create
a context model "model2" which extends the "model1" by using it as type.

20 Chapter 2. Analysis

A converged set of context models would equal to a de-facto standardization and foster
portability. It would prevent lifting the heterogeneity of physical interfaces to the layer
of abstract interfaces. If this were to happen, the introduction of abstract interfaces
would be useless. Therefore, the CMR should o�er convergence mechanisms.

To reduce the latencies for context model requests and to relieve the CMR, every smart
space contains a Site Local Model Repository (SLMR). The SLMR is a cache for the context
models used in the smart space. Therefore, it always contains a subset of the context
models in the CMR.

2.5.3 Context Model Validation and Minimization

Deploying smart spaces requires trust in the safety and security of orchestration systems.
Both aspects are important. You neither want your running system to crash, leaving all
the electronic devices in your home incapacitated, nor do you want to o�er potential
attacker access to your smart space.

One part of providing safety is to ensure the correctness of context models stored in
the CMR (R1). Therefore, every context model must be validated before it is accepted.
This includes both syntactic and semantic validation. A context model is semantically
valid if it ful�lls the invariants described in Sec. 2.4.5.

The validity of context models must also be checked during runtime, when context
is modi�ed: a new value has to comply with the type and restrictions of the node,
subnodes need to comply to the restrictions of the containing list. This implies that
parts of the validation also have to be carried out during runtime.

Two standards exist for the validation of XML documents: the Document Type De�nition
(DTD) [10] and the XML Schema De�nition (XSD) [11]. DTD is embedded in the
XML speci�cation and can be used to de�ne the structure of an XML �le by markup
statements. Those markup statements de�ne a list of legal attributes and elements. The
later introduced XSD, a recommendation by the World Wide Web Consortium, serves
the same purpose but is more powerful. It is name-space aware, provides data typing
and is able to constrain the occurrence of elements.

However, neither DTD nor XSD are �t to validate all aspects of the VSL information
model [12]. Values can not be restricted by the element’s attributes as it is done in
the VSL information model. Inheriting information from other documents is also not
considered. Consequently, we need to develop our own validating mechanism that is
able to determine whether a new context model complies with the semantic invariants.
XSD may be used to determine syntactic validity and that only de�ned attributes are
used when context models are represented with XSD-veri�able XML.

In order to store context models in a concise, standardized form and to reduce the

2.5. Context Model Repository 21

memory required, the CMR should minimize a new context model after validating
and before adding it (R2). Sometimes, a developer may not be aware that he speci�es
the same information to what is already inherited. Minimization means removing all
redundant information from the new context model. Redundant information describes
all information that is already contained in the types that the context model inherits
from and that is not altered.

A running system does not need the semantic information contained in a type system
but requires fast processing and validation. Therefore, context models in use are stored
not in minimized format but fully resolved by the local infrastructure. Storing a fully
resolved context model omits the necessity to resolve dependencies, which increases
performance in the more time-critical deployment in smart spaces.

2.5.4 Standardization of Context Models

The introduction of abstract interfaces in the DS2OS has one main goal: eradicating
the heterogeneity of smart device interfaces, which prevents portability. Portability is
the independence of an orchestration service implementation from a speci�c device
interface. Portability can be realized by describing functionality instead of physical
properties. However, it is important that several devices are described by the same
context model; otherwise, the heterogeneity present at the device level would simply
be lifted to the level of abstract interfaces.

Consequently, the abstract interface – the context model – should be standardized for a
type of functionality. Standardization for context models is needed.

De-facto standardization of interfaces by vendors is likely when a few manufacturers
dominate a market. The major producers introduce a standard, which is then adopted
by smaller manufacturers. This standardization process is common in the network
management domain, where functionality of elements is conformable and few vendors
are present. In contrast, the diversity of functionality and design of smart devices is
much higher. Devices are o�ered from many di�erent producers and can even be easily
built by a user. Therefore, it is unlikely that de-facto standardization of smart device
interfaces by vendors will emerge.

Standardization driven by a central force, a standardization organization, usually takes
some time and is not updated in short intervals. This does not scale given the variety
of smart devices and the speed of development of new devices. A lot of device types
would probably not be covered under such a standardization regime.

Pahl [4] proposes a collaborative user-based crowdsourcing mechanism. The CMR
realizes an ontology of context models. Current ontology-building mechanisms require
experts as contributers, manual intervention, or o�ine discussion. Those requirements
contradict the aspiration of the DS2OS to be open to the public, to empower users all

22 Chapter 2. Analysis

over the world, and to scale for the various applications of smart devices. Therefore
automatic mechanisms supporting the convergence of context models are required.
Such mechanisms are required to be implemented in the CMR (R5). We will discuss
which problems can occur using the example of smart lamps. Then we will propose
mechanisms that may solve them.

Consider the following scenario: Developer A wants to implement a service for a
dimmable lamp. A dimmable lamp can be switched on and o� and the intensity of the
light can be set as a percentage. He de�nes a context model "dimmableLamp" to describe
the functionality of the dimmable lamp:

<model type="basic/composed">

<isOn type = "basic/number"

restriction="minimumValue=’0’, maximumValue=’1’" />

<dimmed type = "basic/number"

restriction="minimumValue=’0’, maximumValue=’100’"/>

</model>

Listing 2.10: First de�nition of "dimmableLamp".

This context model comprises some disadvantages that damp its usability and obstruct
a reasonable ontology design. The context model does not re�ect the inheritance of
properties; an instantiation of this context model can not be found and used as a switch-
able device or a lamp. The subnodes it contains, "isOn" and "dimmed", also correspond
to general types and should not be de�ned by directly subtyping a basic type. Using
the types "boolean" and "percent" would be a better choice, "switch" and "dimmable"
(which inherit from "boolean" and "percent") an even better one. These better re�ect
the semantic meaning of the context model, facilitate the creation of context models,
and support the reuse of context models.

A better de�nition would be:

<model type=".../myModels/lamp">

<dimmed type = ".../myModels/dimmable"/>

</model>

Listing 2.11: Improved de�nition of "dimmableLamp".

Where the referenced context models are de�ned as:

<lamp type=".../myModels/switchable" />

Listing 2.12: De�nition of a lamp which is subtyping type "switchable".

2.5. Context Model Repository 23

<switchable type="basic/composed">

<isOn type = ".../myModels/switch" />

</switchable>

Listing 2.13: De�nition of type "switchable" which describes devices that have an on/o�-
switch.

<switch type="derived/boolean" />

Listing 2.14: De�nition of an on/o�-"switch".

<dimmable type="derived/percent" />

Listing 2.15: Improved de�nition of the property of being dimmable.

It is important that the de�nition is divided into these parts when a new context model
with similar or extended functionality is de�ned. Developer B wants to implement a
service for a color-changing lamp, which can be set to a custom color in addition to
being switched on and o�. With the context model presented in Listing 2.10, there is
no way to de�ne a context model that expresses the relationship between those two
kinds of lamp. With the improved de�nition of Listing 2.11 and the existence of the
referenced types, the context model "colorfulLamp" can be de�ned as:

<model type=".../myModels/lamp">

<color type = "/basic/text" />

</model>

Listing 2.16: De�nition of "colorfulLamp".

A real abstraction of interfaces is only accomplished in the second case. In the �rst case,
the heterogeneity of interfaces persists. In order to reach standardization, the DS2OS
should support this style of context model creation.

Problems also arise if developers create di�erent but similar context models for the same
type of functionality. This could arise due to di�erent naming conventions or the use
of a di�erent order of subnodes. A service working with lamps would then have to use
the context models "lamp", "lamp42", "lampe", and all other context models describing a
lamp. It is desirable that one of these context models for a lamp turns out as the best
one and that it is used for service implementation as well as a base for extended lamps,
such as a dimmable lamp.

As context models may not be renamed, altered, or removed from the CMR, mechanisms
enforcing the convergence of context models must take place before adding the context
model to the CMR. This means that developers should be encouraged to reuse context
models instead of creating a new one and to extend already existing functionality.

24 Chapter 2. Analysis

A �rst step to reach this goal would be the introduction of a semantic tagging system.
With such a system, the semantics of a context model could be described with semantic
tags added by users on or after the commit. A context model for a lamp could be tagged,
for example, with the tags "lamp", "lighting", "light", "room", and "home". This can
support �nding the context model when a developer searches for a certain type in the
CMR and would lead to developers reusing context models more often.

Another approach is the rating of context models based on public statistics. A context
model’s rating can consist of an explicit and implicit rating. Explicit ratings can be
determined by feedback received for services and context models from users and devel-
opers. Better feedback leads to a better rating. Implicit ratings can be derived from the
usage of context models: an implicit rating is determined by the number of services the
context model is used in, and how often those services are deployed in smart spaces.
The more often a context model is used, the better its rating. Additionally, smart spaces
can send error reports, if users agree.

Since a context model’s ratings will be published and publicly visible, developers can
surmise from the popularity of a context model how often it is already used. As using a
popular context model for the implementation of a new adaptation service increases
the interoperability of a new smart device, developers will most likely choose a highly
rated context model. Knowing that the popular context model is compatible to a high
number of devices, the developer of an orchestration service will prefer to use the most
popular context model. This loop leads to de-facto standardization, as in the end the
most popular and most used context model will emerge.

A third approach to reach standardization of context models would be to use syntactic
and semantic matching and intervening in the creation process. A new context model
using similar naming to an existing context model, can be an indicator for overlapping
functionality. The same thing applies when a context model de�nes nodes with similar
restrictions or subnodes to an already existing context model. For example, most num-
bers with the value restricted to either ’0’ or ’1’ have the semantic of a boolean. This
method could be used on commit, where the developer can be informed that similar
context models or functionality already exist. This approach should push the developer
to rethink and improve his design.

A study on the app economy for smartphones shows that those mechanisms realize
convergence of apps [6]. It also shows that the usefulness of development tool has great
impact on dedication of developers, as well as the revenue that can be obtained from an
application. These �ndings should transfer to the development of smart services and
consequently also on the development of context models.

2.6. Requirements Analysis 25

2.6 Requirements Analysis

For implementing context model creation, management, and usage as it is envisioned
for DS2OS and described in Section 2.1, the framework that we propose for the creation
of context models should provide the following capabilities:

• C1: encourage the crowdsourced creation of context models and make it possible
for anyone to create context models.

• C2: use an information model with a corresponding data model that is easy to
understand and use.

• C3: all context models in the DS2OS ecosystem need to be valid.

• C4: context models need to be consistent over time and (smart) space.

• C5: standardization of context models shall be achieved by convergence mecha-
nisms without manual intervention or central guidance.

• C6: reduce workload by enabling the reuse of existing context models for the
creation of new ones.

• C7: build an ontology to structure information about the domain.

Therefore, it was decided to introduce a central component storing all context models
and managing context model submission, retrieval, and management. We have pre-
sented in which environment the CMR is deployed and what purpose it should ful�ll.
We will now identify the functional and non-functional requirements with which the
CMR should comply.

Figure 2.2 visualizes how the CMR might be used in the future and what its interactions
would be. A developer creates a context model and issues a request to add it to the
CMR. The CMR validates the proposed context model. If it is valid, the context model
can be added (R1) after being minimized (R2). A success noti�cation is returned. For a
convenient developing process, feedback about the validity of a context model should
be given almost instantly (R6). If a context model is invalid, the error message should
explain clearly why an error occurred, enabling the developer to resolve the problem
(R8). Models shall be reused, so the CMR must o�er the possibility for developers to
browse existing context models and search for speci�c ones (R3). To further foster reuse,
mechanisms in the CMR should be applied that lead to standardization of context models
(R5). To encourage developers to contribute context models to the CMR, committing
context models must be intuitive, just as browsing context models needs to be in order
to encourage the reuse of context models (R7). Context models are used by services
which are deployed in smart spaces. It must respond to requests for context models
from the SLMR residing in the smart space (R4).

26 Chapter 2. Analysis

add new context model

success or error message

display models for reuse

models used by
services for smart

space orchestration

search for models
CMR

Figure 2.2: Usage scenarios for the CMR.

From the background analysis and the usage scenarios above, we can deduce the follow-
ing requirements for the design and implementation of the context model repository.

Functional requirements:

• R1: all context models stored in the CMR must be well de�ned. This means
that they are syntactically valid and comply to the invariants of the information
model.

– R1.1: all types referenced in the context model must exist in the CMR.

– R1.2: all accessID referenced in the context model must exist in the AccessID
repository.

– R1.3: restrictions of a node may only be narrowed in comparison to inherited
ones.

– R1.4: the value of a node must comply with type and restrictions of a node.

– R1.5: the subnodes of a node must be valid.

– R1.6: the subnodes of a node must comply with type and restrictions of a
node.

– R1.7: the combination of types for multi-inheritance is only allowed if the
resulting context model is valid.

• R2: all context models are to be stored in a minimized format.

2.6. Requirements Analysis 27

• R3: it must be possible to browse and search the context models.

• R4: it must be possible to submit and retrieve context models.

• R5: mechanisms shall be deployed that lead to convergence and thus standard-
ization of context models.

Non-functional requirements:

• R6: the validation process shall allow interaction (performance).

• R7: committing, browsing, and reusing context models shall be easy and intuitive
(usability).

• R8: if a context model is invalid, a detailed error report shall be given. It shall be
easy to identify the problem and its source in the inheritance chain (usability).

29

Chapter 3

Related Work

In this chapter, we identify and evaluate concepts and projects that want to solve similar
problems as we do, face similar design decisions as we do, or chose to implement a
similar kind of repository.

Implementing a central CMR that contains context models describing the entities of
smart spaces automatically realizes an ontology, de�ned in Section 3.1, for smart spaces.
With this in mind, we will have a closer look on collaborative ontology design mecha-
nisms in Section 3.1. We will also introduce the basics of two Semantic Web standards:
RDF and OWL.

We introduce Project Haystack in Section 3.2, an initiative in the Building Automation
domain, that has the same goal as we do: streamlining working with IoT data by
standardizing semantic data models. However, a di�erent approach was chosen: Project
Haystack provides a tagging system that can be used to annotate smart devices and their
environments. This tagging system is built by consensus of the Haystack community.
Comparing the DS2OS approach with Project Haystack will give us insights on how to
enhance the usability of the CMR’s type system.

We will evaluate the approach of CellML, an initiative with the goal to facilitate the
exchange of biological models, in Section 3.3. Even though this initiative is rooted in
a di�erent domain, they chose a similar concept for convenient exchange of models:
a central repository to store and maintain models. They o�er the transformation into
di�erent data models and o�er their content on a website with a structure that can also
be used as an interface for the CMR.

3.1 Ontologies

The term ontology generally refers to an explicit speci�cation of a conceptualization [13].
A de�nition adapted for the �eld of computer science is [14]:

30 Chapter 3. Related Work

An ontology is a formal, explicit speci�cation of a shared conceptualization
of a domain of interest.

Conceptualization is an abstract view of the part of the world that we de�ne as our
domain of interest. Ontologies are used to overcome the problem of implicit information
by explicitly describing the conceptualization of the domain. This enables machines to
infer the semantic meaning of raw data.

Ontologies are already heavily used in the network management domain and in the
context of the Semantic Web [15]. The Semantic Web is the next evolutionary step of the
World Wide Web. Its aspiration is to enable machines to infer semantic meaning of data,
allowing “data to be shared and reused across application, enterprise, and community
boundaries” [16]. Or, to phrase it di�erently, make data portable.

This “portable” data is enabled by technologies like RDF and OWL. In Section 3.1.1,
we will have a short look on RDF and OWL, a data modeling language and a formal
language for the description of ontologies, two standards commonly used for semantic
modeling not only in the IoT domain.

The aspiration of the CMR – crowdsourcing the creation of context models – corresponds
to te collaborative building of an ontology. Features of approaches for collaborative
ontology design are shortly discussed in Section 3.1.2.

3.1.1 RDF and OWL

The Resource Description Framework (RDF) [17], is a data model for the description
of resources. While RDF was generalized for a resource to be anything, within the
context of the semantic web relevance is given to web resources. A resource needs to
be identi�able with an Universal Resource Identi�er (URI). RDF is a universal, machine
readable format that is mainly used for data integration.

The main building block of RDF are statements, subject-predicate-object triples that
describe resources. Those statements represent structured graphs, where subjects and
objects correspond with vertices and predicates with directed edges. A subject is always
a resource. An object may be either a resource or a literal that denotes a value.

Many di�erent representations for RDF do exist, such as Turtle [18], a human-friendly
format, RDF/JSON [19], or RDF/XML [20], which are based on JSON and XML, respec-
tively. We will use RDF/JSON to formulate the above-discussed type "derived/boolean" in
Listing 3.1. "pre�x" could, for example, be replaced with "http://www.ds2os.org/models".
The pre�x of the identifying URI is omitted for the sake of readability below.

3.1. Ontologies 31

<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">

<rdf:Description rdf:about="prefix#derived/boolean">

<prefix#inherits>

rdf:resource="prefix#basic/number"

</prefix#inherits>

<prefix#minimumValue> 0 </prefix#minimumValue>

<prefix#maximumValue> 1 </prefix#maximumValue>

<prefix#defaultValue> 0 </prefix#defaultValue>

</rdf:Description>

</rdf:RDF>

Listing 3.1: De�nition of the type "derived/boolean" using RDF/XML.

The �rst line is a reference to the standard "W3.org" namespace. It declares that this �le
is a RDF document. With the tag rdf:Description we state that we want to describe
a resource identi�ed by the URI "http://www.ds2os.org/models#derived/boolean". The
elements contained represent the statements about the resource, where the predicate is
denoted by the tag name and the object by the XML-value. Note that a value can be both
a literal and a reference to another resource, as we used it to specify the inheritance
predicate.

The di�erence between Listing 3.1 and Listing 2.9 depicts a huge advantage of the VSL
information model: it is tailored to the application, the "predicates" describing a context
model are incorporated in the information model which makes their representation
more concise. In addition, pre�xes are not required as the namespace is clearly �xed in
our case.

Multi-inheritance can theoretically be expressed with RDF using the inheritance predi-
cate multiple times. However, the order of inheritance, which is important to determine
the �nal value or the order of subnodes, cannot be preserved.

The Web Ontology Language (OWL) [21] is a family of languages for the description
of ontologies. It is designed to represent complex knowledge about objects, groups of
objects, and relationships between objects. Built upon the RDF standard, it introduces
a formal way to de�ne evolving class hierarchies, or taxonomies. The OWL speci�ca-
tion de�nes several di�erent dialects, which all choose a di�erent trade-o� between
expressiveness and decidability.

OWL de�nes classes, instances, and properties. A class represents a certain concept and
can be described by properties. An instance is an individual from none, one, or several
classes. A class may be a subclass from any other class, inheriting all properties of the
parent class. All classes are subclasses of owl:Thing and are subclassed by owl:Nothing

in order to allow assertions for all or no instances. Individuals can either be explicitly

32 Chapter 3. Related Work

assigned to a class, i.e. by saying that X is an instance of Y, or implicitly, i.e. by saying
that X has property Z and all individuals with property Z are instances of class Y.

Properties are either a "data type property" or an "object property". Datatype properties
are a relation between an instance and an RDF literal. Object properties are relations
between two instances.

With OWL, it is possible for a machine to infer information about objects just as humans
are able to. With this, knowledge can be dynamically applied and is not bound to
prede�ned procedures. This can be an extremely powerful tool.

The VSL information model does not provide such powerful inference mechanisms.
Through the inheritance chain it can be determined what "classes" a smart device
belongs to when it is associated with a context model. Additionally it is possible with
the VSL information model to infer if two types are incompatible, i.e. when one instance
cannot be of both types. This is the case when those types cannot be combined for
multi-inheritance, i.e. when their restrictions or their subnodes contradict each other.

3.1.2 Collaborative Ontology Design

As ontologies are becoming so large in their coverage that more than a small group
of people is required to build them [22], research and industry have taken interest in
collaborative ontology development. To enable and streamline this crowdsourcing task,
di�erent approaches have been developed.

[22] identi�es requirements for Collaborative Ontology Development. These include:

• Integration of discussions: An ontology needs to be build by consensus. This
process is not straight forward, as di�erent opinions exist how to model a concept
or even which concept should be modeled. Therefore, tools for discussions are
required that are immediately connected to the context.

• User management and origin of information: users must be able to see who
submitted or altered content at which time.

• Scalability: the collaborative ontology design mechanism must be scalable both
in the size of the ontology and the number of contributers.

Especially the �rst mentioned requirement can be deemed problematic for the CMR:
such a discussion process needs time. However, when a developer is in need of a context
model, he wants to be able to use it quickly for the implementation of his service. Chat
and discussion functions as implemented by the ontology development environment
proposed by [22] could be adopted for community discussion and support.

In [23] a collaborative crowdsourcing approach is described. However, this approach
requires manual intervention, which is not suitable to scale for large ontologies. In [24]

3.2. Project Haystack 33

the proposed approach requires o�ine-discussions, which does not scale. As discussed
above, extensive discussions are not compatible with the demand of instant creation of
context models when they are needed.

[25] points out that in collaborative information systems, where information is managed
by users, �nding the right balance between expressiveness and simplicity-to-use for the
information model is an important factor for success. Listening to feedback, simplifying
some properties while extending others should also be done for the VSL information
model, where for example more concise restrictions for data could be introduced.

3.1.3 Summary

Giving data semantic information and structuring it in ontologies has become popu-
lar and widely adopted in many domains. However, the common requirements and
assumptions do not all comply with the CMR’s. Manual intervention or changes to
the existing type system is not only undesirable but also not possible in the CMR: the
existing parts of the type system may not be altered. But structuring the information
contained by the CMR in an adequate ontology improves the reusability of context mod-
els and consequently supports standardization of context models. Standardization is an
important part to make smart service implementations independent from device-speci�c
interfaces.

The CMR requires a context model to support a good ontology design at the time it is
committed. Therefore, mechanisms have to be deployed to remind developers that they
contribute to a joint e�ort, prevent them from creating isolated context models only �t
to their use, and push them to create context models thoughtfully. These mechanisms
could be supported by the introduction of an overlaying �exible ontology. Such an
ontology could for example be realized by a semantic tagging system and make use of
the ontology development and evolution approaches described above.

3.2 Project Haystack

Project Haystack [26] is an open-source initiative targeting the syntactic diversity of
smart devices in the Building Automation Systems (BAS) domain. Its approach is to use
semantic tagging to make data self-describing, thereby making the exchange of data
between software applications easier and more e�cient and enabling the convenient
analysis of data.

Through the collaborative work of domain experts, an extensible data modeling ap-
proach was developed, together with consensus-approved models for BAS equipment
and the data they contain. Software reference implementations for the easy adaption

34 Chapter 3. Related Work

of data tagged with Haystack descriptions are available for di�erent programming lan-
guages. As with DS2OS, Project Haystack aims to simplify the management of context
and detaches models from vendor-speci�c properties.

We will have a closer look on Project Haystack’s meta model and discuss its advantages
and drawbacks compared to the VSL information model (Section3.2.1). After this, we
will describe a proposal to introduce formal description to the Haystack meta model,
the Haystack Tagging Ontology (Section 3.2.3). We will summarize our conclusions in
Section 3.2.4 and identify which of the capabilities de�ned in Section 2.6 are ful�lled by
Project Haystack.

3.2.1 Project Haystack’s Meta Model

Project Haystack calls its information model a meta model, as it is common in the
network management domain. Haystack makes use of tags, name-value pairs that are
used to describe attributes of so-called entities. An entity is the abstraction of three
types of physical objects, namely site, equipment, and sensor point. Sites are de�ned as
buildings, identi�able by a street address. Sites contain equipment, which analyzes and
in�uences the environment. In turn, equipment consists of sensors and actuators, the
sensor points. A fourth entity that is de�ned is the weather, which describes outside
weather conditions.

It becomes clear that the de�nition of the Haystack meta model is closely connected to
its application domain. In contrast, the VSL information model is decoupled from any
domain. This may have the drawback that it is less descriptive and less intuitive to use
at �rst. But at the same time it does not restrict developers and allows to spread the
deployment of smart services in innovative applications.

Project Haystack uses di�erent kinds of tags that de�ne which data type the value of a
tag may be. Marker-tags specify only a name and no value. They are used to declare the
type of an entity or an "is-a"-relationship. A building can be tagged with the marker-tag
site to indicate it is a site. Reference-tags (short Ref) describe a reference to another
entity. The tag’s value is an entity identi�er with an appended ’@’. Further kinds of tags
exist for basic data types, like Str (string) or Number, and more elaborate data types, like
Date or Coord (coordinates). Besides those scalar kinds, three kinds exist for collections,
which are List (list of values), Dict (array of tags), and Grid (two-dimensional table).

Project Haystack o�ers more native data types than the VSL information model. Those
types can be assembled from the basic datatypes provided but their use may not be as
convenient. O�ering more data types enhances the usability of a meta model. However,
o�ering more basic datatypes in the VSL information model would make the validation
of context models more complex as the validation process is rooted in the basic types.
Providing a library of additional and easy-to-reuse common derived types, such as

3.2. Project Haystack 35

id: @whitehouse

dis: "White House"

site

area: 55000sqft

geoAddr: "1600 Pennsylvania Avenue NW, Washington, DC"

tz: "New_York"

weatherRef: @weather.washington

Listing 3.2: Entity in Project Haystack’s meta model for the whitehouse. [26]

boolean, percentage, or table, is a good compromise.

Two speci�cally de�ned tags are used for referencing and description: id de�nes a
unique identi�er for an entity; dis is used for a short but fully descriptive characteriza-
tion of an entity. Note the di�erence to the tag-kinds above: id and dis are reserved
tag names. They do not explicitly determine the data type of a tag.

Listing 3.2 shows an example modeling of the White House. The entity is de�ned by
seven tags: id, dis, site, area, geoAddr, tz, and wheatherRef. id and dis are used for
referencing and description as described above. Site has no value and is a marker-tag
de�ning the entity to be a building. area speci�es the entity’s area as a number, geoAddr
and tz determine the building’s address and its timezone as a string. weatherRef is a
reference to an entity describing the weather station for Washington, DC.

The representation of entities in the Haystack Meta Model is very intuitive and easy
to read and understand for humans. It does not even require the understanding of a
formal language, which the VSL information requires as it is expressed by using XML.

References can be used to describe the relationship between entities, such as contain-
ment. The core structure for containment is the above described entity hierarchy “site –
equipment – sensor point”. An entity can have multiple references, making it possible
to de�ne multi-dimensional tree structures. Listing 3.3 shows the entity AHU, an air
handler unit. The equip tag marks it as equipment, the ahu tag spec�es that this entity
is an air handler unit. The tag siteRef, which is a reference to a site entity, expresses
that the entity "@whitehouse.ahu" is inside the site "@whitehouse". The mentioned
references correspond to the relationships that can be expressed in the VSL information
model by inheritance and composition. However, references in the Haystack model can
be de�ned individually and are more distinct, making the type system more expressive.

3.2.2 Tag Database

The Haystack community is working on creating a tag database that covers components
of the BAS domain. Right now, this database contains around 230 tags together with

36 Chapter 3. Related Work

id: @whitehouse.ahu3

dis: "White House AHU-3"

equip

siteRef: @whitehouse

ahu

Listing 3.3: Entity in Project Haystack’s meta model for an Air Handler Unit (AHU) in
the whitehouse. [26]

their kind, a textual description, and related tags. Contrary to the deign of DS2OS, this
knowledge base can be extended individually with new tags to �t application areas
which require more specialized or additional tags. The Haystack framework does not
provide universal orchestration services relying on consistent models.

The tags are then deployed either in end-devices or in administering Haystack servers.
The ideal situation is the �rst case, but it requires devices that are Haystack-enabled.
Tags can then be locally stored and exchanged directly between smart devices.

3.2.3 Haystack Tagging Ontology

Charpeney et. al [27] criticize Project Haystack for lacking some features that are valu-
able in the IoT domain. The Haystack data model exists only in textual format; no formal
representation was previously introduced. This may lead to scalability issues when the
number of connected devices increases. Another point is that the implementation of
the API barely complies to the restraints of IoT. It requires too much computing power
for many of the embedded smart devices.

Charpeney et. al aim to formally rede�ne Haystack tags using Semantic Web technolo-
gies. They propose the Haystack Tagging Ontology (HTO) with a new ontology design
pattern that enables both the automatic-processable representation and the easy-to-use
textual representation with tags. To accomplish this, the vocabulary and the ontology
are split into two parts, with a common meta-model making their relationship consistent.
This corresponds to decoupling the data model from the information model.

The meta model de�nes Htags and HEntities. An HEntity may have HTags and refer-
ences to other entities. This corresponds to tags being assigned to entities and entities
using references to express physical relationships in the original Haystack de�nition.

Each tag in the vocabulary is an HTag. RDF is used to represent the Haystack vocabulary
in a widely adapted and formal format. This way the vocabulary can be used with
existing standards and already implemented technologies. The vocabulary is aware of
the presence of the domain model; every tag is associated with a component of it.

3.2. Project Haystack 37

Meta Model

Vocabulary Domain Model

HTag HEntity

Equipment

hasTag

hasRef

Point

belongsTo

ahu

cmd

sensor

associatedTo

associatedTo

associatedTo Sensor

Command

Figure 3.1: Brief concept of HTO. Only exemplary tags and an exemplary part of the
ontology is displayed. For more detailed visualization of the domain model refer to [27]

38 Chapter 3. Related Work

To enable automatic processing, the semantic meaning behind the tags needs to be
structured and formally presented. The domain model is structured by an ontology,
which links the more abstract components. The central components are point and
equipment. Part of the ontology is shown in Figure 3.1. Mapping tags to those abstract
components has the e�ect that querying is simpli�ed immensely. Now queries request-
ing all equipment can be easily formulated. Without the ontology, a search requires
using all tags that describe equipment.

With the ontology introduced, it is also possible to detect when a model is tagged incon-
sistently. This occurs, for example, if two tags which should not be used together are
used to describe one model. The simple tagging approach does not have this capability.

The introduction of such an ontology corresponds to the above stated idea to introduce
an overlaying ontology to the CMR. Such an ontology would allow improved reasoning,
make the CMR compatible with standards such as RDF and OWL, and introduce a
structure that is �exible and is capable to evolve. However, in such a scenario, this
additional ontology is aware of the already existing information, inverted to the design
of the HTO.

3.2.4 Evaluation

Haystack introduces a tagging system for BAS applications which is easy to use and
highly �exible. Tag names, kinds, and restrictions are easy to understand. In the
standard de�nition of Haystack, no restrictions are imposed on the combination of tags
and no semantic relationships besides containment are modeled. This may hinder the
automatic processing of the tagged data. The proposed HTO maps tags to abstract
components and structures those. In contrast, the CMR’s structure of similarly de�ned
context models in the CMR should already form an ontology and its formal information
model enables automatic processing.

The introduction of an ontology that works on top of the basic meta model is also
an interesting approach for the CMR. Such an ontology could be realized by tagging
context models. Those tags form the ontology. The structure of this ontology can be
constructed and adapted with mechanisms discussed in Section 3.1. Additionally, such
a tagging system can help to understand the purpose of a context model, as it provides
additional semantic information, and supports the reuse of context models, as better
search functionality can be provided.

The vocabulary of Haystack tags can be customized on a per-project or per-equipment
basis. This entails that the vocabulary used is not consistent in all Haystack systems.
The knowledge base is stored and modi�ed locally. In contrast, smart services in the
DS2OS rely on all context models being unchanged and available. A central repository
is necessary to ensure consistency.

3.3. The CellML Project 39

Capability Project Haystack CMR
C1: Crowdsourcing + ++
C2: Easy information model ++ ++
C3: Validity of models o ++
C4: Consistency of models - ++
C5: Standardization - (+)
C6: Reuse of models + (+)
C7: Ontology (+) ++

Table 3.1: Comparison how Project Haystack and the CMR ful�ll the required capabili-
ties.

Table 3.1 summarizes how Project Haystack ful�lls the required capabilities we iden-
ti�ed in Section 2.6. Theoretically, everybody can contribute to Haystack. However,
the domain covered by Haystack is relatively small and expertise about equipment is
required, which limits crowdsourcing (C1,+). The meta model used by Haystack is very
easy to understand and intuitive (C2, ++). Models are not validated formally but speci-
�ed through a consensus-building process (C3, o). The tag database can be individually
altered, making them possibly inconsistent between di�erent application spaces (C4, -).
Every entity is de�ned only once which results in standardization, but this standardiza-
tion is reached by manual e�ort (C5, -). Tags are reused and used to describe several
concepts (C6, +). For now, it is assumed but not proven that mechanisms deployed in
the CMR will have this e�ect. The core Haystack speci�cation does not de�ne a formal
ontology yet but it o�ers the possibility to be extended (C7, (+)).

3.3 The CellML Project

The CellML project [28] aims to store computer-based mathematical models and fa-
cilitate their exchange. For this purpose, the initiative speci�ed a modeling language,
CellML. As the initiative is rooted in the biology domain, CellML is mainly used to
describe models of physiological processes and biological structures, although its ca-
pabilities are not limited to this domain. The CellML project facilitates the exchange
of biological models, as it formally describes their properties with a standardized and
acknowledged data model and provides a central repository. Models are submitted to
the CellML repository concurrent with the submission of a scienti�c publication.

To understand the environment of the CellML repository, we will introduce the modeling
language CellML brie�y below. In Section 3.3.2 we will discuss the CellML repository,
which shares many properties with the CMR.

40 Chapter 3. Related Work

3.3.1 CellML Modeling Language

CellML is an XML-based language capable of describing mathematical models. CellML
is capable of de�ning models using di�erential equations and linear algebra.

The main structures CellML models de�ne are called components. A component is a
functional unit that may correspond to a physical object or may be an abstraction to
facilitate modeling. A component can contain variables and mathematical equations
manipulating those variables and determining their relations. Components are described
only by a name-attribute, while variables can be described by a name, an interface, an
initial value, and possible units. CellML articulates mathematical equations by using
MathML [29]. MathML is a low-level speci�cation for mathematical content.

CellML supports the grouping of components, two prede�ned types are containment
and encapsulation. Containment expresses that a component is physically contained
by the parent component, just as it does in the VSL information model. Encapsulation
is used to hide complexity of a large network of components by providing a single
component acting as interface.

Metadata is used in two ways by CellML. Firstly, it may contain information about
the model and its history, like the authorship, its creation date, and key words related
to it. To include this information is not enforced, but highly recommenced. The only
compulsory information is the citation of the published paper the model is described in.

Secondly, meta information can be used to give additional information about elements
contained by a model. This way, context can be given for the variables, entities and
processes described. It may also include information useful for simulation, such as
optimal parameters. The use of this information supports the reuse of CellML models,
as they ease the search for and they improve comprehensibility and usability of models.

Annotating CellML models with meta-information plays an essential role for the usabil-
ity of a model. Users are encouraged to annotate extensively. Adding a tag system to
the CMR as described in Section 3.2.4 would have the same positive impact.

3.3.2 The CellML Model Repository

The design and speci�cation of a modeling language to enable the exchange of formal
models is not enough, especially as high throughput experimental techniques produce
an enormous amount of data. A centralized database is required as well. Therefore, the
CellML Model Repository [30] was introduced. Besides storing and o�ering CellML
models, the CellML repository implements two important features: the curation of
models to ensure model quality and model annotation in order to simplify maintenance
of models.

3.3. The CellML Project 41

Models stored in the CellML Model Repository need to be in accordance with at submit-
ted paper. To ensure the quality of models and to detect syntactical and semantic errors,
the CellML Model Repository implements a curation system. Curation is designed to
be a task of the community.

A star system is used to represent the current curation status of a model. A model with
zero stars has not been curated yet. One star signi�es that the model is consistent with
the description of the published paper. Two stars denote that the model is free of typo-
graphical errors, is complete, its units are consistent, and that it is able to reproduce the
results from its paper. Three stars indicate that the model satis�es physical constraints.
Level-three curation is required to be done by a domain expert.

In the CMR, the submission of a context model is not bound to the submission of a
scienti�c paper. Therefore, the expected number of context models is higher than the
one for the CellML repository. Ensuring the validity of context models through a manual
curation system will not scale. However, a context model being valid does not entail
that it is of good quality. A quality management system similar to CellML’s could be
used to in�uence the ratings of models (compare Section 2.5.4).

To support the curation the CellML project o�ers editing and simulation environments.
They are capable of pointing out obvious typographical errors and unit inconsistencies
by error messages and of displaying the hardly human-readable format of MathML
equations in an easily readable manner. If the model is able to be run, the simulation
output is compared to the results of the paper. The curation process also requires
to contact the authors of a paper if errors cannot be resolved or results cannot be
reproduced.

Providing a customized editor for the VSL information model would serve the same
ideas as these tools: Encourage participation in creating quality content that is stored
in a central repository and bene�ts many. Reducing the work required for this content
creation with specialized tools can motivate to participate.

To make it easy to �nd, understand and reuse CellML models, the initiative encourages
its peers to use model annotation extensively. Models can be annotated with the two
kinds of meta information mentioned above, which includes general information about
the paper and semantic information about components or variables in the model. For
annotation, the RDF standard [17] is used. To give semantic meaning to the mathematical
description of the biological systems, existing ontologies and constrained vocabularies
for the domain are used.

The CellML model repository o�ers to browse the stored models by category. In addition,
it features two di�erent kinds of searches. One takes freely choosable text as input and
matches it with the textual information about the models. The other one is ontology
based: one can select an ontology term and models with tags related to this term are
then suggested.

42 Chapter 3. Related Work

Capability CellML Repository CMR
C1: Crowdsourcing o ++
C2: Easy information model - ++
C3: Validity of models o ++
C4: Consistency of models + ++
C5: Standardization n.a. (+)
C6: Reuse of models (+) (+)
C7: Ontology + ++

Table 3.2: Comparison how the CellML Repository and the CMR ful�ll the required
capabilities.

3.3.3 Evaluation

Just as with the Context Model Repository, the creation of content for the CellML Model
Repository is a community-driven e�ort. However, the target group of contributers
di�ers. CellML’s mathematical models are far more complex to read and understand,
especially for non-experts of the domain, than the designed-to-be-comprehensible VSL
context models.

An other di�erence lies in what kind of models can be submitted: models in the CellML
Model Repository must be in accordance to a published paper, while no restraints are
put on context models for the CMR.

The two di�erences mentioned above lead to a di�erent approach of ensuring the validity
of models in the model repository. The steps of the CellML curation process require
manual work. However, the designers of the CellML deem that specialized editors are
able to support this manual work. The validation process of context models can be
automated. The part consisting of manual work – creating the new context model –
can, however, also be facilitated with a specialized editor.

The idea of manually inspecting models can, however, be used for quality assurance of
context models in the CMR. A context model being valid does not imply anything about
its quality and complex self-learning mechanisms would be required to automate this
process. O�ering domain experts to collaboratively rate and comment context models
may raise the overall quality of context models.

The design of the website of the CellML repository is a good model, as it ful�lls the
requirements we have identi�ed for the CMR: browsing of models, text search, and
ontology search. On the main page, several categories invite to browse models in a
structured manner. Right next to it a text �eld o�ers the simple text search, while the
more elaborate ontology search is linked.

Table 3.2 summarizes how the CellML repository ful�lls the required capabilities we
identi�ed (compare to Section 2.6). CellML does not foster crowdsourcing so much, as

3.4. Summary 43

Capability Project Haystack CellML Repository CMR
C1: Crowdsourcing + o ++
C2: Easy information model ++ - ++
C3: Validity of models o o ++
C4: Consistency of models - + ++
C5: Standardization - n.a. (+)
C6: Reuse of models + (+) (+)
C7: Ontology (+) + ++

Table 3.3: Comparison how Project Haystack, the CellML Repository, and the CMR
ful�ll the required capabilities.

it is focused on models published in scienti�c papers. However, it encourages scientists
to submit their models and curate models of their domain (C1, o). Due to the more
complex nature, the information model is not easy to understand (C2, -). Models are not
validated when they are added to the repository. Their quality is rated and improved as
they are already part of the database (C3, o). It is aspired to make the model consistent
with the one presented in the paper, which is similar to ensuring the consistency of
context models in the DS2OS ecosystem (C4, +). Currently, models or parts of models
cannot be reused to build a new model but this feature is to be implemented in a future
version (C6, +). The models themselves do not form an ontology, but they are structured
with a tagging system (C7, +).

3.4 Summary

Evaluating current standards for ontology design, development and evolution, we con-
cluded that many of the assumptions taken do not comply with the CMR. Creation
of context models is time-sensitive and leaves no room for discussion and community
consensus. Once a context model is committed, it may not be altered or removed, which
makes changes to the type system impossible. To circumvent those problems, a sec-
ond ontology consisting of semantic meta-information about the type system could be
introduced.

We introduced two di�erent projects, Project Haystack and the CellML Model Repository.
Project Haystack is placed in the same domain as DS2OS and aspires the same goal:
giving data semantics. However, the approach they chose is quite di�erent and some of
the capabilities that we deem important for our system are not ful�lled su�ciently.

The CellML is rooted in the biology domain. However, the approach they chose to
facilitate the distribution and exchange of biological models resembles the CMR: A
central instance storing and maintaining models together with tools facilitating the
necessary manual work. However, the nature of their domain has negative impact

44 Chapter 3. Related Work

on the ful�llment of the capabilities. CellML models are rather complex, which limits
open-to-all crowdsourcing and the automatic validation of models.

With the mechanisms that are implemented in this paper, the CMR complies with most
of the capabilities de�ned. Table 3.3 shows that with the current implementation, C1-C4
and C7 are ful�lled. With the implementation of the mechanisms described in Section
2.6, C5 and C6 are also expected to be ful�lled.

45

Chapter 4

Design

This chapter introduces the design chosen for the Context Model Repository. While
the main emphasis is laid on the �nal design, possible alternatives together with their
advantages and drawbacks will be discussed.

It is expected that the applications implemented will not be too time-critical. This is
because the processing time for the expected size and inheritance depth of context
models will be in the range of seconds, while a response time in the range of minutes
would still be acceptable (R6), even though not desired. It is also expected that the VSL
information model may be altered and extended in the future. Therefore, performance
is not the most important criteria, while extensibility, maintainability, reusability, and
�exibility weigh in more.

4.1 Structure of the CMR

The structure of the CMR can be divided in three parts: the storage of information, the
logic for the processing of context models and access IDs, and the interface between
the CMR and the developers retrieving and adding information.

This structure is pictured in Figure 4.1. It also depicts the dependencies between the
components. In the future, the CMR will be accessible through a web interface, tailored
for human use, and one command-line-based interface, which is also �t for communica-
tion with components like the SLMR. Through these interfaces, the set of operations
o�ered by the CMR can be accessed. These operations are split into two sets. One
comprises of simple operations which simply retrieve data stored in the CMR. The
operations of the other set require more complex procedures and may also submit new
content to the CMR.

The more detailed design of the individual layers is discussed below.

46 Chapter 4. Design

AccessID
repository

Stored as database

Context models

Stored in file system

Meta-information
about models

Browse

Search

Retrieve

Validation

Multi-inheritance preview

Checking in new model

Defining new accessID

Data Layer

Processing Layer

Interface Layer

Set of operations

Web interface API interface

Figure 4.1: Rough structure of the CMR.

4.2. Data Layer 47

4.2 Data Layer

The data layer contains all data stored by the DS2OS: the context models, the accessIDs,
and meta-information about context models and the type system.

As described above, context models are stored in text �les identi�ed by hierarchical
addresses. The addresses correspond to the identi�er of the type de�ned by this context
model. Storing those �les in a �le system re�ects this structure. It also provides good
performance to access the content of the context models, as no communication with
an external database is necessary and no logical tree structures need to be resolved or
traversed. According to R1 and R2 all context models stored in the CMR are valid and
minimized.

Together with context models, meta-information about them needs to be stored. This
includes basic information, such as the authorship or the time the context model was
submitted, as well as more elaborate information, such as semantic tags or correlations
between tags exceeding the inherent structure of the type system. Such information is
required to build a second, �exible ontology. This meta-information is not needed for
the immediate processing of context models – validation, resolving, retrieval of context
models for services – but rather supports the reuse of context models and �nding
adequate context models to implement a service. Therefore, this meta information
should be stored separated from context models, for example in an independent database.

AccessIDs, which determine the right groups to read and write context, are an indepen-
dent instance from context models. No accessID is bound to a certain context model
and may be referenced by no or multiple context models. As accessIDs require separate
maintenance from context models, they are stored in a separate database, called AccessID
Repository. As of now, the only information about context models consists of the unique
identi�er together together with a textual description of the accessID. This information
can be extended with the authorship, the submission date, and further meta-information
about the accessIDs.

4.3 Processing Layer

The processing layer forms a bridge between the data layer and the interface o�ered
to developers. Its task is to respond to requests either querying for data or aspiring to
submit new data by retrieving data from the CMR or adding new one. Those requests
can be split in two parts: basic requests that want to retrieve data from the CMR and
more elaborate requests that require sophisticated logic.

Basic tasks include browsing, searching, and retrieving context models and accessIDs.
These tasks only require to retrieve data from the CMR. Browsing context models allows

48 Chapter 4. Design

to have a look at the existing type structure, traverse it, and have a look at existing
context models. Searching context models o�ers to �nd context models that make use of
certain terms or ful�ll a certain semantic functionality. To enable both, key-word-based
search functionality needs to be o�ered together with an ontology-based one, which
in turn requires a semantic tagging system. Retrieving context models allows caching
instances in a smart space to download and store context models. These context models
are then used by smart services to ful�ll their orchestration task.

More elaborate tasks include validation of context models, preview of multi-inheritance,
and the submission of context models or accessIDs. Aside from retrieving data from
the CMR, those operations require complex processing logic and may also submit new
information. Allowing a context model to be validated and feedback given to the CMR
enables a developer to assess the quality of his context model without having to make
irreversible changes to the type system. Enabling the preview of multi-inheritance
supports the creation process especially when many complex types are combined. The
developer can be sure of how the �nal combined type looks like and whether the
combination is valid or not.

The submission of a new context model combines most of the tasks above: the context
model needs to be validated, which in turn requires retrieving, parsing, and resolving
context models. If multi-inheritance is part of the type declaration, resolving context
models and assembling one type out of many become necessary. Those procedures can
be reused for the di�erent tasks. Additional procedures that are required include the
minimization of context models and ensuring that the context model identi�er of the
new context model is valid.

The single procedures and the reasoning behind their design will be discussed in Sections
4.3.1 to 4.3.5.

4.3.1 Parsing

In this section we discuss the parsing and transformation of context models necessary
to validate and work on the logical structure of a context model independent from the
underlying data model.

The current implementation of the VSL only works with the XML-based data model
introduced in Section 2.4.6. With no intermediate instance, developers can create context
models only with this data model. With the introduction of the CMR, such an instance
now exists: context models can be submitted on every adopted data model and be
processed independently of it. This requires that the CMR does not handle context
models on the level of data models, but on the level of the information model. This is
the �rst reason to transform the textual description to a logical representation with Java
objects.

4.3. Processing Layer 49

fully dependent on
data model

dependent on data
model and parser

independent from
data model and

parser

existing
parsers Custom-

written
 connector

model represented in
text file

model represented in
Java

model represented in
Java

Figure 4.2: Steps and artifacts in the parsing process.

The second reason is the need for a validation mechanism beyond current standards.
The VSL information implements complex concepts, which include dependencies be-
tween documents, the inheritance of information, and restricting the value of nodes by
attributes. We reasoned in Section 2.5.3 that the two standards for XML-validation, DTD
and XSD, are not able to cover all aspects of the VSL information model. Developing
a custom validation mechanism for semantics is consequently unavoidable, while the
syntactical validity can be checked with standard instruments.

Such a validation mechanism needs to retrieve structured data, the minimization pro-
cess even needs to manipulate it. Both need to compare di�erent context models for
equivalent data that may be de�ned in reverse orders. The easier processing of the
information model is the third reason to abstract it from the data model.

To facilitate easy information retrieval and manipulation, the XML document needs
to be parsed into an easily read- and writable data structure. Many preexisting tools
exist that transform common data models into Java structures. Theoretically, one could
now conveniently work on this structure. However, the makeup and properties of this
structure vary with di�erent data models and parsers.

As our goal was providing independence between the information model and data model,
a second parsing step was required. The second parsing step parses the data-model-
based structure to a data-model-independent structure that re�ects the properties of
the information model. This step, which is an easy Java-internal transformation, is the
only part that needs to be implemented if a new data model is introduced or a di�erent
parser for the �rst step is to be used. Dividing the parsing process in those several steps
provides �exibility and easy extensibility.

Figure 4.2 visualizes the design for the parsing process and the two parsing steps that
are required on di�erent layers. The �rst parsing step transforms the context model
from a plain text �le to Java objects that are easy to read and modify (orange to blue).
The second step makes the information independent from the data model (red to green).

50 Chapter 4. Design

4.3.2 Validation

To comply with R1, every context model needs to be valid to be added to the CMR.
Validation is split in syntactic and semantic validation. To discuss validation, we will at
�rst describe our approach on how we validate context models. Afterwards, we will list
accurately how the properties of context models need to be validated.

A context model is syntactically valid if it conforms to the data model it is represented
in. For the XML representation it is, for example, required that every element is opened
and closed by corresponding tags. Deciding if a context model is syntactically valid can
be done individually for each context model, it is not necessary to consult information
from the CMR for it. The syntactic validation is already provided by the parser used
and thereby done during parsing. In case a context model is syntactically invalid, it is
rejected and the error message provided by the parser is returned.

A context model is semantically valid if it ful�lls the semantic invariants (Section
2.4.5). While it is possible to check the syntax of a context model isolated from existing
context models, this does not apply to the semantic validation. In order to check if a
context model complies with the invariants, one needs to retrieve a lot of additional
information: which types the context model inherits from in its inheritance chain, values
and subnodes it inherits, and which restrictions are handed on.

The semantic validation heavily relies on the use of context models already stored in
the CMR. There are several variants to retrieve this information such that it can be used
for validation. We will discuss the di�erent approaches below. For the assessment it is
important that we can assume that R1 and R2 are ful�lled after every submission: all
context models in the CMR are valid and stored in minimized format. We will discuss
two di�erent approaches: one where all information necessary for the validation is
retrieved before the actual validation, and one where the information is retrieved during
the validation process.

The �rst approach validates the new context model against the resolved representation
of its immediate parent model. The resolved representation contains all information
about this context model, which includes information that is inherited and removed
in the minimized information. Once this fully-resolved context model is compiled,
no further context models need to be retrieved. This validation process requires an
additional subtask: resolving the parent model. The rough procedure is displayed in
Listing 4.1.

4.3. Processing Layer 51

newModel = parse(id);

type = newModel.type;

parentModel = parse(type);

parentModel = resolve(parentModel);

for all information in newModel

ensureInformationCompliesWithParentModel();

Listing 4.1: Outline of the �rst validation option in pseudo code.

The �rst step is to parse the new context model as described in Section 4.3.1, id is
the identi�er of the new context model. The parent model is determined by the new
node’s type and is retrieved from the CMR and parsed. The next step is to fully resolve
the parent model as described in Section 4.3.3. Now the parent model contains all
information that a�ects whether the new context model is valid. All information that is
de�ned by the new context model is now validated. This includes restrictions, values,
and subnodes. For example, it is ensured that restrictions are only narrowed and that a
speci�ed value matches the restrictions. If a value is not explicitly de�ned, it has to be
ensured that the inherited value matches possible new de�ned restrictions. It must also
be ensured that the total number of subnodes – inherited and new ones – matches the
restrictions.

As only the parent model and not the new context model is resolved, subnodes that are
not inherited but newly de�ned do not have a corresponding node they can be validated
against. One option would be to add subnodes of the same name and type to the parent
model and resolve them their. However, this would alter the parent model. It could not
be cached and reused, as it does not comply with its original speci�cation any longer.
Therefore, we decided treat those newly de�ned subnodes individually and resolve them
during the validation process, assigning them an individual parent model each.

The advantage of this approach is that the resolved parent model can be reused for the
subsequent minimization of the context model and the resolving process can be reused
for providing resolved context models that are required during the deployment in a
smart space. An other advantage is that every model in the inheritance chain is fully
resolved. It can be cached and reused when the same type is referenced again. In this
case retrieval, parsing, and resolving do not have to be performed again which improves
the performance.

The disadvantage of this approach is that meta-information is lost. If, for example, a
value violates a restriction, one cannot immediately tell from which super type this
restriction is inherited from. It is necessary to traverse the super nodes again. However,
�nding a violation of the invariants can be decoupled from �nding the source of the
validation, allowing for a reliable validation as well as an expandable and incrementally

52 Chapter 4. Design

improvable error-reporting.

At �rst look, this approach may look like it imposes an unnecessary huge overhead: the
whole inheritance chain needs to be traversed to the roots, which can be multiple in
case of multi-inheritance, in order to resolve the parent model. However, it actually is
necessary to traverse the whole chain as context models are stored in minimized format.
Only in this way all basic types the context model inherits from can be identi�ed with
certainty. A little overhead is produced nevertheless: values are read and merged that
may be overwritten at an higher level of the inheritance chain anyways. We do not
expect that those operations do have signi�cant overhead on the performance.

The second approach is to traverse the inheritance chain of the new context model until
information is found that reveals the new context model to be invalid. A property of a
model is valid when it complies with the �rst respective restriction in the inheritance
chain or if the end of the inheritance chain – the basic types – is reached, and no
violation was determined. For example, if a new node de�nes the restriction "minimum-
Value", its inheritance chain is traversed until the �rst speci�cation of "minimumValue"
and "maximumValue", as they determine if the new restriction is valid. If the whole
inheritance chain is traversed and no such restriction is de�ned, the speci�cation of the
restriction is valid when one of the basic types is "basic/number".

However, this approach requires constantly retrieving context models from the CMR
while validating, making the validation process slow and not compatible with caching.
Also, we would need to retrieve context models again for minimization, as the fully-
resolved parent is not compiled. The presumed advantage of a better performance
because not all information in the inheritance chain is considered is also void in most
cases. If no restrictions are speci�ed in the inheritance chain, the only possibility to
infer the basic type(s) is to traverse until the root(s). The same holds for the de�nition
of new subnodes.

Considering that our main aspirations for the design were modularity and maintain-
ability, we prefer the implementation of the �rst mentioned method.

However, an issue concerning multi-inheritance needs to be solved when using this
approach. A new context model that directly inherits from several types does not have
an existing immediate parent node that can be resolved. An easy solution is to construct
a temporary node that represents this parent model. This temporary context model
inherits from all types in the same order that the new context model inherits from and
does not specify any alterations or additions. Before the new context model is validated
against it, it must be ensured that this temporary node is valid. Not all combinations
of types can be used for multi-inheritance, for example if they de�ne contradicting
restrictions.

The functioning of this mechanism is visualized in Figure 4.3.

4.3. Processing Layer 53

1. merge the information
contained by the referenced

types from left to right

2. validate the combination
of types

3. validate the new model
against the temporary model

Id: derived/boolean
Type: basic/number
Restriction:
minimumValue = 1,
maximumValue = 2

Id: basic/composed

Id: derived/boolean,basic/composed
Type: derived/boolean, basic/number, basic/composed
Restriction: minimumValue = 0, maximumValue = 1

Id: myMultiInheritanceModel
Type: derived/boolean, basic/composed
Value: 0

Figure 4.3: The creation of the temporary node and validation steps for the context
model "myMultiInheritanceModel".

Below, we will structure the elements that need to be checked for semantic validity
and structure them into groups that will serve as a template for the implementation of
validators. A validator is a routine that serves to validate one aspect of the information
model. Not every context model needs to be checked by every validator. Models
inheriting only from "basic/number" may not de�ne any subnodes, so we need a validator
ensuring this, but the validator checking the validity of the subnodes is not required
in this case. Therefore, every basic type comes with a list of its respective identi�ers
that are passed on to inheriting children. This also improves the performance of the
validation, as only relevant aspects are validated.

Splitting the validation task into several, clearly distinguishable sub-routines makes the
design very �exible. Future changes or extensions to the VSL information model can be
implemented easily.

It is important to pay attention to the order in which the validators are executed:
validating the value of a number node assumes that the respective restrictions are valid,
just as con�rming that the subnodes of a list comply with the restrictions assume that
the subnodes are valid themselves.

54 Chapter 4. Design

Validation of Attributes

• Validate Attributes: Ensures that the only attributes de�ned are named "type",
"restriction", "reader", and "writer". De�ning an attribute with the same name
twice is considered syntactically invalid and therefore caught by the �rst parser.

• Validate Access IDs: It needs to be ensured that every access ID de�ned in both
the "reader" and the "writer" set are de�ned in the access ID repository.

• Validate Type: The type string is valid only if all the referenced types do exist in the
CMR. This needs to be collated. In contrast to the other validation requirements,
this is the only information that needs to be already valid for the resolving of the
parent model. Therefore, this mechanism is not implemented as an independent
validator, but as a part of the resolving process.

• Restrictions

– Validate Restriction Existence: Ensures that a node only de�nes restrictions
if it inherits from the respective basic type. For example, a node may only
de�ne the restriction "minimumValue" if it inherits from type "basic/num-
ber". It also ensures that only valid restrictions are speci�ed, i.e. that all
restriction names correspond to the six restriction types currently de�ned
by the information model.

– Validate Number Restrictions: Validates whether the newly de�ned restric-
tions "minimumValue" and "maximumValue" comply with the invariants
in three ways: (1) The value of the restrictions is required to be a number
represented with digits. (2) The newly inherited restriction "minimumValue"
must be greater than or equal to the inherited "minimumValue" and less
than or equal to the inherited "maximumValue". Vice versa for the newly
de�ned "maximumValue". (3) If both restrictions are newly de�ned, "mini-
mumValue" must be less than or equal to "maximumValue".

– Validate List Restrictions: The list restrictions "minimumEntries" and "maxi-
mumEntries" need to be validated just as described above for the number
restrictions. The restriction "allowedTypes" needs to be checked for the
following constraints: (1) If "allowedTypes" is de�ned, it needs to specify at
least one type". (2) The types speci�ed need to be a subset of the inherited
"allowed types". (3) If no "allowedTypes" is inherited, i.e. if the restriction
has not been speci�ed in the inheritance chain, it needs to be ensured that
the speci�ed values exist in the CMR.

– Validate Text Restrictions: In the spirit of the CMR, the restriction "regularEx-
pression" would be required to describe a subset of the language described
by the inherited restriction. However, validating this is infeasible (compare

4.3. Processing Layer 55

Section 2.4.3). Therefore, no validation of this restriction is performed. In-
stead, to provide type safety, the following policy is applied: a node inherits
all regular expressions speci�ed along its inheritance chain and the node’s
string value has to comply to all o� them. This equals to an intersection o�
the regular expressions and ensures that the value ful�lls all of them. With
this policy, it may occur that the set of possible values is empty.

For example, we can de�ne the type "5text" whose value needs to exist
of exactly �ve characters and the type "numberString" whose value may
consist only of digits. The value of a type inheriting from both would need
to consist of exactly �ve digits. The same applies if one type inherits from
the other.

Validation of Values

After the restrictions are validated, the value of a context model needs to be validated. If
a context model de�nes a new value, it needs to be validated against the new restrictions
if present, otherwise against the inherited ones. If no new value is de�ned, it needs to
be checked that the inherited one still complies with possible new restrictions.

• Value Existence: If a node de�nes a value, it must inherit either from type "ba-
sic/number" or "basic/text".

• Number Value: If a node inherits from type "basic/number", its value needs to be
a number represented with digits. Additionally, the value has to comply with the
restrictions "minimumValue" and "maximumValue", if de�ned.

• Text Existence: The value of a node derived from type "basic/text" needs to match
all regular expressions in the inheritance chain.

Validation of Subnodes

Subnodes require validation in two regards. They need to be valid themselves, so all of
the applicable validators need to be applied to them. Additionally, their number and
type need to comply to the restrictions de�ned by their containing context model.

• Subnode Existence: If a node contains subnodes, it must inherit either from type
"basic/composed" or "basic/list".

• Unique Identity of Subnodes A tag may be de�ned by only one element directly
contained in a node.

• Validate Subnodes: All subnodes need to be valid. A node can only be considered
valid if all its subnodes are valid.

56 Chapter 4. Design

• Validate Subnode Compliance: If the node inherits from "basic/list" and de�nes
restrictions accordingly, the subnodes need to comply to them. It is important
to note that all nodes, newly de�ned and inherited ones, need to be considered
for this. This includes checking the number of subnodes as well as ensuring that
each node inherits from at least on of the allowed types.

Validation of Multi-Inheritance

When a new node inherits from several types it must be ensured that the combination
of those types is valid. The combination of types is invalid if one of the following
conditions applies.

• Type Declaration: Types must be de�ned in a restricted order: a type may not
be speci�ed explicitly after it has been speci�ed explicitly or implicitly. The
direction for this rule is from right to left. For example, de�ning a type as "de-
rived/boolean, basic/number" is valid. "basic/number, derived/boolean" is invalid,
because "basic/number" is implicitly de�ned by "basic/boolean" already".

• Restrictions: The resulting restriction combination is invalid. For "minimumValue",
"maximumValue", "minimumEntries", and "maximumEntries this denotes that the
lower bound may not be higher than the upper bound. The restriction "allowed-
Types", created by the subset of the inherited restrictions, must specify at least
one type.

• Value: If no value is de�ned by the child model, the value from the leftmost type
de�ning a value is considered as the �nal value. This value needs to comply with
the invariants.

• Subnodes: The subnodes need to comply to the restrictions: their number may
not exceed the �nal "maximumValue" and every subnode type needs to overlap
with the �nal "allowedTypes".

4.3.3 Resolving

Resolving context models – transforming their minimized representation into one con-
taining all information – is not only useful for validation, but also for minimization
where we will reuse the resolved parent model we created for validation. Two ap-
proaches are possible for resolving a context model: a recursive approach and an itera-
tive approach. We will discuss the approaches below.

When a context model is resolved iteratively, the resolving process starts with the
context model on the highest inheritance level and traverses the inheritance chain. In
every step, all information that is not yet speci�ed is added to the context model. This

4.3. Processing Layer 57

means, for example, when a new restriction type appears it is added. However, existing
restrictions or values are not overwritten. This means that the context model in the
next step is only searched for information that is not yet speci�ed, which reduces e�ort
and improves performance. However, in all cases it is necessary to traverse the whole
inheritance chain to the basic types, as this is the only way to determine which basic
types the context model inherits from and to resolve the complete type string. The
advantage of the iterative approach is that it costs less both in regards to time and
storage space.

In contrast, the recursive approach requires the immediate super node to be resolved
recursively before its information is merged with the information contained by the
node-to-be-resolved. This approach is probably the more intuitive one, as it re�ects
the mechanism of inheritance better: information is passed on to a child node that
is then possibly altered or extended. Obviously the whole inheritance chain needs
to be traversed for this approach. However, this also the case for iterative resolving,
which ensues that the overhead created by the recursive approach is not too high in
comparison.

The recursive approach o�ers the possibility to cache the resolved representation of
context models in the inheritance chain. This is not possible with the iterative approach,
because their resolved representation is never assembled. Making use of this technology
would decrease costs immensely if types are inherited from several times, for example
when several subnodes inherit from the same type.

Given this advantage, we decided to implement a recursive resolving process. When a
node is to be resolved, the �rst thing that is done is to determine the immediate parent
node by the node’s type string. Then the context model corresponding to this identi�er
is resolved. In case of multi-inheritance, that is when the type string contains more
than one type identi�er, all context models are resolved and merged to one temporarily
existing parent node. After the resolved parent node is assembled, the information of
the node-to-be-resolved is merged with the parent’s. This means that the type string
needs to be combined and restrictions, access identi�ers, or values de�ned by the child
replace the ones de�ned by the parent. Subnodes are either completely inherited when
only the parent de�nes them, inherited and merged when both context models de�ne
them, or need to be resolved when only the child de�nes them. This process is outlined
in Listing 4.2.

resolve (node)

//retrieve the resolved parent, merge information and

//return the resulting resolved node

typeString = node.getType();

parent = getResolvedParent(typeString);

node = mergeNode(node, parent);

return node;

58 Chapter 4. Design

mergeNodes(child, parent)

//merge the informtion contained in the two nodes,

//child’s information overwrites equivalent information from parent

child = mergeAttributes(child, parent);

child = mergeValue(child, parent);

child = mergeSubnodes(child,parent);

return child;

getResolvedParent(typeString)

if (typeString.onlyOneType)

//return the resolved model with the id typestring

node = ModelLoader(type);

return resolve(node);

else

//return a node containg the merged information off all

//specified types

node = newEmptyNode();

for all types in typeString

node2 = ModelLoader(type);

node2 = resolve(node2);

node = mergeNodes(node2, node);

return node;

Listing 4.2: Outline of the resolving process in pseudo code.

The resolving process is based on the assumption that all context models are valid. This
assumption is realistic, as for the resolving process only context models stored in the
CMR may be considered. According to R1, all those context models are valid.

4.3.4 Error Reporting

When a context model is invalid, the context model is rejected and the developer is
informed about the failure in the validation process (R8). The quality of the description
of the error cause can range from “something is wrong”, over a more detailed description
about the error type and where it occurred, to an error accompanied together with
suggestions for correction. It is obvious that a developer would prefer the rightmost
option, while this realization requires far more elaborate implementation.

Providing good error messages is important, not just in order to help the developer to
resolve the current issue. It is also possible to foster the developer’s understanding of

4.3. Processing Layer 59

the rules imposed by the information model design and the speci�c context models he
is using [31].

A good error message should follow four basic rules [32]:

• Use clear language and avoid system-internal information. If such information is
required for a system manager, attach it at the end of the error message together
with a note suggesting to forward this information to a system manager.

• Be precise rather than describing the general problem. In case of this application
this means avoiding an error message like "Invalid value" and rather describing
why the value is invalid and which node it belongs to.

• Help the developer to solve the problem. Methods like spelling correction can
guess what the developer actually wanted to say and suggest the change. If the
context model inherits from the unde�ned type "basic/numbers", the system could
propose to use the existing type "basic/number" instead.

• Be polite and do not blame the developer.

Considering those rules a simple guideline for the error messages of the CMR was
developed. Validation error message begins with a line stating that an error has occurred
together with the unique identi�er it has occurred in – the concatenation of the �le
name with all tags of the containing nodes – and the line in which the node is de�ned
in the document. This simpli�es the search for the problematic segment. After this,
the reason for the error is given, such as an invalid value, invalid subnodes, or invalid
attributes. This is accompanied by an explanation why the respective element is invalid.
In most cases, more information is available: for example, if the element is inherited or
which restrictions it violates. If this is the case, this information is also added to the
error message.

Listing 4.3 shows an invalid de�nition of a context model with the id "myBoolean".
When the context model is validated, it is rejected together with the error message
displayed in Listing 4.4.

<model type="basic/composed" >

<bool type="derived/boolean" restriction="minimumValue=’5’">

0

</bool>

</model>

Listing 4.3: Invalid context model de�nition: the restriction "minimumValue" collides
with the inherited restrictions.

60 Chapter 4. Design

Error at node ’myBoolean/model//bool’ (line 2):

The restriction ’minimumValue’ is invalid.

This node ’minimumValue’: 5, inherited restriction ’maximumValue’: 1.

Listing 4.4: Error message pointing out the identi�er and the line of the invalid node,
as well as the reason for the error.

A special kind of error is the combination of multiple types that are incompatible for
multi-inheritance. In most cases, it is not possible to resolve this error by �xing a typo
or de�ning a di�erent default value. Instead, this error type re�ects a more fundamental
problem. To signal this, all errors of this type carry the information "multi-inheritance
error" in their second line.

Besides validation errors, unexpected errors may occur during the validation process.
Those errors are marked as "internal errors". Such errors may hint at bugs in the
implementation or at system failures such as a broken communication with the �le
system containing the context models or the accessID repository. In case such an error
occurs, the developer is asked to retry his previous command. If the error persists, he
is asked to forward the error message together with related information to the system
manager.

At the moment, error messages are compiled from the information that is available when
the error occurs. To improve the quality of the content of error messages, additional
mechanisms that traverse the inheritance chain of a context model could be implemented
in the future. This would, for example, enable to tell at which level information was
de�ned that is responsible for the new context model to be invalid. Additionally, it could
be checked if errors of the same kind occur in the context model before issuing an error
report mentioning all of them. This could prevent the need to validate and correct a
context model multiple types instead of once.

4.3.5 Minimization

After a context model is considered valid by the validation process, it could be added
to the CMR. However, R2 requires that all context models in the CMR are stored in
minimized format. A context model is considered to be in minimal format if it does not
specify any information that is already inherited. In order to minimize a context model,
the following information needs to be removed:

• Attributes:

– Type: if multiple types are de�ned, all types entailed by other types need to
be removed. For example, if we de�ne a new node with the type "derived/-
boolean, basic/number", "basic/number" needs to be removed from the type
speci�cation as it is already contained in the de�nition of "derived/boolean".

4.3. Processing Layer 61

– Restriction: if a single restriction corresponds exactly with the inherited one,
it needs to be removed. For example, we de�ne the restriction "minimum-
Value = ‘1’, maximumValue = ‘5’" for a node of type number. The inherited
restriction is "minimumValue = ‘0’, maximumValue = ‘5’". The restriction
"minimumValue" is altered while "maximumValue" is not. Therefore, the
minimized restriction is "minimumValue = ‘1’".

– Reader and writer: The set of access identi�ers needs to be removed if it
equals the inherited set. As soon as this is not the case, the full set speci�ca-
tion needs to be retained. For example, the new context model we de�ned
inherits "reader = ‘a, b, c’". If we de�ned "reader = ‘b, a, c’ the information
can be minimized as the set equals the inherited one. If we de�ned "reader
= ‘a,b’" or reader = ‘a, b, c, d’" the information must not be minimized.

• Value: if the new default value equals to the inherited default value, it needs to
be removed.

• Subnodes:

– Every contained subnode needs to be minimized. If a subnode is inherited,
the respective speci�cation in the parent model is relevant. If a subnode is
newly de�ned or speci�es additional types, the de�nition of the referenced
types in the CMR is considered.

– If a minimized subnode does not specify any new or altered information, i.e.
no altered attributes, value, or subnodes, it needs to be removed from the
context model.

The information can be removed from the context model representation without loosing
semantic information. This is because the information is still contained by parent nodes
and considered when a context model is resolved or used.

Listing 4.5 shows the fully resolved representation of the context model with the id
"minimizationParent" that is considered stored in the CMR.

<model type="derived/boolean,basic/composed,basic/number"

restriction="minimumValue=’0’,maximumValue=’1’"

reader="a,b,c" writer="a,b">

1

<el1 type="basic/composed" reader="*" writer="*" />

<el2 type="derived/boolean,basic/number"

restriction="minimumValue=’0’,maximumValue=’1’"

reader="*" writer="*">

0

</el2>

<el3 type="derived/percent,basic/number"

62 Chapter 4. Design

restriction="minimumValue=’0’,maximumValue=’100’"

reader="*" writer="*" />

</model>

Listing 4.5: Fully resolved representation of the context model "minimizationParent".

Now, we de�ne a new context model, "minimizationChild", that inherits from the type
"minimizationParent" as shown in Listing 4.6.

<model type="minimizationParent" reader = "a,b" writer = "a,b">

1

<el1 type="basic/composed" />

<el2 restriction="minimumValue=’0’" />

<el3 >

50

</el3>

</model>

Listing 4.6: De�nition of the context model "minimizationChild."

This context model de�nition is valid. However, many pieces of information that
are declared are the same in the type "minimizationParent", such as the set of writer-
accessIDs, the value "1", the subnode "el1", or the restriction of the subnode "el2".

The minimized representation, through which all information is contained, is shown in
Listing 4.7. This context model can be added to the CMR and complies with R1 and R2.

<composed type="minimizationParent" reader="a,b">

<el3>50</el3>

</composed>

Listing 4.7: Minimized Representation of the context model "minimizationChild."

After a context model is validated and minimized, the developer should be presented
with the minimized representation. Additionally to this, information about how many
and which elements were removed could be displayed. This could lead to the developer
better understanding the type system and its capabilities, supporting later work and
improving the quality of future context models.

The minimization of context models can be easily conducted by comparing the new
context model against the fully resolved representation of its parent model that was
already assembled for the validation.

63

Chapter 5

Implementation

In this section, we will brie�y discuss the key elements of the implementation of the
CMR. These include the choice of the JDOM framework for the transformation of the
data model in Java Objects, the structure of the "Node" class as well as the decision to
use SQLite for the AccessID repository.

The logical parts of the CMR are implemented in Java, as is most of DS2OS. This allows
for parts of the code, e.g. the validation procedure, to be reused during runtime.

5.1 Data Model Transformation

Parsing a context model from its XML representation to a Java-object structure is a
step that is done frequently during resolving and validating a context model. Therefore,
this process consists of fetching the stored document, parsing it with an XML-to-Java
parser and then transforming it into a Java-object structure �tted to the VSL information
components. The implementation of the two latter steps is discussed below.

5.1.1 JDOM Framework

As assessed in Section 4.3.1 it is necessary to transform the XML-representation of
context models into Java object structures before an automated mechanism is able to
decide if they are valid. In general, two types of parsers exist for parsing XML documents
exist: SAX and DOM parsers.

The Simple API for XML (SAX) [33] is an event-based algorithm for parsing XML
documents. It linearly parses the documents from top to bottom and creates events
for elements, attributes, and values. SAX does not maintain a state and only processes
elements one at a time. If it is necessary to keep track of the data the parser has traversed,
this information hast to be handled and stored externally. Additionally, using a SAX

64 Chapter 5. Implementation

parser does not allow random access to information. The advantages of SAX are its
speed and its low consumption of memory.

The Document Object Model (DOM) [34] is a recommendation of the W3C which de�nes
an interface for programs accessing and modifying information of XML documents.
An XML document is represented as a tree structure where every node is an object
representing a part of the document. This results in a structured representation of an
XML document where information can be freely accessed and modi�ed. However, this
approach is slower and requires more memory, as the whole tree structure is stored.

JDOM [35] is a Java-based object model for XML documents. It provides a way for easy
and fast document reading and writing. With JDOM, the information of XML �les is
processed in such a way that we can conveniently retrieve it for our purpose. We can
also use JDOM to e�ciently construct new context models in the Java routine that can
then be saved in an XML �le. Constructing context models is required as we store only
minimized context models. With JDOM, we do not have to interface a parser directly.
JDOM is compatible with both SAX and DOM parsers and combines the �exibility of
tree structures with the performance advantages of SAX parsers.

Its object-tree structure makes use of Java collections like List and Array. The root of
the tree structure is called "Document". It speci�es information about the XML �le, such
as its URI. A document contains exactly one element, which is the root element. Each
element carries information about its value, the name of its tag, and the line it is de�ned
in in the XML document. It also contains a list of its attributes, represented as key-value
pairs, and a list of the elements it contains. This rough structure is visualized in Figure
5.1. Note that the nodes contained by "Elements" are references to elements which have
the same structure as presented for the root element. Even though more information is
contained, this is the only information relevant to us. Because of its performance and
convenience, we decided to use the JDOM framework as XML-to-Java parser.

After the XML document was parsed to a JDOM tree, we can be certain that the context
model is syntactically valid. To further ensure semantical validity we transform the
context model to a Java object �tted to the VSL information model, the class "Node".

5.1.2 Java Class "Node"

As described in Section 4.3.1 we decided that it is necessary to decouple the processing
of context models from the JDOM structure. We implemented the Java Class "Node".
Each node of the XML data model is represented as an instance of this class. The class
consists of variables that are determined by the information describing a context model.
An overview of the variable names, types, and purpose is given in Table 5.1. Those are
the variables that can be directly determined from the XML �le without the need to
consult other context models. Additional information is gathered with resolving the

5.2. AccessID Repository 65

Document

Root element

Attributes Elementsname

URI

value

element1

element2

element3

attribute1

attribute2

attribute3

line

Figure 5.1: Structure of JDOM object trees.

parent, such as the reference to the parent node or the list of validators.

To facilitate later processing this information is transformed further. For example,
the class "Node" features a distinct variable for each restriction. In the JDOM tree,
all requirements are aggregated under the attribute with the key "restriction". The
restriction is parsed by a �nite automaton that retrieves the key-value pairs and can
detect when the restriction string is malformed.

The VSL information model does not specify any restrictions on the range of the value
of numerical values or restrictions. Therefore, we internally represent all information
as String. This includes the values of nodes of type "basic/number" and numerical
restrictions. The class "Node" provides method for accessing those �elds as a BigInteger.

5.2 AccessID Repository

As determined in Section 4.2, accessIDs need to be stored in an independent database.
Considering that an accessID is uniquely identi�able by its name and described by
additional attributes, such as its description, we decided to use a relational database.

Out of the many existing database engines we decided to use SQLite [36]. SQLite is
a lightweight, in-process relational database management system. It is not designed
as a client-server architecture, but the database engine is embedded in the application.
Calls are directly made to the �le holding the data. As no communication to a server
is required, this provides a fast access to data. Disadvantages of SQLite are the limited

66 Chapter 5. Implementation

name type description
id String The identi�er of the containing document.
tag String The tag of the node.
line Integer The line of the node in the �le.
typeString String The String de�ned by the attribute "type".
restrictionString String The String de�ned by the attribute "restriction".
reader String The String de�ned by the attribute "reader".
writer String The String de�ned by the attribute "writer".
value String String representing the value of the node.

Normalized to omit leading and trailing
whitespace.

elements List<Node> List containing references to the instances of
the node’s subnodes.

Table 5.1: Overview of the variables of class "Node" that are directly derived from the
XML representation.

size of data (an SQLite database is limited in size to 140 terabytes), the limited number
of concurrent writers, and the lack for user management.

Alternatives to SQLite, such as MySQL [37] and PostgreSQL [38], are based on client-
server architectures. While they provide more functionality, such as multiple concurrent
writers and more distinctive data types, communication is performed through interfaces
of sorts, for example ports or sockets. This entails longer response times for requests.

Considering the set-up and requirements for the AccessID repository, it becomes clear
that the advantages of SQLite heavily over-weigh its drawbacks. The AccessID reposi-
tory is not designed to be directly accessed by developers but is rather interfaced through
the CMR. The CMR has to refer to the accessID repository for context model validation.
This makes fast accessibility of data very important. As the accessID repository is only
accessed through the CMR, concurrent write operations are not required. Access control
can be managed on by the CMR. The size limit imposed by SQLite does not constitute a
problem, as the size of the data stored in the CMR is rather small.

Currently the accessID repository is designed to contain one table. A tuple consists of
the attributes "accessID", "description", and "submitted on". "accessID" is the primary
key.

If a context model de�nes new accessIDs, the validation process queries the accessID
repository for the existence of the respective accessIDs. Retrieving and submitting new
accessIDs to the accessID repository can be conducted through the CMR.

67

Chapter 6

Evaluation

After implementing the CMR, we will now evaluate our implementation for correctness,
performance, and usability in the following sections.

6.1 Correctness

One of the important properties of the CMR is that R1 and R2 are ful�lled correctly.
Validation and minimization performed by the CMR must be correct by all means.

The correctness of the validation and minimization process is of high importance due
to two reasons:

1. It is important that only valid context models are used by orchestration services.
Using a non-valid context model could lead to unexpected behavior of the system.

2. Our processing is based on the assumption that all context models in the CMR are
valid and minimized. When faulty processing accepts an invalid context model
the knowledge base of the CMR is corrupted. As our assumption is now no longer
ful�lled, validation and minimization may fail completely.

As we cannot formally verify the correctness of the validation process, we did extensive
testing of the implementation. By default, the CMR accepts a context model unless it
detects an invalid declaration. Therefore, we created a set of context models that are
invalid and need to be rejected. These context models cover all aspects of the invariants
described in Section 2.4.5 and the corresponding validators enumerated in Section 4.3.2.

We created 70 invalid models to evaluate the validation process together with 19 valid
models used as base to model invariants a�ected by inheritance. These models were used
throughout the implementation process to validate the functionality and to detect when
invalid models were still accepted. All invalid models are rejected with the expected
error message by the �nal implementation.

68 Chapter 6. Evaluation

Models are only minimized when they are valid. We created a second set of context
models that require minimization in all ways, i.e. minimization of the restrictions, the
accessID, the value, and the subnodes.

For both sets, �les containing the expected results – either the error message or the
minimized representation – are available. Those results were created by running the
current implementation and then manually veri�ed to be as expected. By using the
results, the correctness of the processes can also be automatically ensured after future
modi�cations.

6.2 Performance

In this section, we will evaluate how resolving, validation, and minimization perform
in regard to di�erent context model properties.

6.2.1 Creation of Test Models

To interfere the general tendency of how the runtime of our processes corresponds
with context model structure and size, we will consider two variables: (1) Inheritance
depth. This variable denotes how many types a context model inherits from in a linear
inheritance chain. (2) Model complexity. This variable describes the total number of
nodes a context model contains.

We will consider context models only inheriting from non-composed structures, context
models with a high number of subnodes, as well as context models with a mix of
inheritance depth and subnodes.

Currently only a very small set of context models is available that is not su�cient for
drawing conclusions about the performance of the CMR for larger and more complex
context models. Therefore, we created generic context model structures with the desired
features. We present the properties of the context models we created below. Afterwards,
we summarize the important results of our tests.

6.2.1.1 Inheritance Depth

To evaluate the impact of the inheritance depth on the processing time, we created three
di�erent inheritance chains consisting of 200 context models each.

The basic type for the context models in the �rst inheritance chain is "basic/number".
The root node of the context model "typeNumber0" inherits from it. The context model
called "typeNumber[i]" inherits from the type "typeNumber[i-1], where i ranges from 0
to 199. None of the context models in the chain de�nes a value, restriction, or accessID.

6.2. Performance 69

This set of models is intended for determining the sole in�uence of the inheritance
depth without the in�uence of possible side e�ects from further speci�cations. The
context model "typeNumber43" is shown exemplaryily in Listing 6.1. We will refer to
this set of context models as set 1.

<model43 type=".../set1/typeNumber42" />

Listing 6.1: De�nition of "typeNumber43" in set 1.

We used the second set of context models to determine whether the impact of inheritance
depth is similar to the �rst one. It also consists of a inheritance chain of "basic/number".
The di�erence is that the context models in this set specify values, restrictions, and
accessID which change for every context model. They are determined by the inheritance
depth of each context model. Information contained by the context models in the
inheritance chain is considered unnecessary, as it is overwritten by the last context
model. By comparing the performance of set 1 to set 2, we want to determine the
overhead of resolving such unnecessary information. An example of a model out of this
set is shown in Listing 6.2.

<model53 type=".../set2/typeNumber52" reader="b" writer="b"

restriction="minimumValue=’53’,maximumValue=’1947’">

53

</model53>

Listing 6.2: De�nition of "typeNumber53" in set 2.

The third set of context models is based on "basic/text" instead of "basic/number".
Throughout the inheritance chain, the restriction, value and accessIDs alternate. We
examine this set of context models because the restriction "regularExpression" of type
"basic/text" is not overwritten, but extended through inheritance. We expect that this
entails that more work has to be put in the validation of this restriction. Therefore, the
validation process should take longer. An example context model of this set is shown
in Listing 6.3.

<model75 type=".../set3/typeText74" reader="b" writer="b"

restriction="regularExpression=’b*a*’">

b

</model75>

Listing 6.3: De�nition of "typeText75" in set 3.

6.2.1.2 Number of Subnodes

In order to evaluate the impact of the number of subnodes on the process time, we use
context models of type "basic/composed" that contain a tree structure of nodes. This

70 Chapter 6. Evaluation

tree structure is determined by its degree, or branching factor, and its depth. A context
model of depth 0 only contains the root node, one of depth 1 contains the root node and
deдree direct subnodes. In a model of depth 2 theses subnodes contain in turn again
deдree subnodes.

The total number of nodes such a context model contains can be calculated by

depth∑
i=0

deдreei .

We do use two di�erent kinds of such context models. The subnodes in context models
of the �rst kind are all of the same type "base". We refer to this kind of context model
as "context model with uniform subnodes". An example for this kind of context model
is given in Listing 6.4.

<model type="basic/composed">

<el0 type=".../base" />

<el1 type=".../base" />

</model>

Listing 6.4: De�nition of a context model with uniform subnodes, called
"type_degree2_depth2".

The second kind of context models contains subnodes which are all of di�erent types.
The ith subnode is of type "base[i]". A context model of this kind which contains n
subnodes refers to n di�erent types. We refer to this kind as "context model with
di�erent subnodes". An example for this kind of context model is given in Listing 6.5.

<model type="basic/composed">

<el0 type=".../base1">

<el0 type=".../base2" />

<el1 type=".../base3" />

</el0>

<el1 type=".../base4">

<el0 type=".../base5" />

<el1 type=".../base6" />

</el1>

</model>

Listing 6.5: De�nition of a context model with di�erent subnodes, called
"type_degree2_depth2".

For both types, we will consider context models with degree four and depth two, which
equals a total number of 21 nodes, context models with degree four and depth four,

6.2. Performance 71

which equal a total number of 341 nodes, and context models with degree four and
depth six, which equals a total number of 5461 nodes.

6.2.1.3 Mixed Structure

In reality, context models will have a mixed structure that includes both a certain
inheritance depth and the containment of subnodes. Based on our current experience,
we expect the majority of context models to have an inheritance depth of 5 or lower
and to contain at most 20-40 subnodes. Based on these estimations, we created a set
of context models based on "basic/composed". With every inheritance step, eight new
subnodes are speci�ed. So a node on inheritance depth i de�nes 8 new nodes and
additionally inherits 8i nodes.

6.2.2 Execution Time

Considering the design of the processes, we expect the general behavior to be as follow-
ing:

• Resolving only depends on the number and complexity of context models in the
inheritance chain. Therefore, the more context models are inherited from and the
more complex they are, the longer resolving should take. The time required for
resolving should be independent from the new context model.

• Validation does not depend on all context models in the inheritance chain, only
on the new context model and the direct parent model. The current algorithm
traverses the new context model and compares it to the parent. Therefore, the
runtime of validation should only depend on the complexity of the new context
model. The complexity of the new context model is primarily determined by the
number of subnodes it contains, as they all need to be validated independently.
Factors like how many restrictions, reader, or writer attributes are speci�ed or
how many and what types the nodes inherit from also play a smaller role.

• Minimization is structured just as validation. Therefore, the statement made
about validation also �ts to minimization. However, minimization should take
shorter than validation of the same context model. Minimization consists merely
of comparing the existence of information, while validation requires more com-
plex logic.

For the context models described with the above mentioned variables this entails:

• A relatively small context model, i.e. one that does not contain subnodes, with a
very high inheritance level will require time proportional to its inheritance depth
for resolving. This is because all context models in the inheritance chain need

72 Chapter 6. Evaluation

to be traversed. However, the time for validation and minimization should be
constant, as this process compares the new context model only against its parent
model.

• A complex context model, i.e. one the contains many subnodes, with a low inher-
itance hierarchy will require time proportional for validation and minimization.
However, as only few nodes need to be traversed for resolving, this time should be
constant when the traversed context models do not introduce much complexity.

6.2.2.1 Impact of the Inheritance Depth

To estimate the impact of the inheritance depth, we conducted the following tests:

• Set 1: we performed the resolving process for the context models "typeNumber9",
"typeNumber99", and "typeNumber199" 200 times. We measured he time for each
run separately. As validation and minimization are much faster for these sets, we
run each of these processes 1000 times and measure the combined duration.

• Set 2: we perform the same test as above.

• Set 3: we perform the same test as above for the context models "typeText9",
"typeText99", and "typeText199".

We expect the following results:

1. For all sets, we expect an increase in the time required to perform the resolving
with an increased inheritance depth.

2. For sets 1 and 2, we expect similar resolving time for the same inheritance depth.
We expect set 2 to require slightly more time as new values are de�ned in every
step.

3. For set 1 and set 2, we expect the time required for validation to remain constant.

4. For set 3, we expect a slightly increase in validation time with increased in-
heritance depth. We expect this as the restriction "regularExpression" is not
overwritten, but appended with the inherited ones.

5. For all sets, we expect the time required for minimization to remain constant.

Figure 6.1 compares the runtime of the resolving process for the types "typeNumber9,
"typeNumber99", and "typeNumber999" for both set 1 and 2. As we can see, the resolving
time increases with the inheritance depth as expected (1). The result for set 3 is similar.
Set 2 only takes negligibly longer than set 1, other than assumed (2). This leads us to the
conclusion that it has no in�uence on the performance of the resolving process whether
new values or attributes are speci�ed or not.

6.2. Performance 73

10 100 200

0

50

100

150

200

250

300

Inheritance Depth

Ti
m

e
in

m
s

(a) Resolving time for context models of set 1.

10 100 200

0

50

100

150

200

250

300

Inheritance Depth

Ti
m

e
in

m
s

(b) Resolving time for context models of set 2.

Figure 6.1: Time in milliseconds required for resolving context models with inheritance
depth 10, 100, and 200 for set 1 (a) and set 2 (b).

depth 10 depth 100 depth 200
set1/typeNumber 4 ms 3 ms 2 ms
set2/typeNumber 712 ms 804 ms 815 ms
set3/typeText 824 ms 877 ms 1180 ms

Table 6.1: Time in milliseconds for performing only validation 1000 times for the inher-
itance depths 10, 100, and 200. The time required for resolving is not included.

The validation time for set 1 and set 2 was indeed constant for di�erent inheritance
depths (3), as shown in Table 6.1. For set 3 the same did apply. This objects our
assumption (4). It is observable that the time required for validation is higher when the
context model contains more information: validation of set 1 takes signi�cantly shorter
than validation for set 2 and 3.

The minimization process took equally long for all modes with around 30 milliseconds
required to perform minimization 1000 times (5).

6.2.2.2 Impact of the Number of Subnodes

To estimate the impact of the number of subnodes, we conducted the following tests:

• We performed the resolving, validation, and minimization process for the context

74 Chapter 6. Evaluation

models "type_degree4_depth2", "type_degree4_depth4", and "type_degree4_depth6"
200 times. This was conducted for both context model types. This corresponds to
the total numbers of nodes of 21, 341, and 5461. For each run, we measured the
time for each of the processes separately.

• We performed the same tests as above, but disabled the caching component for
resolved context models.

We expect the following results:

1. For all context models, we expect the average resolving time with and without
cache to be constant, equal, and negligibly small. We assume this because the
only context model being resolved is the context model "basic/composed".

2. For both context model types, we assume that the validation time increases sig-
ni�cantly with the number of nodes when the cache is disabled. This is because
the subnodes of the new context model need to be resolved during validation, as
they are not de�ned in the parent model.

3. For the context model with uniform subnodes, we expect the validation time to
be signi�cantly less when caching is enabled. Not as many accesses to the �le
system and parsing steps are required.

4. For the context models with di�erent types of subnodes, the validation time will
be less when caching is enabled, but still more than for the context model with
uniform subnodes.

5. Minimization time should increase with the number of subnodes and should not
depend on caching.

The results for the resolving process are as expected. In most cases, the resolving was
so fast that it could not be recorded with milliseconds and are therefore listed as zero.
For all context models, the highest outliers for validation was 32 milliseconds. This
corresponds to our assumption (1).

Figure 6.2 depicts the results for validation conducted without caching. As we presumed
(2), the runtime signi�cantly increases with the number of nodes. What we did not
anticipate is that the context models with di�erent subnodes tend to require less time
than the models with uniform subnodes of the same size. We assume this is due to
the di�erent types we used for the base types of the subnodes. For the context model
with di�erent types, all base types inherited from only "basic/composed". For the
context model with uniform subnodes, the base type inherits from "basic/composed"
and "basic/number". As those two basic context models need to be retrieved for the
validation of every subnode, more runtime is required.

The test further supports our assumption that the validation time signi�cantly declines
when caching is enabled (3). The validation process was unexpectedly even so fast that

6.2. Performance 75

uniform di�erent

20

40

60

80

Model Kind

Ti
m

e
in

m
s

(a)

uniform di�erent

150

200

250

300

350

Model Kind

Ti
m

e
in

m
s

(b)

uniform di�erent
2,500

3,000

3,500

4,000

4,500

Model Kind

Ti
m

e
in

m
s

(c)

Figure 6.2: Time in milliseconds required for validating context models with 21 (a), 341
(b), and 5461 (c) nodes. Blue depicts the context model with uniform types, red depicts
the context model with di�erent nodes. Note the di�erent scales on the y axis.

we were not able to measure the time by the means of milliseconds.

With the results depicted in Figure 6.3 we can support our assumption (4). The validation
time is roughly half of the one required when caching is disabled. Even though the
types of the of the subtypes cannot be cached, the basic type type inherit from is cached.
This reduces the number of necessary accesses to context models stored in plain text
�les.

The �fth assumption is also fostered by our results. Even though the time required for
the context models with 21 and 341 was so short that we were not able to measure them
exactly, the context models with 5461 nodes behaved just as expected. Figure 6.4 shows
that the minimization time is constant over context model type and over enabling and
disabling caching.

6.2.2.3 Mixed Models

To show that the two context model structures discussed above do have the same impact
when mixed, we performed test on context models with mixed structures.

The results were as expected: the more complex the context model we inherit from,
the longer resolving takes. The more subnodes a context model contains, the longer
validation and minimization take. When caching is enabled, the validation time heavily
depends on the variety of subnode types.

76 Chapter 6. Evaluation

60

70

80

90

100

110
Ti

m
e

in
m

s

(a)

1,000

1,100

1,200

1,300

1,400

1,500

1,600

Ti
m

e
in

m
s

(b)

Figure 6.3: Time in milliseconds required for validating the context model
"type_degree4_depth6" with uniform nodes (a) and with di�erent nodes (b). Note the
di�erent scales on the y axis.

uniform, cache uniform, no cache di�erent, cache di�erent, no cache
0

2

4

6

8

10

12

14

16

18

Ti
m

e
in

m
s

Figure 6.4: Time in milliseconds required for minimizing context models with 5461
nodes. Variation on the type of subnodes and on enabling and disabling caching.

6.3. Usability 77

6.2.3 Summary

We have shown that context models much more complex and with a higher inheritance
depth than we anticipate to be submitted to the CMR in the future still only require
processing time that comfortably �ts in our aspired response time that allows interactive
responses (R6).

Our evaluation showed that the processing time heavily depends on the number of
context models that need to be retrieved and parsed. We have already dampened
this e�ect by using a cache storing all context models retrieved in the same process.
Additionally, the time required for parsing should be further reduced.

Rating the performance achieved as satisfying relies on the assumption that context
models that are submitted to the CMR are created by humans. Consequently, the
complexity of context models should lie within the boundaries tested above. However,
context models could be automatically generated to be complex and demanding on the
resources of the CMR.

6.3 Usability

With R8 we demand that the error reports returned for invalid context models are
helpful in �nding, understanding, and resolving the error. To assess the quality of the
currently used error reports, a survey with 10 participants was conducted.

At the beginning, the participants had to state their level of knowledge of the VSL
information model. Four participants stated to have no previous knowledge, two basic
knowledge and four good knowledge. Afterwards, a short introduction to the VSL
information model was given.

The participants were presented �ve di�erent invalid context models together with
the error report returned by the CMR. Participants were asked why the context model
was invalid or how they could resolve the error. Then they rated how helpful the error
report was in �nding and resolving the error. The options were "not helpful", "helpful",
and "very helpful". No participant used the rating "not helpful" at any time.

We will present the results for the di�erent error reports below. We give the percentage
of participants that were able to give the correct answer and consider their ratings for
the helpfulness of the error report. Table 6.2 gives an overview of the results.

The �rst invalid context model’s root node contained a subnode even though it was
neither of type "basic/list" nor type "basic/composed". 80 percent of the participants
were able to resolve the error, the rest falsely wanted to change the type de�nition of
the subnode instead of the root node. Out of those answering correctly, seven found the
message to be "very helpful". Half of the answers considered the message "very helpful"

78 Chapter 6. Evaluation

error �nding error resolving
error type #of correct answers + o - + o -
containing subnode 8 7 1 0 4 4 0
relaxing restriction 9 7 2 0 7 2 0
wrong restriction 9 9 0 0 6 3 0
unde�ned accessID 10 9 1 0 5 5 0
multiple 10 9 1 0 9 1 0

Table 6.2: Number of the correct answers for each context model, together with the
rating of those participants who answered correctly.

for resolving the error. As it seams that understanding the error was easy, but resolving
was not as much supported by the error report, additional information might be added.
"Maybe you can add "basic/composed" to the type of [faulty node]" could be one way
to do this.

The second invalid context model speci�ed the restriction "maximumValue=2", while
the inherited restriction was "minimumValue=1". 9 of the participants were able to tell
why the context model was invalid. Out of those, 7 found the message "very helpful"
for �nding and resolving the error.

The third invalid context model was of type "basic/text" and speci�ed the restrictions
"minimumValue" and "maximumValue". Nine out of the participants were able to resolve
the error by making the context model of type "basic/number" or using "regularExpres-
sion" instead of the afore mentioned restrictions. All of those found the error message
"very helpful" for �nding the error, while only six found it "very helpful" for resolving
the error. We consider this as a hint that more guidance for resolving the error is desired
in this case.

The fourth context model used an accessID not de�ned in the accessID repository.
All participants were able to resolve this error by either adding the accessID to the
repository or by using an already de�ned one. Nine participants found the message to
be "very helpful" for �nding errors. Only half of the participants found the message to
be "very helpful" to resolve. For this kind of error further guidance may be necessary.

The last context model was invalid at several spots. The root node did specify a re-
striction not de�ned for its type. The subnodes’ values were invalid, one due to not
complying with the restrictions and once due to not complying with the type. To eval-
uate whether developers found the display of multiple error messages supportive, we
assembled the error message in Listing 6.6 from the separate ones, as this feature is not
implemented yet.

6.4. Ful�llment of Requirements 79

Error at node ’myComposed2’ (line 1):

This node may not define restrictions for the minimum and maximum

of a value as the node is not of type ’basic/number’.

Error at node ’myComposed2/el1’ (line 2):

The value ’3’ is too large.

Restriction ’maximumValue’: 1.

Error at node ’myComposed2/el3’ (line 8):

The value ’three’ cannot be parsed as a number.

The node inherits from type ’basic/number’, therefore its value has

to be a number.

Listing 6.6: Error-report detailing multiple errors at once.

The feedback to this error report was positive: All participants were able to recognize
the errors. Nine found found the error message "very helpful" for �nding and resolving
the error. This encourages us to use such error messages, which require to go on with
the validation of the next subnodes even after one error was already found.

We interpret these results that the error reports produced by the CMR are indeed helpful
for �nding and understanding the error and that R8 is ful�lled. However, more needs
to be done to support the resolving of errors. This is also underlined by the textual
feedback given by some participants. They suggested to give more details about the
error. In case of inheritance errors, for example, error messages could be improved by
displaying the parent model. In case of restriction errors it was suggested to display the
rules for restrictions.

6.4 Ful�llment of Requirements

The implementation that we developed during this work covers the core processes of
the CMR: validation (R1) and minimization (R2). In the evaluation we showed that the
implementation complies with R6 and processes context models e�ciently. It is possible
to submit context models to the CMR (R4). Context models can also be retrieved, but
knowledge of its existence and identi�er are required, as there is no possibility yet to
browse or search context models. We can draw the conclusion that the error reports are
helpful for �nding errors from the survey we conducted (R8). However, participants
expressed the wish to be supported more with resolving an error.

Table 6.3 states which of the requirements we identi�ed are ful�lled by our implemen-
tation.

The requirements R3, R5, R7 were not dealt with in this work. R3 and R7, which

80 Chapter 6. Evaluation

Requirement
R1: Validation ++ implemented and tested
R2: Minimization ++ implemented and tested
R3: Browsing and Searching - not implemented
R4: Submission and Retrieval + submission possible, retrieval when existence

of model is known
R5: Convergence Mechanisms - not implemented
R6: Fast Validation Process ++
R7: Intuitive Browsing - not implemented
R8: Helpful Error Reports + basic, only one error at a time, more support

possible

Table 6.3: Ful�llment of the requirements identi�ed in Section 2.6.

concern the browsing and searching functionality of the CMR, can be ful�lled by im-
plementing a web application for the CMR where developers can browse and submit
context models. R5 requires standardization of models. First approaches for this were
presented in this work.

81

Chapter 7

Conclusion

With this work, we laid the foundation for the crowdsourced creation of context models
for DS2OS.

We illustrated why the introduction of a component like the CMR satis�es the desired
properties of a crowdsourcing framework for DS2OS. By considering the role of the
CMR in the DS2OS and anticipating how it will be used, we identi�ed the detailed
requirements for the CMR. We also considered problems that arise with collaborative
crowdsourcing. Context models may not be created by using already existing function-
ality or may no be suitable to be reused themselves. This would hinder standardization
of interfaces.

We compared the capabilities of the proposed CMR with existing solution approaches
for similar applications. We argued that these existing solutions do not ful�ll all the
expectations we have for the crowdsourcing framework for the DS2OS. However, some
of their approaches could be an enrichment for our system, such as semantic tags for
context models and providing adapted editors.

Ensuring that only valid context models may be submitted is one of the main responsi-
bilities of the CMR. As standard validation mechanisms for XML cannot validate the
semantic component of the VSL information model, a custom solution needed to be
implemented. The same applies for the minimization of context. By making this im-
plementation independent from the currently used data model, XML, adaptations of
additional data models are possible in the future.

Our design splits the functionality into di�erent modules: resolving, validation, and
minimization. Those modules can be reused for di�erent purposes. Resolving can
be reused for retrieving a resolved model from the CMR, either for displaying it to a
developer or for deploying it in a smart space. The validation mechanism also can be
reused on deployment.

The evaluation showed that our implementation achieves our goal: the requirements

82 Chapter 7. Conclusion

most important for the basic functionality of the CMR are ful�lled. We are able to
validate and minimize models automatically and with good performance. The error
reports proved as being helpful in understanding errors.

7.1 Future Work

Future work should �rst focus on approaching the requirements not considered by our
implementation yet. To make context model reuse possible, a graphical interface where
the CMR can be browsed and searched for its context models is necessary.

Approaches for converging mechanisms leading to standardization of context models
were presented in Section 2.5.4. Those should be considered more closely and be im-
plemented. Our survey showed that the error reports could be improved to support
resolving an error. Mechanisms trying to guess the developer’s intention and suggesting
corrections are an option as well as displaying several error messages at once.

To facilitate searching context models in the CMR, a tagging system could be introduced
as mentioned in Section 3.1. For storing this meta-information, a database decoupled
from the storage of the context models would be necessary.

Malicious intentions of context model contributers must be considered. Our imple-
mentation of validation and minimization performs well. But automatically generated
context models that are arti�cially complex have the power to consume the resources
of the CMR and prevent it from replying to other requests. Security mechanisms that
are able to detect such attacks should be deployed.

Besides the CMR, an other component is important for fostering the crowdsourced
creation of context models. Providing an adapted editor that is tailored to the VSL
context model relieves the manual work required for the creation of context models.
Such an editor could feature, for example, syntax-highlighting, auto-completion, and
in-editor validation.

83

Bibliography

[1] M.-O. Pahl, G. Carle, and G. Klinker, “Distributed smart space orchestration,” in
NOMS 2016 - 2016 IEEE/IFIP Network Operations and Management Symposium, 2016,
pp. 979–984.

[2] M. Weiser, “The computer for the 21st century,” SIGMOBILEMob. Comput. Commun.
Rev., vol. 3, no. 3, pp. 3–11, 1999.

[3] M.-O. Pahl, “Distributed smart space orchestration,” Doctoral Dissertation, Tech-
nische Universität München, München, 2014.

[4] M.-O. Pahl and G. Carle, “Crowdsourced context-modeling as key to future smart
spaces,” in 2014 IEEE Network Operations and Management Symposium (NOMS).
IEEE, 2014, pp. 1–8.

[5] R. Minerva, A. Biru, and D. Rotondi, “Towards a de�nition of the internet of things
(iot),” IEEE Internet Initiative, vol. 1, 2015.

[6] H. J. Kim, I. Kim, and H. G. Lee, “The success factors for app store-like platform
businesses from the perspective of third-party developers: An empirical study
based on a dual model framework,” in Proceedings of the Paci�c Asia Conference on
Information Systems 2010, 2010, p. 60.

[7] D. Hovland, “The inclusion problem for regular expressions,” Journal of Computer
and System Sciences, vol. 78, no. 6, pp. 1795–1813, 2012.

[8] World Wide Web Consortium, “Extensible markup language (xml),” 13.01.2018.
[Online]. Available: https://www.w3.org/XML/

[9] ISO and IEC, “Iso/iec directives, part 1,” 2012.

[10] “Extensible markup language (xml) 1.0 (�fth edition),” 18.02.2018. [Online].
Available: https://www.w3.org/TR/xml/

[11] World Wide Web Consortium, “Xml schema,” 13.01.2018. [Online]. Available:
https://www.w3.org/XML/Schema

[12] David Gaßmann, “Implementation of a context model repository,” Bachelor’s The-
sis, Technische Universität München, München, 2015.

https://www.w3.org/XML/
https://www.w3.org/TR/xml/
https://www.w3.org/XML/Schema

84 Bibliography

[13] T. R. Gruber, “A translation approach to portable ontology speci�cations,” Knowl-
edge acquisition, vol. 5, no. 2, pp. 199–220, 1993.

[14] L. Stojanovic, “Methods and tools for ontology evolution,” 2004.

[15] World Wide Web Consortium, “Semantic web,” 04.02.2018. [Online]. Available:
https://www.w3.org/standards/semanticweb/

[16] ——, “W3c semantic web activity,” 04.02.2018. [Online]. Available: https:
//www.w3.org/2001/sw/

[17] ——, “Rdf - semantic web standards,” 03.02.2018. [Online]. Available: https:
//www.w3.org/RDF/

[18] “Rdf 1.1 turtle,” 23.01.2018. [Online]. Available: https://www.w3.org/TR/turtle/

[19] “Rdf 1.1 json alternate serialization (rdf/json),” 02.10.2017. [Online]. Available:
https://www.w3.org/TR/rdf-json/

[20] “Rdf 1.1 xml syntax,” 02.10.2017. [Online]. Available: https://www.w3.org/TR/
rdf-syntax-grammar/

[21] “Owl - semantic web standards,” 18.02.2018. [Online]. Available: https:
//www.w3.org/OWL/

[22] T. Tudorache, N. F. Noy, S. Tu, and M. A. Musen, “Supporting collaborative ontology
development in protégé,” in International Semantic Web Conference, 2008, pp. 17–32.

[23] C. W. Holsapple and K. D. Joshi, “A collaborative approach to ontology design,”
Communications of the ACM, vol. 45, no. 2, pp. 42–47, 2002.

[24] S. Karapiperis and D. Apostolou, “Consensus building in collaborative ontology
engineering processes,” Journal of Universal Knowledge Management, vol. 1, no. 3,
pp. 199–216, 2006.

[25] T. Reschenhofer, M. Bhat, A. Hernandez-Mendez, and F. Matthes, “Lessons learned
in aligning data and model evolution in collaborative information systems,” in
Proceedings of the 38th International Conference on Software Engineering Companion,
2016, pp. 132–141.

[26] “Project haystack.” [Online]. Available: https://project-haystack.org/

[27] V. Charpenay, S. Käbisch, D. Anicic, and H. Kosch, “An ontology design pattern for
iot device tagging systems,” in 5th International Conference 2015, 2015, pp. 138–145.

[28] “The cellml project.” [Online]. Available: https://www.cellml.org/

[29] World Wide Web Consortium, “W3c math home,” 28.01.2018. [Online]. Available:
https://www.w3.org/Math/

https://www.w3.org/standards/semanticweb/
https://www.w3.org/2001/sw/
https://www.w3.org/2001/sw/
https://www.w3.org/RDF/
https://www.w3.org/RDF/
https://www.w3.org/TR/turtle/
https://www.w3.org/TR/rdf-json/
https://www.w3.org/TR/rdf-syntax-grammar/
https://www.w3.org/TR/rdf-syntax-grammar/
https://www.w3.org/OWL/
https://www.w3.org/OWL/
https://project-haystack.org/
https://www.cellml.org/
https://www.w3.org/Math/

Bibliography 85

[30] C. M. Lloyd, J. R. Lawson, P. J. Hunter, and P. F. Nielsen, “The cellml model reposi-
tory,” Bioinformatics (Oxford, England), vol. 24, no. 18, pp. 2122–2123, 2008.

[31] J. Nielsen, Usability Engineering. San Francisco, CA, USA: Morgan Kaufmann
Publishers Inc, 1994.

[32] B. Shneiderman, “Designing computer system messages,” Commun. ACM, vol. 25,
no. 9, pp. 610–611, 1982.

[33] “Simple api for xml (sax).” [Online]. Available: http://www.saxproject.org/

[34] “Dom parsing and serialization,” 22.02.2018. [Online]. Available: https:
//www.w3.org/TR/DOM-Parsing/

[35] “Jdom,” 22.02.2018. [Online]. Available: http://www.jdom.org/

[36] “Sqlite,” 22.02.2018. [Online]. Available: https://sqlite.org/index.html

[37] “Mysql,” 22.02.2018. [Online]. Available: https://www.mysql.com/de/

[38] “Postgresql: The world’s most advanced open source database,” 22.02.2018.
[Online]. Available: https://www.postgresql.org/

http://www.saxproject.org/
https://www.w3.org/TR/DOM-Parsing/
https://www.w3.org/TR/DOM-Parsing/
http://www.jdom.org/
https://sqlite.org/index.html
https://www.mysql.com/de/
https://www.postgresql.org/

	Introduction
	Outline

	Analysis
	Goals
	The Internet of Things, Smart Devices, and Smart Spaces
	The Distributed Smart Space Orchestration System
	Virtual State Layer
	Smart Space Store

	The VSL Information Model
	Hierarchical Addressing System and Namespaces
	Typing, Composition and Multi-inheritance
	Restrictions
	Access Rights
	Semantic Invariants
	Representation in Markup Scheme

	Context Model Repository
	Crowdsourced Creation of Context Models
	Design principles of the CMR
	Context Model Validation and Minimization
	Standardization of Context Models

	Requirements Analysis

	Related Work
	Ontologies
	RDF and OWL
	Collaborative Ontology Design
	Summary

	Project Haystack
	Project Haystack's Meta Model
	Tag Database
	Haystack Tagging Ontology
	Evaluation

	The CellML Project
	CellML Modeling Language
	The CellML Model Repository
	Evaluation

	Summary

	Design
	Structure of the CMR
	Data Layer
	Processing Layer
	Parsing
	Validation
	Resolving
	Error Reporting
	Minimization

	Implementation
	Data Model Transformation
	JDOM Framework
	Java Class "Node"

	AccessID Repository

	Evaluation
	Correctness
	Performance
	Creation of Test Models
	Execution Time
	Summary

	Usability
	Fulfillment of Requirements

	Conclusion
	Future Work

	Bibliography

