
Technische Universität München
Department of Informatics

Bachelor’s Thesis in Informatics

Voice Controlled Smart Spaces

Florian Gratzer

Technische Universität München
Department of Informatics

Bachelor’s Thesis in Informatics

Voice Controlled Smart Spaces

Sprachgesteuerte Smart Spaces

Author Florian Gratzer
Supervisor Prof. Dr.-Ing. Georg Carle
Advisor Marc-Oliver Pahl, Stefan Liebald
Date December 14, 2016

Informatik VIII
Chair of Network Architectures and Services

I con�rm that this thesis is my own work and I have documented all sources and material
used.

Garching b. München, December 14, 2016

Signature

Abstract

Voice recognition systems are increasingly used. There is a variety of well known
systems like Siri and Cortana, which are so called personal assistants. These assistants
can be used to call numbers or to get weather forecasts. But voice recognition can be
used for more. The voice recognition system developed in this thesis can be used to
control so called Smart Spaces. In Smart Spaces, Smart Devices are used to interact with
their environment These devices can be controlled via software. The system developed
in this thesis can be used to interact with devices like lights, shutters or thermometers
via voice commands. It is modularly designed to provide scalability, adaptability and
extensibility. The functionality is implemented in di�erent services using the Distributed
Smart Space Operating System and its Middleware, the Virtual State Layer. The system
can be easily modi�ed via a Graphical User Interface. The system has a high reliablity.
It can processes voice input in a short amount of time.

Zusammenfassung

Spracherkennungssoftware immer häu�ger verwendet. Es existiert eine Vielzahl an
bekannten Systemen, wie Siri oder Cortana. Die meisten dieser Systeme sind sogenann-
te persönliche Assistenten. Diese Assistenten erlauben es, Nummern zu wählen oder
Wetterberichte abzurufen. Spracherkennungssoftware kann jedoch für mehr verwendet
werden. Die Spracherkennungssoftware, die in dieser Arbeit entwickelt wird, kann dazu
verwendet werden um mit sogenannten Smart Spaces zu kommunizieren. In einem
Smart Space be�nden sich Smart Devices, Geräte welche dazu verwendet werden um
mit der Umgebung zu interagieren und mittels Software gesteuert werden. Das System,
welches in dieser Arbeit entwickelt wurde ermöglicht es mit Lampen, Rollläden, Öfen
oder Thermometern mittels Sprachkommandos zu kommunizieren. Es ist modular auf-
gebaut um skalierbar, änderbar und erweiterbar zu sein. Die Funktionalität ist dabei in
verschiedene Dienste aufgeteilt, welche das Distributed Smart Space Operating System
und seine Middleware, den Virtual State Layer verwenden. Das System hat eine hohe
Zuverlässigkeit und kann Spracheingabe schnell verarbeiten.

I

Contents

1 Introduction 1
1.1 Goals of the thesis . 2
1.2 Methodology . 2
1.3 Outline . 3

2 Analysis 5
2.1 Distributed Smart Space Orchestration System (DS2OS) 6

2.1.1 Virtual State Layer (VSL) . 6
2.2 Voice recognition . 9

2.2.1 Steps in voice recognition . 9
2.2.2 Voice recognition software . 18
2.2.3 Personal Assistants . 20
2.2.4 O�ine STT Engines . 21
2.2.5 MOVI Arduino Shield . 23
2.2.6 Dictionary, language model and acoustic model 24

2.3 Speech Synthesis . 25
2.3.1 Steps in Speech Synthesis . 25
2.3.2 Speech Synthesis Software . 29

2.4 Hardware used . 31
2.4.1 Arduino . 32
2.4.2 Raspberry Pi . 33

2.5 Mapping Format . 34
2.5.1 Commands per action . 34
2.5.2 Seperation of address and value part 36
2.5.3 Trigger word . 36
2.5.4 Used Mapping format . 37

2.6 Con�guration Interface . 38
2.6.1 Type of Application . 38
2.6.2 Functionality . 39

2.7 Requirements for a Voice Control System for Smart Space Orchestration 42

3 Related Work 43

II Contents

3.1 Apple HomeKit . 43
3.2 Amazon Echo . 44
3.3 Controlling Phillips Hue Lamps with Jasper 45
3.4 Voice Controlled Alarm Clock . 46
3.5 Comparison . 47

4 Design 49
4.1 Service Interaction . 50
4.2 Services of the Voice Control System for Smart Space Orchestration . . 52

4.2.1 Voice Input Service . 52
4.2.2 Voice File Input Service . 52
4.2.3 Text Input Service . 53
4.2.4 Voice Output Service . 53
4.2.5 Command Mapping Service . 54
4.2.6 Con�guration Interface . 55
4.2.7 Adaption Service . 58

5 Implementation 63
5.1 How to start the system . 63
5.2 Common con�gration �le . 64
5.3 Voice Input Service . 64
5.4 Voice File Input Service . 65
5.5 Text Input Service . 66
5.6 Voice Output Service . 66
5.7 Adaption Service . 67
5.8 Voice Mapping Service . 67
5.9 Con�guration Interface . 68

5.9.1 Dictionary Editing Interface . 68
5.9.2 Device Discovery Interface . 68
5.9.3 Mapping Editing Interface . 69
5.9.4 Command Recording Interface 69
5.9.5 Con�guration File . 70

6 Evaluation 71
6.1 R1: Short response time . 71
6.2 R2: O�ine functionality . 73
6.3 R3: Runnable on low power hardware 73
6.4 R4: Easy con�guration . 73
6.5 R5: Adaptability at runtime . 74
6.6 R6: Low error rate . 74

6.6.1 Trigger word . 74
6.6.2 Incorrect mappings . 75

Contents III

6.7 R7: Transparency . 76
6.8 R8: Voice output . 76
6.9 Conlusion . 76

7 Conclusion 77
7.1 Future work . 78

A Smart Space Orchestration 81
A.1 Ubiquitous Computing . 81

A.1.1 Mobile Computing . 81
A.1.2 Pervasive Computing . 82
A.1.3 Distributed Computing . 82

A.2 De�nitions . 82
A.2.1 Heterogeneity . 83

A.3 Middleware . 84
A.4 Context . 85
A.5 Distributed Smart Space Orchestration System (DS2OS) 86

A.5.1 Virtual State Layer (VSL) . 86
A.5.2 Context Models . 88
A.5.3 Service Orientation . 89

B Response time table 91

C Error rate table 93

D Custom Dictionary 99

Bibliography 101

V

List of Figures

2.1 The VSL [3] . 7
2.2 Wave forms of the word “test” . 10
2.3 MFCC block diagramm (based on [9]) 10
2.4 Before/After Pre-emphasis [9] . 11
2.5 Windowing with rectangular window and Hamming window ([9] (mod-

i�ed)) . 12
2.6 Mel-frequency cepstral coe�cients of a recording (top) and a sample

(bottom) both coe�cient series are from the same word [10] 13
2.7 human speech generation process (based on [10]) 15
2.8 MOVI Arduino Shield [36] . 23
2.9 Steps in speech synthesis (based on [10]) 26
2.10 E�ect of the transcription phase . 26
2.11 Steps in Transcription phase (based on [10]) 27
2.12 Steps in phonological phase (based on [10]) 29
2.13 Arduino Mega (left), Arduino Uno (center), Ethernet Shield (right) . . . 32
2.14 Raspberry Pi 3 Model B . 33

3.1 Amazon Echo speaker [63] . 44
3.2 Smart Alarm Clock [75] . 46

4.1 Service Coupling . 51
4.2 Service Dependencies . 51
4.3 Index page of the Con�guration Interface 55
4.4 Dictionary Editing Interface . 56
4.5 Command Recording Interface . 58
4.6 Smart Device for testing . 59
4.7 Device Discovery interface . 60
4.8 Mapping Editing Interface . 61

5.1 Service Dependencies . 64

6.1 Response times of LIGHT ON/OFF . 72
6.2 Time spectra of KA LIGHT ON (left) and KA light o� (right) 73

VI List of Figures

A.1 Fields of ubiquitous computing (based on [88]) 82
A.2 Silos [90] . 83
A.3 Architecture of middleware (based on [91]) 84
A.4 Context Model Terminology [1] . 85
A.5 The VSL [3] . 87

VII

List of Tables

2.1 Comparison of Arduino Uno and Arduino Mega 32
2.2 Technical detail of a Raspberry Pi 3 Model B 34

3.1 Comparison of related work . 47

6.1 Response times . 72
6.2 Task error rates of “KA LIGHT ON” and “KA LIGHT OFF” (excerpt) . . 75

B.1 Response Time of the Voice Recognition Service 92

C.1 Error rates of “KA LIGHT ON” and “KA LIGHT OFF” 97

1

Chapter 1

Introduction

In the last years, a variety of voice controlled software was released. Most of it is a so
called personal assistant (PAs). It is mainly used on mobile devices like Smartphones
or tablets. PAs can be used to ful�ll simple tasks like calling a phone number, getting a
weather forecast or getting the address of the nearest restaurant. A well known personal
assistant is Siri. It is available on Apple’s mobile devices like the iPhone or the iPad.

Voice recognition can be used in a variety of �elds. One of these �eld is Smart Space
Orchestration (S2O). S2O is the research �eld of orchestrating Smart Devices within a
Smart Space. Smart Devices are devices, which communicate with their environment
via sensors and actuators. They can be remotely controlled via a network [1]. These
Smart Devices are usually controlled via ordinary input methods like remote controls
or web interfaces. Also, they can be controlled via voice commands.

Di�erent commercial solutions are available to enable voice control of Smart Devices.
Two popular solutions are Amazon Alexa, which is available on a wireless speaker
called Amazon Echo and Apple HomeKit, which allows iPhone/iPad users to use Siri
to control Smart Devices. Both solutions have in common that they do not provide
any functionality without an Internet connection. None of these two systems supports
custom built devices. Instead, special (expensive) Smart Devices have to be bought to
use Amazon Alexa or Apple HomeKit.

2 Chapter 1. Introduction

1.1 Goals of the thesis

The goal of the thesis is to develop a Voice Control System for Smart Space Orchestration.
To reach this goal the Distributed Smart Space Orchestration System (DS2OS) [2] is
used for Smart Space Orchestration. The developed system has to match voice input
to actions within the Virtual State Layer (VSL). This thesis aims to discuss how this
mapping can be realized. The system developed in this thesis has to include a subsystem,
which allows non experts to con�gure this mapping. The system has to provide voice
feedback for users.

1.2 Methodology

This thesis is divided into several steps. First of all, a problem analysis is done. DS2OS
is inspected. Afterwards, the background of voice recognition and speech synthesis
is analyzed. Then, di�erent speech-to-text and text-to-speech engines are observed
and evaluated based on the knowledge gained in the steps before. Hardware for voice
controlled in Smart Spaces Orchestration is compared. In the system developed in
this thesis, voice commands have to be mapped to actions within the VSL. Di�erent
possibilities were evaluated. This mapping has to be con�gurable by non experts. It is
inspected how this can be done.

After the analyis, it is evaluated how a voice controlled orchestration of Smart Spaces
is done by related work.

Based on the analysis and related work, a system is designed. The functionality is
divided into subsystems. These subsystems provide services which uses the VSL for
communication and to store context. An interface is speci�ed for every service. This is
done by context models.

When the design is completed, the services are implemented. First, the services which
interact with users are implemented. Next, an adaption service is created to interact
with the environment. When the previous services are functionable, they are connected
by a service, which handles the mapping. At last, a Con�guration Interface is developed.

After implementation, the system is evaluated to see if it ful�lls the requirements
speci�ed in the analysis section.

1.3. Outline 3

1.3 Outline

In chapter 2, the background of this thesis is analyzed. Requirements for a Voice
Control System for Smart Space Orchestration are identi�ed and discussed. Section 2.1
introduces DS2OS. Section 2.2 and section 2.3 focus on the transformation of speech
signals into text and vice versa. These section also introduce di�erent software which
can be used for this purpose.

Section 2.4 introduces the hardware used in this thesis. This chapter closes with a list
of requirements for a Voice Control System for Smart Space Orchestration (section 2.7).

Chapter 3 compares di�erent related work, starting with Apple HomeKit. Amazon Echo
is introduced as well as o�ine voice control solutions for Smart Spaces.

Chapter 4 introduces the subsystems of a Voice Control System for Smart Space Orches-
tration.

Chapter 5 focuses on implementation details of the services introduced in chapter 4.
Furthermore, it is discussed how each service can be con�gured.

In Chapter 6, the developed system is evaluated to see if it can be used for Smart Space
Orchestration.

Finally, the thesis concludes with chapter 7 where the thesis is summarized and possible
future work is discussed.

5

Chapter 2

Analysis

The analysis chapter is about di�erent aspects in creating a Voice Control System for
Smart Space Orchestration. The �rst section (2.1) introduces the Distributed Smart
Space Orchestration System (DS2OS) [1].

The second part (section 2.2 focuses on the theoretical background of voice recognition.
It treats with di�erent steps and aspects of converting a speech waveform into infor-
mation which can be used to control Smart Spaces. Di�erent solutions which process
voice input analyzed.

Section 2.3 introduces speech synthesis, which is the process of transforming a written
text into its spoken representation. Di�erent software which transforms a text into its
spoken representation is discussed.

In the fourth part (section 2.4) the hardware used in this thesis are introduced. A
Raspberry Pi is used for subsystems which are responsible for the interaction with users.
Actuators and Sensor, used for interaction with their environment are controlled by
Arduino boards.

The system has to map voice commands. Therefore, a mapping format is required. This
mapping format is discussed in section 2.5. The mapping has to be con�gurable. This
can be done in the Con�guration Interface. This Interface is focussed in section 2.6.

This chapter closes with the requirements for a system which uses voice commands to
control Smart Spaces (section 2.7).

6 Chapter 2. Analysis

2.1 Distributed Smart Space Orchestration System (DS2OS)

In this thesis, the Distributed Smart Space Orchestration System (DS2OS) is used for
Smart Space Orchestration. In this section the relevant aspects of DS2OS are introduced.
More about DS2OS and the background of Smart Space Orchestration can be found in
appendix A.

DS2OS is developed at the chair of network architectures and services at the Technical
University of Munich. The system provides a middleware for brokering and storing
state context between devices within a Smart Space [2]. DS2OS is written in Java and
consists of three blocks [1]:

• The Virtual State Layer (VSL) is a middleware, which acts as distributed operating
system in a Smart Space [1].

• The Smart Space Service Management (S2S) manages the services available within
the VSL [1].

• The Smart Space Store (S2Store) is a global service manager, which supports crowd-
sourcing of services [1].

In this thesis, di�erent VSL services are going to be implemented. The S2S is transparent
for these services and the S2Store is not used. Therefore, only the VSL is discussed in
this thesis.

2.1.1 Virtual State Layer (VSL)

The Virtual State Layer is a middleware. It is formed by self-organizing unstructured
peers. The VSL manages the information of a Smart Space [3]. This information is called
context. The peers are autonomous and called Knowledge Agents (KAs). The VSL is
completely self-managed. It encapsulates the functionality from the KAs [3]. Services
which produce context are decoupled from services consuming context. Each of these
services is connected to exactly one KA. This KA is responsible for storing data and
manages the retrieving of data from other services [3]. When services communicate
with each other, they do not have to di�erentiate whether the other service is connected
to the same KA or to another KA.

To describe the structure of context produced by services, context models (see section
2.1.1.1) are used. Each KA stores all required context models locally. This increases the
resilience [3]. Furthermore, context models can be automatically synchronized. This
can be done by a central context model repository (CMR) [1]. The content of the CMR is
synchronized between all KAs. The context models are the interfaces of the services.
Services communicate by accessing context of other services. The access can either be

2.1. Distributed Smart Space Orchestration System (DS2OS) 7

a read access via get or a write access via set [1]. Additionally, services can subscribe to
data nodes.

Figure 2.1 shows, how services communicate over the VSL. On the bottom, there are
Smart Devices which are connected to the VSL by so called adaption services. These
services can be used by other (orchestration) services. These services do not directly
communicate with each other, but use the VSL to connect to each other. The VSL allows
to search nodes via its type identi�er [1], which is the context model. This allows
dynamic binding of services. The context of each service is described by exactly one
context model [3].

Figure 2.1: The VSL [3]

2.1.1.1 Context Models

Context Models describe the structure of context. Context is information within a
Smart Space. Nowadays, di�erent types of context models are used [4]. This thesis
only describes the approach taken in the VSL. This model uses hierarchically structured
type key-value pairs. Additionally, the key-value pairs include management meta data
including access rights, version infos [4]. The key-value pairs (tuples) are hierarchically
structured by their addresses and form a tree [4]. The di�erent level are separated
by “/” [4]. Each context model is represented in XML markup, which enables syntax
validation [4]. This XML representation is located in the Context Model Repository
(CMR) and is synchronized by all Knowledge Agents [3]. At start up, each service is
bound to a context model. Context models are identi�ed by their name and each context
model has a type [4]. This type can be used for composing and sub-typing to create
new context models. As a result an extensible type system is formed. This type system
consists of three basic data types.

8 Chapter 2. Analysis

Each of these types can have restrictions [4]:

• /basic/number represents a number and can be restricted by its upper and lower
bound [4].

• /basic/text represents a text and can be restricted by regular expressions [4].

• /basic/list represents a list of context nodes and can be restricted by the minimum
and maximum amount of entries and the type of the entries [4].

All types are either basic types or composed from existing context models. All types can
have default values. These values are the values between the <> tags. As an example,
the type Boolean can be represented as [1]:

< boo l ean type = " / b a s i c / number "
r e s t r i c t i o n s = " minimum =0 ,maximum=1 " >
0

< / boo l ean >

The context model has to be saved in the CMR. In this case the model of boolean and
all following models are located in the sub-folder derived in the repository. With this
type, a tra�c light can be represented [1]:

<lamp type = " / b a s i c / d e r i v e d " >
<on type = " d e r i v e d / boo l ean " >0< / on>

< / lamp>

< t r a f f i c L i g h t type = " / b a s i c / d e r i v e d " >
< red type = " d e r i v e d / lamp " >1< / red >
< ye l low type = " d e r i v e d / lamp " >0< / red >
< green type = " d e r i v e d / lamp " >0< / red >

< / t r a f f i c L i g h t >

More about DS2OS can be found in appendix A.

2.2. Voice recognition 9

2.2 Voice recognition

The system developed in this thesis has to process voice commands. Voice commands
are processed by analyzing their speech wave form. This wave form can be directly
taken from a microphone. Also, a prerecorded sound �le can be analyzed. To �nd
suitable solutions for voice processing, the background of voice recognition is inspected.
Voice recognition is performed in di�erent steps. These steps are focussed in section
2.3.1.

The second part (section 2.2.2) introduces di�erent software which is used for voice
recognition. First, DragonDictate [5] is introduced. It was one of the �rst commercial
voice recognition solutions. Next, cloud based solutions (Siri [6] , Cortana [7]) are
introduced. In the end, a list of o�ine voice regnition engines are introduced. It is
discussed whether they are suitable for the system developed in this thesis.

2.2.1 Steps in voice recognition

The human voice is a slowly timed varying signal with stationary characteristics, when
examined over a short time of 5-100 ms [8]. This signal is dependent on speaker, speak-
ing rate and acoustic conditions [8]. In speaker recognition, di�erences between two
speakers is a used property. This di�erences can be problematic for a voice recognition
system, which does not distinguish between di�erent speakers. Di�erent processing
steps are required to allow speech-to-text engines to fast and reliably process voice [9].
Before a signal is processed it is �ltered to reduce noise. Then, a level adjustment is
done to facilitate the processing [9]. After this analog pre procedure, the �rst processing
step is called Digital Signal Processing (DSP). It generates a digital representation of
the analog voice signal. The result contains too much information to be compared to
known samples [10]. Relevant information is extracted by a second processing step to
reduce the amount of data without loosing statistically relevant information. This step
is called feature extraction (see section 2.2.1.1) [11]. The last step uses the extracted
features. It tries to match the input with known samples. These samples can either be
structural descriptions of single words or phrases or recorded audio samples from one
or more speakers. This step is called feature matching (see section 2.2.1.2) [11].

10 Chapter 2. Analysis

2.2.1.1 Step 1: Feature Extraction

A voice signals varies, even when the said utterance is the same. Figure 2.2 shows the
wave forms of the word “test” spoken six times by the same speaker.

Figure 2.2: Wave forms of the word “test”

Therefore it is impossible to directly match a voice signal with known samples or
statistical descriptions [10]. As a result, an additional processing step is required before
a signal can be compared with words within a dictionary. This step is called feature
extraction. The objective of feature extraction is to convert the speech wave form of a
voice sample into a parametric representation to facilitate further processing [12]. This
is done by extracting so called features. Features are parts of a signal, which can be used
to distinguish between di�erent sounds [10]. Features are independent from speaker,
speaking rates, contents and acoustic conditions [8]. Features can be best extracted
from the frequency domain of a signal [9]. Although analog �ltering is usually done
before, additional �ltering is also possible in feature extraction.

A widely used technique is Mel-frequency cepstral coe�cients (MFCC) [9–11, 13].
MFCC consists of the steps shown in Figure 2.3

Pre-Emphasis Framing Windowing
Discrete Fourier

transform

Data energy and
spectrum

Discrete cosine
transform

Mel Filter Bank

Voice input

Text output

Figure 2.3: MFCC block diagramm (based on [9])

The �rst step is called Pre-Emphasis. Many sounds have a decreasing signal energy of
about 6dB/octave. This results in a low signal to noise ratio (SNR) in high frequent
parts of a signal. The Pre-Emphasis is a special �lter, which helps to get a better SNR
in these parts of a signal. Pre-Emphasis is usually realized with a di�erentiator of the
form of equation 2.1 [9]. This results in lowering the low frequent parts of the signal.
Afterwards the whole signal is ampli�ed, so the result is the required raise of the SNR
in the high frequent parts of a signal. The e�ect can be seen in �gure 2.4.

2.2. Voice recognition 11

yn = xn − axn−1, 0.9 ≤ a < 1 (2.1)

Figure 2.4: Before/After Pre-emphasis [9]

The second step, called Framing is used to split speech samples into small, non-overlapping
frames with a length between 20 and 40 ms [11].

The third step is called windowing. Windowing is used to separate the frames from step
two again, but in this step, the parts are overlapping to get better results [9]. MFCC
normally uses an overlapping of 80% [9]. This means, that a windows doesn’t start
after the one before, but after 20% of the window before. Although a simple rectangular
windows could be used, a Hamming window is used, which allows a smooth fade-in
and fade-out [9]. The di�erence can be seen in Figure 2.5. This Hamming window with
a size of T = 2τ is de�ned as w(t), the result of the windowing is y (t) and x (t) is the
input for the windowing. A typical value for τ is 10ms [9].

w(t) =

0.54 + 0, 46 ∗ cos (π tτ) −τ ≤ t ≤ τ

0 otherwise
(2.2)

y (t) = w(t) ∗ x (t) (2.3)

12 Chapter 2. Analysis

Figure 2.5: Windowing with rectangular window and Hamming window ([9] (modi�ed))

After windowing, each window is transformed into the frequency domain using discrete
Fourier transform. This step is necessary, because the signal can be analyzed better in
the frequency domain [9].

After transformation, the signal has to be �ltered, using a Mel �lter bank [11]. The design
of these �lters is very complex and beyond the scope of this thesis and is therefore not
discussed here.

After �ltering, the signal has to be transferred back into the time domain. The result
can then be represented as a series of vectors [9]. They can be matched in the next step
- feature matching.

2.2.1.2 Step 2: Feature Matching

After feature extraction, the extracted features have to be matched with words inside a
dictionary. There are di�erent methods to implement this matching. A simple approach
is via pattern matching [10]. Another approach is called statistical voice recognition [10].
The objective of a speech recognizer is to determine, if a word is part of the vocabulary
and if it is inside the dictionary it has to be determined which word was spoken [10]. To
match a spoken utterance to a text inside the dictionary, it is important that extracted
features are used and not the wave form of the utterance [10]. Therefore the previous
step feature extraction is required (see section 2.2.1.1).

Pattern Matching

With this method, features of the spoken word are compared with features of pre-
recorded samples [10]. These samples can be single recordings or an average of di�erent
recordings of the same sample. The second approach results in a more reliable matching

2.2. Voice recognition 13

[10]. To compare a sample with a spoken word, a value called distance is required. The
distance has to be designed in a way that it is as large as possible for di�erent words, but
as small as possible for the same word, independent from speaker, voicing and acoustic
conditions [10]. The Mel-Cepstrum is generally considered to be good �tting to be used
to calculate the distance between two words [10, 11, 14]. It is independent from the
intensity of the spoken word. The Mel-Cepstrum describes the form of the frequency
domain independent from the base frequency [10].

Figure 2.6: Mel-frequency cepstral coe�cients of a recording (top) and a sample (bottom)
both coe�cient series are from the same word [10]

A remaining problem is, that the Mel-Cepstrum is still dependent on speaking rhythm
and duration of the spoken word/phrase [10]. This can be seen in Figure 2.6. To overcome
this, dynamic time warping (DTW) is used. DTW reduces the distance between two
recordings of the same utterance signi�cantly more than the distance of two di�erent
sound series [10]. The idea behind DTW is to reduces the distance between two samples
by locally changing the time axis. The warping curve de�nes, which feature of a sample
i has to be compared to which feature of sample j (equation 2.4).

ϕ (t) = (i (k), j (k)) (2.4)

The warping curve has three important properties: monotony, local continuity and
de�ned boundaries.

• Monotony: The timed order of the features has to stay the same for each sample.
Otherwise words with the same letters, but in di�erent order could be matched
to each other [10].

i (k) ≥ i (k − 1)

j (k) ≥ j (k − 1)
(2.5)

14 Chapter 2. Analysis

• Local continuity: The time wrapping must not skip bigger parts (e.g. whole
sounds) of a sample [10] Without this property, the word “mechanics” could be
matched with “many”.

|i (k) − i (k − 1) | ≤ дx
|j (k) − j (k − 1) | ≤ дy

(2.6)

• Boundaries: It is important that the start- and end time of a word are correct
and part of the pattern matching. Otherwise it would be possible to match only
parts of word which have (possibly) completely di�erent meanings [13].

ϕ (1) = (1, 1)

ϕ (T) = (Tx ,Ty)
(2.7)

After warping, the distance can be calculated. One method is to use the Mel-Cepstrum.
This cepstrum is represented as a sequence of vector X from the recorded word and a
sequence of vectors Y for each known sample [10].

X = x1x2 . . . xTx with xi =

*......
,

cx i (1)
cx i (2)
...

cx i (D)

+//////
-

Y = y1y2 . . .yTy with yi =

*......
,

cyi (1)
cyi (2)
...

cyi (D)

+//////
-

(2.8)

The distance is calculated as sum of all squared di�erences: [10]

d (xi ,yj) =

√√√ D∑
n=0

[cxi (n) − c2x j] := d (i, j) (2.9)

A word is matched, when the distance is smaller than the distance of all other words
and smaller than a �xed value to avoid matching words outside the vocabulary.

Statistical Voice Recognition Statistical voice recognition is another approach to
recognize spoken utterances from extracted features of a speech wave form. In contrast

2.2. Voice recognition 15

to pattern matching, the target is not to minimize the distance of each single word,
but to maximize the probability that the spoken utterance is the same as the matched
one [15]. The model behind statistical voice recognition is shown by Figure 2.7:

u�erance speech apparatus feature extrac�on linguis�c decoder

speaker

transmission channel

recognizer

Figure 2.7: human speech generation process (based on [10])

First of all, an utterance is spoken. As mentioned before, the outcome is highly depen-
dent on speaking rate and acoustic conditions [8]. This step is called acoustic processing.
Afterwards, the output is transferred over a transmission channel, which is usually air,
but it can also be additionally transmitted over wires (e.g voice recognition over phone).
At this step, the speech signal can possibly be altered by noise. Afterwards a voice
recognizer receives the signal and extracts the features of it (see 2.2.1.1). Then the voice
recognition system tries to match the features to a word inside its dictionary. The target
is to maximize the probability that the whole sample is exactly the spoken utterance.
There are three steps involved in creating a statistical voice recognition system [15]:

1. Specify the recognition task: First of all the vocabulary has to be speci�ed. This
includes the pronunciation of words, the units which have to be recognized
(single words, whole sentences, . . .). The selection of the vocabulary is important,
because it can help to facilitate the recognition, by maximizing the distance
between words [15]. The vocabulary should be as small as possible without
omitting required words or phrases [10].

2. Train the model: Each statistical voice recognition system has to be trained before
it can be used [15]. This step is required to allow a system to create a dictionary.
The result is a description of di�erent ways of pronouncing words, a grammar
model and a language model. The language model is used to describe, which
combination of words are meaningful in the context of the voice recognition
system [15]. This is required to determine the probability of each utterance.

3. Performance evaluation: The last step is an evaluation of the performance of a
system. There are two error rates, which have to be evaluated: word error rate
and task error rate [15]. The �rst one indicates the probability, that a word is
incorrectly matched. The second one is the probability of performing a wrong
action based on the result of the voice recognition [15]. It is possible, that one

16 Chapter 2. Analysis

error rate is acceptable, when the other one is not, so both error rates have to be
checked for a reliable system.

As discussed in section 2.2.1.1, the result of the feature matching is a sequence of feature
vectors X = x1x2 . . . xTx . The target is to �nd a series of sounds Ŵ = w1w2 . . .wTw

which has a higher probability to generate the sequence of X than every other known
series of sounds [10]. A miss-matching happens, when at least one word di�ers from
the said utterance. The rule to determine that is called maximum-a-posteriori-rule (MAP-
rule) [10]:

Ŵ = argmax
w∈Vocabulary

P (W |X) (2.10)

It is impossible to determine the probability P (W |X) directly, but the probabilities
P (X|W) and P (W) are known after the training and evaluation phase of a voice recog-
nition system . This probabilities can be used by Bayes’ Theorem [10]:

P (W |X) =
P (X|W) ∗ P (W)

P (X)
(2.11)

The denominator is independent from the W and does not in�uence the decision, which
word has the highest probability to produce the series of features X. This results in the
following equation to determine the word order with the highest possibility to produce
the feature series X [10]:

Ŵ = argmax
w∈Vocabulary

P (X|W) ∗ P (W) (2.12)

To describe the probability that a word generates a sequence of features, Hidden Markov
Models (HMMs) are used [10]. Markov Models are models which describe stochastic
processes, where the probability that a state can be observed is dependend on previously
observed states. HMMs are Markov Models where these states can not be directly
observed. Every state has indicators which can be used to determine, that a HMM is in
a speci�c state with a certian probability [9].

When developing a speech-to-text engine, which uses statistical voice recognition, the
following three parts have to be speci�ed for every scenario [16].

• Acoustic Model: An acoustic model is used to describe which features of a
spoken utterance are matched to an according sound. An acoustic model is
usually built for every language but not for every scenario. To create an acoustic
model, deep linguistic knowledge of a language is required [17]. Consequently,
acoustic models are reused unless a special scenario is not compatible with a
general acoustic model of a language. Acoustic models are often part of a speech-
to-text engine, but many speech-to-text engines o�er more than one language.
In this case, one acoustic model for every language is required.

2.2. Voice recognition 17

• Dictionary: A dictionary contains a list of words and mappings from sounds to
these words. It has to include all words which have to been recognized in a speci�c
scenario. To increase the reliability of a speech-to-text engine, it is advisable to
remove unused words from its dictionary to increase the distance between words.
In many languages, a word can be pronounced di�erently, depended on its context
(the word “the” for example). Therefore the same word can be matched with more
than one sound series.

• Language Model: A language model restricts the matching results by de�ning
which words can appear in the context of other previously recognized words [18].

2.2.1.3 Start- and end time detection

Another important aspect of speech recognition is the detection of the start- and end
time of an utterance to avoid the recognition of noise when no one is speaking. There
are di�erent solutions to solve this problem.

Push to Talk A simple Solution is push to talk (PTT) [10], where a user of a voice
recognition system has to push a button while speaking. PTT is more reliable than
(semi-)automatic solutions, because a user knows best, when he wants to talk [10]. A
disadvantage is, that a user always needs a device with a button around him. Otherwise
he cannot start the recognition. This is not possible in many scenarios, like voice
recognition in phone calls. Moreover, it is inconvenient for users, when they have to
push and hold a button every time they want to use a voice recognition system.

Semi-automatic In semi-automatic processes, a user determines the start time by
clicking or pushing a button. This helps a system in noisy environments to start the
recognition process compared to automatic methods [10]. The end time has to be
determined automatically. This can be done like in an automatic processes.

Automatic Di�erent methods are used to detect the boundaries of an utterance au-
tomatically. They di�er in their complexity (and therefore in the required processing
power) and the applicability in noisy environments [10]. This thesis does not discuss
processes which work in noisy environments. A simple approach for detection start-
and end time uses signal intensities, threshold values and timely constraints [10]. This
process has three parameters, the lower threshold value T , the minimal length of an
utterance ta and the maximum length of a pause within an utterance tb [10]. The process
works as following [10]: All sounds are recorded at every time. When the sound level
is above T for more than ta seconds, a system recognizes an utterance. This utterance
ends, when the sound level is belowT for more than tb seconds. This approach is highly
depended on the ParametersT , ta and tb and works reliable in scenarios with little noise,
when con�gured properly [10].

18 Chapter 2. Analysis

2.2.1.4 Natural Language Processing (NLP)

The result of the feature matching process is a string (this can be a single word or a
whole phrase). This string can then be directly mapped to an action. Another approach
of matching utterances into information which can be processed further is Natural
Language Processing (NLP) [19]. NLP uses a machine learning approach, which analyzes
the semantics of a word. The idea behind NLP is to represent each word as a vector [19].
This vector describes a word itself and is independent from the vectors used for feature
extraction (for example, the features of the words “house” and “building” are completely
di�erent, but the NLP vectors are close to each other) [19].

When words (or phrases) are directly matched with actions, two di�erent rules have to
be speci�ed, when two synonyms are used for the same command (e. g. using “LIGHT
ON” and “LAMP ON” to turn a lamp on). NLP uses the vector of a voice command isto
determine the command which has to be executed. Therefore NLP ,can generalize a
language model [19]. This results in a system which is able to replace words in a phrase
by words with a similar meaning. This enables a more natural language processing than
the simple static approach. As NLP is using a machine learning approach, it has to be
trained with a vocabulary, before it can be used [19].

In NLP, di�erent layers are used to determine the vector of a speci�c word [19]. Simpli-
�ed, a layer takes the information of the layer below to derive information, which can
be used by the layer above. The result of the top layer is the vector, which represents a
word [19]. Two opposing approaches are used to generate the vector of a word. One uses
about 50 dimensions and many layers to identify the vector of the word [19]. The other
approach uses a 200-300 dimensional vector and only 3 layers of abstraction [19]. The
result of both approaches is nearly the same, but depending on the available resources
one of the two approaches is more suitable. The �rst approach can be trained faster,
where the second approach uses less memory to operate [19].

2.2.2 Voice recognition software

A software, which converts a speech into text is called speech-to-text(STT) engine. A
variety of STT engines is available. In section 2.2.2.1, DragonDicate is discussed as one
of the �rst commercial STT engines.

STT engines are used for personal assistants which are able to perform �xed tasks. In
section 2.2.3, Siri and Cortana are introduced. Siri is developed by Apple. It is available
on Apple’s mobile devices like iPhones and iPads [6]. Cortana developed by Mircosoft
is available on Windows 10 [7]. Both are not able to perform o�ine voice recognition.
When they are used, the recorded speech is compressed and sent to a server. These
services processes the voice and sends the result back to the user devices [6, 7].

2.2. Voice recognition 19

Section 2.2.4 introduces o�ine STT engines and discusses which of them is suitable for
the system developed in this thesis.

2.2.2.1 Dragon Dictate

DragonDictate 30.000, developed by Dragon Systems was the �rst commercial general
purpose large-vocabulary speech recognition system. DragonDictate is speaker depen-
dent. It has to be adapted to every single speaker [5]. In the early nineties, other voice
recognition ’systems were only capable of recognizing a �xed vocabulary of a few hun-
dred words. They had to be trained with every single word within their vocabulary. In
this approach, a complete acoustic model is generated for every single word [5]. When
a speech input has to be matched, it is compared with all words in the dictionary and
the word closest to the input is matched.

DragonDictate is a discrete-speech recognition system. This means that Dragon dictate
requires a long pause of at least 250 ms to recognize a gap between two words.

DragonDictate, released in 1992, is able to recognize 25.000 words. With this large
number of words it is impractical to train the vocabulary with every single word. Conse-
quently, a di�erent approach had to be discovered [5]. DragonDictate uses an approach
where words are divided into phonemes. A phoneme is the smallest sound unit of a
language [5]. This approach is also used by many modern voice recognition engine
including CMUSphinx. These phonemes are then examined in context to the phonemes
before and after an examined phoneme [5]. The vocabulary used by DragonDictate was
inspected to �nd a subset of the 25.000 words, which contain most PICs. A subset of
8.000 words was found, which contained most PICs [5].

The acoustic model of DragonDictate was built by using a speech of a reference speaker
including these 8.000 words. This reduced the amount of training words by over 66% [5].
It was a new method to train speech recognition systems at that time. DragonDictate
used an acoustic model for a whole language not for every single word [5].

A remaining problem was the matching of a speech waveform to its phenome. The
solution was to extract so called phonetic elements from the speech waveform of a
word [5]. They are comparable to the features introduced in the analysis chapter (see
2.2.1.1). To get the result of a matching, Hidden-Markov-Models (HMMs) are used [5].

DragonDicate was developed over 20 years ago. Voice recognition engines greatly
improved since then, so it cannot compete with modern voice recognition system.
Nevertheless it has some important properties in common. First of all, it used an
acoustic model for the whole language and divided words in di�erent phonemes. Also
the separation between feature extraction and feature matching was already part of
DragonDictate.

20 Chapter 2. Analysis

2.2.3 Personal Assistants

2.2.3.1 Siri

Siri (short for Speech Interpretation and Recognition Interface) is a digital assistant.
It was originally developed as an App for iOS by Siri Inc. until this company was
acquired by Apple in 2010. One year later, Siri was released as a part of iOS 5 for the
iPhone 4s [20]. Today it is available on most mobile Apple devices including the current
generation of iPhones and iPads [6].

Since release, the available functions of Siri increased. They include controlling the iOS
media player, control telephone functions of iPhones and many more. Siri also provides
voice feedback to acknowledge commands [6].

When Siri is used, the speech waveform is compressed and sent to a server, where it
gets processed [21]. The result is then sent back to the device of the user. Therefore,
an Internet connection is required to use Siri. This approach enables a Apple access
to data of over one billion weekly requests [22]. As a result, the recognition algorithm
of Siri can be adapted to �t best for most users. This results in a higher reliability for
most users, compared to other voice recognition systems, which provide o�ine voice
recognition.

2.2.3.2 Cortana

Cortana is a digital assistant developed by Microsoft, available on Windows 10. The
name originates from an arti�cial intelligence in the X-Box �rst-person shooter Halo [23].
Cortana is integrated in the operating system of Windows 10 and can be controlled via
voice input as well as written input. Cortana’s features include sending emails and texts,
open applications and �nd facts, places or other information [7]. There are di�erent
reasons why Cortana is not suitable for the system developed in this thesis. First of all,
an Internet Connection is required for Cortana to be fully functional [7]. Also it is only
available for Windows 10 which is not intended to be used on devices with a low power
consumption like a Raspberry Pi.

2.2. Voice recognition 21

2.2.4 O�ine STT Engines

The following STT engines do not require an active Internet connection. All of them
can process voice locally.

2.2.4.1 CMU Sphinx:

CMU Sphinx is an open source voice recognition toolkit developed by Carnegie Mellon
University [16]. It includes two spech-to-text engines:

• Pocketsphinx is written in C and recommended for embedded devices. It takes
less resources than Sphinx [16].

• Sphinx is written in Java and therefore can be directly integrated in a VSL service.

Both engine require a dictionary, an acoustic model and a language model. All three
can be customized, but they there are also generic instances available [24].

Additionally, CMUSphinx includes Sphinxtrain, a tool which can be used to train acous-
tic models. To train a model, deep knowledge on the phonetic structure of the language
is required. Even when this would be the case, it would take about 1 month to train
an acoustic model (according to the developers of CMUSphinx) [17]. Consequently, a
generic acoustic model of the English language is used.

Sphinx’s dictionary can be created in a short amount of time (<1 day) when the scenario
is �xed. Also the language model can be created without a large time extent (<1 day). In
contrast, it is much more complicated and time intensive to create an acoustic model for
a speci�c scenario. Therefore, dictionaries and language models are often customized
to �t best for a speci�c scenario and acoustic models are not. Generic acoustic models
are used instead [17].

For this thesis both versions were inspected. Pocketsphinx and Sphinx4 (the current
version of Sphinx) provide a comparable detection rate and are easy to use. As Sphinx4
is written in Java, Sphinx4 is more suitable for this thesis.

2.2.4.2 Julius:

Another voice recognition engine is Julius. Julius was developed by a team from Nagoy
Institute of Technology in Japan [25]. It is intended for large vocabulary continuous
speech recognition [25], which is in contrast to the secenario of this thesis where a small
vocabulary is used to increase the detection rate (see section 2.2.6). As a result of this
design, the detection rate of Julius was below the detection rate of Sphinx. Therefore,
Julius is not inspected further and will not be used in this thesis.

22 Chapter 2. Analysis

2.2.4.3 HTK:

HTK, short for Hidden Markov Model Toolkit is a toolkit to create and adapt Markov
models. It can be used for speech recognition, but also for other scenarios like DNA
sequencing [26]. It was developed at the Machine Intelligence Laboratory of the Cam-
bridge University Engineering Department and was transferred to Entropic Research
Laboratory Inc. which was later bought by Microsoft [26]. HTK is freely available to
be used for academic purposes, but it is not allowed to redistribute a product which
uses HTK [27]. In order to use HTK for voice recognition, the hidden Markov Model
requires training [28]. The system developed in this thesis includes the possibility for
users to change the dictionary. Therefore it is not reasonable to use a STT engine which
requires training. Consequently, HTK is not inspected further.

2.2.4.4 Kaldi:

All of the above solutions use hidden Markov Models for voice recognition. In contrast,
Kaldi is based on deep neural networks. It is written in C++ and available under Apache
License. Like HTK, Kaldi needs to be trained with the vocabulary before it can be used.
Consequently it is not used in this thesis.

2.2.4.5 Jasper:

Jasper is an open source platform for developing voice controlled applications [29].
Jasper provides access to STT engines including Pocketsphinx and Julius. Jasper also
features cloud-based solutions like Google STT or AT&T STT [30]. The biggest advan-
tage of Jasper is that it covers the access to the mentioned STT engines (and also to
text-to-speech-engines). As a result, the STT and TTS engines can be easily exchanged,
when Jasper is used. Jasper is easy to install and the voice recognition works as reliable
as using the STT engines directly. Jasper also has two major drawbacks. Firstly, only
Raspberry Pis Model B are supported (an uno�cial release for Raspberry Pi Model B+
is also available) [31]. Secondly, Jasper is not design to be used by other software, but
as front end. Therefore the e�ort to integrate Jasper is higher than using the accoring
STT engine directly. As a consequence, Jasper is not used for the system developed in
this thesis.

Out of all evaluated solutions, Sphinx4 �ts best for the system developed in this thesis.
It provides o�ine voice recognition. Sphinx4 is written in Java so it can be integrated in
a VSL service directly.Sphinx is easy adaptable. The dictionary and language model can
be exchanged without e�ort. Sphinx does not require any training of the vocabulary.

2.2. Voice recognition 23

2.2.5 MOVI Arduino Shield

Another approach is to use a dedicated board for voice recognition. One of these boards
is the MOVI Arduino Shield. It is manufactured by Audeme [32]. MOVI is a board, which
is intended for speech recognition and sythesis with an Arduino Uno [32, 33]. It was
funded via Kickstarter, a croudfounding platform [34]. It is also possible to use the
MOVI Shield with other devices, including the Intel Galileo [32, 35]. Figure 2.8 shows
the MOVI Arduino Shield.

Figure 2.8: MOVI Arduino Shield [36]

The processing power of an Arduino (Uno) is not su�ent for a voice control system. As a
result an Allwinner A13 [37] processor is used for voice recognition. The MOVI Arduino
Shield includes a built-in microphone and also supports external microphones [32]. For
voice output an additional speaker is required. MOVI uses the Arduino’s serial interface
to communicate with the Arduino. As a results, no additional pins are blocked by the
shield [32]. Consequently, additional shields like an Arduino Ethernet shield [38] can
be used for communication with other devices.

The manufacturer claims that MOVI is able to recognize 150 full-sentence voice com-
mands without training [32]. For voice recognition, CMU Sphinx [16] is used. For speech
output, eSpeak is used [32, 39]. Both engines are running on a Debian [40] system.

As this board was recently published, there are no independent tests available at the time
this thesis is written. All of the features discussed here are claims of the manufacturer.
When developing Smart Devices with MOVI, the Arduino environment is used, so there
are no restrictions concerning the interfaces. This makes it suitable for a middleware
like DS2OS. The reliability of MOVI is dependent on CMUSphinx. However, there are
no information from the developers how to customize the dictionary and the language
model. So it is questionable, how reliable the voice recognition of MOVI is in practice.

24 Chapter 2. Analysis

2.2.6 Dictionary, language model and acoustic model

Sphinx4 require a dictionary, a language model and an acoustic model to work properly.
A dictionary contains all words, which should be recognized by a STT engine and the
sounds a word consists of. A language model acts like a grammar in a natural language.
It restricts the matching results by de�ning which words can appear in the context of
other previously recognized words. An acoustic model describes which features of a
spoken utterance are matched to an according sound. For all of them, there are generic
instances, but they can also be created by oneself.

• Dictionary: A custom dictionary only contains words which are useful in the
context of the system used. Therefore a custom dictionary for a Voice Control
System for Smart Space Orchestration is by far smaller than a generic dictionary
for the according language. Using a custom Dictionary increases the detection rate
of Sphinx signi�cantly. Creating a custom dictionary is possible in a reasonable
amount of time (< 1 day).

• Language Model: A custom language model increases the detection rate by
restricting the result by de�ning which words can appear in the context of other
previously recognized words. Creating a custom language model is also possible
in a reasonable amount of time (< 1 day).

• Acoustic Model: A custom acoustic model can increase the detection rate. Ac-
cording to the developers of Sphinx4, creating a custom acoustic model takes
over 1 month and requires linguistic knowledge of the according language [41].
Consequently, custom acoustic models are not used by the system developed in
this thesis.

For this thesis, a custom dictionary and a custom language model are used. The dic-
tionary is editable in the con�guration interface and the language model is modi�ed
when a new mapping is added (or an existing mapping is edited). In contrast, no custom
acoustic model is used, because of the unreasonable amount of time it takes to create it.

2.3. Speech Synthesis 25

2.3 Speech Synthesis

The system developed in this thesis has to provide users acoustic feedback. This is
required to avoid dangerous situation. One of these situations is that a users unin-
tendedly turns on an oven. The acoustic feedback provided in this thesis is a spoken
representation of a text.

To �nd suitable solutions for this task, the theoretical background is analyzed �rst.
Speech synthesis is done in di�erent steps. These steps and further theoretical back-
ground is discussed in section 2.3.1.

The second part (section 2.3.2) introduces di�erent software which is for speech synthe-
sis. It is discussed whether the inspected solutions can be used in the system developed
in this thesis.

2.3.1 Steps in Speech Synthesis

Speech synthesis is the task of transforming written text into its spoken representation
[10]. This is analog to a person reading out a text. When designing an engine for speech
synthesis, two major requirements have to be satis�ed [10]:

• Correct pronunciation of words: The pronunciation of a letter is dependent
on letters surrounding it. Therefore, rules have to be speci�ed how to pronounce
a letter depending on its surroundings [10]. Furthermore, the accentuation of
syllables in polysyllabic words has to be correct. As a consequence, additional
rules for polysyllabic words have to be speci�ed [10].

• Correctly placed sentence accents: When a speech synthesis engine is used
to read out whole sentences, some words have to be accentuated to indicate their
importance. In long, complicated sentences it is useful to group words splitted by
short gaps to foster the understanding of listeners [10].

Modern speech synthesis engine divide the process of speech synthesis into two process-
ing steps [10]. The �rst step is voice independent and transforms the written text into
a phonological representation [10]. A phonological representation consists of a sound
series, an accentuation and a phrasing. The step to create these is called transcription
phase [10]. The second step, called phonoacoustic phase, uses this phonological
representation and an arti�cial voice to transform it into a speech signal [10]. Figure
2.9 shows this processing step. The transcription phase is discussed in section 2.3.1.1,
the phonoacoustic phase is focused in 2.3.1.2.

26 Chapter 2. Analysis

textual representa�on speech signal

transcrip�on phase
(voice independent)

phonoacous�c phase
(voice dependent)

phonological
representa�on

Figure 2.9: Steps in speech synthesis (based on [10])

2.3.1.1 Transcription phase

Transcription is the �rst processing step in speech synthesis. The task of this step is to
determine the phonological representation of written text [10]. Figure 2.10 shows the
e�ect of this transcription phase. This transcription was done by the “easy evaluation
online converter” [42].

Florian is developing a Voice Control System for Smart Space Orchestra�on

flˈɔriːən ɪz dɪvˈeləpɪŋ ə vˈɔɪs kəntrˈoʊl ˈɪstəm fər smˈɑrt spˈeɪsˌɔrkəstrˈeɪʃən

Figure 2.10: E�ect of the transcription phase

The same phonological representation can be used by di�erent voices to generate a
di�erent spoken representation of the same written text [10]. Figure 2.11 shows the
di�erent steps required for this task.

First, a text is analyzed word by word and each word is transformed into a phonetic
representation. This step is called morphological analysis [10]. Usually, this can be
independently done for all single words. Most words have a unambiguous pronunciation,
when its surrounding is not considered (the surrounding is considered in the next
step) [10]. However, in the English language, there is also a small number of exceptions.
The word read (present thense) and the word read (past thense) are written the same,
but are pronounced di�erently. The result of this step is a list of words with their
pronunciations independent from a sentence structure and other words [10].

After all sounds for all single words have been determined, the sentence structure is
analyzed. This is done in several steps. The �rst step is a syntactic analysis [10]. It
uses punctuation marks and grammatical constraints to determine the structure of a
sentence. The result of this step is a sentence structure, which is purely based on the
syntax of a sentence but not its semantics [10]. This sentence structure contains phase

2.3. Speech Synthesis 27

textual representa�on

morphological analysis

syntac�c analysis

seman�c analysis

phonological representa�on

genera�on of phonological
representa�on

phrasing

accentua�on

word structure

sentence structure

intermediate representa�on

Figure 2.11: Steps in Transcription phase (based on [10])

boundaries and a distribution of accents. After a syntactic analysis, a semantic analysis
is done, where words are analyzed in context to surrounding words [10]. The result of
this semantic analysis is an intermediate structure. This structure can then be used by
the accentuation and phrasing step to create a phonological representation, which can
be used in the phonoacoustic phase [10].

Morphological Analysis It is not possible to directly transform a text into its phonetic
representation [10]. Therefore, it has to be analyzed �rst. The �rst analysis step is called
morphological analysis. It is done independently for every single word. It is not possible
to analyze words as a whole [10]. In general neither the number of sounds in a word is
the same as the letters, nor can a letter be matched to the same sound in all cases [10].
As a consequence, words have to be separated into smaller units. This units are called
morpheme [10].

A morpheme is the smallest meaningful unit of a language [10]. In contrast to a letter,
every morpheme has an unambiguous phonetic representation. The task of the morpho-
logical analysis is to split a word into its morphemes. To do this, linguistic knowledge
is required [10]. Therefore, the details of a morphological analysis are not discussed
further in this thesis. The result of the morphological analysis is a list of words with
their phonetic representation(s).

Although a morpheme has an unambiguous representation, the result of the morpholog-
ical analysis can be ambiguous [10]. The word “visited” for example can either be a verb
(“I visited my aunt last week.”) or an adjective (“The visited location was very nice.”).
Even though the meaning of these two words is di�erent, the phonetic representation is
the same. To decide, which meaning is given in a concrete sentence, a further analysis
is required [10].

28 Chapter 2. Analysis

Syntactic and Semantic Analysis A syntactic analysis is required to determine the
structure of a sentence [10]. This is done by using punctuation marks and grammatical
constraints [10]. A syntax analysis also partly eliminates ambiguous results of the
morphological analysis done before. The result of the syntactic analysis is a sentence
structure, which can also be ambiguous [10].

To remove this ambiguity, this result is analyzed further. This is done by a semantic
analysis. The task of this analysis is to remove ambiguity by �nding out the meaning of
a sentence [10].

Accentuation and Phrasing After the sentence structure has been analyzed, accentu-
ation and phrasing is added.

Accentuation includes two parts: highlighting important words and highlighting parts
of words. A correct highlighting of words can only be done, when the meaning of a
sentence is known [10]. It the sentence “Max is driving to Munich”, di�erent words can
be highlighted to change the importance of the parts:

• Max is driving to Munich. (not his sister)

• Max is driving to Munich. (he is not �ying)

• Max is driving to Munich. (not to Salzburg)

Often, the semantics of a sentence is unknown. Consequently, the syntax of a sentence
is used to determine the words, which have to be highlighted [10]. In contrast, the parts
of a word which have to be highlighted do not depend on the semantics of a word [10].

Phrasing is used to split long sentences in smaller phrases to foster the understanding
of listeners. This separation is done based on the syntactic structure of a sentence [10].

2.3.1.2 Phonoacoustic phase

The phonoacoustic phase uses the phonological representation from the transcription
phase to generate a speech signal. In contrast to the transcription phase, this phase is
voice dependent. It is divided into two steps [10]:

• Prosody Control: The prosody control derives the prosodic parameters like base
frequency, duration of sounds and intensity from the phonological representation
[10].

• Speech Signal Production: The speech signal production creates the speech
signal based on the phonological representation and the prosodic parameters [10].

Figure 2.12 shows the di�erent steps required in the phonoacoustic phase.

Many di�erent techniques are used to create a speech signal. There are approaches
based on a model of the human speech production. Other approaches try to directly

2.3. Speech Synthesis 29

speech signal produc�on

speech signal

base
frequency

dura�on intensity

prosodie control

phonological representa�on

Figure 2.12: Steps in phonological phase (based on [10])

create the speech signal without taking care of the way how humans create a voice
signal [10]. The details of these approaches are not in the focus of this thesis and are
not discussed further.

2.3.2 Speech Synthesis Software

A software which converts a text into a spoken representation is called text-to-speech
(STT) engine. In this section, two solutions are introduced and discussed.

2.3.2.1 MaryTTS:

MaryTTS is an open source TTS engine, developed by the “Deutsches Forschungszentrum
für Künstliche Intelligenz” (DFKI). Currently, 10 languages including German, American
and British English are supported [43]. It is written in Java and can therefore be directly
used by a VSL service.

MaryTTS uses a dictionary of known words for speech synthesis. When a word is
in this dictionary, the phonetical representation is available for the according word.
Otherwise, the phonetical representation is constructed using parts of known words.
This consctruction is based on phonological principles [44].

The phonological representation is then transformed into a voice signal using a Hidden
Markov Model based approach [43].

MaryTTS transforms a text into a Wave �le which can then be played. The spoken

30 Chapter 2. Analysis

text generated by MaryTTS is clearly understandable and sounds more natural than the
spoken text of eSpeak. MaryTTS also supports di�erent voices (male and female) for
German and English. It is also possible to change the speaking rate and to use special
e�ects, but none of this is needed to �t for this thesis.

2.3.2.2 eSpeak:

eSpeak is another open source speech synthesizer. It is written in C and available
for Linux and Windows [39]. It supports over 30 languages including German and
English [39]. Also, di�erent male and female voices can be used. The amount of words
per minute can be con�gured as well as the length of the gaps between two word.
eSpeak can create a Wave �le as well as speak the text directly using the default speaker
of the operating system. All in all, eSpeak produces a clear speech, but the outcome is
not as natural as the outcome of MaryTTS.

MaryTTS �ts better for the system developed in this theis. It sounds more natural
than all other observed solutions. It is written in Java and can be directly used by VSL
Services.

2.4. Hardware used 31

2.4 Hardware used

The system developed in this thesis allows users to orchestrate a Smart Space via voice
commands. In a Smart Space, computers with a large amount of processing processing
power are not always present. Consequently, the system developed in this thesis has to
be runnable on devices, which can be included into the environment without disturbing
people. Two di�erent types of hardware are required.

Firstly, Hardware is required, which can be used to build Smart Devices. These devices
interact with their environments via sensors and actuators. In this thesis Arduino boards
are used for this purpose. Arduino boards are boards with micro controllers and analog
and digital pins to interact with actuators and sensor. Arduino boards are cheap (35
€ [45]). The Arduino Uno and Mega can be programmed without an additioanl hardware
component (programmer). They do not have any operating system. Consequently they
are real time capable. This is important for some sensor and actuators which require
strict timing (e.g individually controllable LED stripes). As a consequence they are
optimal to be used to interact with the environment. For communication, extension
boards are available. These boards allow Arduino Boards to communicate over Ethernet
or WiFi. For this thesis any micro controller with general purpose input/output (GPIO)
pins could be used. Arduino boards are chosen, because they can be programmed
without any additional hardware (programmer). Also, jumper wires can be used to
connect sensor and actuators with Arduino boards. Consequently soldering is not
required. This enables easy prototyping. The Arduino platform is introduced in section
2.4.1.

Furthermore, hardware is required, which can be used for processing voice input and
providing acoustic feedback. For this purpose, a Raspberry Pi is used in this thesis. A
Raspberry Pi can be used to run Raspbian, a specially adapted Debian distribution. This
system supports Java. DS2OS is written in Java. This makes the Raspberry Pi suitable as
platform for Knowledge Agents. All Raspberry Pis have USB ports for microphones. The
latest generation (Raspberry Pi 3) supports WiFi as well as Ethernet. It can be used to
communicate with other Knowledge Agents or Smart Devices which have networking
support. The processing power of a Raspberry Pi 3 is su�cient for DS2OS, MaryTTS and
Sphinx. A Raspberry Pi costs about 35 Euros [46]. Alternatively, any other hardware
which supports Java could be used for DS2OS, MaryTTS and Sphinx. The Raspberry Pi
was chosen, because it is cheap and small.

32 Chapter 2. Analysis

Arduino Uno Arduino Mega
Microcontroller ATmega328P ATmega2560

Clock Speed 16MHz
Flash Memory 32 kB 256 kB

SRAM 2 8
EEPROM 1 4

Digital IO Pins 14 54
Analog Pins 6 16

Table 2.1: Comparison of Arduino Uno and Arduino Mega

2.4.1 Arduino

In this section, the Arduino platform is introduced. It is an open-source platform
intended for easy prototyping. It consist of two major parts [47]:

• Software - the Arduino IDE: a tool for writing code, which can be uploaded on
compatible board

• Hardware - the Arduino boards: boards with a microcontroller and several
digital and analog inputs and outputs. These are used to communicate with the
environment via sensors and actuators.

Applications for the Arduino boards are programmed in C(++) in the Arduino IDE. Most
of the boards have a common layout [33]. This increases interchangeability. Currently,
there is a high number of compatible Arduino boards. Most of them have a low power
consumption, but only a relatively small amount of memory and processing power.

Figure 2.13: Arduino Mega (left), Arduino Uno (center), Ethernet Shield (right)

Two of the most used boards are the (cheaper) Arduino Uno and the (more powerful)
Arduino Mega. Both use an 8-bit Atmel ATmega microcontroller. They can be seen in
Figure 2.13. Further technical details can be found in the table below [48, 49]:

Typical applications of Arduino boards include shutter and light control or air quality

2.4. Hardware used 33

and light sensing. Arduinos are able to send or respond to SMS or online messages like
Twitter tweets [47].

Arduino boards can be extended by so called shields. Shields are extension boards.
They can be plugged onto the Arduino to enable di�erent features. Special shields are
available for Ethernet (see Figure 2.13), WiFi, GSM, di�erent motors [50]. Most of these
shields are compatible with the Arduino Uno. Nevertheless it is recommended to use
an Arduino Mega or similar boards for most of the shields because of the available
resources (for details, the documentation of the according shield has to be checked).

2.4.2 Raspberry Pi

In this section, the Raspberry Pi is discussed. It is a single-board computer with the
size of a credit card (15 x 10 x 2 cm) [51, 52]. It was developed to foster the education
of computer science mainly in developing countries [53]. Moreover, Raspberry Pis are
often used for applications, where energy e�ciency is important and micro controllers
cannot be used (because the power of microcontrollers is not su�cient or an operating
system is required). This is the case in many Smart Spaces. A variety of frameworks
and peripherals are developed and supported especially for Raspberry Pis. Additionally,
the price of about 30 - 45 Euro [46] is below most comparable systems. Raspberry Pis
are developed by the Raspberry Pi Foundation [54]. Currently, three generations of
Raspberry Pis have been released.

Figure 2.14: Raspberry Pi 3 Model B

The Raspberry Pi 3 Model B (current model in 2016) is based on a Broadcom BC2837
System on a Chip (SoC). It includes a Quad Core 1200 MHz ARM processor. It is shown
in Figure 2.14. Technical details can be found in table 2.2 [55].

In this thesis, a Raspberry Pi is used for the voice recognition and speech synthesis
subsystems. As operating system, a special Debian version, optimized for Raspberry
Pis, called Raspbian is used. It has to be stored on a Micro SD card, because it is not
possible to boot from an USB Storage in this version of the Raspberry Pi.

34 Chapter 2. Analysis

Processor Speed 1400 MHz (Quad Core)
RAM 1 GB (400 MHz)

Storage Micro SD slot
Network interface 10/100 MBit/s Ethernet Port

USB Ports 4
GPIO Pins 40

Power Input 5V Micro USB Input Jack
WiFi & Bluetooth LE Yes

Dimensions 85 x 56 x17 mm

Table 2.2: Technical detail of a Raspberry Pi 3 Model B

2.5 Mapping Format

The system developed in this thesis maps voice commands to VSL actions and feedback
text. In this section, it is discussed how this mapping can be realized. It has to be
conveniently con�gurable by non experts. Also it has to be easily processable by the
system itself.

In section 2.5.1 it is discussed if it is useful to map multiple actions to a single command.
Section 2.5.2 analyzes whether a seperation into an address and a value part is suitable
for voice commands.

Furthermore, it is discussed, whether it is useful to use a key word to trigger a recogni-
tion. This trigger word is discussed in setion 2.5.3.

The resulting mapping format is introduced in section 2.5.4.

2.5.1 Commands per action

When commands are matched to VSL actions, they can be either matched to a single
VSL action or to a list of actions.

• One action per voice command: When a command is only used for a single
action it is clearer for a user what happens when he uses a voice command. When
multiple devices are controlled at once it can happen that only a part of these
actions are recognized by a user, whereas the other ones happens unintendedly.
The chance of this behavior is signi�cantly lower in a scenarios where only one
action is mapped to each command.

2.5. Mapping Format 35

• Multiple actions per voice command: Allowing users to map di�erent actions
to a single voice command increases the convenience for users when they want
to control more than one device at once. One scenario where it is inconvenient to
control every single device independendly with extra commands is when a user
wants to turn o� all lights in a building when he wants to go to sleep.

All in all, the �rst approach is more suitable for the system developed in this thesis.
Some use cases (e.g. turning o� all lights in a house) cannot be handled conveniently
without allowing users to trigger multiple actions with a single command. The main
problem of the �rst approach, that actions are triggered unintendedly, can be overcome
by acoustic feedback. Consequently, multiple actions per voice command are allowed.

When multiple actions per voice command are allowed, two approaches are possible.
Each action can be a single mapping. When two actions have to be triggered by the
same command, they share the command. Another approach is to combine all mappings
with the same voice command to a single mapping.

• Combine all actions of a command to a single mapping: When using a
single mapping for all actions for a command, a user can clearly see all the actions
mapped to a command. Also he can change the command for all of the actions at
once. The drawback of this solution is, that it is not possible to edit the trigger
phrase for a single action within a mapping with more than one action.

• Use a single action per mapping and allowmultiple mappings with same
command: When using a dedicated mapping for each command and action, the
command of each actions can be changed without in�uencing other actions with
the same command. The drawback of this approach is, that it takes longer to
change the trigger phrase of all actions with a set of actions. Furthermore, it takes
time to �nd all actions mapped to a command.

The approach to use a single mapping for a command is more suitable for the system
developed in this thesis. The decisive advantage of this approach is that it is clear,
which actions are mapped to a command at all time. The reason for this is that only
one mapping can exist for each voice command. When the other approach is used,
all mappings have to be inspected to �nd all actions which are triggered by a voice
command.

36 Chapter 2. Analysis

2.5.2 Seperation of address and value part

There are two types of commands which are used in the VSL. GET actions extract
context from the VSL. For these actions, no seperation is required. SET actions are used
to store context in the VSL. These actions need an address where the context has to be
stored and a value which is saved at that location. In this section, it is discussed if is
useful to also use this seperation for voice commands. This means, that the address and
the value part of SET actions are speci�ed independently for the mappings.

• Separation into address and value part: It would be convenient for users to
have a separation between address part and value part. This would allow users to
select a command to control a set of devices and an extension to de�ne the action
on these devices.

• No separation into address and value part: The separation between address
and value part is convenient, but it is not possible to realize this in a su�cient
way (in a reasonable time), when a command is used for two di�erent device
types (e.g. shutter and light control).

The separation between address and value part can be conveniently realized for com-
mands which are only mapped to a single device type. The mapping for this system is
designed in a way, that it gives users freedom in how a command is mapped. It is an
unreasonable e�ort to realize this separtion for devices in a convenient way. Therefore
there is no separation of value and address part in the mapping format used in this
thesis.

2.5.3 Trigger word

A special key word can be used to trigger the voice recognition. A trigger word de-
creases the amount unintended recognitions. In contrast, the number of unrecognized
commands increased (dependent on the key word). A trigger word is not neccessary in
scenarios, where push to talk is used (see section 2.2.1.3). In scenarios, with background
talk or voice feedback a trigger word is completely required. In the test scenario, the
command TEMPERATURE, was used to get the current temperature from a sensor. It is
followed by the voice output “The current temperature . . . ”. This feedback text triggered
the same action again. To solve this, a key word is used to trigger the voice recognition.

2.5. Mapping Format 37

2.5.4 Used Mapping format

In this section, the mapping format of the system developed in this thesis is introduced.
This format is based on the results of the previous design choices.

In short, this is the result of the design choices of this section:

• Multiple actions per voice command

• Multiple actions within one mapping

• Voice output support is required

• GET and SET commands

The following mapping format is used in this thesis:

• GET: COMMAND:GET;/address//..///addressN;FEEDBACK TEXT

• SET: COMMAND:SET;/address1 value1//..///addressN valueN;FEEDBACK TEXT

Each mapping starts with a trigger word. Thistrigger word is not explicitly saved in
the mapping. This part ends with “:“. The next part speci�es the type of action (GET or
SET) followed by “;”.

The next part consists of the addresses (and values for SET commands) of the nodes
which have to be queried or set. When multiple addresses are accessed with a command,
the addresses are separated by “//”. The address and value part for SET actions are
separated by “ “.

The addresses are followed by “;”, and the text which is spoken by a text-to-speech
engine can be speci�ed. The output text of GET commands can contain placeholders
for the result. To mark the spot, %i is used to be replaced by the result of the %i-th GET
request (starting with 0).

For example, with the mapping

TEMPERATURE:GET;/agent1/service2/temperature/;The current temperature is 0 degrees.

the system triggers the output “The current temperature is 25 degrees” when the phrase
“temperature” is recognized and the result of the GET request is 25.

38 Chapter 2. Analysis

2.6 Con�guration Interface

The system developed in this thesis maps voice commands to actions within the VSL.
This mapping has to be con�gurable by non-experts. Therefore an interface is required
which allows users to perform this task. Most people are not used to changing con-
�guration �les or to using command line interfaces. As a consequence, a Graphical
User Interface has to be included in the system. This user interface should be platform
independed if possible. Also it is advantageous when no special software is required on
the devices of users.

The design of this interface of this interface is in�uenced by the used mapping format.
This mapping format is introduced in section 2.5.

2.6.1 Type of Application

The Con�guration Interface has to enable non expert users to con�gure the mapping
between voice commands and VSL actions. Three di�erent types of applications were
considered for this user interface:

• Web interface: A web interface is a website, which is hosted on a server. A
web interface is accessible by all devices with a connection to the web server
(i.e all devices in the same network as the web server). Therefore it can be used
on smartphones and computers, independent of their operating system. A user
using the interface only needs an Internet browser to access the interface. Also,
all data is stored centrally. Transferring and synchronizing the data between
di�erent endpoints is not critical. The fact that a web interface can be accessed
by all devices with a connection to the hosting server is also a drawback. The
web interface has to be secured in a way, that unauthorized access is not possible.
Most web interfaces use a user management for this purpose. Also, the security
is dependent on the server, where the web interface is hosted on.

• Desktop Application: A desktop application is an application which runs on a
personal computer with an operating system. This application can be platform
dependent, but there are also technologies, which can be used to create platform
independent solutions. One of these technologies is Swing [56]. Swing is a Java
framework which allows to design a platform independent GUI. An advantage
of a desktop application compared to a web interface is that there are more
possibilities to design a desktop application. The major disadvantage of a desktop
application is, that it has to installed or stored on the target system. Also, a
desktop application is not available on mobile devices.

2.6. Con�guration Interface 39

• Mobile Application: A mobile application, short App, is an application for
mobile devices like Smartphones or Tablets. Apps are suitable, when a user wants
to con�gure a Smart Space on a mobile device. The major disadvantage of Apps
is, that they are only available on mobile devices. Also, most Apps are written for
speci�c mobile operating systems and can not be used on other operating systems.
Nevertheless, there are technologies, that allow a cross platform development of
Apps (e. g. Xamarin [57]). Currently, the most used mobile operating systems are
Android and iOS, which have a market share of 98.9% [58].

The Con�guration Interface of the system developed in this thesis is implemented
as a web interface. This is the only solution where users do not have to install or
download additional software on their devices. Also, all data is stored centrally, so no
synchronization between di�erent devices is required. Also, a web interface is accessible
by computers and mobile devices. This is not the case for desktop or mobile applications.
The web interface developed in this thesis does not have any permission management.
Consequently, everybody with access the server can con�gure the Voice Control System
for Smart Space Orchestration. This is not a problem in the environment of this thesis.
When this system is later used in a productive environment, a permission management
has to be implemented to avoid malicious behavior.

2.6.2 Functionality

Independed from the type of application, there are several functions, which can be
included into the Con�guration Interface for a Voice Control System for Smart Space
Orchestration :

• Mapping Con�guration: Most important for this interface is that it includes a
function, which allows users to con�gure the mapping between voice commands
and actions within the VSL. Therefore, a subsystem is required, which allows users
to create a command consisting of one or more words out of a vocabulary and a set
of VSL actions, which are triggered when the according command is recognized.
Furthermore, the con�guration interface has to provide a possibility to con�gure
a text which is spoken by a text-to-speech engine to provide acoustical feedback
and to present the values of sensors. Additionally, all currently present mappings
have to be displayed in some way. The design of a mapping is discussed in section
2.5.

40 Chapter 2. Analysis

• Dictionary Selection: In a con�guration interface, the dictionary of the speech-
to-text engine can be changed. There are two possibilities to do this.

– Choose from prede�ned dictionaries: When this solution is used, a user can
choose from multiple prede�ned dictionaries. On the one hand, this dictio-
naries can be selected by experts. Experts know how to select a dictionary
which fosters a high detection rate. On the other hand, a user has only little
freedom to select a dictionary, which �ts best for a special scenario when
the approach is used.

– Generate a custom dictionary: In contrast to the previous solution, a user
can freely choose the words within a dictionary when this solution is used.
This gives users much more freedom when selecting the vocabulary. A
drawback of this method is, that the detection rate can be less compared to
a dictionary created by experts. Also, the system has to generate a mapping
from words to sounds and a language model, when the user is allowed to
freely create a custom dictionary.

• Device Discovery: When con�guring the mapping from voice commands to
action within the VSL, the controllable Smart Device can be non-con�gurable.
These devices can also be managed via a con�guration �le, where only an expert
(i.e. an administrator) can add or remove devices from the Con�guration Interface.
Another approach is to allow users to discover new devices or to remove unused
ones. The advantage of this approach is, that a new device only has to be plugged
in, before it can be used. This can also be done by non-experts. Afterwards a
user can discover this device and add it to the devices, which are accessible by
the con�guration interface. The major drawbacks of this solution are security
concerns. So it is possible for everybody with access to the Con�guration Inter-
face to maliciously add or remove devices, when there is no proper permission
management.

• Command Recording: The con�guration interface can also include a function
for recording a command. This can be an alternative to a dedicated service for
voice recognition. With this function, voice commands can be executed without
the need of a direct connection to the VSL on the input device.

2.6. Con�guration Interface 41

• Language Selection: Another possibility is to allow users to change the language
of the Voice Input Service. For each di�erent language, (at least) one dictionary,
one language model and one acoustic model have to be maintained. Also, the
mapping has to be stored either independent for each language or a subsystem
responsible for translation has to be used. When using a custom dictionary, the
script which generates the mapping between words and sounds also has to support
di�erent languages. Additionally, the surface of the Con�guration Interface has
to be displayed in the new language.

The Con�guration Interface can be used to con�gure mappings, edit the dictionary
used by the speech-to-text engine, discover new devices and to record commands. The
con�guration of mappings is the main part of the interface.

Furthermore, the possibility of editing the dictionary is included, because di�erent
devices require di�erent commands. As these devices are not �xed, a con�gurable dic-
tionary is necessary. This dictionary is freely editable, because this is more convenient
for users and evaluations showed that the detection rate is not signi�cantly worse then
the detection rate when using a �xed dictionary. Also, the interface contains device
discovery to allow non-experts to include new devices into the Smart Space without
requiring an expert to install it. Finally, the command recording function is used as
an alternative input. It allows users to execute actions without requiring to install or
download an extra service on their devices.

Language selection is not included in the web interface, because it would be an unrea-
sonable e�ort to implement it in a way that it is convenient for users.

42 Chapter 2. Analysis

2.7 Requirements for a Voice Control System for Smart Space
Orchestration

The developed system has to full�ll a set of requirements to be usable for Smart Space
Orchestration. The following requirements are the result of the analysis.

1. R1: Short response Time: A Voice Control System for Smart Space Orchestra-
tion is not used when its response time is too high. The accapted response time
depends on the scenario, where the system is used in. Accaptable resonse times
for voice recognition systems are not discussed in literature. Therefore a response
time is treated as accaptable for the system developed in this thesis, when the
response time is below the time it would take to push a button on a remote. It is
assumed that this remote is in reach, but not in the hand of a user. For the process
of pushing a button on a remote, three seconds are assumed.

2. R2: O�line functionality: Smart Space Orchestration Systems are not necessar-
ily connected with the Internet. Therefore it is required, that a voice recognition
system is able to operate without Internet connection.

3. R3: Runnable on low power hardware: In a Smart Space, computers with
high processing power are not always available. Therefore a Voice Recognition
System for Smart Space Orchestration has to be runnable on a cheap (<50 €) low
power consumption hardware.

4. R4: Easy con�guration: Voice inputs of users have to be mapped to actions of
a Smart Device. This mapping has to be con�gurable. Therefore the system needs
a component which allows users to con�gure this mapping. The con�guration
subsystem has to be designed that non experts can use it.

5. R5: Adaptability at runtime: Smart Devices may not be available at all time.
The system has to support adding and removing of Smart Devices at runtime.
Also the mapping from voice commands to VSL actions has to be changeable at
runtime.

6. R6: Low error rate: Voice Recognition Systems need an detection rate of at least
95% [10] to be treated as reliable. When voice commands are used for Smart Space
Orchestration, it is that the rate of false positives is low, because these can lead
to dangerous situations (e.g.: turn on an oven instead of turning on a lamp)

7. R7: Transparency: The system has to provide users information which com-
mand is mapped to which action. Otherwise the system seems unreliable.

8. R8: Voice output: Every recognized command has to be acknowledged to allow
a user to react to wrong interpretations of his input. Furthermore the system has
to provide voice output for presenting the data of sensors.

43

Chapter 3

Related Work

In this chapter, di�erent related work is examined. First, section 3.1 introduces Apple
HomeKit. It is a framework which allows Apple’s mobile devices to control Smart
Devices.

In section 3.2 Amazon’s wireless speaker Echo is introduced. Echo is a speaker, which
includes microphones and uses Amazon’s voice recognition service Alexa to process
voice commands.

Furthermore, three approaches are inspected which use voice commands to interact with
their environment. Section 3.3) discusses a system developed by a German computer
magazine called “c’ t”. It uses a voice recognition software on a Raspberry Pi to control
Phillips lamps. In section 3.4, a Smart Alarm Clock using a Raspberry Pi is inspected.
This alarm clock was designed for an IoT contest organized by element14. Both system
can be used without Internet connection.

The chapter closes with a comparison of related work.

3.1 Apple HomeKit

Apple HomeKit is a framework which allows Apple’s mobile devices (iPads, iPhones)
to control Smart Devices. This can be done via the HomeKit Mobile App [59]. This
App can control this Smart Devices via button. Also, Siri is supported. Therefore voice
commands can be used as input.

Today, there is a variety of devices available. This includes devices heating and cooling
systems, locks, shades and di�erent sensors [59]. A drawback of HomeKit is, that it
cannot be used for custom built Smart Devices. Instead, a set of licensed products has
to be used. These devices are more expensive than home built devices (e.g 2̃00 € for 3
remote controlled Philips Hue lamps [60]). These devices are available from over 50

44 Chapter 3. Related Work

di�erent manufacturers [59]. All products are reviewed by Apple [59]. Compatible
devices are labeled with an according sticker.

Each HomeKit device is identi�ed by an eight digit code. To add a device to the set of
controlable devices, this code has to be scanned by the HomeKit App [61]. Then, the
connection establishment is done automatically [61]. Afterwards, additional steps may
be required, depending on the device.

HomeKit manages its devices in rooms. Also it can control multiple devices with a
single command (voice command or button) [61]. It is also possible to de�ne task, which
are trigger in the future. For example, HomeKit can be used to automatically turn on
the heating system every morning at 7 a.m. [59].

3.2 Amazon Echo

The Amazon Echo is a wireless speaker with built-in microphones, which allows users
to control the speaker and its surrounding via voice commands [62]. The speaker is
shown in Figure 3.1.

Figure 3.1: Amazon Echo speaker [63]

For voice control, a service called Alexa is used. Alexa can be used to control the music,
which is played on Echo speakers. It can also perform simple requests like setting a
timer and retrieve arbitrary information from a search engine [62].

Additionally, Amazon provides an App store, where developers can contribute to develop
Apps for di�erent purposes. Echo provides an interface to interact with Smart Devices.
One of the supported devices are Phillips Hue lambs. Unfortunately, Amazon only
provides interfaces for proprietary protocols so they do not foster the development of
self made Smart Devices or middleware like DS2OS. [62].

3.3. Controlling Phillips Hue Lamps with Jasper 45

3.3 Controlling Phillips Hue Lamps with Jasper

The “Magazin für Computer Technik” (c’t) developed a system to control Phillips Hue
lamps [64] via voice commands [65]. They used a Raspberry Pi as platform for their
software. They used the following hardware setup [65]:

• 1 Raspberry Pi Model B [54]

• 1 Micro USB power supply

• 1 4GB SDHC memory card

• 1 Edimax N150 Wi-Fi Nano USB Adapter [66]

• 1 Akiro Kinobo USB microphone [67]

In their setup, they used a software called Jasper. Jasper is a platform for developing
voice controlled applications, written in python [29]. It can be used as front end for
di�erent speech-to-text engines like Pocketsphinx or Google STT. Multiple text-to-
speech engines like eSpeak or MaryTTS [30] are also supported. Jasper is designed to
be used on a Raspberry Pi. Neverthelessit can be used with any Linux system and also
on Mac OS [30]. Jasper maps voice commands to any actions, which can be performed
on the target system (e.g on the Raspberry Pi). Therefore, the functionality is separated
into so-called modules. Jasper distinguishes between standard modules and noti�cation
modules. Standard modules are modules, where a user starts the interaction. For
example, these modules can be used to control lamps within a room. In noti�cation
modules, the interaction is started by Jasper itself. For example when Jasper is used
to notify a user, when a new mail arrived. Some modules are already included like a
control module for the media player Spotify [68] or a Facebook Noti�cation service [69].
Additionally 14 third party can be downloaded on the Jasper homepage [70].

In the system of the c’t, the developers chose to use a pre-con�gured Raspbian (a De-
bian based Linux distribution developed for Raspberry Pis). This image is provided by
the developers of Jasper [65]. In their setup, Pocketsphinx was used as voice recog-
nition engine and eSpeak as speech synthesis engine. Both work without an Internet
connection.

In order to control Phillips Hue lamps, a standard module was developed. These lamps
are controlled via a Hue Bridge, which can be controlled over network [65]. This bridge
provides a Representational State Transfer (REST) interface to interact with the lamps.
The developers of the c’t matched voice input to REST commands.

46 Chapter 3. Related Work

3.4 Voice Controlled Alarm Clock

Frederick Vandenbosch built a Voice Controlled Alarm Clock for the element14 Pi IoT
Smarter Spaces Design Challenge. With his project, he won this challenge. He created a
system, which processes voice commands using a setup based on a Raspberry Pi [71].

To process voice commands he needed a voice control engine, which can be easily
customized and works o�ine. Therefore, he decided to use Pocketsphinx [16] as speech-
to-text engine. Furthermore, he uses a tool provided by the developers of Pocketsphinx,
called lmtool [72] to create a custom dictionary and custom language model [73].

For speech synthesis, a software called �ite is used. The main reason to use this text-to-
speech engine is that it can be executed from the command line and it is optimized for
embedded devices like a Raspberry Pi [74].

The Raspberry Pi running these two engines is also connected to a small display. It is
integrated in a case to look like an alarm clock. The alarm clock can be seen in Figure
3.2.

Figure 3.2: Smart Alarm Clock [75]

With this alarm clock, he is able to interact with several Smart Devices he has built
himself, including a cat feeder and a tower light. On his project page, he describes how
he built this Smart Devices and how this devices have to be connected [76].

On the software side, a speech-to-text engine was used, which does not require Internet
connectivity. Therefore this part of his solution is comparable to the voice recognition
part of the software developed in this thesis. Furthermore, a custom dictionary and a
custom language model was used. In contrast to the system developed in this thesis, no
middleware is used. As a result, it is likely that di�erent parts of his software have to
be changed, if the interface of a Smart Device gets changed. Furthermore, the mapping
between commands and actions is �xed. Consequently, it cannot be con�gured by non
expert users. Therefore it is not possible to exchange parts of his setup as easy as in the
system developed in this thesis.

A demonstration of his project can be found on YouTube [77].

3.5. Comparison 47

3.5 Comparison

In this section, it is evaluated, if the solutions introduced in this chapter ful�ll the
requirements speci�ed in the analysis chapter (see section 2.7). It is not possible to
evaluate all requirements speci�ed in this section, because the information, whether the
given solutions ful�lls these requirements is not given for all solutions. Therefore, the
following requirements are evaluated: O�ine functionality, runability on low power
hardware, easy con�guration, adaptability at runtime and voice output.

HomeKit Alexa/Echo c’t Smart Alarm Clock
O�ine Functionality - - - - ++ ++
Power Consumption ++ ++ ++ ++
Easy Con�guration ++ ++ - - - -

Voice Output ++ ++ ++ ++

Table 3.1: Comparison of related work

• O�line Functionality: When Siri is used as input for HomeKit, an Internet
connection is required. This is also true for Amazon Echo. The system from the
c’t does not require an Internet connection to work properly. The Smart Alarm
Clock also provides o�ine functionality.

• Runability on low power Hardware: Siri runs only on Apple Devices like
iPhones and iPads. These do not have a high power consumption. Alexa runs
on special Speakers distributed by Amazon. This speakers can be used for Smart
Space Orchestration. The solution built by developers of the c’t and the Smart
Alarm Clock use a Raspberry Pi. A Raspberry Pi is often used for Smart Space
Orchestration and has a low power consumption.

• Easy Con�guration: Supported devices can be easily added to the controllable
devices when Apple HomeKit is used. Apple HomeKit allows users to de�ne the
location of devices and so the command can be partly customized. Nevertheless,
it is not possible to freely choose the command which is used to control a certain
Smart Device [61]. For Alexa, Amazon provides a Mobile Application which
allows users to con�gure the mapping from commands to actions [62]. MOVI,
the system developed by c’t and the Smart Alarm Clock can only be con�gured
by changing parts of the source code. This cannot be done by non expert users.

• Voice Output: All systems introduced in this chapter provide speech synthesis.

In conclusion, it can be seen, that all compared do not to provide an interface, which
allows users to add custom devices without e�ort. When HomeKit or Echo are used,
supported device can be added without an e�ort, but this is only possible for this
set of proprietary hardware. They fail to provide an interface which can be used to
communicate with custom devices. The other examined solutions provide functionality,

48 Chapter 3. Related Work

comparable to the system developed in this thesis, but they can only be con�gured by
users with programming skills.

49

Chapter 4

Design

The design chapter focusses on the design of the system developed in this thesis. The
functionality is divided into a list of subsystems. Each subsystem o�ers a service. These
services use the VSL of DS2OS to store data and for communication. In this chapter
all developed services are introduced. As discussed in section 2.1, services do not
communicate directly with each other. The communication is handled by the VSL. Most
of the services developed in this thesis provide context for other services. Therefore
a context model is required for each of these services. These context models are the
interface of the according service. They are discussed in the section of the according
service.

The system has to process voice commands. Therefore, subsystems are required which
convert voice input into text. The voice input can either be a live recording from
a microphone or from a pre-recorded audio �le. Consequently, two subsystems are
required for this task. To provide exchangeability, both subsystems have to provide the
same interface. The service, which uses the microphone as input source is discussed in
section 4.2.1. The service, which processes pre-recorded �le is focussed in section 4.2.2

The system developed in this thesis has to be compatible to services which do not use
voice commands as inputs. Therefore, a subsystem is required, which provides the same
interface as the two subsystems introduced above. This service processes text input in
the same way as the services above process voice. This service is discussed in section
4.2.3.

Furthermore, voice output has to be provided. This functionality has to be seperated
from the voice processing subsystems. This allows the system to provide voice feedback
by other devices than the devices which process voice input. Consequently an additional
subsystem is required to provide acoustic feedback. It is discussed in section 4.2.4.

Voice commands have to be mapped to VSL actions. It has to be possible that a single
service manages the commands of multiple Voice Input Services. Therefore, an addi-

50 Chapter 4. Design

tional subsystem is required. This subsystem subscribes to all available Voice Input
Services. When a voice input is recognized, the according actions are triggered. Also,
the acoustic feedback has to be triggered by this service. Voice Input Services and Voice
Output Services can be found by their context model. The mapping service is focussed
in section 4.2.5.

A subsystem is required, which allows users to con�gure the mapping between voice
commands and VSL actions. This subsytem is a web interface. It can also be be used
to change the dictionary and to discover new devices. Furthermore, it can be used to
record commands which saved in a wave �le. The Con�guration Interface is discussed
in section 4.2.6.

Finally, a subsystem is required to test the subsystems above. In this thesis, a simple
adaption service is used, which controls an LED and uses a temperature sensor to sense
the temperture. The design of this service is introduced in section 4.2.7.

The following services are provided:

• A service which provides an interface to Sphinx and uses a microphone as voice
input source

• A service which provides an interface to Sphinx and uses a Wave �le (sound
�le) as voice input source

• A service with the same interface as the �rst service, which processes text
instead of voice input

• A service which provides an interface to MaryTTS

• A service which processes voice commands from the �rst three service, exe-
cutes VSL actions and provides feedback via the fourth service

• A service which interacts with a Smart Device with a temperature sensor and
an LED to test the services above.

• A con�guration interface to con�gure mappings between commands and VSL
actions.

Figure 4.1 shows the division into subsystems:

4.1 Service Interaction

All subsystems dveloped in this thesis are services which use the VSL for communi-
cation. Figure 4.2 shows the interaction of the di�erent services. The services do not
communicate directly with each other. Instead, all services communicate with their local
Knowledge Agent and the communication between Knowledge Agents is transparent

4.1. Service Interaction 51

t

Command Mapper

discover

edit dic�onary

Figure 4.1: Service Coupling

for all services (see section 2.1. Therefore, all services have to be connected to a KA.
This KA has to be started before the according service.

Voice commands are mapped to VSL actions. This is done by the Voice Mapping Service.
These services subscribe to all Voice Input Services. Voice Input Services are searched
via their context model. When a new command is recognized, the according action
is triggered by the Voice Mapping Service. Therefore, the according service, which
performs the action has to be started before the action can be executed. Furthermore,
the Voice Mapping Service triggers the output of a feedback text. This spoken output
is provided by all running Voice Output Services. These can also be searched by their
type.

The services are described in detail in section 4.2.

Knowledge Agent (KA)

Voice Control Service
Dummy Voice Control

Service
Voice Output Service

Voice Mapping Service

Wave Processing Service Adap�on Service

*

* required at run�me, not at start up

Figure 4.2: Service Dependencies

52 Chapter 4. Design

4.2 Services of the Voice Control System for Smart Space
Orchestration

4.2.1 Voice Input Service

This service is responsible for processing voice input. It uses Sphinx4 from the CMU
Sphinx suite to perform the transformation of voice commands to text. For this service,
the default microphone of the system hosting it is used. As discussed in section 2.2,
a dictionary, a language model and an acoustic model have to be speci�ed. All three
artifacts can be speci�ed in a con�guration �le (see section 5.3). The used dictionary and
the used language model can be created and modi�ed via the Con�guration Interface.

Acoustic models are provided by the developers of CMUSphinx. These acoustic models
are currently available in 10 di�erent languages including German and (US) English [41].
By default, an acoustic model for US English is used, but as mentioned above, this can
be changed in the con�guration �le of this service.

To allow other services to process the textual representation of a voice command, a
regular node is registered. This node uses the following context model. This context
model is the interface of this service.

< v o i c e I n p u t type = " / b a s i c / composed " >
< l a s t U t t e r a n c e type = " / b a s i c / t e x t " w r i t e r = " " r e a d e r = " ∗ " >

< / v o i c e I n p u t >

The service provides the last recognized utterance as text. This text can be read by every
service, Only the the Voice Input Service itself is allowed to write it.

4.2.2 Voice File Input Service

This service processes pre-recorded voice commands. For this purpose, Wave �les are
processed by Sphinx4. It is not useful to process �xed Wave �les with known commands
(Fur this purpose, a dummy Voice Input Service, which processes text can be used (see
section 4.2.3)). Instead, this service is intended to be used by other services, which
allow users to record sound �les. The �le, which is processed can be speci�ed in the
con�guration �le of this service (see section 5.4). This �le can be overwritten before the
voice recognition is triggered. One service which triggers this service is included in the
con�guration web interface, which can be used to record audio �les in a web browser
(see section 4.2.6.4). To foster exchangeability with the Voice Input Service, the Voice File
Input Service has to provide the same interface as the Voice Input Service. Additionally
an attribute which triggers the processing of a recognition is required. Therefore it
extends the model from the service above. The resulting model is shown below.

4.2. Services of the Voice Control System for Smart Space Orchestration 53

< v o i c e F i l e I n p u t type = " / v o i c e / v o i c e I n p u t " >
< t r i g g e r type = " / b a s i c / boo l ean " w r i t e r = " ∗ " r e a d e r = " " >

< / v o i c e F i l e I n p u t >

The service provides the last recognized utterance as text. This text can be read by every
service. Only the the Voice File Input Service itself is allowed to write it. The service
triggers, when the node “trigger” is written by any service.

4.2.3 Text Input Service

The system developed in this thesis is designed to process voice commands. Never-
theless, it has to be compatible to other systems which use di�erent forms of input.
Therefore a service is included, which processes text input instead of voice commands.
This service uses the same context model as the Voice Input Service. Consequently, it
is transparent for the Command Mapping Service, if it processes voice or text input.
In contrast to the Voice Input Service, this service is not limited to the words in the
dictionary, but words outside the vocabulary of the Command Mapping Service are not
mapped to any VSL actions.

The context model used by this service looks like following:

< v o i c e I n p u t type = " / b a s i c / composed " >
< l a s t U t t e r a n c e type = " / b a s i c / t e x t " w r i t e r = " " r e a d e r = " ∗ " >

< / v o i c e I n p u t >

The service provides text which can be entered in the command line. This text can be
read by every service. Only the the Voice File Input Service itself is allowed to write it.

4.2.4 Voice Output Service

This service is responsible for speech synthesis. This means, that it transforms a text
into its spoken representation. For this purpose, MaryTTS is used. MaryTTS creates a
Wave �le which is then played by the service.

Additionally, the service can play prerecorded Wave �le (e.g. a siren). These Wave �les
can be speci�ed in a �le, which is speci�ed in the con�guration �le of this service (see
section 5.6). The format is text : target�le:

54 Chapter 4. Design

The �le can look like this:

EMERGENCY : s i r e n . wav
WAKE UP : a la rmClock . wav ...

STARTUP FINISHED : welcome . wav

The processing of text works as following:

The service checks, if the given text fully matches the text part of a line in the output
mapping �le. When this is the case, the according sound �le is loaded and played.
Otherwise, MaryTTS is used to synthesize the text which is then saved into a new
sound �le. This sound �le is then played.

To allow other services to use the Voice Output Service, a regular node is registered. This
node uses the following context model.The service provides the attribute output, which
is a text readable and writable by every services. Although no other service currently
reads the output, it is permitted because it is possible that some service in the future
process this information (e.g statistic services).

< v o i c e O u t p u t type = " / b a s i c / composed " >
< o u t p u t type = " / b a s i c / t e x t " w r i t e r = " ∗ " r e a d e r = " ∗ " >

</ vo iceOutput >

4.2.5 Command Mapping Service

This service is responsible for the mapping between voice commands and actions within
the VSL. These mappings are stored in a mapping �le. This �le can be speci�ed in the
con�guration �le of this service (see section 5.8)

A mappings has the format: command:type;actions;feedback text

• command: One or more words out of the vocabulary, which trigger the actions
and the feedback text.

• type: GET for get actions, which are used to retrieve data from the VSL or SET
for set actions, which write data in the VSL

• actions: specify, which actions the service should perform. This actions are
formatted as follows:

address1~value//address2~value2//. . . //addressN~valueN for SET commands and
address1//address2//. . . //addressN for GET commands.

– address: the address of the node, which is accessed

– value: the value, which the address has to be set to

4.2. Services of the Voice Control System for Smart Space Orchestration 55

• feedback text: Text which is sent to voice output services. This text can contain
placeholder for the result of GET commands. For the result of the GET command,
~0 is used, for the second ~1 and so on.

The command part of each mapping has to be unique. When more than one device
should perform an action for a single command, this actions have to be part of a single
mapping.

As this service does not need to provide information for other services within the VSL,
no context model is required.

4.2.6 Con�guration Interface

The Con�guration Interface is a web interface, which includes the following functions:

• Edit the dictionary used by the Voice Input Services

• Discover Smart Devices

• Edit mapping list

• Record commands

Each feature is realized on a dedicated page. Additionally, an index page which is used
to navigate between the di�erent functions. It is shown in Figure 4.3.

Figure 4.3: Index page of the Con�guration Interface

56 Chapter 4. Design

4.2.6.1 Dictionary Editing Interface

The Dictionary Editing Interface can be used to modify the dictionary used by the Voice
Input Service. It is shown in Figure 4.4.

Figure 4.4: Dictionary Editing Interface

It contains a text area, which consists of a word list. Each line has to contain exactly
one word. When the word list is saved, a dictionary �le is generated. Also, this word
list is required to generate the language model �le. Both can then be used by the Voice
Input Service.

4.2.6.2 Device Discovery Interface

This interface is used to discover devices which are currently not present in the system.
Furthermore, the names of currently present devices can be changed. The interface is
shown in Figure 4.7 in the end of this chapter. Every Device has a name, a GET address
and a SET address. Known device types like LEDs have a base address, which is the
common part of the GET and SET address. The remaining part of the address is derived
from the device type and its base address. The interface also supports custom device
types. This types also have a base address. In contrast to known device types, the
remaining part of the addresses of custom devices has to be speci�ed. When a device
has more than one property which can be accessed, it has to be added as two devices.
The device discovery interface is divided into 3 parts.

4.2. Services of the Voice Control System for Smart Space Orchestration 57

• On the left side of the page, new devices can be discovered. Therefore, a type
can be selected. When a user wants to discover custom types, the type has to be
speci�ed in the textbox next to the selection menu (this textbox is only shown,
when “custom type” is selected). A device from the list of discovered devices can
then be added to the available devices by using the Use button. When this button
is used, the device is displayed at the bottom of the page.

• On the right side, all previously discovered devices are shown. These devices can
be edited or removed by pressing the according button. When the edit button is
used, the device is displayed at the bottom of the page.

• On the bottom of the page, the current device is displayed. A user can change
the name of this device here. When a custom device is shown, the GET and SET
addresses of this device can also be edited.

4.2.6.3 Mapping Editing Interface

This interface is used to edit the mapping between input commands and VSL actions
and to con�gure new commands. It is shown in Figure 4.8. It is divided into four parts:

• In the top left part of the page, the command can be selected. All available
words are displayed here. These words can be changed in the dictionary selection
interface (see section 4.2.6.1). Below the available words, the currently selected
words are shown.

• In the top right part, the available devices are selected. These devices can be
discovered using the device discovery interface (see section 4.2.6.2)

• Below, the type of the VSL action (GET/SET) can be selected as well as the feed-
back text. On the right side, there are two buttons for saving/overwriting and
discarding the current mapping.

• In the bottom part, all currently present mappings are displayed. They can be
removed or edited.

58 Chapter 4. Design

4.2.6.4 Command Recording Interface

The Command Recording Interface can be used to record commands. In contrast to the
service described in section 4.2.1, this does not require software (except for a browser)
on the device of a user. This interface uses the service described in section 4.2.2. The
Command Recording Interface is shown in Figure 4.5

Figure 4.5: Command Recording Interface

4.2.7 Adaption Service

In this thesis, a simple Smart Device with a temperature sensor and an L.E.D. (actuator)
is used to test the other services. Figure 4.6 shows the Smart Device. It consists of the
following hardware:

• 1 Arduino Mega board

• 1 Arduino Ethernet Shield

• 1 white LED

• 1 100Ω Resistor

• 1 KY-013 Temperature sensor module

• 5 �exible jumper wires

This Smart Devices allows to control a white L.E.D. and uses a temperature sensor to
measure temperature. For communication, an Arduino Ethernet Shield is used. It has
an IPv4 address and listens for commands on TCP port 23. To interact with this Smart
Device, a simple protocol was used. When the Arduino receives “0”, the LED is turned
o�, when it receives “1”, the LED is turned on. When “2” is received, the temperature in
°C is returned.

4.2. Services of the Voice Control System for Smart Space Orchestration 59

Figure 4.6: Smart Device for testing

To use this Smart Device within the VSL, a simple Adaption Service has been written.
It uses the following context model:

< smar tDev i ce type = " / b a s i c / composed " >
< l e d type = " / a c t u a t o r s / l e d " >
</ led >
< t e m p e r a t u r e type = " / s e n s o r s / t e m p e r a t u r e " >
</ t empera ture >

</ smartDevice >

< l e d type = " / b a s i c / composed " >
<isOn type = " / d e r i v e d / boo l ean " w r i t e r = " " r e a d e r = " ∗ " >
0

< d e s i r e d type = " / d e r i v e d / boo l ean " w r i t e r = " ∗ " r e a d e r = " ∗ " >
0
</ d e s i r e d >

</ isOn >
</ led >

< t e m p e r a t u r e type = " / b a s i c / number " w r i t e r = " " r e a d e r = " ∗ " >
</ t empera ture >

To control the LED, the value ./led/isOn/desired has to be modi�ed. When the status
of the LED is changed, it is written in ./led/isOn. To get the temperature from the
temperature sensor, the service queries the sensor every second. This value is stored in
./temperature

60 Chapter 4. Design

Figure 4.7: Device Discovery interface

4.2. Services of the Voice Control System for Smart Space Orchestration 61

Figure 4.8: Mapping Editing Interface

63

Chapter 5

Implementation

This chapter discusses the implementation of the system developed in this thesis. First
it is discussed how to start the Voice Control System for Smart Space Orchestration
including the Con�guration Interface. Afterwards, implementation details of all services
are focussed. Every service can con�gured by a con�guration �le. These �les have a
common part. This part is introduced in section 5.2. Most of the con�guration �les
include an individual part. It is introduced in the according section of every service.

All VSL services are developed in Java. The Con�guration Interface is a web interface
developed with PrimeFaces [78]. PrimeFaces is a user interface framework for Java
Server Faces (JSF) [79]. To host this web interface, a Glass�sh [80] server is used.

5.1 How to start the system

As mentioned before, the VSL of DS2OS is used as middleware. This middleware is
formed by Knowledge Agents (KAs). The KAs have to be started before a service can be
connected to the VSL. After the KAs are started, the Voice Input Services (including the
Voice File Input Service and the Text Input Service if required) and Voice Output Services
have to be started before the Command Mapping Service. It is recommended to use only
a single Command Mapping Service, even if there is more than one Voice Input/Output
Service running. The adaption services can be started at any time when the KA they
want to connect is running. The Voice Mapping Service does not require started adaption
services at start up. They have to be started before they can be used. Figure 5.1 shows
all services required to start a speci�c service.

The Con�guration Interface can be started without a connection to the VSL. Without
a connection to the VSL, the dictionary and the mapping can be edited, but it is not
possible to discover devices and record commands without a connection to a KA.

64 Chapter 5. Implementation

Knowledge Agent (KA)

Voice Control Service
Dummy Voice Control

Service
Voice Output Service

Voice Mapping Service

Wave Processing Service Adap�on Service

*

* required at run�me, not at start up

Figure 5.1: Service Dependencies

5.2 Common con�gration �le

All service can be con�gured via a con�guration �le. These con�guration �les consist of
two parts. A common part, which is the same for all services, except the Con�guration
Interface. Additionally, a service can include an individual part. The common part is
discussed in this section. The individual part is introduced in the section of the according
service.

The following properties can be speci�ed in the common part of the con�guration �les:

• KAaddress: The address of the Knowledge Agent, which is used by the service.

• certi�cate: The location of the certi�cate �le, which is used by the service.

To connect to a KA, the address of the according KA is required as well as a certi�cate.
Both can be speci�ed in the con�guration �le of the according service. The address of
the KA can also be speci�ed as command line argument. If this is the case, the respective
entry in the con�guration �le is ignored.

The common part of the con�guration �le can look as follows:

KAaddress= h t t p s : / / 1 2 7 . 0 . 0 . 1 : 8 0 8 1
c e r t i f i c a t e = s e r v i c e 2 . j k s

5.3 Voice Input Service

As mentioned before, this service uses Sphinx4 [16] as speech-to-text engine. This
engine requires a dictionary, a language model and an acoustic model to work properly.
The locations of the used dictionary and language model have to be speci�ed in the
con�guration �le (see below). The acoustic model can also be changed, but this is not

5.4. Voice File Input Service 65

recommended. The acoustic model used is a generic acoustic model of the English
language. Furthermore, Sphinx4 supports a list of �ller words (like “ah”, “mhm”,. . .).
They could also be customized, but this service uses the prede�ned �ller words from
Sphinx4.

After start up, the service listens to commands by using the default microphone of the
hosting system. When a command is recognized, the sub node /lastUtterance is updated.

The following values can be con�gured in the individual part of the con�guration �le
con�g.txt.

• acousticModel: The location of the acoustic model directory used by Sphinx4.

• languageModel: The location of the language model �le used by Sphinx4.

• dictionary: The location of the language model �le used by Sphinx4.

The con�guration �le can look as follows:

a c o u s t i c M o d e l = r e s o u r c e : / edu / cmu / sph inx / models / en−us / en−us
languageModel = d i c t / smart . lm
d i c t i o n a r y = d i c t / smart . d i c
KAaddress= h t t p s : / / 1 2 7 . 0 . 0 . 1 : 8 0 8 1
c e r t i f i c a t e = s e r v i c e 1 . j k s

5.4 Voice File Input Service

This service provides the same functionality as the Voice Input Service. The only di�er-
ence of these two services is, that this service does not process a speech signal taken
from the default microphone of the hosting system, but out of a Wave �le. This wave
�le can be speci�ed in the con�guration �le of this service.

66 Chapter 5. Implementation

The following values can be con�gured in the individual part of the con�guration �le
con�g.txt.

• acousticModel: The location of the acoustic model directory used by Sphinx4.

• languageModel: The location of the language model �le used by Sphinx4.

• dictionary: The location of the dictionary �le used by Sphinx4.

• speechFile: The location of the speech �leused by Sphinx4.

The con�guration �le can look as follows:

a c o u s t i c M o d e l = r e s o u r c e : / edu / cmu / sph inx / models / en−us / en−us
languageModel = d i c t / smart . lm
s p e e c h F i l e = r e c o r d i n g . wav
d i c t i o n a r y = d i c t / smart . d i c
KAaddress= h t t p s : / / 1 2 7 . 0 . 0 . 1 : 8 0 8 1
c e r t i f i c a t e = s e r v i c e 1 . j k s

5.5 Text Input Service

The Text Input Service processes command line input as an alternative to the Voice Input
Service. In contrast to the Voice Input Service, this service does not need dictionary,
language model or acoustic model.

This service does not have an individual part in the con�guration model.

The con�guration �le can look as follows:

KAaddress= h t t p s : / / 1 2 7 . 0 . 0 . 1 : 8 0 8 1
c e r t i f i c a t e = s e r v i c e 2 . j k s

5.6 Voice Output Service

This service is used for voice output. Furthermore, special pre-con�gured sound �les
(e.g a siren) can be played. This has to be speci�ed in a �le. The design of this �le can
be found in section 4.2.4. The location of this �le can be speci�ed in the con�guration
�le (see below). This service is not bound to the dictionary of the Voice Input Service.
When the sub node ./output is written, the service triggers sound output. First of all, it
checks whether the received text matches a line in the sound mapping �le. If this is the
case, the sound �le is loaded and played.

5.7. Adaption Service 67

Otherwise, the text is processed by MaryTTS. MaryTTS can be customized, but this
service uses the default con�guration of MaryTTS. MaryTTS generates a Wave �le with
the processed text. This text is then loaded and played.

The following values can be con�gured in the individual part of the con�guration �le
con�g.txt.

• outputMapping: The location of the �le which contains the mappings of com-
mands to special sound �les.

The con�guration �le can look as follows:

outputMapping = outputMappings
KAaddress= h t t p s : / / 1 2 7 . 0 . 0 . 1 : 8 0 8 1
c e r t i f i c a t e = s e r v i c e 2 . j k s

5.7 Adaption Service

This service communicates with an Arduino Mega board and is able to switch an LED on
and o�. Furthermore a temperature sensor can be used to get the current temperature.

The software on the Arduino is written in C. The Arduino hosts a telnet server on a
�xed IP address. The VSL adaption service connects to this server and sends commands
to the Arduino:

• 0: Turns the LED o�.

• 1: Turns the LED on.

• 2: Tells the Arduino to return the current temperature in °C

This service does not have an individual part in the con�guration model.

The con�guration �le can look as follows:

KAaddress= h t t p s : / / 1 2 7 . 0 . 0 . 1 : 8 0 8 1
c e r t i f i c a t e = s e r v i c e 2 . j k s

5.8 Voice Mapping Service

This service is responsible for mapping (voice) commands to VSL actions. Therefore, it
searches the VSL for all services which can be used as input. This is done by searching
for services with the type /voice/voiceInput. Afterwards, the service subscribes to the
sub nodes ./lastUtterance of all found services.

68 Chapter 5. Implementation

This service loads a mapping list from a mapping �le. This �le can be speci�ed in the
con�guration �le. Then, the service searches for all available Voice Input Services. When
a new command is available, this command is looked up in a map and the according
VSL actions are performed. The according voice output text is sent to the previously
found Voice Output Services.

The following values can be con�gured in the individual part of the con�guration �le
con�g.txt.

• mapping: The location of the �le which contains the mapping list

The con�guration �le can look as follows:

mapping=mappings
KAaddress= h t t p s : / / 1 2 7 . 0 . 0 . 1 : 8 0 8 1
c e r t i f i c a t e = s e r v i c e 2 . j k s

5.9 Con�guration Interface

The Con�guration Interface is a web interface. It is implemented in PrimeFaces [78], a
user interface framework for Java Server Faces (JSF) [79]. A Glass�sh server [80] is used
to host this interface. It is divided into four parts: the Dictionary Editing Interface, the
Device Discovery Interface, the Mapping Editing Interface and the Command Recording
Interface.

5.9.1 Dictionary Editing Interface

This interface is used to generate a dictionary �le out of a word list. For this purpose, a
Python script provided by the developers of Sphinx is used. This script is available in
the GIT repository of CMUSphinx [81]. The word list is saved in a �le. Furthermore, an
acoustic model is required to generate a dictionary. This acoustic model is provided by
the developers of CMU Sphinx [41].

5.9.2 Device Discovery Interface

This interface allows to search the VSL for nodes of a type which can be speci�ed by a
user. Therefore, a service is registered to connect to the VSL.

All discovered devices are saved in a �le, which can be speci�ed in the con�guration
�le of the con�guration interface (see section 5.9.5) This �le is used by the Mapping
Editing Interface (see section 5.9.3).

5.9. Con�guration Interface 69

5.9.3 Mapping Editing Interface

This interface is used to create and edit mapping list between commands and actions
within the VSL. Furthermore, a language model is created based on this mapping. The
mapping �le can be used by the Voice Mapping Service (see sections 4.2.5 and 5.8). The
word list and the device list is loaded from two �les. The mappings list is also loaded
from a �le and when a mapping is added, edited or removed, the changes are saved in
the same �le.

When the mapping list is changed, the language model is updated. To generate a
language model, a Perl script provided by the developers of CMUSphinx is used. This
script is available online [72].

The location of all �les used for this interface can be speci�ed in the con�guration �le
of the Con�guration Interface (see section 5.9.5).

5.9.4 Command Recording Interface

This service is used to record a command. This command is saved it in a Wave �le,
which is afterwards uploaded to the server. To process this �le, an instance of the Voice
File Input Service (see section 4.2.2) is used.

To record commands, a script of Chris Wilson is used. It can be found on his web
page [82]. This script uses another script provided by Matt Diamond, which can be
found on GitHub [83].

This interface uses the default microphone provided by the hosting system. When
using this service, the browser requires the permission to access the microphone of the
hosting system.

70 Chapter 5. Implementation

5.9.5 Con�guration File

The following values can be con�gured in the con�guration �le of the web interface
con�g.txt:

• deviceFile: The location of the �le which contains a list of discovered devices

• wordsFile: The location of the �le which contains a list of available words

• mappingsFile: The location of the �le which contains a list of mappings

• dictionaryFile: The location of the �le, where the dictionary should be saved

• languageModelFile: The location of the �le, where the language model should
be saved

• acousticModelFile: The location of the �le which contains the acoustic model
for generating the dictionary and the language model

• KAaddress: The address of the Knowledge Agent, which is used by the services.

• certi�cateRec: The location of the certi�cate �le, which is used by the record
service.

• certi�cateDisc: The location of the certi�cate �le, which is used by the discov-
ery service.

The con�guration �le can look as follows:

d e v i c e F i l e = d e v i c e s
w o r d s F i l e = smart . vocab
m a p p i n g s F i l e =mappings
d i c t i o n a r y F i l e = smart . d i c t
a c o u s t i c M o d e l F i l e =g2p−seq2seq −cmudic t
l a n g u a g e M o d e l F i l e = smart . lm
KAaddress= h t t p s : / / 1 2 7 . 0 . 0 . 1 : 8 0 8 1
c e r t i f i c a t e R e c = s e r v i c e 4 . j k s
c e r t i f i c a t e D i s c = s e r v i c e 5 . j k s

71

Chapter 6

Evaluation

In this chapter, the requirements speci�ed in the analysis chapter (see section 2.7)
are focussed again. It is discussed if the system developed in this thesis ful�lls these
requirements. For this evaluation, a dictionary consisting of 16 words is used. It can be
found in appendix D.

6.1 R1: Short response time

In this section, the response time of the Voice Input Service is evaluated. As discussed in
section 2.7, the response time has to be less than the time it would take to perform the
same action with a remote. For this process, 3 seconds are assumed. In this scenario,
a light is turned on/o�. Two commands “KA LIGHT ON” and “KA LIGHT OFF” were
used. Each command was recorded 15 times.

To evaluate the response time, the Voice Input Service was altered. The altered version
plays a sound �le whenever a command is recognized. This sound is then used to
calculate the response time as the time di�erence between the end of the voice command
and the moment when the command was recognized. The VSL and the controlled device
increase the response time of the system. This part of the response time is not di�erent
for voice and other input methods. Therefore, this additional delay is not evaluated.

Table 6.1 below shows minimum and maximum value as well as the mean value and
the median of the two commands. The 0.25- and 0.75-quantiles are also shown. The
response time for all recordings can be found in the table in appendix B The results are
visualized in Figure 6.1. The box shows the 0.25 and 0.75 quantile. The line in the box is
the median. The whiskers represent the minimum and maximum value.

72 Chapter 6. Evaluation

LIGHT ON LIGHT OFF both commands
min 0,70 0,80 0,70
max 1,59 1,76 1,76
mean 1,09 1,29 1,19

median 0,95 1,41 1,24
0.25-quantile 0,83 0,97 0,87
0.75-quantile 1,35 1,50 1,49

Table 6.1: Response times

ON OFF BOTH
0.6

0.8

1

1.2

1.4

1.6

1.8

Re
sp

on
se

tim
e

in
s

Figure 6.1: Response times of LIGHT ON/OFF

The response time of the Voice Input Service di�ers from the spoken command. It can
be seen, that the mean and the median of “KA LIGHT ON” are below the according
values of “KA LIGHT OFF”. The reason for this behavior are the sounds at the end of the
words “ON” and “OFF”. When the word “ON” is spoken the voice recognition engine
recognizes the end of the utterance faster, so the recognition of the utterance can start
earlier. This can also be seen in the time spectra of the two utterances. These spectra
can be seen in Figure 6.2.

The Voice Input Service has a response time below 3 seconds for all measurements.
Therefore, the response time is below the time, which was speci�ed as requirement in
the analysis chapter (see section 2.7). Consequently, this requirement is ful�lled.

In the future, it can be evaluated further by using a wider range of words. It can also be
evaluated, if the processing time is shorter, when a microphone with push-to-talk (see
section 2.2.1.3) support is used.

6.2. R2: O�ine functionality 73

Figure 6.2: Time spectra of KA LIGHT ON (left) and KA light o� (right)

6.2 R2: O�ine functionality

The system developed in this thesis used Sphinx for voice recognition. MaryTTS is used
for speech synthesis. Both do not require an active Internet connection to ful�ll their
purpose. Consequently, this requirement is satis�ed.

6.3 R3: Runnable on low power hardware

In this thesis, Arduino [33] boards were used to build Smart Devices. To enable com-
munication with other devices, Arduino Ethernet Shields were used. The subsystem,
which are used for interaction with users (Voice Input Services, Voice Output Services,
Con�guration Interface) were hosted on a Raspberry Pi. This device was also responsi-
ble for the mapping from voice commands to VSL actions. Both devices cost below 50 €.
They also have low power consumption. Consequently, this requirement is satis�ed.

6.4 R4: Easy con�guration

The system developed in this thesis includes a subsystems called Con�guration Interface.
It allows users to con�gure the mapping from voice commands to VSL actions. It can also
be used to edit the dictionary and to discover new devices. This Interface is implemented
as web interface. It is designed to be usable by non expert users. It cannot be objectively
evaluated, if non experts are able to use the Con�guration Interface. This has to be
evaluated in the future.

74 Chapter 6. Evaluation

6.5 R5: Adaptability at runtime

The system developed in this thesis uses VSL of DS2OS as middleware. Adding and
removing devices at runtime is supported by the VSL. The Voice Control System for
Smart Space Orchestration allows users to discover new devices, which are added to the
controlable devices at runtime. The mapping can also be adapted at runtime. Therefore
the system developed in this thesis is adaptable at runtime.

6.6 R6: Low error rate

Two get a low error rate, two di�erent properties have to be ful�lled. The system has
to trigger an action when the according command is spoken. Also the system must not
trigger an action when the according command is not spoken. To avoid unintended
actions, a trigger word can be used. This word has to be spoken before each command.
This trigger word is focussed in the following subsection.

In section 6.6.2, it is evaluated how often the system maps a spoken utterance to the
wrong VSL action.

6.6.1 Trigger word

A voice recognition system can use a word to trigger the recognition. It is also possible
to use no trigger word at all. The advantage of a trigger word is, that it is less likely, that
a command gets executed unintendedly when a trigger word is used. A good trigger
word has to have a good detection rate and it should be short. Furthermore it should
not appear too often in utterances which does not intend to trigger a recognition. The
following trigger words were evaluated for this thesis:

• no trigger word: When no trigger word is used, the detection rate is not reduced
by an additional word, which has to be recognized correctly. Using no trigger
word works well in a quiet environment without background talk. Furthermore
feedback text can be problematic for a voice recognition system without a trig-
ger word. In such a scenario, it is possible, that the voice recognition system
recognizes command synthesized by a speech synthesizer. This happend in the
testing environment when the command “TEMPERATURE” was used the query
the temperature. It was followed by the feedback “The current temperature . . . ”,
which triggered the command again. Therefore, not using a trigger word is not a
suitable solution.

6.6. R6: Low error rate 75

• command: This word has a good detection rate (>95%). Also it is natural for users
to start the recognition of a command with the word “command”. Furthermore it
is unlikely, that the word “command” is spoken in an other context than starting
a recognition in the testing environment. This is because the system was tested
in a German speaking environment. A drawback of this solution is the length of
the word “command”. All in all, “command” can be used as trigger word

• KA: This word is short and it very unlikely, that it appears in a di�erent context
than starting a voice recognition, even in an English speaking environment. The
major drawback of this solution is, that “KA” is an acronym. Therefore, the
translation between this words and the according sounds has to be done manually.
This could be done within a few minutes. Test showed that the detection rate is
better than the detection rate of all other tested possibilities (>98 %). Therefore,
“KA” can be used as trigger word.

All in all, the word “KA” works best as trigger word. It is short and does not appear in
general language usage. Also, the detection rate was higher than the detection rate of
other solutions. The only problem, that the mapping between word and sounds has to
be created manually, could be �xed with little e�ort.

6.6.2 Incorrect mappings

As mentioned in section 2.7, there are two error rates, word error rate and task error rate.
The voice recognition service maps a command to an action, if the spoken command
matches the speci�ed command of the action exactly. Therefore, the task error rate is the
product of the word error rates of the words of a command. To evaluate the task error
rate, the commands “KA LIGHT ON” and KA LIGHT OFF were used. Each command
was recorded 75 times. The table below is an excerpt of table C in the Appendix. It
shows that all incorrectly recognized commands together with the commands spoken.
In this test scenario, 3 commands were incorrectly recognized.

Nr. Spoken Command Recognized Command
...

16 KA LIGHT OFF KA LIGHT OFF ON
...

18 KA LIGHT OFF SHUTTER OFF ON
...

86 KA LIGHT OFF KA UP ON

Table 6.2: Task error rates of “KA LIGHT ON” and “KA LIGHT OFF” (excerpt)

76 Chapter 6. Evaluation

This evaluation shows, that the system has a task error rate of 2% in this scenario.
Consequently, the system has a detection rate of 98%. This is above 95%, which is
considered as reliable (see section 2.7). Therefore, the system has a low error rate.

6.7 R7: Transparency

All currently present mappings are displayed in the mapping interface. This interface can
also be printed. Consquently, a user has the option to inform himself which command
is mapped to which mapping. All in all, this requirement is satis�ed.

6.8 R8: Voice output

The system developed in this thesis includes a subsystem, which is responsible for voice
output. This subsystem uses voice output to acknowledge commands. Also it can be
used to present the result of GET actions. These actions are used to get the result of
sensor. They can also be used to get other context, which is stored within the VSL. The
subsystem uses MaryTTS [43] for speech synthesis. MarryTTS can synthized arbitrary
text. The system developed in this thesis satis�es this requirement.

6.9 Conlusion

In this section, the system was evaluated to check if it ful�lls the requirements speci�ed
in the analysis chapter (section 2.7). The result is that it satis�es all requirements, which
can be measured objectively. It provides fast and reliable voice recognition without
an Internet connection. Also, new devices can be discovered at runtime. The system
is runnable on low power consumption hardware. Also voice output is provided. In
contrast to the other requirements, it cannot be objectivly evaluated, whether the system
is con�gurable by non experts. In the future it has to be evaluated if the Con�guration
Interface is easy to use (see section 7.1).

77

Chapter 7

Conclusion

In this thesis, a system was developed, which allows users to control Smart Devices
via voice commands. For this purpose, the VSL of DS2OS was used as middleware.
This led to a design where the functionality is divided into di�erent services, which
communicate not directly with each other but via the VSL. As a result, the services
are only loosely coupled and can easily be exchanged. The following services were
developed:

• Voice Input Service: A service which is responsible for transforming speech
input into text. The speech signal is taken from a microphone.

• Voice File Input Service: A service which is responsible for transforming speech
input into text. The speech signal is taken from a Wave �le.

• Text Input Service: A service which emulates a Voice Input Service and o�ers
text input, which is processed like the result of a Voice Input Service:.

• Voice Output Service: A service which is responsible for transforming text into
speech output.

• Voice Mapping Service: A service which is responsible for the matching from
voice commands to actions within the VSL.

• Adaption Service: A service which interacts with actuators and sensors to test
the services above.

Furthermore, a Con�guration Interface was developed to allow users to con�gure the
mapping from voice commands to action within the VSL. This is realized as web interface.
With this interface, users can edit the dictionary used by the Voice Input Services,
discover Smart Devices and con�gure the mapping between voice commands and actions
within the VSL.

78 Chapter 7. Conclusion

The system developed in this thesis was compared with other currently available systems.
Today a variety of voice control software is available. Most of it, including well known
solutions like Siri or Cortana are used as a personal assistant. Siri and Cortana require an
active Internet connection to be functional. This is not the case for the system developed
in this thesis. It provides o�ine voice recognition.

Also there is a small number of voice control solutions available, which can be used to
control Smart Devices via voice recognition. Apple Homekit, a framework which allows
Apple’s mobile devices to control Smart Devices was observed. Three solutions were
examined which use CMU Sphinx to control Smart Devices. The MOVI Arduino Shield,
a system developed by the c’t magazine for controlling Phillips Hue lamps and a Smart
Alarm Clock. All three solutions have in common, that it is not possible to exchange
the used Smart Devices without changing other parts of the software too. This is in
contrast to the design of this solutions, where it is possible to add or remove Smart
Devices without needing to change other parts of the software. This is possible, because
the services communicate via the VSL.

In the end of this thesis, it was evaluated, if the speech recognition of the system
developed in this thesis ful�lls the requirements speci�ed in the analysis step. Therefore,
a scenario was chosen in which a light was turned on/o� with the command “KA LIGHT
ON/OFF”. The results showed, that system ful�lls these requirements.

7.1 Future work

This thesis o�ers a variety of possible future works. First of all, the Con�guration
Interface can be improved. Currently, no security functions like a user management
has been implemented. This is no problem in a testing environment, but it can be
problematic in a di�erent scenario.

Currently, new devices have to be discovered manually via the Device Discovery In-
terface. This discovery is independent from the dictionary. In the future, it could be
implemented that every device has a prede�ned set of commands. When a device is
discovered, this set of commands could be automatically included in the dictionary.

Another possible future work is the development of another voice recognition service.
Currently, CMUSphinx is used as speech-to-text engine. It �tted better than all other
examined solution. It is likely that new speech-to-text engines are going to be released
in the future. As the Voice Input Service is only loosely coupled with other services,
a new voice control service, which uses another speech-to-text engine can easily be
integrated in the system.

7.1. Future work 79

A service can be included, which provides an interface to WhatsApp [84]. WhatsApp
is an instant messaging service available on Android, iOS and Windows Phone [85]. It
can be used to record and send sound �les. This service could be used as an alternative
to the existing voice processing services.

Furthermore, the current system was evaluated by measuring the recognition time
and the detection rate in a speci�c scenario. It would be useful to evaluate the system
in di�erent scenarios to see, how the system performs when the scenario is changed.
Also, the user experience of a user who is not used to a voice control system could be
evaluated.

81

Appendix A

Smart Space Orchestration

This section discusses Smart Space Orchestration (S2O) and ubiquitous computing.
First, the origin and di�erent aspects of ubiquitous computing are discussed. After
the de�nition of important terms, the Distributed Smart Space Orchestration System
(DS2OS) is introduced.

A.1 Ubiquitous Computing

The research �eld of ubiquitous computing goes back to the early 1990s, when Mark
Weiser, a researcher at Xerox Palo Alto Research Center (PARC) had the idea of including
computers into the environment to facilitate everyday life, without grabbing attention
of people using it [86]. His vision was to include computers everywhere in a way they
disappear, meaning that everybody can use it in a natural way without thinking and
focusing on them [87]. This stands in contrast to virtual reality, where the aim is to
make a “real world” inside the computer, which is diametrically opposed to the idea of
ubiquitous computing. The di�erent aspects of ubiquitous computing can be seen in
Figure A.1. Therefore ubiquitous computing can be splitted up into these parts:

A.1.1 Mobile Computing

Mobile computing means, that a computer can be transported. Mobile computing devices
have the limitation, that they can not obtain information about the environment [88].
Examples of mobile computing devices are tablets, Smartphones and laptops. Although
mobile computing wasn’t reality in the beginnings of ubiquitous computing, it has
become reality until today.

82 Appendix A. Smart Space Orchestration
Level of Embeddedness

Level of mobility

High

HighLow

Low

Pervasive
compu�ng

Ubiquitous
compu�ng

Tradi�onal
business

compu�ng

Mobile
compu�ng

Figure A.1: Fields of ubiquitous computing (based on [88])

A.1.2 Pervasive Computing

The research �eld of pervasive computing is about making an environment “intelligent”.
An “intelligent” environment consist of one or more Smart Devices. These Smart Devices
use sensors (inputs) and actuators (outputs) to communicate with their environment.
In contrast to mobile computing, pervasive computing has not become reality yet [89].

A.1.3 Distributed Computing

Distributed computing is a �eld of computing which in�uences ubiquitous compting
In a distributed system, an application runs distributed on more than one independent
computer connected via a network. A distributed system appears as a single coherent
system for users. This is usually provided by middleware [88].

A.2 De�nitions

In this thesis, the terms Smart Device, and Smart Space (Orchestration) are used. These
terms are di�erently de�ned in literature. In this thesis, the following de�nitions are
used:

1. Smart Device: An embedded device, which can communicate with its environ-
ment using sensors and actuators and can be controlled via a network [1].

2. Smart Space: A physical space that contains one or more Smart Devices [1].

3. Smart Space Orchestration: Managing Smart Devices within a Smart Space
with software [1].

A.2. De�nitions 83

A.2.1 Heterogeneity

A major reason why pervasive computing isn’t reality today is the heterogeneity of
Smart Devices. This resulted in the emerging of so called silos. Devices of one silo are
only able to operate with other devices within the same silo, but not with devices from
another silo. There are di�erent kinds of silos:

Figure A.2: Silos [90]

• Vendor: Di�erent vendors design their devices in a way that they communicate
over special protocols with each other. These protocols are designed in a way that
they are incompatible to protocols of their competitors to protect their market
share [1].

• Functional: A Smart Device can only interoperate with devices from the same
operational group (e.g. heating,ventilation) [1].

• Spatial: Two devices can only communicate with each other, when they are
physically close to each other [1].

• Technical: Di�erent Technologies are more suitable for devices with di�erent
purposes [1].

• Middleware: Applications programmed for di�erent middlewares are unable to
communicate with each other [1].

84 Appendix A. Smart Space Orchestration

A.3 Middleware

As mentioned in section A.2.1, di�erent components (e.g Smart Devices) can be hetero-
geneous. As a result of this homogeneity, an additional layer is required to cover this
problem. This layer is called middleware and operates between the platform interface
(dependent on hardware and operating system) and the user applications [91]. There-
fore it provides an Application Programming Interface (API) for the user applications,
which is independent from the platform interface: A middleware is responsible for the

Middleware

Applica�on Applica�on

APIs

Pla�orm interface Pla�orm interface

Pla�orm
· OS
· Hardware

Pla�orm
· OS
· Hardware

. . .

. . .

Figure A.3: Architecture of middleware (based on [91])

communication between an application and the underlying layer. As a result, user appli-
cations do not directly communicate with the underlying layer This layered architecture
can be seen in Figure A.3. A middleware enables portability of user applications [91].
Additionally it can provide di�erent kinds of transparency [92]:

• Access transparency covers representation and access of data [92]

• Location transparency hides the location of a resource [92]

• Migration transparency masks migration of resources [92]

• Relocation transparency migration transparency while resource in use [92]

• Replication transparency conceals duplication of a resource [92]

• Concurrency transparency covers the shared access of a resource [92]

• Failure transparency hides failure and recovery of a resource [92]

A.4. Context 85

A.4 Context

Smart Devices need to store and process information about the real world [4]. This
information is called context. Moreover, Smart Devices need to communicate with each
other. This is done by exchanging context. In detail, context describes all information
needed by a service to orchestrate a Smart Space [4]. To describe a context, context
models can be used. A language which can be used to create context models is called
meta model. An instance of a context model is called virtual object [4]. A virtual object
describes a real world object (e.g a car). The structure of a real world object is de�ned
by so called ontologies. For the same object, there can be di�erent ontologies used for
di�erent purposes, this ontologies are called domain ontology. All domain ontologies of
an object share a set subset of concepts. This common subset is called upper ontology [1].
Figure A.4 visualizes the connection between these terms.

Figure A.4: Context Model Terminology [1]

Context models need to be exchanged between Smart Devices. This can be done via
a central repository, the context model repository (CMR) There are di�erent suitable
representations for context models [4]. In this thesis, only the representation used in
DS2OS will be discussed in section A.5

86 Appendix A. Smart Space Orchestration

A.5 Distributed Smart Space Orchestration System (DS2OS)

The Distributed Smart Space Orchestration System (DS2OS) is a system to orchestrate
Smart Spaces, which is developed the chair of network architectures and services at the
Technical University of Munich. The system provides a middleware for brokering and
storing state context between devices within a Smart Space [2]. DS2OS is written in
Java and consists of three blocks [1]:

• The Virtual State Layer (VSL) is a middleware, which acts as distributed operating
system in a Smart Space [1].

• The Smart Space Service Management (S2S) manages the services available within
the VSL [1].

• The Smart Space Store (S2Store) is global service manager, which supports crowd-
sourcing of services [1].

In this thesis, di�erent VSL services are going to be implemented. The S2S is transparent
for these services and the S2Store is not used. Therefore, only the VSL is discussed in
this thesis.

A.5.1 Virtual State Layer (VSL)

The Virtual State Layer is a middleware. It is formed by self-organizing unstructured
peers and manages the information of a Smart Space [3]. This information is called
context. The peers are autonomous and called Knowledge Agents (KAs). The VSL is
completely self-managed and encapsulates the functionality from the KAs [3]. Services,
which produce context are decoupled from services consuming context. Each of these
services is connected to exactly one KA. This KA is responsible for storing data and
manages the retrieving of data from other services [3]. When services communicate
with each other, they do not have to di�erentiate, whether the other service is connected
to the same KA or to another KA.

To describe the structure of context produced by services, context models (see section
A.5.2) are used. Each KA stores all required context models locally. This increases the
resilience [3]. Furthermore, context models can be automatically synchronized. This
can be done by a central context model repository (CMR) [1]. The content of the CMR
is synchronized between all KAs. This design results in the context models being the
interfaces of their services. Services communicate by accessing context of other services.
The access can either be a read access via get or a write access via set [1]. Additionally,
services can subscribe to data nodes.

Figure A.5 shows, how services communicate over the VSL. On the bottom, there are
Smart Devices which are connected to the VSL by so called adaption services. These

A.5. Distributed Smart Space Orchestration System (DS2OS) 87

services can be used by other (orchestration) services. As mentioned before, these
services do not directly communicate with each other, but use the VSL to connect to
each other. More about the di�erent types of services can be found in section A.5.3

Figure A.5: The VSL [3]

There are two di�erent types of data nodes [1]:

• A regular node is a node used to store context within the VSL [1]. All regular
nodes form a tree. With this nodes, a service can subscribe any sub-tree and gets
noti�ed, when anything within this sub-tree is changed [3].

• Virtual nodes are nodes which are not used to store context within the VSL,
but use callback functions to provide context [1]. They form a so called virtual
sub-tree. When this sub-tree is accessed, callback handlers are used to handle the
Request [3]. It is also possible to access a virtual node with additional parameters.
This parameters are passed by accessing a sub-tree of the requested tree.

For a requesting service, it is transparent, whether the accessed node is a regular node or
a virtual node. The context in the VSL is independent from the service implementation.
This fosters portability [3]. Additionally, the VSL allows to search nodes via its type
identi�er [1], which is the context model. This allows dynamic binding of services. The
context of each service is described by exactly one context model [3].

The design goals of the VSL are performance, resilience and security-by-design [3].

88 Appendix A. Smart Space Orchestration

A.5.2 Context Models

Context Models describe the structure of context. Context is information within a Smart
Space. Nowadays, there are di�erent types of context models used [4]. This thesis only
describes the approach taken in the VSL. This model uses hierarchically structured
type key-value pairs. Additionally, the key-value pairs include management meta data
including access rights, version info, type, address and value [4]. The key-value pairs
(tuples) are hierarchically structured by their addresses and form a tree [4]. The di�erent
level are separated by “/” [4]. Each context model is represented in XML markup, which
enables syntax validation [4]. This XML representation is located in the Context Model
Repository (CMR) and synchronized by all Knowledge Agents [3]. At start up, each
service is bound to a context model. Context models are identi�ed by their name and
each context model has a type [4]. This type can be used for composing and sub-typing
to create new context models. As a result an extensible type system is formed. This type
system consists of three basic data types. Each of this types can have restrictions [4]:

• /basic/number represents a number and can be restricted by its upper and lower
bound [4].

• /basic/text represents a text and can be restricted by regular expressions [4].

• /basic/list represents a list of context nodes and can be restricted by the minimum
and maximum amount of entries and the types of entries [4].

All types are either basic types or composed from existing context models. All types can
have default values. These values are the values between the <> tags. As an example,
the type Boolean can be represented as [1]:

< boo l ean type = " / b a s i c / number "
r e s t r i c t i o n s = " minimum =0 ,maximum=1 " >
0

< / boo l ean >

The context model has to be saved in the CMR. In this case the model of boolean and
all following models are located in the sub-folder derived in the repository. With this
type, a tra�c light can be represented [1]:

<lamp type = " / b a s i c / d e r i v e d " >
<on type = " d e r i v e d / boo l ean " >0< / on>

< / lamp>

A.5. Distributed Smart Space Orchestration System (DS2OS) 89

< t r a f f i c L i g h t type = " / b a s i c / d e r i v e d " >
< red type = " d e r i v e d / lamp " >1< / red >
< ye l low type = " d e r i v e d / lamp " >0< / red >
< green type = " d e r i v e d / lamp " >0< / red >

< / t r a f f i c L i g h t >

A.5.3 Service Orientation

The architecture of DS2OS is service oriented [3]. In this architecture, components
are coupled via services. This design fosters reusability. There are di�erent types of
services used in Smart Space Orchestration [1]:

• Adaptation services are responsible for the communication between Smart
Devices and the VSL

• Advanced reasoning services generate new context based on existing context.

• Emulator services simulate the behavior of other services.

• Remote access services are used to communicate with services from remote
DS2OS sites.

• User interface services provide a User Interface to other service. This user
interface can be a voice recognition system.

The di�erence of these types is their purpose, not the way, they are handled by the VSL.

91

Appendix B

Response time table

Command End of Command Time of Recognition Reaction Time
LIGHT ON 1.08 2.28 1.20s
LIGHT OFF 3.77 5.35 1.58s
LIGHT ON 7.06 8.48 1.42s
LIGHT OFF 10.07 11.55 1.48s
LIGHT ON 13.37 14.64 1.27s
LIGHT OFF 16.31 17.70 1.39s
LIGHT ON 19.29 20.84 1.55s
LIGHT OFF 22.38 23.21 0.83s
LIGHT ON 25.05 26.21 1.16s
LIGHT OFF 27.80 29.31 1.51s
LIGHT ON 31.00 31.70 0.70s
LIGHT OFF 33.27 34.68 1.41s
LIGHT ON 36.30 37.10 0.80s
LIGHT OFF 38.80 40.13 1.33s
LIGHT ON 41.60 42.50 0.90s
LIGHT OFF 43.82 44.81 0.99s
LIGHT ON 46.30 47.15 0.85s
LIGHT OFF 48.66 50.18 1.52s
LIGHT ON 51.69 53.27 2.58s
LIGHT OFF 54.70 55.65 0.95s
LIGHT ON 57.31 57.98 0.95s
LIGHT OFF 59.48 60.28 0.80s
LIGHT ON 64.98 65.75 0.77s
LIGHT OFF 67.23 68.72 1.49s
LIGHT ON 70.23 71.09 0.86s
LIGHT OFF 72.67 74.14 1.47s

92 Appendix B. Response time table

LIGHT ON 75.66 77.25 1.59s
LIGHT OFF 78.73 79.64 0.91s
LIGHT ON 81.23 81.94 0.71s
LIGHT OFF 83.99 85.75 1.76s

Table B.1: Response Time of the Voice Recognition Service

93

Appendix C

Error rate table

Nr. Spoken Command Recognized Command
1 KA LIGHT ON KA LIGHT ON
2 KA LIGHT OFF KA LIGHT OFF
3 KA LIGHT ON KA LIGHT ON
4 KA LIGHT OFF KA LIGHT OFF
5 KA LIGHT ON KA LIGHT ON
6 KA LIGHT OFF KA LIGHT OFF
7 KA LIGHT ON KA LIGHT ON
8 KA LIGHT OFF KA LIGHT OFF
9 KA LIGHT ON KA LIGHT ON
10 KA LIGHT OFF KA LIGHT OFF
11 KA LIGHT ON KA LIGHT ON
12 KA LIGHT OFF KA LIGHT OFF
13 KA LIGHT ON KA LIGHT ON
14 KA LIGHT OFF KA LIGHT OFF
15 KA LIGHT ON KA LIGHT ON
16 KA LIGHT OFF KA LIGHT OFF ON
17 KA LIGHT ON KA LIGHT ON
18 KA LIGHT OFF SHUTTER LIGHT OFF
19 KA LIGHT ON KA LIGHT ON
20 KA LIGHT OFF KA LIGHT OFF
21 KA LIGHT ON KA LIGHT ON
22 KA LIGHT OFF KA LIGHT OFF
23 KA LIGHT ON KA LIGHT ON
24 KA LIGHT OFF KA LIGHT OFF
25 KA LIGHT ON KA LIGHT ON
26 KA LIGHT OFF KA LIGHT OFF

94 Appendix C. Error rate table

27 KA LIGHT ON KA LIGHT ON
28 KA LIGHT OFF KA LIGHT OFF
29 KA LIGHT ON KA LIGHT ON
30 KA LIGHT OFF KA LIGHT OFF
31 KA LIGHT ON KA LIGHT ON
32 KA LIGHT OFF KA LIGHT OFF
33 KA LIGHT ON KA LIGHT ON
34 KA LIGHT OFF KA LIGHT OFF
35 KA LIGHT ON KA LIGHT ON
36 KA LIGHT OFF KA LIGHT OFF
37 KA LIGHT ON KA LIGHT ON
38 KA LIGHT OFF KA LIGHT OFF
39 KA LIGHT ON KA LIGHT ON
40 KA LIGHT OFF KA LIGHT OFF
41 KA LIGHT ON KA LIGHT ON
42 KA LIGHT OFF KA LIGHT OFF
43 KA LIGHT ON KA LIGHT ON
44 KA LIGHT OFF KA LIGHT OFF
45 KA LIGHT ON KA LIGHT ON
46 KA LIGHT OFF KA LIGHT OFF
47 KA LIGHT ON KA LIGHT ON
48 KA LIGHT OFF KA LIGHT OFF
49 KA LIGHT ON KA LIGHT ON
50 KA LIGHT OFF KA LIGHT OFF
51 KA LIGHT ON KA LIGHT ON
52 KA LIGHT OFF KA LIGHT OFF
53 KA LIGHT ON KA LIGHT ON
54 KA LIGHT OFF KA LIGHT OFF
55 KA LIGHT ON KA LIGHT ON
56 KA LIGHT OFF KA LIGHT OFF
57 KA LIGHT ON KA LIGHT ON
58 KA LIGHT OFF KA LIGHT OFF
59 KA LIGHT ON KA LIGHT ON
60 KA LIGHT OFF KA LIGHT OFF
61 KA LIGHT ON KA LIGHT ON
62 KA LIGHT OFF KA LIGHT OFF
63 KA LIGHT ON KA LIGHT ON
64 KA LIGHT OFF KA LIGHT OFF
65 KA LIGHT ON KA LIGHT ON

95

66 KA LIGHT OFF KA LIGHT OFF
67 KA LIGHT ON KA LIGHT ON
68 KA LIGHT OFF KA LIGHT OFF
69 KA LIGHT ON KA LIGHT ON
70 KA LIGHT OFF KA LIGHT OFF
71 KA LIGHT ON KA LIGHT ON
72 KA LIGHT OFF KA LIGHT OFF
73 KA LIGHT ON KA LIGHT ON
74 KA LIGHT OFF KA LIGHT OFF
75 KA LIGHT ON KA LIGHT ON
76 KA LIGHT OFF KA LIGHT OFF
77 KA LIGHT ON KA LIGHT ON
78 KA LIGHT OFF KA LIGHT OFF
79 KA LIGHT ON KA LIGHT ON
80 KA LIGHT OFF KA LIGHT OFF
81 KA LIGHT ON KA LIGHT ON
82 KA LIGHT OFF KA LIGHT OFF
83 KA LIGHT ON KA LIGHT ON
84 KA LIGHT OFF KA LIGHT OFF
85 KA LIGHT ON KA LIGHT ON
86 KA LIGHT OFF KA UP OFF
87 KA LIGHT ON KA LIGHT ON
88 KA LIGHT OFF KA LIGHT OFF
89 KA LIGHT ON KA LIGHT ON
90 KA LIGHT OFF KA LIGHT OFF
91 KA LIGHT ON KA LIGHT ON
92 KA LIGHT OFF KA LIGHT OFF
93 KA LIGHT ON KA LIGHT ON
94 KA LIGHT OFF KA LIGHT OFF
95 KA LIGHT ON KA LIGHT ON
96 KA LIGHT OFF KA LIGHT OFF
97 KA LIGHT ON KA LIGHT ON
98 KA LIGHT OFF KA LIGHT OFF
99 KA LIGHT ON KA LIGHT ON
100 KA LIGHT OFF KA LIGHT OFF
101 KA LIGHT ON KA LIGHT ON
102 KA LIGHT OFF KA LIGHT OFF
103 KA LIGHT ON KA LIGHT ON
104 KA LIGHT OFF KA LIGHT OFF

96 Appendix C. Error rate table

105 KA LIGHT ON KA LIGHT ON
106 KA LIGHT OFF KA LIGHT OFF
107 KA LIGHT ON KA LIGHT ON
108 KA LIGHT OFF KA LIGHT OFF
109 KA LIGHT ON KA LIGHT ON
110 KA LIGHT OFF KA LIGHT OFF
111 KA LIGHT ON KA LIGHT ON
112 KA LIGHT OFF KA LIGHT OFF
113 KA LIGHT ON KA LIGHT ON
114 KA LIGHT OFF KA LIGHT OFF
115 KA LIGHT ON KA LIGHT ON
116 KA LIGHT OFF KA LIGHT OFF
117 KA LIGHT ON KA LIGHT ON
118 KA LIGHT OFF KA LIGHT OFF
119 KA LIGHT ON KA LIGHT ON
120 KA LIGHT OFF KA LIGHT OFF
121 KA LIGHT ON KA LIGHT ON
122 KA LIGHT OFF KA LIGHT OFF
123 KA LIGHT ON KA LIGHT ON
124 KA LIGHT OFF KA LIGHT OFF
125 KA LIGHT ON KA LIGHT ON
126 KA LIGHT OFF KA LIGHT OFF
127 KA LIGHT ON KA LIGHT ON
128 KA LIGHT OFF KA LIGHT OFF
129 KA LIGHT ON KA LIGHT ON
130 KA LIGHT OFF KA LIGHT OFF
131 KA LIGHT ON KA LIGHT ON
132 KA LIGHT OFF KA LIGHT OFF
133 KA LIGHT ON KA LIGHT ON
134 KA LIGHT OFF KA LIGHT OFF
135 KA LIGHT ON KA LIGHT ON
136 KA LIGHT OFF KA LIGHT OFF
137 KA LIGHT ON KA LIGHT ON
138 KA LIGHT OFF KA LIGHT OFF
139 KA LIGHT ON KA LIGHT ON
140 KA LIGHT OFF KA LIGHT OFF
141 KA LIGHT ON KA LIGHT ON
142 KA LIGHT OFF KA LIGHT OFF
143 KA LIGHT ON KA LIGHT ON

97

144 KA LIGHT OFF KA LIGHT OFF
145 KA LIGHT ON KA LIGHT ON
146 KA LIGHT OFF KA LIGHT OFF
147 KA LIGHT ON KA LIGHT ON
148 KA LIGHT OFF KA LIGHT OFF
149 KA LIGHT ON KA LIGHT OFF
150 KA LIGHT OFF KA LIGHT OFF

Table C.1: Error rates of “KA LIGHT ON” and “KA LIGHT OFF”

99

Appendix D

Custom Dictionary

AGENT EY JH AH N T
COMMAND K AH M AE N D
DOWN D AW N
EMERGENCY IH M ER JH AH N S IY
EMERGENCY (2) IY M ER JH AH N S IY
HUMIDITY HH Y UW M IH D AH T IY
KA K AH EY
LIGHT L AY T
OFF AO F
ON AA N
ON(2) AO N
OPEN OW P AH N
STATUS S T AE T AH S
STATUS (2) S T EY T AH S
SHUTTER SH AH T ER
TEMPERATURE T EH M P R AH CH ER
TEMPERATURE (2) T EH M P ER AH CH ER
TIME T AY M
UP AH P
WINDOW W IH N D OW

101

Bibliography

[1] M.-O. Pahl, “Distributed smart space orchestration,” Dissertation, Technische Uni-
versität München, München, 2014.

[2] Ds2os – the distributed smart space orchestration system. (Last accessed on:
November 26, 2016). [Online]. Available: http://ds2os.org/?site=projects/__DS2OS

[3] M.-O. Pahl, G. Carle, and G. Klinker, “Distributed smart space orchestration,” in
Network Operations and Management Symposium 2016 (NOMS 2016) - Dissertation
Digest, May 2016.

[4] M.-O. Pahl and G. Carle, “Crowdsourced context-modeling as key to future smart
spaces,” 2014 IEEE Network Operations and Management Symposium (NOMS), pp.
1–8, 2014. [Online]. Available: http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.
htm?arnumber=6838362

[5] M. A. Mandel, “A commercial large-vocabulary discrete speech recognition
system: Dragondictate,” Language and speech, vol. 35, no. 1, p. 237, Jan 01 1992, last
updated - 2013-02-23. [Online]. Available: http://search.proquest.com/docview/
1299113000?accountid=14439

[6] Siri. (Last accessed on: November 26, 2016). [Online]. Available: http:
//www.apple.com/ios/siri/

[7] What is cortana? (Last accessed on: November 26, 2016). [Online]. Available:
https://support.microsoft.com/en-us/help/17214/windows-10-what-is

[8] U. Shrawankar and V. Thakare, “Techniques for Feature Extraction in Speech
Recognition System : a Comparative Study,” International Journal Of Computer
Applications In Engineering, Technology and Sciences (IJCAETS), pp. 412–418, 2013.

[9] K. Fellbaum, Sprachverarbeitung und Sprachübertragung, 2nd ed., 2012.

[10] B. P�ster and T. Kaufmann, Sprachverarbeitung, 2008.

[11] M. Shaneh and A. Taheri, “Voice command recognition system based on MFCC
and VQ algorithms,” World Academy of Science, Engineering and . . . , 2009. [Online].
Available: http://www.waset.org/publications/4967

http://ds2os.org/?site=projects/__DS2OS
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6838362
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6838362
http://search.proquest.com/docview/1299113000?accountid=14439
http://search.proquest.com/docview/1299113000?accountid=14439
http://www.apple.com/ios/siri/
http://www.apple.com/ios/siri/
https://support.microsoft.com/en-us/help/17214/windows-10-what-is
http://www.waset.org/publications/4967

102 Bibliography

[12] A. V. Bhalla and S. Khaparkar, “Performance Improvement of Speaker Recogni-
tion System,” International Journal of Advanced Research in Computer Science and
Software Engineering, vol. 2, no. March 2012, 2012.

[13] L. Muda, M. Begam, and I. Elamvazuthi, “Voice Recognition Algorithms using Mel
Frequency Cepstral Coe�cient (MFCC) and Dynamic Time Warping (DTW)
Techniques,” vol. 2, no. 3, pp. 138–143, 2010.

[14] B. Shannon and K. Paliwal, “A comparative study of �lter bank spacing for
speech recognition,” Microelectronic engineering . . . , vol. 41, pp. 2–4, 2003.
[Online]. Available: https://maxwell.ict.gri�th.edu.au/spl/publications/papers/
merc03{_}ben.pdf

[15] L. R. Rabiner and B. H. Juang, “Speech recognition: Statistical methods,”
Encyclopedia of Language Linguistics, pp. 1–18, 2006. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/B008044854200907X

[16] Cmu sphinx homepage. (Last accessed on: November 26, 2016). [Online]. Available:
http://cmusphinx.sourceforge.net/

[17] Cmu sphinx - training acoustic model for cmusphinx. (Last accessed on: November
26, 2016). [Online]. Available: http://cmusphinx.sourceforge.net/wiki/tutorialam

[18] Cmu sphinx building language model. (Last accessed on: November 26, 2016).
[Online]. Available: http://cmusphinx.sourceforge.net/wiki/tutoriallm

[19] G. Goth, “Deep or shallow, NLP is breaking out,” Communications of
the ACM, vol. 59, no. 3, pp. 13–16, 2016. [Online]. Available: http:
//dl.acm.org/citation.cfm?doid=2897191.2874915

[20] Siri - everything you need to know! (Last accessed on: November 26, 2016).
[Online]. Available: http://www.imore.com/siri

[21] ios security. (Last accessed on: November 26, 2016). [Online]. Available:
https://www.apple.com/business/docs/iOS_Security_Guide.pdf

[22] Siri gets 1 billion requests a week. (Last accessed on: Novem-
ber 26, 2016). [Online]. Available: http://gadgets.ndtv.com/mobiles/news/
siri-gets-1-billion-requests-a-week-nearly-1-million-locations-to-accept-apple-pay-apple-701411

[23] Why microsoft named its siri rival ’cortana’ after a ’halo’ character. (Last accessed
on: November 26, 2016). [Online]. Available: http://www.nbcnews.com/tech/
mobile/why-microsoft-named-its-siri-rival-cortana-after-halo-character-n71056

[24] Cmu sphinx - basic concepts of speech. (Last accessed on: November 26, 2016).
[Online]. Available: http://cmusphinx.sourceforge.net/wiki/tutorialconcepts

https://maxwell.ict.griffith.edu.au/spl/publications/papers/merc03{_}ben.pdf
https://maxwell.ict.griffith.edu.au/spl/publications/papers/merc03{_}ben.pdf
http://www.sciencedirect.com/science/article/pii/B008044854200907X
http://cmusphinx.sourceforge.net/
http://cmusphinx.sourceforge.net/wiki/tutorialam
http://cmusphinx.sourceforge.net/wiki/tutoriallm
http://dl.acm.org/citation.cfm?doid=2897191.2874915
http://dl.acm.org/citation.cfm?doid=2897191.2874915
http://www.imore.com/siri
https://www.apple.com/business/docs/iOS_Security_Guide.pdf
http://gadgets.ndtv.com/mobiles/news/siri-gets-1-billion-requests-a-week-nearly-1-million-locations-to-accept-apple-pay-apple-701411
http://gadgets.ndtv.com/mobiles/news/siri-gets-1-billion-requests-a-week-nearly-1-million-locations-to-accept-apple-pay-apple-701411
http://www.nbcnews.com/tech/mobile/why-microsoft-named-its-siri-rival-cortana-after-halo-character-n71056
http://www.nbcnews.com/tech/mobile/why-microsoft-named-its-siri-rival-cortana-after-halo-character-n71056
http://cmusphinx.sourceforge.net/wiki/tutorialconcepts

Bibliography 103

[25] Open-source large vocabulary csr engine julius. (Last accessed on: November 26,
2016). [Online]. Available: http://julius.osdn.jp/en_index.php

[26] Htk speech recognition toolkit. (Last accessed on: November 26, 2016). [Online].
Available: http://htk.eng.cam.ac.uk/

[27] Htk speech recognition toolkit faq. (Last accessed on: November 26, 2016).
[Online]. Available: http://htk.eng.cam.ac.uk/docs/faq.shtml

[28] Htk speech recognition toolkit manual. (Last accessed on: November 26, 2016).
[Online]. Available: http://htk.eng.cam.ac.uk/prot-docs/htkbook.pdf

[29] Jasper | control everything with your voice. (Last accessed on: November 26,
2016). [Online]. Available: http://jasperproject.github.io/

[30] Jasper | documentation con�guration. (Last accessed on: November 26, 2016).
[Online]. Available: http://jasperproject.github.io/documentation/con�guration/

[31] Jasper | documentation hardware. (Last accessed on: November 26, 2016). [Online].
Available: http://jasperproject.github.io/documentation/hardware/

[32] Audeme homepage. (Last accessed on: November 26, 2016). [Online]. Available:
http://www.audeme.com/movi.html

[33] Arduino homepage. (Last accessed on: November 26, 2016). [Online]. Available:
https://www.arduino.cc/

[34] Movi kickstarter campaign. (Last accessed on: November 26,
2016). [Online]. Available: https://www.kickstarter.com/projects/310865303/
movi-a-standalone-speech-recognizer-shield-for-ard

[35] Intel galileo. (Last accessed on: November 26, 2016). [Online]. Available:
https://www.arduino.cc/en/ArduinoCerti�ed/IntelGalileo

[36] Movi arduino shield photo. (Last accessed on: November 26, 2016). [Online].
Available: http://www.audeme.com/uploads/4/3/9/9/43997575/_7462811_orig.jpg

[37] Allwinner a13. (Last accessed on: November 26, 2016). [Online]. Available:
http://linux-sunxi.org/A13

[38] Arduino ethernet shield. (Last accessed on: November 26, 2016). [Online].
Available: https://www.arduino.cc/en/Main/ArduinoEthernetShield

[39] Espeak homepage. (Last accessed on: November 26, 2016). [Online]. Available:
http://espeak.sourceforge.net/

[40] Debian home page. (Last accessed on: November 26, 2016). [Online]. Available:
https://www.debian.org/

http://julius.osdn.jp/en_index.php
http://htk.eng.cam.ac.uk/
http://htk.eng.cam.ac.uk/docs/faq.shtml
http://htk.eng.cam.ac.uk/prot-docs/htkbook.pdf
http://jasperproject.github.io/
http://jasperproject.github.io/documentation/configuration/
http://jasperproject.github.io/documentation/hardware/
http://www.audeme.com/movi.html
https://www.arduino.cc/
https://www.kickstarter.com/projects/310865303/movi-a-standalone-speech-recognizer-shield-for-ard
https://www.kickstarter.com/projects/310865303/movi-a-standalone-speech-recognizer-shield-for-ard
https://www.arduino.cc/en/ArduinoCertified/IntelGalileo
http://www.audeme.com/uploads/4/3/9/9/43997575/_7462811_orig.jpg
http://linux-sunxi.org/A13
https://www.arduino.cc/en/Main/ArduinoEthernetShield
http://espeak.sourceforge.net/
https://www.debian.org/

104 Bibliography

[41] Cmu sphinx available acoustic models. (Last accessed on: November 26, 2016).
[Online]. Available: https://sourceforge.net/projects/cmusphinx/�les/Acoustic%
20and%20Language%20Models/

[42] Easy pronunciation phonetic transcription converter. (Last accessed on:
November 26, 2016). [Online]. Available: http://easypronunciation.com/de/
english-phonetic-transcription-converter

[43] Marytts - introduction. (Last accessed on: November 26, 2016). [Online]. Available:
http://mary.dfki.de/

[44] Marytts - architecture walkthrough. (Last accessed on: November 26, 2016).
[Online]. Available: http://mary.dfki.de/documentation/module-architecture.html

[45] Arduino mega shop. (Last accessed on: November 26, 2016). [Online]. Available:
https://store.arduino.cc/product/A000067

[46] Raspberry pi 3 - allied electronics. (Last accessed on: November 26, 2016). [Online].
Available: http://www.alliedelec.com/raspberry-pi-raspberry-pi-3/70816528/

[47] What is arduino. (Last accessed on: November 26, 2016). [Online]. Available:
http://www.arduino.org/learning/getting-started/what-is-arduino

[48] Arduino uno - technical specs. (Last accessed on: November 26, 2016). [Online].
Available: https://www.arduino.cc/en/Main/ArduinoBoardUno

[49] Arduino mega - technical specs. (Last accessed on: November 26, 2016). [Online].
Available: https://www.arduino.cc/en/Main/ArduinoBoardMega2560

[50] Arduino shields. (Last accessed on: November 26, 2016). [Online]. Available:
http://www.arduino.org/products/shields

[51] R. Pi, “Raspberry pi,” Raspberry Pi, vol. 1, p. 1, 2012.

[52] Intel galileo. (Last accessed on: November 26, 2016). [Online]. Available:
https://www.amazon.de/Raspberry-Pi-3-Model-B/dp/B01CEFWQFA/ref=sr_1_4?
s=computers&ie=UTF8&qid=1481463356&sr=1-4&keywords=raspberry+pi+3

[53] A 15 pound computer to inspire young programmers. (Last accessed on:
November 26, 2016). [Online]. Available: http://www.bbc.co.uk/blogs/thereporters/
rorycellanjones/2011/05/a_15_computer_to_inspire_young.html

[54] Raspberry pi. (Last accessed on: November 26, 2016). [Online]. Available:
https://www.raspberrypi.org/

[55] Raspberry pi 3, pi 2, b+, a+, compute module dev kit comparison chart. (Last
accessed on: November 26, 2016). [Online]. Available: https://www.element14.
com/community/docs/DOC-68090

https://sourceforge.net/projects/cmusphinx/files/Acoustic%20and%20Language%20Models/
https://sourceforge.net/projects/cmusphinx/files/Acoustic%20and%20Language%20Models/
http://easypronunciation.com/de/english-phonetic-transcription-converter
http://easypronunciation.com/de/english-phonetic-transcription-converter
http://mary.dfki.de/
http://mary.dfki.de/documentation/module-architecture.html
https://store.arduino.cc/product/A000067
http://www.alliedelec.com/raspberry-pi-raspberry-pi-3/70816528/
http://www.arduino.org/learning/getting-started/what-is-arduino
https://www.arduino.cc/en/Main/ArduinoBoardUno
https://www.arduino.cc/en/Main/ArduinoBoardMega2560
http://www.arduino.org/products/shields
https://www.amazon.de/Raspberry-Pi-3-Model-B/dp/B01CEFWQFA/ref=sr_1_4?s=computers&ie=UTF8&qid=1481463356&sr=1-4&keywords=raspberry+pi+3
https://www.amazon.de/Raspberry-Pi-3-Model-B/dp/B01CEFWQFA/ref=sr_1_4?s=computers&ie=UTF8&qid=1481463356&sr=1-4&keywords=raspberry+pi+3
http://www.bbc.co.uk/blogs/thereporters/rorycellanjones/2011/05/a_15_computer_to_inspire_young.html
http://www.bbc.co.uk/blogs/thereporters/rorycellanjones/2011/05/a_15_computer_to_inspire_young.html
https://www.raspberrypi.org/
https://www.element14.com/community/docs/DOC-68090
https://www.element14.com/community/docs/DOC-68090

Bibliography 105

[56] Java swing. (Last accessed on: November 26, 2016). [Online]. Available:
http://docs.oracle.com/javase/7/docs/technotes/guides/swing/

[57] Xamarin. (Last accessed on: November 26, 2016). [Online]. Available:
https://www.xamarin.com/

[58] Mobile os market share. (Last accessed on: November 26,
2016). [Online]. Available: https://www.statista.com/statistics/266136/
global-market-share-held-by-smartphone-operating-systems/

[59] ios 9 - homekit. (Last accessed on: November 26, 2016). [Online]. Available:
http://www.apple.com/ios/homekit/

[60] Apple shop - phillip hue. (Last accessed on: November 26,
2016). [Online]. Available: http://www.apple.com/shop/product/HJCA2VC/B/
philips-hue-white-and-color-wireless-ambiance-starter-kit-a19-e26

[61] Use the home app on your iphone, ipad and ipode touch. (Last accessed
on: November 26, 2016). [Online]. Available: https://support.apple.com/de-de/
HT204893

[62] Amazon echo. (Last accessed on: November 26, 2016). [Online]. Available:
https://www.amazon.com/Amazon-Echo-Bluetooth-Speaker-with-WiFi-Alexa/
dp/B00X4WHP5E

[63] Amazon echo picture. (Last accessed on: November 26, 2016). [Online].
Available: https://www.bhphotovideo.com/images/images2500x2500/amazon_
b00x4whp5e_echo_1187819.jpg

[64] Hue white ambiance starter set. (Last accessed on: November 26, 2016). [Online].
Available: http://www.philips.de/c-m-li/hue-persoenliche-kabellose-beleuchtung/
hue-white-ambiance

[65] Der eigene butler. (Last accessed on: November 26,
2016). [Online]. Available: http://www.heise.de/ct/ausgabe/
2016-2-Digitaler-Assistent-mit-O�ine-Spracherkennung-im-Eigenbau-3057626.
html

[66] Edimax n150 wi-� nano usb adapter. (Last accessed on: November 26, 2016).
[Online]. Available: http://www.edimax.com/edimax/merchandise/merchandise_
detail/data/edimax/global/wireless_adapters_n150/ew-7811un

[67] Akiro kinobo usb microphone. (Last accessed on: November 26, 2016). [Online].
Available: http://www.kinobo.co.uk/product/kinobo-akiro-usb/

[68] Spotify. (Last accessed on: November 26, 2016). [Online]. Available: https:
//www.spotify.com/

http://docs.oracle.com/javase/7/docs/technotes/guides/swing/
https://www.xamarin.com/
https://www.statista.com/statistics/266136/global-market-share-held-by-smartphone-operating-systems/
https://www.statista.com/statistics/266136/global-market-share-held-by-smartphone-operating-systems/
http://www.apple.com/ios/homekit/
http://www.apple.com/shop/product/HJCA2VC/B/philips-hue-white-and-color-wireless-ambiance-starter-kit-a19-e26
http://www.apple.com/shop/product/HJCA2VC/B/philips-hue-white-and-color-wireless-ambiance-starter-kit-a19-e26
https://support.apple.com/de-de/HT204893
https://support.apple.com/de-de/HT204893
https://www.amazon.com/Amazon-Echo-Bluetooth-Speaker-with-WiFi-Alexa/dp/B00X4WHP5E
https://www.amazon.com/Amazon-Echo-Bluetooth-Speaker-with-WiFi-Alexa/dp/B00X4WHP5E
https://www.bhphotovideo.com/images/images2500x2500/amazon_b00x4whp5e_echo_1187819.jpg
https://www.bhphotovideo.com/images/images2500x2500/amazon_b00x4whp5e_echo_1187819.jpg
http://www.philips.de/c-m-li/hue-persoenliche-kabellose-beleuchtung/hue-white-ambiance
http://www.philips.de/c-m-li/hue-persoenliche-kabellose-beleuchtung/hue-white-ambiance
http://www.heise.de/ct/ausgabe/2016-2-Digitaler-Assistent-mit-Offline-Spracherkennung-im-Eigenbau-3057626.html
http://www.heise.de/ct/ausgabe/2016-2-Digitaler-Assistent-mit-Offline-Spracherkennung-im-Eigenbau-3057626.html
http://www.heise.de/ct/ausgabe/2016-2-Digitaler-Assistent-mit-Offline-Spracherkennung-im-Eigenbau-3057626.html
http://www.edimax.com/edimax/merchandise/merchandise_detail/data/edimax/global/wireless_adapters_n150/ew-7811un
http://www.edimax.com/edimax/merchandise/merchandise_detail/data/edimax/global/wireless_adapters_n150/ew-7811un
http://www.kinobo.co.uk/product/kinobo-akiro-usb/
https://www.spotify.com/
https://www.spotify.com/

106 Bibliography

[69] Jasper | documentation usage. (Last accessed on: November 26, 2016). [Online].
Available: http://jasperproject.github.io/documentation/usage/

[70] Jasper | documentation modules. (Last accessed on: November 26, 2016). [Online].
Available: http://jasperproject.github.io/documentation/modules/

[71] element14 pi iot smarter spaces design challenge. (Last accessed on:
November 26, 2016). [Online]. Available: https://www.raspberrypi.org/blog/
element14-pi-iot-smarter-spaces-design-challenge/

[72] Lm tool. (Last accessed on: November 26, 2016). [Online]. Available:
http://www.speech.cs.cmu.edu/tools/lmtool-new.html

[73] [pi iot] alarm clock 12: Voice control | element14 | pi
iot. (Last accessed on: November 26, 2016). [Online]. Avail-
able: https://www.element14.com/community/community/design-challenges/
pi-iot/blog/2016/08/02/pi-iot-alarm-clock-12-voice-control-repost

[74] [pi iot] alarm clock : Text to speech. (Last ac-
cessed on: November 26, 2016). [Online]. Avail-
able: https://www.element14.com/community/community/design-challenges/
pi-iot/blog/2016/05/24/pi-iot-alarm-clock-01-project-description

[75] [pi iot] alarm clock 16: Wiring | element14 | pi iot. (Last accessed on: November 26,
2016). [Online]. Available: https://www.element14.com/community/community/
design-challenges/pi-iot/blog/2016/08/15/pi-iot-alarm-clock-16-wiring

[76] [pi iot] alarm clock 1: Project description. (Last ac-
cessed on: November 26, 2016). [Online]. Avail-
able: https://www.element14.com/community/community/design-challenges/
pi-iot/blog/2016/05/24/pi-iot-alarm-clock-01-project-description

[77] [demo video of frederick vandenbosch’s smart alarm clock. (Last accessed on:
November 26, 2016). [Online]. Available: https://www.youtube.com/watch?v=
RgOo1w5xSqU

[78] Primefaces. (Last accessed on: November 26, 2016). [Online]. Available:
http://www.primefaces.org/

[79] Java server faces. (Last accessed on: November 26, 2016). [Online]. Available:
http://www.oracle.com/technetwork/java/javaee/javaserverfaces-139869.html

[80] Glass�sh server. (Last accessed on: November 26, 2016). [Online]. Available:
https://glass�sh.java.net/

[81] Git repository for dictionary script. (Last accessed on: November 26, 2016).
[Online]. Available: https://github.com/cmusphinx/g2p-seq2seq/blob/master/g2p_
seq2seq/g2p.py

http://jasperproject.github.io/documentation/usage/
http://jasperproject.github.io/documentation/modules/
https://www.raspberrypi.org/blog/element14-pi-iot-smarter-spaces-design-challenge/
https://www.raspberrypi.org/blog/element14-pi-iot-smarter-spaces-design-challenge/
http://www.speech.cs.cmu.edu/tools/lmtool-new.html
https://www.element14.com/community/community/design-challenges/pi-iot/blog/2016/08/02/pi-iot-alarm-clock-12-voice-control-repost
https://www.element14.com/community/community/design-challenges/pi-iot/blog/2016/08/02/pi-iot-alarm-clock-12-voice-control-repost
https://www.element14.com/community/community/design-challenges/pi-iot/blog/2016/05/24/pi-iot-alarm-clock-01-project-description
https://www.element14.com/community/community/design-challenges/pi-iot/blog/2016/05/24/pi-iot-alarm-clock-01-project-description
https://www.element14.com/community/community/design-challenges/pi-iot/blog/2016/08/15/pi-iot-alarm-clock-16-wiring
https://www.element14.com/community/community/design-challenges/pi-iot/blog/2016/08/15/pi-iot-alarm-clock-16-wiring
https://www.element14.com/community/community/design-challenges/pi-iot/blog/2016/05/24/pi-iot-alarm-clock-01-project-description
https://www.element14.com/community/community/design-challenges/pi-iot/blog/2016/05/24/pi-iot-alarm-clock-01-project-description
https://www.youtube.com/watch?v=RgOo1w5xSqU
https://www.youtube.com/watch?v=RgOo1w5xSqU
http://www.primefaces.org/
http://www.oracle.com/technetwork/java/javaee/javaserverfaces-139869.html
https://glassfish.java.net/
https://github.com/cmusphinx/g2p-seq2seq/blob/master/g2p_seq2seq/g2p.py
https://github.com/cmusphinx/g2p-seq2seq/blob/master/g2p_seq2seq/g2p.py

Bibliography 107

[82] Audio recording script from chris wilson. (Last accessed on: November 26, 2016).
[Online]. Available: https://webaudiodemos.appspot.com/AudioRecorder/js/main.
js

[83] Github - mattdiamond/recorderjs: A plugin for recording/exporting the output of
web audio api nodes. (Last accessed on: November 26, 2016). [Online]. Available:
https://github.com/mattdiamond/Recorderjs

[84] Whatsapp. (Last accessed on: November 26, 2016). [Online]. Available:
https://www.whatsapp.com/

[85] Whatsapp download. (Last accessed on: November 26, 2016). [Online]. Available:
https://www.whatsapp.com/download/

[86] M. Weiser, “Some computer science issues in ubiquitous computing,” Cacm, vol. 36,
no. 7, pp. 75–84, 1993.

[87] M. Weiser, “The computer for the 21st Century,” IEEE Pervasive Computing, vol. 1,
no. 1, pp. 19–25, 2002. [Online]. Available: http://ieeexplore.ieee.org/lpdocs/
epic03/wrapper.htm?arnumber=993141

[88] K. Lyytinen and Y. Yoo, “Issues and Challenges in Ubiquitous Computing,” Com-
munications of the ACM, vol. 45, no. 12, pp. 62–65, 2002.

[89] G. D. Abowd, “What next, ubicomp?” Proceedings of the 2012 ACM Conference
on Ubiquitous Computing - UbiComp ’12, p. 31, 2012. [Online]. Available:
http://dx.doi.org/10.1145/2370216.2370222

[90] Di�erent silos picture. (Last accessed on: November 26, 2016). [Online]. Avail-
able: https://ilab2.net.in.tum.de/courses/pictures/ilab2_net_in_tum_de-iLab2_
winter_15_smart_space-course_b6e47ec0c1b73fb6493270b151e0d729/silos.png

[91] P. A. Bernstein, “Middleware,” Communications of the ACM, vol. 39, no. 2, 1996.

[92] A. S. Tanenbaum and M. Van Steen, Distributed Systems: Principles and
Paradigms, 2/E, 2007. [Online]. Available: https://vowi.fsinf.at/images/b/bc/TU_
Wien-Verteilte_Systeme_VO_(G%C3%B6schka)_-_Tannenbaum-distributed_
systems_principles_and_paradigms_2nd_edition.pdf

https://webaudiodemos.appspot.com/AudioRecorder/js/main.js
https://webaudiodemos.appspot.com/AudioRecorder/js/main.js
https://github.com/mattdiamond/Recorderjs
https://www.whatsapp.com/
https://www.whatsapp.com/download/
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=993141
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=993141
http://dx.doi.org/10.1145/2370216.2370222
https://ilab2.net.in.tum.de/courses/pictures/ilab2_net_in_tum_de-iLab2_winter_15_smart_space-course_b6e47ec0c1b73fb6493270b151e0d729/silos.png
https://ilab2.net.in.tum.de/courses/pictures/ilab2_net_in_tum_de-iLab2_winter_15_smart_space-course_b6e47ec0c1b73fb6493270b151e0d729/silos.png
https://vowi.fsinf.at/images/b/bc/TU_Wien-Verteilte_Systeme_VO_(G%C3%B6schka)_-_Tannenbaum-distributed_systems_principles_and_paradigms_2nd_edition.pdf
https://vowi.fsinf.at/images/b/bc/TU_Wien-Verteilte_Systeme_VO_(G%C3%B6schka)_-_Tannenbaum-distributed_systems_principles_and_paradigms_2nd_edition.pdf
https://vowi.fsinf.at/images/b/bc/TU_Wien-Verteilte_Systeme_VO_(G%C3%B6schka)_-_Tannenbaum-distributed_systems_principles_and_paradigms_2nd_edition.pdf

	Introduction
	Goals of the thesis
	Methodology
	Outline

	Analysis
	Distributed Smart Space Orchestration System (DS2OS)
	Virtual State Layer (VSL)

	Voice recognition
	Steps in voice recognition
	Voice recognition software
	Personal Assistants
	Offline STT Engines
	MOVI Arduino Shield
	Dictionary, language model and acoustic model

	Speech Synthesis
	Steps in Speech Synthesis
	Speech Synthesis Software

	Hardware used
	Arduino
	Raspberry Pi

	Mapping Format
	Commands per action
	Seperation of address and value part
	Trigger word
	Used Mapping format

	Configuration Interface
	Type of Application
	Functionality

	Requirements for a Voice Control System for Smart Space Orchestration

	Related Work
	Apple HomeKit
	Amazon Echo
	Controlling Phillips Hue Lamps with Jasper
	Voice Controlled Alarm Clock
	Comparison

	Design
	Service Interaction
	Services of the Voice Control System for Smart Space Orchestration
	Voice Input Service
	Voice File Input Service
	Text Input Service
	Voice Output Service
	Command Mapping Service
	Configuration Interface
	Adaption Service

	Implementation
	How to start the system
	Common configration file
	Voice Input Service
	Voice File Input Service
	Text Input Service
	Voice Output Service
	Adaption Service
	Voice Mapping Service
	Configuration Interface
	Dictionary Editing Interface
	Device Discovery Interface
	Mapping Editing Interface
	Command Recording Interface
	Configuration File

	Evaluation
	R1: Short response time
	R2: Offline functionality
	R3: Runnable on low power hardware
	R4: Easy configuration
	R5: Adaptability at runtime
	R6: Low error rate
	Trigger word
	Incorrect mappings

	R7: Transparency
	R8: Voice output
	Conlusion

	Conclusion
	Future work

	Smart Space Orchestration
	Ubiquitous Computing
	Mobile Computing
	Pervasive Computing
	Distributed Computing

	Definitions
	Heterogeneity

	Middleware
	Context
	Distributed Smart Space Orchestration System (DS2OS)
	Virtual State Layer (VSL)
	Context Models
	Service Orientation

	Response time table
	Error rate table
	Custom Dictionary
	Bibliography

