
Technische Universität München
Department of Informatics

Bachelor’s Thesis in Informatics

Evaluating Databases for the Internet of
Things

David Gogrichiani

Technische Universität München
Department of Informatics

Bachelor’s Thesis in Informatics

Evaluating Databases for the Internet of Things

Evaluation von Datenbanken für das Internet der Dinge

Author David Gogrichiani
Supervisor Prof. Dr.-Ing. Georg Carle
Advisor M. Sc. Stefan Liebald, Dr. Marc-Oliver Pahl
Date December 15, 2017

Informatik VIII
Chair for Network Architectures and Services

I con�rm that this thesis is my own work and I have documented all sources and material
used.

Garching b. München, December 15, 2017

Signature

Abstract

In this thesis our goal is to evaluate suitability di�erent database types for Internet of
Thing on example of Distributed Smart Space Orchestration System (DS2OS). For this
purpose we present main concepts behind DS2OS and its component Virtual State Layer,
that has most relevance for us. Additionally we collect related work on comparison of
di�erent databases and their performance. To achieve our goal we select and implement
several databases for Virtual State Layer, based on our own assessments and related
work. Then we create a benchmark, that can compare the existing solution with our
own. After we execute the benchmark, that consists of several evaluation scenarios,
and evaluate the results. Based on the results we assess, whether and under which
conditions di�erent solution is better than the existing database backend.

I

Contents

1 Introduction 1
1.1 Goals of the thesis . 1

1.1.1 Methodology . 1
1.2 Outline . 2

2 Analysis 3
2.1 Distributed Smart Space Orchestration System 3

2.1.1 Virtual State Layer . 4
2.2 Metrics . 9
2.3 Database Types . 10

2.3.1 Relational databases . 10
2.3.2 NoSQL . 12

2.4 Requirements . 17

3 Related Work 19
3.1 Current research on comparison of SQL and NoSQL databases 19

3.1.1 Compared databases: MySQL, MongoDB, CouchDB, Redis . . . 19
3.1.2 Compared databases: PostegreSQL, Cassandra, MongoDB . . . 20
3.1.3 Compared databases: MongoDB, RavenDB, CouchDB, Cassan-

dra, Hypertable, Couchbase, MS SQL Express 20
3.1.4 Compared databases: PostgreSQL, MongoDB 20
3.1.5 Compared databases: MySQL, MongoDB, VoltDB 21
3.1.6 Summary . 21

3.2 Versioning . 21
3.2.1 Versioning in document-oriented database 21

3.3 Tree-structures . 22
3.3.1 Storage model of tree-structure in MongoDB 22
3.3.2 Comparison of NoSQL databases in handling tree-like structure 23

4 Design 25
4.1 Design of evaluation scenarios . 25
4.2 Suitability of di�erent database types for VSL 27

II Contents

4.2.1 Document-oriented database 28
4.2.2 Multi-model database . 30

5 Implementation 33
5.1 MongoDB . 33
5.2 OrientDB . 36
5.3 Database Benchmark . 38

6 Evaluation 43
6.1 Assessment of expected functionality 43
6.2 Evaluation of performance under di�erent load and environment . . . 44
6.3 Summary . 46

7 Conclusion 49
7.1 Future work . 50

A Code examples 51

Bibliography 53

III

List of Figures

2.1 VSL structure . 6
2.2 Example of data stored in key-value store 12
2.3 Example of data stored in document-oriented database 13
2.4 Example of data stored in column-oriented database 14
2.5 Example of data stored in graph database 15
2.6 Example of graph based on data stored in time series database 16
2.7 Example of data stored in multi-model database 17

4.1 Wide tree . 25
4.2 Deep tree . 26

6.1 Web GUI for graph representation in OrientDB 44
6.2 A graph representing performance by evaluation scenario with 100%

set / 0% get operations . 45
6.3 A graph representing performance by evaluation scenario with 80% set

/ 20% get operations . 47
6.4 A graph representing performance by evaluation scenario with 50% set

/ 50% get operations . 47
6.5 A graph representing performance by evaluation scenario with 20% set

/ 80% get operations . 48
6.6 A graph representing performance by evaluation scenario with 0% set /

100% get operations . 48

V

List of Tables

2.1 Generic context node structure . 7
2.2 Structure table . 8
2.3 Version table . 8
2.4 Data table . 8

3.1 Versioning in MongoDB . 22

4.1 MongoDB Object structure . 30
4.2 OrientDB Object structure . 32

6.1 PC speci�cation . 44

1

Chapter 1

Introduction

1.1 Goals of the thesis

In this thesis we evaluate suitability of di�erent types of databases on the Distributed
Smart Space Orchestration System (DS2OS). DS2OS is a system developed at the Chair
of Network Architectures and Services at the Technical University of Munich. As its
name suggests DS2OS is designed to manage and orchestrate Smart Spaces. One its
part is Virtual State Layer, that is most relevant for the purpose of this thesis. One
of responsibilities of VSL is to store the information about the state of IoT devices,
that are present in Smart Space. In the current implementation of VSL a relational
database, HyperSQLDB, is used as a data management system. We question whether
other database types can be better suited for VSL, considering the speci�c tree-like
structure of the VSL data. To answer that question we choose and implement other data
management systems for VSL. Additionally we design and create a benchmark, that
helps us evaluate the performance of implemented and existing solutions.

1.1.1 Methodology

To reach the above mentioned goal, we perform following steps:

• We choose several SQL and NoSQL databases based on de�ned requirements and
existing evaluations of their performance.

• We adapt current data model to �t a selected type of database, without sacri�cing
de�ned functionality of Virtual State Layer.

• We implement chosen databases, following the adapted data model.

• We design several evaluation scenarios based on de�ned metrics.

• We implement a DS2OS service that performs the evaluation scenarios.

2 Chapter 1. Introduction

• After performing above mentioned scenarios we evaluate under which conditions
it would be bene�cial to use which type of database.

1.2 Outline

The thesis is structured as follows. In Chapter 2 we describe DS2OS and its main parts
relevant for this thesis. Then we introduce how the data is organized and stored in the
current implementation. After, we describe requirements imposed on the databases,
considering the structure of the data and operations that are issued to the database
backend. Finally we introduce several types of SQL and NoSQL databases, describe
main concepts behind them and discuss their strengths and drawbacks. The discussion
takes into account the requirements that we described earlier.

In Chapter 3 we present current research on comparison of di�erent databases, within
ones type and cross-types. Along with that we present current research on how to store
the data, structurally similar to the data within Virtual State Layer.

In Chapter 4 we describe how the data should be structured to �t e�ciently in di�erent
types of databases. Di�erent approaches are discussed and evaluated, considering
requirements of Virtual State Layer. In the same chapter we de�ne several evaluating
scenarios, that we will use assess the suitability of di�erent database backends for
Virtual State Layer.

In Chapter 5 we present, how we implemented di�erent databases for Virtual State Layer.
What were the challenges that we encountered, and which techniques we used to solve
these challenges. Furthermore we will present the implementation of a benchmark, that
is used for simulation of above mentioned evaluation scenarios.

In Chapter 6 we present and discuss the benchmark results. Based on the results, we
assess, whether our solution is better than existing, in which evaluation scenarios. And
what could be the cause of either exceptional or rather bad performance of our solutions.

In Chapter 7 we summarize what was done in this thesis, discuss the limitations and
what can be done in the future.

3

Chapter 2

Analysis

In this chapter Distributed Smart Space Orchestration System (DS2OS), and one of its
main components Virtual State Layer (VSL) are introduced. We describe their purpose,
how they operate and interact. Then we illustrate what kind of data is generated and
processed during the runtime of DS2OS. After we present how this data is structured
and currently stored in the database backend.

The main purpose of this thesis is to evaluate possible candidates for a role as database
backend of VSL. Therefore we introduce di�erent database architectures that can be
used to store the VSL data. We describe their bene�ts and drawbacks regarding storing
and processing data. Additionally we discuss requirements of VSL, that are imposed
on a database. Furthermore we present possible metrics and scenarios that can help
evaluate the performance of possible candidate.

2.1 Distributed Smart Space Orchestration System

In this section we give a short description of Distributed Smart Space Orchestration
System (DS2OS) and its purpose. DS2OS was designed at the Chair of Network Archi-
tectures and Services at the Technical University of Munich. As the name suggests its
main purpose is management of Smart Spaces.

A Smart Space is essentially a physical place, which contains number of "smart devices".
These smart devices are connected within a network and can interact with each other.
Through interaction they can perform various scenarios based on current and previous
states. The main constrain in such environments is the heterogeneity of the smart
devices.

DS2OS is designed to combat this constrain. It enables transparent communication
between devices, creation of services, which operate on these devices, and creation of
complex scenarios based on interaction of services.

4 Chapter 2. Analysis

At the moment implementation of DS2OS is under continuous development. It is written
using Java 7 and is maintained by several employees at the Chair of Network Architec-
tures and Services at the Technical University of Munich

2.1.1 Virtual State Layer

In this section we describe the structure and functionality of Virtual State Layer (VSL),
one of most important components of DS2OS. All concepts and descriptions are derived
from Ph.D. Thesis by Marc-Oliver Pahl [1].

VSL is a programming abstraction, which acts as a pervasive computing middleware.
In contrast to existing solutions it can be described as µ-middleware.

A µ-middleware is a middleware that provides only fundamental, non domain-
speci�c functionality, and that supports transparent extension with functional-
ity at run time via regular services.

Such architecture is achieved through usage of Virtual Context. Virtual Context uses
Virtual Nodes to couple static structure of VSL context modes with dynamic services [1].
Through Virtual Nodes information can be delivered on-demand. For the scope of this
thesis Virtual Nodes are not relevant, as they do not stored in a database.

2.1.1.1 Structure and concepts of VSL

In order to understand how Virtual State Layer works it is important to know main
concepts behind it.

• VSL Context Node is a virtual representation of real world object, such as a
light bulb №1 in the room №42. It contains the information of current state and
properties of this object.

• VSL Context Model is a model describing the properties of the generic real world
object. Context Node is an instance of a speci�c Context Model. Context Models
are stored in Context Model Repository. It is desired that they are extended by
developers of DS2OS through crowd-sourcing.

• VSL Meta Model describes, how the Context Models are constructed.

VSL Context Nodes can be either Virtual or Regular.

Virtual Nodes are similar to the Proxy Pattern. They can be registered by
services on a Knowledge Agent. When another service tries to retrieve the
information from a Virtual Node, following happens. The service, that created
a Virtual Node, receives a callback and sends the current information directly
to the requesting service.

2.1. Distributed Smart Space Orchestration System 5

Regular Nodes are stored directly in the Context Repository on a Knowledge
Agent. They also can be accessed by services. For services it is transparent,
whether they access a Regular Node or a Virtual Node.

Knowledge Agents are main self-organizing entities of VSL. They run on di�erent ma-
chines and are capable of detecting each other in the network. Each KA have two
main functions: context management and context repository. Currently each of KAs
have a isolated backend database. Distribution of data and metadata is performed on
an application level. During runtime each KA advertises information about available
Context Nodes on them to the other KAs.

In DS2OS each service binds itself to one of the KA. Through this bond service can
advertise its context and query contexts of other services on local or remote Knowledge
Agents. This creates a seamless interactive environment, where services are aware of
all available devices.

Virtual State Layer API consists of 13 methods, which can be divided into 3 functional
groups: context access, access control and Virtual Context [1]. Virtual Context methods
manage registration and removal of Virtual Nodes. Access Control methods are used to
manage registration, removal and authentication of services on the KA. Contex Access
methods are used by services to manage the data on the VSL Nodes.

For the purpose of this thesis Context Access methods have most relevance. Here is a
listing with a short description of each method:

• get [nodeAddress] returns the context at the speci�ed address.

• set [nodeAddress] [value] changes the context at the speci�ed address.

• subscribe [nodeAddress] [callBack] subscribes the context subtree that starts at
the speci�ed node address. If a context node within registered subtree changes,
all subscribers receive a noti�cation, through callback function.

• unsubscribe [nodeAddress] removes an existing subscription on the context sub-
tree at the speci�ed address.

• lockSubtree [parentAddress] [callBack] locks a context subtree for exclusive use.

• unlockSubtree [parentAddress] unlocks a context subtree from exclusive use
and commits all changes in the unlocked subtree since the locking.

• revertSubtree [parentAddress] unlocks a context subtree from exclusive use and
reverts all changes in the unlocked subtree since the locking.

During execution of evaluation scenarios we concentrate on the �rst two methods,
namely get and set. They are expected to be the most used methods in a runtime envi-
ronment. Therefore evaluation scenarios consisting of these methods can be considerate
representative.

6 Chapter 2. Analysis

Figure 2.1: VSL structure

2.1.1.2 Model of Context Data

Knowledge Agents and data stored on them can be described as a tree-like structure.
We can see a visual example in �gure 2.1. KAs are placed in a root space and each VSL
Context Node can be seen as sub-tree inside of Knowledge Agent [1]. Descendants of a
Context Node represent important parts of the real-world object. This representation
style allows to specify a real-world object with desired precision, depending on require-
ments. It is assumed that this tree can be arbitrary large in terms of depth and width.
In the listing 2.1 we can see an example of an instance of such node.

1 <mySmartDevice type="/node/smartDevice" version="2" timeStamp="2017-06-16 12:11:25.126"

access="rw">

2 <button type="/node/button, /basic/composed" version="0" timeStamp="2017-06-16

12:11:25.145" access="rw">

3 <led type="/node/led,/node/isOn, /derived/boolean, /basic/number" version="1"

timeStamp="2017-06-16 12:11:25.326" access="rw">

4 1

5 <desired type="/node/isOn, /derived/boolean, /basic/number" version="0" timeStamp="

2017-06-16 12:11:25.463" access="rw">

6 0

7 </desired>

8 </led>

9 </button>

10 <lightSensor type="/node/lightSensor, /basic/number" version="0" timeStamp="2017-06-16

12:11:25.349" access="rw">

11 800

12 </lightSensor>

13 <temperatureSensor type="/node/temperature, /basic/number" version="1" timeStamp="

2017-06-16 12:11:25.171" access="rw">

14 21

15 </temperatureSensor>

16 </mySmartDevice>

Listing 2.1: Context Node example

2.1. Distributed Smart Space Orchestration System 7

A smartDevice consisting of a button, with led inside, a lightSensor and a temperatureSen-
sor. Each part has a name, type, version, timestamp and access rights. As you can see,
in most cases type consists of multiple entries. Types identify functionality that each
part can have. Allowing a model to have multiple type helps describe its functionality
more precise. For example we could have add "node/button/switchButton" as a type to
describe buttons functionality more accurate.

Information that should be stored in database backend for each node, is summarized in
the table 2.1. Each Context Node has an address, value, version, array of types, array of
readers and writers IDs and information value restrictions and caching parameters.

address
value
version
types
readerIDs
writerIDs
restriction
cacheParameters

Table 2.1: Generic context node structure

Keeping an archive of all previous version of Context Tree is one of the required feature
of Virtual State Layer. Therefore it is important to describe speci�c versioning scheme
of a Context Node. When a node receives a value update, not only the node itself
increment its version. Additionally all ancestors of the node up to the service level. This
scheme is justi�ed by viewing each Context Tree as a single real world object. Therefore
if a part of an object changes its state, then all other parts, that include this speci�c
updated part, are also considered as changed. This speci�c versioning scheme should be
carefully considered during adaption of current data model for a new database backend.

2.1.1.3 Current implementation in HSQLDB

Currently relational database, HSQLDB, is used as main database backend on every
Knowledge Agent in Virtual State Layer. In this section we present how the tree-like
structure, described in section 2.1.1.2, is stored in HSQLDB.

The data is split into 3 tables:

structure : {[address, type, readers, writers, restriction, cachePatameters]}

version : {[address, timestamp, version]}

data : {[address, timestamp, value]}

8 Chapter 2. Analysis

Structure table contains structural information and is changed only in the moment of
creation and deletion of the node. address is a general identi�er of the node and used
as a primary key in the data table. type �eld contains all types of the node. restriction
�eld de�nes, what kind of values can a node have. Readers and writers �elds, consists
of ID that specify, which services can read or write this Context Node. Restriction �eld
is used to indicate which value this Context Node can have.

Version table contains information about version of Context Node and its children. When
a node gets an update in the Data Table, new entries are created in this table for this
node and all of its parents up to the service root node. If multiple nodes are set in one
operation, there is only one increment for all a�ected nodes (nodes, that are set and
their parents). New entries have same address, new timestamp, which is identical on
all nodes a�ected, and new version, which is created by incrementing the old version
of that node by 1.

Data table behaves similarly to Version table. On every change of value, a new entry is
created with new timestamp, and incremented version. The main di�erence is that
on update of the node’s children, the timestamp is not updated. The timestamp �eld
indicates, when value of this particular node was changed.

address LONGVARCHAR "service_1/node_42/smartDevice/led"

type LONGVARCHAR "/node/led; /node/isOn; /derived/boolean;
/basic/number"

readers LONGVARCHAR "service_2; service_3"
writers LONGVARCHAR "service_1"
restriction LONGVARCHAR "lowerBound = 0; upperBound = 1"
cacheParameters LONGVARCHAR "TTL = 3"

Table 2.2: Structure table

address LONGVARCHAR "service_1/node_42/smartDevice/led"
version BIGINT 1
timestamp TIMESTAMP 2017-06-16 12:11:25.326

Table 2.3: Version table

address LONGVARCHAR "service_1/node_42/smartDevice/led"
timestamp TIMESTAMP 2017-06-16 12:11:25.326
value LONGVARCHAR 1

Table 2.4: Data table

2.2. Metrics 9

2.2 Metrics

To correctly construct evaluation scenarios for databases we have to de�ne which
parameters we can control and change. Also we have to name the metrics that we
measure during the evaluation.

During runtime of VSL following operations are performed in a database backend.

• Insert operations
Main interaction of KA with a database will be an insert of data. Using set com-
mand of VSL API, services add new values to the context nodes.

• Update operation
In the current implementation of VSL concept, context nodes are not updated.
Instead, in case of new value, a new context node, with a higher version is created
and inserted in a context tree.

• Read operations
The services in DS2OS interact with each other, often requesting information
from each other. Through VSL API get command, the data queried can range
from a one value inside of a tree to a set of values on a di�erent levels of a tree.

• Delete operations
After certain threshold old entries in context tree should be deleted. The frequency
of delete operations depend on a threshold itself and the frequency of data updates.

When constructing an evaluating scenario we can alter following variables:

• Type of performed operation
Services are using several �xed methods, when operating with a Context Node.
These methods are listed in section 2.1.1.2. For the purpose of this thesis we will
use only get and set, when constructing an evaluation scenario.

• Frequency of performed operation
Depending on functions of the device represented by given Context Node, it can
be read/written constantly or in prede�ned interval.

• Ratio of performed operations
In most cases Context Node will be both read and written by di�erent services,
but for example a node representing an actuator will be written more frequently
than read.

As mentioned in section 2.1.1.2 VSL Context Node has a tree-like structure. Therefore
it is possible to vary following parameters:

• Size of nodes
Size of the internal node value is variable.

10 Chapter 2. Analysis

• Depth/breadth of the tree
Size of the context node can be adjusted in terms of both depth and breadth of
the tree.

• Inclusion/exclusion of the subtree
During the operations on the context node, subtrees can be either included or
excluded.

During evaluation we have to measure following:

• Performance under given workload
We measure an amount of time needed to perform a prede�ned number of oper-
ations. Such methodology was also used in this study [2]. Additionally we can
measure how many operations can a database perform pro second.

• Resource consumption
DS2OS is expected to run commodity hardware, therefore inadequate resources
consumption by a database is undesirable.

Considering the number of possible application areas of DS2OS it is bene�cial to con-
struct several evaluating scenarios, which cover the most wide-spread usage patterns.
This is discussed in detail in chapter 4.

2.3 Database Types

In this section we will present main databases types and discuss their applicability for
storing VSL data. The main challenge is the hierarchical structure of VSL data. Therefore
databases that provide native functionality to store and process such data, will have
advantage over other types.

2.3.1 Relational databases

SQL or Relational databases have been a standard in the industry since 1970. But in
recent decade they began to lose their popularity due to shift of requirements placed
on the databases [3].

The core of SQL databases are multiple schemes of n to m relationships. A scheme con-
sists of n rows and m columns with prede�ned value types. Each row identi�able with
a unique primary key. Such design make it possible to omit redundancy if constructed
correctly.

There are several properties that make relational databases so powerful:

2.3. Database Types 11

SQL or Search Query Language As you can see from the name, SQL is a query lan-
guage and is based on relation algebra. The properties of relation algebra let
the queries be nested and as complex as needed. In addition it has procedural
properties, which make it possible to create, search and manage the data.

ACID Any sequence of database operation is called a transaction if it ful�lls following
principles:

• Atomicity transaction as a single unit, therefore if part of transaction fails,
whole transaction should be reversed

• Consistency transaction change the state of the database from one valid one
to another valid one

• Isolation if executed concurrently provide the same result if would executed
sequentially

• Durability if transaction is committed, the state of database should remain
in case of failure

In previous section we have described how the data model currently implemented in
a relational database. Choosing more sophisticated relational database could lead to
increase in performance. For example PostgreSQL or MySQL, which are widespread and
under continuous development. Additionally it would be useful be adapt the schema
of data model, so that hierarchical nature of VSL data can be better represented. In
this book [4] author describes several techniques, that can be used when modeling a
hierarchical structure:

• Materialized Path This technique is currently used to model a hierarchical struc-
ture in HSQLDB. "address" �eld in Structure table 2.2 acts both as identi�cator
and path descriptor. Through string comparison we can retrieve all ancestors.

• Adjacency List In this technique direct parents and children of a node are stored
in as separate columns. It is possible to use this technique in PostgreSQL as it
provides recursive queries [5].

• Nested Set There are two columns, that "left" and "right". To assign values we have
to traverse the tree starting a the root, and always turning left and incrementing
the value, till you reach a leaf. In such fashion column "left" is �lled. In the leaf
we will increment the value and place it into "right" column. Then we will go
one level up and take second most left node. A repeat the same process again. In
the end each root of some sub-tree will have the smallest value in this sub-tree in
"left" column and biggest in "right" column [6].

• Closure Table There is a column indicating whether some node is a descendent of
current node, and the second column indicates on which level [7].

12 Chapter 2. Analysis

Figure 2.2: Example of data stored in key-value store

2.3.2 NoSQL

The term NoSQL orNot only SQLwas coined in 2009. At the moment relational databases
were becoming not a perfect solution for data storage in several domains. Their lack
of �exibility, rigid structure and limited ability to scale were major complains in the
industry [3]. New types of databases were needed to implement more exotic types of
data models. NoSQL became an umbrella term for such databases. In the following
sections we will present several most important types of data storage paradigms.

2.3.2.1 Key-value stores

One of the most simplistic data storage paradigm is the Key-value store. It is basically
a dictionary with set of unique keys and corresponding values, accessible through the
keys.

We can see an example in �gure 2.2. In this example we have a name of a university as
a key, and student names as values.

Key-value stores are completely oblivious of the value data type and the value itself.
Number of �elds in each record can be arbitrary, therefore enabling �exible structure of
data [8]. While key-value stores are oblivious of values, it is not possible to construct
value-based queries. As a consequence key-value stores are not suitable for modeling
complex structures, but perfect for large amount of simple data. Some of them are
in-memory databases, with increased performance.

The most wide-spread examples are Redis, Memcached and Riak KV [9].

2.3.2.2 Document-oriented database

Document-oriented databases are similar to above mentioned key-value databases. They
store document-like objects, that can be identi�ed with an unique key. The most

2.3. Database Types 13

Figure 2.3: Example of data stored in document-oriented database

14 Chapter 2. Analysis

Figure 2.4: Example of data stored in column-oriented database

widespread formats of these objects are XML (eXtensible Markup Language), JSON
(JavaScript Object Notation) or BSON (Binary JSON).

Documents, which are similar to records in relational databases stored within collections,
that can be viewed as analogue to tables in relational databases. But in contrast to
relational databases di�erent documents can have variable number and type of �elds. It
increases �exibility of data modeling [8].

We can see an example in �gure 2.3. A collection with number "1" consists of three
documents, which can be identi�ed with a unique "_id", and have a JSON structure.

In VSL we deal with hierachical data and o�cial documentation of MongoDB provide
several possible ways to store hierarchical data [10]. They are quite similar to the
techniques introduced in section 2.3.1 and can be used in other document-oriented
databases. Also in case of document-oriented databases it is possible to perform complex
queries as the content of the document objects is not opaque to the database.

There is a number of such databases, which are under continuous development. The
most popular are MongoDB, Amazon DynamoDB and CouchDB [11].

2.3. Database Types 15

Figure 2.5: Example of data stored in graph database

2.3.2.3 Column-oriented database

First design and implementation of column-oriented databases was embodied in Google
Bigtable. After publication of whitepapers several databases implementing similar
approach emerged on the market.

The main structure is de�ned as follows: there are several rows, each can be identi�ed
with a row key. In every row there is variable number of column-families, which consist
of columns and super column, which in their turn also consist of columns [8]. An
example in �gure 2.4 illustrate this concept.

Column-oriented databases are mostly used in read-intensive environment, where query
and aggregation of speci�c parameter is needed. But in write-speci�c environment
the bene�ts of column-oriented databases compared to relational databases are not
signi�cant. In case of modeling hierarchical data column-oriented databases are not
expected to di�er in terms of suitability from traditional relational databases.

The most notable examples of column-oriented databases are Google BigTable, Cassan-
dra and HBase.

2.3.2.4 Graph-based database

Graph-based databases are designed for modeling relationships between objects. They
consist of nodes and edges, which are the stored objects and their relationships to each.

Utilizing graph traversal algorithms, such as breadth-�rst traversal or depth-�rst traver-
sal, it is possible to achieve much better performance than if the graph structure was
placed in a standard relational database. Mostly used for storing and computing net-
works, such as social, transportation and etc. We can see an example in �gure 2.5,
where nodes represent entities with ids, and edges represent relations between these
entities [8].

16 Chapter 2. Analysis

Figure 2.6: Example of graph based on data stored in time series database

As stated in section 2.1.1.2 data of the context node is stored in tree-like structure. And
tree-like structure is essentially a constrained graph. Therefore graph-based database
could be quite performant when an update of parameters in a whole node is needed.

The most used examples are Neo4j and OrientDB.

2.3.2.5 Time series database

Time series are speci�cally tailored to process and store an arbitrary amount of time-
series data. Time series are build from a key, timestamps and values, at the given time
points.

Such databases are best suited for statistical data, for example sensor values or price
changes. We can see an visual example of such data in a �gure 2.6. In this �gure we can
see how the price of silver and bitcoin changes across a time span. Some of time series
databases provide build in functions for statistical analysis of stored data.

But modeling a complex hierarchical structure in such databases is expected to be
di�cult. The most wide-spread time series databases are In�uxDB, Graphite and Riak
TS.

2.3.2.6 Multi-model database

Multi-model databases usually combine graph-based approach with relational, document-
oriented and key/value models. This approach signi�cantly simpli�es modeling of
complex structures, as they become easier to �t in a database.

An example of graph, containing documents within nodes, can be seen in �gure 2.7.
Most advanced examples of such databases provide a common query language to all
types of data stored [12]. As multi-model databases usually include both graph and

2.4. Requirements 17

Figure 2.7: Example of data stored in multi-model database

documents as data models, they should be considered as one of the most suitable for
storing tree-like structures.

The most known examples are OrientDB and ArangoDB.

2.4 Requirements

There are a number of requirements imposed on a database:

(i) Ability to store context node data
Chosen database should be able to store context node data, that has a tree-like
structure (see 2.1.1.2). Depending on type of a database data model will be adapted.

(ii) Java API
As currently DS2OS is implemented in Java, it will be bene�cial to have native
compatibility or JDBS Driver (see 2.1).

(iii) Versioning
At the moment versioning is done application level of DS2OS. It handled within
a database wrapper class, therefore having a native support of versioning inside
of database will simplify data model. Additionally it will not require changes to
the structure of VSL outside of database wrapper (see 2.1.1.2).

(iv) Archive
Previous states of context node should be stored for prede�ned amount of time or
until they reach a certain threshold. While in an archive they should be available
for query, either as single entity or as a set (see 2.1.1.2).

(v) Consistency
In case of separation of nodes data and structural information of the tree, consis-
tency issue should be considered.

19

Chapter 3

Related Work

In this chapter we present previous research on comparison of database performance.
We have chosen research material, where di�erent database architectures were com-
pared to each other in terms of performance. Several presented papers use speci�cally
IoT data [13], [14], [15]. Other have performed the evaluations using arbitrary data.

In the second half we discuss discovered methods of handling versioning and tree-
structures in document-oriented database.

3.1 Current research on comparison of SQL and NoSQL
databases

3.1.1 Compared databases: MySQL, MongoDB, CouchDB, Redis

In following study several experiments were conducted, to evaluate the performance
of di�erent database types [13]. Researchers have chosen several databases: MySQL
as relational database, MongoDB and CouchDB as document-oriented databases, and
Redis as key/value storage. As testing material there were two types of data: sensor
data and large multimedia data. For us the results of experiments with sensor data are
more relevant, while DS2OS mostly works with similar data.

Authors of this paper have found that in write-intensive environment MongoDB has
outperformed other databases. It was followed by relational database, namely MySQL.
In experiment consisting of querying the data the was almost no signi�cant di�erences.
Also it was worth mentioning that CouchDB was lagging in terms of performance and
had unjusti�ed large database size.

20 Chapter 3. Related Work

3.1.2 Compared databases: PostegreSQL, Cassandra, MongoDB

Comparison of PostegreSQL, Cassandra and MongoDB using sensor data was made
in this paper [15]. Researchers have used four types of operations: a single write, a
single read and multiple read and writes. In single operations a measurement consisting
of a value, timestamp and unique is either read or written to the database. In case
of multiple operation 1000 of measurements are written or read in a single statement.
During evaluations, researchers have tracked how many operations can each database
perform in one second. The results were inconclusive, as databases performed di�erent
depending on the task. In case of single writes MongoDB outperformed all other com-
petitors. This �nding also correspond with above mentioned suitability of MongoDB in
write-intensive environment. In case of multiple reads PostgreSQL has performed better
than any other. Cassandra was better in case of multi-write. These results shows us that
minor tweaks and di�erences in the tasks and environment can impact performance of
the database.

3.1.3 Compared databases: MongoDB, RavenDB, CouchDB, Cassandra,
Hypertable, Couchbase, MS SQL Express

Researchers in this study, compared following databases: MongoDB, RavenDB, CouchDB,
Cassandra, Hypertable, Couchbase and MS SQL Express [2]. As a data set a number of
arti�cially generated key/value pairs was used. Following operations were executed:
writing, reading, deleting a key/value pair, and fetching all keys. In each test case only
one type of the operation was used. Researchers incrementally increased number of
performed operations, and recorded needed time for performing them. They have per-
formed 10, 50, 100, 1000, 10000 and 100000 operations. In results they have found that
RavenDB and CouchDB were lacking performance in most tasks. Couchbase and Mon-
goDB were two fastest databases in read, write and delete operations. This study gives
us a quite simpli�ed overview of database performances, because performed operations
and chosen data are not complex.

3.1.4 Compared databases: PostgreSQL, MongoDB

In following study researchers compared PostgreSQL and MongoDB on all basic opera-
tions, such as insert, select, update, and delete [16]. Data was designed separately. For
PostgreSQL three simple schemas, related to each other, were designed. For MongoDB
all the data was designed as one single document. Each operation was executed follow-
ing number of times: 30000, 90000, 150000, 210000 and 300000. Overall MongoDB has
performed better than PostgreSQL, but we have to take data di�erences into considera-
tions. The di�erences were more pronounced during insert and delete operations. It is
possible that results of this study are biased toward MongoDB.

3.2. Versioning 21

3.1.5 Compared databases: MySQL, MongoDB, VoltDB

In this study researchers have compared MySQL, MongoDB and VoltDB using also
sensor data [14]. During evaluation they varied following parameters: single or multi
client, and single or multi operations. As operation were used basic read, write and
delete. They have come to a conclusion that VoltDB, which is a newSQL database, has
outperformed its competitors in most tasks. MongoDB was the second best, with small
di�erence in performance.

3.1.6 Summary

Di�erences in database performance are depended on the structure of the data and
the type of operations that are performed on them. NoSQL databases do not perform
signi�cantly better than advanced relational databases, such as PostgreSQL. But they
provide other bene�ts that can be useful for us, such as a more �exible data model.
We can not draw concrete conclusions based on the found studies. First we have to
implement several databases, according to requirements (see 2.4) to further investigate
the the suitability of databases for IoT, and more speci�cally for DS2OS.

3.2 Versioning

As stated in section 2.1.1.3, when context node is changed, a new node, with incremented
version number and changed value is inserted in a database. Additionally all ancestors
of this node also receive an increment of their version. Currently a separate table in
relational database is used to keep track of versions of the node.

3.2.1 Versioning in document-oriented database

In this article author presents and evaluates possible approaches for storing di�erent
versions of a document in MongoDB [17]. These approaches can be extrapolated on other
document-oriented databases, as the techniques are not MongoDB speci�c. According
to the author the techniques are following:

• To create new document for every version with incrementing version �eld. It
is quite simple approach, but it has several drawbacks. In case of need to query
a current version it will perform rather slowly. A possible solution would be to
have a �eld "current" set in most recent document. But it would be problematic to
use in multi-threaded environment, as in case of update we need to set the �eld
to "false" in current document and the add the latest version with the same �eld
set to "true". Failure in operation �ow could result in several "current" versions.

22 Chapter 3. Related Work

Schema Fetch 1 Fetch Many Update Recover if fail
New doc for each Easy,Fast Not easy,Slow Medium N/A
New doc with “current” Easy,Fast Easy,Fast Medium Hard
Embedded in single doc Easy,Fastest Easy,Fastest Medium N/A
Sep Collection for prev. Easy,Fastest Easy,Fastest Medium Medium Hard
Deltas only in new doc Hard,Slow Hard,Slow Medium N/A

Table 3.1: Versioning in MongoDB

• To store all the versions embedded in one document. The advantage of this
technique is that we always know what is the current version, and non-current
versions can also be retrieved easily. But nesting all the versions in the same doc-
ument can enlarge it to unwanted sizes. For example MongoDB have a threshold
of 16 Mb pro document.

• To store current version in main collection, and all previous versions in separate
collection. To prevent unwanted states it is important to copy the current version
to "previous" collection before the update. That way in case of failure it is not
possible to lose the version. [18] Although it is possible to have an duplicate of
the latest document version in "previous" collection, it can be handled on the
application level.

• To store deltas of each version in separate documents. It is a resource saving
technique, but disadvantages are more pronounced then in other approaches. It
is quite di�cult to fetch multiple versions of the same document, because each of
them have to be constructed on the application level.

The author have considered these approaches under two main scenarios: ether query of
a current version or query a number of previous versions. The �ndings are summarized
in table 3.1.

3.3 Tree-structures

3.3.1 Storage model of tree-structure in MongoDB

Authors of following study implemented and evaluated four di�erent ways of storing
tree-structure in MongoDB [19]. The approaches were following: Adjacency List Model,
Children Reference Model, Nested Document Model and their own design Hybrid Stor-
age Model.

In Hybrid Storage Model they kept each node of a tree in a separate document containing
all attributes of a node, and hash value of them as an unique ID. The tree-structure itself
was modeled as a separate document of nested hash values of the nodes.

3.3. Tree-structures 23

Authors have evaluated performance of the examined approaches using two di�erent
types of test cases. In the �rst they used queries based on tree’s attributes. In such case
reconstruction of the whole tree is needed. Therefore as expected Nested Document
Model, followed by Hybrid Model have performed signi�cantly better than Children
Reference Model and Adjacency List Model.

In second case queries on node’s attribute have been used. They have constructed
in such way, that at �rst node’s with corresponding were found, and then the whole
tree containing this node was reconstructed. This test partially replicate the �rst one,
leading to the similar results. Besides Nested Document was not correctly included in
evaluation.

Even through this study suggests usage of separate documents for values of the nodes
and tree-structure, such approach can lead to inconsistency in case of write-operations.

3.3.2 Comparison of NoSQL databases in handling tree-like structure

An important and highly related comparisons were conducted in following study [20].
Researchers have implemented a highly heterogeneous tree-structure in di�erent types
of databases.

Representatives were following:

key-value database : Membase

document oriented database : MongoDB

graph database : Neo4j

wide-column database : Apache Cassandra

multi-model database : OrientDB

They have conducted 4 di�erent tests: inserting a tree with a 100 000 nodes, retrieval
of a sub-tree, querying a node based on attribute containment, querying a value of an
attribute. Even through Membase outperformed its competitors on the tree creation,
authors state that it is not suited for tree-structures. Same is said for Apache Cassandra,
it was least performant in 3 of 4 executed tests.

On the other hand Neo4j, as a graph database is naturally suited for a tree-structures.
But lack of performance on creation of a tree was quite signi�cant. Document oriented
MongoDB was behind other databases on sub-tree retrieval. On average multi-model
database OrientDB performed well in all of 4 task, proving to be a well-rounded solution.

25

Chapter 4

Design

In �rst part of this chapter we present and discuss our approach to construction of
evaluation scenarios for Virtual State Layer database backend. In the second part we
discuss di�erent database types and their applicability for Virtual State Layer. Following
the discussion we present databases, that we choose for further implementation and
evaluation. We describe our approach to handling tree-like structure of VSL data, and
handling the archive of Context Nodes (see 2.4).

4.1 Design of evaluation scenarios

In section 2.2 we have presented possible parameters which can be altered to create
di�erent evaluation scenarios. Our main goal is to cover most possible usage patterns
of DS2OS. In the following subsections we construct scenarios, varying previously
mentioned parameters, and describe them in more detail.

One of the parameters that we can alter is the structure of the tree. A "wide" tree can be
constructed with small number of levels and large amount of subtrees below the root
node. On �gure 4.1 we can see an example of such tree, with three levels and most of

Figure 4.1: Wide tree

26 Chapter 4. Design

Figure 4.2: Deep tree

the nodes concentrated on the second level. Such tree can represent an IoT device that
has multiple number of simple and similar elements. For example a large LCD panel
that is used in an art exhibition hall.

On the other hand we can construct a so called "deep" tree. As can be seen on �gure 4.2,
it consists of high number of levels with a small number of nodes on each level. Such
tree can represent a complex device with multiple parts within.

We assume that di�erences in tree-structure can a�ect performance of the database.
Because for example in case of "deep" tree on update of leaf node, we have to update the
state of all ancestor nodes from leaf up to the node, that represent "service" level (see
2.1.1.2). For the purpose of this thesis we construct "wide tree" with 3 levels, consisting
of 1 root node, and 10 nodes on each of the subsequent levels. An example of a ’deep
tree’ we construct with 9 levels: 1 root node, 3 nodes on the second level, 1 node on
next 6 levels, and then 3 leaf nodes (see A.3). The choice of numbers is arbitrary.

To evaluate performance of selected databases we inspect how they behave under
di�erent workload. We expect that in the real-world environment operations, performed
on context node, will be varied in their type. Depending on the services, which use
this context node, the majority of operations can be either ’write’ or ’read’. To address
possible di�erences in database performance, we constructed tests in the following way.

Each test consists two types of operations, mentioned in section 2.2: get and set. Whole
number of operations executed in a test is 100, 1000, 10 000. Furthermore we vary the
proportions of the operations in a test. We de�ne three possible variations:

• 100% get / 0% set
This proportion can be seen as edge case, that is not common in real-world
environment. But it is useful for evaluation of performance on pure "write"
operations.

• 80% get / 20% set
This variation simulates a read-intensive environment, where information is

4.2. Suitability of di�erent database types for VSL 27

mostly read than written.

• 50% get / 50% set
This can be seen as balanced environment, where the proportions of executed
operations are equal.

• 20% get / 80% set
This will simulate a write-intensive environment, where services frequently set
new values in the context node.

• 0% get / 100% set
This also is an edge case. Through this proportion we want to evaluate pure
"read" performance.

Each test is performed at least �ve times. We record time needed to perform de�ned
number of operation, and create an average of �ve executions for each database. We
do this to reduce possibility, that results of single evaluation do not represent actual
possible performance.

To execute constructed scenarios we create a DS2OS service that communicate with
a single Knowledge Agent. This Knowledge Agent has a database connected locally,
therefore we don’t take network constrains into consideration.

4.2 Suitability of di�erent database types for VSL

We have presented several types of databases in section 2.3 and described main concepts
on which they are based. In this section we discuss their suitability for Virtual State
Layer, considering its requirements.

As mentioned in section 2.1.1.3 HSQLDB is currently used as database backend for
Virtual State Layer. The choice of database was arbitrary during development of the
�rst functioning prototype of Virtual State Layer.

It is possible that a more advanced relational database can deliver better performance.
In studies that we presented in chapter 3 PostgreSQL in most cases perform on the same
level or even faster that NoSQL databases. Due to time limitation we don’t implement
more advanced relational database for Virtual State Layer in this thesis. But it can be
considered a possible candidate for further research.

Key-value stores are considered as not desired option. Their inability to query objects,
based on internal attributes, was a main disadvantage for us. Services can query speci�c
Context Nodes from Knowledge Agents, based on characteristics such as type, times-
tamp or version. If we would store context nodes data in key-value database, it would
be only possible to query it by the "address" of the node, which would be the main key.
To leverage this constrain we would be forced to split the data of context node and

28 Chapter 4. Design

store it behind several keys. This is not a desired solution, because it would introduce
unnecessary possibility of inconsistency during write operations.

Document-oriented databases are considered a much better �t for our needs. They
also have �exible data model, which can be used to represent structures with varying
degrees of complexity. For example there are multiple ways to model a tree-structure,
some of them are presented in section 3.3.1. Also ability to �lter documents based on
values of the �elds is an important feature for us. As mentioned above services may
query Context Nodes, based on several parameters combined.

Graph databases are also a valid option, considering our needs. As they are able to model
tree-structures natively. Therefore we have to take care of versioning and keeping the
archive. Also some of them provide useful graphical frontend, where we can observe
current state of the context node graph. But as described in the following study [20],
Neo4j, one of the most popular graph databases, performs signi�cantly slower than other
databases on node creation. Authors speculate, that the reason behind it, is creation of
metadata overhead regarding graph structure. It is possible that this overhead enables
a more fast traversal of the graph. But for us this is an undesirable trait, because node
creation is one the core operations in Virtual State Layer. And in most cases we don’t
traverse the context tree, except for operations with node version update and retrieval
of subtree.

In the same study [20] OrientDB, multi-model database, was evaluated alongside with
other databases. During evaluation it showed adequate performance in all tasks, without
signi�cant unbalance between data creation or data retrieval operations. Same as Neo4j,
OrientDB has an ability to natively handle graph-structures. Therefore we decided to
implement OrientDB for further evaluation.

4.2.1 Document-oriented database

Based on studies presented in chapter 3 we decide to use MongoDB as an example of
document-oriented database. MongoDB has adequate performance, is one the most pop-
ular document-oriented databases, is under continuing development, and has extensive
documentation [21].

To represent nodes of the Context Tree we use separate document for each node. The
structure of the document is presented in the table 4.1. In this table you can see �elds
of the document and corresponding types, which are MongoDB internal. "id" �eld is a
12 byte hexadecimal number, that is used for internal identi�cation of the node within
the collection. Most of other �elds, excluding "parent" and "ancestors", correspond to
the general model speci�ed in table 2.1. We will explain the choice of such document
structure in the following paragraphs.

4.2. Suitability of di�erent database types for VSL 29

According to the section on tree-structure modeling in the o�cial documentation, au-
thors suggest using "Array of Ancestors" technique for working with subtrees [10]. In
this technique, addresses of all node’s ancestors are stored as an array within a node
itself. It is bene�cial for us, because, as stated in section 3.2 after adding a new version
of node, all ancestors of this node should increment their version as well. Also, to di�er-
entiate between direct and indirect ancestors, we added a �eld "parent", that contains
an address of node’s direct parent. It was bene�cial for us, because depending on the
use case, it is necessary retrieve or alter only direct children of a node. This approach
similar to other techniques, such as "Child References", "Parent References" [10].

But using them without in their pure form would require multiple fetches of related
nodes, to update all of the node ancestors. It is undesirable for us, because it increases
amount of interaction between database backend and Knowledge Agent.

The technique, named "Materialized Path", could be applied in our implementation,
considering format of VSL Node address. But it would still require a construction of
an array of ancestors on application level. Additionally we don’t use the technique
presented in section 3.3.1, where structure of the node-tree is separated from the values
within the nodes. The reason for that, is to reduce the probability of inconsistency
within the system. MongoDB does not provide consistency on write operations that
a�ect multiple documents [21]. Therefore if we store the structure of the Context Tree
in one document, and values of the nodes in the other document, then during creation
or removal on nodes in the Context Tree it can lead to inconsistent state, where either
there is a node with missing value, or a value that does not correspond to any of the
nodes.

To store an archive of previous states of the node, we use one the techniques presented
in section 3.2.1. We store documents, representing the current state of each node in
one collection and documents, that represent all previous states in another. On update,
document, representing current state of the node, is fetched from "current" collection
and copied in the "archive" collection �rst. Then it is modi�ed and written back into
the "current" collection. This also reduces probability of inconsistency. Because even
if some failure occur during update, then document, representing previous state of
a node, will be both in "archive" and "current" collection. This kind of malfunction
can be reversed by using upsert in "archive" collection. In current use cases of DS2OS
queries on current state of a node occur more often, then on archived versions of nodes.
Therefore storing current state of a node within a separate collection is expected to have
positive impact on the performance. Within "current" collection documents are uniquely
indexed on "address" �eld, therefore not allowing duplicates of the same node to exist.
And in "archive" collection documents are indexed on both "address" and "version" �eld,
therefore enabling storage of multiple states of the node. As mentioned before "id" �eld
is used in MongoDB to uniquely identify the documents within the collection. There is
an option to prevent it, which we enable for "archive" collection.

30 Chapter 4. Design

We did not use other techniques based on following considerations. Storing nodes as
separate documents with incrementing version �eld within single collection will reduce
performance on query operations. We would be forced to use the same approach, that
we use currently with "archive" collection, namely �ltering and aggregation pipeline.
But as mentioned before we tolerate the decrease in performance tied with this approach,
only because querying of archived states of the node happens infrequently in current
use cases of DS2OS. Storing only deltas of changes was considered the most unsuitable
approach, because it would have require a reconstruction of the node, on every read
operation. Storing a map with "version" as a key and "value" of the node as a value
could have been a valid approach. But MongoDB has a limit on size of the document,
16 megabytes [21]. Therefore without limit of stored states on the application level, this
approach can not be used.

id objectId
address string
parent string

ancestors array
value string

version long
types array

readerIDs array
writerIDs array
timestamp timestamp
restriction string

cacheParameters string

Table 4.1: MongoDB Object structure

4.2.2 Multi-model database

Based on studies in chapter 3 and discussion in section 4.2 we choose to implement
OrientDB as an example of multi-model/graph database.

OrientDB is written in Java, therefore provides an native Java API for most operations. It
is bene�cial to us, because as mentioned in section 2.4, DS2OS is currently implemented
using Java. It has SQL-like query language and can be used in both transaction-full
and transaction-less mode. OrientDB supports several database models, such as Graph,
Document, Key/Value and Object [12]. It has several concepts of data modeling, that
need to described. In OrientDB data is generally divided into "clusters", "classes" and
"records".

Record is the smallest unit of data in OrientDB. Depending on the chosen database
model it can be "document", "vertex" and "edge". "Documents" are used in such models

4.2. Suitability of di�erent database types for VSL 31

as Document, Key/Value and Object model. If we use graph model than all records are
automatically seen either as "Vertexes" or "Edges". Records have a speci�c "class", that
holds information about the structure of records.

Class is a concept, that is derived form Object-Oriented Programming. OrientDB can
store records in a schema-less or schema-full way. Classes are used to specify types of
�elds in records and enforce constrains on these �elds if needed [12].

Clusters, can be seen the same as "tables" in relational database or "collections" in
document-oriented database. It is a way to group records based on their characteristics.
By default in OrientDB for each "class" a new cluster is created. Then a user can add
additional clusters and move the records across them. When using OrientDB as a
distributed database, clusters make it possible shard data across multiple machines [12].

For the purpose of this thesis we use Graph model in OrientDB database. Also for all
operations, that change the Context Tree, we use transaction-full mode of operation
with database. We are able to store a Context Tree without any alterations in its structure.
Each node of Context Tree is represented as "vertex" in database. It has incoming and
outgoing "edges", that represent hierarchical relations. We declare a custom a class
for our nodes, called "vslNode", which is subclass of general vertex class "V". Within
class we de�ne the types of the �elds, that a node can have. We use classes to ensure,
that each created node correctly structured and �lled with information, according to
speci�ed schema.

An example of structure of such node can be seen in table 4.2. @rid, @class are Ori-
entDB internal �elds, the �rst indicates the unique identi�cator of the record within the
database. The second one identi�es a class of the record in OrientDB. All other �elds
correspond to the general model of Context Node speci�ed in table 2.1.

Our �rst approach for archiving the nodes was to use the same technique, as with
MongoDB. We would have create two distinct clusters: "current" and "archive". And
store the most recent of state the Context Tree in the "current" cluster, and all previous
states in "archive" cluster. But during implementation this strategy have proved itself
to be ine�cient. Starting with version 2.2 OrientDB creates several clusters for every
class of records. Number of created clusters corresponds to number of CPU cores on
the server, that runs the database. Authors claim that this approach improves usage
of parallelism [12]. Therefore arti�cially limiting the number of clusters for "vslNode"
records may have impact on performance. Additionally during update operation of
Context Node we would have to either recreate a whole a�ected subtree in "archive"
cluster or copy each a�ected vertex separately without saving edges, therefore the
relations between them. In �rst case "archive" cluster would be populated with multiple
small subtrees, which do not have relations with nodes, that we una�ected on n-th
update. In second case we loose the relations completely, therefore losing the bene�ts of
"Graph-database". We would have had a cluster, with multiple "document-like" records,

32 Chapter 4. Design

similar to MongoDB. Taking previously mentioned information into consideration, we
decided to try another approach.

Out second approach is similar to one of the techniques mentioned in section 3.2.1. We
store all versions of a node within one record. For that we add a �eld that contains a
map object, where "version" is the key and "value" of the node is the value in map. But
we don’t remove the �elds "version", "value" from the "vslNode" structure. These �elds
are used to store the most recent state and version of the node. Therefore we can access
most recent state easily, without the need to iterate over entries in the map. The records
in OrientDB can reach up to 2GB in size [12]. We assume that after a certain point,
storing all previous states within the node itself will hinder the performance. To elevate
this constrain a limit of number of states should be introduced on application level. So
that after reaching the certain threshold a part of previous states will be deleted from
the node. At the moment this feature is not implemented.

As mentioned before developer can interact with OrientDB using either native Java API
or issuing SQL-like queries. We decided to use SQL-like queries, to make it easier to
maintain the implementation for other developers, as most of them are at least familiar
with SQL queries. Also documentation for SQL command is bigger and more verbose
for OrientDB [12]. Therefore it is easier to predict the behavior of database, caused by
performed operation.

@rid Custom
@class String
address String
value String

version Long
versions Embedded map

types Embedded list
readerIDs Embedded list
writerIDs Embedded list
restriction String

cacheParameters String
timestamp Date

Table 4.2: OrientDB Object structure

33

Chapter 5

Implementation

In this chapter we present selected parts of our implementation of databases mentioned
in chapter 4. Also we describe the implementation of service, that we use for perfor-
mance evaluation.

At the moment DS2OS, and its parts, such as Virtual State Layer and a number of
services are implemented using Java 7. Therefore we also use language constructs that
are compatible with Java 7 in our implementation.

5.1 MongoDB

This section gives an overview of how we implemented MongoDB for Virtual State
Layer. We describe the most complex implemented methods of VslDatabaseInterface.

For MongoDB we use version 3.4.10. To communicate with MongoDB we use native
MongoDB Java Driver, version 3.5.0. At the moment these are the most recent versions
of this software.

In this listing 5.1 you can see a source code of implementation of SetValueTree() method.
This method is used to set new values to multiple nodes within a Context Tree. As
parameter we give him a map containing addresses of nodes and corresponding values.
During execution we �rst gather all nodes, that will need a version update. As mentioned
in section 2.1.1.3 if we set a value of node, all its ancestors up to the service level should
also increments their version. Moreover if several nodes, that are about to receive a
new value, share the same ancestor, then version of an ancestor node should be only
incremented once. As a second step we copy the nodes, that change their value, into
"archive" collection, and update the nodes in current collection. In the second for loop
we do the same for nodes, that don’t receive a value update, but change their version
indirectly.

34 Chapter 5. Implementation

1 public void setValueTree(Map<String, String> values) throws NodeNotExistingException {

2 if (values.size() == 0) {

3 return;

4 }

5 final List<String> affectedNodes = new LinkedList<String>();

6 // gather all affected nodes. Every node will be only counted once, even if he

7 // is the parent of more then one changed node.

8 for (final String address : values.keySet()) {

9 if (!affectedNodes.contains(address)) {

10 affectedNodes.add(address);

11 }

12 for (final String parent : AddressParser.getAllParentsOfAddress(address, 2)) {

13 if (!affectedNodes.contains(parent)) {

14 affectedNodes.add(parent);

15 }

16 }

17 }

18 affectedNodes.removeAll(values.keySet());

19

20 // Iterating over valueTree, archiving the old nodes,

21 // setting new values and incrementing versions of affected nodes.

22 for (final Entry<String, String> entry : values.entrySet()) {

23 Document currentDocument = currentCollection.find(eq("address", entry.getKey())).

first();

24 archiveCollection.insertOne(currentDocument);

25

26 currentCollection.updateOne(eq("address", entry.getKey()),

27 combine(set("value", entry.getValue()),

28 set("timestamp", new Date()),

29 inc("version", 1)));

30 }

31 // incrementing version of ancestor nodes

32 for (final String entry : affectedNodes) {

33 Document currentDocument = currentCollection.find(eq("address", entry)).first();

34 archiveCollection.insertOne(currentDocument);

35 currentCollection.updateOne(eq("address", entry), inc("version", 1));

36 }

37 }

Listing 5.1: Implementation of SetValueTree() method

In this listing 5.2 we present a source code on the second most important method of
VslDatabaseInterface. getNodeRecord() takes two input values:

• Node address as a String, that represents the root of the subtree that will be
processed in the method.

• Parameters object of the internal type VslAddressParameters, which can be ex-
tended during development of Virtual State Layer. At the moment we can specify:
depth of requested subtree, version of the requested nodes in the subtree and

5.1. MongoDB 35

whether or not, we want complete information about the node, only values or
only metadata, such as types, restrictions, access parameters and etc.

To �lter out the documents based on the parameter, that are given, we use aggregation
pipeline. Aggregation pipeline is a concept, where documents go through several data
processing stages, which transform them into desired results [22]. During execution of
the method we construct several �ltering stages, with help of these methods (listing
A.1 and listing A.2, which can be examined in chapter A. Through usage of aggragation
pipeline and helper methods we want to ensure, that in case of further change and
extension of query parameters, we can easily adapt getNodeRecord() method, without
the need to rewriting from scratch.

1 public TreeMap<String, InternalNode> getNodeRecord(String address, VslAddressParameters

params)

2 throws NodeNotExistingException {

3 TreeMap<String, InternalNode> results = new TreeMap<String, InternalNode>();

4 MongoCollection<Document> chosenCollection = currentCollection;

5 List<Bson> appliedFilters = new ArrayList<Bson>();

6 if (address == null) {

7 throw new NodeNotExistingException("address was null");

8 }

9 int requestedVersion = params.getRequestedVersion();

10 int requestedDepth = params.getDepth();

11 if (requestedVersion != -1) {

12 chosenCollection = archiveCollection;

13 filterRequestedVersion(appliedFilters, requestedVersion);

14 }

15 Document rootNode = chosenCollection.find(eq("address", address)).first();

16 if (rootNode == null) {

17 throw new NodeNotExistingException("node does not exist");

18 }

19 filterRequestedDepth(appliedFilters, requestedDepth, address);

20 MongoCursor<Document> cursor = chosenCollection.aggregate(appliedFilters).iterator();

21 while (cursor.hasNext()) {

22 Document currentDocument = cursor.next();

23 results.put(currentDocument.getString("address"), constructInternalNode(

currentDocument, params));

24 }

25 if (results.isEmpty()) {

26 throw new NodeNotExistingException("Node not found: " + address);

27 }

28 return results;

29 }

Listing 5.2: Implementation of getNodeRecord() method

36 Chapter 5. Implementation

5.2 OrientDB

In section we present selected parts of implementation of OrientDB for Virtual State
Layer. During implementation we have used community edition, version 2.2.29, the
latest version of OrientDB available at the moment.

In the listing 5.3 you can see a method, that queries the record of a Context Node from
OrientDB. As mentioned in section 4.2.2 for operations that don’t change the data within
database we use transaction-less connection. In the method we �rst create a connection,
then using TRAVERSE query, start to collect all requested nodes. The MAXDEPTH
parameter speci�es how far we travel from the original node. It depends on values
within of VslAddressParameters object. We either collect only the node requested on
speci�ed address, it and its direct children or we travel all the way down in a Context
Tree. We construct �nal results in a separate method, where depending on values of
VslAddressParameters object, speci�c version of a Context Node can be requested, or
wether we need whole node, or only relevant data, such as value.

1 public TreeMap<String, InternalNode> getNodeRecord(String address, VslAddressParameters

params) throws NodeNotExistingException {

2 TreeMap<String, InternalNode> results = new TreeMap<String, InternalNode>();

3 int requestedDepth = params.getDepth();

4 if (address == null) {

5 throw new NodeNotExistingException("address was null");

6 }

7 OrientGraphNoTx graph = graphFactory.getNoTx();

8 try {

9 Iterable<Vertex> vertices = null;

10 switch (requestedDepth) {

11 case -1:

12 vertices = graph.command(new OCommandSQL(

13 "SELECT FROM (TRAVERSE in() FROM (SELECT FROM vslNode WHERE address = ?)

STRATEGY DEPTH_FIRST)"))

14 .execute(address);

15 break;

16 case 0:

17 vertices = graph.command(new OCommandSQL(

18 "SELECT FROM (TRAVERSE in() FROM (SELECT FROM vslNode WHERE address = ?)

MAXDEPTH 0 STRATEGY DEPTH_FIRST)"))

19 .execute(address);

20 break;

21 default:

22 vertices = graph.command(new OCommandSQL(

23 "SELECT FROM (TRAVERSE in() FROM (SELECT FROM vslNode WHERE address = ?)

MAXDEPTH 1 STRATEGY DEPTH_FIRST)"))

24 .execute(address);

25 }

26 if (vertices != null) {

27 Iterator<Vertex> vslNodes = vertices.iterator();

28 while (vslNodes.hasNext()) {

5.2. OrientDB 37

29 Vertex currentNode = vslNodes.next();

30 results.put((String) currentNode.getProperty("address"), constructInternalNode(

currentNode, params));

31 }

32 }

33 } catch (Exception e) {

34 System.out.println(e.getMessage());

35 }

36 if (results.isEmpty()) {

37 throw new NodeNotExistingException("Node not found: " + address);

38 }

39 return results;

40 }

Listing 5.3: Implementation of getNodeRecord() method in OrientDB

In the listing 5.4 we present our implementation of setValueTreeMethod() for OrientDB.
We use the same approach to collect all a�ected nodes, that will require a version update.
Then we initialize a transaction, where we do following. For all a�ected nodes, we query
them from the database, check whether they require a value update. If they do, then
we copy current version alongside with current into map object, that is stored in the
node under �eld "archive". Then we update the value and increment the version. If
they do not require value update, then we still copy current version and value in the
"archive" map object, and then only increment the version, keeping the value as it is.
After all operations are performed we commit the new state to the database. If not, then
all changes are reverted.

1 public void setValueTree(Map<String, String> values) throws NodeNotExistingException {

2 final List<String> affectedNodes = new LinkedList<String>();

3 // gather all affected nodes. Every node will be only counted once, even if he

4 // is the parent of more then one changed node.

5 for (final String address : values.keySet()) {

6 if (!affectedNodes.contains(address)) {

7 affectedNodes.add(address);

8 }

9 for (final String parent : AddressParser.getAllParentsOfAddress(address, 2)) {

10 if (!affectedNodes.contains(parent)) {

11 affectedNodes.add(parent);

12 }

13 }

14 }

15 System.out.println(affectedNodes.toString());

16 OrientGraph graph = graphFactory.getTx();

17 try {

18 for (String address : affectedNodes) {

19 Iterable<Vertex> query = graph.command(new OCommandSQL("SELECT FROM vslNode WHERE

address = ?")).execute(address);

20 Vertex currentNode = query.iterator().next();

21 Map<Long, String> archive = currentNode.getProperty("archive");

22 if (values.containsKey(address)) {

38 Chapter 5. Implementation

23 String valueToSet = values.get(address);

24 long currentVersion = currentNode.getProperty("version");

25 currentVersion++;

26 archive.put(currentVersion, valueToSet);

27 graph.command(new OCommandSQL("UPDATE vslNode SET value = ?, version = ?, archive

= ? WHERE address = ?"))

28 .execute(valueToSet, currentVersion, archive, address);

29 graph.command(new OCommandSQL("UPDATE vslNode SET timestamp = ? WHERE address = ?"

)).execute(new Date(), address);

30 } else {

31 long currentVersion = currentNode.getProperty("version");

32 currentVersion++;

33 String currentValue = currentNode.getProperty("value");

34 archive.put(currentVersion, currentValue);

35 graph.command(new OCommandSQL("UPDATE vslNode SET version = ?, archive = ? WHERE

address = ?"))

36 .execute(currentVersion, archive, address);

37 graph.command(new OCommandSQL("UPDATE vslNode SET timestamp = ? WHERE address = ?"

)).execute(new Date(), address);

38 }

39 }

40 graph.commit();

41 } catch (Exception e) {

42 System.out.println(e.getMessage());

43 graph.rollback();

44 } finally {

45 graph.shutdown();

46 }

47 }

Listing 5.4: Implementation of setValueTree() method in OrientDB

5.3 Database Benchmark

In section section 4.1 we have constructed a possible evaluation scenarios for Virtual
State Layer database backend. In following paragraphs we present selected parts of
implementation of them.

To evaluate a database backend we created a service within DS2OS, that connects to
local Knowledge Agent and then performs several tests. During setup phase, service
connects to speci�ed Knowledge Agent and registers its Context Model. Context Model
have to be created and placed in Context Model Repository beforehand. It is an xml �le,
that speci�es how the Context Tree is structured. Our Context Model consists of root
and two subtrees. Each subtree represent di�erent tree structure, either ’wide’ or ’deep’
(See section 4.1). It is constructed in such way to evaluate how the databases handle
di�erent tree structures. On this listing 5.5 you can see an example of ’wide’ tree part
of our test Context Model. For Extensibility it is divided into three parts:

5.3. Database Benchmark 39

• "broadRoot", that represent a root node and its direct children of a ’wide’ tree

• "broadSecondLevel", that represent the form of direct children of a root node

• "broad", that represent the leaf nodes in the ’wide’ tree

Each node within a tree has a simple address consisting of "node" and a number between
1..10. This is made for easier generation of addresses, represented as strings, that we
use for get/set operations within service DatabaseBenchmarkService.

Other parts of our Context Model, such as ’deep’ tree can be seen in Appendix A.
1 //broadRoot

2

3 <model type="/basic/text, /basic/composed">

4 <node1 type="/test/tree/broadSecondLevel" />

5 <node2 type="/test/tree/broadSecondLevel" />

6 <node3 type="/test/tree/broadSecondLevel" />

7 <node4 type="/test/tree/broadSecondLevel" />

8 <node5 type="/test/tree/broadSecondLevel" />

9 <node6 type="/test/tree/broadSecondLevel" />

10 <node7 type="/test/tree/broadSecondLevel" />

11 <node8 type="/test/tree/broadSecondLevel" />

12 <node9 type="/test/tree/broadSecondLevel" />

13 <node10 type="/test/tree/broadSecondLevel" />

14 </model>

15

16 //broadSecondLevel

17

18 <model type="/basic/text, /basic/composed">

19 <node1 type="/basic/text, /test/tree/broad" />

20 <node2 type="/basic/text, /test/tree/broad" />

21 <node3 type="/basic/text, /test/tree/broad" />

22 <node4 type="/basic/text, /test/tree/broad" />

23 <node5 type="/basic/text, /test/tree/broad" />

24 <node6 type="/basic/text, /test/tree/broad" />

25 <node7 type="/basic/text, /test/tree/broad" />

26 <node8 type="/basic/text, /test/tree/broad" />

27 <node9 type="/basic/text, /test/tree/broad" />

28 <node10 type="/basic/text, /test/tree/broad" />

29 </model>

30

31 //broad (represents leafs in a tree)

32

33 <model type="/basic/composed">

34 <node1 type="/basic/text" />

35 </model>

Listing 5.5: Context Model of ’wide’ tree, divided into three parts, which results in 110
nodes total

In the listing 5.6 you can an part of DatabaseBenchmarkService Class, that is responsible

40 Chapter 5. Implementation

for execution of the tests. At �rst we generate addresses of ’deep’ and ’wide’ tree, based
on previously discussed Context Model of our test tree. After, depending on number of
executed get and set operations we generate unique random alphabetic strings. These
strings are used as values for Context Nodes. To generate the strings we use Apache
Commons RandomStringUtils instance. Then for each type of a tree we execute all tests
5 times and calculate an average time time needed to perform a single test. The results
are written into a �le.

1 public void run() throws IOException {

2 List<String> deepTreeAddresses = generateAddressesDeepTree();

3 List<String> wideTreeAddresses = generateAddressesWideTree();

4 System.out.println("Start tests");

5 ArrayList<List<String>> strategies = new ArrayList<List<String>>();

6 strategies.add(wideTreeAddresses);

7 strategies.add(deepTreeAddresses);

8 for(List<String> strategy : strategies) {

9 int[] numberOfOperartions = {1, 10, 100};

10 for (int n : numberOfOperartions) {

11 ArrayList<String> values = generateRandomValues(n);

12 List<Double> resultsOfExecution = executeAllTests(5, n, values, strategy);

13 System.out.println(resultsOfExecution);

14 // write the results to a file

15 FileWrite write = new FileWrite("result");

16 int totalNumber =n*strategy.size();

17 write.append("Number of operations: " + totalNumber);

18 write.newLine();

19 for (Double averageTime : resultsOfExecution) {

20 write.append(averageTime.toString());

21 write.newLine();

22 }

23 write.closeFile();

24 }

25 }

26 System.out.println("End tests");

27 }

Listing 5.6: Implementation of run() method

As an example, an implementation of a balanced test can be seen in listing 5.7. In the
method we can specify how many times should it be executed, number of operations
performed on each node of a tree and what data set to use. During the execution will
get a number of get/set commands. In case of balanced test, the proportion is 50/50. To
record the time need to perform all runs of the test we use System.nanoTime() method,
which is recommended if two points in time should be accurately compared. In the end
we return the average time of all runs in milliseconds.

1 /**

2 * Execution of 50% set and 50% get commands

3 */

5.3. Database Benchmark 41

4 private Double balancedTest(int numberOfRuns, int numberOfOperations, ArrayList<String>

values, List<String> tree) {

5 long start = System.nanoTime();

6 for (int j = 1; j <= numberOfRuns; j++) {

7 for (String nodeAddress : tree) {

8 for (int i = 0; i < numberOfOperations; i++) {

9 if (i % 2 == 0) {

10 try {

11 connector.get(rootAddress + nodeAddress);

12 } catch (VslException e) {

13 System.out.println("Error on get operation: " + e.getMessage());

14 continue;

15 }

16 } else {

17 try {

18 connector.set(rootAddress + nodeAddress, nodeFactory.createImmutableLeaf(

values.get(i)));

19 } catch (VslException e) {

20 System.out.println("Error on set operation: " + e.getMessage());

21 continue;

22 }

23 }

24 }

25 }

26 }

27 long finish = System.nanoTime();

28 Double averageExecutionTimeInMilliseconds = (finish - start) / numberOfRuns /

1000000.0;

29 return averageExecutionTimeInMilliseconds;

30 }

Listing 5.7: Implementation of balanced test

43

Chapter 6

Evaluation

In this chapter we present the results, obtained during performance evaluation of di�er-
ent database backend for Virtual State Layer. As mentioned in chapter 4 and chapter 5
we evaluate the databases using a service within DS2OS, that is also designed and
constructed by us.

6.1 Assessment of expected functionality

After implementing MongoDB and OrientDB for Virtual State Layer, their functionality
was checked by unit tests, that we derived and extended from previously existed unit
tests for HSQLDB. After the functionality of MongoDB and OrientDB was assessed, we
have connected them to Virtual State Layer and started a local Knowledge Agent. After
several adjustments MongoDB has �awlessly started to function as database backend
for Knowledge Agent. Using Robo 3T (version 1.1, previously known as Robomongo),
which a lightweight GUI for MongoDB, we could see that Context Nodes are created
and updated according to required scheme.

After starting Knowledge Agent with a OrientDB as database backend, we have used
a build-in web GUI to assess whether the data is created properly, according to the
scheme, speci�ed in section 4.2.2. The web GUI of OrientDB has several di�erent ways
to represent the data: as separate records in a table, similar to relational database, and
as a graph. In the �gure 6.1 you can observe a view for graph representation with
whole Context Tree that is created on start-up of a single Knowledge Agent. Using this
web GUI we assessed that a Context Tree and nodes within it are created and updated
according to our design.

44 Chapter 6. Evaluation

Figure 6.1: Web GUI for graph representation in OrientDB

6.2 Evaluation of performance under di�erent load and
environment

After the above mentioned assessments we started the evaluation process. We evaluated
databases on the PC, located on the the Chair of Network Architectures and Services at
the Technical University of Munich. As mentioned before this choice was met, because
we want to get reproducible and comparable results. So that if other databases will be
implemented in the future, we would be able to directly compare their evaluation with
existing results. The speci�cations of the PC are listed in table 6.1.

OS Debian 9.2 stretch
Kernel x86_64 Linux 4.9.0-4-amd64
CPU Intel Xeon CPU E3-1265L V2 @ 3.5 GHz
RAM 15750 MiB

Table 6.1: PC speci�cation

Sequence of evaluated databases was following: HyperSQLDB, MongoDB and OrientDB.
The results can be seen in the following �gures: 6.2, 6.3, 6.4, 6.5, 6.6. The graphics are
based on results of 110, 1100, 11000 get and set operations. The number of operations
slightly di�ers from mentioned in section ??. The di�erence occurs because number
of operations in tied with the structure of test tree, that we use. For a tree structure
we used a "wide" tree mentioned in chapter 4. Other evaluation scenarios, that for
example assess di�erence in handling "wide" and "deep" tree have not been performed
and are considered a possible material for future work. All graphics have following

6.2. Evaluation of performance under di�erent load and environment 45

structure: x-axis represent time, counted in milliseconds, needed to perform number
of operations speci�ed on y-axis. Bars represent evaluated databases in the following
order: HyperSQLDB, MongoDB and OrientDB.

In the �gure 6.2 you can see results of evaluation scenarios, where we simulate write-
intensive environment. For that purpose we issue only "set" operations using DatabaseBench-
markService. As you can see, HyperSQLDB performs almost as good as MongoDB. The
di�erence between these databases becomes signi�cant only after 11000 performed
operations. OrientDB has performed signi�cantly worse. We assume that this behavior
is related to the way we keep the archive in OrientDB. After 11000 set operations each
node has at least 100 previous states, stored in a map within the node itself. As men-
tioned in chapter 4 we can lift this constrain by introducing a mechanism, that monitors
and limits the number of states in each node, on the application level.

Figure 6.2: A graph representing performance by evaluation scenario with 100% set /
0% get operations

In the �gure 6.3 you can see results of evaluation scenarios, where we simulate slightly
less write-intensive environment. 20% of operations are in this case are "get" operations.
In them we query value of a single node on speci�ed address. The di�erences in perfor-
mance are similar to the previous case, although in this case, HSQLDB has performed
even slightly better than MongoDB at 1100 and 11000 operations.

In the �gure 6.4 you can see results of evaluation scenarios, where we simulate balanced
environment, consisting of 50% set and 50% get operations. On the scale of hundred
operations, MongoDB performs signi�cantly better then other solutions. On the same
scale HSQLDB and OrientDB are similar in therms of performance. After 1100 operations

46 Chapter 6. Evaluation

MongoDB and HSQLDB perform almost on the same level. And OrientDB, as expected,
performs several times slower.

In the �gure 6.5 and �gure 6.6 you can see results of evaluation scenarios, where we
simulate a more read-intensive environment. Here di�erence between MongoDB and
other databases becomes more pronounced on each scale of performed operations. Mon-
goDB performs at least 2 times faster then other competitors, when number operations
exceed 1100.

6.3 Summary

After evaluation of our solution we can summarize our �ndings as follows.

OrientDB �ts all requirements, that are posed in chapter 2. It can store tree-structures
natively, has Java API, can ensure consistency during operations. But our implemen-
tation of archival mechanism is proven itself to be slower than expected. To solve this
problem, we either have to monitor and restrict number of node’s archived states on the
application level. Or use similar approach that we used with MongoDB, and store all
previous states in another cluster in the database. Based on this information we suggest
that OrientDB is not a suitable solution at the moment.

MongoDB also �ts above mentioned requirements. We are able to e�ciently model
a Context Tree using techniques, that are described in section 4.2.1. Based on results
of performance evaluation we can suggest that MongoDB is in most cases as fast as
existing solution, or even faster when it comes to read-intensive environments. The
main constrain of MongoDB is that we can not ensure full consistency when performing
update of a Context Node. Because each interaction is atomic, during update of node’s
ancestors versions, an error in execution can lead to unexpected state of database.

6.3. Summary 47

Figure 6.3: A graph representing performance by evaluation scenario with 80% set / 20%
get operations

Figure 6.4: A graph representing performance by evaluation scenario with 50% set / 50%
get operations

48 Chapter 6. Evaluation

Figure 6.5: A graph representing performance by evaluation scenario with 20% set / 80%
get operations

Figure 6.6: A graph representing performance by evaluation scenario with 0% set / 100%
get operations

49

Chapter 7

Conclusion

In this thesis we have evaluated suitability of di�erent types of databases for the Virtual
State Layer, that is part of Distributed Smart Space Orchestration System. At �rst we
presented and describe the concepts behind the Virtual State Layer, its purpose and
current state of developed prototype. The most important for us was the hierarchical
structure of Virtual State Layer data and speci�c versioning scheme inside Virtual State
Layer. Additionally we have explored di�erent types of databases, their strengths and
limitations.

We have derived relevant requirements of the Virtual State Layer, considering the data
model it uses. Based on these requirement we have evaluated the most suitable database
types for it. Additionally we found and discussed several evaluations of databases
performance, that were done by other researchers before us. Using these evaluations
and our own assumptions we have limited our choice to several most relevant speci�c
databases, MongoDB and OrientDB. The choices about how to represent Virtual State
Layer data in di�erent databases, were in�uenced by relevant work of others, that we
have identi�ed. This relevant information gave us an idea how to e�ciently handle
hierarchically structured Virtual State Layer data.

During implementation phase we have implemented above mentioned databases for
Virtual State Layer, enabling all required CRUD operations. For further evaluation of
performance we have design and implemented several evaluations scenarios in form of
a service within Distributed Smart Space Orchestration System. Such choice was made
to simulate the real-world interaction between a service, that is not aware of database
behind Knowledge Agent, which is the entity of which Virtual State Layer consists.

The evaluation scenarios were constructed in way, that simulates di�erent environments,
in which Distributed Smart Space Orchestration System can be used. We wanted to
observe how di�erent databases will behave in environments, that are either read or
write intensive.

50 Chapter 7. Conclusion

During evaluation phase we have ran prepared tests �rst on a private machine, to obtain
�rst results. Then we have ran them on a hardware, that is stationed on the networking
chair of TU Munich. We decided to so to create a results, that can be comparable in the
future with other, if further databases will be implemented and evaluated for Virtual
State Layer.

After evaluation we came to conclusion, that MongoDB can be used as a database back-
end for Virtual State Layer. It has similar performance as HSQLDB in write-intensive
environment and performs better than HSQLDB in read-intensive environment. On
other hand, implementation of OrientDB at its current state is not a suitable solution. It
performs signi�cantly worse than other evaluated databases.

7.1 Future work

We consider implementation of other database backend for Virtual State Layer, as a main
direction for future work. In particular it would be bene�cial to consider more advanced
relational databases, such as PostgreSQL as possible candidate for implementation in
the future. Additionally current implementation of selected databases can be evaluated
and further improved.

The evaluation scenarios can be further extended and tuned to represent the conditions,
under which DS2OS functions, more precisely. At the moment they are relatively
straightforward, enabling much con�guration. In the future the service that is used for
benchmarking can be extended to support highly con�gurable scenarios. It would make
future evaluation more accurate and easier.

It should be kept in mind, that databases, that we selected and implemented, are in
constant development. Therefore in the future new features can be introduced by their
developers. Which can potentially improve performance and make the implementation
of them for Virtual State Layer easier and more e�cient. This in its case bene�t the
Distributed Smart Space Orchestration System as a whole.

51

Appendix A

Code examples

1 /**

2 * Adds filters to aggregation pipeline, which are needed to retrieve requested

3 * version of a node from "archive" collection

4 *

5 * @param appliedFilters

6 * @param requestedVersion

7 */

8

9 private void filterRequestedVersion(List<Bson> appliedFilters, int requestedVersion) {

10

11 appliedFilters.add(Aggregates.match(lte("version", requestedVersion)));

12 appliedFilters.add(Aggregates.sort(Sorts.ascending("address", "version")));

13 appliedFilters.add(Aggregates.group("$address", Accumulators.last("types", "$types"),

14 Accumulators.last("readerIDs", "$readerIDs"), Accumulators.last("writerIDs", "

$writerIDs"),

15 Accumulators.last("restriction", "$restriction"),

16 Accumulators.last("cacheParameters", "$cacheParameters"), Accumulators.last("

version", "$version"),

17 Accumulators.last("value", "$value"), Accumulators.last("timestamp", "$timestamp"),

18 Accumulators.last("ancestors", "$ancestors"), Accumulators.last("parent", "$parent

")

19

20));

21 appliedFilters.add(Aggregates.project(fields(computed("address", "$_id"), include("

types", "readerIDs", "writerIDs",

22 "restriction", "cacheParameters", "version", "value", "timestamp", "ancestors", "

parent"), exclude("_id"))));

23 }

Listing A.1: Helper method for getNodeRecord() method, version choice

1 private void filterRequestedDepth(List<Bson> appliedFilters, int requestedDepth, String

address) {

2 switch (requestedDepth) {

52 Appendix A. Code examples

3 case -1:

4 appliedFilters.add(Aggregates.match(or(eq("address", address), in("ancestors",

address))));

5 break;

6 case 0:

7 appliedFilters.add(Aggregates.match(eq("address", address)));

8 break;

9 case 1:

10 appliedFilters.add(Aggregates.match(or(eq("address", address), eq("parent", address)

)));

11 break;

12 }

13 }

Listing A.2: Helper method for getNodeRecord() method, depth choice

1 //combinedTree, root node of whole Context Model

2 <model type="/basic/text, /basic/composed">

3 <wide type="/test/tree/broadRoot" />

4 <deep type="/test/tree/deepTree/rootDeepNode" />

5 </model>

6

7 //rootDeepNode, root node of ’deep’ tree

8 <model type="/basic/composed">

9 <node1 type="/basic/text, /test/tree/deepTree/intermediateDeepNode" />

10 <node2 type="/basic/text, /test/tree/deepTree/intermediateDeepNode" />

11 <node3 type="/basic/text, /test/tree/deepTree/intermediateDeepNode" />

12 </model>

13

14 //intermediateDeepNode, levels between root node and leafs of ’deep’ tree

15 <model type="/basic/composed">

16 <node1 type="/basic/text, /basic/composed">

17 <node1 type="/basic/text, /basic/composed">

18 <node1 type="/basic/text, /basic/composed">

19 <node1 type="/basic/text, /basic/composed">

20 <node1 type="/basic/text, /basic/composed">

21 <node1 type="/basic/text, /test/tree/deepTree/finalDeepNode"/>

22 </node1>

23 </node1>

24 </node1>

25 </node1>

26 </node1>

27 </model>

28

29 //finalDeepNode, leaf nodes of ’deep’ tree

30 <model type="/basic/composed">

31 <node1 type="/basic/text" />

32 <node2 type="/basic/text" />

33 <node3 type="/basic/text" />

34 </model>

Listing A.3: Test tree Context Model

53

Bibliography

[1] M.-O. Pahl, “Distributed smart space orchestration,” Dissertation, Technische Uni-
versität München, München, 2014.

[2] Y. Li and S. Manoharan, “A performance comparison of sql and nosql databases,”
in 2013 IEEE Paci�c Rim Conference on Communications, Computers and Signal
Processing (PACRIM), Aug 2013, pp. 15–19.

[3] C. Strauch, “Nosql databases,” accessed: 2017-05-11.

[4] J. Celko, Joe Celko’s Trees and Hierarchies in SQL for Smarties, 2nd ed. San
Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 2012.

[5] “Adjacency list vs. nested sets: Postgresql,” https://explainextended.com/2009/09/
24/adjacency-list-vs-nested-sets-postgresql/, accessed: 2017-06-25.

[6] “Nested set model,” https://en.wikipedia.org/wiki/Nested_set_model, accessed:
2017-06-25.

[7] “Closure tables for browsing trees in sql,” https://coderwall.com/p/lixing/
closure-tables-for-browsing-trees-in-sql, accessed: 2017-06-25.

[8] R. Hecht and S. Jablonski, “Nosql evaluation: A use case oriented survey,” in 2011
International Conference on Cloud and Service Computing, Dec 2011, pp. 336–341.

[9] “Db-engines ranking of key-value stores,” https://db-engines.com/en/ranking/
key-value+store, accessed: 2017-07-25.

[10] “Model tree structures,” https://docs.mongodb.com/manual/applications/
data-models-tree-structures/, accessed: 2017-06-26.

[11] “Db-engines ranking of document stores,” https://db-engines.com/en/ranking/
document+store, accessed: 2017-07-25.

[12] “Orientdb manual - version 2.2.x,” https://orientdb.com/docs/2.2/, accessed: 2017-
11-25.

[13] T. A. M. Phan, J. K. Nurminen, and M. D. Francesco, “Cloud databases for internet-
of-things data,” in 2014 IEEE International Conference on Internet of Things (iThings),

https://explainextended.com/2009/09/24/adjacency-list-vs-nested-sets-postgresql/
https://explainextended.com/2009/09/24/adjacency-list-vs-nested-sets-postgresql/
https://en.wikipedia.org/wiki/Nested_set_model
https://coderwall.com/p/lixing/closure-tables-for-browsing-trees-in-sql
https://coderwall.com/p/lixing/closure-tables-for-browsing-trees-in-sql
https://db-engines.com/en/ranking/key-value+store
https://db-engines.com/en/ranking/key-value+store
https://docs.mongodb.com/manual/applications/data-models-tree-structures/
https://docs.mongodb.com/manual/applications/data-models-tree-structures/
https://db-engines.com/en/ranking/document+store
https://db-engines.com/en/ranking/document+store
https://orientdb.com/docs/2.2/

54 Bibliography

and IEEE Green Computing and Communications (GreenCom) and IEEE Cyber, Phys-
ical and Social Computing (CPSCom), Sept 2014, pp. 117–124.

[14] H. Fatima and K. Wasnik, “Comparison of sql, nosql and newsql databases for
internet of things,” in 2016 IEEE Bombay Section Symposium (IBSS), Dec 2016, pp.
1–6.

[15] J. S. van der Veen, B. van der Waaij, and R. J. Meijer, “Sensor data storage perfor-
mance: Sql or nosql, physical or virtual,” in 2012 IEEE Fifth International Conference
on Cloud Computing, June 2012, pp. 431–438.

[16] M. G. Jung, S. A. Youn, J. Bae, and Y. L. Choi, “A study on data input and output
performance comparison of mongodb and postgresql in the big data environment,”
in 2015 8th International Conference on Database Theory and Application (DTA),
Nov 2015, pp. 14–17.

[17] “How to track versions with mongodb,” http://www.askasya.com/post/
trackversions/, accessed: 2017-07-20.

[18] “Further thoughts on how to track versions with mongodb,” http://www.askasya.
com/post/revisitversions/, accessed: 2017-07-20.

[19] J. Yao, “An e�cient storage model of tree-like structure in mongodb,” in 2016 12th
International Conference on Semantics, Knowledge and Grids (SKG), Aug 2016, pp.
166–169.

[20] D. Jayathilake, C. Sooriaarachchi, T. Gunawardena, B. Kulasuriya, and T. Dayaratne,
“A study into the capabilities of nosql databases in handling a highly heterogeneous
tree,” in 2012 IEEE 6th International Conference on Information and Automation for
Sustainability, Sept 2012, pp. 106–111.

[21] “Mongodb docs,” https://docs.mongodb.com/, accessed: 2017-11-25.

[22] “Aggregation pipeline,” https://docs.mongodb.com/manual/core/
aggregation-pipeline/, accessed: 2017-11-25.

http://www.askasya.com/post/trackversions/
http://www.askasya.com/post/trackversions/
http://www.askasya.com/post/revisitversions/
http://www.askasya.com/post/revisitversions/
https://docs.mongodb.com/
https://docs.mongodb.com/manual/core/aggregation-pipeline/
https://docs.mongodb.com/manual/core/aggregation-pipeline/

	Introduction
	Goals of the thesis
	Methodology

	Outline

	Analysis
	Distributed Smart Space Orchestration System
	Virtual State Layer

	Metrics
	Database Types
	Relational databases
	NoSQL

	Requirements

	Related Work
	Current research on comparison of SQL and NoSQL databases
	Compared databases: MySQL, MongoDB, CouchDB, Redis
	Compared databases: PostegreSQL, Cassandra, MongoDB
	Compared databases: MongoDB, RavenDB, CouchDB, Cassandra, Hypertable, Couchbase, MS SQL Express
	Compared databases: PostgreSQL, MongoDB
	Compared databases: MySQL, MongoDB, VoltDB
	Summary

	Versioning
	Versioning in document-oriented database

	Tree-structures
	Storage model of tree-structure in MongoDB
	Comparison of NoSQL databases in handling tree-like structure

	Design
	Design of evaluation scenarios
	Suitability of different database types for VSL
	Document-oriented database
	Multi-model database

	Implementation
	MongoDB
	OrientDB
	Database Benchmark

	Evaluation
	Assessment of expected functionality
	Evaluation of performance under different load and environment
	Summary

	Conclusion
	Future work

	Code examples
	Bibliography

