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Abstract

Drivers that run in user-space have lots of advantages over traditional kernel drivers. One of
these advantages is the choice of programming language is not limited to the traditional few
languages.

To understand whether Haskell is a viable choice to write a network driver in, we implement a
user-space network driver for Intel 82599 network interface cards and evaluate its performance.
The driver, named ixy.hs after the original implementation ixy, is around 1000 lines of Haskell
code and implements basic functionality for receiving and sending packets on compatible NICs.

We evaluate the resulting driver by looking at its forwarding capabilities in a high through-
put scenario, conclude whether Haskell can keep up with other languages in the implementation
of user-space network drivers and whether it can aid the developer in the creation of a reliable
driver.
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Chapter 1

Introduction

Device drivers are arguably complex pieces of software whose requirements are very
strict on reliability and performance. Functional languages can provide a fair amount of
intellectual advantage towards structuring complex applications well. A well-designed
architecture leads to easier feature introduction, debugging and allows for increased
re-usability of code [10]. At first glance this makes functional languages a prime target
for the development of device drivers. In the following chapters we investigate which
properties of functional languages are well suited for this task, and which properties
may impact the development negatively. We then go on to inspect the ixy Haskell
rewrite, ixy.hs, and see how it performs and finally answer the question: should one
write network drivers in Haskell?

1.1 On Haskell & functional languages

Haskell is a polymorphically statically typed, lazy, purely functional language [12]. To
understand these properties that make Haskell a language that is very near to some
enthusiast’s hearts, we must first look at some crude definitions.
According to Hughes what makes a language functional, as opposed to the traditional
imperative pattern, is immutability of variables, a lack of side e�ects in functions and
referential transparency [10]. Referential transparency means that a function always
provides the same output for a certain input. The term lazy in the above definition of
Haskell refers to a very specific aspect of the way expressions are evaluated in Haskell.
It refers to lazy evaluation of expressions, which means expressions are only evaluated,
when their actual value is needed and not at the time of assignment or when they are
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passed to a function as a parameter [15]. Next we look at what makes Haskell a strong
choice of language for any kind of programming work.

1.1.1 Abstraction
Two fundamental areas of programming are memory management and sequencing of
instructions. Memory management has been largely abstracted away by some modern
languages with the use of garbage collection. Other languages, e.g., Rust or partially
D, still work with manual management, but there is a certain visible trend towards the
compiler supporting the programmer in the memory management. Haskell is a garbage-
collected language, so its memory management has also been largely abstracted away
from the programmer’s control. Imperative languages are based on sequencing instruc-
tions one after another and so defining a flow of execution, that will eventually provide
some kind of desired result. In these languages abstracting away the sequencing from the
programmer is virtually impossible, since the whole model of execution of the language
relies on sequencing. Functional languages do not depend on an order of execution,
rather the programmer defines a desired computation, not when or how it is executed.
By doing this functional languages abstract away the component of sequencing from the
programmer, just like some languages abstract away memory management with the use
of garbage collection [20].

1.1.2 Type System
Haskell is a strongly typed language. This means in Haskell there are no implicit type
conversions, as can be gathered by looking at ixy.hs’s code base. There are a total of 24
calls to fromIntegral to convert an integral type into a numerical one. As can be seen
this results in quite a bit of work for the programmer, but it does provide the advantage
of prohibiting unintentionally using a variable as a di�erent type, which most probably
could result in a bug. Additionally Haskell is statically type-checked, which means the
types of variables are checked at compile-time, and not a run-time. This makes any kind
of type error during run-time impossible. A few select languages including Standard
ML, F, OCaml, Rust, Haskell and others also support automatic type inference. This
means the compiler can without any user annotations infer the type of a variable and
use this to type-check the variable at compile-time.

1.1.3 Garbage collection
Haskell is a garbage-collected language. It is also a language with (mostly) immutable
data types. The garbage collector uses this fact to simplify and speed up its operation.
Immutability forces a lot of temporary variables to be allocated, since variables can
not be changed. Haskell’s garbage collector scans only the last created set of variables

2



1.2 Drivers in Linux

and marks those variables that are reachable from it as alive. The entire rest of the
temporary variables can be removed by the garbage collector [8].

1.2 Drivers in Linux

There are two options on how to develop a driver, for a device of your choosing, on
Linux.

1.2.1 Kernel space
The first, and more traditional, way is to write a kernel module, which can then be
dynamically loaded by the kernel. These modules run in kernel space, entrusting them
with control over the whole system, which requires special care from the developer of
the module. An error in a module could jeopardize the integrity of the system, by e.g.,
writing to a wrong memory location and causing a crash of the system, or a corruption
of data. This means a developer must be far more careful and thorough, when providing
a kernel module to a user. Development of kernel modules is further complicated by
a lack of debugging tools and limited ability to test execution. With kernel modules
there is not much of a choice for which language to implement them in. Functions
supplied by the kernel are written in C, which means language with tedious foreign
function interface functionality can become a nightmare for the developer. Further the
architecture of the driver system in the kernel is designed in a way, that simply can’t
harness the advantages other languages could provide. A driver developed in a di�erent
language would always have to accept having to bend their architecture to fit into the C
architecture the kernel prescribes and could not really use the more advanced features
the languages may bring. Additionally anecdotal evidence suggests a certain language
preference concerning kernel code among kernel maintainers, which makes it unlikely
that the developed kernel module would be included in the Linux kernel source code, if
that were a goal of the e�orts [16].

1.2.2 User space
The other option is to develop a user-space driver. User-space drivers run in user-
space as opposed to running in kernel space, like a kernel module. This comes with a
decrease in privileges, when compared to a kernel module, which means the likelihood
to produce a drastic bug is reduced. A huge advantage of writing a user-space driver
is the choice of language is essentially up to the developer. Since the driver does not
rely on the functions provided by the kernel any language could be chosen theoretically.
Another quality-of-life improvement is the developer can now again make use of his

3



Chapter 1: Introduction

debugging tools to debug certain sections of his driver. When using a kernel module
whose functions are called from user space an overhead is produced due to context
switches. User-space drivers do not su�er from this overhead, since they do not call
functions in kernel space. This makes it possible to write even faster drivers, than a
kernel module approach could. In fact a number of user-space driver frameworks have
reached popularity in recent years, like Intel’s DPDK [3] and Snabb [19].

1.2.3 Ixy and Ixy.hs
Ixy is a user-space driver for Intel NICs in the ixgbe family. Its purpose is to show
that driving a user-space driver for a network card is not an impossible task. For this
purpose it tries to be concise, especially readable, and free of external dependencies. It
is written in C, as it provides a solid base to compare other language implementations
to and because C is a language many programmers understand reasonably well [13].
Ixy.hs is a rewrite of the mentioned ixy user-space driver in Haskell. Instead of con-
ciseness or lack of dependencies, its goals are to be idiomatic Haskell and to evaluate
the suitability of Haskell as a language for writing drivers.

In the following chapters we look at how Haskell performed as a language for ixy.hs,
what advantages and disadvantages it came with, and how it performed in various
criteria.
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Chapter 2

Ixy.hs

Ixy.hs, including forwarding application, consists of 1359 lines of Haskell code (includ-
ing comments), and so is a bit larger than the original ixy implementation, that is
around 1000 lines of C. An often heard statement is, that functional languages result in
more compact code. In general this is true, but for code that is nearly entirely monadic,
like ixy.hs, this statement doesn’t hold up. Since lines of code are not a good metric
of code quality we examine some more interesting implementation details of ixy.hs.

2.1 Architecture

In the following sections we examine how ixy.hs implements the architecture of the
original ixy implementation in Haskell in detail.

2.1.1 Queues, Descriptors and DMA
An Intel 82599 NIC supports up to 128 receiving, and 128 transmitting queues to be
active at the same time. The simplest case is the use of one receive and one transmit
queue. A setup with multiple receive queues allows splitting up packets according to
filters or hashes, while multiple transmit queues are merged in the NIC [7].
Each queue requires a block of memory it can store its descriptors in. For this purpose
the driver requires a hugetlbfs to be mounted at /mnt/huge, where the driver allocates
hugepages to be used as memory for the queues. In ixy.hs allocation of memory for
queues is done in the allocateMem function defined in Memory.hs. The function is
shown in its entirety in Listing 2.1.

It first opens a temporary file in the directory /mnt/huge by using openBinaryTempFile.
Since /mnt/huge is a hugetlbfs filesystem the created file is a hugepage. A convenient
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allocateMem

:: (MonadThrow m, MonadIO m, MonadLogger m)

=> Int

-> Bool

-> m (Ptr a)

allocateMem size contiguous = do

$(logDebug)

$ "Allocating a memory chunk with size "

<> show size

<> "B (contiguous="

<> show contiguous

<> ")."

let s = if size �mod� hugepageSize /= 0

then shift (shiftR size hugepageBits + 1) hugepageBits

else size

liftIO $ do

(_, h) <- PathIO.openBinaryTempFile (Path.absDir "/mnt/huge")

(Path.relFile "ixy.huge")

PathIO.hSetFileSize h $ fromIntegral s

let f = memoryMap Nothing

(fromIntegral s)

[MemoryProtectionRead, MemoryProtectionWrite]

MemoryMapShared

ptr <- bracket (handleToFd h) closeFd (\fd -> Just fd �f� 0)

memoryLock ptr $ fromIntegral s

return ptr

Listing 2.1: allocateMem defined in Memory.hs
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2.1 Architecture

data ReceiveDescriptor =

ReceiveRead { rdBufPhysAddr :: {-# UNPACK #-} !Word64

, rdHeaderAddr :: {-# UNPACK #-} !Word64 }

| ReceiveWriteback { rdStatus :: {-# UNPACK #-} !Word32

, rdLength :: {-# UNPACK #-} !Word16}

Listing 2.2: Representation of an advanced receive descriptor in ixy.hs

feature of using openBinaryTempFile is that it generates a unique random name for
the temporary file. Next allocateMem mmaps the just allocated hugepage and mlocks it.
A pointer to the beginning of the hugepage is then returned to the caller. This memory
can then be used by the driver to store the descriptors of a queue. These descriptors
serve as a channel of communication between the NIC and the driver. The NIC provides
a choice between using legacy and advanced descriptors. Ixy.hs implements advanced
descriptors, as does the original implementation. The representations of receive and
transmit descriptors can be seen in Listings 2.2 and 2.3 respectively. Take note, that
both descriptors are missing some fields, when compared to the C implementation.
Unused fields were simply never implemented, but could be added by adding them in
the types declaration and correctly adjusting the Storable implementation of the type.
There are two noteworthy aspects about both these descriptor types. Firstly each type
of descriptor has two layouts in memory, depending on who last wrote the descriptor.
If the descriptor is written by the driver it needs to follow the layout specified by
ReceiveRead or TransmitRead, if instead it is written by the NIC it follows the layout
of ReceiveWriteback or TransmitWriteback. Essentially ixy.hs uses a sum type to
represent a C union in this case. The second noteworthy aspect is the use of the
{-# UNPACK #-} pragma. A strict field decorated with this pragma is unpacked by
the compiler and directly inserted into the memory representation of the parent type
to remove a level of indirection [1]. Additionally we implement the Storable typeclass
for both descriptors. The implementation for ReceiveDescriptor is shown in Listing
2.4. An implementation for TransmitDescriptor follows analogously. Implementing
this typeclass gives us access to three particularly convenient functions for descriptors:
peek, poke and sizeOf. These functions, once implemented, take care of the layout
of the ReceiveDescriptor, when it is marshalled to memory or demarshalled from
memory.

2.1.2 Memory pools and Packet Buffers
In the previous section we explained how descriptors are stored and what their purpose
is. In this section we have a look at another integral structure of operation called packet
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data TransmitDescriptor =

TransmitRead { tdBufPhysAddr :: {-# UNPACK #-} !Word64

, tdCmdTypeLen :: {-# UNPACK #-} !Word32

, tdOlInfoStatus :: {-# UNPACK #-} !Word32 }

| TransmitWriteback { tdStatus :: {-# UNPACK #-} !Word32 }

Listing 2.3: Representation of an advanced transmit descriptor in ixy.hs

ReceiveDescriptor

instance Storable ReceiveDescriptor where

sizeOf _ = 16

alignment = sizeOf

peek ptr = do

status <- peekByteOff ptr 8

len <- peekByteOff ptr 12

return ReceiveWriteback {rdStatus=status, rdLength=len}

poke ptr (ReceiveRead bufPhysAddr headerAddr) = do

poke (castPtr ptr) bufPhysAddr

pokeByteOff ptr 8 headerAddr

poke _ (ReceiveWriteback _ _) = return $

panic "Cannot poke a writeback descriptor."

Listing 2.4: Implementation of the Storable typeclass for ReceiveDescriptor.

8



2.1 Architecture

data MemPool = MemPool { mpBaseAddr :: Ptr Word8

, mpNumEntries :: Int

, mpFreeBufs :: Array.IOUArray Int Int

, mpTop :: IORef Int

}

Listing 2.6: Implementation of a memory pool for packet bu�ers in ixy.hs

bu�ers. Packet bu�ers are essentially bu�ers for packets with some additional metadata
storage.

data PacketBuf = PacketBuf { pbId :: Int

, pbAddr :: PhysAddr

, pbSize :: Int

, pbData :: ByteString }

Listing 2.5: Implementation of packet bu�ers in ixy.hs.

In Listing 2.5 we can see the implementation of a packet bu�er in ixy.hs. A few inter-
esting aspects about this implementation are the newtype PhysAddr, which is a wrapper
around a Word64 and the packet’s data being stored as a ByteString. The newtype

is a zero-cost abstraction, that disallows using a generic Word64 where a PhysAddr is
expected. The data being presented as a ByteString is a quite idiomatic approach
in Haskell. Looking at both descriptor types again (Figures 2.2 and 2.3), we can see,
that both have fields that point to a packet bu�er. In the case of ReceiveDescriptor

that field is rdBufPhysAddr, while for TransmitDescriptor it is tdBufPhysAddr. The
NIC assumes that the packet bu�er associated with descriptor is at the physical address
specified by these fields. So we necessitate of a way to translate the virtual address
of our packet bu�ers to their physical equivalents. In ixy.hs the translate function
defined in Memory.hs fulfills this criterion. It is in essence the same as its equivalent in
the original implementation, so we won’t go into it in further detail.
Since packet bu�ers are reusable and the mapping between descriptors and them is ar-
bitrary, they are organized by a data structure called memory pool. The pool provides a
currently unused packet bu�er to the user, when requested, and allows manually freeing
the allocated bu�er to throw it back into the pool. The definition for ixy.hs’s memory
pools, called MemPools, is shown in Listing 2.6. As we can see the implementation of
a memory pool in ixy.hs is basically the same, as the one in the original implemen-
tation. The only noteworthy aspect of MemPool is, that it uses an IOUArray, which is
a mutable unboxed array in the IO monad [4]. Being a mutable data structure it is
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not particularly idiomatic to use IOUArray, but it is certainly the option with the least
boilerplate. The mpFreeBufs array has both Int keys, as well as Int values. We make
use of this by recording a mapping of descriptor to packet bu�er in this array. Since
both descriptors and packet bu�ers have a fixed size, we can use their position in the
respectively allocated memory blocks as an integer id. E.g. descriptor number four can
be found at base + 4 ú 16, where base is the beginning of the descriptor memory block,
and 16 is the size of the descriptor in bytes.

2.1.3 Mutability and IORefs
One property Haskell promises is immutability – the inability to change a expression
once it has been evaluated. Generally immutability can result in being able to more
easily reason about code. When working with an external device, that holds some state
information, this inability to easily reflect changes in state is quite inconvenient. Haskell
provides some ways around having to juggle immutable variables all throughout your
code. The less interesting way is to use the State monad. This monad is similar to the
Reader monad in function, but instead of allowing read-only access to the contained
value, it also allows writing of the value. When the monad is applied to a function and
the value is modified, a new immutable variable is implicitly returned. Essentially this
is only syntactic sugar around the original approach of juggling immutable variables.
The more interesting way is the use of IORefs (and StRefs). These types provide real
mutability, as one would expect from a imperative language. An IORef holds a reference
to a variable, that can be modified by functions like modifyIORef or writeIORef. In
particular this allows us to have mutable fields within immutable data structures, which
ixy.hs uses plenty. Listing 2.7 provides an example of exactly this scenario. It is
required to be able to modify the index of the queue (which represents the queue’s
RDT) without the additional overhead of having to define a whole new queue, which
in turn would prompt a redefining of the structure queues are stored in. With the
use of IORef we avoided this huge overhead of having to create a new version of this
huge nested data structure. Had we not done this a rewrite would be required after
every single batch of packets that is received leading to an enormous deterioration in
performance.

2.2 Implementation

In this section we examine ixy.hs’s API.

10
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indexRef <- liftIO $ newIORef (0 :: Int)

return $! RxQueue

{ rxqDescriptor = descriptor

, rxqMemPool = memPool

, rxqMap = m

, rxqIndexRef = indexRef

}

Listing 2.7: Excerpt from Queue.hs that shows use of IORef.

2.2.1 Initializing a device
A user of ixy.hs can initialize his Intel 82599 device by using the provided newDriver

function. The signature of the newDriver function is seen in Listing 2.8.

newDriver

:: (MonadCatch m, MonadThrow m, MonadIO m, MonadLogger m)

=> Text -- ^ The �BusDeviceFunction� of the device.
-> Int -- ^ The number of rx queues to initialize.
-> Int -- ^ The number of tx queues to initialize.
-> m (Maybe Device)

Listing 2.8: The signature of the newDriver function.

So to successfully initialize a device the user needs to provide a valid PCI identifier, and
the number of receive queues, as well as transmit queues. Under the hood this function
calls Ixgbe.init, which performs a substantial amount of initialization work, before
any work can be done by the user.
The first step is to unbind any currently active drivers from the target device. This is
done by writing the BDF of the target device to the unbind file of the active driver.
Next we enable direct memory access for the device. This is required to let the driver
and the device read/write from the same memory location, where we store descriptors
and packets. After both unbinding and enabling DMA are done we can mmap the device’s
resource file, which allows us access to the base address registers (BAR) of the device.
These allow us to configure the device to our liking, by writing and reading to specific
o�sets in the mmap-ed area. The mapping of o�set to register can be taken from the
Intel 82599 datasheet.
Now that we have access to the registers of the device we can begin the initialization as
described in the Intel 82599 datasheet. An overview of the steps is provided here:

• Disable interrupts.

11
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• Issue global reset and perform general configuration.

• Wait for EEPROM auto read completion.

• Wait for DMA initialization done.

• Setup the PHY and the link.

• Initialize all statistical counters.

• Initialize receive.

• Initialize transmit.

• Enable interrupts.

[11]
Additionally ixy.hs puts the initialized device into promiscous mode. This can be con-
trolled by calling the provided setPromisc function. Further ixy.hs does not employ
interrupts, since they are not beneficial for the high throughput rates we aim to achieve,
and so does not re-enable interrupts, like the last step in the list suggests.

2.2.2 Reading and writing device registers
As in the original implementation the device’s BAR is mmap-ed into the driver’s working
memory to allow read and write operations. To execute these operations we have a few
helper functions in Ixgbe.hs that can read and write to the mmap-ed area. Of primary
importance are the functions get and set that allow reading and writing of a device
register respectively.

set :: Device -> Register -> Word32 -> IO ()

set dev register = pokeByteOff (devBasePtr dev) (fromEnum register)

The set function is essentially just a convenient wrapper around pokeByteOff. The
latter allows writing a value to a pointer o�set by some amount of bytes. The function
extracts the base pointer to the mmap-ed BAR of the device, does a conversion from
human-friendly register name to the register o�set in the BAR, and writes the provided
Word32 value into that register.
The get function is similar to the aforementioned set function, with the exception of
using peekByteOff in place of pokeByteOff. This allows it to read a value from the
specified memory location, which in turn allows us to read a device register from the
mmap-ed area.

12
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get :: Device -> Register -> IO Word32

get dev register = peekByteOff (devBasePtr dev) $ fromEnum register

There exist a few other helper functions related to the registers in the code base, these
being:

• setMask – Sets a bit mask in a register

• clearMask – Clears a bit mask in a register

• waitSet – Wait until all bits of the bit mask where set

• clearMask – Wait until all bits of the bit mask were cleared

2.2.3 Receiving packets
After the user has completed the initialization process described in 2.2.1, the device is
ready to receive and send packets. Receiving is done by calling the receive function in
Ixgbe.hs. Its signature is provided below:

receive :: Device -> Int -> Int -> IO [Ptr PacketBuf]

This signature requires a bit of explanation. The first argument is the Device we have
initialized by calling the newDriver function in 2.2.1. The second argument is the
identifier of the receive queue we want to poll. Queue ids are sequential increasing
integers starting with the number 0. The third argument is the maximum amount of
packets to receive in one go. This setting is called batch size, and can have a large
e�ect on performance as we’ll see in Chapter 3. Lastly the function returns a list of
Ptr PacketBuf, where PacketBuf is a wrapper around a more user-friendly ByteString

that contains the actual received packet.

2.2.4 Sending packets
Sending packets works much in the same fashion as receiving packets. The signatures
for receive and send also have a certain similarity.

send :: Device -> Int -> MemPool -> [Ptr PacketBuf] -> IO ()

The first argument here is the Device we want to send packets from. The second
argument is the identifier of the transmit queue that holds the packet, until it is sent.
The third argument is the memory pool of the queue the packet was received from. This
allows the send function to free up any bu�ers whose packets were already sent. For
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convenience Ixgbe.hs has a helper function called memPoolOf, that allows extracting
the memory pool of a receive queue.

2.2.5 Retrieving statistics
The NIC provides some statistics about the packets it handles in a few specific registers.
Ixy.hs exposes only the amount of received/sent packets, and the amount of bytes
received/sent. The user may call the stats function with the desired device as argument
to retrieve the statistics.

stats :: Device -> IO Stats

Retrieving the statics resets them to zero as a side e�ect. The available fields of the
Stats type correspond in order to: received packets, transmitted packets, received bytes,
and transmitted bytes.

data Stats = Stats { stRxPkts :: Int

, stTxPkts :: Int

, stRxBytes :: Int

, stTxBytes :: Int }

14



Chapter 3

Evaluation

In this chapter we have a look at how ixy.hs performed under various circumstances.

3.1 Performance

All aspects tested in the following were performed with same measurement setup shown
in Figure 3.1. The forwarding application is run on a server with a maximum CPU
frequency of 3.3GHz (with turbo disabled) and takes control of two Intel 82599 NICs.
It then endlessly forwards packets between the two NICs, while modifying one byte of
each packet, to simulate a workload. Packets are generated with the use of MoonGen [5]
on a second server with two Intel 82599 NICs as well. The packet generator expects to
receive the packets it sent out on one of its NICs on its respective equal. To test the full
range of bandwidth a Intel 82599 NIC can provide we send at full load on both NICs,
which means a combined packet rate of 29.76Mpps at a packet size of 64 byte Special
attention was payed to using two single-ported NICs on the forwarder site, to avoid any
issues that may arise from missing PCIe bandwidth.
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Figure 3.1: An illustration of the setup used to benchmark ixy.hs.

3.1.1 Comparison of Backends
Ixy.hs uses the Glasgow Haskell Compiler1 at version 8.4.3 to generate its binaries.
With GHC, as of now, there are two available code generation backends:

• GHC’s native backend

• GHC’s LLVM backend

These backends can be enabled by passing either -fasm or -fllvm to the compiler re-
spectively. The di�erence between these backends is in the code they generate. The
native backend is the default option for GHC. It instructs the compiler to compile the
Haskell code to an intermediate language called GHC Core. GHC Core is a explicitly-
typed modified version of a lambda calculus, that the compiler then uses to generate
assembly instructions for the platform it currently runs on. When the LLVM backend is
enabled GHC compiles the before mentioned GHC Core into LLVM IR, an intermediate
language used by the LLVM compiler to generate assembly for the current platform. As
we’ll see, in some cases using one or the other backend may result in better performance.

1 https://www.haskell.org/ghc/
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3.1 Performance

Figure 3.2: Packet rate vs. CPU frequency for di�erent backends and configurations.

To test the performance di�erences between these backends, we performed measure-
ments of the average throughput of packets at di�erent CPU frequencies using the
before mentioned test setup. Figure 3.2 shows the results of these measurements. We
also tested the native backend twice with di�ering optimization options, since less opti-
mization seemed to give better results than more optimization for an unknown reason.
For the test we also chose a batch size of 128 packets, since this seemed to give the best
overall results. As can be seen in Figure 3.2, all configurations start out close together at
around 4.9Mpps. There is a notable approximately linear increase in performance with
increasing frequency for all configurations. Noteworthy is that the jump from 2.6GHz
to 2.7GHz seems to be at least problematic for all configurations, with the native back-
end’s performance rising at a way slower pace then before, and the LLVM backend’s
performance even deteriorating. There is a visible constant trend of inferiority for the
more optimized version of the native backend, making it the clear loser of this compar-
ison. It maxes out at around 9.4Mpps, while the other two configurations show very
similar performance and top out at around 10.1Mpps. The LLVM backend is ahead
at every sampling point though, making it the overall winner in terms of throughput
performance.
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Frequency [GHz] Native (-O2) [%] Native (-O1) [%] LLVM [%]

1.6 – +4.7 +11.3
1.8 – +6.1 +12.4
2.1 – +7.3 +12.9
2.3 – +8.1 +13.2
2.6 – +9.5 +13.9
2.7 – +9.4 +12.1
3.0 – +9.7 +15.2
3.3 – +13.1 +16.0
3.6 – +14.5 +15.9

Table 3.1: Percentual di�erence in performance of configurations based on worst-performing configu-

ration for the benchmark shown in Figure 3.2.

3.1.2 Batching
Another interesting criteria that can have an impact on performance is the batch size (see
2.2.3) the driver uses to receive and send packets. For every batch of packets received or
sent the driver must write to the queue registers on the NIC through the PCIe bus. At
very high throughput rates this can prove to be a bottleneck, which means minimizing
the amount of writes by receiving and sending in larger batches should have a positive
e�ect in performance. To test this we once again make use of the setup mentioned in
the beginning of this chapter. We compare the three backend configurations explained
in 3.1.1, by varying their batch sizes at a constant CPU frequency.

18
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Figure 3.3: Packet rate for di�erent batch sizes at 3.3 GHz CPU frequency.

Figure 3.3 shows the results of this test for a CPU frequency of 3.3GHz (the maximum
frequency supported by the CPU, without turbo). It is immediately visible that batch
sizes does have an impact on performance, as suspected. At batch size one all configura-
tions are very close to each other in terms of throughput, at around 3.9Mpps, suggesting
that the batch size is actually an extremely large limiting factor at this point. The same
is true for a batch size of two, where the configurations are still lumped together on the
plot at around 5.4Mpps. Interestingly the less optimized native configuration performs
slightly better than the LLVM configuration at batch sizes four and eight. The opti-
mized native and the LLVM configuration reach their peak performance at a batch size
of 128, after which performance deteriorates again. For the less optimized native config-
uration the peak can be found at a batch size of 64. The LLVM and the less optimized
native configuration had very similar peak performances of approximately 10Mpps and
9.7Mpps respectively, while the optimized native configuration could only achieve a peak
throughput rate of 8.7Mpps. This means the optimized native configuration performed
approximately 13% worse, than the LLVM configuration. A last interesting aspect of
this test is the deterioration in performance after the respective peak batch sizes of 64
and 128. This may be a result of increasing cache misses with further increasing batch
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Batch size Native (-O2) [%] Native (-O1) [%] LLVM [%]
1 +3.5 – +4.9
2 +2.0 – +2.4
4 – +7.9 +6.0
8 – +11.2 +10.5
16 – +11.5 +15.4
32 – +12.3 +14.2
64 – +13.0 +15.6
128 – +11.5 +15.3
256 – +12.8 +16.9

Table 3.2: Percentual di�erence in performance of configurations based on worst-performing configu-

ration for the benchmark shown in Figure 3.3.

sizes.

At a CPU frequency of 3.3GHz there is a remarkable di�erence between the various
tested configurations at di�erent batch sizes. For these next measurements we adjust
the CPU frequency to 1.6GHz (the minimum supported frequency) and once again
perform measurements with increasing batch sizes.

Figure 3.4: Packet rate for di�erent batch sizes at 1.6 GHz CPU frequency.
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Batch size Native (-O2) [%] Native (-O1) [%] LLVM [%]
1 +2.7 – +4.7
2 +1.4 – +3.3
4 – +3.8 +3.3
8 – +2.6 +7.9
16 – +4.1 +8.2
32 – +5.1 +10.2
64 – +4.5 +10.2
128 – +4.9 +10.8
256 – +5.3 +11.7

Table 3.3: Percentual di�erence in performance of configurations based on worst-performing configu-

ration for the benchmark shown in Figure 3.4.

The results are shown in Figure 3.4. Unsurprisingly the performance of each configu-
ration has dropped quite sharply, compared to the previous measurements (see Figure
3.3). The LLVM configuration once again outperforms the other configurations, but
this time reaches its peak performance of approximately 5.0Mpps at a batch size of 64,
instead of 128. In fact this is true for all configurations. The optimized native configura-
tion is again the worst in throughput performance, but this time is only approximately
10% worse compared to the LLVM configuration’s performance.

3.1.3 Garbage Collection
When writing performance-critical software languages with garbage collection are often
immediately disqualified, based on the assumption that garbage collection pauses will
prove to be a large detriment to the performance of the application. The next bench-
mark looks at the impact garbage collection has on ixy.hs. Figure 3.5 holds the results
of the benchmark. Surprisingly the optimized native configuration wins out over the
other two configurations this time, by spending only a maximum of 0.6% of execution
time in garbage collection. The less optimized native configuration and the LLVM con-
figuration reach their peak values of 1.4% and 1.6% of execution time respectively at
a batch size of 256. Figure 3.5 also shows a slight increase in time spent in garbage
collection with increasing batch size. This is more noticeable in the worse-performing
configurations. The optimization level of the optimized native configuration may have
had a large impact on the garbage collection and that’s why this configuration performs
so well in this test. Combining these results with the previous benchmarks leads to the
conclusion, that garbage collection does not have a significant performance impact in
ixy.hs. This conclusion comes about by making a few observations. The first would be,
that configurations that perform worse in the garbage collection benchmark, perform
significantly better in the other benchmarks. Secondly time spent in garbage collection
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Figure 3.5: Time spent in GC for di�erent backends and configurations.

is quite little. Even the worst-performing configuration only spends a maximum of 1.6%
of execution time in garbage collection, which at the level ixy.hs can operate at, would
be at most an insignificant increase in throughput of approximately 160000 packets, if
that time could be eliminated entirely.

Enabling the threaded GHC runtime with the compiler argument -threaded also had
an adverse e�ect on both throughput rate and garbage collector pause time, reducing
throughput by approximately 8% and raising garbage collector times into the millisec-
ond range, leading to dropped packets.

3.1.4 Comparison to other languages
Finally let’s compare ixy.hs’s performance to implementations in di�erent languages.
These implementations all follow the same architecture as the original C implementation
does, although with their own language-specific quirks. Whenever possible, these im-
plementations try to use language-specific features, that are not usually seen in drivers,
since they are mostly written in C. Implementations can be found in [14].
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Figure 3.6: Packet rate vs. batch size (@3.3GHz) for di�erent languages [6].

Figure 3.6 shows a comparison of packet rate for di�erent batch sizes, like we saw in
3.1.2, but for all languages that have an implementation of ixy. As we can see ixy.hs

performs rather badly overall. Languages that have an a�nity for systems program-
ming, like C, Rust and Go, (and C#) perform satisfyingly well. C outperforms Haskell
for every batch size. Even at the minimum batch size of 1, C is 108% faster than
Haskell. This speed di�erence increases to a maximum of 174% at a batch size of 128.
The story is very similar for Rust, Go and C#. An interesting observation is that
OCaml, Haskell’s only functional brother in the imperative-dominated world of ixy-
implementations, shows quite similar performance to Haskell. Although OCaml mostly
outperforms Haskell by a small margin, in the grand scheme of things these two func-
tional languages achieve around the same performance. This may be, because functional
languages mostly are not particularly concerned about achieving the highest possible
performance.

There is only one dynamically-typed language in the pool of implementation languages:
Python. With the sample size being so small making a conclusion about dynamically-
typed languages’ performances would be unsupported, but dynamic typing should be
disadvantage for the development of drivers in general. Dynamic typing increases the
cognitive load of using a variable correctly for the programmer. Another interesting
observation is the division between weakly and strongly typed languages. The above
figure doesn’t show any evidence of strongly typed languages being more performant
than weakly typed languages. An example for this can be seen by looking at C and
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Rust. Both languages perform similarly well, but the former is weakly-typed, while
the latter is strongly-typed. A strong type system, like Rust’s or Haskell’s, has the
programmer dealing with less unintended behavior, which once again is an advantage
in the development of drivers.
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Figure 3.7: Packet rate vs. batch size (@1.6GHz) for di�erent languages [6].

In Figure 3.7 we can once again see the packet rate for di�erent batch sizes for all
languages present in Figure 3.6, but this time the measurements were made at a CPU
frequency of 1.6GHz. As could already be gathered in section 3.1.2 lowering the CPU
frequency has a negative impact on the throughput rate of ixy.hs at all batch sizes.
As expected the same is true for all other implementations of ixy too. Changing the
CPU frequency had no impact on the ranking of the implementations, when compared
with Figure 3.6.

3.2 Profiling

In this section we compare how much time was spent in specific locations of the code
of ixy.hs compared to the original ixy implementation and finally look at ixy.hs’s
memory behavior.
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Cost Centre Module %Time %Alloc
receive.go Lib.Ixgbe 35.9 22.2
send.go Lib.Ixgbe 16.4 4.7
rxGetMapping Lib.Ixgbe.Queue 5.0 10.5
forward Lib.Ixgbe 4.7 3.7
rxMap Lib.Ixgbe.Queue 4.3 10.5
send.clean.cleanDescriptor Lib.Ixgbe 4.2 5.8
allocateBuf Lib.Memory 3.8 7.0
mkTxQueue.descriptor Lib.Ixgbe.Queue 3.1 2.4
txGetMapping Lib.Ixgbe.Queue 2.7 7.0
idToPtr Lib.Memory 2.4 4.7
freeBuf Lib.Memory 2.3 2.3
txMap Lib.Ixgbe.Queue 2.3 10.4
receive.go.next Lib.Ixgbe 1.4 2.3
rxqDescriptor Lib.Ixgbe.Queue 1.3 0.0
txqDescriptor Lib.Ixgbe.Queue 1.2 0.0
send.clean Lib.Ixgbe 1.0 0.9
mkRxQueue.descriptor Lib.Ixgbe.Queue 0.9 2.3
send.go.indexRef Lib.Ixgbe 0.3 2.3

Table 3.5: More detailed profiling statistics for ixy.hs.

RX TX Forwarding
ixy 44.8 14.7 12.3
ixy.hs 58.8 35.2 4.6

Table 3.4: Percent of execution time spent for di�erent actions compared for ixy [7] and ixy.hs.

ixy.hs spends a larger percentage of execution time in both receiving and sending
packets, but a smaller percentage for forwarding, which includes e.g., updating counters
and printing statistics. Looking at Table 3.5 we can see that receiving and sending
packets are by far the most time-consuming operations in ixy.hs. Another category
of functions that appears rather time-consuming are rxGetMapping and rxMap. These
functions are used to update the map that stores information about which packet bu�er
is mapped to which descriptor. The frequent use of these functions, and the modification
of the underlying IOUArray they do, very much contribute to their time consumption.
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Figure 3.8: Plot of heap memory usage over time for ixy.hs.

As we can see from Figure 3.8, heap size never exceeds 205KB and remains relatively
constant throughout the execution of the driver. This is to be expected, since in the
benchmark scenario the driver is working at full load all the time. A further conclusion
that can be drawn from the figure is that the driver does not have any space leaks, since
these would be visible in the plot.
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Related Work

When compared to other programming languages, that explicitly name ’systems pro-
gramming’ as one of their strengths, the amount of systems software written in Haskell
is minuscule. In the following we look at two projects that have used Haskell in at least
some of their e�orts.

4.0.1 House - A Haskell OS
House is an operating system written in Haskell. Its purpose is to enable exploring
low-level and system programming on a system that explicitly supports high-level func-
tional languages. It provides a monadic interface to memory management, hardware,
user-mode processes, and low-level device I/O. By using Haskell House enforces memory
safety in nearly all circumstances, in part due to formal assertions, that are written in
a specially developed programming logic, called P-Logic [9]. The project implemented
a separation kernel, a windowing system, device drivers including for PS/2, VBE2.0,
NE2000 NICs, Intel PRO/100 NICs, and a network stack with support for Ethernet,
IPv4, ARP, DHCP, ICMP, UDP, TFTP, and TCP [9].

Although the authors say their experience with development of House in Haskell was
largely positive, in part due to the strong type system Haskell brings and the speed
of compiled code, they also state, that they have not yet determined, whether devices
requiring high bandwidth and low latency can be adequately serviced in a Haskell run-
time [9].
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4.0.2 PFQ
PFQ is a packet capturing engine for Linux that is highly optimized for multi-core ar-
chitectures, or network devices with multiple hardware queues. It also includes a pure
functional DSL, called pfq-lang, that is designed for the early stages of in-kernel packet
processing [17]. pfq-lang is inspired by Haskell and its purpose is to be used as a lan-
guage to build applications on top of network drivers. With the help of pfq-lang one can
implement e�cient applications such as forwarders, fire walls, or load balancers. The
framework also includes user-space libraries for C,C++,Haskell and implementations of
pfq-lang as a eDSL for C++ and Haskell [17].

PFQ uses a functional engine in its packet steering block [2], which determines how
packets are to be processed. The possible options are: dropping the packet, returning
it back to the kernel, forwarding it to specific socket, a random socket, or a group of
sockets. All of these actions can be chosen according to di�erent aspects of the incom-
ing packet and are configured using pfq-lang. By making pfq-lang a functional language
one can run verification checks against programs written in it, verify properties like the
absence of loops or type correctness [18]. Having these checks helps against crashes that
threaten system stability, since PFQ runs in kernel-space. Unlike ixy.hs PFQ is not a
user-space driver framework. It relies on a kernel module written in C to do the heavy
lifting of fetching packets from the kernel. In fact 75% of PFQ’s code is written in C,
with the rest being 10% C++, 8% Haskell and 7% various other languages (Makefile,
HTML, M4, ...). The Haskell part of PFQ is the implementation of pfq-lang and the
user library for PFQ.
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Conclusion

At this point we can answer the initial question: should one write network drivers in
Haskell?

Without adding more context to the question there isn’t a clear cut answer to be found.
In scenarios that require very high throughput rates, like our test scenario outlined
in Chapter 3, Haskell performs worse than other languages by a large margin. Using
Haskell to write a driver that has to perform in these kinds of scenarios will likely result
in missed performance goals. In scenarios, where very high throughput rates are not
a requirement though, Haskell may just be a convenient choice of language. Haskell’s
strong type system eliminates a whole class of errors that some other languages bring
with them, and aids the programmer in thinking more closely about the interfaces
they write. Haskell’s garbage collection turned out to have only a minor influence on
performance, while providing the programmer with the convenience of not having to
worry about memory management.

Overall Haskell is a language that is focused on helping the programmer write reliable
software, which is a great property for device drivers. On the performance front Haskell
underachieves compared to other languages like C, Rust or Go.
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Appendix

Frequency [GHz] Native (-O2) [Mpps] Native (-O1) [Mpps] LLVM [Mpps]
1.6 4.55924 4.77540 5.07358
1.8 5.06042 5.37116 5.68810
2.1 5.81322 6.23922 6.56096
2.3 6.31546 6.82990 7.15066
2.6 7.02694 7.69698 8.00436
2.7 7.0608 7.72674 7.91780
3.0 7.69232 8.44018 8.85952
3.3 8.56386 9.68864 9.93576
3.6 9.3874 10.75056 10.88282

Table A.1: Exact numbers for packet rate vs. CPU frequency plot shown in Figure 3.2.
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Batch size Native (-O2) [Mpps] Native (-O1) [Mpps] LLVM [Mpps]
1 3.94540 3.81090 3.99850
2 5.47472 5.36960 5.49784
4 6.70302 7.23488 7.10696
8 7.58266 8.43464 8.38162

16 7.98028 8.89450 9.20834
32 8.40360 9.43344 9.59380
64 8.60496 9.71902 9.94706

128 8.68164 9.67776 10.00632
256 8.42494 9.50376 9.84480

Table A.2: Exact numbers for packet rates at di�erent batch sizes (@3.3GHz) plot shown in Figure

3.3.

Batch size Native (-O2) [Mpps] Native (-O1) [Mpps] LLVM [Mpps]
1 1.937254 1.885668 1.974526
2 2.758160 2.721020 2.810620
4 3.549540 3.685580 3.667280
8 4.004200 4.110080 4.318720

16 4.256300 4.428840 4.693600
32 4.432480 4.658940 4.882680
64 4.586780 4.795000 5.053320

128 4.556800 4.777820 5.049420
256 4.445180 4.682200 4.966760

Table A.3: Exact numbers for packet rates at di�erent batch sizes (@1.6GHz) plot shown in Figure

3.4.

Batch size Native (-O2) GC Time [%] Native (-O1) GC Time [%] LLVM GC Time [%]
1 0.4 0.5 0.5
2 0.3 0.4 0.7
4 0.4 0.7 0.8
8 0.4 0.7 0.9

16 0.5 0.8 0.9
32 0.4 0.9 0.9
64 0.5 1.0 1.1

128 0.6 1.1 1.3
256 0.6 1.4 1.6

Table A.4: Exact numbers for time spent in garbage collection for di�ering batch sizes (@3.3GHz)

plot shown in Figure 3.5.
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Figure A.1: Flamegraph for ixy.hs running in the LLVM configuration.
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List of acronyms

ARP Address Resolution Protocol.
BAR Base Address Registers.

BDF Bus Device Function Identifier.
DHCP Dynamic Host Configuration Protocol.

DSL Domain-specific language.

eDSL Embedded domain-specific language.

EEPROM Electronically Erasable Programmable Read Only Memory.

GC Garbage Collection.

GHC Glasgow Haskell Compiler.

ICMP Internet Control Message Protocol.

LLVM Low Level Virtual Machine.
NIC Network Interface Card.
PS/2 IBM Personal System/2 Port.

TCP Transmission control protocol. Stream-oriented, reliable, transport layer
protocol.

TFTP Dynamic Host Configuration Protocol.

UDP User datagram protocol. Datagram-oriented, unreliable transport layer pro-
tocol.

VBE2.0 Vesa BIOS Extension 2.0.
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