Discrete Event Simulation

IN2045

Dr. Alexander Klein
Stephan Günther
Prof. Dr.-Ing. Georg Carle

Chair for Network Architectures and Services
Department of Computer Science
Technische Universität München
http://www.net.in.tum.de
Topics

- Mobility in General
 - Realistic Movement
 - Human Mobility Pattern

- Visualization
 - Density
 - Speed Histograms

- Characteristics of Mobility Pattern
 - Link Duration, Transient Phase, Node Distribution, Speed Distribution, Correlated Movement

- Synthetic Mobility Models
 - Random Waypoint
 - Random Direction
 - Random Walk
 - Levi-Flight
 - Brownian Motion
 - Group Mobility
Mobility

- What is (random) mobility?

- Nodes moving from one hotspot to another
- Fix Nodes
- Bypassing nodes
- Hotspot
Mobility

- **Why simulate mobility?**
 - Improvements in technology enable new technologies and result in cheaper hardware prices
 - Number of powerful mobile devices increases very quickly (Smartphones with high data rate interfaces)
 - Number of applications for mobile devices increases
 - Impact on the system performance can often not be predicted in advance

- **Impact on wireless networks:**
 - Topology depends on the user mobility
 - Routing protocols have to react on topology changes (link duration)
 - Frequent changes of the user density result in variation of the interference
 - May lead to a collapse of the network if the applied protocols are not optimized (overhead, dissemination of outdated information)
 - Enables new information dissemination strategies (Delay-Tolerant-Networking)
Mobility

- What is realistic movement?
 - Random movement?
 - Correlated movement?
 - Movement of humans?

- Mobility Pattern
 - Pedestrians
 - Police patrol / avalanche rescue
 - Cars on the road
 - Trains
 - Air planes
 - Animals (hunter and prey)
 - Constraint by obstacles / infrastructure

Antony Gormley’s *Quantum Cloud* sculpture in London (based on a random walk model)
Mobility

- Human mobility pattern:
 - Short-term and long-term characteristics
 - Often approximated by the levy-flight synthetic mobility model which is derived from the random walk model
 - High probability that the next position is close to the previous one
 - Low probability that the individual travels long distances
 - High variation between different individuals

Mobility

- Simulation
 - Area (circle, square, rectangle, sphere, torus, …)

- Long-term simulation
 - Transient phase of the model
 - Node distribution
 - Speed distribution
 - Partitioning of the network
Mobility

- Simulation
 - Bouncing rule:
 - bounce
 - reflect
 - wrap-around
 - delete & replace

Node Distribution changes depending on the applied bouncing rule

Article (Bettstetter2001)
Bettstetter, C.
Mobility Modeling in Wireless Networks: Categorization, Smooth Movement, and Border Effects
Mobility

- Visualization
 - Movement (Debugging)
 - Debugging
 - Detect correlated movement
 - Evaluation
 - Density
 - Spatial node distribution
 - Border effects
 - Estimation of transient phase
 - Histograms
 - Node speed distribution
 - Link duration
 - Estimation of transient phase
Mobility

- **Characteristics:**
 - Link duration
 - Important wireless communication parameter
 - Represents the time interval during which two nodes are able to communicate with each other
 - Transient phase
 - One or more parameters change significantly during this phase
 - Duration of the transient phase varies between different synthetic mobility models
 - Spatial node distribution
 - Depends on the mobility model
 - Often affected by the shape of the simulation plane
 - Influenced by the applied bouncing rule
Mobility

- **Characteristics:**
 - Speed distribution
 - Good indicator for the duration of the transient phase
 - Mainly influenced by the following parameters:
 - Time-based or distance-based movement decision
 - Pause time
 - Shape of the simulation plane
 - Correlated / Constraint movement
 - Each move is affected by the previous one
 - Objects may interact with each other
 - Group mobility
 - The movement of objects is a composition of the movement of the individual and a common (group leader) object
Mobility

- Synthetic Mobility Models
Random Waypoint

Algorithm:

Scenario Boundary

Mobile Node
Mobility

- Random Waypoint

Algorithm:

Node chooses a random position.
Mobility

- Random Waypoint

Algorithm:

Scenario Boundary

Node selects a uniform distributed movement speed
Mobility

Random Waypoint

Algorithm:

Scenario Boundary

Node moves towards the new position
Random Waypoint

Algorithm:

Node waits a certain period of time
Mobility

- **Random Waypoint**

Algorithm:

```
Node selects new destination
```

Scenario Boundary

Node selects new destination
Mobility

Random Waypoint

Algorithm:

Step 1: Select a random destination within the scenario

Step 2: Select a random speed \(speed \in [speed_{\text{Min}}; speed_{\text{Max}}] \)

Step 3: Move until the destination is reached

Step 4: Wait a random period of time \(pause \in [0; pause_{\text{Max}}] \)

Step 5: Go to step 1
Random Waypoint

- Characteristics:
 - Node density decreases towards the border
 - Highest node density in the center
 - The fraction of slow moving nodes increases over time
 - Long transient phase
 - Individual nodes recognize density waves while moving through the center
 - Average node speed decreases over time

- Advantage:
 - Simple to implement
 - Challenging mobility due to changing node density

- Disadvantage:
 - Has to be configured carefully (Minimum speed and pause duration)
 - Movement affected by the shape of the simulation plane
Random Waypoint

- Node speed distribution:

(a) 100 Seconds
(b) 200 Seconds
(c) 400 Seconds
(d) 800 Seconds
Mobility

- Random Waypoint
 - Node density:

(a) 100 Seconds
(b) 200 Seconds
(c) 400 Seconds
(d) 800 Seconds
Mobility

- Random Direction

Algorithm:

Scenario Boundary

Mobile Node
Random Direction

Algorithm:

Node selects a random direction and speed
Random Direction

Algorithm:

Node moves until it reaches the border of the scenario
Random Direction

Algorithm:

Node waits a random period of time
Mobility

- Random Direction

Algorithm:

Node selects a random direction and speed
Random Direction

Algorithm:

Step 1: Select a random direction $direction \in [0; 2\pi]$ (such that the node does not leave the scenario)

Step 2: Select a random speed $speed \in [speed_{Min}; speed_{Max}]$

Step 3: Move until the border of the scenario is reached

Step 4: Bouncing rule:
 a. Wait a random period of time $pause \in [0; pause_{Max}]$
 b. Delete the node and replace it with a new node in the center or at a random position
 c. Place the node at the opposite side of the simulation plane

Step 5: Go to step 1
Mobility

- Random Direction
 - Characteristics:
 - Node density increases towards the border
 - Highest node density at the border and in the corners
 - The fraction of slow moving nodes increases over time
 - Short transient phase
 - Nodes in the corner are strongly affected by the applied bouncing rule
 - Advantage:
 - Simple to implement
 - Uniform distributed node density (depends on the bouncing rule)
 - Disadvantage:
 - Has to be configured carefully (Minimum speed and pause duration)
 - Movement affected by the shape of the simulation plane
 - Large impact of the bouncing rule
Random Walk (time-based / distance-based)

Algorithm:
Random Walk (time-based / distance-based)

Algorithm:

Node selects a random direction and speed.
Random Walk (time-based / distance-based)

Algorithm:

Node moves in that direction for a random period of time or a random distance
Random Walk (time-based / distance-based)

Algorithm:

Node pauses a random period of time
Random Walk (time-based / distance-based)

Algorithm:

Node selects a random direction and speed
Random Walk (time-based / distance-based)

Algorithm:

Step 1: Select a random speed \(speed \in [speed_{Min}; speed_{Max}] \)

Step 2: Select a random direction \(direction \in [0;2\pi] \)

Step 3: Move into that direction
 a. for a pre-defined period of time
 b. for a certain distance
 c. if the border of the scenario is reached, select a new direction (bouncing rule)

Step 4: Wait a random period of time \(pause \in [0; pause_{Max}] \)

Step 5: Go to step 1
Mobility

- Random Walk (time-based)
 - Characteristics (time-based):
 - Node density (almost) uniform distributed
 - Nodes in are affected by the applied bouncing rule
 - Node speed uniform distributed
 - Advantage:
 - Simple to implement
 - Uniform distributed node density (depends on the bouncing rule)
 - Disadvantage:
 - Has to be configured carefully
 - Minimum speed
 - Pause duration
 - Travel duration
 - Affected by the bouncing rule
 - Required computational power depends on the movement duration
Mobility

- **Random Walk (distance-based)**
 - Characteristics (distance-based):
 - Node density (almost) uniform distributed
 - Nodes in the corner are affected by the applied bouncing rule
 - Node speed decreases over time (similar to RWP)
 - Speed decay problem
 - Advantage:
 - Simple to implement
 - Uniform distributed node density (depends on the bouncing rule)
 - Disadvantage:
 - Has to be configured carefully
 - Minimum speed
 - Pause duration
 - Travel distance
 - Movement affected by the shape of the simulation plane
 - Required computational power depends on the travel distance
Mobility

- Random Walk (time-based)
 - Node speed distribution:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>speed_{min}</td>
<td>1 m/s</td>
</tr>
<tr>
<td>speed_{max}</td>
<td>20 m/s</td>
</tr>
<tr>
<td>pause_{min}</td>
<td>0 s</td>
</tr>
<tr>
<td>pause_{max}</td>
<td>0 s</td>
</tr>
<tr>
<td>Movement</td>
<td>time-based</td>
</tr>
<tr>
<td>Movement Duration</td>
<td>10 s</td>
</tr>
</tbody>
</table>
Mobility

- Random Walk (distance-based)
 - Node speed distribution:

```
<table>
<thead>
<tr>
<th>parameter</th>
<th>value</th>
</tr>
</thead>
<tbody>
<tr>
<td>speed_{min}</td>
<td>1 m/s</td>
</tr>
<tr>
<td>speed_{max}</td>
<td>20 m/s</td>
</tr>
<tr>
<td>pause_{min}</td>
<td>0 s</td>
</tr>
<tr>
<td>pause_{max}</td>
<td>0 s</td>
</tr>
<tr>
<td>Movement</td>
<td>distance-based</td>
</tr>
<tr>
<td>Travel Distance</td>
<td>200 m</td>
</tr>
</tbody>
</table>
```
Mobility

- Random Walk (time-based)
 - Node density:

![Graphs showing node density over time](image)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>speed_{min}</td>
<td>1 m/s</td>
</tr>
<tr>
<td>speed_{max}</td>
<td>20 m/s</td>
</tr>
<tr>
<td>pause_{min}</td>
<td>0 s</td>
</tr>
<tr>
<td>pause_{max}</td>
<td>0 s</td>
</tr>
<tr>
<td>Movement</td>
<td>time-based</td>
</tr>
<tr>
<td>Movement Duration</td>
<td>10 s</td>
</tr>
</tbody>
</table>
Mobility

- Random Walk (distance-based)
 - Node density:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>speed_{Min}</td>
<td>1 m/s</td>
</tr>
<tr>
<td>speed_{Max}</td>
<td>20 m/s</td>
</tr>
<tr>
<td>pause_{Min}</td>
<td>0 s</td>
</tr>
<tr>
<td>pause_{Max}</td>
<td>0 s</td>
</tr>
</tbody>
</table>

Movement: distance-based

Travel Distance: 200 m
Mobility

- **Random Walk**
 - Lévy flight
 - Distance-based random walk
 - Distance is chosen according to a heavy-tailed distribution
 - Probability is high that the object only moves a short distance
 - Probability is low that the object moves straight over a long distance
 - Often used to simulate the movement of humans and animals

- **Brownian Motion**
 - Distance-based random walk
 - Travel distance between subsequent points is close to zero
 - Describes the movement of small particles in liquids

Example: Lévy flight
Example: Brownian Motion
Mobility

- **Random Walk** (according to Turchin)
 - **Uncorrelated random walk:**
 - Previous move does not affect the following move
 - Each move is independent from the previous one
 - **Correlated random walk:**
 - Previous move affects the following move
 - High probability of moving into the same direction
 - Long travels are followed by short travels with high probability
 - **Biased random walk:**
 - The probability of moving in a certain direction is higher than moving into other directions (non-uniform selection of the direction)
 - **Biased correlated random walk:**
 - Each move is affected by the previous one and an absolute direction
 - **Constrained random walk:**
 - Measured parameters and estimated distributions are used as input for the synthetic mobility model
 - The direction and speed are chosen with respect to the measurements
Random Group Mobility

Algorithm:

Define a group of Nodes

Scenario Boundary
Random Group Mobility

Algorithm:

- Select one node as group leader.
Random Group Mobility

Algorithm:

Choose a maximum allowed distance between fellow nodes and the group leader
Random Group Mobility

Algorithm:

- All other nodes are fellow nodes who follow the leader.
Random Group Mobility

Algorithm:

Select a random distributed speed and direction for the group leader.
Random Group Mobility

Algorithm:

Calculate the position of the group leader at the next step
Random Group Mobility

Algorithm:

Scenario Boundary

Calculate the allowed area of the fellow nodes
Random Group Mobility

Algorithm:

Select new positions of the fellows
Random Group Mobility

Algorithm:

Scenario Boundary

Move to the next destination
Random Group Mobility

Algorithm (1/2):

Preliminary steps

Step 1: Define a group of nodes
Step 2: Select one node as group leader and mark the others as fellows
Step 3: Choose the maximum allowed distance between a fellow node and the group leader

Group leader

Step 4: Select a random speed $speed \in [speed_{Min}; speed_{Max}]$
Step 5: Select a random direction $direction \in [0; 2\pi]$
Step 6: Go to step 10
Step 7: Move into that direction
 a. for a pre-defined period of time / remaining movement duration
 b. for a pre-defined distance
 c. Go to step 15 if the border of the scenario is reached before the movement is complete
Step 8: Wait a random period of time $pause \in [0; pause_{Max}]$
Step 9: Go to step 4
Mobility

Random Group Mobility

Algorithm (2/2):

Fellow nodes

Step 10: Calculate the position of the group leader at the next movement / bouncing position
Step 11: Calculate the allowed area around the group leader at the next movement / bouncing position
Step 12: Choose a random position within the allowed area
Step 13: Calculate speed and direction such that the new position is reached at the same time the group leader reaches its next movement / bouncing position
Step 14: Go to step 7

Group leader

Step 15: Select a new direction of the group leader
Step 16: Go to step 10
Random Group Mobility

- Node speed distribution:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leader Mobility</td>
<td>Random Walk (time-based)</td>
</tr>
<tr>
<td>Leader-Fellow Distance</td>
<td>< 200m</td>
</tr>
<tr>
<td>Fellow Area Distance</td>
<td>circle</td>
</tr>
<tr>
<td>speed_{Min}</td>
<td>5 m/s</td>
</tr>
<tr>
<td>speed_{Max}</td>
<td>20 m/s</td>
</tr>
<tr>
<td>pause_{Max}</td>
<td>0 s</td>
</tr>
<tr>
<td>Movement Duration</td>
<td>20 s</td>
</tr>
</tbody>
</table>
Mobility

- Random Group Mobility
 - Node density:

<table>
<thead>
<tr>
<th>Leader Mobility</th>
<th>Random Walk (time-based)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leader-Fellow Distance</td>
<td>< 200 m</td>
</tr>
<tr>
<td>Fellow Area</td>
<td>circle</td>
</tr>
<tr>
<td>speed_{Min}</td>
<td>5 m/s</td>
</tr>
<tr>
<td>speed_{Max}</td>
<td>20 m/s</td>
</tr>
<tr>
<td>pause_{Max}</td>
<td>0 s</td>
</tr>
<tr>
<td>Movement Duration</td>
<td>20 s</td>
</tr>
</tbody>
</table>
Mobility

- **Obstacles:**
 - Movement of objects is usually constraint by
 - obstacles
 - pre-defined pathways
 - Bouncing rule becomes more important with an increasing number of obstacles
 - Obstacles block movement but do not necessarily affect the signal propagation (e.g. river or lake)
 - Some models use Voronoi diagrams as predefined paths
Mobility

- How to describe position and orientation?
 - Position:
 - Geographic
 Latitude φ, Longitude λ, Altitude
 - Cartesian
 X, Y, Z
 - Orientation:
 - Yaw
 - Pitch
 - Roll

Picture taken from nasa.gov
Mobility

- **Implementation:**
 - **Types of mobility**
 - **Direct**
 - Change the position and orientation of objects directly at a given simulation time
 - **Trajectory**
 - Sequence of triples [position, orientation, simulation time] which describe the position and orientation at a given simulation time
 - The movement is usually interpolated between subsequent triples
 - **Vector**
 - Bearing, ground speed, ascent rate
 - Trajectories can be described by [bearing, ground speed, simulation time] triples
 - **External modification**
 - Co-simulation
 - Hardware-In-The-Loop
 - Can use any type of mobility