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2g Topics

0 Generation of Random Variables
= |nversion, Composition, Convolution, Accept-Reject

a Distributions — Continuous
= Uniform, Normal, Triangle, Lognormal
= Exponential, Erlang-k, Gamma,

a Distributions - Discrete
= Uniform(discrete), Bernoulli, Geom, Poisson, General Discrete

Random Number Generator (RNG)
Linear Congruential Generator (LCG)
X? Test

Serial Test

Spectral Test

Shift Register

Generalized Feedback Shift Register
Mersenne Twister

I I Iy N A B A

Chapter is based on LK 6+8
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vog ntroduction - Random variates
=\

a Generation of U(0,1) random numbers
= (Generation approaches
» “Real”, “natural” random numbers: sampling from radioactive material or
white noise from electronic circuits, throwing dice, drawing from an urn, ...
* Problems:
— If used online: not reproducible
— Tables: uncomfortable, not enough samples
» USB - Random Number Generator — Developed at TUM

http://www.heise.de/newsticker/meldung/Appliance-liefert-50-Millionen-Zufallsbits-pro-
Sekunde-1125288.html

» Pseudo random numbers: recursive arithmetic formulas with a given
starting value (seed)

 in hardware: shift register with feedback (based on primitive
polynomials as feedback patterns)

* in software: linear congruential generator (LCG) (Lehmer, 1951), ...
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Y : :
g Generating random variates

a All algorithms are based on U(0,1) random variates

Q Selection criteria
= Exactness (generation of the desired distribution)
= Efficiency
« Storage requirements (large tables required?)
« Execution time
— Marginal execution time (for each sample)
— Setup time (at start time)
» Robustness (characteristics do not change for different parameters)
= Complexity (you have to understand before you implement it)

QO Huge literature available




'4" Random variates

o Measurement o Simulation
» Samples of a random variable X = Distribution function of the
random variable is known in
advance

= \What is the distribution function
of random variable X? - How to generate samples
which follow the distribution of

the random variable?

O ldea

= Generation of uniform distributed random numbers U(0,1)
(Random number generator)

= Transformation of the generated numbers according to the desired
distribution of the random variable




iﬁ".‘ Inversion (LK 8.2)

-
U=y,
Uy,

0 - | Y

X% X=X

a0 Random variable yi ~ U(0,1)

o Transformation of yi according to a distribution function F(x) in a
random variable Xi

= Vi=F(X)—>Xx= F_l(Yi)




iﬁ".‘ Inversion (LK 8.2)

Example: Generation of an exponential distribution with a mean value of A

a Algorithm:
» Generate U~U(0,1) (pseudo random numbers)

« Return X =F*(U)

0 Random variable yi ~ U(0,1)

o Transformation of yi according to a distribution function F(x) in a
random variable Xi

F(X)=<1_eﬂ If x>0
0 otherwise

symmetry

Flu)=-AIn(l-u) | >  Fu)=-Alnu
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w4 Composition

0 Desired distribution function expressed as a convex combination of
other distribution function

F(x)=> p,F;(x) where p>0,>p =1
=1 j

» Generate positive random integer J

P(J=])=0p, for 1=12,....

* Return X with distribution function F;
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o Desired random variable can be described as the sum of other random

variable
= 1. Generate Y, Y, Ya, Y,
= Return X=Y+Y, +Y;+---+Y,
o Example:

» k- Erlang distributed random variable with a mean € can be expressed
as the sum of k exponential random variables with a common mean
k/e

o Advantage: simple and intuitive approach

o Disadvantage: slow since multiple random number have to be
generated in order to get a single sample




;ﬁ"“ Accept-Reject-Method (LK 8.2.4)

o Inverse transform, combination, and convolution are direct methods
(work directly with the distribution function)

0 Accept-Reject is used when other methods fail or are inefficient

o Density function is complex — select a “simpler” density function r




'f‘ Accept-Reject-Method (LK 8.2.4)

0 Geometrical interpretation
Y will be accepted if the point (Y,U -t(Y)) falls under the curve f .

a The acceptance probability is high if t(Y)-f(Y) is small.

a0 Majorante von f(x) |:> VX :t(x) > f(x)




iﬁ'.“ Accept-Reject-Method (LK 8.2.4)

a Indirect approach:

Q Preparation:
= We need a function t that majorizes density f

t(x)> f(x) forall x
c=[ te)dx=[" f(x)dx=1

= We obtain a density r by r(X):m
a Algorithm ¢

1. Generate a random variable Y according to a density r

2. Generate a random number U ~U(0,1) (independent of Y)

3. Return X =Y if UL ) (ACCEPT)

t((Y)
Otherwise, go back to step 1 and try again (REJECT)




;ﬁ"“ Accept-Reject-Method (LK 8.2.4)

0 Example: beta(4,3) distribution (6th order polynomial, hard to invert)

2 .
f (x)= 60x°(1—X) if0<x<1
0 otherwise

Majoring

function 2-°

of (x) ——
2




iﬁ'.“ Accept-Reject-Method (LK 8.2.4)

a Efficiency:
= Depends on the majorant series (X)
= Probability of acceptance is 1/c |:> Average number of iterations

0 Advantage:
= Works for arbitrary density functions

0 Disadvantage:

= Number of required U(0,1) random numbers depends on the generated
numbers (may causes problems with some statistics and may result
variations of the simulation duration)

» Requires at two U(0,1) random numbers in each iterations
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v9g Random number generation

How to generate random numbers according to different distributions?

TOUR OF ACCOUNTING

MINE NINE
NIMNE MINE
MIME MINE

OVER HERE
LIE HAVE QUR

RANDOM NUMBER
GEMERATOR.

oy & THA Walngd Faghing Smdiaaie, Int,




'4'. Random numbers - Continuous

o Uniform distribution: RV X ~U(a,b) (LK 8.3.1)
1

= Density function: f(x)= b—’ X e [a; b]
—d
= Range: [a- b]
= Distribution function: F(x)= b—a
= Expectation: E()( ) — a ;— b
2
= Variance: VAR(X) = (b-a)

12

= Generation: U~U(01,X =a+((b-a)u
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;q.‘ Random numbers - Continuous
/ N\

o Triangle distribution (1/4): RV X ~triang(a,b,c) (LK 8.3.15)
2:(x-3) if a<x<c
(b—a)-(c—-a)
= Density function: f(Xx)=x 2-(b=x) f c<x<b
(b—a)-(b-c)
otherwise
| 0
0 if x<a
2
(x-2a) if a<x<c
= Distribution function: f(x) =+ (b-a) .b(c B 6;)
__ (=% f c<x<b
(b—a)-(b—c)

1 If b<x

.
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;4(“ Random numbers - Continuous
/ N\

o Triangle distribution (2/4): RV X ~triang(a,b,c) (LK 8.3.15)

» Use case: Project management / business simulations where only the
minimum, maximum and mode are known

= Mode C
= Range [a; b]

. a+b+c
= Expectation: E ( X ) — .

2 2 2
= Variance: VAR(X)=(a +b7+c”—ab—ac—hc)

18
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;4(“ Random numbers - Continuous
/ N\

o Triangle distribution (3/4): RV X ~triang(a,b,c) (LK 8.3.15)
= Generation: Inversion

a+,U(b-a)(c—a) 0<U < F(c)
b-J(@-U)-(b-a)(b-c) F(c)<U<1

U~U(O,1),X:{

a C 1] a r: ]

Probability Density Function Cumulative Density Function
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;4(“ Random numbers - Continuous
/ N\

o Triangle distribution (4/4): RV X ~triang(a,b,c) (LK 8.3.15)
Use case: risk management / project management

Optimistic Expected Pessimistic

4 assumption duration assumption
=F----
5
@
®)
2 I
o I
I
|
I >
Minimum Expected Maximum  Time

duration duration duration
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- Continuous

a Normal distribution(1/4):

Density function:

Distribution function:
Range:

Mode:

Expectation:

Variance:

Scalability:

RV X ~N(u, o)

o

(LK 8.3.6)
(x—u)zj

2.5°

f(x) =

F(x) =
O
frooion]
Y7
E(X)=wu

VAR(X) =0"

Vor

X ~N(@0)1) = (u+0X)~N(u,c°)
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;4(“ Random numbers - Continuous
/ N\

o Normal distribution(2/4): RV X ~N(u,0°) (LK 8.3.6)

= (Generation Accept-Reject
- Two independent random variables  U,,U, ~U (0,1)

- V. =2U. -1
« W =V2+V2
 Algorithm:

Acceptif W <1

yo |[Z2MW vy X, =V, Y

W

Reject otherwise
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a Normal distribution(3/4):

=

— T— T

=
I n

B e e i

B e e A
TR

- owm=o

Probability Density Function

0.8

0.6

RV X ~N(u, o)

(LK 8.3.6)

T T
T, T =T T

0.4 j

02+

.........

_M_D_D_C.‘I ]
LR %

nnnn
L =2m =0

[ I e ) S

Cumulative Density Function
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o Normal distribution(4/4): RV X ~N(u,0°) (LK 8.3.6)
Use case: distribution of errors / sizes (nature)

KorpergroRe Frauen Manner

<150 cm 0,6 % 0,1 % tet Kemergrte dorBundeshiger
150-154cm 4% 0,1 % =

155-159cm  12,7% 0,3 % @ /'*»\

160-164cm  27,0% 2,3% - / AN

165-169cm  29,1% 9,0 % x .
170-174cm  17,6%  19,2% " / ){\ \ ~ amer
175-179cm  6,9%  26,1% . \\
180-184cm 1,8%  23,9% : / / \ ’
185-189cm 0,2%  12,8% / J

& T T T T T T
<150 150-154 155159 160-164 165-169 170174 175179 180-184 185-189 =190

CIm

=190 cm <0,1 % 6,3 %

KorpergrolRe der Deutschen Statistik des Sozio-oekonomischen Panels (SOEP), aufbereitet durch statista.org



http://de.statista.org/statistik/diagramm/studie/341/filter/478/fcode/1,2/umfrage/koerpergroe%DFe/
http://de.wikipedia.org/wiki/SOEP
http://de.wikipedia.org/wiki/SOEP
http://de.wikipedia.org/wiki/SOEP
http://de.wikipedia.org/wiki/SOEP
http://de.wikipedia.org/wiki/SOEP
http://de.wikipedia.org/wiki/Statista
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o Lognormal distribution(1/3): RV X ~LN(u,0°) (LK 8.3.7)

Special property of the lognormal distribution

it Y ~N(u, o) I:> e" ~LN(u, o)

= Range: [0,0)

= Algorithm: Composition
— Y -~ N ,0'2 X = Y
(mo%) =
-

= Variance: VAR(X) = g2+’ (eaz —l)

Note that y and o are NOT the mean and the variance of the lognormal distribution!
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o Lognormal distribution(2/3): RV X ~LN(u,0°) (LK 8.3.7)

= Parameters of the normal distribution which is used to generate LN

- u=E[¥]=n — EXT
JE[XT +VAR[X]

- o0’ =VAR[Y]= In[ E[XT" j

JE[XT +VAR[X]
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o Lognormal distribution(3/3): RV X ~ LN(u,o°)
Use case: risk management (insurance companies)

(LK 8.3.7)

— = |
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0 Exponential distribution(1/2): RV X ~exp(A) (LK 8.3.2)
= Density function: f(x)=4-e™ fur x>0

= Distribution function:  F(X) =1— p M

= Range: [0, OO[ Mode: O
1

= Expectation: E(X)= 7

= Variance: VAR (X) = %

= Coefficient of variation: C,,, =1

—In(U)

= Generation: Inversion U ~U(0,1), X =
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;4(“ Random numbers - Continuous
/ N\

0 Exponential distribution(2/2): RV X ~exp(A) (LK 8.3.2)
Use case: life time of structures, time between calls/requests

iy
|
I

il

e
S

Pod — — 7

e = B
LI
[ P — —

Probability Density Function Cumulative Density Function

Pictures taken from Wikipedia




X .
;4(“ Random numbers - Continuous
/ N\

o Erlang-k distribution(1/3): RV X ~k—FErlang(1) (LK 8.3.3)

« RV X =Y, +Y,+Y,+---4+Y, where the Yi’s are IID exponential
random variables

( 2k k—=1,—Ax
AXe for x>0
= Density function: f(x)=9 (k=D!
0 Otherwise

r

k-1 (iX)i
I!

1-e ™.
= Distribution function: F (X) =9 i=0
0 Otherwise

for x>0

.

RV X represents the sum of k exponential random variables
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;4(“ Random numbers - Continuous
/ N\

o Erlang-k distribution(2/3): RV X ~k—FErlang(41) (LK 8.3.3)

= Range: [O,oo[
K
= Expectation: E(X) :Z
= Variance: VAR(X) zhz
k-1
= Mode: —
& 1
= Coefficient of variation: C,,, = —=
ar \/E
= Generation: _In(ol'_[kUi]

» Inversion U. ~U(0), X =

» Convolution RV X =Y, +Y, +Y;+---+Y,
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;4(“ Random numbers - Continuous
/ N\

o Erlang-k distribution(3/3): RV X ~k—FErlang(41) (LK 8.3.3)

Use case: lifetime of structures, delay in transport networks,
dimensioning of systems (e.g. call center)

o
: : : : [
: : : : ok

i n
O == O = ]
UM o o
/R F_ F O
i n

U

04 b fo A i

b oo = B
F= = = =

Probability Density Function Cumulative Density Function
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;4(“ Random numbers - Continuous
/ N\

0 Gammadistribution(1/3): RV X ~gamma(a, ) (LK 8.3.4)

X

ﬂ—a . Xa_le p
= Density function: f(x)=+ ')

for x<0

0 Otherwise

_ Xj'
« Distribution function: ~ F(X) =5 1_37 : Z ( P

for x>0

0 Otherwise

= Parameter description:
« Location parameter y:  Shifting the distribution along the x-axis
« Scale parameter [3: Linear impact on the expectation
» Shape parameter a: Changes the shape of the distribution
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;4(“ Random numbers - Continuous
/ N\

a0 Gammadistribution(2/3): RV X ~gamma(a, ff) (LK 8.3.4)

j t7letdt  if x>0
0

= Gamma function: F(z) =
0 If x<0O
= Expectation: E(X)=a-pf
= Coefficient of variation:  C,,, =1
= Mode: 0 If a<l1
(-1 If =1

= (Generation:

« Stepl X ~gamma(e, ) > X =£4-Y Y ~gamma(a,l)

. Step2 Generation of X ~ gamma(a,l) with Accept-Reject
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;4(“ Random numbers - Continuous
/ N\

o Gammadistribution(3/3): RV X ~gamma(a, /) (LK 8.3.4)

Use cases: risk management (insurance companies), service time,
down time

12 | U I B S L e | U I B R L . S P RS

0 1 2 3 4 S 6 7
Probability Density Function
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,A. Random numbers - Discrete

o Uniform (discrete) (1/2) RV X ~DU(, }) (LK 8.4.2)

= Distribution:

= Range:

= Expectation:

= Variance:

= Generation:

-

oK) = j_1i+1 if keli,i+Li+2,..,j}
0 Otherwise
i<k<j
(i+])

E(X)=

(X) >

VAR(X):(j—i+1)2—1

12
Inversion

U-~U@©01) X=i+|(j-i+1)-U|

DU(0,1) and Bernoulli(0.5) distributions are the same




e

o Uniform (discrete) (2/2) RV X ~DU(, }) (LK 8.4.2)
Use case: backoff distribution, simulation (dice, roulette, ...)

p(x) A

i —i+ 1)k

S,
+2 j-21 j tj+2 7
4+ 1

l
1 Jeel o

Distribution



X/ .
vsg Random numbers - Discrete
/N

a Bernoulli (1/2) RV X ~Bernoulli (p) (LK 8.4.1)

= Example: Flipping a coin (1_ p if k=0
= Distribution: p(k)=<p If k=1
\O Otherwise
. Range: i<k<j
= Expectation: E(X)=p
- Variance: VAR(X)=p-(1-p)
1-p

=  Coefficient of variation: Coar = .| ——
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vsg Random numbers - Discrete
/N

a Bernoulli (2/2) RV X ~Bernoulli (p) (LK 8.4.1)

Mode:

Generation:

Distribution

Bernoulli (0.3)

O or 1 (depends on the definition of the
outcome)

Inversion U ~U(0,1)

OiIf U<p
1 Otherwise

Random Variable X



'4" Random numbers - Discrete

o N-Bernoulli (1/2) RV X ~ Bernoulli (n, p) (LK 8.4.4)

Example: Flipping a coin

n times
= Distribution: p(k) = (kj p“-1-p)"* 0<k<n
" Range: 0<k<n
= Expectation: E(X)=np
= Variance: VAR(X)=n-p-(1-p)
1-p
= Coefficient of variation: C,, =, |[——
n-p

» Use case: quality management, wrong/right decisions
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vsg Random numbers - Discrete
/N

o N-Bernoulli (2/2) RV X ~ Bernoulli (n, p) (LK 8.4.4)

= Mode: O or 1 (depends on the definition of the

outcome)
= Generation: Composition

Bernoulli (n, p) = ZBernouIIi (p)

0<i<n
= Distribution

Bernou"l (20’03) &0:4~ ~ Bernou"i (20’07)

91011121314151617181920
m Variable X
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vsg Random numbers - Discrete
/N

o Geom (1/2) RV X ~Geom (p) (LK 8.4.5)

Example: Number of unsuccessful Bernoulli — Experiments until a
successful outcome (e.g. number of retransmissions)

Distribution: p(X)=p-(1-p)
Distribution function: F(X)=1-(1- p)LXJ+1
Expectation: E(X)= 1-p

P

e 1-p
Variance: VAR(X) =
P
1

Coefficient of variation: CVar = |—
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vsg Random numbers - Discrete
/N

o Geom (2/2) RV X ~Geom (p) (LK 8.4.5)

= Mode: 0

= Generation:

Inversion

U ~U(0]1)

X:LIMU)J
In(1-p)

= Use case:
= Distribution 1

0.9t

Geom (O 7) - Z: ) E )

Probabil
© o ©
W B O

Geom (0.3) — ..

o
[ = BN

............

L1
56 7 8 91011121314151617181920
R m Variable X

o
I
o
o

delivery ratio in computer networks, risk management

[p@%:p]
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vsg Random numbers - Discrete
/N

o Poisson(1/3) RV X ~ Poisson (A1) (LK 6.2.4)

Example: Number of events that occur in an interval of time when the
events are occurring at a constant rate (number of items in a
batch of random size)

/IX

= Distribution: p(X) = R e it ¥ {0’1’2’".}
X!
(g
DI PR

= Distribution function: F (x) = i-o I

0 If x<O

Parameter: A>0




X/ .
vsg Random numbers - Discrete
/N

o Poisson(2/3) RV X ~Poisson (A1) (LK 6.2.4)

= Range: {0123,...}

= Expectation: E(X)=4

= Variance: VAR(X) =41
1

=  Coefficient of variation: CVar :T
A

= Mode ANA=1 \isaninteger
I_lJ otherwise

= Special characteristics:

- x=0 |:> exponential distribution

(time interval between two consecutive events)
« Number of events until a certain point in time is Poisson distributed

« Period of time until n events have occurred is Erlang distributed




e

o Poisson(3/3) RV X ~ Poisson (A) (LK 6.2.4)
Use case: number of (independent) arrivals in a certain time interval

N Y - e tbtdi iiii i b
g A=05 —— g A=10 —
03 0B

1 i i i i’ LB T —— e BBl - A i i

1 idii i i R A O R e e e B M i i i

O: 1 | | 1 O:

06 L QB L
051 . asL
7
03L 03D

0.2 [ (0,

o

| ot |
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a General Discrete(1/1) RV X ~GD (LK 8.4.3)

(p, if x=x,0<k<n
= Distribution: pP(X) =+ 0 Otherwise
= Generation: Inversion U~U(0,1

k-1 k
X =% fals > p;<U<> p,
j=0 j=0
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Random number generator
algorithms and their quality
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Some slides/figures taken from:
Oliver Rose
Averill Law, David Kelton
Wikimedia Commolnbs (user Matt Crypto)
Dilbert




iﬁ"“ Structure of this lecture

a Generating U(0,1) random numbers
= Motivation
= QOverview on RNG families
a Linear Congruential Generators (LCG)
Q Statistical properties, statistical (empirical) tests
= 2 test for uniformity
= Correlation tests: Runs-up, sequence
a Theoretical aspects, theoretical tests
= Period length
= Spectral test
0 RNG that are better than LCG




¥og Recall the inversion method
/N

0 | y

=% X=X

0 Generate uniformly distributed numbers € 0.0 ... 1.0
o Compute inverse Al(t) of PDF A(t)
0 Generate samples




-'.‘ 1 . .
;A" Generating U(0,1) random numbers is crucial

a For all random number generation methods, we need uniformly
distributed random numbers from ]0,1[
= U(0,1) random numbers are required

0 Mandatory characteristics
= Random (...obviously)
= Uniform (make use of the whole distribution function)
= Uncorrelated (no dependencies): difficult!

= Reproducible (for verification of experiments)
— use pseudo random numbers

= Fast (usually, there is a need for a lot of samples)




iﬁ".‘ RNG in simulation vs. RNG in cryptography

a Also need for random numbers in cryptography

= Key generation
= Challenge generation in challenge-response systems

a Additional requirement:
» Prediction of future “random” values by sampling previous values
must not be possible
* (In simulation: not an issue if there is no real correlation)

Q Lighter requirement:
* RNSs are not used constantly, only in ~start-up phases
= speed is not of much importance

* (In simulation: need lots of numbers
= speed is very important)




't". Generation of U(0,1) random numbers

0 Generation approaches

» “Real”, “natural” random numbers: sampling from radioactive
material or white noise from electronic circuits, throwing dice,
drawing from an urn, ...

* Problems:
— If used online: not reproducible
— Tables: uncomfortable, not enough samples

= Pseudo random numbers: recursive arithmetic formulae with a
given starting value (seed)

 In hardware: shift register with feedback (based on primitive
polynomials as feedback patterns)

 In software: Linear Congruential Generator (LCG) [Lehmer,
1951], ...
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iﬁ"“ Generation of U(0,1) pseudo-random numbers

Main families:
a Linear Congruential Generator (LCG): the simplest
0 General Congruential Generators
= Quadratic Congruential Generator
= Multiple recursive generators
o Shift register with feedback (Tausworthe)
= E.g., Mersenne Twister: state-of-the-art
0 Composite generators: output of multiple RNG
= E.g., use one to shuffle (“twist”) the output of the other




g RNG: alternatives unsuitable for simulation
=\

a Algorithms from cryptography
» For example: counter—AES, counter—-SHA1, counter—MDY5, etc.
= Usually way too slow

o Calculate transcendent numbers (e.g., 1 or e), view their digits as
random

= E.g.: digits of 100,000" decimal place of T onwards
= Problem: Are they really random?
a Physical generators (cf. previous lecture)
= Not reproducible, no seed
o Tables with pre-computed random numbers
= We need too many random numbers, the tables would have to be huge...




ney . . :
24 Linear Congruential Generators

o Calculate RN from previous RN using some formula
o Sequence of integers Z,, Z,,... defined by

Z. =(a-Z,_,+c)(modm)
o with modulus m, multiplier a,

increment ¢, and seed Z,

a ¢=0: multiplicative LCG
Example:

Z,=16807-Z,, (mod 2% -1)
(Lewis, Goodman, Miller, 1969)

o ¢>0: mixed LCG




;ﬁ"“ ...but they don’t create floats, but integers > 17!

a Obviously,
Z; = something mod m
and

something mod m<m

Q = Just normalise the result!
= Divide by m? But then, 1.0 cannot be attained.
= Better: Divide by m-1.




-"" Do they really generate uniformly distributed random
'A‘ numbers?

a Test for uniformity:
= Create a number of samples from RNG
= Test if these numbers are uniformly distributed

a A number of statistical tests to do this:
= x? test (deutsch: Chi-Quadrat-Anpassungstest)
= Kolmogorov-Smirnov test
= ... and a whole lot of others! For example:
« Cramer-von Mises test
» Anderson-Darling test

a Graphical examination (not real tests):
* Plot histogram / density / PDF N
= Distribution-function-difference plot
» Quantile-quantile plot (Q-Q plot)
» Probability-probability plot (P-P plot) ~

> (later in course)

e Ty



X .
W Histogram

a Given a series of n measurements X;

a Partition the domain min{X} ... max{X;}
Into m intervals I;...1

Histogram of Xi

300
J

250
|

200
|

Frequency
150
|

100
|

50

0 ~discretised density function
a0 Recommendation: m ~ \/ﬁ




;ﬁ"“ What the histogram can reveal (1)

Obviously not U(0,1) random variables:

Histogram of RN

350
|

Frequency
150 200 250 300
| | \ |
I
|
|
I
|
[

100
|

50
|

0.0 0.2 0.4 0.6 0.8 1.0

RN

(...okay, we could have calculated min and max instead of plotting the
histogram)




e

Obviously not U(0,1) random variables:

Histogram of RN

4000 5000
|

3000

Frequency

2000




e

Looks like a U(0,1) random variable at first sight...:

Histogram of RN

2000

1500
|

Frequency
1000
|




e

...but is obviously no U(0,1) random variables: huge gaps!

Histogram of RN

Frequency
600 800 1000
| \
|

400
l

200
|




iﬁ"“ Is a histogram just a bar plot?

a0 Gummibears — Original Haribo 300g (~130 Gummibears per package)

|
:

R R

G o AT e
i bbb B SR BT

“Histograms” are based on samples taken from a 300g package




52".‘ Is a histogram just a bar plot?

o Gummibears — Eaten by students during the lecture

60

()}
O
T

aN
(@]
T

N
o
T

Number of eaten gummibears
w
(@]

&
(=]
T

Student
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52".‘ Is a histogram just a bar plot?

a Gummibears — Original — 15009

200

180k e

160) premsnsnmnm

[y T —

frequency
—_— —

o N

(@] O

T

Qo
O

40_mv”m.

20_w”mm”

light+dark red

red orange

yellow green

white

Based on samples taken from 5 x 300g packages

IN2045 — Discrete Event Simulation, WS 2011/2012

68



52".‘ Is a histogram just a bar plot? — No!

a Histogram
= X axis:

* some scalar value, e.g.,
[0...1], or ]—o...+x[, etc.

 Divided into bins (,classes®)

= Y axis: number of occurrences

per class

Histogram of Xi

300
|

250
|

200
|

Frequency

100
|

50
|

Q

frequency

Barplot

» X axis: Some caftegorical value,

e.g., colour, or student name,
etc.

= Y axis: number of occurrences
per class

200

140

=y
N
o

—
o
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(o]
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(0)]
C)

o
C)

N
C)

o

orange yellow green white
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e

o Does the analytical distribution correspond to the empirical distribution
calculated from the sample set?

h(x), f(x) A
0.30

0.25

0.20 \

0.15 \

0.10 \

0.05 P

~
\
e

~——
0-00 1 1 -
0.05 0.35 0.65 0.95 1.25 1.55 1.85 x

Picture taken from Law/Kelton: ,Simulation Modeling and Analysis®, 3rd Edition, S. 348)



52".‘ Statistical tests

a Scenario: Given a set of measurements, we want to check if they
conform to a distribution; here: U(0,1)

a Graphs like presented before are nice indicators,
but not really tangible: “How straight is that line?” etc.

0 We want clearer things: Numbers or yes/no decisions
o Statistical tests can do the trick, but...

= Warning #1: Tests only can tell if measurements do not fit a
particular distribution—i.e., no “yes, it fits” proof!

= Warning #2: The result is never absolutely certain, there is always
an error margin.

= Warning #3: Usually, the input must be ‘iid’:
* Independent
* |dentically distributed
= >You never get a ‘proof’, not even with an error margin!
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iﬁ«"‘ X test (Pearson, 1900)

a Input:

= Series of n measurements X; ... X,

= A distribution function f (the ‘theoretical function’)
o Measurements will be tested against the distribution

= ~formal comparison of a histogram with the density function of the
theoretical function

a Null hypothesis HO:
The X are IID random variables with distribution function f




>\

— A/ : '
o' X test: How it works

Q
Q

Q

Divide the sample range into k intervals of equal probability

Count how many X; fall into which interval (histogram):

Nj = number of X; in j-th interval [a;; ... g

Calculate how many X; would fall into the j-th interval if they were
sampled from the theoretical distribution:

a;j : :
p, = ja__l f(x)dx  (f: density of theor. dist.)

J

Calculate squared normalised difference between the observed and
the expected samples per interval:

(N —np;)°
2 . J J
A =

,le np,

Obviously, if x2 is “too large”, the differences are too large, and we
must reject the null hypothesis

But what is “too large”?
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ii«" X° test: Using the x* distribution

0 The X2 distribution
= A test distribution
= Parameter: degrees of freedom (short df)
= x2(k=1df) =T (*2(k-1) , 2)
» Mathematically: The sum of n independent
squared normal distributions
o Compare the calculated x? against the x? distribution
= |f we use Kk intervals, then ¥? is distributed corresponding to the x?
distribution with k—1 degrees of freedom
= Let X1 .4 be the (1—a) quantile of the distribution

= qis called the confidence level
= Reject HO if x* > x*,_, ;4 (i.e., the X; do not follow the theoretical
distribution function)
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e

o The x? distribution with k-1 degrees of freedom

f(x) 4

Chi-square density with k-1 df

Shaded area = a

PN

. X2 k-1,1-a .
Do not reject Reject

Picture adopted from Law/Kelton: ,Simulation Modeling and Analysis®, 3rd Edition, S. 359)




iﬁ«"‘ X° test and degrees of freedom

O X2 test can be used to test against any distribution

a Easy in our case: We know the parameters of the theoretical
distribution f —it's U(0,1)

a Different in the general case:

= For example, we may know it's N(u, 0) (normal distribution)
but we know neither y nor o

= Fitting a distribution: Find parameters for f that make f fit the
measurements X; best

= Topic of a later lecture

a Theoretically:
Have to estimate m parameters
= Also have to take 2, _.,_; 1, into account

a Practically:
ms<2 and large k
= Don't care...
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Y :
V4% 2: 2
e X which parameters

o How many intervals (k)?
= A difficult problem for the general case

= Warning: A smaller or a greater k may change the outcome of the
test!

= As a general rule, use k between n/5 andv/n
= As a general rule, make the intervals equal-sized

= As another general rule, make sure that Vj: np; 2 5
(i.e., have enough samples that we expect to have at least 5
samples in each interval)

O = As a general rule, you need a lot of measurements!

a The larger the number of measurements, the higher the chance that
the assumption is rejected.

o What confidence level?

= At most a=0.10 (almost too much);
typical values: 0.001, 0.01, 0.05[, and 0.10]

» The smaller, the higher confidence in the test result
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'4" Kolmogorov-Smirnov test (KS test)

o Samples X.,ie0<i<n

a0 Hypothesis:
Samples X, are iid and follow the distribution F(x)

a Definition: empirical distribution X,

F(x)= X =X ( F. (x) step function)
n

a Test D, (x): largest vertical difference between F_ (x) and Ifn(x) ;

D, (x) = sup{F, (")~ F (x)

I<i<n

D; _max{n F(X(,))} _max{F(X(,)) Inl} D, ZmaX{DrT’Dn_}

Note: X. represents the sorted samples in ascending order




e

a Example 1: n=4, samples are iid and follow the distribution F(x)

|

0 X1 Xo X X

Geometric meaning of the K-S test statistic D, for n = 4.

=Y

Picture adopted from Law/Kelton: ,Simulation Modeling and Analysis®, 3rd Edition, S. 364




e

o Example 2:

1 | 1 |

0 Xa) Xo)  Xo X
An example in which the K-S test statistic D, is not equal to D],

=Y

Picture adopted from Law/Kelton: ,Simulation Modeling and Analysis®, 3rd Edition, S. 365



X :
w4qg Kolmogorov-Smirnov test

QO Holis accepted if

(\/ﬁ+0.12+0'T1]1)Dn <C_,

cl-a 1.138 1.224 1.358 1.480 1.628

= Advantages:

* No grouping into intervals required

 Valid for any sample size, not only for large n

« More powerful than x¢ for a number of distributions
» Disadvantages:

« Applicability more limited than x?

« Difficult to apply to discrete data

« |If distribution needs to be fitted (unknown parameters),
then K-S works only for a number of distributions




iﬁ"“ Alternatives to x? test

a Other tests:
» Anderson-Darling test (A-D test)
« Higher power than K-S for some distributions
= _..alot of other tests

* Rule of thumb: The more specialised the test, the higher its
power compared to other tests — but the less generally
applicable




iﬁ"“ Tests for uniformity: limitations

o Consider this sequence of drawn “random numbers”:

1.0

§ 9 g :
A B B
3 g & o & 3
@%3;3 S B
: 59
I A A
B N ® ® i %5
s .| 2 2 g
E o | 8%) %5 @? é? %?
3 @ & % $ 3
o | & @) @% o g
= © g % & 8
& 5 g @ &
g 18 o) © 0
0 100 200 300 400

Index (i-th random number)

a They are in U(0,1) ... but do they seem random!?




'4" Recall our requirements for RNG

0 RNs have to be uncorrelated — how should we test this?

a Statistical tests:
Draw some random numbers and examine them
= Runs-up test
= Serial test

a Theoretical parameters and theoretical tests:
* Length of period
» Spectral test
= |attice test




X/
w4 Runs-up test

2 Run up :=the length of a contiguous sequence of
monotonically increasing X..

a Example sequence:

0.86 > length: 1
0.11<0.23> length: 2
0.03<0.13> length: 2
0.06<0.55<0.64<0.87> length: 4
0.10 length: 1

a Calculate r; (number of runs up of length i)

o Compute a test statistic value R, using the r, and
a bestranging zoo of esoteric constants a; and b;

0 R will have an approximate x? distribution with 6 df.

* You just have to believe me there — and | have to believe the
literature...
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e

0 Find possible correlations between subsequently drawn
values

a Visual “tests™
= 2D plot of X; and X;_;
= 3D plot of X; and X,_; and X, ,

o Generalisation: Serial test






(3141592653*X(n)+2718281829) mod 2°35, X(0)=5772156649, 0 < n < 10000

X(n+1)
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0, 0 <n < 50000

(129*X(n)+1) mod 235, X(0)

X(n+1)
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74g LCG examples (4/5)

/X

X(n+1)=(262145*X(n)+1) mod 235, X(0)=47594188, 0 < n < 50000

X(n+1) (normalized to [0,1])

0 | | | | | | | |

0 01 0.2 0.3 04 0.5 0.6 0.7 0.8 0.9 1
X(n) (normalized to [0,1])




LCG examples (5/5)

N
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n

=81
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0.0
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19683

n=




w2 Serial test: like a multidimensional X? test
/N

Serial test: “a generalised and formalised version of the plots”

o Consider non-overlapping d-tuples of subsequently
drawn random variables X; :
U, = (X4 X5, ..o Xy) U, = (Xgs1r Xgaos ---» Xog)

a These U;'s are vectors in the d-dimensional space

a If the X, are truly iid random variables, then the U, are truly
random iid vectors in the space [0...1]¢
(the d-dimensional hypercube)

a Test for d-dimensional uniformity (rough outline):

= Divide [0...1]% into k equal-sized sub intervals

= Calculate a value x?(d) based on the number of U
for each possible interval combination

* x?(d) has approximate distribution x?(k%-1 df)
= Rest: same as x? test above
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52".‘ The infamous RANDU generator

a A LCG with setup:
Zi — 65,539 ) Zi—l mOd 231
o Advantage: It's fast.

= mod 23! can be calculated with a simple AND operation

= 65,539 is a bit more than 215; thus the multiplication (=expensive
operation) can be replaced by a bit shift of 16 bit plus three
additions (=cheap operations)

= Why 65,5397 It's a prime number.
0 Disadvantage:

= An infamously bad RNG! Never, ever use it!

» d=3: The tuples are clumped into 15 plains (remember the
animated 3D cube? That was RANDU!)

o A lot of simulations in the 1970s used RANDU
= sceptical view on simulation results from that time
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X/ . .
¥og Theoretical parameters, theoretical tests
Z

Q Tests so far: Based on drawing samples from
RNG

0 No absolute certainty!

= Usually, only a small subset of entire period is used
= Remember the x? test

0 Theoretical parameters and tests
= Based directly on the algorithm and its parameters
= No samples to be drawn — not a real “statistical test”
= Usually quite complicated
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iﬁ".‘ Period length

0 After some time, the “random” numbers must repeat
themselves.
Why?
= LCG: Z;is entirely determined by Z_;
= The same Z_, will always produce the same Z,
= There are only finitely many different Z,

= How many?
We take mod m = at most m different values

o Call this the period length




5%"“ Theorem by Hull and Dobell 1962

a A LCG has full period if and only if the following three
conditions hold:

1. cisrelatively prime to m
(.e., they do not have a prime factor in common)

2. If m has a prime factor q,
then (a—1) must have a prime factor g, too

3. If mis divisible by 4,
then (a—1) must be divisible by 4, too

0O =>Prime numbers play an important role

= Remember RANDU?
At least, it used a prime number...

o Multiplicative RNGs (i.e., no increment Z+c) cannot have

period m.
(But period (m-1) is possible if m and a are chosen

carefully.)
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't". LCG and period length considerations

a

a

On 32 bit machines, m<23! or m=232 due to efficiency
reasons = period length 4.3 billion

Calculating that many random numbers only takes a
couple of seconds on today’s hardware

Theory suggests to use only ./ period _length
numbers;
that’s only 65,000 random numbers

How many random numbers do we need?
Example:

= Simulate behaviour of 1,000 Web hosts

= Each host consumes on average 1 random number per simulation
second

» Result: We can only simulate for one minute!
>We need much longer period lengths
= Okay... so let’s just use a 64-bit LCG, no?
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&v’.‘ Spectral test (coarse description)

O ~ The theoretical variant of the serial test

0 Observation by Marsaglia (1968):
“Random numbers fall mainly in planes.”

= Subsequent overlapping (!) tuples U..
U =(Xg, Xa, -on Xy) U,= (X2,X3, oy Kygi) -
fall on a relatlvely small number of (d— 1) dlmenS|onaI hyperplanes
within the d-dimensional space

= Note the difference to the serial test! (overlapping)
= ‘Lattice’ structure

a Consider hyperplane families that cover all tuples U,

o Calculate the maximum distance between hyperplanes.
Call it &.

a If &4 is small, then the generator can ~uniformly fill up the
d-dimensional space
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iﬁ"“ Spectral test and LCG

a For LCG, it is possible to give a
theoretical lower bound &4*:
g 2 04" = 1/ (yyg m*)
a Y4 IS a constant whose exact value is only known for d<8
(dimensions up to 8)

0 LCG do not perform very well in the spectral test:
= All points lie on at most m¥" hyperplanes (Marsaglia’s theorem)
= Serial test: similar

= There are way better random number generators than linear
congruential generators.
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n'ay : :
L/
,'A. Discussion of LCGs

o Advantages:
= Easy to implement
= Reproducible
= Simple and fast

0 Disadvantages:

= Period (Ilength of a cycle) depends on
parameters a, ¢, and m

= Distribution and correlation properties of generated sequences are
not obvious

= A value can occur only once per period (unrealistic!)

= By making a bad choice of parameters, you can
screw up things massively

= Bad performance in serial test / spectral test even for good choice
of parameters




i{'.‘ Beyond LCGs

a Why linear?
= Quadratic congruential generator:
Zi=(a-(Z_p)~+a -Z_,)modm
= But: period is still at most m
a Why only use one previous X;?
= Multiple recursive generator:

Zi=(a i, +aZi,tagZi g+ ... +aZ ) mod m

= Period can be mY-1 if parameters are chosen properly

0 Why not change multiplier a and increment ¢ dynamically,
according to some other congruential formula?
= Seems to work ~alright

102



52".‘ Feedback Shift Register Generators (1/2)

0 Linear feedback shift register generator (LFSR) introduced
by Tausworthe (1965)
o Operate on binary numbers (bits), not on integers
o Mathematically, a multiple recursive generator:
b; = (b, ; + Cb,+ C3b 5 + ... + Cyb ) mod 2
= c;: constants that are either O or 1
" ¢, =1 (why?)

= Observe that + mod 2 is the same as XOR
(makes things faster)

a In hardware:

Feedback H 0 Qutput >
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iﬁ.‘ Feedback Shift Register Generators (2/2)

a Usually only two c; coefficients are 1, thus:

b, = (b, +b,_,)mod 2

0 LFSR create random bits, not integers

Easy solution: Concatenate { bits to form an {-bit integer

QO Properties

Period length [of the b, bits] = 29-1, if parameters chosen
accordingly (Note: characteristic polynomial has to be primitive
over Galois field 72 ...)

Period length of the generated ints accordingly lower?
« Depends on whether £ | 29—-1 or not
« This is probably not the case
 In general: period length = 29-1 / gcd(29-1, ) [deutsch: ggT]
« But there may be some correlation after one 29—-1 “bit period”
Statistical properties not very good
Combining LFSRs improves statistics and period
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52".‘ Generalised feedback shift register (GFSR)

Q Lewis and Payne (1973)

a To obtain sequence of {-bit integers Y,, Y5, ...:
= Leftmost bit of Y; is filled with LFSR-generated bit b,
= Next bit of Yi is filled with LFSR-generated bit after some “delay” d:
bi+d
» Repeat that with same delay for remaining bits up to length {

0 Mathematical properties

= Period length can be very large if q is very large, e.g., Fushimi
(1990): period length = 2°21-1 = 6.86 - 1016

= |f 2i<29-1, then many Y.’s will repeat during one period run

= If two bits (as with LFSR), then Y; =Y, @ Y,
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'l" Long period lengths and repeated values

0 “If 2.<29-1, then many Y.’s will repeat during a period run.”
= {: number of bits of the integer output
= 24-1: period length

Q Is that good or bad?
= This is a general question — it relates to all RNGs, not only GFSR

a Consider this example:
= =2 = only 4 different numbers

» |f g=4 as well, then we always would get, e.g.
1,4,2,3,1,4,2,3,1,4,2,3,1,4,2,3,1,4,2,3,1,4,2,3

= But we would want something like
1,4,2,2,1,4,3,1,1,4,3,3,1,4,2,3,2,2,4,1,4,3,2,3

0o Clearly, it's good that numbers repeat during one period
a = Clearly, it's good that we have a very long period length
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iﬁ".‘ Mersenne Twister (1/2)

0 Before we go into the mathematical details...
= Very, very long period length: 219.937—1 > 1(06.000
= Very good statistical properties: OK in 623 dimensions
= Quite fast
o ~State of the art: One of the best we have right now
= The RNG of choice for simulations
» Default RNG in Python, Ruby, Matlab, GNU R
= Admittedly, there are even (slightly) better RNGs, cf. TestUO1
paper
a Three warnings:

= Not suitable for cryptographic applications:
Draw 624 random numbers and you can predict all others!

= Can take some time (“warm-up period”) until the stream generates
good random numbers
» Usually hidden from programmer through library
« If in doubt, discard the first 10,000 ... 100,000 drawn numbers
» There also are other good modern RNGs, e.g., WELL
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'4'. Mersenne Twister (2/2)

o Twisted GFSR (TGFSR)
= Matsumoto, Kurita (1992, 1994)

= Replace the recurrence of the GFSR by
=Y, DA Yi—q
where:
 the Y; are { x 1 binary vectors
« Ais an{ x £ binary matrix

= Period length = 2%—1 with suitable choices forr, g, A

0 Mersenne Twister (MT19937)
= Matsumoto, Nishimura (1997, 1998)

= Clever choice of r, g, A and the first Y, to obtain good statistical
properties
= Period length 219-937—-1 = 4,3 - 109091 (Mersenne prime: 2"-1)
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ey :
¢ Beyond Mersenne Twister

o Even better alternative: WELL
= Well Equidistributed Long-period Linear

= Panneton, L‘Ecuyer, Matsumoto: Improved Long-Period
Generators Based on Linear Recurrences Modulo 2, 2006

= Period length: 2k - 1 where k € {512,1024,19937,44497}
= Better statistical properties than Mersenne twister

= Speed comparable to Mersenne Twister

= No warm-up period

o SIMD-oriented Fast Mersenne Twister (SFMT)
= Faster than Mersenne Twister
» Uses features of modern CPUs: 128 bit instructions, Pipelining
= Also has better statistical properties than Mersenne Twister
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http://www.iro.umontreal.ca/~lecuyer/myftp/papers/wellrng.pdf
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52".‘ Digression: Period lengths revisited

What period lengths do we actually require?

O Estimate #1:

= A cluster of 1 million hosts

= each of which draws 1,000,000 - 232 per second (~1,000,000 times
as fast as today’s desktop PCs)

= for ten years

will require...

= 5.6 - 10°“random numbers

= (Make the PCs again 10° times faster = 5.6 - 1033)

0 Estimate #2: What's the estimated number of electrons
within the observable universe (a sphere with a radius of
~46.5 billion light years)

= About 1080 (+ take or leave a few powers of 10)
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'4'. Test batteries

a A lot of tests, a lot of different RNGs
0o How to compare them?

o Benchmark suites (‘Test batteries’)
that bundle many statistical tests:

= TestUO1 (L’Ecuyer)
= DIEHARD suite (Marsaglia)

= NIST test suite (National Institute of Standards and
Technologies;

2 Physikalisch-Technische Bundesanstalt)
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52".‘ Conclusion: Quality tests for RNG

o Empirical tests (based on generated samples)
= For U(0,1) distribution: x? test
» For independence: autocorrelation, serial, run-up tests

a Theoretical tests (based on generation formula)
= Basic idea: test for k-dimensional uniformity
» Points of sequence form system of hyperplanes
= Computation of distance of hyperplanes for several dimensions k
» Rather difficult optimization problem

a Conclusion

= |mplement/use only tested random number generators from
literature, no “home-brewed” generators!

= \When in doubt, use the Mersenne Twister
(but not for cryptography!)
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'f. RNG: outlook

a A wide research field, still somewhat active
= Many more algorithms exist
= Many more tests for randomness exist

= More are being developed

Q If you are interested in this topic, you might want to have a
look at this quite readable paper:
= L’Ecuyer, Simard
TestUO1: a C library for empirical testing of random

number generators
ACM Transactions on Mathematical Software,

Volume 33, No. 4, 2007
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