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Topics 

 Generation of Random Variables 

 Inversion, Composition, Convolution, Accept-Reject 

 Distributions – Continuous 

 Uniform, Normal, Triangle, Lognormal 

 Exponential, Erlang-k, Gamma, 

 Distributions - Discrete  

 Uniform(discrete), Bernoulli, Geom, Poisson, General Discrete 

 Random Number Generator (RNG) 

 Linear Congruential Generator (LCG) 

 X² Test 

 Serial Test 

 Spectral Test 

 Shift Register 

 Generalized Feedback Shift Register 

 Mersenne Twister 

Chapter is based on LK 6+8) 
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Introduction - Random variates 

 Generation of U(0,1) random numbers 

 Generation approaches 

 

 ―Real‖, ―natural‖ random numbers: sampling from radioactive material or 

white noise from electronic circuits, throwing dice, drawing from an urn, … 

• Problems: 

– If used online: not reproducible 

– Tables: uncomfortable, not enough samples 

 USB – Random Number Generator – Developed at TUM 
http://www.heise.de/newsticker/meldung/Appliance-liefert-50-Millionen-Zufallsbits-pro-

Sekunde-1125288.html 

 

 Pseudo random numbers: recursive arithmetic formulas with a given 

starting value (seed) 

• in hardware: shift register with feedback (based on primitive 

polynomials as feedback patterns) 

• in software: linear congruential generator (LCG) (Lehmer, 1951), … 
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Generating random variates 

 All algorithms are based on U(0,1) random variates 

 

 Selection criteria 

 Exactness (generation of the desired distribution) 

 Efficiency 

• Storage requirements (large tables required?) 

• Execution time 

– Marginal execution time (for each sample) 

– Setup time (at start time) 

 Robustness (characteristics do not change for different parameters) 

 Complexity (you have to understand before you implement it) 

 

 Huge literature available 
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Random variates 

 Measurement 

 Samples of a random variable X 

 

 What is the distribution function 

of random variable X?  

 Simulation 

 Distribution function of the 

random variable is known in 

advance 

 How to generate samples 

which follow the distribution of 

the random variable? 

 Idea  

 Generation of uniform distributed random numbers U(0,1)          

(Random number generator) 

 

 Transformation of the generated numbers according to the desired 

distribution of the random variable 
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Inversion (LK 8.2) 

 Random variable yi ~ U(0,1) 

 Transformation of yi according to a distribution function F(x) in a 

random variable Xi  

 

   )()( 1

iiii yFxxFy 
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Inversion (LK 8.2) 

Example: Generation of an exponential distribution with a mean value of λ 

 

 Algorithm: 

 Generate U~U(0,1) (pseudo random numbers) 

 Return  

 

 Random variable yi ~ U(0,1) 

 Transformation of yi according to a distribution function F(x) in a 

random variable Xi  
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Composition  

 Desired distribution function expressed as a convex combination of 

other distribution function 











11

1,0)()(
j

j

j

jj ppwherexFpxF

• Generate positive random integer J 

 

 

 

• Return X with distribution function FJ  

,....2,1)(  jforpjJP j
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Convolution 

 Desired random variable can be described as the sum of other random 

variable 

 1. Generate  

 

 Return 

 

  

 Example: 

• k- Erlang distributed random variable with a mean ε can be expressed 

as the sum of k exponential random variables with a common mean 

k/ε 

 

 Advantage: simple and intuitive approach 

 Disadvantage: slow since multiple random number have to be  

     generated in order to get a single sample 

kYYYY ,...,,, 321

kYYYYX  321
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Accept-Reject-Method (LK 8.2.4)  

 Inverse transform, combination, and convolution are direct methods 

(work directly with the distribution function) 

 

 Accept-Reject is used when other methods fail or are inefficient 

 

 Density function is complex  select a ―simpler‖ density function r 
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Accept-Reject-Method (LK 8.2.4)  

 Geometrical interpretation 

Y will be accepted if the point                     falls under the curve f .  

 The acceptance probability is high if t(Y)-f(Y) is small. 

 Majorante von f(x) 

 

x 

f(x) 

r(x) 

t(x) 

Y 

Reject 

Accept 

( , ( ))Y U t Y

)()(: xfxtx 
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Accept-Reject-Method (LK 8.2.4)  

 Indirect approach: 

 Preparation: 

 We need a function t that majorizes density f 

 

 

 

 

 We obtain a density r by 

 Algorithm 

1. Generate a random variable Y according to a density r 

 

2. Generate a random number                            (independent of Y) 

 

3. Return                  if  

 

 Otherwise, go back to step 1 and try again 

 

)1,0(~ UU

)(

)(

Yt

Yf
U YX  (ACCEPT) 

(REJECT) 

( ) ( ) for all

( ) ( ) 1

t x f x x

c t x dx f x dx
 

 
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Accept-Reject-Method (LK 8.2.4)  

 Example: beta(4,3) distribution (6th order polynomial, hard to invert) 

 
 

23  60 1           if 0 1

  0                            otherwise

x x x
f x

   
 


Majoring 

function 

of (x) 
2.0736
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Accept-Reject-Method (LK 8.2.4)  

 Efficiency: 

 Depends on the majorant series (x) 

 Probability of acceptance is 1/c                      Average number of iterations 

 

 

 Advantage: 

 Works for arbitrary density functions 

 

 

 Disadvantage: 

 Number of required U(0,1) random numbers depends on the generated 

numbers (may causes problems with some statistics and may result 

variations of the simulation duration) 

 Requires at two U(0,1) random numbers in each iterations 
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Random number generation 

How to generate random numbers according to different distributions? 



Network Security, WS 2008/09, Chapter 9   16 IN2045 – Discrete Event Simulation, WS 2011/2012   16 

Random numbers - Continuous 

 Uniform distribution:                                             (LK 8.3.1) 

 

 Density function: 

 

 Range:   

 

 Distribution function: 

 

 

 Expectation:  

 

 

 Variance: 

 

 

 Generation:    
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Random numbers - Continuous 

 Triangle distribution (1/4):                                                 (LK 8.3.15) 

 
 

 

 

 Density function: 

 

 
 

 

 

 

 Distribution function: 
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Random numbers - Continuous 

 Triangle distribution (2/4):                                                (LK 8.3.15) 

 Use case:  Project management / business simulations where only the  

  minimum, maximum and mode are known 

 

 Mode            c 

 

 Range   

 

 

 Expectation:  

 

 

 Variance: 
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Random numbers - Continuous 

 Triangle distribution (3/4):                                                (LK 8.3.15) 

 Generation:         Inversion 
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Probability Density Function Cumulative Density Function 
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Random numbers - Continuous 

 Triangle distribution (4/4):                                                (LK 8.3.15) 

 Use case: risk management / project management 

 

),,(~ cbatriangXRV
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Random numbers - Continuous 

 Normal distribution(1/4):                                             (LK 8.3.6) 

 
 Density function: 

 

 Distribution function: 

 

 Range:   

 

 Mode:              

 

 Expectation:  

 

 Variance: 

 

 Scalability: 
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Random numbers - Continuous 

 Normal distribution(2/4):                                             (LK 8.3.6) 

 

 Generation         Accept-Reject 

• Two independent random variables  

 

•   

 

•    

 

• Algorithm:     

             Accept if  

 

 

                                    ,                           ,  

                          

             Reject otherwise   
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Random numbers 

 Normal distribution(3/4):                                             (LK 8.3.6) 

  

 

Probability Density Function Cumulative Density Function 

),(~ 2NXRV
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Random numbers 

 Normal distribution(4/4):                                             (LK 8.3.6) 

 Use case: distribution of errors / sizes (nature) 

  

 

),(~ 2NXRV

Körpergröße Frauen Männer 

<150 cm 0,6 % 0,1 % 

150–154 cm 4 % 0,1 % 

155–159 cm 12,7 % 0,3 % 

160–164 cm 27,0 % 2,3 % 

165–169 cm 29,1 % 9,0 % 

170–174 cm 17,6 % 19,2 % 

175–179 cm 6,9 % 26,1 % 

180–184 cm 1,8 % 23,9 % 

185–189 cm 0,2 % 12,8 % 

≥ 190 cm <0,1 % 6,3 % 

Körpergröße der Deutschen Statistik des Sozio-oekonomischen Panels (SOEP), aufbereitet durch statista.org 

http://de.statista.org/statistik/diagramm/studie/341/filter/478/fcode/1,2/umfrage/koerpergroe%DFe/
http://de.wikipedia.org/wiki/SOEP
http://de.wikipedia.org/wiki/SOEP
http://de.wikipedia.org/wiki/SOEP
http://de.wikipedia.org/wiki/SOEP
http://de.wikipedia.org/wiki/SOEP
http://de.wikipedia.org/wiki/Statista
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Random numbers 

 Lognormal distribution(1/3):                                             (LK 8.3.7) 

 

 Special property of the lognormal distribution  

    

          if  

 

 Range: 

 

 Algorithm:  Composition 

 

–   

 

 Expectation: 

 

 Variance: 

 

 

),(~ 2LNXRV

),(~ 2NY ),(~ 2LNeY

),(~ 2NY YeX 

),0[ 

2

2

)(




 eXE

 1)(
222    eeXVAR

Note that μ and σ are NOT the mean and the variance of the lognormal distribution! 
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Random numbers 

 Lognormal distribution(2/3):                                             (LK 8.3.7) 

 

 Parameters of the normal distribution which is used to generate LN 

 

 

–   

 

 

 

 

–   
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Random numbers 

 Lognormal distribution(3/3):                                             (LK 8.3.7) 

 Use case: risk management (insurance companies) 

 

Probability Density Function Cumulative Density Function 

),(~ 2LNXRV
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Random numbers 

 Exponential distribution(1/2):                                             (LK 8.3.2) 

 

 Density function: 

 

 Distribution function: 

 

 Range:                                                           Mode: 0 

 

 Expectation:                                        

 

 Variance: 

 

 Coefficient of variation: 

 

 Generation:         Inversion 
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Random numbers - Continuous 

 Exponential distribution(2/2):                                             (LK 8.3.2) 

 Use case: life time of structures, time between calls/requests 

 

 

    

 

)exp(~ XRV

Probability Density Function Cumulative Density Function 

Pictures taken from Wikipedia 
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Random numbers - Continuous 

 Erlang-k distribution(1/3):                                                   (LK 8.3.3) 

 

                                                           where the Yi‘s are IID exponential       

                random variables               

 

 

 Density function: 

 

 

 

 

 Distribution function: 
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Random numbers - Continuous 

 Erlang-k distribution(2/3):                                                   (LK 8.3.3) 

 

 Range:   

 

 Expectation:  

 

 Variance: 

 

 Mode:   

 

 Coefficient of variation: 

 

 Generation:  

» Inversion 

 

» Convolution  

 

 

)(~ ErlangkXRV 

 ,0



k
XE )(

2
)(



k
XVAR 

k
cVar

1

















 ki

i

i

U

XUU
0

ln

),1,0(~

kYYYYXRV  321



1k



Network Security, WS 2008/09, Chapter 9   32 IN2045 – Discrete Event Simulation, WS 2011/2012   32 

Random numbers - Continuous 

 Erlang-k distribution(3/3):                                                   (LK 8.3.3) 

 Use case: lifetime of structures, delay in transport networks,                          

          dimensioning of systems (e.g. call center) 

 

 

    

 

Probability Density Function Cumulative Density Function 
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Random numbers - Continuous 

 Gamma distribution(1/3):                                                   (LK 8.3.4) 

 

 

 Density function: 

 

 

 

 

 Distribution function: 

 

 

 Parameter description: 

• Location parameter γ:  Shifting the distribution along the x-axis 

• Scale parameter β:  Linear impact on the expectation 

• Shape parameter α:  Changes the shape of the distribution 
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Random numbers - Continuous 

 Gamma distribution(2/3):                                                   (LK 8.3.4) 

 

 

 Gamma function: 

 

 

 Expectation: 

 

 Coefficient of variation: 

 

 Mode: 

 

 

 Generation: 

• Step 1 

 

• Step 2     Generation of                                       with Accept-Reject 
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Random numbers - Continuous 

 Gamma distribution(3/3):                                                   (LK 8.3.4) 

 Use cases: risk management (insurance companies), service time,   

            down time  
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Probability Density Function 
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Random numbers - Discrete 

 Uniform (discrete) (1/2)                          (LK 8.4.2) 

 

 

 Distribution: 

 

 

 Range:     

 

 Expectation: 

 

 

 Variance: 

 

 Generation: Inversion 
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Random numbers - Discrete 

 Uniform (discrete) (2/2)                          (LK 8.4.2) 

 Use case: backoff distribution, simulation (dice, roulette, …) 
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Distribution 
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Random numbers - Discrete 

 Bernoulli (1/2)                          (LK 8.4.1) 

 

 Example: Flipping a coin 

 

 Distribution: 

 

 

 Range:     

 

 Expectation: 

 

 Variance: 

 

 

 Coefficient of variation:  
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Random numbers - Discrete 

 Bernoulli (2/2)                          (LK 8.4.1) 

 

 Mode:   0 or 1  (depends on the definition of the  

                outcome)    

 Generation:  Inversion 

 

 

 

 

 Distribution    
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Random numbers - Discrete 

 N-Bernoulli (1/2)                                                 (LK 8.4.4) 

 

 Example: Flipping a coin 

                n times 

 

 Distribution: 

 

 Range:     

 

 Expectation: 

 

 Variance: 

 

 Coefficient of variation: 

 

 Use case: quality management, wrong/right decisions 
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Random numbers - Discrete 

 N-Bernoulli (2/2)                                                 (LK 8.4.4) 

 

 Mode:  0 or 1  (depends on the definition of the   

               outcome)    

 Generation: Composition 

 

 

 

 Distribution 
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Random numbers - Discrete 

 Geom (1/2)                                         (LK 8.4.5) 

 

 Example: Number of unsuccessful Bernoulli – Experiments until a  

               successful outcome (e.g. number of retransmissions) 

 

 Distribution: 

 

 Distribution function: 

 

 Expectation: 

 

 

 Variance: 

 

 

 Coefficient of variation: 
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Random numbers - Discrete 

 Geom (2/2)                                         (LK 8.4.5) 

 

 Mode:  0  

  

 Generation: Inversion 

 

 

 

 Use case:  delivery ratio in computer networks, risk management 

 Distribution 
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Random numbers - Discrete 

 Poisson(1/3)                                              (LK 6.2.4) 

 

 Example:  Number of events that occur in an interval of time when the  

  events are occurring at a constant rate (number of items in a  

  batch of random size) 

 

 Distribution: 

 

 

 

 Distribution function: 

 

 

 

 Parameter: 
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Random numbers - Discrete 

 Poisson(2/3)                                              (LK 6.2.4) 

 

 Range: 

 

 Expectation: 

 

 Variance: 

 

 Coefficient of variation:  

 

 Mode 

 

 Special characteristics: 

•                                    exponential distribution    

             (time interval between two consecutive events)  

• Number of events until a certain point in time is Poisson distributed 

• Period of time until n events have occurred is Erlang distributed 
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Random numbers - Discrete 

 Poisson(3/3)                                                (LK 6.2.4) 

 Use case: number of (independent) arrivals in a certain time interval 

)(~ PoissonXRV
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Random numbers - Discrete 

 General Discrete(1/1)                                         (LK 8.4.3) 

 

 

 Distribution: 

 

 

 

 Generation: Inversion 
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Some slides/figures taken from: 
Oliver Rose 

Averill Law, David Kelton 
Wikimedia Commons (user Matt Crypto) 

Dilbert 
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Structure of this lecture 

 Generating U(0,1) random numbers 

 Motivation 

 Overview on RNG families 

 Linear Congruential Generators (LCG) 

 Statistical properties, statistical (empirical) tests 

 χ2 test for uniformity 

 Correlation tests: Runs-up, sequence 

 Theoretical aspects, theoretical tests 

 Period length 

 Spectral test 

 RNG that are better than LCG 
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Recall the inversion method 

 Generate uniformly distributed numbers ∈ 0.0 … 1.0 

 Compute inverse A-1(t) of PDF A(t) 

 Generate samples 
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Generating U(0,1) random numbers is crucial 

 For all random number generation methods, we need uniformly 

distributed random numbers from ]0,1[ 

 ⇒ U(0,1) random numbers are required 

 

 Mandatory characteristics 

 Random (…obviously) 

 Uniform (make use of the whole distribution function) 

 Uncorrelated (no dependencies): difficult! 

 Reproducible (for verification of experiments)  

 use pseudo random numbers 

 Fast (usually, there is a need for a lot of samples) 
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RNG in simulation vs. RNG in cryptography 

 Also need for random numbers in cryptography 

 Key generation 

 Challenge generation in challenge-response systems 

 … 

 Additional requirement: 

 Prediction of future ―random‖ values by sampling previous values 

must not be possible 

 (In simulation: not an issue if there is no real correlation) 

 Lighter requirement: 

 RNs are not used constantly, only in ~start-up phases 

⇒ speed is not of much importance 

 (In simulation: need lots of numbers 

⇒ speed is very important) 
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Generation of U(0,1) random numbers 

 Generation approaches 

 ―Real‖, ―natural‖ random numbers: sampling from radioactive 

material or white noise from electronic circuits, throwing dice, 

drawing from an urn, … 

• Problems: 

– If used online: not reproducible 

– Tables: uncomfortable, not enough samples 

 Pseudo random numbers: recursive arithmetic formulae with a 

given starting value (seed) 

• In hardware: shift register with feedback (based on primitive 

polynomials as feedback patterns) 

• In software: Linear Congruential Generator (LCG) [Lehmer, 

1951], … 
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Generation of U(0,1) pseudo-random numbers 

Main families: 

 Linear Congruential Generator (LCG): the simplest 

 General Congruential Generators 

 Quadratic Congruential Generator 

 Multiple recursive generators 

 Shift register with feedback (Tausworthe) 

 E.g., Mersenne Twister: state-of-the-art 

 Composite generators: output of multiple RNG 

 E.g., use one to shuffle (―twist‖) the output of the other 
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RNG: alternatives unsuitable for simulation 

 Algorithms from cryptography 

 For example: counter→AES, counter→SHA1, counter→MD5, etc. 

 Usually way too slow 

 Calculate transcendent numbers (e.g., π or e), view their digits as 
random 

 E.g.: digits of 100,000th decimal place of π onwards 

 Problem: Are they really random?  

 Physical generators (cf. previous lecture) 

 Not reproducible, no seed 

 Tables with pre-computed random numbers 

 We need too many random numbers, the tables would have to be huge… 
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Linear Congruential Generators 

 Calculate RN  from previous RN using some formula 

 Sequence of integers                        defined by 

 

 

 

 with modulus m, multiplier a, 

increment c, and seed Z0 

 

 c=0: multiplicative LCG 

Example:  

 

                 

     (Lewis, Goodman, Miller, 1969) 

 

 c>0: mixed LCG 

1 2, ,Z Z

1( ) (mod )i iZ a Z c m  

 31

116807 mod 2 1i iZ Z   
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…but they don’t create floats, but integers > 1?! 

 Obviously, 

 Zi = something mod m 

and 

  something mod m < m 

 ⇒ Just normalise the result! 

 Divide by m? But then, 1.0 cannot be attained. 

 Better: Divide by m–1. 

 
 



Network Security, WS 2008/09, Chapter 9   60 IN2045 – Discrete Event Simulation, WS 2011/2012   60 

Do they really generate uniformly distributed random 

numbers? 

 Test for uniformity: 
 Create a number of samples from RNG 

 Test if these numbers are uniformly distributed 

 A number of statistical tests to do this: 
 χ2 test (deutsch: Chi-Quadrat-Anpassungstest) 

 Kolmogorov-Smirnov test 

 … and a whole lot of others! For example: 

• Cramér-von Mises test 

• Anderson-Darling test 

 Graphical examination (not real tests): 
 Plot histogram / density / PDF 

 Distribution-function-difference plot 

 Quantile-quantile plot (Q-Q plot) 

 Probability-probability plot (P-P plot) 

(later in course) 
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Histogram 

 Given a series of n measurements Xi 

 Partition the domain min{Xi} … max{Xi} 
into m intervals I1…Im 

 
 
 
 
 
 
 
 
 
 
 
 
 

 ~discretised density function 

 Recommendation:   nm 
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What the histogram can reveal (1) 

Obviously not U(0,1) random variables: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
(…okay, we could have calculated min and max instead of plotting the 
histogram) 



Network Security, WS 2008/09, Chapter 9   63 IN2045 – Discrete Event Simulation, WS 2011/2012   63 

What the histogram can reveal (2) 

Obviously not U(0,1) random variables: 
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What the histogram can reveal (3a) 

Looks like a U(0,1) random variable at first sight…: 
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What the histogram can reveal (3b) 

…but is obviously no U(0,1) random variables: huge gaps! 
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Is a histogram just a bar plot? 

 Gummibears – Original Haribo 300g (~130 Gummibears per package) 

―Histograms‖ are based on samples taken from a 300g package 
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Is a histogram just a bar plot? 

 Gummibears – Eaten by students during the lecture 
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Is a histogram just a bar plot? 

 Gummibears – Original – 1500g 

Based on samples taken from 5 x 300g packages 

light+dark red 
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Is a histogram just a bar plot? – No! 

 Histogram 

 X axis: 

• some scalar value, e.g., 

[0…1], or ]−∞…+∞[, etc. 

• Divided into bins („classes―) 

 Y axis: number of occurrences 

per class 

 

 

 Barplot 

 X axis: Some categorical value, 

e.g., colour, or student name, 

etc. 

 Y axis: number of occurrences 

per class 
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Statistical tests 

 Does the analytical distribution correspond to the empirical distribution 

calculated from the sample set? 

Picture taken from Law/Kelton: „Simulation Modeling and Analysis―, 3rd Edition, S. 348) 
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Statistical tests 

 Scenario: Given a set of measurements, we want to check if they 
conform to a distribution; here: U(0,1) 

 Graphs like presented before are nice indicators, 
but not really tangible: ―How straight is that line?‖ etc. 

 We want clearer things: Numbers or yes/no decisions 

 Statistical tests can do the trick, but… 

 Warning #1: Tests only can tell if measurements do not fit a 
particular distribution—i.e., no ―yes, it fits‖ proof! 

 Warning #2: The result is never absolutely certain, there is always 
an error margin. 

 Warning #3: Usually, the input must be ‗iid‘: 

• Independent 

• Identically distributed 

 ⇒You never get a ‗proof‘, not even with an error margin! 
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χ2 test (Pearson, 1900) 

 Input: 

 Series of n measurements X1 … Xn  

 A distribution function f (the ‗theoretical function‘) 

 Measurements will be tested against the distribution 

 ~formal comparison of a histogram with the density function of the 

theoretical function 

 Null hypothesis H0: 

The Xi are IID random variables with distribution function f 
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χ2 test: How it works 

 Divide the sample range into k intervals of equal probability 

 Count how many Xi fall into which interval (histogram): 

 Nj := number of Xi in j-th interval [aj-1 … aj[ 

 Calculate how many Xi would fall into the j-th interval if they were 

sampled from the theoretical distribution: 

      

      (f: density of theor. dist.) 

 

 Calculate squared normalised difference between the observed and 

the expected samples per interval: 

 

 

 

 Obviously, if χ2 is ―too large‖, the differences are too large, and we 

must reject the null hypothesis 

 But what is “too large”? 
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χ2 test: Using the χ2 distribution 

 The χ2 distribution 

 A test distribution 

 Parameter: degrees of freedom (short df) 

 χ2(k–1 df) = Γ(½(k–1) , 2)  (gamma distribution) 

 Mathematically: The sum of n independent 

squared normal distributions 

 Compare the calculated χ2 against the χ2 distribution 

 If we use k intervals, then χ2 is distributed corresponding to the χ2 

distribution with k–1 degrees of freedom 

 Let χ2
k–1,1–α be the (1–α) quantile of the distribution 

 α is called the confidence level 

 Reject H0 if χ2 > χ2
k–1,1–α (i.e., the Xi do not follow the theoretical 

distribution function) 
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χ2 test: 

 The χ2 distribution with k-1 degrees of freedom 

 

Picture adopted from Law/Kelton: „Simulation Modeling and Analysis―, 3rd Edition, S. 359) 

f(x) 

0 

Chi-square density with k-1 df 

Χ 2 
k–1,1–α  

Reject Do not reject 

Shaded area = α 
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χ2 test and degrees of freedom 

 χ2 test can be used to test against any distribution 

 Easy in our case: We know the parameters of the theoretical 
distribution f —it‘s U(0,1) 

 Different in the general case: 

 For example, we may know it‘s N(μ, σ)    (normal distribution) 
but we know neither μ  nor σ 

 Fitting a distribution: Find parameters for f  that make f  fit the 
measurements Xi best 

 Topic of a later lecture 

 Theoretically: 
Have to estimate m parameters 
⇒ Also have to take χ2

k–m–1,1–α  into account 

 Practically: 
m≤2 and large k 
⇒ Don‘t care… 
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χ2: which parameters? 

 How many intervals (k)? 

 A difficult problem for the general case 

 Warning: A smaller or a greater k may change the outcome of the 
test! 

 As a general rule, use k between n/5 and  

 As a general rule, make the intervals equal-sized 

 As another general rule, make sure that ∀j: npj ≥ 5 
(i.e., have enough samples that we expect to have at least 5 
samples in each interval) 

 ⇒ As a general rule, you need a lot of measurements! 

 The larger the number of measurements, the higher the chance that 
the assumption is rejected. 

 What confidence level? 

 At most α=0.10 (almost too much); 
typical values: 0.001, 0.01, 0.05 [ , and 0.10] 

 The smaller, the higher confidence in the test result 

n
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Kolmogorov-Smirnov test (KS test) 

 Samples 

 Hypothesis:  

 Samples       are iid and follow the distribution 

 

 Definition: empirical distribution 

 

      (           step function)  
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Kolmogorov-Smirnov test 

 Example 1: n=4, samples are iid and follow the distribution 

Picture adopted from Law/Kelton: „Simulation Modeling and Analysis―, 3rd Edition, S. 364 

)(ˆ xF
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Kolmogorov-Smirnov test 

 Example 2: 

Picture adopted from Law/Kelton: „Simulation Modeling and Analysis―, 3rd Edition, S. 365 



Network Security, WS 2008/09, Chapter 9   81 IN2045 – Discrete Event Simulation, WS 2011/2012   81 

Kolmogorov-Smirnov test 

 H0 is accepted if 

 

 

 

 

 

 

 

 Advantages: 

• No grouping into intervals required 

• Valid for any sample size, not only for large n 

• More powerful than χ2 for a number of distributions 

 Disadvantages: 

• Applicability more limited than χ2 

• Difficult to apply to discrete data 

• If distribution needs to be fitted (unknown parameters), 
then K-S works only for a number of distributions 









 1

11.0
12.0 cD

n
n n

1-α 0.850 0.900 0.950 0.975 0.990 

c1-α 1.138 1.224 1.358 1.480 1.628 
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Alternatives to χ2 test  

 Other tests: 

 Anderson–Darling test (A–D test) 

• Higher power than K-S for some distributions 

 …a lot of other tests 

• Rule of thumb: The more specialised the test, the higher its 
power compared to other tests – but the less generally 
applicable 
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Tests for uniformity: limitations 

 Consider this sequence of drawn ―random numbers‖: 

 

 

 

 

 

 

 

 

 

 

 

 They are in U(0,1) … but do they seem random!? 
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Recall our requirements for RNG 

 RNs have to be uncorrelated — how should we test this? 

 Statistical tests: 

Draw some random numbers and examine them 

 Runs-up test 

 Serial test 

 

 Theoretical parameters and theoretical tests: 

 Length of period 

 Spectral test 

 Lattice test 
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Runs-up test 

 Run up := the length of a contiguous sequence of 
monotonically increasing Xi. 

 Example sequence: 
0.86 >     length: 1 
0.11 < 0.23 >     length: 2 
0.03 < 0.13 >     length: 2 
0.06 < 0.55 < 0.64 < 0.87 >   length: 4 
0.10      length: 1 

 

 Calculate ri (number of runs up of length i) 

 Compute a test statistic value R, using the ri and 
a bestranging zoo of esoteric constants aij and bj 

 R will have an approximate χ2 distribution with 6 df. 

 You just have to believe me there – and I have to believe the 
literature… 
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Spectral test 

 Find possible correlations between subsequently drawn 

values 

 Visual ―tests‖: 

 2D plot of Xi and Xi–1 

 3D plot of Xi and Xi–1 and Xi–2 

 Generalisation: Serial test 
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LCG examples (1/5) 

 1 mod 61i iZ a Z  

a=7 a=43 

a=31 
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LCG examples (2/5) 

X(n+1)=(3141592653*X(n)+2718281829) mod 2^35, X(0)=5772156649, 0 < n < 10000 

X(n) (normalized to [0,1]) 

X
(n

+
1
) 

(n
o

rm
a

liz
e

d
 t
o

 [
0

,1
])
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LCG examples (3/5) 

X(n+1)=(129*X(n)+1) mod 2^35, X(0)=0, 0 < n < 50000 

X(n) (normalized to [0,1]) 

X
(n

+
1
) 

(n
o

rm
a

liz
e

d
 t
o

 [
0

,1
])
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LCG examples (4/5) 

X(n+1)=(262145*X(n)+1) mod 2^35, X(0)=47594188, 0 < n < 50000 

X(n) (normalized to [0,1]) 

X
(n

+
1
) 

(n
o

rm
a

liz
e

d
 t
o

 [
0

,1
])

 



Network Security, WS 2008/09, Chapter 9   92 IN2045 – Discrete Event Simulation, WS 2011/2012   92 

n=81 

n=2197 n=19683 

n=729 

LCG examples (5/5) 
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Serial test: like a multidimensional χ2 test 

Serial test: ―a generalised and formalised version of the plots‖ 
 

 Consider non-overlapping d-tuples of subsequently 
drawn random variables Xi : 
U1 = (X1, X2, … Xd) U2 = (Xd+1, Xd+2, …, X2d)     … 

 These Ui‘s are vectors in the d-dimensional space 

 If the Xi are truly iid random variables, then the Ui are truly 
random iid vectors in the space [0…1]d 
(the d-dimensional hypercube) 

 Test for d-dimensional uniformity (rough outline): 
 Divide [0…1]d into k equal-sized sub intervals 

 Calculate a value χ2(d) based on the number of Ui 

for each possible interval combination 

 χ2(d) has approximate distribution χ2(kd–1 df) 

 Rest: same as χ2 test above 
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The infamous RANDU generator 

 A LCG with setup: 
Zi = 65,539 ∙ Zi–1 mod 231 

 Advantage: It‘s fast. 
 mod 231 can be calculated with a simple AND operation 

 65,539 is a bit more than 216; thus the multiplication (=expensive 
operation) can be replaced by a bit shift of 16 bit plus three 
additions (=cheap operations) 

 Why 65,539? It‘s a prime number. 

 Disadvantage: 
 An infamously bad RNG! Never, ever use it! 

 d≥3: The tuples are clumped into 15 plains (remember the 
animated 3D cube? That was RANDU!) 

 A lot of simulations in the 1970s used RANDU 
⇒ sceptical view on simulation results from that time 
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Theoretical parameters, theoretical tests 

 Tests so far: Based on drawing samples from 

RNG 

 No absolute certainty! 

 Usually, only a small subset of entire period is used 

 Remember the χ2 test 

 

 

 Theoretical parameters and tests 

 Based directly on the algorithm and its parameters 

 No samples to be drawn – not a real ―statistical test‖ 

 Usually quite complicated 
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Period length 

 After some time, the ―random‖ numbers must repeat 

themselves. 

Why? 

 LCG: Zi is entirely determined by Zi–1 

 The same Zi–1 will always produce the same Zi  

 There are only finitely many different Zi  

 How many? 

We take mod m ⇒ at most m different values 

 Call this the period length 
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Theorem by Hull and Dobell 1962 

 A LCG has full period if and only if the following three 
conditions hold: 
1.  c is relatively prime to m 

(i.e., they do not have a prime factor in common) 

2. If m has a prime factor q, 
then (a–1) must have a prime factor q, too 

3. If m is divisible by 4, 
then (a–1) must be divisible by 4, too 

 ⇒Prime numbers play an important role 
 Remember RANDU? 

At least, it used a prime number… 

 Multiplicative RNGs (i.e., no increment Zi+c) cannot have 
period m. 
(But period (m–1) is possible if m and a are chosen 
carefully.) 
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LCG and period length considerations 

 On 32 bit machines, m≤231 or m≤232 due to efficiency 
reasons ⇒ period length 4.3 billion 

 Calculating that many random numbers only takes a 
couple of seconds on today‘s hardware 

 Theory suggests to use only                                    
numbers; 
that‘s only 65,000 random numbers 

 How many random numbers do we need? 
Example: 
 Simulate behaviour of 1,000 Web hosts 

 Each host consumes on average 1 random number per simulation 
second 

 Result: We can only simulate for one minute! 

 ⇒We need much longer period lengths 
 Okay… so let‘s just use a 64-bit LCG, no? 

 

lengthperiod _
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Spectral test (coarse description) 

 ~ The theoretical variant of the serial test 

 Observation by Marsaglia (1968): 
―Random numbers fall mainly in planes.‖ 
 Subsequent overlapping (!) tuples Ui: 

   U1=(X1, X2, … Xd) U2=(X2, X3, …, Xd+1)  … 
fall on a relatively small number of (d–1)-dimensional hyperplanes 
within the d-dimensional space 

 Note the difference to the serial test! (overlapping) 

 ‗Lattice‘ structure 

 Consider hyperplane families that cover all tuples Ui  

 Calculate the maximum distance between hyperplanes. 
Call it δd. 

 If δd is small, then the generator can ~uniformly fill up the 
d-dimensional space 
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Spectral test and LCG 

 For LCG, it is possible to give a 

theoretical lower bound δd*: 

  δd ≥ δd* = 1 / (γd m
1/d) 

 γd  is a constant whose exact value is only known for d≤8 

(dimensions up to 8) 

 LCG do not perform very well in the spectral test: 

 All points lie on at most m1/n hyperplanes (Marsaglia‘s theorem) 

 Serial test: similar 

 There are way better random number generators than linear 

congruential generators. 
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Discussion of LCGs 

 Advantages: 
 Easy to implement 

 Reproducible 

 Simple and fast 

 Disadvantages: 
 Period (length of a cycle) depends on 

parameters a, c, and m 

 Distribution and correlation properties of generated sequences are 
not obvious 

 A value can occur only once per period (unrealistic!) 

 By making a bad choice of parameters, you can 
screw up things massively 

 Bad performance in serial test / spectral test even for good choice 
of parameters 
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Beyond LCGs 

 Why linear? 

 Quadratic congruential generator: 

  Zi = (a ∙ (Zi–1)
2

 + a‘ ∙ Zi–1) mod m 

 But: period is still at most m 

 Why only use one previous Xi? 

 Multiple recursive generator: 

  Zi = (a1Zi–1 + a2Zi–2 + a3Zi–3 + … + aqZi–q) mod m 

 Period can be mq–1 if parameters are chosen properly 

 Why not change multiplier a and increment c dynamically, 

according to some other congruential formula? 

 Seems to work ~alright 
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Feedback Shift Register Generators (1/2) 

 Linear feedback shift register generator (LFSR) introduced 

by Tausworthe (1965) 

 Operate on binary numbers (bits), not on integers 

 Mathematically, a multiple recursive generator: 

  bi = (c1bi–1 + c2bi–2 + c3bi–3 + … + cqbi–q) mod 2 

 ci: constants that are either 0 or 1 

 cq = 1 (why?) 

 Observe that + mod 2 is the same as XOR 

(makes things faster) 

 In hardware: 
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Feedback Shift Register Generators (2/2) 

 Usually only two cj coefficients are 1, thus: 

   

 

 LFSR create random bits, not integers 

 Easy solution: Concatenate ℓ bits to form an ℓ-bit integer 

 Properties 

 Period length [of the bi bits] = 2q–1, if parameters chosen 

accordingly (Note: characteristic polynomial has to be primitive 

over Galois field ℱ2 …) 

 Period length of the generated ints accordingly lower? 

• Depends on whether ℓ | 2q–1 or not 

• This is probably not the case 

• In general: period length = 2q–1 / gcd(2q–1, ℓ)    [deutsch: ggT] 

• But there may be some correlation after one 2q–1 ―bit period‖ 

 Statistical properties not very good 

 Combining LFSRs improves statistics and period 

2mod)( qirii bbb  
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Generalised feedback shift register (GFSR) 

 Lewis and Payne (1973) 

 

 To obtain sequence of ℓ-bit integers Y1, Y2, …: 

 Leftmost bit of Yi is filled with LFSR-generated bit bi  

 Next bit of Yi is filled with LFSR-generated bit after some ―delay‖ d: 

bi+d 

 Repeat that with same delay for remaining bits up to length ℓ 

 

 Mathematical properties 

 Period length can be very large if q is very large, e.g., Fushimi 

(1990): period length = 2521–1 = 6.86 ∙ 10156 

 If 2ℓ<2q–1, then many Yi‘s will repeat during one period run  

 If two bits (as with LFSR), then Yi = Yi–r ⊕ Yi–q 
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Long period lengths and repeated values 

 ―If 2ℓ<2q–1, then many Yi‘s will repeat during a period run.‖ 

 ℓ: number of bits of the integer output 

 2q–1: period length 

 Is that good or bad? 

 This is a general question – it relates to all RNGs, not only GFSR 

 

 Consider this example: 

 ℓ=2 ⇒ only 4 different numbers 

 If q=4 as well, then we always would get, e.g. 

1, 4, 2, 3, 1, 4, 2, 3, 1, 4, 2, 3, 1, 4, 2, 3, 1, 4, 2, 3, 1, 4, 2, 3 

 But we would want something like 

1, 4, 2, 2, 1, 4, 3, 1, 1, 4, 3, 3, 1, 4, 2, 3, 2, 2, 4, 1, 4, 3, 2, 3 

 Clearly, it‘s good that numbers repeat during one period 

 ⇒ Clearly, it‘s good that we have a very long period length 
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Mersenne Twister (1/2) 

 Before we go into the mathematical details… 

 Very, very long period length: 219,937–1 > 106,000 

 Very good statistical properties: OK in 623 dimensions 

 Quite fast 

 ~State of the art: One of the best we have right now 

 The RNG of choice for simulations 

 Default RNG in Python, Ruby, Matlab, GNU R 

 Admittedly, there are even (slightly) better RNGs, cf. TestU01 
paper 

 Three warnings: 

 Not suitable for cryptographic applications: 
Draw 624 random numbers and you can predict all others! 

 Can take some time (―warm-up period‖) until the stream generates 
good random numbers 

• Usually hidden from programmer through library 

• If in doubt, discard the first 10,000 … 100,000 drawn numbers 

 There also are other good modern RNGs, e.g., WELL 
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Mersenne Twister (2/2) 

 Twisted GFSR (TGFSR) 

 Matsumoto, Kurita (1992, 1994) 

 Replace the recurrence of the GFSR by 

  Yi = Yi–r ⊕ A ∙ Yi–q 

where: 

• the Yi are ℓ x 1 binary vectors 

• A is an ℓ x ℓ binary matrix 

 Period length = 2qℓ–1 with suitable choices for r, q, A 

 Mersenne Twister (MT19937) 

 Matsumoto, Nishimura (1997, 1998) 

 Clever choice of r, q, A and the first Yi to obtain good statistical 

properties 

 Period length 219,937–1 = 4.3 ∙ 106001  (Mersenne prime: 2n–1) 
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Beyond Mersenne Twister 

 Even better alternative: WELL 

 Well Equidistributed Long-period Linear 

 Panneton, L‗Écuyer, Matsumoto: Improved Long-Period 

Generators Based on Linear Recurrences Modulo 2, 2006 

 Period length: 2k − 1 where k ∈ {512,1024,19937,44497} 

 Better statistical properties than Mersenne twister 

 Speed comparable to Mersenne Twister 

 No warm-up period 

 

 

 SIMD-oriented Fast Mersenne Twister (SFMT) 

 Faster than Mersenne Twister 

 Uses features of modern CPUs: 128 bit instructions, Pipelining 

 Also has better statistical properties than Mersenne Twister 

http://www.iro.umontreal.ca/~lecuyer/myftp/papers/wellrng.pdf
http://www.iro.umontreal.ca/~lecuyer/myftp/papers/wellrng.pdf
http://www.iro.umontreal.ca/~lecuyer/myftp/papers/wellrng.pdf
http://www.iro.umontreal.ca/~lecuyer/myftp/papers/wellrng.pdf
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Digression: Period lengths revisited 

What period lengths do we actually require? 

 Estimate #1: 
 A cluster of 1 million hosts 

 each of which draws 1,000,000 ∙ 232 per second (~1,000,000 times 
as fast as today‘s desktop PCs) 

 for ten years 

will require… 

 5.6 ∙ 1027 random numbers 

 (Make the PCs again 106 times faster ⇒ 5.6 ∙ 1033) 

 Estimate #2: What‘s the estimated number of electrons 
within the observable universe (a sphere with a radius of 
~46.5 billion light years) 
 About 1080 (± take or leave a few powers of 10) 
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Test batteries 

 A lot of tests, a lot of different RNGs 

 How to compare them? 

 Benchmark suites (‗Test batteries‘) 

that bundle many statistical tests: 

 TestU01 (L‘Écuyer) 

 DIEHARD suite (Marsaglia) 

 NIST test suite (National Institute of Standards and 

Technologies; 

≙ Physikalisch-Technische Bundesanstalt) 

 



Network Security, WS 2008/09, Chapter 9   112 IN2045 – Discrete Event Simulation, WS 2011/2012   112 

Conclusion: Quality tests for RNG 

 Empirical tests (based on generated samples) 
 For U(0,1) distribution: χ2 test 

 For independence: autocorrelation, serial, run-up tests 

 Theoretical tests (based on generation formula) 
 Basic idea: test for k-dimensional uniformity 

 Points of sequence form system of hyperplanes 

 Computation of distance of hyperplanes for several dimensions k 

 Rather difficult optimization problem 

 Conclusion 
 Implement/use only tested random number generators from 

literature, no ―home-brewed‖ generators! 

 When in doubt, use the Mersenne Twister 
(but not for cryptography!) 
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RNG: outlook 

 A wide research field, still somewhat active 

 Many more algorithms exist 

 Many more tests for randomness exist 

 More are being developed 

 If you are interested in this topic, you might want to have a 
look at this quite readable paper: 

 L‘Écuyer, Simard 
TestU01: a C library for empirical testing of random 
number generators 
ACM Transactions on Mathematical Software, 
Volume 33, No. 4, 2007 


