

 Chair for Network Architectures and Services – Prof. Carle

Department of Computer Science

TU München

Discrete Event Simulation

IN2045

Dr. Alexander Klein

Stephan Günther

Prof. Dr.-Ing. Georg Carle

Chair for Network Architectures and Services

Department of Computer Science

Technische Universität München

http://www.net.in.tum.de

Network Security, WS 2008/09, Chapter 9 2 IN2045 – Discrete Event Simulation, WS 2011/2012 2

Topics

 Generation of Random Variables

 Inversion, Composition, Convolution, Accept-Reject

 Distributions – Continuous

 Uniform, Normal, Triangle, Lognormal

 Exponential, Erlang-k, Gamma,

 Distributions - Discrete

 Uniform(discrete), Bernoulli, Geom, Poisson, General Discrete

 Random Number Generator (RNG)

 Linear Congruential Generator (LCG)

 X² Test

 Serial Test

 Spectral Test

 Shift Register

 Generalized Feedback Shift Register

 Mersenne Twister

Chapter is based on LK 6+8)

Network Security, WS 2008/09, Chapter 9 3 IN2045 – Discrete Event Simulation, WS 2011/2012 3

Introduction - Random variates

 Generation of U(0,1) random numbers

 Generation approaches

 ―Real‖, ―natural‖ random numbers: sampling from radioactive material or

white noise from electronic circuits, throwing dice, drawing from an urn, …

• Problems:

– If used online: not reproducible

– Tables: uncomfortable, not enough samples

 USB – Random Number Generator – Developed at TUM
http://www.heise.de/newsticker/meldung/Appliance-liefert-50-Millionen-Zufallsbits-pro-

Sekunde-1125288.html

 Pseudo random numbers: recursive arithmetic formulas with a given

starting value (seed)

• in hardware: shift register with feedback (based on primitive

polynomials as feedback patterns)

• in software: linear congruential generator (LCG) (Lehmer, 1951), …

http://www.heise.de/newsticker/meldung/Appliance-liefert-50-Millionen-Zufallsbits-pro-Sekunde-1125288.html
http://www.heise.de/newsticker/meldung/Appliance-liefert-50-Millionen-Zufallsbits-pro-Sekunde-1125288.html
http://www.heise.de/newsticker/meldung/Appliance-liefert-50-Millionen-Zufallsbits-pro-Sekunde-1125288.html
http://www.heise.de/newsticker/meldung/Appliance-liefert-50-Millionen-Zufallsbits-pro-Sekunde-1125288.html
http://www.heise.de/newsticker/meldung/Appliance-liefert-50-Millionen-Zufallsbits-pro-Sekunde-1125288.html
http://www.heise.de/newsticker/meldung/Appliance-liefert-50-Millionen-Zufallsbits-pro-Sekunde-1125288.html
http://www.heise.de/newsticker/meldung/Appliance-liefert-50-Millionen-Zufallsbits-pro-Sekunde-1125288.html
http://www.heise.de/newsticker/meldung/Appliance-liefert-50-Millionen-Zufallsbits-pro-Sekunde-1125288.html
http://www.heise.de/newsticker/meldung/Appliance-liefert-50-Millionen-Zufallsbits-pro-Sekunde-1125288.html
http://www.heise.de/newsticker/meldung/Appliance-liefert-50-Millionen-Zufallsbits-pro-Sekunde-1125288.html
http://www.heise.de/newsticker/meldung/Appliance-liefert-50-Millionen-Zufallsbits-pro-Sekunde-1125288.html
http://www.heise.de/newsticker/meldung/Appliance-liefert-50-Millionen-Zufallsbits-pro-Sekunde-1125288.html
http://www.heise.de/newsticker/meldung/Appliance-liefert-50-Millionen-Zufallsbits-pro-Sekunde-1125288.html
http://www.heise.de/newsticker/meldung/Appliance-liefert-50-Millionen-Zufallsbits-pro-Sekunde-1125288.html
http://www.heise.de/newsticker/meldung/Appliance-liefert-50-Millionen-Zufallsbits-pro-Sekunde-1125288.html

Network Security, WS 2008/09, Chapter 9 4 IN2045 – Discrete Event Simulation, WS 2011/2012 4

Generating random variates

 All algorithms are based on U(0,1) random variates

 Selection criteria

 Exactness (generation of the desired distribution)

 Efficiency

• Storage requirements (large tables required?)

• Execution time

– Marginal execution time (for each sample)

– Setup time (at start time)

 Robustness (characteristics do not change for different parameters)

 Complexity (you have to understand before you implement it)

 Huge literature available

Network Security, WS 2008/09, Chapter 9 5 IN2045 – Discrete Event Simulation, WS 2011/2012 5

Random variates

 Measurement

 Samples of a random variable X

 What is the distribution function

of random variable X?

 Simulation

 Distribution function of the

random variable is known in

advance

 How to generate samples

which follow the distribution of

the random variable?

 Idea

 Generation of uniform distributed random numbers U(0,1)

(Random number generator)

 Transformation of the generated numbers according to the desired

distribution of the random variable

Network Security, WS 2008/09, Chapter 9 6 IN2045 – Discrete Event Simulation, WS 2011/2012 6

Inversion (LK 8.2)

 Random variable yi ~ U(0,1)

 Transformation of yi according to a distribution function F(x) in a

random variable Xi

)()(1

iiii yFxxFy 

Network Security, WS 2008/09, Chapter 9 7 IN2045 – Discrete Event Simulation, WS 2011/2012 7

Inversion (LK 8.2)

Example: Generation of an exponential distribution with a mean value of λ

 Algorithm:

 Generate U~U(0,1) (pseudo random numbers)

 Return

 Random variable yi ~ U(0,1)

 Transformation of yi according to a distribution function F(x) in a

random variable Xi

)1ln()(1 uuF  

)(1 UFX 

uuF ln)(1 











otherwise

xifexF

x

0

01)(


symmetry

Network Security, WS 2008/09, Chapter 9 8 IN2045 – Discrete Event Simulation, WS 2011/2012 8

Composition

 Desired distribution function expressed as a convex combination of

other distribution function











11

1,0)()(
j

j

j

jj ppwherexFpxF

• Generate positive random integer J

• Return X with distribution function FJ

,....2,1)( jforpjJP j

Network Security, WS 2008/09, Chapter 9 9 IN2045 – Discrete Event Simulation, WS 2011/2012 9

Convolution

 Desired random variable can be described as the sum of other random

variable

 1. Generate

 Return

 Example:

• k- Erlang distributed random variable with a mean ε can be expressed

as the sum of k exponential random variables with a common mean

k/ε

 Advantage: simple and intuitive approach

 Disadvantage: slow since multiple random number have to be

 generated in order to get a single sample

kYYYY ,...,,, 321

kYYYYX  321

Network Security, WS 2008/09, Chapter 9 10 IN2045 – Discrete Event Simulation, WS 2011/2012 10

Accept-Reject-Method (LK 8.2.4)

 Inverse transform, combination, and convolution are direct methods

(work directly with the distribution function)

 Accept-Reject is used when other methods fail or are inefficient

 Density function is complex  select a ―simpler‖ density function r

Network Security, WS 2008/09, Chapter 9 11 IN2045 – Discrete Event Simulation, WS 2011/2012 11

Accept-Reject-Method (LK 8.2.4)

 Geometrical interpretation

Y will be accepted if the point falls under the curve f .

 The acceptance probability is high if t(Y)-f(Y) is small.

 Majorante von f(x)

x

f(x)

r(x)

t(x)

Y

Reject

Accept

(, ())Y U t Y

)()(: xfxtx 

Network Security, WS 2008/09, Chapter 9 12 IN2045 – Discrete Event Simulation, WS 2011/2012 12

Accept-Reject-Method (LK 8.2.4)

 Indirect approach:

 Preparation:

 We need a function t that majorizes density f

 We obtain a density r by

 Algorithm

1. Generate a random variable Y according to a density r

2. Generate a random number (independent of Y)

3. Return if

 Otherwise, go back to step 1 and try again

)1,0(~ UU

)(

)(

Yt

Yf
U YX  (ACCEPT)

(REJECT)

() () for all

() () 1

t x f x x

c t x dx f x dx
 

 



   

()
()

t x
r x

c


Network Security, WS 2008/09, Chapter 9 13 IN2045 – Discrete Event Simulation, WS 2011/2012 13

Accept-Reject-Method (LK 8.2.4)

 Example: beta(4,3) distribution (6th order polynomial, hard to invert)

 
 

23 60 1 if 0 1

 0 otherwise

x x x
f x

   
 


Majoring

function

of (x)
2.0736

Network Security, WS 2008/09, Chapter 9 14 IN2045 – Discrete Event Simulation, WS 2011/2012 14

Accept-Reject-Method (LK 8.2.4)

 Efficiency:

 Depends on the majorant series (x)

 Probability of acceptance is 1/c Average number of iterations

 Advantage:

 Works for arbitrary density functions

 Disadvantage:

 Number of required U(0,1) random numbers depends on the generated

numbers (may causes problems with some statistics and may result

variations of the simulation duration)

 Requires at two U(0,1) random numbers in each iterations

Network Security, WS 2008/09, Chapter 9 15 IN2045 – Discrete Event Simulation, WS 2011/2012 15

Random number generation

How to generate random numbers according to different distributions?

Network Security, WS 2008/09, Chapter 9 16 IN2045 – Discrete Event Simulation, WS 2011/2012 16

Random numbers - Continuous

 Uniform distribution: (LK 8.3.1)

 Density function:

 Range:

 Distribution function:

 Expectation:

 Variance:

 Generation:

),(~ baUXRV

 baX
ab

xf ;,
1

)(




 ba;

ab

ax
xF




)(

2
)(

ba
XE




12

)(
)(

2ab
XVAR




UabaXUU)(),1,0(~ 

Network Security, WS 2008/09, Chapter 9 17 IN2045 – Discrete Event Simulation, WS 2011/2012 17

Random numbers - Continuous

 Triangle distribution (1/4): (LK 8.3.15)

 Density function:

 Distribution function:

),,(~ cbatriangXRV



























otherwise

bxcif
cbab

xb

cxaif
acab

ax

xf

0

)()(

)(2

)()(

)(2

)(


































xbif

bxcif
cbab

xb

cxaif
acab

ax

axif

xf

1

)()(

)(
1

)()(

)(

00

)(
2

2

Network Security, WS 2008/09, Chapter 9 18 IN2045 – Discrete Event Simulation, WS 2011/2012 18

Random numbers - Continuous

 Triangle distribution (2/4): (LK 8.3.15)

 Use case: Project management / business simulations where only the

 minimum, maximum and mode are known

 Mode c

 Range

 Expectation:

 Variance:

 ba;

3
)(

cba
XE




18

)(
)(

222 bcacabcba
XVAR




),,(~ cbatriangXRV

Network Security, WS 2008/09, Chapter 9 19 IN2045 – Discrete Event Simulation, WS 2011/2012 19

Random numbers - Continuous

 Triangle distribution (3/4): (LK 8.3.15)

 Generation: Inversion

   

      1)(

)(0

1
),1,0(~
















UcF

cFU

cbabUb

acabUa
XUU

),,(~ cbatriangXRV

Probability Density Function Cumulative Density Function

Network Security, WS 2008/09, Chapter 9 20 IN2045 – Discrete Event Simulation, WS 2011/2012 20

Random numbers - Continuous

 Triangle distribution (4/4): (LK 8.3.15)

 Use case: risk management / project management

),,(~ cbatriangXRV

Time

P
ro

b
a
b
ili

ty

Expected

duration

Minimum

duration

Maximum

duration

Optimistic

assumption

Expected

duration

Pessimistic

assumption

Network Security, WS 2008/09, Chapter 9 21 IN2045 – Discrete Event Simulation, WS 2011/2012 21

Random numbers - Continuous

 Normal distribution(1/4): (LK 8.3.6)

 Density function:

 Distribution function:

 Range:

 Mode:

 Expectation:

 Variance:

 Scalability:

),(~ 2NXRV
























2

2

2

)(

22

1
)(







x

exf

  ;

dtexF

x t











 




2

2

1

2

1
)(





)(XE

2)(XVAR

),(~)()1,0(~ 2 NXNX 



Network Security, WS 2008/09, Chapter 9 22 IN2045 – Discrete Event Simulation, WS 2011/2012 22

Random numbers - Continuous

 Normal distribution(2/4): (LK 8.3.6)

 Generation Accept-Reject

• Two independent random variables

•

•

• Algorithm:

 Accept if

 , ,

 Reject otherwise

)1,0(~, 21 UUU

12  ii UV

2

2

2

1 VVW 

W

W
Y

ln2
 YVX  11

YVX  22

1W

),(~ 2NXRV

Network Security, WS 2008/09, Chapter 9 23 IN2045 – Discrete Event Simulation, WS 2011/2012 23

Random numbers

 Normal distribution(3/4): (LK 8.3.6)

Probability Density Function Cumulative Density Function

),(~ 2NXRV

Network Security, WS 2008/09, Chapter 9 24 IN2045 – Discrete Event Simulation, WS 2011/2012 24

Random numbers

 Normal distribution(4/4): (LK 8.3.6)

 Use case: distribution of errors / sizes (nature)

),(~ 2NXRV

Körpergröße Frauen Männer

<150 cm 0,6 % 0,1 %

150–154 cm 4 % 0,1 %

155–159 cm 12,7 % 0,3 %

160–164 cm 27,0 % 2,3 %

165–169 cm 29,1 % 9,0 %

170–174 cm 17,6 % 19,2 %

175–179 cm 6,9 % 26,1 %

180–184 cm 1,8 % 23,9 %

185–189 cm 0,2 % 12,8 %

≥ 190 cm <0,1 % 6,3 %

Körpergröße der Deutschen Statistik des Sozio-oekonomischen Panels (SOEP), aufbereitet durch statista.org

http://de.statista.org/statistik/diagramm/studie/341/filter/478/fcode/1,2/umfrage/koerpergroe%DFe/
http://de.wikipedia.org/wiki/SOEP
http://de.wikipedia.org/wiki/SOEP
http://de.wikipedia.org/wiki/SOEP
http://de.wikipedia.org/wiki/SOEP
http://de.wikipedia.org/wiki/SOEP
http://de.wikipedia.org/wiki/Statista

Network Security, WS 2008/09, Chapter 9 25 IN2045 – Discrete Event Simulation, WS 2011/2012 25

Random numbers

 Lognormal distribution(1/3): (LK 8.3.7)

 Special property of the lognormal distribution

 if

 Range:

 Algorithm: Composition

–

 Expectation:

 Variance:

),(~ 2LNXRV

),(~ 2NY),(~ 2LNeY

),(~ 2NY YeX 

),0[

2

2

)(




 eXE

 1)(
222    eeXVAR

Note that μ and σ are NOT the mean and the variance of the lognormal distribution!

Network Security, WS 2008/09, Chapter 9 26 IN2045 – Discrete Event Simulation, WS 2011/2012 26

Random numbers

 Lognormal distribution(2/3): (LK 8.3.7)

 Parameters of the normal distribution which is used to generate LN

–

–


















][][

][
ln][

2

2
2

XVARXE

XE
YVAR


















][][

][
ln][

2

2

XVARXE

XE
YE

),(~ 2LNXRV

Network Security, WS 2008/09, Chapter 9 27 IN2045 – Discrete Event Simulation, WS 2011/2012 27

Random numbers

 Lognormal distribution(3/3): (LK 8.3.7)

 Use case: risk management (insurance companies)

Probability Density Function Cumulative Density Function

),(~ 2LNXRV

Network Security, WS 2008/09, Chapter 9 28 IN2045 – Discrete Event Simulation, WS 2011/2012 28

Random numbers

 Exponential distribution(1/2): (LK 8.3.2)

 Density function:

 Distribution function:

 Range: Mode: 0

 Expectation:

 Variance:

 Coefficient of variation:

 Generation: Inversion

)exp(~ XRV

0)(  xfürexf x

 ,0

xexF 1)(



1
)(XE

2

1
)(


XVAR

1Varc



)ln(
),1,0(~

U
XUU




Network Security, WS 2008/09, Chapter 9 29 IN2045 – Discrete Event Simulation, WS 2011/2012 29

Random numbers - Continuous

 Exponential distribution(2/2): (LK 8.3.2)

 Use case: life time of structures, time between calls/requests

)exp(~ XRV

Probability Density Function Cumulative Density Function

Pictures taken from Wikipedia

Network Security, WS 2008/09, Chapter 9 30 IN2045 – Discrete Event Simulation, WS 2011/2012 30

Random numbers - Continuous

 Erlang-k distribution(1/3): (LK 8.3.3)

 where the Yi‘s are IID exponential

 random variables

 Density function:

 Distribution function:

)(~ ErlangkXRV 


















Otherwise

xfor
i

x
e

xF

k

i

i
x

0

0
!

)(
1

)(

1

0



RV X represents the sum of k exponential random variables














Otherwise

xfor
k

ex

xf

xkk

0

0
)!1()(

1 

kYYYYXRV  321

Network Security, WS 2008/09, Chapter 9 31 IN2045 – Discrete Event Simulation, WS 2011/2012 31

Random numbers - Continuous

 Erlang-k distribution(2/3): (LK 8.3.3)

 Range:

 Expectation:

 Variance:

 Mode:

 Coefficient of variation:

 Generation:

» Inversion

» Convolution

)(~ ErlangkXRV 

 ,0



k
XE )(

2
)(



k
XVAR 

k
cVar

1

















 ki

i

i

U

XUU
0

ln

),1,0(~

kYYYYXRV  321



1k

Network Security, WS 2008/09, Chapter 9 32 IN2045 – Discrete Event Simulation, WS 2011/2012 32

Random numbers - Continuous

 Erlang-k distribution(3/3): (LK 8.3.3)

 Use case: lifetime of structures, delay in transport networks,

 dimensioning of systems (e.g. call center)

Probability Density Function Cumulative Density Function

)(~ ErlangkXRV 

Network Security, WS 2008/09, Chapter 9 33 IN2045 – Discrete Event Simulation, WS 2011/2012 33

Random numbers - Continuous

 Gamma distribution(1/3): (LK 8.3.4)

 Density function:

 Distribution function:

 Parameter description:

• Location parameter γ: Shifting the distribution along the x-axis

• Scale parameter β: Linear impact on the expectation

• Shape parameter α: Changes the shape of the distribution

),(~ gammaXRV





















 

 




Otherwise

xfor
i

x

exF
i

i

x

0

0
!

1)(
0 

 



















Otherwise

xfor
ex

xf

x

0

0
)()(

1



 

Network Security, WS 2008/09, Chapter 9 34 IN2045 – Discrete Event Simulation, WS 2011/2012 34

Random numbers - Continuous

 Gamma distribution(2/3): (LK 8.3.4)

 Gamma function:

 Expectation:

 Coefficient of variation:

 Mode:

 Generation:

• Step 1

• Step 2 Generation of with Accept-Reject

),(~ gammaXRV

 )(XE

1Varc











1)1(

10





if

if






















00

0
)(

0

1

xif

xifdtet
z

tz

)1,(~),(~  gammaYYXgammaX 

)1,(~ gammaX

Network Security, WS 2008/09, Chapter 9 35 IN2045 – Discrete Event Simulation, WS 2011/2012 35

Random numbers - Continuous

 Gamma distribution(3/3): (LK 8.3.4)

 Use cases: risk management (insurance companies), service time,

 down time

),(~ gammaXRV

Probability Density Function

Network Security, WS 2008/09, Chapter 9 36 IN2045 – Discrete Event Simulation, WS 2011/2012 36

Random numbers - Discrete

 Uniform (discrete) (1/2) (LK 8.4.2)

 Distribution:

 Range:

 Expectation:

 Variance:

 Generation: Inversion

),(~ jiDUXRV

 












Otherwise

jiiikif
ijkp

0

,...,2,1,
1

1

)(

jki 

 
12

11
)(

2



ij

XVAR

 
2

)(
ji

XE




  UijiXUU  1)1,0(~

DU(0,1) and Bernoulli(0.5) distributions are the same

Network Security, WS 2008/09, Chapter 9 37 IN2045 – Discrete Event Simulation, WS 2011/2012 37

Random numbers - Discrete

 Uniform (discrete) (2/2) (LK 8.4.2)

 Use case: backoff distribution, simulation (dice, roulette, …)

),(~ jiDUXRV

Distribution

Network Security, WS 2008/09, Chapter 9 38 IN2045 – Discrete Event Simulation, WS 2011/2012 38

Random numbers - Discrete

 Bernoulli (1/2) (LK 8.4.1)

 Example: Flipping a coin

 Distribution:

 Range:

 Expectation:

 Variance:

 Coefficient of variation:

)(~ pBernoulliXRV















Otherwise

kifp

kifp

kp

0

1

01

)(

jki 

)1()(ppXVAR 

pXE )(

pn

p
cVar






1

Network Security, WS 2008/09, Chapter 9 39 IN2045 – Discrete Event Simulation, WS 2011/2012 39

Random numbers - Discrete

 Bernoulli (2/2) (LK 8.4.1)

 Mode: 0 or 1 (depends on the definition of the

 outcome)

 Generation: Inversion

 Distribution

)(~ pBernoulliXRV

)1,0(~ UU





 


Otherwise

pUif
X

1

0

)3.0(Bernoulli

Network Security, WS 2008/09, Chapter 9 40 IN2045 – Discrete Event Simulation, WS 2011/2012 40

Random numbers - Discrete

 N-Bernoulli (1/2) (LK 8.4.4)

 Example: Flipping a coin

 n times

 Distribution:

 Range:

 Expectation:

 Variance:

 Coefficient of variation:

 Use case: quality management, wrong/right decisions

),(~ pnBernoulliXRV

nkpp
k

n
kp knk 








  0)1()(

nk 0

)1()(ppnXVAR 

npXE )(

pn

p
cVar






1

Network Security, WS 2008/09, Chapter 9 41 IN2045 – Discrete Event Simulation, WS 2011/2012 41

Random numbers - Discrete

 N-Bernoulli (2/2) (LK 8.4.4)

 Mode: 0 or 1 (depends on the definition of the

 outcome)

 Generation: Composition

 Distribution

),(~ pnBernoulliXRV

)3.0,20(Bernoulli
)7.0,20(Bernoulli





ni

pBernoullipnBernoulli
0

)(),(

Network Security, WS 2008/09, Chapter 9 42 IN2045 – Discrete Event Simulation, WS 2011/2012 42

Random numbers - Discrete

 Geom (1/2) (LK 8.4.5)

 Example: Number of unsuccessful Bernoulli – Experiments until a

 successful outcome (e.g. number of retransmissions)

 Distribution:

 Distribution function:

 Expectation:

 Variance:

 Coefficient of variation:

)(~ pGeomXRV

xppxp)1()(

2

1
)(

p

p
XVAR




p

p
XE




1
)(

p
cVar




1

1

  1
)1(1)(




x
pxF

Network Security, WS 2008/09, Chapter 9 43 IN2045 – Discrete Event Simulation, WS 2011/2012 43

Random numbers - Discrete

 Geom (2/2) (LK 8.4.5)

 Mode: 0

 Generation: Inversion

 Use case: delivery ratio in computer networks, risk management

 Distribution

)1,0(~ UU













)1ln(

)ln(

p

U
X

)(~ pGeomXRV

)3.0(Geom

)7.0(Geom

pp )0(

Network Security, WS 2008/09, Chapter 9 44 IN2045 – Discrete Event Simulation, WS 2011/2012 44

Random numbers - Discrete

 Poisson(1/3) (LK 6.2.4)

 Example: Number of events that occur in an interval of time when the

 events are occurring at a constant rate (number of items in a

 batch of random size)

 Distribution:

 Distribution function:

 Parameter:

)(~ PoissonXRV

  e
x

xp
x

!
)( ,...}2,1,0xif

 


















0

!
)(0

x

i

i

i
e

xF



0xif

0xif

0

Network Security, WS 2008/09, Chapter 9 45 IN2045 – Discrete Event Simulation, WS 2011/2012 45

Random numbers - Discrete

 Poisson(2/3) (LK 6.2.4)

 Range:

 Expectation:

 Variance:

 Coefficient of variation:

 Mode

 Special characteristics:

• exponential distribution

 (time interval between two consecutive events)

• Number of events until a certain point in time is Poisson distributed

• Period of time until n events have occurred is Erlang distributed

)(XVAR



1
Varc

)(XE

 ...,3,2,1,0

0x

)(~ PoissonXRV

 

 



 1 λ is an integer

otherwise

Network Security, WS 2008/09, Chapter 9 47 IN2045 – Discrete Event Simulation, WS 2011/2012 47

Random numbers - Discrete

 Poisson(3/3) (LK 6.2.4)

 Use case: number of (independent) arrivals in a certain time interval

)(~ PoissonXRV

Network Security, WS 2008/09, Chapter 9 48 IN2045 – Discrete Event Simulation, WS 2011/2012 48

Random numbers - Discrete

 General Discrete(1/1) (LK 8.4.3)

 Distribution:

 Generation: Inversion

 , falls

GDXRV ~





 


Otherwise

nkxxifp
xp

kk

0

0,
)(

)1,0(~ UU









k

j

j

k

j

j pUp
0

1

0
kxX 

 Chair for Network Architectures and Services – Prof. Carle

Department of Computer Science

TU München

Random number generator

algorithms and their quality

Some slides/figures taken from:
Oliver Rose

Averill Law, David Kelton
Wikimedia Commons (user Matt Crypto)

Dilbert

Network Security, WS 2008/09, Chapter 9 50 IN2045 – Discrete Event Simulation, WS 2011/2012 50

Structure of this lecture

 Generating U(0,1) random numbers

 Motivation

 Overview on RNG families

 Linear Congruential Generators (LCG)

 Statistical properties, statistical (empirical) tests

 χ2 test for uniformity

 Correlation tests: Runs-up, sequence

 Theoretical aspects, theoretical tests

 Period length

 Spectral test

 RNG that are better than LCG

Network Security, WS 2008/09, Chapter 9 52 IN2045 – Discrete Event Simulation, WS 2011/2012 52

Recall the inversion method

 Generate uniformly distributed numbers ∈ 0.0 … 1.0

 Compute inverse A-1(t) of PDF A(t)

 Generate samples

Network Security, WS 2008/09, Chapter 9 53 IN2045 – Discrete Event Simulation, WS 2011/2012 53

Generating U(0,1) random numbers is crucial

 For all random number generation methods, we need uniformly

distributed random numbers from]0,1[

 ⇒ U(0,1) random numbers are required

 Mandatory characteristics

 Random (…obviously)

 Uniform (make use of the whole distribution function)

 Uncorrelated (no dependencies): difficult!

 Reproducible (for verification of experiments)

 use pseudo random numbers

 Fast (usually, there is a need for a lot of samples)

Network Security, WS 2008/09, Chapter 9 54 IN2045 – Discrete Event Simulation, WS 2011/2012 54

RNG in simulation vs. RNG in cryptography

 Also need for random numbers in cryptography

 Key generation

 Challenge generation in challenge-response systems

 …

 Additional requirement:

 Prediction of future ―random‖ values by sampling previous values

must not be possible

 (In simulation: not an issue if there is no real correlation)

 Lighter requirement:

 RNs are not used constantly, only in ~start-up phases

⇒ speed is not of much importance

 (In simulation: need lots of numbers

⇒ speed is very important)

Network Security, WS 2008/09, Chapter 9 55 IN2045 – Discrete Event Simulation, WS 2011/2012 55

Generation of U(0,1) random numbers

 Generation approaches

 ―Real‖, ―natural‖ random numbers: sampling from radioactive

material or white noise from electronic circuits, throwing dice,

drawing from an urn, …

• Problems:

– If used online: not reproducible

– Tables: uncomfortable, not enough samples

 Pseudo random numbers: recursive arithmetic formulae with a

given starting value (seed)

• In hardware: shift register with feedback (based on primitive

polynomials as feedback patterns)

• In software: Linear Congruential Generator (LCG) [Lehmer,

1951], …

Network Security, WS 2008/09, Chapter 9 56 IN2045 – Discrete Event Simulation, WS 2011/2012 56

Generation of U(0,1) pseudo-random numbers

Main families:

 Linear Congruential Generator (LCG): the simplest

 General Congruential Generators

 Quadratic Congruential Generator

 Multiple recursive generators

 Shift register with feedback (Tausworthe)

 E.g., Mersenne Twister: state-of-the-art

 Composite generators: output of multiple RNG

 E.g., use one to shuffle (―twist‖) the output of the other

Network Security, WS 2008/09, Chapter 9 57 IN2045 – Discrete Event Simulation, WS 2011/2012 57

RNG: alternatives unsuitable for simulation

 Algorithms from cryptography

 For example: counter→AES, counter→SHA1, counter→MD5, etc.

 Usually way too slow

 Calculate transcendent numbers (e.g., π or e), view their digits as
random

 E.g.: digits of 100,000th decimal place of π onwards

 Problem: Are they really random?

 Physical generators (cf. previous lecture)

 Not reproducible, no seed

 Tables with pre-computed random numbers

 We need too many random numbers, the tables would have to be huge…

Network Security, WS 2008/09, Chapter 9 58 IN2045 – Discrete Event Simulation, WS 2011/2012 58

Linear Congruential Generators

 Calculate RN from previous RN using some formula

 Sequence of integers defined by

 with modulus m, multiplier a,

increment c, and seed Z0

 c=0: multiplicative LCG

Example:

 (Lewis, Goodman, Miller, 1969)

 c>0: mixed LCG

1 2, ,Z Z

1() (mod)i iZ a Z c m  

 31

116807 mod 2 1i iZ Z   

Network Security, WS 2008/09, Chapter 9 59 IN2045 – Discrete Event Simulation, WS 2011/2012 59

…but they don’t create floats, but integers > 1?!

 Obviously,

 Zi = something mod m

and

 something mod m < m

 ⇒ Just normalise the result!

 Divide by m? But then, 1.0 cannot be attained.

 Better: Divide by m–1.

Network Security, WS 2008/09, Chapter 9 60 IN2045 – Discrete Event Simulation, WS 2011/2012 60

Do they really generate uniformly distributed random

numbers?

 Test for uniformity:
 Create a number of samples from RNG

 Test if these numbers are uniformly distributed

 A number of statistical tests to do this:
 χ2 test (deutsch: Chi-Quadrat-Anpassungstest)

 Kolmogorov-Smirnov test

 … and a whole lot of others! For example:

• Cramér-von Mises test

• Anderson-Darling test

 Graphical examination (not real tests):
 Plot histogram / density / PDF

 Distribution-function-difference plot

 Quantile-quantile plot (Q-Q plot)

 Probability-probability plot (P-P plot)

(later in course)

Network Security, WS 2008/09, Chapter 9 61 IN2045 – Discrete Event Simulation, WS 2011/2012 61

Histogram

 Given a series of n measurements Xi

 Partition the domain min{Xi} … max{Xi}
into m intervals I1…Im

 ~discretised density function

 Recommendation: nm 

Network Security, WS 2008/09, Chapter 9 62 IN2045 – Discrete Event Simulation, WS 2011/2012 62

What the histogram can reveal (1)

Obviously not U(0,1) random variables:

(…okay, we could have calculated min and max instead of plotting the
histogram)

Network Security, WS 2008/09, Chapter 9 63 IN2045 – Discrete Event Simulation, WS 2011/2012 63

What the histogram can reveal (2)

Obviously not U(0,1) random variables:

Network Security, WS 2008/09, Chapter 9 64 IN2045 – Discrete Event Simulation, WS 2011/2012 64

What the histogram can reveal (3a)

Looks like a U(0,1) random variable at first sight…:

Network Security, WS 2008/09, Chapter 9 65 IN2045 – Discrete Event Simulation, WS 2011/2012 65

What the histogram can reveal (3b)

…but is obviously no U(0,1) random variables: huge gaps!

Network Security, WS 2008/09, Chapter 9 66 IN2045 – Discrete Event Simulation, WS 2011/2012 66

Is a histogram just a bar plot?

 Gummibears – Original Haribo 300g (~130 Gummibears per package)

―Histograms‖ are based on samples taken from a 300g package

Network Security, WS 2008/09, Chapter 9 67 IN2045 – Discrete Event Simulation, WS 2011/2012 67

Is a histogram just a bar plot?

 Gummibears – Eaten by students during the lecture

Network Security, WS 2008/09, Chapter 9 68 IN2045 – Discrete Event Simulation, WS 2011/2012 68

Is a histogram just a bar plot?

 Gummibears – Original – 1500g

Based on samples taken from 5 x 300g packages

light+dark red

Network Security, WS 2008/09, Chapter 9 69 IN2045 – Discrete Event Simulation, WS 2011/2012 69

Is a histogram just a bar plot? – No!

 Histogram

 X axis:

• some scalar value, e.g.,

[0…1], or]−∞…+∞[, etc.

• Divided into bins („classes―)

 Y axis: number of occurrences

per class

 Barplot

 X axis: Some categorical value,

e.g., colour, or student name,

etc.

 Y axis: number of occurrences

per class

Network Security, WS 2008/09, Chapter 9 70 IN2045 – Discrete Event Simulation, WS 2011/2012 70

Statistical tests

 Does the analytical distribution correspond to the empirical distribution

calculated from the sample set?

Picture taken from Law/Kelton: „Simulation Modeling and Analysis―, 3rd Edition, S. 348)

Network Security, WS 2008/09, Chapter 9 71 IN2045 – Discrete Event Simulation, WS 2011/2012 71

Statistical tests

 Scenario: Given a set of measurements, we want to check if they
conform to a distribution; here: U(0,1)

 Graphs like presented before are nice indicators,
but not really tangible: ―How straight is that line?‖ etc.

 We want clearer things: Numbers or yes/no decisions

 Statistical tests can do the trick, but…

 Warning #1: Tests only can tell if measurements do not fit a
particular distribution—i.e., no ―yes, it fits‖ proof!

 Warning #2: The result is never absolutely certain, there is always
an error margin.

 Warning #3: Usually, the input must be ‗iid‘:

• Independent

• Identically distributed

 ⇒You never get a ‗proof‘, not even with an error margin!

Network Security, WS 2008/09, Chapter 9 72 IN2045 – Discrete Event Simulation, WS 2011/2012 72

χ2 test (Pearson, 1900)

 Input:

 Series of n measurements X1 … Xn

 A distribution function f (the ‗theoretical function‘)

 Measurements will be tested against the distribution

 ~formal comparison of a histogram with the density function of the

theoretical function

 Null hypothesis H0:

The Xi are IID random variables with distribution function f

Network Security, WS 2008/09, Chapter 9 73 IN2045 – Discrete Event Simulation, WS 2011/2012 73

χ2 test: How it works

 Divide the sample range into k intervals of equal probability

 Count how many Xi fall into which interval (histogram):

 Nj := number of Xi in j-th interval [aj-1 … aj[

 Calculate how many Xi would fall into the j-th interval if they were

sampled from the theoretical distribution:

 (f: density of theor. dist.)

 Calculate squared normalised difference between the observed and

the expected samples per interval:

 Obviously, if χ2 is ―too large‖, the differences are too large, and we

must reject the null hypothesis

 But what is “too large”?





j

j

a

a
j dxxfp

1

)(:







k

j j

jj

np

npN

1

2

2
)(

:

Network Security, WS 2008/09, Chapter 9 74 IN2045 – Discrete Event Simulation, WS 2011/2012 74

χ2 test: Using the χ2 distribution

 The χ2 distribution

 A test distribution

 Parameter: degrees of freedom (short df)

 χ2(k–1 df) = Γ(½(k–1) , 2) (gamma distribution)

 Mathematically: The sum of n independent

squared normal distributions

 Compare the calculated χ2 against the χ2 distribution

 If we use k intervals, then χ2 is distributed corresponding to the χ2

distribution with k–1 degrees of freedom

 Let χ2
k–1,1–α be the (1–α) quantile of the distribution

 α is called the confidence level

 Reject H0 if χ2 > χ2
k–1,1–α (i.e., the Xi do not follow the theoretical

distribution function)

Network Security, WS 2008/09, Chapter 9 75 IN2045 – Discrete Event Simulation, WS 2011/2012 75

χ2 test:

 The χ2 distribution with k-1 degrees of freedom

Picture adopted from Law/Kelton: „Simulation Modeling and Analysis―, 3rd Edition, S. 359)

f(x)

0

Chi-square density with k-1 df

Χ 2
k–1,1–α

Reject Do not reject

Shaded area = α

Network Security, WS 2008/09, Chapter 9 76 IN2045 – Discrete Event Simulation, WS 2011/2012 76

χ2 test and degrees of freedom

 χ2 test can be used to test against any distribution

 Easy in our case: We know the parameters of the theoretical
distribution f —it‘s U(0,1)

 Different in the general case:

 For example, we may know it‘s N(μ, σ) (normal distribution)
but we know neither μ nor σ

 Fitting a distribution: Find parameters for f that make f fit the
measurements Xi best

 Topic of a later lecture

 Theoretically:
Have to estimate m parameters
⇒ Also have to take χ2

k–m–1,1–α into account

 Practically:
m≤2 and large k
⇒ Don‘t care…

Network Security, WS 2008/09, Chapter 9 77 IN2045 – Discrete Event Simulation, WS 2011/2012 77

χ2: which parameters?

 How many intervals (k)?

 A difficult problem for the general case

 Warning: A smaller or a greater k may change the outcome of the
test!

 As a general rule, use k between n/5 and

 As a general rule, make the intervals equal-sized

 As another general rule, make sure that ∀j: npj ≥ 5
(i.e., have enough samples that we expect to have at least 5
samples in each interval)

 ⇒ As a general rule, you need a lot of measurements!

 The larger the number of measurements, the higher the chance that
the assumption is rejected.

 What confidence level?

 At most α=0.10 (almost too much);
typical values: 0.001, 0.01, 0.05 [, and 0.10]

 The smaller, the higher confidence in the test result

n

Network Security, WS 2008/09, Chapter 9 78 IN2045 – Discrete Event Simulation, WS 2011/2012 78

Kolmogorov-Smirnov test (KS test)

 Samples

 Hypothesis:

 Samples are iid and follow the distribution

 Definition: empirical distribution

 (step function)

 Test : largest vertical difference between and :

niiX i 0,

iX)(ˆ xF

iX

n

xX
xF i

n




#
)()(xFn

)(xDn)(xFn)(ˆ xFn

 )()(sup)(xFnFxD n
x

n




 







 






 










 nnni
ni

ni
ni

n DDD
n

i
XFDXF

n

i
D ,max,

1
)(ˆmax,)(ˆmax)(

1
)(

1

Note: represents the sorted samples in ascending order
iX

Network Security, WS 2008/09, Chapter 9 79 IN2045 – Discrete Event Simulation, WS 2011/2012 79

Kolmogorov-Smirnov test

 Example 1: n=4, samples are iid and follow the distribution

Picture adopted from Law/Kelton: „Simulation Modeling and Analysis―, 3rd Edition, S. 364

)(ˆ xF

Network Security, WS 2008/09, Chapter 9 80 IN2045 – Discrete Event Simulation, WS 2011/2012 80

Kolmogorov-Smirnov test

 Example 2:

Picture adopted from Law/Kelton: „Simulation Modeling and Analysis―, 3rd Edition, S. 365

Network Security, WS 2008/09, Chapter 9 81 IN2045 – Discrete Event Simulation, WS 2011/2012 81

Kolmogorov-Smirnov test

 H0 is accepted if

 Advantages:

• No grouping into intervals required

• Valid for any sample size, not only for large n

• More powerful than χ2 for a number of distributions

 Disadvantages:

• Applicability more limited than χ2

• Difficult to apply to discrete data

• If distribution needs to be fitted (unknown parameters),
then K-S works only for a number of distributions









 1

11.0
12.0 cD

n
n n

1-α 0.850 0.900 0.950 0.975 0.990

c1-α 1.138 1.224 1.358 1.480 1.628

Network Security, WS 2008/09, Chapter 9 82 IN2045 – Discrete Event Simulation, WS 2011/2012 82

Alternatives to χ2 test

 Other tests:

 Anderson–Darling test (A–D test)

• Higher power than K-S for some distributions

 …a lot of other tests

• Rule of thumb: The more specialised the test, the higher its
power compared to other tests – but the less generally
applicable

Network Security, WS 2008/09, Chapter 9 83 IN2045 – Discrete Event Simulation, WS 2011/2012 83

Tests for uniformity: limitations

 Consider this sequence of drawn ―random numbers‖:

 They are in U(0,1) … but do they seem random!?

Network Security, WS 2008/09, Chapter 9 84 IN2045 – Discrete Event Simulation, WS 2011/2012 84

Recall our requirements for RNG

 RNs have to be uncorrelated — how should we test this?

 Statistical tests:

Draw some random numbers and examine them

 Runs-up test

 Serial test

 Theoretical parameters and theoretical tests:

 Length of period

 Spectral test

 Lattice test

Network Security, WS 2008/09, Chapter 9 85 IN2045 – Discrete Event Simulation, WS 2011/2012 85

Runs-up test

 Run up := the length of a contiguous sequence of
monotonically increasing Xi.

 Example sequence:
0.86 > length: 1
0.11 < 0.23 > length: 2
0.03 < 0.13 > length: 2
0.06 < 0.55 < 0.64 < 0.87 > length: 4
0.10 length: 1

 Calculate ri (number of runs up of length i)

 Compute a test statistic value R, using the ri and
a bestranging zoo of esoteric constants aij and bj

 R will have an approximate χ2 distribution with 6 df.

 You just have to believe me there – and I have to believe the
literature…

Network Security, WS 2008/09, Chapter 9 86 IN2045 – Discrete Event Simulation, WS 2011/2012 86

Spectral test

 Find possible correlations between subsequently drawn

values

 Visual ―tests‖:

 2D plot of Xi and Xi–1

 3D plot of Xi and Xi–1 and Xi–2

 Generalisation: Serial test

Network Security, WS 2008/09, Chapter 9 87 IN2045 – Discrete Event Simulation, WS 2011/2012 87

LCG examples (1/5)

 1 mod 61i iZ a Z  

a=7 a=43

a=31

Network Security, WS 2008/09, Chapter 9 88 IN2045 – Discrete Event Simulation, WS 2011/2012 88

LCG examples (2/5)

X(n+1)=(3141592653*X(n)+2718281829) mod 2^35, X(0)=5772156649, 0 < n < 10000

X(n) (normalized to [0,1])

X
(n

+
1
)

(n
o

rm
a

liz
e

d
 t
o

 [
0

,1
])

Network Security, WS 2008/09, Chapter 9 89 IN2045 – Discrete Event Simulation, WS 2011/2012 89

LCG examples (3/5)

X(n+1)=(129*X(n)+1) mod 2^35, X(0)=0, 0 < n < 50000

X(n) (normalized to [0,1])

X
(n

+
1
)

(n
o

rm
a

liz
e

d
 t
o

 [
0

,1
])

Network Security, WS 2008/09, Chapter 9 90 IN2045 – Discrete Event Simulation, WS 2011/2012 90

LCG examples (4/5)

X(n+1)=(262145*X(n)+1) mod 2^35, X(0)=47594188, 0 < n < 50000

X(n) (normalized to [0,1])

X
(n

+
1
)

(n
o

rm
a

liz
e

d
 t
o

 [
0

,1
])

Network Security, WS 2008/09, Chapter 9 92 IN2045 – Discrete Event Simulation, WS 2011/2012 92

n=81

n=2197 n=19683

n=729

LCG examples (5/5)

Network Security, WS 2008/09, Chapter 9 93 IN2045 – Discrete Event Simulation, WS 2011/2012 93

Serial test: like a multidimensional χ2 test

Serial test: ―a generalised and formalised version of the plots‖

 Consider non-overlapping d-tuples of subsequently
drawn random variables Xi :
U1 = (X1, X2, … Xd) U2 = (Xd+1, Xd+2, …, X2d) …

 These Ui‘s are vectors in the d-dimensional space

 If the Xi are truly iid random variables, then the Ui are truly
random iid vectors in the space [0…1]d
(the d-dimensional hypercube)

 Test for d-dimensional uniformity (rough outline):
 Divide [0…1]d into k equal-sized sub intervals

 Calculate a value χ2(d) based on the number of Ui

for each possible interval combination

 χ2(d) has approximate distribution χ2(kd–1 df)

 Rest: same as χ2 test above

Network Security, WS 2008/09, Chapter 9 94 IN2045 – Discrete Event Simulation, WS 2011/2012 94

The infamous RANDU generator

 A LCG with setup:
Zi = 65,539 ∙ Zi–1 mod 231

 Advantage: It‘s fast.
 mod 231 can be calculated with a simple AND operation

 65,539 is a bit more than 216; thus the multiplication (=expensive
operation) can be replaced by a bit shift of 16 bit plus three
additions (=cheap operations)

 Why 65,539? It‘s a prime number.

 Disadvantage:
 An infamously bad RNG! Never, ever use it!

 d≥3: The tuples are clumped into 15 plains (remember the
animated 3D cube? That was RANDU!)

 A lot of simulations in the 1970s used RANDU
⇒ sceptical view on simulation results from that time

Network Security, WS 2008/09, Chapter 9 95 IN2045 – Discrete Event Simulation, WS 2011/2012 95

Theoretical parameters, theoretical tests

 Tests so far: Based on drawing samples from

RNG

 No absolute certainty!

 Usually, only a small subset of entire period is used

 Remember the χ2 test

 Theoretical parameters and tests

 Based directly on the algorithm and its parameters

 No samples to be drawn – not a real ―statistical test‖

 Usually quite complicated

Network Security, WS 2008/09, Chapter 9 96 IN2045 – Discrete Event Simulation, WS 2011/2012 96

Period length

 After some time, the ―random‖ numbers must repeat

themselves.

Why?

 LCG: Zi is entirely determined by Zi–1

 The same Zi–1 will always produce the same Zi

 There are only finitely many different Zi

 How many?

We take mod m ⇒ at most m different values

 Call this the period length

Network Security, WS 2008/09, Chapter 9 97 IN2045 – Discrete Event Simulation, WS 2011/2012 97

Theorem by Hull and Dobell 1962

 A LCG has full period if and only if the following three
conditions hold:
1. c is relatively prime to m

(i.e., they do not have a prime factor in common)

2. If m has a prime factor q,
then (a–1) must have a prime factor q, too

3. If m is divisible by 4,
then (a–1) must be divisible by 4, too

 ⇒Prime numbers play an important role
 Remember RANDU?

At least, it used a prime number…

 Multiplicative RNGs (i.e., no increment Zi+c) cannot have
period m.
(But period (m–1) is possible if m and a are chosen
carefully.)

Network Security, WS 2008/09, Chapter 9 98 IN2045 – Discrete Event Simulation, WS 2011/2012 98

LCG and period length considerations

 On 32 bit machines, m≤231 or m≤232 due to efficiency
reasons ⇒ period length 4.3 billion

 Calculating that many random numbers only takes a
couple of seconds on today‘s hardware

 Theory suggests to use only
numbers;
that‘s only 65,000 random numbers

 How many random numbers do we need?
Example:
 Simulate behaviour of 1,000 Web hosts

 Each host consumes on average 1 random number per simulation
second

 Result: We can only simulate for one minute!

 ⇒We need much longer period lengths
 Okay… so let‘s just use a 64-bit LCG, no?

lengthperiod _

Network Security, WS 2008/09, Chapter 9 99 IN2045 – Discrete Event Simulation, WS 2011/2012 99

Spectral test (coarse description)

 ~ The theoretical variant of the serial test

 Observation by Marsaglia (1968):
―Random numbers fall mainly in planes.‖
 Subsequent overlapping (!) tuples Ui:

 U1=(X1, X2, … Xd) U2=(X2, X3, …, Xd+1) …
fall on a relatively small number of (d–1)-dimensional hyperplanes
within the d-dimensional space

 Note the difference to the serial test! (overlapping)

 ‗Lattice‘ structure

 Consider hyperplane families that cover all tuples Ui

 Calculate the maximum distance between hyperplanes.
Call it δd.

 If δd is small, then the generator can ~uniformly fill up the
d-dimensional space

Network Security, WS 2008/09, Chapter 9 100 IN2045 – Discrete Event Simulation, WS 2011/2012 100

Spectral test and LCG

 For LCG, it is possible to give a

theoretical lower bound δd*:

 δd ≥ δd* = 1 / (γd m
1/d)

 γd is a constant whose exact value is only known for d≤8

(dimensions up to 8)

 LCG do not perform very well in the spectral test:

 All points lie on at most m1/n hyperplanes (Marsaglia‘s theorem)

 Serial test: similar

 There are way better random number generators than linear

congruential generators.

Network Security, WS 2008/09, Chapter 9 101 IN2045 – Discrete Event Simulation, WS 2011/2012 101

Discussion of LCGs

 Advantages:
 Easy to implement

 Reproducible

 Simple and fast

 Disadvantages:
 Period (length of a cycle) depends on

parameters a, c, and m

 Distribution and correlation properties of generated sequences are
not obvious

 A value can occur only once per period (unrealistic!)

 By making a bad choice of parameters, you can
screw up things massively

 Bad performance in serial test / spectral test even for good choice
of parameters

Network Security, WS 2008/09, Chapter 9 102 IN2045 – Discrete Event Simulation, WS 2011/2012 102

Beyond LCGs

 Why linear?

 Quadratic congruential generator:

 Zi = (a ∙ (Zi–1)
2

 + a‘ ∙ Zi–1) mod m

 But: period is still at most m

 Why only use one previous Xi?

 Multiple recursive generator:

 Zi = (a1Zi–1 + a2Zi–2 + a3Zi–3 + … + aqZi–q) mod m

 Period can be mq–1 if parameters are chosen properly

 Why not change multiplier a and increment c dynamically,

according to some other congruential formula?

 Seems to work ~alright

Network Security, WS 2008/09, Chapter 9 103 IN2045 – Discrete Event Simulation, WS 2011/2012 103

Feedback Shift Register Generators (1/2)

 Linear feedback shift register generator (LFSR) introduced

by Tausworthe (1965)

 Operate on binary numbers (bits), not on integers

 Mathematically, a multiple recursive generator:

 bi = (c1bi–1 + c2bi–2 + c3bi–3 + … + cqbi–q) mod 2

 ci: constants that are either 0 or 1

 cq = 1 (why?)

 Observe that + mod 2 is the same as XOR

(makes things faster)

 In hardware:

Network Security, WS 2008/09, Chapter 9 104 IN2045 – Discrete Event Simulation, WS 2011/2012 104

Feedback Shift Register Generators (2/2)

 Usually only two cj coefficients are 1, thus:

 LFSR create random bits, not integers

 Easy solution: Concatenate ℓ bits to form an ℓ-bit integer

 Properties

 Period length [of the bi bits] = 2q–1, if parameters chosen

accordingly (Note: characteristic polynomial has to be primitive

over Galois field ℱ2 …)

 Period length of the generated ints accordingly lower?

• Depends on whether ℓ | 2q–1 or not

• This is probably not the case

• In general: period length = 2q–1 / gcd(2q–1, ℓ) [deutsch: ggT]

• But there may be some correlation after one 2q–1 ―bit period‖

 Statistical properties not very good

 Combining LFSRs improves statistics and period

2mod)(qirii bbb  

Network Security, WS 2008/09, Chapter 9 105 IN2045 – Discrete Event Simulation, WS 2011/2012 105

Generalised feedback shift register (GFSR)

 Lewis and Payne (1973)

 To obtain sequence of ℓ-bit integers Y1, Y2, …:

 Leftmost bit of Yi is filled with LFSR-generated bit bi

 Next bit of Yi is filled with LFSR-generated bit after some ―delay‖ d:

bi+d

 Repeat that with same delay for remaining bits up to length ℓ

 Mathematical properties

 Period length can be very large if q is very large, e.g., Fushimi

(1990): period length = 2521–1 = 6.86 ∙ 10156

 If 2ℓ<2q–1, then many Yi‘s will repeat during one period run

 If two bits (as with LFSR), then Yi = Yi–r ⊕ Yi–q

Network Security, WS 2008/09, Chapter 9 106 IN2045 – Discrete Event Simulation, WS 2011/2012 106

Long period lengths and repeated values

 ―If 2ℓ<2q–1, then many Yi‘s will repeat during a period run.‖

 ℓ: number of bits of the integer output

 2q–1: period length

 Is that good or bad?

 This is a general question – it relates to all RNGs, not only GFSR

 Consider this example:

 ℓ=2 ⇒ only 4 different numbers

 If q=4 as well, then we always would get, e.g.

1, 4, 2, 3, 1, 4, 2, 3, 1, 4, 2, 3, 1, 4, 2, 3, 1, 4, 2, 3, 1, 4, 2, 3

 But we would want something like

1, 4, 2, 2, 1, 4, 3, 1, 1, 4, 3, 3, 1, 4, 2, 3, 2, 2, 4, 1, 4, 3, 2, 3

 Clearly, it‘s good that numbers repeat during one period

 ⇒ Clearly, it‘s good that we have a very long period length

Network Security, WS 2008/09, Chapter 9 107 IN2045 – Discrete Event Simulation, WS 2011/2012 107

Mersenne Twister (1/2)

 Before we go into the mathematical details…

 Very, very long period length: 219,937–1 > 106,000

 Very good statistical properties: OK in 623 dimensions

 Quite fast

 ~State of the art: One of the best we have right now

 The RNG of choice for simulations

 Default RNG in Python, Ruby, Matlab, GNU R

 Admittedly, there are even (slightly) better RNGs, cf. TestU01
paper

 Three warnings:

 Not suitable for cryptographic applications:
Draw 624 random numbers and you can predict all others!

 Can take some time (―warm-up period‖) until the stream generates
good random numbers

• Usually hidden from programmer through library

• If in doubt, discard the first 10,000 … 100,000 drawn numbers

 There also are other good modern RNGs, e.g., WELL

Network Security, WS 2008/09, Chapter 9 108 IN2045 – Discrete Event Simulation, WS 2011/2012 108

Mersenne Twister (2/2)

 Twisted GFSR (TGFSR)

 Matsumoto, Kurita (1992, 1994)

 Replace the recurrence of the GFSR by

 Yi = Yi–r ⊕ A ∙ Yi–q

where:

• the Yi are ℓ x 1 binary vectors

• A is an ℓ x ℓ binary matrix

 Period length = 2qℓ–1 with suitable choices for r, q, A

 Mersenne Twister (MT19937)

 Matsumoto, Nishimura (1997, 1998)

 Clever choice of r, q, A and the first Yi to obtain good statistical

properties

 Period length 219,937–1 = 4.3 ∙ 106001 (Mersenne prime: 2n–1)

Network Security, WS 2008/09, Chapter 9 109 IN2045 – Discrete Event Simulation, WS 2011/2012 109

Beyond Mersenne Twister

 Even better alternative: WELL

 Well Equidistributed Long-period Linear

 Panneton, L‗Écuyer, Matsumoto: Improved Long-Period

Generators Based on Linear Recurrences Modulo 2, 2006

 Period length: 2k − 1 where k ∈ {512,1024,19937,44497}

 Better statistical properties than Mersenne twister

 Speed comparable to Mersenne Twister

 No warm-up period

 SIMD-oriented Fast Mersenne Twister (SFMT)

 Faster than Mersenne Twister

 Uses features of modern CPUs: 128 bit instructions, Pipelining

 Also has better statistical properties than Mersenne Twister

http://www.iro.umontreal.ca/~lecuyer/myftp/papers/wellrng.pdf
http://www.iro.umontreal.ca/~lecuyer/myftp/papers/wellrng.pdf
http://www.iro.umontreal.ca/~lecuyer/myftp/papers/wellrng.pdf
http://www.iro.umontreal.ca/~lecuyer/myftp/papers/wellrng.pdf

Network Security, WS 2008/09, Chapter 9 110 IN2045 – Discrete Event Simulation, WS 2011/2012 110

Digression: Period lengths revisited

What period lengths do we actually require?

 Estimate #1:
 A cluster of 1 million hosts

 each of which draws 1,000,000 ∙ 232 per second (~1,000,000 times
as fast as today‘s desktop PCs)

 for ten years

will require…

 5.6 ∙ 1027 random numbers

 (Make the PCs again 106 times faster ⇒ 5.6 ∙ 1033)

 Estimate #2: What‘s the estimated number of electrons
within the observable universe (a sphere with a radius of
~46.5 billion light years)
 About 1080 (± take or leave a few powers of 10)

Network Security, WS 2008/09, Chapter 9 111 IN2045 – Discrete Event Simulation, WS 2011/2012 111

Test batteries

 A lot of tests, a lot of different RNGs

 How to compare them?

 Benchmark suites (‗Test batteries‘)

that bundle many statistical tests:

 TestU01 (L‘Écuyer)

 DIEHARD suite (Marsaglia)

 NIST test suite (National Institute of Standards and

Technologies;

≙ Physikalisch-Technische Bundesanstalt)

Network Security, WS 2008/09, Chapter 9 112 IN2045 – Discrete Event Simulation, WS 2011/2012 112

Conclusion: Quality tests for RNG

 Empirical tests (based on generated samples)
 For U(0,1) distribution: χ2 test

 For independence: autocorrelation, serial, run-up tests

 Theoretical tests (based on generation formula)
 Basic idea: test for k-dimensional uniformity

 Points of sequence form system of hyperplanes

 Computation of distance of hyperplanes for several dimensions k

 Rather difficult optimization problem

 Conclusion
 Implement/use only tested random number generators from

literature, no ―home-brewed‖ generators!

 When in doubt, use the Mersenne Twister
(but not for cryptography!)

Network Security, WS 2008/09, Chapter 9 113 IN2045 – Discrete Event Simulation, WS 2011/2012 113

RNG: outlook

 A wide research field, still somewhat active

 Many more algorithms exist

 Many more tests for randomness exist

 More are being developed

 If you are interested in this topic, you might want to have a
look at this quite readable paper:

 L‘Écuyer, Simard
TestU01: a C library for empirical testing of random
number generators
ACM Transactions on Mathematical Software,
Volume 33, No. 4, 2007

