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Parallel simulation: Summary/Outline

� Motivation: Why to use parallel simulators and why it’s difficult
� Conservative algorithms

� Introduction: Only do what is allowed
� Null messages: deadlock avoidance
� Deadlock detection and recovery
� Barrier synchronization and LBTS (lower bound on time stamp) 

calculation

� Optimistic algorithms
� Time Warp algorithm: Do anything, possibly roll back
� Anti-Messages for rollback
� Global Virtual Time (GVT) for fossil collection
� State Saving Techniques
� (Issues with Zero lookahead; Wide Virtual Time)
� (Artificial Rollbacks to save memory)

� Summary
� Pros and Cons of conservative and optimistic algorithms
� Why not to use parallel simulators
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Why parallel simulation?

� Parallel computing is a general trend

� Hardware power is increasingly improved by increasing 
the number of cores within one CPU

� but less so by making single cores faster

� Benefit = Speedup := Sequential execution time / 
parallel execution time

� OK, so… why don’t we just process the events in 
parallel?



Network Security, WS 2008/09, Chapter 9 4IN2045 – Discrete Event Simulation, WS 2010/2011 4

Problem of simulation parallelisation

� Suppose that multiple processors pop and process 
events from The One Global Event List

� Problem:

� CPU 1 picks and processes E1 at simulation time T1

� CPU 2 picks and processes E2 at simulation time T2

� E1 generates a new Event E3 at T3…
• …but T3 < T2

• and E3 changes the system state so that E2 now should show 
different effects

� Possible solutions:

� Undo processing of E2: Wastes CPU time (and RAM)

� Allow processing of E2 only when it is safe: Increases 
complexity and thus needs more CPU time (and RAM)
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Parallel simulation: Summary/Outline

� Motivation: Why to use parallel simulators and why it’s difficult
� Conservative algorithms: Only do what is allowed

� Introduction
� Null messages: deadlock avoidance
� Deadlock detection and recovery
� Barrier synchronization and LBTS (lower bound on time stamp) 

calculation

� Optimistic algorithms: Do anything, possibly roll back
� Time Warp algorithm
� Anti-Messages for rollback
� Global Virtual Time (GVT) for fossil collection
� State Saving Techniques
� (Issues with Zero lookahead; Wide Virtual Time)
� (Artificial Rollbacks to save memory)

� Summary
� Pros and Cons of conservative and optimistic algorithms
� Why not to use parallel simulators
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Event-Oriented Simulation: Non-parallel example

state variables

Integer: InTheAir;
Integer: OnTheGround;
Boolean: RunwayFree;

Event handler procedures

Simulation application

Arrival 
Event

{

…

}

Landed 
Event

{

…

}

Departure 
Event

{

…

}

Pending Event List (PEL)

9:00

9:16
10:10

Now = 8:45

Simulation executive
Event processing loop

While (simulation not finished)

E = smallest time stamp event in PEL

Remove E from PEL

Now := time stamp of E

call event handler procedure
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Parallel Discrete Event Simulation

� Extend example to model a network of airports

� Encapsulate each airport in a logical process (LP)

� Logical processes can schedule events (send 
messages) for other logical processes

More generally...

� Physical system

� Collection of interacting physical processes (airports)

� Simulation

� Collection of logical processes (LPs)

� Each LP models a physical process

� Interactions between physical processes modeled by 
scheduling events between LPs
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Parallel Discrete Event Simulation Example

Interactions between LPs only via messages (no shared state!)

SFO JFK

ORD

physical process interactions among physical processes

Physical system

logical process time stamped event (message)

ORD

SFO JFK

arrival
10:00

Simulation
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LP Simulation Example

Arrival Event:

InTheAir := InTheAir+1;

If (RunwayFree)

RunwayFree:=FALSE;

Schedule Landed event (local) @ Now+R;

� Now: current simulation time

� InTheAir: number of aircraft landing or waiting to land

� OnTheGround: number of landed aircraft

� RunwayFree: Boolean, true if runway available

Landed Event:

InTheAir:=InTheAir-1;     OnTheGround:=OnTheGround+1;

Schedule Departure event (local) @ Now + G;

If (InTheAir>0) Schedule Landed event (local) @ Now+R;

Else RunwayFree := TRUE;

Departure Event (D = delay to reach another airport):

OnTheGround := OnTheGround - 1;

Schedule Arrival Event (remote) @ (Now+D) @ another airport
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logical
processORD

SFO JFK

arrival
10:00

Approach to Parallel/Distributed Execution

� LP paradigm appears well suited to concurrent execution
� Map LPs to different processors

� Might be different processors or even different computers

� Multiple LPs per processor OK

time stamped event
(message)

� Communication via message passing

� All interactions via messages

� No shared state variables
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Synchronization Problem and Local causality

Synchronization Problem:
An algorithm is needed to ensure each LP processes 
events in time stamp order

Local causality constraint:
“Process incoming messages in time stamp order”
(Golden rule for each process)

Observation:
Adherence to the local causality constraint is sufficient 
to ensure that the parallel simulation will produce 
exactly the same results as a sequential execution
where all events across all LPs are processed in time 
stamp order [… if we ignore the case of events having 
the same time stamp] .
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Local causality

Golden rule for each process: “Thou shalt process 
incoming messages in time stamp order” (local 
causality constraint)

Safe to
process?

ORD

SFO JFK

arrival
10:00
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Two basic synchronization approaches

� Conservative synchronization: avoid violating the 
local causality constraint (wait until it’s safe)

� deadlock avoidance using null messages 
(Chandy/Misra/Bryant)

� deadlock detection and recovery

� synchronous algorithms (e.g., execute in “rounds”)

� Optimistic synchronization: allow violations of local 
causality to occur, but detect them at runtime and 
recover using a rollback mechanism

� Time Warp (Jefferson)

� numerous other approaches
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Outline

� Parallel / Distributed Computers

� Air Traffic Network Example

� Parallel Discrete Event Simulation

� Logical processes

� Local causality constraint

� Chandy/Misra/Bryant Null Message Algorithm

� Ground rules

� An algorithm that doesn’t work

� Deadlock avoidance using null messages
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Chandy/Misra/Bryant “Null Message” Algorithm

Assumptions

� logical processes (LPs) exchanging time stamped events (messages)

� static network topology, no dynamic creation of LPs

� messages sent on each link are sent in time stamp order

� network provides reliable delivery, preserves order

Goal: Ensure LP processes events in time stamp order

JFKSFO

ORD
9 8 2

45

JFK
logical

process one FIFO
queue per

incoming link

Observation: The above assumptions imply the time stamp of the last 
message received on a link is a lower bound on the time stamp (LBTS)
of subsequent messages received on that link (messages and thus 
events cannot overtake one another!)
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Naïve approach (does not work yet):

Observation: Algorithm A is prone to deadlock!

Algorithm A (executed by each LP):
Goal: Ensure events are processed in time stamp order:

WHILE (simulation is not over)
wait until each FIFO contains at least one message
remove smallest time stamped event from its FIFO
process that event

END-LOOP

9 8 2

45

JFK
logical

process

ORD

SFO
• wait until message is received from 
SFO

• process time stamp 2 event
• process time stamp 4 event
• process time stamp 5 event
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Deadlock Example

� A cycle of LPs forms where each is waiting on the next LP in 
the cycle.

� No LP can advance; the simulation is deadlocked.

9 8

JFK
(waiting
on ORD)

7ORD
(waiting
on SFO)

SFO
(waiting
on JFK)

15
10
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Deadlock Avoidance Using Null Messages (example)

Break deadlock: each LP sends “null” messages that 
indicate a lower bound on the time stamp of future 
messages.

9 8

JFK
(waiting
on ORD)

ORD
(waiting
on SFO)

SFO
(waiting
on JFK)

15
10

7

Assume minimum delay between airports is 3 units of time
• JFK initially at time 5

8

• JFK sends null message to SFO with time stamp 8

11

• SFO sends null message to ORD with time stamp 11

7

• ORD may now process message with time stamp 7
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Deadlock Avoidance Using Null Messages (algorithm)

Null Message Algorithm (executed by each LP):
Goal: Ensure events are processed in time stamp order and avoid 

deadlock

WHILE (simulation is not over)
wait until each FIFO contains at least one message
remove smallest time stamped event from its FIFO
process that event
send null messages to neighboring LPs with time stamp indicating a 

lower bound on future messages sent to that LP (current time plus 
lookahead)

END-LOOP

The null message algorithm relies on a “lookahead” ability.



Network Security, WS 2008/09, Chapter 9 20IN2045 – Discrete Event Simulation, WS 2010/2011 20

Deadlock Avoidance Using Null Messages

Null Message Algorithm (executed by each LP):
Goal: Ensure events are processed in time stamp order and avoid 

deadlock

WHILE (simulation is not over)
wait until each FIFO contains at least one message
remove smallest time stamped event from its FIFO
process that event
send null messages to neighboring LPs with time stamp indicating a 

lower bound on future messages sent to that LP (current time plus 
minimum transit time between airports)

END-LOOP

Variation: LP requests null message when FIFO becomes 
empty

• Fewer null messages
• Delay to get time stamp information
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The Time Creep Problem

Many null messages if minimum flight time is small!

9 8

JFK
(waiting
on ORD)

ORD
(waiting
on SFO)

SFO
(waiting
on JFK)

15
10

7

Assume minimum delay between airports is 3 units of time
JFK initially at time 5

0.5

5.5

JFK: timestamp = 5.5

Null messages:

6.0

SFO: timestamp = 6.06.5
ORD: timestamp = 6.5

7.0 JFK: timestamp = 7.0

7.5

SFO: timestamp = 7.5

Five “unnecessary” null messages to process a single event!

ORD: process time 
stamp 7 message

7
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Worse yet: Livelock can occur!

9 8

JFK
(waiting
on ORD)

7ORD
(waiting
on SFO)

SFO
(waiting
on JFK)

15
10 5.0

5.0

5.0

5.0

Livelock: un-ending cycle of null messages where no LP can advance its 
simulation time

There cannot be a cycle where for each LP in the cycle, an incoming 
message with time stamp T results in a new message sent to the next 
LP in the cycle with time stamp T (zero lookahead cycle)

Suppose the minimum delay between airports is zero…
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Outline

� Null message algorithm: The Time Creep Problem

� Lookahead

� What is it and why is it important?

� Writing simulations to maximize lookahead

� Changing lookahead

� Avoiding Time Creep
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Lookahead

The null message algorithm relies on a “prediction” ability 
referred to as lookahead

� “ORD at simulation time 5, minimum transit time between 
airports is 3, so the next message sent by ORD must have a 
time stamp of at least 8”

Lookahead is a constraint on LP’s behaviour

� Link lookahead: If an LP is at simulation time T, and an 
outgoing link has lookahead Li, then any message sent on that 
link must have a time stamp of at least T+Li

� LP Lookahead: If an LP is at simulation time T, and has a 
lookahead of L, then any message sent by that LP must have 
a time stamp of at least T+L

� Equivalent to link lookahead where the lookahead on each 
outgoing link is the same
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Exploiting Lookahead in Applications

T = arrival time of job
Q = waiting time in queue
S = service time

Example: Tandem first-come-first-serve queues

“Classical” approach:

LP1 LP2

arrival
event

departure
event

arrival
event

T

T+Q

T+Q+S

begin service

Optimized to exploit lookahead

LP1 LP2

arrival
event

arrival
event

T

T+Q

T+Q+S

The degree to which the program can exploit lookahead is critical for good performance
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0

1

2

3

4

1 2 4 8 16 32 64 128 256

Number of Jobs in Network

Sp
ee

du

Optimized
(deterministic service
time)
Optimized (exponential
service time)

Classical (deterministic
service time)

Classical (exponential
service time)

Lookahead Affects Performance

Deadlock Detection and
Recovery Algorithm

(5 processors)

Parallel Simulation
of a Central Server
Queueing Network

merge fork
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Null Message Algorithm:
Speedup depends on various factors

0

3

6

9

12

0 4 8 12 16
Number of Processors

S
pe

ed
up

8x8 Biased
(ILAR=0.9)
8x8 Uniform
(ILAR=0.18)
8x8 Bimodal
(ILAR=0.1)
4x4 Biased   
(ILAR=0.9)
4x4 Uniform
(ILAR=0.18)
4x4 Bimodal
(ILAR=0.1)

• toroid topology
• message density: 4 per LP
• 1 millisecond computation per event

• vary time stamp increment distribution
• ILAR=lookahead / average time 

stamp increment

Conservative algorithms live or die by their lookahead!
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Lookahead and the Simulation Model

Lookahead is clearly dependent on the simulation model:
• Could be derived from physical constraints in the system being modeled, such 

as minimum simulation time for one entity to affect another (e.g., a weapon 
fired from a tank requires L units of time to reach another tank, or maximum 
speed of the tank places lower bound on how soon it can affect another entity)

• Could be derived from characteristics of the simulation entities, such as non-
preemptable behavior (e.g., a tank is traveling north at 30 mph, and nothing in 
the federation model can cause its behavior to change over the next 10 
minutes, so all output from the tank simulator can be generated immediately 
up to time “local clock + 10 minutes”)

• Could be derived from tolerance to temporal inaccuracies (e.g., users cannot 
perceive temporal difference of 100 milliseconds, so messages may be 
timestamped 100 milliseconds into the future).

• Simulations may be able to precompute when its next interaction with another 
simulation will be (e.g., if time until next interaction is stochastic, pre-sample 
random number generator to determine time of next interaction).

Observation: time-stepped simulations implicitly use lookahead; events in 
current time step are considered independent (and can be processed 
concurrently), new events are generated for the next time step, or later.
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LP A

LP B

LP C

LP D

Simulation Time

problem: limited concurrency
each LP must process events in time stamp order   

LTA

possible message
OK to process

event

not OK to process yet

without lookahead

Each LP A using logical time declares a lookahead value L; the time stamp 
of any event generated by the LP must be ≥ LTA+ L

Lookahead is necessary to allow concurrent processing of events with 
different time stamps (unless optimistic event processing is used)

Why Lookahead is important

possible message
OK to process

with lookahead

LTA+L

• Lookahead is used in virtually all conservative synchronization protocols
• Essential to allow concurrent processing of events
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Outline

� Null message algorithm: The Time Creep Problem

� Lookahead

� What is it and why is it important?

� Writing simulations to maximize lookahead

� Changing lookahead

� Avoiding Time Creep
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Changing Lookahead Values

� Increasing lookahead

� No problem; lookahead can immediately be changed

� Decreasing lookahead

� Previous time stamp guarantees must be honored!

� Lookahead thus cannot immediately be decreased
• If an LP is at simulation time 10 and lookahead is 5, it has 

promised subsequent messages will have a time stamp of at 
least 15

• If lookahead were immediately set to 1, it could generate a 
message with time stamp 11

� Lookahead can decrease by k units of simulation time 
only after the LP has advanced k units of simulation 
time
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Example: Decreasing Lookahead

� SFO: simulation time = 10, lookahead = 5

� Future messages sent on link must have time stamp ≥ 15

� SFO: request its lookahead be reduced to 1

LP clock10 15

5
4
3
2
1

6
Lookahead

7

11

15
14
13
12

16
Minimum time

Stamp of outgoing
messages

17
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Preventing Time Creep: Next Event Time Information

9 8

JFK
(waiting
on ORD)

7ORD
(waiting
on SFO)

SFO
(waiting
on JFK)

15
10

Observation: smallest time stamped event is safe to process
• Lookahead creep avoided by allowing the synchronization algorithm to 

immediately advance to (global) time of the next event
• Synchronization algorithm must know time stamp of LP’s next event
• Each LP guarantees a logical time T such that if no additional events 

are delivered to LP with TS < T, all subsequent messages that LP
produces have a time stamp at least T+L (L = lookahead)
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Summary

� Null message algorithm

� Lookahead creep problem

� No zero lookahead cycles allowed

� Lookahead

� Constraint on time stamps of subsequent messages

� Has large effect on performance: essential for 
concurrent processing of events for conservative 
algorithms

� Programs/models must be coded to exploit lookahead!

� Use time of next event to avoid lookahead creep
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Parallel simulation: Summary/Outline

� Motivation: Why to use parallel simulators and why it’s difficult
� Conservative algorithms: Only do what is allowed

� Introduction
� Null messages: deadlock avoidance
� Deadlock detection and recovery
� Barrier synchronization and LBTS (lower bound on time stamp) 

calculation

� Optimistic algorithms: Do anything, possibly roll back
� Time Warp algorithm
� Anti-Messages for rollback
� Global Virtual Time (GVT) for fossil collection
� State Saving Techniques
� (Issues with Zero lookahead; Wide Virtual Time)
� (Artificial Rollbacks to save memory)

� Summary
� Pros and Cons of conservative and optimistic algorithms
� Why not to use parallel simulators
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Outline

� Deadlock Detection and Recovery Algorithm 
(Chandy and Misra)

� Basic Approach

� Deadlock Detection
• Diffusing distributed computations

• Dijkstra/Scholten algorithm (signaling protocol)

� Deadlock Recovery



Network Security, WS 2008/09, Chapter 9 37IN2045 – Discrete Event Simulation, WS 2010/2011 37

Deadlock Detection & Recovery: Idea

Algorithm A (executed by each LP):
Goal: Ensure events are processed in time stamp order:

WHILE (simulation is not over)
wait until each FIFO contains at least one message
remove smallest time stamped event from its FIFO
process that event

END-LOOP

� But: No null messages!

� Allow simulation to execute until deadlock occurs

� Provide a mechanism to detect deadlock

� Provide a mechanism to recover from deadlocks
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Deadlock detection

� There are algorithms that can detect when the entire 
system hangs (i.e., no LP can go on)

� Even distributed algorithms exist

� For example, Dijkstra/Schoten algorithm (not shown)

� Of course, detection incurs additional processing 
overhead

� Once a deadlock has been detected, we resolve it 
(recovery)

� Do not confuse this with optimistic simulation – we 
won’t roll back any actions!
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Deadlock Recovery

Deadlock recovery: identify “safe” events (events that can be 
processed without violating local causality) 

Which events are safe?
• Time stamp 7: smallest time stamped event in system
• Time stamp 8, 9: safe because of lookahead constraint
• Time stamp 10: OK if events with the same time stamp can be processed 

in any order
• No time creep!

deadlock state

Assume minimum delay
between airports is 3

9 8

JFK
(waiting
on ORD)

7ORD
(waiting
on SFO)

10
SFO

(waiting
on JFK)
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Summary

� Deadlock Detection

� Diffusing computation: Dijkstra/Scholten algorithm

� Simple signaling protocol detects deadlock

� Does not detect partial (local) deadlocks

� Deadlock Recovery

� Smallest time stamp event safe to process

� Others may also be safe (requires additional work to 
determine this)
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Parallel simulation: Summary/Outline

� Motivation: Why to use parallel simulators and why it’s difficult
� Conservative algorithms: Only do what is allowed

� Introduction
� Null messages: deadlock avoidance
� Deadlock detection and recovery
� Barrier synchronization and LBTS (lower bound on time stamp) 

calculation

� Optimistic algorithms: Do anything, possibly roll back
� Time Warp algorithm
� Anti-Messages for rollback
� Global Virtual Time (GVT) for fossil collection
� State Saving Techniques
� (Issues with Zero lookahead; Wide Virtual Time)
� (Artificial Rollbacks to save memory)

� Summary
� Pros and Cons of conservative and optimistic algorithms
� Why not to use parallel simulators
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Outline

� Barrier synchronizations and a simple synchronous 
algorithm

� Implementation of Barrier mechanisms

� Centralized Barriers

� Tree Barrier

� Butterfly Barrier

� Computing LBTS (lower bound on timestamp)
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Barrier Synchronization

� Barrier Synchronization: When a process invokes the 
barrier primitive, it will block until all other processes 
have also invoked the barrier primitive.

� When the last process invokes the barrier, all 
processes can resume execution

- barrier -

- barrier -
- barrier -

wait wait
wait

- barrier -

process 1 process 2 process 3 process 4

wallclock
time
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Synchronous Execution

� Recall the goal is to ensure that each LP processes 
the events in timestamp order

� Basic idea:
Each process cycles through the following steps:

� Determine the events that are safe to process
• Compute a Lower Bound on the Time Stamp (LBTSi) of 

events that LPi might later receive

• Events with time stamp ≤ LBTS are safe to process

� Process safe events, exchange messages

� Global synchronization (barrier)

� Messages generated in one cycle are not eligible for 
processing until the next cycle
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A Simple Synchronous Algorithm

� Assume any LP can communicate with any other LP

� Assume instantaneous message transmission (revisit later)

� Ni = time of next event in LPi

� LAi = lookahead of LPi

WHILE (unprocessed events remain)

receive messages generated in previous iteration

LBTS = min (Ni + LAi)

process events with time stamp ≤ LBTS

barrier synchronization

END

LBTSi = a lower bound on the time stamp of the messages that LPi

might receive in the future

If LBTSi is the same for all LPs, then it is simply called LBTS
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event

Synchronous Execution Example

LP A (LA=3) 

LP B (LA=2)

LP C (LA=3)

LP D (LA=5)

Simulation Time
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

LBTS=3
safe to process

LBTS=7 LBTS=12
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Issues

� Implementing the barrier mechanism

� Centralized

� Broadcast

� Trees 

� Butterfly and other more sophisticated infrastructures 
(not shown)

� Computing LBTS (global minimum)

� Transient messages (i.e., messaging is not 
instantaneous – will be discussed later)



Network Security, WS 2008/09, Chapter 9 48IN2045 – Discrete Event Simulation, WS 2010/2011 48

Method 1: Barrier Using a Centralized Controller

� Central controller process used to implement barrier

� Overall, a two step process
� Controller determines when barrier reached

� Broadcast message to release processes from the barrier

� Barrier primitive for non-controller processes:
� Send a message to central controller

� Wait for a reply

� Barrier primitive for controller process
� Receive barrier messages from other processes

� When a message is received from each process, broadcast 
message to release barrier

� Performance
� Controller must send and receive N-1 messages

� Controler is…
• … either potential bottleneck

• … or idles around most of the time, waiting for barrier messages
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Method 2: Broadcast Barrier

One step approach; no central controller

Each process:

� Broadcast message when barrier primitive is invoked

� Wait until a message is received from each other process

� N∙(N-1) messages – that’s quadratic!

0 1 2 3

0 1 2 3
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Method 3: Tree Barrier

� Organize processes into a tree

� A process sends a message to its parent process when

� The process has reached the barrier point, and

� A message has been received from each of its children processes

� Root detects completion of barrier, broadcast message to 
release processes (e.g., send messages down tree)

� 2 log N time if all processes reach barrier at same time

3

87

4

109

5

1211

6

13

1 2

0
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Method 4: Butterfly Barrier

� Will touch this only briefly…

� N processes (here, assume N is a power of 2)

� Sequence of log2 N pairwise barriers (let k = log2 N)

� Pairwise barrier:
� Send message to partner process

� Wait until message is received from that process

� Process p: bkbk-1 … b1 = binary representation of p

� Step i: perform barrier with process bk … bi’ … b1
(complement i-th bit of the binary representation)

� Example: Process 3 (011)
� Step 1: pairwise barrier with process 2 (010)

� Step 2: pairwise barrier with process 1 (001)

� Step 3: pairwise barrier with process 7 (111)
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Method 4: Butterfly Barrier (won’t go into details)

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

step 1

step 2

step 3
W

al
lc

lo
ck

tim
e

0 1 2 3 4 5 6 7

0,1 2,3 4,5 6,7

0-3 4-7

0-7

step 1

step 2

step 3

� The communication pattern forms a tree from the perspective of any
process 
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0 1 2 3 4 5 6 7

0 2 4 6

0 4

0

1 3 5 7

1 5

1

2 6

2

3 7

3 4 5 6 7

Butterfly: Superimposed Trees

� After log2 N steps each process is notified that the 
barrier operation has completed

� An N node butterfly can be viewed as N trees 
superimposed over each other
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Outline

� Barrier synchronizations and a simple synchronous 
algorithm

� Implementation of Barrier mechanisms

� Centralized Barriers

� Tree Barrier

� (Butterfly Barrier – not shown)

� Computing LBTS
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Computing LBTS

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

step 1

step 2

step 3

W
al

lc
lo

ck
tim

e
It is trivial to extend any of these barrier algorithms to also compute a 

global minimum (LBTS)

� Piggyback local time value on each barrier message

� Compute new minimum among { local value, incoming message(s) }

� Transmit new minimum in next step

10 25 13 6 11 22 23 23

11 2310 6 11 2310 6

6 11 11 11 11666

6 6 6 6 6666

� After log N steps, (1) LBTS has been computed, (2) each process 
has the LBTS value
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Summary

� Synchronous algorithms use a global barrier to 
ensure events are processed in time stamp order

� Requires computation of a Lower Bound on Time 
Stamp (LBTS) on messages each LP might later 
receive

� There are several ways to implement barriers

� Central controller

� Broadcast

� Tree

� Butterfly (touched only briefly)

� The LBTS computation can be “piggybacked” onto 
the barrier synchronization algorithm
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Outline

� Transient Messages

� Transient Message Problem

� Flush Barrier

� Tree Implementation

� Butterfly Implementation

� Distance Between Processes

� Potential Performance Improvement

� Distance Matrix
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The Transient Message Problem

/* synchronous algorithm */
Ni = time of next event in LPi
LAi = lookahead of LPi
WHILE (unprocessed events remain)

receive messages generated in previous iteration
LBTS = min (Ni + LAi)
process events in with time stamp ≤ LBTS
barrier synchronization

ENDWHILE

� A transient message is a message that has been sent, 
but has not yet been received at its destination

� The message could be “in the network” or stored in an 
operating system buffer (waiting to be sent or delivered)

� The synchronous algorithm fails if there are transient 
message(s) remaining after the processes have been 
released from the barrier!



Network Security, WS 2008/09, Chapter 9 59IN2045 – Discrete Event Simulation, WS 2010/2011 59

event

Transient Message Example

LP A (LA=3) 

LP B (LA=2)

LP C (LA=3)

LP D (LA=5)

Simulation Time
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

LBTS=3 LBTS=7
Transient message

Message arrives in C’s past!
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Flush Barrier

No process will be released from the barrier until

� All processes have reached the barrier

� Any message sent by a process before reaching the barrier 
has arrived at its destination

Revised algorithm:

WHILE (unprocessed events remain)

receive messages generated in previous 
iteration

LBTS = min (Ni + LAi)

process events in with time stamp ≤ LBTS

flush barrier

END
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Implementation

� Use FIFO communication channels

� Approach #1: Send a “dummy message” on each channel; wait 
until such a message is received on each incoming channel to 
guarantee transient messages have been received

� May require a large number of messages

� Again: Overhead…

� Approach #2: Message counters

� Sendi = number of messages sent by LPi (this iteration)

� Reci = number of messages received by LPi (this iteration)

� There are no transient messages when

• All processes are blocked (i.e., at the barrier), and

• ∑Sendi = ∑Reci

� Again: Overhead…
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Tree: Flush Barrier

� When a leaf process reaches flush barrier, include counter (#sent -
#received) in messages sent to parent

� Parent adds counters in incoming messages with its own counter, 
sends sum in message sent to its parent

� If sum at root is zero, broadcast “go” message, else wait until sum is 
equal to zero

� Receive message after reporting sum: send update message to root

+1

-2-1

-2

-2+3

+1

-2+4

0

+1

+1 0

-1

-1 -2 +3 -2 +4 -2 +1

-2 -1 +3 +1

+4-2

-1

#sent - # received

Receive transient 
message
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Butterfly: Flush Barrier

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

step 1

step 2

step 3
W

al
lc

lo
ck

tim
e

For (i = 1 to log N)

send local counter to partner at step i

wait for message from partner at step i

local counter = local counter + counter in message

End-for

If local counter not zero after last step:

� Send update messages up butterfly

� Alternatively, abort and retry

-1 -2 -5 +2 +1 0 +3 +2

+5+1-3-3

+6-6

0

-3 -3 +1 +5

+6+6+6-6-6-6

0 0 0 0 0 00
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Outline

� Transient Messages

� Transient Message Problem

� Flush Barrier

� Tree Implementation

� Butterfly Implementation

� Distance Between Processes

� Potential Performance Improvement

� Distance Matrix
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Identifying Safe Events

� If all processes are blocked and there are no transient 
messages in the system, LBTS = min (Ni + LAi) for each 
process where Ni and LAi are the time of the next 
unprocessed event and lookahead, respectively, for LPi

� Overly conservative estimate for LBTS

� Does not exploit “locality” in physical systems (things far away 
can’t affect you for some time into the future)

WHILE (unprocessed events remain)

receive messages generated in previous iteration

LBTS = min (Ni + LAi)

/* time of next event + lookahead */

process events in with time stamp ≤ LBTS*flush barrier

/* barrier + eliminate all transient messages */

END



Network Security, WS 2008/09, Chapter 9 66IN2045 – Discrete Event Simulation, WS 2010/2011 66

Improving the LBTS estimate

� We may calculate an overly conservative estimate for 
LBTS

� Does not exploit “locality” in physical systems:
Things far away can’t affect you for some time into the 
future

� Possible optimization: Exploit distance between LPs

� Exploit locality in physical systems to improve 
concurrency in the simulation execution

� Increased complexity, overhead

� Lookahead and topology changes introduce additional 
complexities
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Summary

� Transient messages must be accounted for by the 
synchronization algorithm

� Flush barrier

� FIFO and empty messages or send and receive 
counters

� Additional overhead

� Possible optimization: Exploit distance between LPs
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Parallel simulation: Summary/Outline

� Motivation: Why to use parallel simulators and why it’s difficult
� Conservative algorithms: Only do what is allowed

� Introduction
� Null messages: deadlock avoidance
� Deadlock detection and recovery
� Barrier synchronization and LBTS (lower bound on time stamp) 

calculation

� Optimistic algorithms: Do anything, possibly roll back
� Time Warp algorithm
� Anti-Messages for rollback
� Global Virtual Time (GVT) for fossil collection
� State Saving Techniques
� (Issues with Zero lookahead; Wide Virtual Time)
� (Artificial Rollbacks to save memory)

� Summary
� Pros and Cons of conservative and optimistic algorithms
� Why not to use parallel simulators
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Outline

� Optimistic Synchronization

� Time Warp

� Local Control Mechanism
• Rollback

• Event cancellation

� Global Control Mechanism
• Global Virtual Time

• Fossil Collection
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The Synchronization Problem

Local causality constraint: Events within each logical process must be 
processed in time stamp order

Observation: Adherence to the local causality constraint is sufficient to 
ensure that the parallel simulation will produce exactly the same results 
as the corresponding sequential simulation*

Synchronization Algorithms
�Conservative synchronization: Avoid violating the local causality 
constraint (wait until it’s safe)
� 1st generation: null messages (Chandy/Misra/Bryant)
� 2nd generation: time stamp of next event

�Optimistic synchronization: Allow violations of local causality to 
occur, but detect them at runtime and recover using a rollback 
mechanism
� Time Warp (Jefferson)
� approaches limiting amount of optimistic execution

* provided events with the same time stamp are processed in the same order
as in the sequential execution
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Time Warp Algorithm (Jefferson)

� Assumptions

� Logical processes (LPs) exchanging time stamped events (messages)

� Dynamic network topology is OK; dynamic creation of LPs is OK

� Messages sent on each link need not be sent in time stamp order (!)

� Network provides reliable delivery, but does not need to preserve order

� Basic idea:

� Just go ahead an process events without worrying about messages that 
will arrive later

� Detect out-of-order execution; in this case: recover using rollback

process all available events (2, 4, 5, 8, 9) in time stamp order

9 8 2

45

H3
logical

processH3H2

H1
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41

Input Queue
(event list)

18

straggler message arrives in the past, causing rollback

12 21 35

processed event

unprocessed event

Time Warp: Local Control Mechanism

Adding rollback:
• a message arriving in the LP’s past initiates rollback
• to roll back an event computation we must undo:

– changes to state variables performed by the event;

– message sends

Each LP: process events in time stamp order, like a sequential simulator, except: 
(1) do NOT discard processed events and (2) add a rollback mechanism

State Queue

solution: checkpoint state or use incremental state saving (state queue)

snapshot of LP state

1212
Output Queue
(anti-messages) 19 42

solution: anti-messages and message annihilation (output queue)

anti-message
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Anti-Messages

� Used to cancel a previously sent message

� Each positive message sent by an LP has a corresponding anti-
message

� Anti-message is identical to positive message, except for a sign bit

� When an anti-message and its matching positive message meet in 
the same queue, the two annihilate each other (analogous to matter 
and anti-matter)

� To undo the effects of a previously sent (positive) message, the LP 
just needs to send the corresponding anti-message

� Message send: in addition to sending the message, leave a copy of 
the corresponding anti-message in a data structure in the sending 
LP called the output queue.

42
positive message

anti-message 42
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1212

41

Input Queue
(event list)

Output Queue
(anti-messages)

19 42

18

1. straggler message arrives in the past, causing rollbackBEFORE

12 21 35 processed event

unprocessed event

snapshot of LP state

anti-message

State Queue

Rollback: Receiving a Straggler Message

1212

21 35 41

19

18

Input Queue
(event list)

Output Queue
(anti-messages)
AFTER

5. resume execution by processing event at time 18

12

State Queue

2. roll back events at times 21 and 35 
2(a) restore state of LP to that prior to processing time stamp 21 event

2(b) send anti-message



Network Security, WS 2008/09, Chapter 9 75IN2045 – Discrete Event Simulation, WS 2010/2011 75

Case II: corresponding message has already been processed
– roll back to time prior to processing message (secondary rollback)
– annihilate message/anti-message pair

55

33 57

27 42 45
processed event

unprocessed event

snapshot of LP state

anti-message

• May cause “cascaded” rollbacks!
• Recursively applying eliminates all effects of error

Processing Incoming Anti-Messages

Case I: corresponding message has not yet been processed

� Simply annihilate message/anti-message pair; nothing else to do

42
1. anti-message arrives

Case III: corresponding message has not yet been received
– queue anti-message
– annihilate message/anti-message pair when message is received

2. roll back events (time stamp 42 and 45)
2(a) restore state

2(b) send anti-message

3. Annihilate message
and  anti-message
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Global Virtual Time and Fossil Collection

A mechanism is needed to:
� reclaim memory resources (e.g., old state and events)

� Call this “fossil collection” (similar to garbage collection)

� perform irrevocable operations (e.g., I/O)

Observation: A lower bound on the time stamp of any rollback 
that can occur in the future is needed.

Global Virtual Time (GVT) is defined as the minimum time stamp of any 
unprocessed (or partially processed) message or anti-message in the 
system.  GVT provides a lower bound on the time stamp of any future 
rollback.

• storage for events and state vectors older than GVT (except one 
state vector) can be reclaimed

• I/O operations with time stamp less than GVT can be performed.

Observation: The computation corresponding to GVT will not be rolled 
back, guaranteeing forward progress.
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Time Warp and Chandy/Misra Performance

0

1

2

3

4

5

6

7

8

0 16 32 48 64
Message Density

(messages per logical process)

S
pe

ed
up

Time Warp (64 logical
processes)
Time Warp (16 logical
processes)
Deadlock Avoidance
(64 logical processes)
Deadlock Avoidance
(16 logical processes)
Deadlock Recovery (64
logical processes)
Deadlock Recovery (64
logical processes)

• eight processors
• closed queueing network, hypercube topology
• high priority jobs preempt service from low priority jobs (1% high priority)
• exponential service time (poor lookahead)
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Summary

� Optimistic synchronization: detect and recover from 
synchronization errors rather than prevent them

� Time Warp

� Local control mechanism
• Rollback

• State saving

• Anti-messages

• Cascaded rollbacks

� Global control mechanism
• Global Virtual Time (GVT)

• Fossil collection to reclaim memory

• Commit irrevocable operations (e.g., I/O)
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Parallel simulation: Summary/Outline

� Motivation: Why to use parallel simulators and why it’s difficult
� Conservative algorithms: Only do what is allowed

� Introduction
� Null messages: deadlock avoidance
� Deadlock detection and recovery
� Barrier synchronization and LBTS (lower bound on time stamp) 

calculation

� Optimistic algorithms: Do anything, possibly roll back
� Time Warp algorithm
� Anti-Messages for rollback
� Global Virtual Time (GVT) for fossil collection
� State Saving Techniques
� (Issues with Zero lookahead; Wide Virtual Time)
� (Artificial Rollbacks to save memory)

� Summary
� Pros and Cons of conservative and optimistic algorithms
� Why not to use parallel simulators
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Outline

� GVT Computations: Introduction

� Synchronous vs. Asynchronous

� GVT vs. LBTS

� Computing Global Virtual Time

� Transient Message Problem

� Simultaneous Reporting Problem

� Samadi Algorithm (not shown)

� Message Acknowledgements

� Marked Acknowledgment Messages
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GVT(t): minimum time stamp among all unprocessed or partially 
processed messages at wallclock time t.

� Needed to commit I/O operations (e.g., write definite simulation
output into logfile) and to reclaim memory

� Computing GVT trivial if an instantaneous snapshot of the 
computation could be obtained: compute minimum time stamp 
among

� Unprocessed events & anti-messages within each LP

� Transient messages (messages sent before time t that are 
received after time t)

� Synchronous vs. Asynchronous GVT computation

� Synchronous GVT algorithms: LPs stop processing events once a 
GVT computation has been detected

� Asynchronous GVT algorithms: LPs can continue processing 
events and schedule new events while the GVT computation 
proceeds “in background”

Global Virtual Time



Network Security, WS 2008/09, Chapter 9 82IN2045 – Discrete Event Simulation, WS 2010/2011 82

GVT vs. LBTS

Observation:
Computing GVT is similar to computing the lower bound on 
time stamp (LBTS) of future events in conservative algorithms

� GVT algorithms can be used to compute LBTS and vice versa

� Both determine the minimum time stamp of messages (or anti-
message) that may later arrive

� Historically, developed separately

� Often developed using different assumptions (lookahead, 
topology, etc.)

� Time Warp

� Latency to compute GVT typically less critical than the latency to 
compute LBTS

� Asynchronous execution of GVT computation preferred to allow 
optimistic event processing to continue
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Asynchronous GVT

Difficulties:

� transient message problem: messages sent, but not yet received 
must be considered in computing GVT

� simultaneous reporting problem: different processors report their 
local minima at different points in wallclock times, leading to an 
incorrect GVT value

Solutions exist (e.g., Sammadi algorithm), but won’t show them here

An incorrect GVT algorithm:

� Controller process: broadcast “compute GVT request”

� upon receiving the GVT request, each process computes its 
local minimum and reports it back to the controller

� Controller computes global minimum, broadcast to others
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The Transient Message Problem

� Transient message: A message that has been sent, but has 
not yet been received at its destination

� Erroneous values of GVT may be computed if the algorithm 
does not take into account transient messages

GVT process

Process 1

Process 2

wallclock time

report
100

report
200

ts=90

GVT request

process ts=90
message here

GVT=min(100,200)

GVT=100

GVT=100
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GVT process

Process 1

Process 2
real time

Samadi Algorithm

� send an ack for each event messages & anti-messages received

� “mark” acks sent after the processor has reported its local minimum

Algorithm:

� controller broadcasts “start GVT” message

� each processor reports minimum time stamp among (1) local messages, 
(2) unacknowledged sent messages, (3) marked acks that were received

� subsequent acks sent by process are marked until new GVT is received

� controller computes global minimum as GVT value, broadcasts new GVT

report
100

report
90

ts=90

start GVT

process ts=90
message here

marked
ack, TS=90

marked acks

GVT=min(100,90)

GVT=90

GVT=90
marked acks
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Samadi Algorithm

� Calculates GVT

� Requires acknowledgements on event messages

� Transient message problem:
Handled by message acknowledgements

� Simultaneous reporting problem:
Mark acknowledgements sent after reporting local 
minimum
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Summary

� Global Virtual Time

� Similar to lower bound on time stamp (LBTS)
• Time Warp: GVT usually not as time critical as LBTS

• Asynchronous GVT computation highly desirable to avoid 
unnecessary blocking

� Transient message problem etc. handled by, e.g.,
Samadi algorithm
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Parallel simulation: Summary/Outline

� Motivation: Why to use parallel simulators and why it’s difficult
� Conservative algorithms: Only do what is allowed

� Introduction
� Null messages: deadlock avoidance
� Deadlock detection and recovery
� Barrier synchronization and LBTS (lower bound on time stamp) 

calculation

� Optimistic algorithms: Do anything, possibly roll back
� Time Warp algorithm
� Anti-Messages for rollback
� Global Virtual Time (GVT) for fossil collection
� State Saving Techniques
� (Issues with Zero lookahead; Wide Virtual Time)
� (Artificial Rollbacks to save memory)

� Summary
� Pros and Cons of conservative and optimistic algorithms
� Why not to use parallel simulators
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Outline

� State Saving Techniques

� Copy State Saving

� Infrequent State Saving

� Incremental State Saving

� Reverse Computation
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Copy State Save

� Checkpoint all modifiable state variables of the LP prior to 
processing each event

� Rollback: copy checkpointed state to LP state variables

18
straggler message

State Queue X: 0
Y: 0
Z: 0

X: 1
Y: 2
Z: 3

X: 4
Y: 2
Z: 3

restore state

processed event

unprocessed event

snapshot of LP state

Input Queue
4135211212

X:=1
Y:=2
Z:=3

21
X:=4 

35
X:=5
Z:=9

21 35

LP State
Variables

X: 0
Y: 0
Z: 0

X: 1
Y: 2
Z: 3

X: 4
Y: 2
Z: 3

X: 5
Y: 2
Z: 9

X: 1
Y: 2
Z: 3 Resume normal processing of events
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Copy State Saving

Drawbacks

� Forward execution slowed by checkpointing

� Must state save even if no rollbacks occur

� Inefficient if most of the state variables are not 
modified by each event

� Consumes large amount of memory

Copy state saving is only practical for LPs that do not 
have a large state vector

Largely transparent to the simulation application (only 
need locations of LP state variables)
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Infrequent State Saving

� Checkpoint LP periodically, e.g., every N-th event

� Rollback to sim time T – but may not have saved state at time T!
� Roll back to most recent checkpointed state prior to time T

� Execute forward (“coast forward”) to time T

� Coast forward phase
� Only needed to recreate state of LP at simulation time T

� Coast forward execution identical to the original execution

� Must “turn off” message sends during coast forward, or else
• rollback to T could cause new messages with time stamp < T, and roll 

backs to times earlier than T

• Could lead to rollbacks earlier than GVT

rollback

Coast forward

Roll back to
last saved state

Checkpoint every
third event
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Infrequent State Saving Example

26

1. straggler message causes rollback

processed event
unprocessed event
saved state
anti-message

41

Input Queue
(event list)

Output Queue
(anti-messages)

24

12 21 35

State Queue

38

2. send anti-message

3. Roll back to simulation time 12
Restore state of LP to that prior to processing time stamp 12 event
Do not send anti-message with time stamp 24

12 21 35

LP State

4. Coast forward: reprocess event with time stamp 12

12 21

5. Coast forward: reprocess event with time stamp21,
don’t resend time stamp 24 message

6. Process straggler, continue normal event processing

26
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Infrequent State Saving: Pros and Cons

� Reduces time required for state saving

� Reduces memory requirements

� Increases time required to roll back LP

� Increases complexity of Time Warp executive

� Largely transparent to the simulation application 
(only need locations of LP state variables and 
frequency parameter)
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Incremental State Saving

� Only state save variables modified by an event

� Generate “change log” with each event indicating 
previous value of state variable before it was modified

� Rollback

� Scan change log in reverse order, restoring old values 
of state variables
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Incremental State Save Example

� Before modifying a state variable, save current version in state queue

� Rollback: Scan state queue from back, restoring old values

18
straggler message

State Queue X: 0
Y: 0
Z: 0

X: 1 X: 4
Z: 3

restore state

processed event

unprocessed event

snapshot of LP state

Input Queue
4135211212

X:=1
Y:=2
Z:=3

21
X:=4 

35
X:=5
Z:=9

LP State
Variables

X: 0
Y: 0
Z: 0

X: 1
Y: 2
Z: 3

X: 4
Y: 2
Z: 3

X: 5
Y: 2
Z: 9

3521

Resume forward execution starting with
time stamp 18 event

X: 4
Y: 2
Z: 3

X := 4
Z := 3

X: 1
Y: 2
Z: 3

X := 1
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Incremental State Saving

� Must log addresses of modified variables in addition 
to state

� More efficient than copy state save if most state 
variables are not modified by each event

� Can be used in addition to copy state save

� Changing some variables may be faster than to 
change the entire state

� Do full state copies every now and then;
do incremental saving in between
(similar to MPEG i-frames vs. p- and b-frames)
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Reverse Computation

� Rather than state save, recompute prior state

� For each event computation, need inverse 
computation

� Instrument forward execution to enable reverse 
execution

� Advantages

� Reduce overhead in forward computation path

� Reduce memory requements

� Disadvantages

� Tedious to do by hand, requires automation
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Parallel simulation: Summary/Outline

� Motivation: Why to use parallel simulators and why it’s difficult
� Conservative algorithms: Only do what is allowed

� Introduction
� Null messages: deadlock avoidance
� Deadlock detection and recovery
� Barrier synchronization and LBTS (lower bound on time stamp) 

calculation

� Optimistic algorithms: Do anything, possibly roll back
� Time Warp algorithm
� Anti-Messages for rollback
� Global Virtual Time (GVT) for fossil collection
� State Saving Techniques
� (Issues with Zero lookahead; Wide Virtual Time)
� (Artificial Rollbacks to save memory)

� Summary
� Pros and Cons of conservative and optimistic algorithms
� Why not to use parallel simulators
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Issues

Zero lookahead: An LP has zero lookahead if it can 
schedule an event with time stamp equal to the 
current simulation time of the LP

Simultaneous events: events containing the same time 
stamp; in what order should they be processed?

Repeatability: An execution mechanism (e.g., Time 
Warp) is repeatable if repeated executions produce 
exactly the same results
� Often a requirement

� Simplifies debugging
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Zero Lookahead and Simultaneous Events

� Time Warp: Do simultaneous event cause rollback?

� A possible rule:

If an LP processes an event at simulation time T and then receives 
a new event with time stamp T, roll back the event that has 
already been processed.

processed event

unprocessed event

LP1

12

LP2

12

1212

12

Rollback!12

Cancel
Message

Cancel
Message

12

12 Reprocess
Event!

If an event can roll back 
another event on which 
it depends, unending 
rollback cycles may 
occur.
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Wide Virtual Time (WVT)

� Tie breaking field can be viewed as low precision bits of time 
stamp

� Time definition applies to all simulation time values (e.g., 
current time of an LP)

time value tie breaking fields
Time stamp

Approach

� Application uses time value field to indicate “time when the 
event occurs”

� Tie breaking field used to order simultaneous events (events 
with same time value): Make time “artificially more precise”
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Non-zero lookahead events: Age=1

Zero lookahead events: Age = Current Age + 1

An Approach Using WVT

Application specified ordering of events:

time valueTime stamp: priority

Application specified priority field

Avoid rollback cycles:

age

Age field to order dependent zero lookahead events

Repeatable execution

LP ID

ID field identifying LP that scheduled the event

Sequence number indicating # of events scheduled by LP

Seq #

Constraint on zero lookahead events
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WVT Example

Avoid rollback cycles despite zero lookahead events

processed event

unprocessed event

LP1

12.1

LP2

12.2

12.312.1

12.2

No Rollback!
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Summary

� Copy State Saving
� Efficient if LP state small

� Can be made transparent to application

� Infrequent state saving
� Must turn off message sending during coast forward

� Reduced memory requirements

� less time for state saving

� Increased rollback cost

� Incremental State Saving
� Preferred approach if large state vectors

� Means to simplify usage required

� Reverse computation
� Efficient, requires automation

� Zero lookahead and simultaneous events
� Can lead to unending rollbacks

� Wide Virtual Time provides one solution
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Parallel simulation: Summary/Outline

� Motivation: Why to use parallel simulators and why it’s difficult
� Conservative algorithms: Only do what is allowed

� Introduction
� Null messages: deadlock avoidance
� Deadlock detection and recovery
� Barrier synchronization and LBTS (lower bound on time stamp) 

calculation

� Optimistic algorithms: Do anything, possibly roll back
� Time Warp algorithm
� Anti-Messages for rollback
� Global Virtual Time (GVT) for fossil collection
� State Saving Techniques
� (Issues with Zero lookahead; Wide Virtual Time)
� (Artificial Rollbacks to save memory)

� Summary
� Pros and Cons of conservative and optimistic algorithms
� Why not to use parallel simulators



Network Security, WS 2008/09, Chapter 9 107IN2045 – Discrete Event Simulation, WS 2010/2011 107

Observations

� In a sequential execution at simulation time T, the 
event list contains the events with

� Receive time stamp greater than T,

� Send time stamp less than T.

� Time Warp can restore the execution to a valid state 
if it retains events with

� Send time less than GVT and receive time stamp 
greater than GVT.

� All other events can be deleted (as well as their 
associated state vector, anti-messages, etc.)

� Storage optimal protocols: roll back LPs to reclaim all 
memory not required in corresponding sequential 
execution
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Artificial Rollback

Salvage parameter: Amount of memory to be reclaimed when a 
processor runs out of memory

Algorithm: When system runs out of memory, then…:

� Sort LPs, in order of their current simulation time (largest to 
smallest): LP1, LP2, LP3, …

� Roll back LP1 to current simulation time of LP2

� If additional memory must be reclaimed, roll back LP1 and LP2

to current simulation time of LP3

� Repeat above process until sufficient memory has been 
reclaimed

Artificial rollback is storage optimal when executed on a shared
memory multiprocessor with a shared buffer pool

Performance will be poor if too little memory is available
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Effect of Limited Memory on Speedup

0
1
2
3
4
5
6
7
8
9

0 50 100 150 200 250 300 350
Number of Message Buffers Beyond 

Minimum

S
pe

ed
up

experimental (12
processors)
analytical (12
processors)
experimental (8
processors)
analytical (8
processors)
experimental (4
processors)
analytical (4
processors)

• symmetric synthetic workload (PHold)
• one logical processor per processor
• fixed message population
• KSR-1 multiprocessor
• sequential execution requires 128 (4 LPs), 256 (8 LPs), 384 (12 LPs) buffers
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Other Optimistic Algorithms

Principal goal: avoid excessive optimistic execution

A variety of protocols have been proposed, among them:
• window-based approaches

– only execute events in a moving window (simulated time, memory)
• risk-free execution

– only send messages when they are guaranteed to be correct
• add optimism to conservative protocols

– specify “optimistic” values for lookahead
• introduce additional rollbacks

– triggered stochastically or by running out of memory
• hybrid approaches

– mix conservative and optimistic LPs
• scheduling-based

– discriminate against LPs rolling back too much
• adaptive protocols

– dynamically adjust protocol during execution as workload changes
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Parallel simulation: Summary/Outline

� Motivation: Why to use parallel simulators and why it’s difficult
� Conservative algorithms: Only do what is allowed

� Introduction
� Null messages: deadlock avoidance
� Deadlock detection and recovery
� Barrier synchronization and LBTS (lower bound on time stamp) 

calculation

� Optimistic algorithms: Do anything, possibly roll back
� Time Warp algorithm
� Anti-Messages for rollback
� Global Virtual Time (GVT) for fossil collection
� State Saving Techniques
� (Issues with Zero lookahead; Wide Virtual Time)
� (Artificial Rollbacks to save memory)

� Summary
� Pros and Cons of conservative and optimistic algorithms
� Why not to use parallel simulators
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Summary: Conservative vs. optimistic

� Conservative systems:
Only process events that are safe to process

� Optimistic systems:
Go ahead processing, but be prepared to do a 
rollback
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Conservative Algorithms

Con:

� Cannot fully exploit available parallelism in the simulation because 
they must protect against a “worst case scenario”

� Lookahead is essential to achieve good performance

� Writing simulation programs to have good lookahead can be very 
difficult or impossible, and can lead to code that is difficult to 
maintain

Pro:
• Good performance reported for many applications containing 

good lookahead (queueing networks, communication 
networks, wargaming)

• Relatively easy to implement
• Well suited for “federating” autonomous simulations, 

provided there is good lookahead
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Optimistic Algorithms

Con:

� state saving overhead may severely degrade performance

� rollback thrashing may occur (though a variety of solutions exist)

� implementation is generally more complex and difficult to debug than 
conservative mechanisms;  careful implementation is required or poor 
performance may result

� must be able to recover from exceptions (may be subsequently rolled 
back)

Pro:
• good performance reported for a variety of application (queuing 

networks, communication networks, logic circuits, combat models,
transportation systems)

• offers the best hope for “general purpose” parallel simulation software 
(not as dependent on lookahead as conservative methods)

• “Federating” autonomous simulations
• avoids specification of lookahead
• caveat: requires providing rollback capability in the simulation
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Further observations

� Simple operations in conservative systems (dynamic 
memory allocation, error handling) present non-trivial 
issues in Time Warp systems

� Solutions exist for most, but at the cost of increased 
complexity in the Time Warp executive
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Parallel simulation: Summary/Outline

� Motivation: Why to use parallel simulators and why it’s difficult
� Conservative algorithms: Only do what is allowed

� Introduction
� Null messages: deadlock avoidance
� Deadlock detection and recovery
� Barrier synchronization and LBTS (lower bound on time stamp) 

calculation

� Optimistic algorithms: Do anything, possibly roll back
� Time Warp algorithm
� Anti-Messages for rollback
� Global Virtual Time (GVT) for fossil collection
� State Saving Techniques
� (Issues with Zero lookahead; Wide Virtual Time)
� (Artificial Rollbacks to save memory)

� Summary
� Pros and Cons of conservative and optimistic algorithms
� Why not to use parallel simulators
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Why not parallel / distributed simulation? 1/2

� Parallel computing is more complicated
� More complicated = more code = more bugs

� It’s more complicated to avoid bugs in parallel / 
distributed programs 

� It’s more complicated to debug parallel / distributed 
programs

� Parallel / distributed simulations are more 
complicated
� Conservative?

• Design model to be well-parallelizable

• Need to think about lookahead

� Optimistic?
• Less difficult model; more difficult simulator

• Needs more RAM

• How often will I have to do rollbacks?
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Why not parallel / distributed simulation? 2/2

� Parallel / distributed computing introduces overhead:

� CPU overhead for time synchronisation, rollbacks, …

� Memory overhead for keeping snapshots, message 
counters, …

� Time / communication overhead: Waiting for 
messages, sending ACKs, message transit times, …

� Amdahl’s law: Boundary
for any parallel program

� Speedup < #CPUs

� Reason: There are always
some non-parallelizable
parts in the program
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Another approach to parallelize…

� Often, you have to run multiple simulations anyway
� Different random seeds to get more measurements

� Try out different parameter sets

� In this case, the easiest way to parallize your simulation is to 
run them in parallel…
☺ Scales linearly with the number of CPUs

(…unless RAM size, RAM accesses or disk I/O are bottlenecks)

☺ No overhead for locking, synchronizing etc. means more efficient
use of CPU time than a parallel simulator

☺ Output always deterministic

☺ Less complex than a parallel simulator
☺Easier to debug

☺No thoughts about improving lookahead in the model, etc.

/ Often needs more RAM than a parallel simulator
(…although Time Warp may be a memory hog, too)

/ Does not work with hardware-in-the-loop, human-in-the-loop etc.
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Parallel simulation: Summary/Outline

� Motivation: Why to use parallel simulators and why it’s difficult
� Conservative algorithms: Only do what is allowed

� Local causality constraint
� Null messages: deadlock avoidance

• Lookahead
• Time creep problem

� Deadlock detection and recovery
� Barrier synchronization

• LBTS (lower bound on time stamp) calculation
• Transient message problem and flush barriers

� Possible optimization: Exploit distance between processes

� Optimistic algorithms: Do anything, possibly roll back
� Time Warp algorithm
� Anti-Messages for rollback
� Global Virtual Time (GVT) for fossil collection
� State Saving Techniques
� (Issues with Zero lookahead; Wide Virtual Time)
� (Artificial Rollbacks to save memory)

� Summary
� Pros and Cons of conservative and optimistic algorithms
� Why not to use parallel simulators


