
Chair for Network Architectures and Services—Prof. Carle
Department of Computer Science
TU München

Parallel simulation

Most slides/figures borrowed from
Richard Fujimoto

Network Security, WS 2008/09, Chapter 9 2IN2045 – Discrete Event Simulation, WS 2010/2011 2

Parallel simulation: Summary/Outline

� Motivation: Why to use parallel simulators and why it’s difficult
� Conservative algorithms

� Introduction: Only do what is allowed
� Null messages: deadlock avoidance
� Deadlock detection and recovery
� Barrier synchronization and LBTS (lower bound on time stamp)

calculation

� Optimistic algorithms
� Time Warp algorithm: Do anything, possibly roll back
� Anti-Messages for rollback
� Global Virtual Time (GVT) for fossil collection
� State Saving Techniques
� (Issues with Zero lookahead; Wide Virtual Time)
� (Artificial Rollbacks to save memory)

� Summary
� Pros and Cons of conservative and optimistic algorithms
� Why not to use parallel simulators

Network Security, WS 2008/09, Chapter 9 3IN2045 – Discrete Event Simulation, WS 2010/2011 3

Why parallel simulation?

� Parallel computing is a general trend

� Hardware power is increasingly improved by increasing
the number of cores within one CPU

� but less so by making single cores faster

� Benefit = Speedup := Sequential execution time /
parallel execution time

� OK, so… why don’t we just process the events in
parallel?

Network Security, WS 2008/09, Chapter 9 4IN2045 – Discrete Event Simulation, WS 2010/2011 4

Problem of simulation parallelisation

� Suppose that multiple processors pop and process
events from The One Global Event List

� Problem:

� CPU 1 picks and processes E1 at simulation time T1

� CPU 2 picks and processes E2 at simulation time T2

� E1 generates a new Event E3 at T3…
• …but T3 < T2

• and E3 changes the system state so that E2 now should show
different effects

� Possible solutions:

� Undo processing of E2: Wastes CPU time (and RAM)

� Allow processing of E2 only when it is safe: Increases
complexity and thus needs more CPU time (and RAM)

Network Security, WS 2008/09, Chapter 9 5IN2045 – Discrete Event Simulation, WS 2010/2011 5

Parallel simulation: Summary/Outline

� Motivation: Why to use parallel simulators and why it’s difficult
� Conservative algorithms: Only do what is allowed

� Introduction
� Null messages: deadlock avoidance
� Deadlock detection and recovery
� Barrier synchronization and LBTS (lower bound on time stamp)

calculation

� Optimistic algorithms: Do anything, possibly roll back
� Time Warp algorithm
� Anti-Messages for rollback
� Global Virtual Time (GVT) for fossil collection
� State Saving Techniques
� (Issues with Zero lookahead; Wide Virtual Time)
� (Artificial Rollbacks to save memory)

� Summary
� Pros and Cons of conservative and optimistic algorithms
� Why not to use parallel simulators

Network Security, WS 2008/09, Chapter 9 6IN2045 – Discrete Event Simulation, WS 2010/2011 6

Event-Oriented Simulation: Non-parallel example

state variables

Integer: InTheAir;
Integer: OnTheGround;
Boolean: RunwayFree;

Event handler procedures

Simulation application

Arrival
Event

{

…

}

Landed
Event

{

…

}

Departure
Event

{

…

}

Pending Event List (PEL)

9:00

9:16
10:10

Now = 8:45

Simulation executive
Event processing loop

While (simulation not finished)

E = smallest time stamp event in PEL

Remove E from PEL

Now := time stamp of E

call event handler procedure

Network Security, WS 2008/09, Chapter 9 7IN2045 – Discrete Event Simulation, WS 2010/2011 7

Parallel Discrete Event Simulation

� Extend example to model a network of airports

� Encapsulate each airport in a logical process (LP)

� Logical processes can schedule events (send
messages) for other logical processes

More generally...

� Physical system

� Collection of interacting physical processes (airports)

� Simulation

� Collection of logical processes (LPs)

� Each LP models a physical process

� Interactions between physical processes modeled by
scheduling events between LPs

Network Security, WS 2008/09, Chapter 9 8IN2045 – Discrete Event Simulation, WS 2010/2011 8

Parallel Discrete Event Simulation Example

Interactions between LPs only via messages (no shared state!)

SFO JFK

ORD

physical process interactions among physical processes

Physical system

logical process time stamped event (message)

ORD

SFO JFK

arrival
10:00

Simulation

Network Security, WS 2008/09, Chapter 9 9IN2045 – Discrete Event Simulation, WS 2010/2011 9

LP Simulation Example

Arrival Event:

InTheAir := InTheAir+1;

If (RunwayFree)

RunwayFree:=FALSE;

Schedule Landed event (local) @ Now+R;

� Now: current simulation time

� InTheAir: number of aircraft landing or waiting to land

� OnTheGround: number of landed aircraft

� RunwayFree: Boolean, true if runway available

Landed Event:

InTheAir:=InTheAir-1; OnTheGround:=OnTheGround+1;

Schedule Departure event (local) @ Now + G;

If (InTheAir>0) Schedule Landed event (local) @ Now+R;

Else RunwayFree := TRUE;

Departure Event (D = delay to reach another airport):

OnTheGround := OnTheGround - 1;

Schedule Arrival Event (remote) @ (Now+D) @ another airport

Network Security, WS 2008/09, Chapter 9 10IN2045 – Discrete Event Simulation, WS 2010/2011 10

logical
processORD

SFO JFK

arrival
10:00

Approach to Parallel/Distributed Execution

� LP paradigm appears well suited to concurrent execution
� Map LPs to different processors

� Might be different processors or even different computers

� Multiple LPs per processor OK

time stamped event
(message)

� Communication via message passing

� All interactions via messages

� No shared state variables

Network Security, WS 2008/09, Chapter 9 11IN2045 – Discrete Event Simulation, WS 2010/2011 11

Synchronization Problem and Local causality

Synchronization Problem:
An algorithm is needed to ensure each LP processes
events in time stamp order

Local causality constraint:
“Process incoming messages in time stamp order”
(Golden rule for each process)

Observation:
Adherence to the local causality constraint is sufficient
to ensure that the parallel simulation will produce
exactly the same results as a sequential execution
where all events across all LPs are processed in time
stamp order [… if we ignore the case of events having
the same time stamp] .

Network Security, WS 2008/09, Chapter 9 12IN2045 – Discrete Event Simulation, WS 2010/2011 12

Local causality

Golden rule for each process: “Thou shalt process
incoming messages in time stamp order” (local
causality constraint)

Safe to
process?

ORD

SFO JFK

arrival
10:00

Network Security, WS 2008/09, Chapter 9 13IN2045 – Discrete Event Simulation, WS 2010/2011 13

Two basic synchronization approaches

� Conservative synchronization: avoid violating the
local causality constraint (wait until it’s safe)

� deadlock avoidance using null messages
(Chandy/Misra/Bryant)

� deadlock detection and recovery

� synchronous algorithms (e.g., execute in “rounds”)

� Optimistic synchronization: allow violations of local
causality to occur, but detect them at runtime and
recover using a rollback mechanism

� Time Warp (Jefferson)

� numerous other approaches

Network Security, WS 2008/09, Chapter 9 14IN2045 – Discrete Event Simulation, WS 2010/2011 14

Outline

� Parallel / Distributed Computers

� Air Traffic Network Example

� Parallel Discrete Event Simulation

� Logical processes

� Local causality constraint

� Chandy/Misra/Bryant Null Message Algorithm

� Ground rules

� An algorithm that doesn’t work

� Deadlock avoidance using null messages

Network Security, WS 2008/09, Chapter 9 15IN2045 – Discrete Event Simulation, WS 2010/2011 15

Chandy/Misra/Bryant “Null Message” Algorithm

Assumptions

� logical processes (LPs) exchanging time stamped events (messages)

� static network topology, no dynamic creation of LPs

� messages sent on each link are sent in time stamp order

� network provides reliable delivery, preserves order

Goal: Ensure LP processes events in time stamp order

JFKSFO

ORD
9 8 2

45

JFK
logical

process one FIFO
queue per

incoming link

Observation: The above assumptions imply the time stamp of the last
message received on a link is a lower bound on the time stamp (LBTS)
of subsequent messages received on that link (messages and thus
events cannot overtake one another!)

Network Security, WS 2008/09, Chapter 9 16IN2045 – Discrete Event Simulation, WS 2010/2011 16

Naïve approach (does not work yet):

Observation: Algorithm A is prone to deadlock!

Algorithm A (executed by each LP):
Goal: Ensure events are processed in time stamp order:

WHILE (simulation is not over)
wait until each FIFO contains at least one message
remove smallest time stamped event from its FIFO
process that event

END-LOOP

9 8 2

45

JFK
logical

process

ORD

SFO
• wait until message is received from
SFO

• process time stamp 2 event
• process time stamp 4 event
• process time stamp 5 event

Network Security, WS 2008/09, Chapter 9 17IN2045 – Discrete Event Simulation, WS 2010/2011 17

Deadlock Example

� A cycle of LPs forms where each is waiting on the next LP in
the cycle.

� No LP can advance; the simulation is deadlocked.

9 8

JFK
(waiting
on ORD)

7ORD
(waiting
on SFO)

SFO
(waiting
on JFK)

15
10

Network Security, WS 2008/09, Chapter 9 18IN2045 – Discrete Event Simulation, WS 2010/2011 18

Deadlock Avoidance Using Null Messages (example)

Break deadlock: each LP sends “null” messages that
indicate a lower bound on the time stamp of future
messages.

9 8

JFK
(waiting
on ORD)

ORD
(waiting
on SFO)

SFO
(waiting
on JFK)

15
10

7

Assume minimum delay between airports is 3 units of time
• JFK initially at time 5

8

• JFK sends null message to SFO with time stamp 8

11

• SFO sends null message to ORD with time stamp 11

7

• ORD may now process message with time stamp 7

Network Security, WS 2008/09, Chapter 9 19IN2045 – Discrete Event Simulation, WS 2010/2011 19

Deadlock Avoidance Using Null Messages (algorithm)

Null Message Algorithm (executed by each LP):
Goal: Ensure events are processed in time stamp order and avoid

deadlock

WHILE (simulation is not over)
wait until each FIFO contains at least one message
remove smallest time stamped event from its FIFO
process that event
send null messages to neighboring LPs with time stamp indicating a

lower bound on future messages sent to that LP (current time plus
lookahead)

END-LOOP

The null message algorithm relies on a “lookahead” ability.

Network Security, WS 2008/09, Chapter 9 20IN2045 – Discrete Event Simulation, WS 2010/2011 20

Deadlock Avoidance Using Null Messages

Null Message Algorithm (executed by each LP):
Goal: Ensure events are processed in time stamp order and avoid

deadlock

WHILE (simulation is not over)
wait until each FIFO contains at least one message
remove smallest time stamped event from its FIFO
process that event
send null messages to neighboring LPs with time stamp indicating a

lower bound on future messages sent to that LP (current time plus
minimum transit time between airports)

END-LOOP

Variation: LP requests null message when FIFO becomes
empty

• Fewer null messages
• Delay to get time stamp information

Network Security, WS 2008/09, Chapter 9 21IN2045 – Discrete Event Simulation, WS 2010/2011 21

The Time Creep Problem

Many null messages if minimum flight time is small!

9 8

JFK
(waiting
on ORD)

ORD
(waiting
on SFO)

SFO
(waiting
on JFK)

15
10

7

Assume minimum delay between airports is 3 units of time
JFK initially at time 5

0.5

5.5

JFK: timestamp = 5.5

Null messages:

6.0

SFO: timestamp = 6.06.5
ORD: timestamp = 6.5

7.0 JFK: timestamp = 7.0

7.5

SFO: timestamp = 7.5

Five “unnecessary” null messages to process a single event!

ORD: process time
stamp 7 message

7

Network Security, WS 2008/09, Chapter 9 22IN2045 – Discrete Event Simulation, WS 2010/2011 22

Worse yet: Livelock can occur!

9 8

JFK
(waiting
on ORD)

7ORD
(waiting
on SFO)

SFO
(waiting
on JFK)

15
10 5.0

5.0

5.0

5.0

Livelock: un-ending cycle of null messages where no LP can advance its
simulation time

There cannot be a cycle where for each LP in the cycle, an incoming
message with time stamp T results in a new message sent to the next
LP in the cycle with time stamp T (zero lookahead cycle)

Suppose the minimum delay between airports is zero…

Network Security, WS 2008/09, Chapter 9 23IN2045 – Discrete Event Simulation, WS 2010/2011 23

Outline

� Null message algorithm: The Time Creep Problem

� Lookahead

� What is it and why is it important?

� Writing simulations to maximize lookahead

� Changing lookahead

� Avoiding Time Creep

Network Security, WS 2008/09, Chapter 9 24IN2045 – Discrete Event Simulation, WS 2010/2011 24

Lookahead

The null message algorithm relies on a “prediction” ability
referred to as lookahead

� “ORD at simulation time 5, minimum transit time between
airports is 3, so the next message sent by ORD must have a
time stamp of at least 8”

Lookahead is a constraint on LP’s behaviour

� Link lookahead: If an LP is at simulation time T, and an
outgoing link has lookahead Li, then any message sent on that
link must have a time stamp of at least T+Li

� LP Lookahead: If an LP is at simulation time T, and has a
lookahead of L, then any message sent by that LP must have
a time stamp of at least T+L

� Equivalent to link lookahead where the lookahead on each
outgoing link is the same

Network Security, WS 2008/09, Chapter 9 25IN2045 – Discrete Event Simulation, WS 2010/2011 25

Exploiting Lookahead in Applications

T = arrival time of job
Q = waiting time in queue
S = service time

Example: Tandem first-come-first-serve queues

“Classical” approach:

LP1 LP2

arrival
event

departure
event

arrival
event

T

T+Q

T+Q+S

begin service

Optimized to exploit lookahead

LP1 LP2

arrival
event

arrival
event

T

T+Q

T+Q+S

The degree to which the program can exploit lookahead is critical for good performance

Network Security, WS 2008/09, Chapter 9 26IN2045 – Discrete Event Simulation, WS 2010/2011 26

0

1

2

3

4

1 2 4 8 16 32 64 128 256

Number of Jobs in Network

Sp
ee

du

Optimized
(deterministic service
time)
Optimized (exponential
service time)

Classical (deterministic
service time)

Classical (exponential
service time)

Lookahead Affects Performance

Deadlock Detection and
Recovery Algorithm

(5 processors)

Parallel Simulation
of a Central Server
Queueing Network

merge fork

Network Security, WS 2008/09, Chapter 9 27IN2045 – Discrete Event Simulation, WS 2010/2011 27

Null Message Algorithm:
Speedup depends on various factors

0

3

6

9

12

0 4 8 12 16
Number of Processors

S
pe

ed
up

8x8 Biased
(ILAR=0.9)
8x8 Uniform
(ILAR=0.18)
8x8 Bimodal
(ILAR=0.1)
4x4 Biased
(ILAR=0.9)
4x4 Uniform
(ILAR=0.18)
4x4 Bimodal
(ILAR=0.1)

• toroid topology
• message density: 4 per LP
• 1 millisecond computation per event

• vary time stamp increment distribution
• ILAR=lookahead / average time

stamp increment

Conservative algorithms live or die by their lookahead!

Network Security, WS 2008/09, Chapter 9 28IN2045 – Discrete Event Simulation, WS 2010/2011 28

Lookahead and the Simulation Model

Lookahead is clearly dependent on the simulation model:
• Could be derived from physical constraints in the system being modeled, such

as minimum simulation time for one entity to affect another (e.g., a weapon
fired from a tank requires L units of time to reach another tank, or maximum
speed of the tank places lower bound on how soon it can affect another entity)

• Could be derived from characteristics of the simulation entities, such as non-
preemptable behavior (e.g., a tank is traveling north at 30 mph, and nothing in
the federation model can cause its behavior to change over the next 10
minutes, so all output from the tank simulator can be generated immediately
up to time “local clock + 10 minutes”)

• Could be derived from tolerance to temporal inaccuracies (e.g., users cannot
perceive temporal difference of 100 milliseconds, so messages may be
timestamped 100 milliseconds into the future).

• Simulations may be able to precompute when its next interaction with another
simulation will be (e.g., if time until next interaction is stochastic, pre-sample
random number generator to determine time of next interaction).

Observation: time-stepped simulations implicitly use lookahead; events in
current time step are considered independent (and can be processed
concurrently), new events are generated for the next time step, or later.

Network Security, WS 2008/09, Chapter 9 29IN2045 – Discrete Event Simulation, WS 2010/2011 29

LP A

LP B

LP C

LP D

Simulation Time

problem: limited concurrency
each LP must process events in time stamp order

LTA

possible message
OK to process

event

not OK to process yet

without lookahead

Each LP A using logical time declares a lookahead value L; the time stamp
of any event generated by the LP must be ≥ LTA+ L

Lookahead is necessary to allow concurrent processing of events with
different time stamps (unless optimistic event processing is used)

Why Lookahead is important

possible message
OK to process

with lookahead

LTA+L

• Lookahead is used in virtually all conservative synchronization protocols
• Essential to allow concurrent processing of events

Network Security, WS 2008/09, Chapter 9 30IN2045 – Discrete Event Simulation, WS 2010/2011 30

Outline

� Null message algorithm: The Time Creep Problem

� Lookahead

� What is it and why is it important?

� Writing simulations to maximize lookahead

� Changing lookahead

� Avoiding Time Creep

Network Security, WS 2008/09, Chapter 9 31IN2045 – Discrete Event Simulation, WS 2010/2011 31

Changing Lookahead Values

� Increasing lookahead

� No problem; lookahead can immediately be changed

� Decreasing lookahead

� Previous time stamp guarantees must be honored!

� Lookahead thus cannot immediately be decreased
• If an LP is at simulation time 10 and lookahead is 5, it has

promised subsequent messages will have a time stamp of at
least 15

• If lookahead were immediately set to 1, it could generate a
message with time stamp 11

� Lookahead can decrease by k units of simulation time
only after the LP has advanced k units of simulation
time

Network Security, WS 2008/09, Chapter 9 32IN2045 – Discrete Event Simulation, WS 2010/2011 32

Example: Decreasing Lookahead

� SFO: simulation time = 10, lookahead = 5

� Future messages sent on link must have time stamp ≥ 15

� SFO: request its lookahead be reduced to 1

LP clock10 15

5
4
3
2
1

6
Lookahead

7

11

15
14
13
12

16
Minimum time

Stamp of outgoing
messages

17

Network Security, WS 2008/09, Chapter 9 33IN2045 – Discrete Event Simulation, WS 2010/2011 33

Preventing Time Creep: Next Event Time Information

9 8

JFK
(waiting
on ORD)

7ORD
(waiting
on SFO)

SFO
(waiting
on JFK)

15
10

Observation: smallest time stamped event is safe to process
• Lookahead creep avoided by allowing the synchronization algorithm to

immediately advance to (global) time of the next event
• Synchronization algorithm must know time stamp of LP’s next event
• Each LP guarantees a logical time T such that if no additional events

are delivered to LP with TS < T, all subsequent messages that LP
produces have a time stamp at least T+L (L = lookahead)

Network Security, WS 2008/09, Chapter 9 34IN2045 – Discrete Event Simulation, WS 2010/2011 34

Summary

� Null message algorithm

� Lookahead creep problem

� No zero lookahead cycles allowed

� Lookahead

� Constraint on time stamps of subsequent messages

� Has large effect on performance: essential for
concurrent processing of events for conservative
algorithms

� Programs/models must be coded to exploit lookahead!

� Use time of next event to avoid lookahead creep

Network Security, WS 2008/09, Chapter 9 35IN2045 – Discrete Event Simulation, WS 2010/2011 35

Parallel simulation: Summary/Outline

� Motivation: Why to use parallel simulators and why it’s difficult
� Conservative algorithms: Only do what is allowed

� Introduction
� Null messages: deadlock avoidance
� Deadlock detection and recovery
� Barrier synchronization and LBTS (lower bound on time stamp)

calculation

� Optimistic algorithms: Do anything, possibly roll back
� Time Warp algorithm
� Anti-Messages for rollback
� Global Virtual Time (GVT) for fossil collection
� State Saving Techniques
� (Issues with Zero lookahead; Wide Virtual Time)
� (Artificial Rollbacks to save memory)

� Summary
� Pros and Cons of conservative and optimistic algorithms
� Why not to use parallel simulators

Network Security, WS 2008/09, Chapter 9 36IN2045 – Discrete Event Simulation, WS 2010/2011 36

Outline

� Deadlock Detection and Recovery Algorithm
(Chandy and Misra)

� Basic Approach

� Deadlock Detection
• Diffusing distributed computations

• Dijkstra/Scholten algorithm (signaling protocol)

� Deadlock Recovery

Network Security, WS 2008/09, Chapter 9 37IN2045 – Discrete Event Simulation, WS 2010/2011 37

Deadlock Detection & Recovery: Idea

Algorithm A (executed by each LP):
Goal: Ensure events are processed in time stamp order:

WHILE (simulation is not over)
wait until each FIFO contains at least one message
remove smallest time stamped event from its FIFO
process that event

END-LOOP

� But: No null messages!

� Allow simulation to execute until deadlock occurs

� Provide a mechanism to detect deadlock

� Provide a mechanism to recover from deadlocks

Network Security, WS 2008/09, Chapter 9 38IN2045 – Discrete Event Simulation, WS 2010/2011 38

Deadlock detection

� There are algorithms that can detect when the entire
system hangs (i.e., no LP can go on)

� Even distributed algorithms exist

� For example, Dijkstra/Schoten algorithm (not shown)

� Of course, detection incurs additional processing
overhead

� Once a deadlock has been detected, we resolve it
(recovery)

� Do not confuse this with optimistic simulation – we
won’t roll back any actions!

Network Security, WS 2008/09, Chapter 9 39IN2045 – Discrete Event Simulation, WS 2010/2011 39

Deadlock Recovery

Deadlock recovery: identify “safe” events (events that can be
processed without violating local causality)

Which events are safe?
• Time stamp 7: smallest time stamped event in system
• Time stamp 8, 9: safe because of lookahead constraint
• Time stamp 10: OK if events with the same time stamp can be processed

in any order
• No time creep!

deadlock state

Assume minimum delay
between airports is 3

9 8

JFK
(waiting
on ORD)

7ORD
(waiting
on SFO)

10
SFO

(waiting
on JFK)

Network Security, WS 2008/09, Chapter 9 40IN2045 – Discrete Event Simulation, WS 2010/2011 40

Summary

� Deadlock Detection

� Diffusing computation: Dijkstra/Scholten algorithm

� Simple signaling protocol detects deadlock

� Does not detect partial (local) deadlocks

� Deadlock Recovery

� Smallest time stamp event safe to process

� Others may also be safe (requires additional work to
determine this)

Network Security, WS 2008/09, Chapter 9 41IN2045 – Discrete Event Simulation, WS 2010/2011 41

Parallel simulation: Summary/Outline

� Motivation: Why to use parallel simulators and why it’s difficult
� Conservative algorithms: Only do what is allowed

� Introduction
� Null messages: deadlock avoidance
� Deadlock detection and recovery
� Barrier synchronization and LBTS (lower bound on time stamp)

calculation

� Optimistic algorithms: Do anything, possibly roll back
� Time Warp algorithm
� Anti-Messages for rollback
� Global Virtual Time (GVT) for fossil collection
� State Saving Techniques
� (Issues with Zero lookahead; Wide Virtual Time)
� (Artificial Rollbacks to save memory)

� Summary
� Pros and Cons of conservative and optimistic algorithms
� Why not to use parallel simulators

Network Security, WS 2008/09, Chapter 9 42IN2045 – Discrete Event Simulation, WS 2010/2011 42

Outline

� Barrier synchronizations and a simple synchronous
algorithm

� Implementation of Barrier mechanisms

� Centralized Barriers

� Tree Barrier

� Butterfly Barrier

� Computing LBTS (lower bound on timestamp)

Network Security, WS 2008/09, Chapter 9 43IN2045 – Discrete Event Simulation, WS 2010/2011 43

Barrier Synchronization

� Barrier Synchronization: When a process invokes the
barrier primitive, it will block until all other processes
have also invoked the barrier primitive.

� When the last process invokes the barrier, all
processes can resume execution

- barrier -

- barrier -
- barrier -

wait wait
wait

- barrier -

process 1 process 2 process 3 process 4

wallclock
time

Network Security, WS 2008/09, Chapter 9 44IN2045 – Discrete Event Simulation, WS 2010/2011 44

Synchronous Execution

� Recall the goal is to ensure that each LP processes
the events in timestamp order

� Basic idea:
Each process cycles through the following steps:

� Determine the events that are safe to process
• Compute a Lower Bound on the Time Stamp (LBTSi) of

events that LPi might later receive

• Events with time stamp ≤ LBTS are safe to process

� Process safe events, exchange messages

� Global synchronization (barrier)

� Messages generated in one cycle are not eligible for
processing until the next cycle

Network Security, WS 2008/09, Chapter 9 45IN2045 – Discrete Event Simulation, WS 2010/2011 45

A Simple Synchronous Algorithm

� Assume any LP can communicate with any other LP

� Assume instantaneous message transmission (revisit later)

� Ni = time of next event in LPi

� LAi = lookahead of LPi

WHILE (unprocessed events remain)

receive messages generated in previous iteration

LBTS = min (Ni + LAi)

process events with time stamp ≤ LBTS

barrier synchronization

END

LBTSi = a lower bound on the time stamp of the messages that LPi

might receive in the future

If LBTSi is the same for all LPs, then it is simply called LBTS

Network Security, WS 2008/09, Chapter 9 46IN2045 – Discrete Event Simulation, WS 2010/2011 46

event

Synchronous Execution Example

LP A (LA=3)

LP B (LA=2)

LP C (LA=3)

LP D (LA=5)

Simulation Time
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

LBTS=3
safe to process

LBTS=7 LBTS=12

Network Security, WS 2008/09, Chapter 9 47IN2045 – Discrete Event Simulation, WS 2010/2011 47

Issues

� Implementing the barrier mechanism

� Centralized

� Broadcast

� Trees

� Butterfly and other more sophisticated infrastructures
(not shown)

� Computing LBTS (global minimum)

� Transient messages (i.e., messaging is not
instantaneous – will be discussed later)

Network Security, WS 2008/09, Chapter 9 48IN2045 – Discrete Event Simulation, WS 2010/2011 48

Method 1: Barrier Using a Centralized Controller

� Central controller process used to implement barrier

� Overall, a two step process
� Controller determines when barrier reached

� Broadcast message to release processes from the barrier

� Barrier primitive for non-controller processes:
� Send a message to central controller

� Wait for a reply

� Barrier primitive for controller process
� Receive barrier messages from other processes

� When a message is received from each process, broadcast
message to release barrier

� Performance
� Controller must send and receive N-1 messages

� Controler is…
• … either potential bottleneck

• … or idles around most of the time, waiting for barrier messages

Network Security, WS 2008/09, Chapter 9 49IN2045 – Discrete Event Simulation, WS 2010/2011 49

Method 2: Broadcast Barrier

One step approach; no central controller

Each process:

� Broadcast message when barrier primitive is invoked

� Wait until a message is received from each other process

� N∙(N-1) messages – that’s quadratic!

0 1 2 3

0 1 2 3

Network Security, WS 2008/09, Chapter 9 50IN2045 – Discrete Event Simulation, WS 2010/2011 50

Method 3: Tree Barrier

� Organize processes into a tree

� A process sends a message to its parent process when

� The process has reached the barrier point, and

� A message has been received from each of its children processes

� Root detects completion of barrier, broadcast message to
release processes (e.g., send messages down tree)

� 2 log N time if all processes reach barrier at same time

3

87

4

109

5

1211

6

13

1 2

0

Network Security, WS 2008/09, Chapter 9 51IN2045 – Discrete Event Simulation, WS 2010/2011 51

Method 4: Butterfly Barrier

� Will touch this only briefly…

� N processes (here, assume N is a power of 2)

� Sequence of log2 N pairwise barriers (let k = log2 N)

� Pairwise barrier:
� Send message to partner process

� Wait until message is received from that process

� Process p: bkbk-1 … b1 = binary representation of p

� Step i: perform barrier with process bk … bi’ … b1
(complement i-th bit of the binary representation)

� Example: Process 3 (011)
� Step 1: pairwise barrier with process 2 (010)

� Step 2: pairwise barrier with process 1 (001)

� Step 3: pairwise barrier with process 7 (111)

Network Security, WS 2008/09, Chapter 9 52IN2045 – Discrete Event Simulation, WS 2010/2011 52

Method 4: Butterfly Barrier (won’t go into details)

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

step 1

step 2

step 3
W

al
lc

lo
ck

tim
e

0 1 2 3 4 5 6 7

0,1 2,3 4,5 6,7

0-3 4-7

0-7

step 1

step 2

step 3

� The communication pattern forms a tree from the perspective of any
process

Network Security, WS 2008/09, Chapter 9 53IN2045 – Discrete Event Simulation, WS 2010/2011 53

0 1 2 3 4 5 6 7

0 2 4 6

0 4

0

1 3 5 7

1 5

1

2 6

2

3 7

3 4 5 6 7

Butterfly: Superimposed Trees

� After log2 N steps each process is notified that the
barrier operation has completed

� An N node butterfly can be viewed as N trees
superimposed over each other

Network Security, WS 2008/09, Chapter 9 54IN2045 – Discrete Event Simulation, WS 2010/2011 54

Outline

� Barrier synchronizations and a simple synchronous
algorithm

� Implementation of Barrier mechanisms

� Centralized Barriers

� Tree Barrier

� (Butterfly Barrier – not shown)

� Computing LBTS

Network Security, WS 2008/09, Chapter 9 55IN2045 – Discrete Event Simulation, WS 2010/2011 55

Computing LBTS

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

step 1

step 2

step 3

W
al

lc
lo

ck
tim

e
It is trivial to extend any of these barrier algorithms to also compute a

global minimum (LBTS)

� Piggyback local time value on each barrier message

� Compute new minimum among { local value, incoming message(s) }

� Transmit new minimum in next step

10 25 13 6 11 22 23 23

11 2310 6 11 2310 6

6 11 11 11 11666

6 6 6 6 6666

� After log N steps, (1) LBTS has been computed, (2) each process
has the LBTS value

Network Security, WS 2008/09, Chapter 9 56IN2045 – Discrete Event Simulation, WS 2010/2011 56

Summary

� Synchronous algorithms use a global barrier to
ensure events are processed in time stamp order

� Requires computation of a Lower Bound on Time
Stamp (LBTS) on messages each LP might later
receive

� There are several ways to implement barriers

� Central controller

� Broadcast

� Tree

� Butterfly (touched only briefly)

� The LBTS computation can be “piggybacked” onto
the barrier synchronization algorithm

Network Security, WS 2008/09, Chapter 9 57IN2045 – Discrete Event Simulation, WS 2010/2011 57

Outline

� Transient Messages

� Transient Message Problem

� Flush Barrier

� Tree Implementation

� Butterfly Implementation

� Distance Between Processes

� Potential Performance Improvement

� Distance Matrix

Network Security, WS 2008/09, Chapter 9 58IN2045 – Discrete Event Simulation, WS 2010/2011 58

The Transient Message Problem

/* synchronous algorithm */
Ni = time of next event in LPi
LAi = lookahead of LPi
WHILE (unprocessed events remain)

receive messages generated in previous iteration
LBTS = min (Ni + LAi)
process events in with time stamp ≤ LBTS
barrier synchronization

ENDWHILE

� A transient message is a message that has been sent,
but has not yet been received at its destination

� The message could be “in the network” or stored in an
operating system buffer (waiting to be sent or delivered)

� The synchronous algorithm fails if there are transient
message(s) remaining after the processes have been
released from the barrier!

Network Security, WS 2008/09, Chapter 9 59IN2045 – Discrete Event Simulation, WS 2010/2011 59

event

Transient Message Example

LP A (LA=3)

LP B (LA=2)

LP C (LA=3)

LP D (LA=5)

Simulation Time
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

LBTS=3 LBTS=7
Transient message

Message arrives in C’s past!

Network Security, WS 2008/09, Chapter 9 60IN2045 – Discrete Event Simulation, WS 2010/2011 60

Flush Barrier

No process will be released from the barrier until

� All processes have reached the barrier

� Any message sent by a process before reaching the barrier
has arrived at its destination

Revised algorithm:

WHILE (unprocessed events remain)

receive messages generated in previous
iteration

LBTS = min (Ni + LAi)

process events in with time stamp ≤ LBTS

flush barrier

END

Network Security, WS 2008/09, Chapter 9 61IN2045 – Discrete Event Simulation, WS 2010/2011 61

Implementation

� Use FIFO communication channels

� Approach #1: Send a “dummy message” on each channel; wait
until such a message is received on each incoming channel to
guarantee transient messages have been received

� May require a large number of messages

� Again: Overhead…

� Approach #2: Message counters

� Sendi = number of messages sent by LPi (this iteration)

� Reci = number of messages received by LPi (this iteration)

� There are no transient messages when

• All processes are blocked (i.e., at the barrier), and

• ∑Sendi = ∑Reci

� Again: Overhead…

Network Security, WS 2008/09, Chapter 9 62IN2045 – Discrete Event Simulation, WS 2010/2011 62

Tree: Flush Barrier

� When a leaf process reaches flush barrier, include counter (#sent -
#received) in messages sent to parent

� Parent adds counters in incoming messages with its own counter,
sends sum in message sent to its parent

� If sum at root is zero, broadcast “go” message, else wait until sum is
equal to zero

� Receive message after reporting sum: send update message to root

+1

-2-1

-2

-2+3

+1

-2+4

0

+1

+1 0

-1

-1 -2 +3 -2 +4 -2 +1

-2 -1 +3 +1

+4-2

-1

#sent - # received

Receive transient
message

Network Security, WS 2008/09, Chapter 9 63IN2045 – Discrete Event Simulation, WS 2010/2011 63

Butterfly: Flush Barrier

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

step 1

step 2

step 3
W

al
lc

lo
ck

tim
e

For (i = 1 to log N)

send local counter to partner at step i

wait for message from partner at step i

local counter = local counter + counter in message

End-for

If local counter not zero after last step:

� Send update messages up butterfly

� Alternatively, abort and retry

-1 -2 -5 +2 +1 0 +3 +2

+5+1-3-3

+6-6

0

-3 -3 +1 +5

+6+6+6-6-6-6

0 0 0 0 0 00

Network Security, WS 2008/09, Chapter 9 64IN2045 – Discrete Event Simulation, WS 2010/2011 64

Outline

� Transient Messages

� Transient Message Problem

� Flush Barrier

� Tree Implementation

� Butterfly Implementation

� Distance Between Processes

� Potential Performance Improvement

� Distance Matrix

Network Security, WS 2008/09, Chapter 9 65IN2045 – Discrete Event Simulation, WS 2010/2011 65

Identifying Safe Events

� If all processes are blocked and there are no transient
messages in the system, LBTS = min (Ni + LAi) for each
process where Ni and LAi are the time of the next
unprocessed event and lookahead, respectively, for LPi

� Overly conservative estimate for LBTS

� Does not exploit “locality” in physical systems (things far away
can’t affect you for some time into the future)

WHILE (unprocessed events remain)

receive messages generated in previous iteration

LBTS = min (Ni + LAi)

/* time of next event + lookahead */

process events in with time stamp ≤ LBTS*flush barrier

/* barrier + eliminate all transient messages */

END

Network Security, WS 2008/09, Chapter 9 66IN2045 – Discrete Event Simulation, WS 2010/2011 66

Improving the LBTS estimate

� We may calculate an overly conservative estimate for
LBTS

� Does not exploit “locality” in physical systems:
Things far away can’t affect you for some time into the
future

� Possible optimization: Exploit distance between LPs

� Exploit locality in physical systems to improve
concurrency in the simulation execution

� Increased complexity, overhead

� Lookahead and topology changes introduce additional
complexities

Network Security, WS 2008/09, Chapter 9 67IN2045 – Discrete Event Simulation, WS 2010/2011 67

Summary

� Transient messages must be accounted for by the
synchronization algorithm

� Flush barrier

� FIFO and empty messages or send and receive
counters

� Additional overhead

� Possible optimization: Exploit distance between LPs

Network Security, WS 2008/09, Chapter 9 68IN2045 – Discrete Event Simulation, WS 2010/2011 68

Parallel simulation: Summary/Outline

� Motivation: Why to use parallel simulators and why it’s difficult
� Conservative algorithms: Only do what is allowed

� Introduction
� Null messages: deadlock avoidance
� Deadlock detection and recovery
� Barrier synchronization and LBTS (lower bound on time stamp)

calculation

� Optimistic algorithms: Do anything, possibly roll back
� Time Warp algorithm
� Anti-Messages for rollback
� Global Virtual Time (GVT) for fossil collection
� State Saving Techniques
� (Issues with Zero lookahead; Wide Virtual Time)
� (Artificial Rollbacks to save memory)

� Summary
� Pros and Cons of conservative and optimistic algorithms
� Why not to use parallel simulators

Network Security, WS 2008/09, Chapter 9 69IN2045 – Discrete Event Simulation, WS 2010/2011 69

Outline

� Optimistic Synchronization

� Time Warp

� Local Control Mechanism
• Rollback

• Event cancellation

� Global Control Mechanism
• Global Virtual Time

• Fossil Collection

Network Security, WS 2008/09, Chapter 9 70IN2045 – Discrete Event Simulation, WS 2010/2011 70

The Synchronization Problem

Local causality constraint: Events within each logical process must be
processed in time stamp order

Observation: Adherence to the local causality constraint is sufficient to
ensure that the parallel simulation will produce exactly the same results
as the corresponding sequential simulation*

Synchronization Algorithms
�Conservative synchronization: Avoid violating the local causality
constraint (wait until it’s safe)
� 1st generation: null messages (Chandy/Misra/Bryant)
� 2nd generation: time stamp of next event

�Optimistic synchronization: Allow violations of local causality to
occur, but detect them at runtime and recover using a rollback
mechanism
� Time Warp (Jefferson)
� approaches limiting amount of optimistic execution

* provided events with the same time stamp are processed in the same order
as in the sequential execution

Network Security, WS 2008/09, Chapter 9 71IN2045 – Discrete Event Simulation, WS 2010/2011 71

Time Warp Algorithm (Jefferson)

� Assumptions

� Logical processes (LPs) exchanging time stamped events (messages)

� Dynamic network topology is OK; dynamic creation of LPs is OK

� Messages sent on each link need not be sent in time stamp order (!)

� Network provides reliable delivery, but does not need to preserve order

� Basic idea:

� Just go ahead an process events without worrying about messages that
will arrive later

� Detect out-of-order execution; in this case: recover using rollback

process all available events (2, 4, 5, 8, 9) in time stamp order

9 8 2

45

H3
logical

processH3H2

H1

Network Security, WS 2008/09, Chapter 9 72IN2045 – Discrete Event Simulation, WS 2010/2011 72

41

Input Queue
(event list)

18

straggler message arrives in the past, causing rollback

12 21 35

processed event

unprocessed event

Time Warp: Local Control Mechanism

Adding rollback:
• a message arriving in the LP’s past initiates rollback
• to roll back an event computation we must undo:

– changes to state variables performed by the event;

– message sends

Each LP: process events in time stamp order, like a sequential simulator, except:
(1) do NOT discard processed events and (2) add a rollback mechanism

State Queue

solution: checkpoint state or use incremental state saving (state queue)

snapshot of LP state

1212
Output Queue
(anti-messages) 19 42

solution: anti-messages and message annihilation (output queue)

anti-message

Network Security, WS 2008/09, Chapter 9 73IN2045 – Discrete Event Simulation, WS 2010/2011 73

Anti-Messages

� Used to cancel a previously sent message

� Each positive message sent by an LP has a corresponding anti-
message

� Anti-message is identical to positive message, except for a sign bit

� When an anti-message and its matching positive message meet in
the same queue, the two annihilate each other (analogous to matter
and anti-matter)

� To undo the effects of a previously sent (positive) message, the LP
just needs to send the corresponding anti-message

� Message send: in addition to sending the message, leave a copy of
the corresponding anti-message in a data structure in the sending
LP called the output queue.

42
positive message

anti-message 42

Network Security, WS 2008/09, Chapter 9 74IN2045 – Discrete Event Simulation, WS 2010/2011 74

1212

41

Input Queue
(event list)

Output Queue
(anti-messages)

19 42

18

1. straggler message arrives in the past, causing rollbackBEFORE

12 21 35 processed event

unprocessed event

snapshot of LP state

anti-message

State Queue

Rollback: Receiving a Straggler Message

1212

21 35 41

19

18

Input Queue
(event list)

Output Queue
(anti-messages)
AFTER

5. resume execution by processing event at time 18

12

State Queue

2. roll back events at times 21 and 35
2(a) restore state of LP to that prior to processing time stamp 21 event

2(b) send anti-message

Network Security, WS 2008/09, Chapter 9 75IN2045 – Discrete Event Simulation, WS 2010/2011 75

Case II: corresponding message has already been processed
– roll back to time prior to processing message (secondary rollback)
– annihilate message/anti-message pair

55

33 57

27 42 45
processed event

unprocessed event

snapshot of LP state

anti-message

• May cause “cascaded” rollbacks!
• Recursively applying eliminates all effects of error

Processing Incoming Anti-Messages

Case I: corresponding message has not yet been processed

� Simply annihilate message/anti-message pair; nothing else to do

42
1. anti-message arrives

Case III: corresponding message has not yet been received
– queue anti-message
– annihilate message/anti-message pair when message is received

2. roll back events (time stamp 42 and 45)
2(a) restore state

2(b) send anti-message

3. Annihilate message
and anti-message

Network Security, WS 2008/09, Chapter 9 76IN2045 – Discrete Event Simulation, WS 2010/2011 76

Global Virtual Time and Fossil Collection

A mechanism is needed to:
� reclaim memory resources (e.g., old state and events)

� Call this “fossil collection” (similar to garbage collection)

� perform irrevocable operations (e.g., I/O)

Observation: A lower bound on the time stamp of any rollback
that can occur in the future is needed.

Global Virtual Time (GVT) is defined as the minimum time stamp of any
unprocessed (or partially processed) message or anti-message in the
system. GVT provides a lower bound on the time stamp of any future
rollback.

• storage for events and state vectors older than GVT (except one
state vector) can be reclaimed

• I/O operations with time stamp less than GVT can be performed.

Observation: The computation corresponding to GVT will not be rolled
back, guaranteeing forward progress.

Network Security, WS 2008/09, Chapter 9 77IN2045 – Discrete Event Simulation, WS 2010/2011 77

Time Warp and Chandy/Misra Performance

0

1

2

3

4

5

6

7

8

0 16 32 48 64
Message Density

(messages per logical process)

S
pe

ed
up

Time Warp (64 logical
processes)
Time Warp (16 logical
processes)
Deadlock Avoidance
(64 logical processes)
Deadlock Avoidance
(16 logical processes)
Deadlock Recovery (64
logical processes)
Deadlock Recovery (64
logical processes)

• eight processors
• closed queueing network, hypercube topology
• high priority jobs preempt service from low priority jobs (1% high priority)
• exponential service time (poor lookahead)

Network Security, WS 2008/09, Chapter 9 78IN2045 – Discrete Event Simulation, WS 2010/2011 78

Summary

� Optimistic synchronization: detect and recover from
synchronization errors rather than prevent them

� Time Warp

� Local control mechanism
• Rollback

• State saving

• Anti-messages

• Cascaded rollbacks

� Global control mechanism
• Global Virtual Time (GVT)

• Fossil collection to reclaim memory

• Commit irrevocable operations (e.g., I/O)

Network Security, WS 2008/09, Chapter 9 79IN2045 – Discrete Event Simulation, WS 2010/2011 79

Parallel simulation: Summary/Outline

� Motivation: Why to use parallel simulators and why it’s difficult
� Conservative algorithms: Only do what is allowed

� Introduction
� Null messages: deadlock avoidance
� Deadlock detection and recovery
� Barrier synchronization and LBTS (lower bound on time stamp)

calculation

� Optimistic algorithms: Do anything, possibly roll back
� Time Warp algorithm
� Anti-Messages for rollback
� Global Virtual Time (GVT) for fossil collection
� State Saving Techniques
� (Issues with Zero lookahead; Wide Virtual Time)
� (Artificial Rollbacks to save memory)

� Summary
� Pros and Cons of conservative and optimistic algorithms
� Why not to use parallel simulators

Network Security, WS 2008/09, Chapter 9 80IN2045 – Discrete Event Simulation, WS 2010/2011 80

Outline

� GVT Computations: Introduction

� Synchronous vs. Asynchronous

� GVT vs. LBTS

� Computing Global Virtual Time

� Transient Message Problem

� Simultaneous Reporting Problem

� Samadi Algorithm (not shown)

� Message Acknowledgements

� Marked Acknowledgment Messages

Network Security, WS 2008/09, Chapter 9 81IN2045 – Discrete Event Simulation, WS 2010/2011 81

GVT(t): minimum time stamp among all unprocessed or partially
processed messages at wallclock time t.

� Needed to commit I/O operations (e.g., write definite simulation
output into logfile) and to reclaim memory

� Computing GVT trivial if an instantaneous snapshot of the
computation could be obtained: compute minimum time stamp
among

� Unprocessed events & anti-messages within each LP

� Transient messages (messages sent before time t that are
received after time t)

� Synchronous vs. Asynchronous GVT computation

� Synchronous GVT algorithms: LPs stop processing events once a
GVT computation has been detected

� Asynchronous GVT algorithms: LPs can continue processing
events and schedule new events while the GVT computation
proceeds “in background”

Global Virtual Time

Network Security, WS 2008/09, Chapter 9 82IN2045 – Discrete Event Simulation, WS 2010/2011 82

GVT vs. LBTS

Observation:
Computing GVT is similar to computing the lower bound on
time stamp (LBTS) of future events in conservative algorithms

� GVT algorithms can be used to compute LBTS and vice versa

� Both determine the minimum time stamp of messages (or anti-
message) that may later arrive

� Historically, developed separately

� Often developed using different assumptions (lookahead,
topology, etc.)

� Time Warp

� Latency to compute GVT typically less critical than the latency to
compute LBTS

� Asynchronous execution of GVT computation preferred to allow
optimistic event processing to continue

Network Security, WS 2008/09, Chapter 9 83IN2045 – Discrete Event Simulation, WS 2010/2011 83

Asynchronous GVT

Difficulties:

� transient message problem: messages sent, but not yet received
must be considered in computing GVT

� simultaneous reporting problem: different processors report their
local minima at different points in wallclock times, leading to an
incorrect GVT value

Solutions exist (e.g., Sammadi algorithm), but won’t show them here

An incorrect GVT algorithm:

� Controller process: broadcast “compute GVT request”

� upon receiving the GVT request, each process computes its
local minimum and reports it back to the controller

� Controller computes global minimum, broadcast to others

Network Security, WS 2008/09, Chapter 9 84IN2045 – Discrete Event Simulation, WS 2010/2011 84

The Transient Message Problem

� Transient message: A message that has been sent, but has
not yet been received at its destination

� Erroneous values of GVT may be computed if the algorithm
does not take into account transient messages

GVT process

Process 1

Process 2

wallclock time

report
100

report
200

ts=90

GVT request

process ts=90
message here

GVT=min(100,200)

GVT=100

GVT=100

Network Security, WS 2008/09, Chapter 9 85IN2045 – Discrete Event Simulation, WS 2010/2011 85

GVT process

Process 1

Process 2
real time

Samadi Algorithm

� send an ack for each event messages & anti-messages received

� “mark” acks sent after the processor has reported its local minimum

Algorithm:

� controller broadcasts “start GVT” message

� each processor reports minimum time stamp among (1) local messages,
(2) unacknowledged sent messages, (3) marked acks that were received

� subsequent acks sent by process are marked until new GVT is received

� controller computes global minimum as GVT value, broadcasts new GVT

report
100

report
90

ts=90

start GVT

process ts=90
message here

marked
ack, TS=90

marked acks

GVT=min(100,90)

GVT=90

GVT=90
marked acks

Network Security, WS 2008/09, Chapter 9 86IN2045 – Discrete Event Simulation, WS 2010/2011 86

Samadi Algorithm

� Calculates GVT

� Requires acknowledgements on event messages

� Transient message problem:
Handled by message acknowledgements

� Simultaneous reporting problem:
Mark acknowledgements sent after reporting local
minimum

Network Security, WS 2008/09, Chapter 9 87IN2045 – Discrete Event Simulation, WS 2010/2011 87

Summary

� Global Virtual Time

� Similar to lower bound on time stamp (LBTS)
• Time Warp: GVT usually not as time critical as LBTS

• Asynchronous GVT computation highly desirable to avoid
unnecessary blocking

� Transient message problem etc. handled by, e.g.,
Samadi algorithm

Network Security, WS 2008/09, Chapter 9 88IN2045 – Discrete Event Simulation, WS 2010/2011 88

Parallel simulation: Summary/Outline

� Motivation: Why to use parallel simulators and why it’s difficult
� Conservative algorithms: Only do what is allowed

� Introduction
� Null messages: deadlock avoidance
� Deadlock detection and recovery
� Barrier synchronization and LBTS (lower bound on time stamp)

calculation

� Optimistic algorithms: Do anything, possibly roll back
� Time Warp algorithm
� Anti-Messages for rollback
� Global Virtual Time (GVT) for fossil collection
� State Saving Techniques
� (Issues with Zero lookahead; Wide Virtual Time)
� (Artificial Rollbacks to save memory)

� Summary
� Pros and Cons of conservative and optimistic algorithms
� Why not to use parallel simulators

Network Security, WS 2008/09, Chapter 9 89IN2045 – Discrete Event Simulation, WS 2010/2011 89

Outline

� State Saving Techniques

� Copy State Saving

� Infrequent State Saving

� Incremental State Saving

� Reverse Computation

Network Security, WS 2008/09, Chapter 9 90IN2045 – Discrete Event Simulation, WS 2010/2011 90

Copy State Save

� Checkpoint all modifiable state variables of the LP prior to
processing each event

� Rollback: copy checkpointed state to LP state variables

18
straggler message

State Queue X: 0
Y: 0
Z: 0

X: 1
Y: 2
Z: 3

X: 4
Y: 2
Z: 3

restore state

processed event

unprocessed event

snapshot of LP state

Input Queue
4135211212

X:=1
Y:=2
Z:=3

21
X:=4

35
X:=5
Z:=9

21 35

LP State
Variables

X: 0
Y: 0
Z: 0

X: 1
Y: 2
Z: 3

X: 4
Y: 2
Z: 3

X: 5
Y: 2
Z: 9

X: 1
Y: 2
Z: 3 Resume normal processing of events

Network Security, WS 2008/09, Chapter 9 91IN2045 – Discrete Event Simulation, WS 2010/2011 91

Copy State Saving

Drawbacks

� Forward execution slowed by checkpointing

� Must state save even if no rollbacks occur

� Inefficient if most of the state variables are not
modified by each event

� Consumes large amount of memory

Copy state saving is only practical for LPs that do not
have a large state vector

Largely transparent to the simulation application (only
need locations of LP state variables)

Network Security, WS 2008/09, Chapter 9 92IN2045 – Discrete Event Simulation, WS 2010/2011 92

Infrequent State Saving

� Checkpoint LP periodically, e.g., every N-th event

� Rollback to sim time T – but may not have saved state at time T!
� Roll back to most recent checkpointed state prior to time T

� Execute forward (“coast forward”) to time T

� Coast forward phase
� Only needed to recreate state of LP at simulation time T

� Coast forward execution identical to the original execution

� Must “turn off” message sends during coast forward, or else
• rollback to T could cause new messages with time stamp < T, and roll

backs to times earlier than T

• Could lead to rollbacks earlier than GVT

rollback

Coast forward

Roll back to
last saved state

Checkpoint every
third event

Network Security, WS 2008/09, Chapter 9 93IN2045 – Discrete Event Simulation, WS 2010/2011 93

Infrequent State Saving Example

26

1. straggler message causes rollback

processed event
unprocessed event
saved state
anti-message

41

Input Queue
(event list)

Output Queue
(anti-messages)

24

12 21 35

State Queue

38

2. send anti-message

3. Roll back to simulation time 12
Restore state of LP to that prior to processing time stamp 12 event
Do not send anti-message with time stamp 24

12 21 35

LP State

4. Coast forward: reprocess event with time stamp 12

12 21

5. Coast forward: reprocess event with time stamp21,
don’t resend time stamp 24 message

6. Process straggler, continue normal event processing

26

Network Security, WS 2008/09, Chapter 9 94IN2045 – Discrete Event Simulation, WS 2010/2011 94

Infrequent State Saving: Pros and Cons

� Reduces time required for state saving

� Reduces memory requirements

� Increases time required to roll back LP

� Increases complexity of Time Warp executive

� Largely transparent to the simulation application
(only need locations of LP state variables and
frequency parameter)

Network Security, WS 2008/09, Chapter 9 95IN2045 – Discrete Event Simulation, WS 2010/2011 95

Incremental State Saving

� Only state save variables modified by an event

� Generate “change log” with each event indicating
previous value of state variable before it was modified

� Rollback

� Scan change log in reverse order, restoring old values
of state variables

Network Security, WS 2008/09, Chapter 9 96IN2045 – Discrete Event Simulation, WS 2010/2011 96

Incremental State Save Example

� Before modifying a state variable, save current version in state queue

� Rollback: Scan state queue from back, restoring old values

18
straggler message

State Queue X: 0
Y: 0
Z: 0

X: 1 X: 4
Z: 3

restore state

processed event

unprocessed event

snapshot of LP state

Input Queue
4135211212

X:=1
Y:=2
Z:=3

21
X:=4

35
X:=5
Z:=9

LP State
Variables

X: 0
Y: 0
Z: 0

X: 1
Y: 2
Z: 3

X: 4
Y: 2
Z: 3

X: 5
Y: 2
Z: 9

3521

Resume forward execution starting with
time stamp 18 event

X: 4
Y: 2
Z: 3

X := 4
Z := 3

X: 1
Y: 2
Z: 3

X := 1

Network Security, WS 2008/09, Chapter 9 97IN2045 – Discrete Event Simulation, WS 2010/2011 97

Incremental State Saving

� Must log addresses of modified variables in addition
to state

� More efficient than copy state save if most state
variables are not modified by each event

� Can be used in addition to copy state save

� Changing some variables may be faster than to
change the entire state

� Do full state copies every now and then;
do incremental saving in between
(similar to MPEG i-frames vs. p- and b-frames)

Network Security, WS 2008/09, Chapter 9 98IN2045 – Discrete Event Simulation, WS 2010/2011 98

Reverse Computation

� Rather than state save, recompute prior state

� For each event computation, need inverse
computation

� Instrument forward execution to enable reverse
execution

� Advantages

� Reduce overhead in forward computation path

� Reduce memory requements

� Disadvantages

� Tedious to do by hand, requires automation

Network Security, WS 2008/09, Chapter 9 99IN2045 – Discrete Event Simulation, WS 2010/2011 99

Parallel simulation: Summary/Outline

� Motivation: Why to use parallel simulators and why it’s difficult
� Conservative algorithms: Only do what is allowed

� Introduction
� Null messages: deadlock avoidance
� Deadlock detection and recovery
� Barrier synchronization and LBTS (lower bound on time stamp)

calculation

� Optimistic algorithms: Do anything, possibly roll back
� Time Warp algorithm
� Anti-Messages for rollback
� Global Virtual Time (GVT) for fossil collection
� State Saving Techniques
� (Issues with Zero lookahead; Wide Virtual Time)
� (Artificial Rollbacks to save memory)

� Summary
� Pros and Cons of conservative and optimistic algorithms
� Why not to use parallel simulators

Network Security, WS 2008/09, Chapter 9 100IN2045 – Discrete Event Simulation, WS 2010/2011 100

Issues

Zero lookahead: An LP has zero lookahead if it can
schedule an event with time stamp equal to the
current simulation time of the LP

Simultaneous events: events containing the same time
stamp; in what order should they be processed?

Repeatability: An execution mechanism (e.g., Time
Warp) is repeatable if repeated executions produce
exactly the same results
� Often a requirement

� Simplifies debugging

Network Security, WS 2008/09, Chapter 9 101IN2045 – Discrete Event Simulation, WS 2010/2011 101

Zero Lookahead and Simultaneous Events

� Time Warp: Do simultaneous event cause rollback?

� A possible rule:

If an LP processes an event at simulation time T and then receives
a new event with time stamp T, roll back the event that has
already been processed.

processed event

unprocessed event

LP1

12

LP2

12

1212

12

Rollback!12

Cancel
Message

Cancel
Message

12

12 Reprocess
Event!

If an event can roll back
another event on which
it depends, unending
rollback cycles may
occur.

Network Security, WS 2008/09, Chapter 9 102IN2045 – Discrete Event Simulation, WS 2010/2011 102

Wide Virtual Time (WVT)

� Tie breaking field can be viewed as low precision bits of time
stamp

� Time definition applies to all simulation time values (e.g.,
current time of an LP)

time value tie breaking fields
Time stamp

Approach

� Application uses time value field to indicate “time when the
event occurs”

� Tie breaking field used to order simultaneous events (events
with same time value): Make time “artificially more precise”

Network Security, WS 2008/09, Chapter 9 103IN2045 – Discrete Event Simulation, WS 2010/2011 103

Non-zero lookahead events: Age=1

Zero lookahead events: Age = Current Age + 1

An Approach Using WVT

Application specified ordering of events:

time valueTime stamp: priority

Application specified priority field

Avoid rollback cycles:

age

Age field to order dependent zero lookahead events

Repeatable execution

LP ID

ID field identifying LP that scheduled the event

Sequence number indicating # of events scheduled by LP

Seq #

Constraint on zero lookahead events

Network Security, WS 2008/09, Chapter 9 104IN2045 – Discrete Event Simulation, WS 2010/2011 104

WVT Example

Avoid rollback cycles despite zero lookahead events

processed event

unprocessed event

LP1

12.1

LP2

12.2

12.312.1

12.2

No Rollback!

Network Security, WS 2008/09, Chapter 9 105IN2045 – Discrete Event Simulation, WS 2010/2011 105

Summary

� Copy State Saving
� Efficient if LP state small

� Can be made transparent to application

� Infrequent state saving
� Must turn off message sending during coast forward

� Reduced memory requirements

� less time for state saving

� Increased rollback cost

� Incremental State Saving
� Preferred approach if large state vectors

� Means to simplify usage required

� Reverse computation
� Efficient, requires automation

� Zero lookahead and simultaneous events
� Can lead to unending rollbacks

� Wide Virtual Time provides one solution

Network Security, WS 2008/09, Chapter 9 106IN2045 – Discrete Event Simulation, WS 2010/2011 106

Parallel simulation: Summary/Outline

� Motivation: Why to use parallel simulators and why it’s difficult
� Conservative algorithms: Only do what is allowed

� Introduction
� Null messages: deadlock avoidance
� Deadlock detection and recovery
� Barrier synchronization and LBTS (lower bound on time stamp)

calculation

� Optimistic algorithms: Do anything, possibly roll back
� Time Warp algorithm
� Anti-Messages for rollback
� Global Virtual Time (GVT) for fossil collection
� State Saving Techniques
� (Issues with Zero lookahead; Wide Virtual Time)
� (Artificial Rollbacks to save memory)

� Summary
� Pros and Cons of conservative and optimistic algorithms
� Why not to use parallel simulators

Network Security, WS 2008/09, Chapter 9 107IN2045 – Discrete Event Simulation, WS 2010/2011 107

Observations

� In a sequential execution at simulation time T, the
event list contains the events with

� Receive time stamp greater than T,

� Send time stamp less than T.

� Time Warp can restore the execution to a valid state
if it retains events with

� Send time less than GVT and receive time stamp
greater than GVT.

� All other events can be deleted (as well as their
associated state vector, anti-messages, etc.)

� Storage optimal protocols: roll back LPs to reclaim all
memory not required in corresponding sequential
execution

Network Security, WS 2008/09, Chapter 9 108IN2045 – Discrete Event Simulation, WS 2010/2011 108

Artificial Rollback

Salvage parameter: Amount of memory to be reclaimed when a
processor runs out of memory

Algorithm: When system runs out of memory, then…:

� Sort LPs, in order of their current simulation time (largest to
smallest): LP1, LP2, LP3, …

� Roll back LP1 to current simulation time of LP2

� If additional memory must be reclaimed, roll back LP1 and LP2

to current simulation time of LP3

� Repeat above process until sufficient memory has been
reclaimed

Artificial rollback is storage optimal when executed on a shared
memory multiprocessor with a shared buffer pool

Performance will be poor if too little memory is available

Network Security, WS 2008/09, Chapter 9 109IN2045 – Discrete Event Simulation, WS 2010/2011 109

Effect of Limited Memory on Speedup

0
1
2
3
4
5
6
7
8
9

0 50 100 150 200 250 300 350
Number of Message Buffers Beyond

Minimum

S
pe

ed
up

experimental (12
processors)
analytical (12
processors)
experimental (8
processors)
analytical (8
processors)
experimental (4
processors)
analytical (4
processors)

• symmetric synthetic workload (PHold)
• one logical processor per processor
• fixed message population
• KSR-1 multiprocessor
• sequential execution requires 128 (4 LPs), 256 (8 LPs), 384 (12 LPs) buffers

Network Security, WS 2008/09, Chapter 9 110IN2045 – Discrete Event Simulation, WS 2010/2011 110

Other Optimistic Algorithms

Principal goal: avoid excessive optimistic execution

A variety of protocols have been proposed, among them:
• window-based approaches

– only execute events in a moving window (simulated time, memory)
• risk-free execution

– only send messages when they are guaranteed to be correct
• add optimism to conservative protocols

– specify “optimistic” values for lookahead
• introduce additional rollbacks

– triggered stochastically or by running out of memory
• hybrid approaches

– mix conservative and optimistic LPs
• scheduling-based

– discriminate against LPs rolling back too much
• adaptive protocols

– dynamically adjust protocol during execution as workload changes

Network Security, WS 2008/09, Chapter 9 111IN2045 – Discrete Event Simulation, WS 2010/2011 111

Parallel simulation: Summary/Outline

� Motivation: Why to use parallel simulators and why it’s difficult
� Conservative algorithms: Only do what is allowed

� Introduction
� Null messages: deadlock avoidance
� Deadlock detection and recovery
� Barrier synchronization and LBTS (lower bound on time stamp)

calculation

� Optimistic algorithms: Do anything, possibly roll back
� Time Warp algorithm
� Anti-Messages for rollback
� Global Virtual Time (GVT) for fossil collection
� State Saving Techniques
� (Issues with Zero lookahead; Wide Virtual Time)
� (Artificial Rollbacks to save memory)

� Summary
� Pros and Cons of conservative and optimistic algorithms
� Why not to use parallel simulators

Network Security, WS 2008/09, Chapter 9 112IN2045 – Discrete Event Simulation, WS 2010/2011 112

Summary: Conservative vs. optimistic

� Conservative systems:
Only process events that are safe to process

� Optimistic systems:
Go ahead processing, but be prepared to do a
rollback

Network Security, WS 2008/09, Chapter 9 113IN2045 – Discrete Event Simulation, WS 2010/2011 113

Conservative Algorithms

Con:

� Cannot fully exploit available parallelism in the simulation because
they must protect against a “worst case scenario”

� Lookahead is essential to achieve good performance

� Writing simulation programs to have good lookahead can be very
difficult or impossible, and can lead to code that is difficult to
maintain

Pro:
• Good performance reported for many applications containing

good lookahead (queueing networks, communication
networks, wargaming)

• Relatively easy to implement
• Well suited for “federating” autonomous simulations,

provided there is good lookahead

Network Security, WS 2008/09, Chapter 9 114IN2045 – Discrete Event Simulation, WS 2010/2011 114

Optimistic Algorithms

Con:

� state saving overhead may severely degrade performance

� rollback thrashing may occur (though a variety of solutions exist)

� implementation is generally more complex and difficult to debug than
conservative mechanisms; careful implementation is required or poor
performance may result

� must be able to recover from exceptions (may be subsequently rolled
back)

Pro:
• good performance reported for a variety of application (queuing

networks, communication networks, logic circuits, combat models,
transportation systems)

• offers the best hope for “general purpose” parallel simulation software
(not as dependent on lookahead as conservative methods)

• “Federating” autonomous simulations
• avoids specification of lookahead
• caveat: requires providing rollback capability in the simulation

Network Security, WS 2008/09, Chapter 9 115IN2045 – Discrete Event Simulation, WS 2010/2011 115

Further observations

� Simple operations in conservative systems (dynamic
memory allocation, error handling) present non-trivial
issues in Time Warp systems

� Solutions exist for most, but at the cost of increased
complexity in the Time Warp executive

Network Security, WS 2008/09, Chapter 9 116IN2045 – Discrete Event Simulation, WS 2010/2011 116

Parallel simulation: Summary/Outline

� Motivation: Why to use parallel simulators and why it’s difficult
� Conservative algorithms: Only do what is allowed

� Introduction
� Null messages: deadlock avoidance
� Deadlock detection and recovery
� Barrier synchronization and LBTS (lower bound on time stamp)

calculation

� Optimistic algorithms: Do anything, possibly roll back
� Time Warp algorithm
� Anti-Messages for rollback
� Global Virtual Time (GVT) for fossil collection
� State Saving Techniques
� (Issues with Zero lookahead; Wide Virtual Time)
� (Artificial Rollbacks to save memory)

� Summary
� Pros and Cons of conservative and optimistic algorithms
� Why not to use parallel simulators

Network Security, WS 2008/09, Chapter 9 117IN2045 – Discrete Event Simulation, WS 2010/2011 117

Why not parallel / distributed simulation? 1/2

� Parallel computing is more complicated
� More complicated = more code = more bugs

� It’s more complicated to avoid bugs in parallel /
distributed programs

� It’s more complicated to debug parallel / distributed
programs

� Parallel / distributed simulations are more
complicated
� Conservative?

• Design model to be well-parallelizable

• Need to think about lookahead

� Optimistic?
• Less difficult model; more difficult simulator

• Needs more RAM

• How often will I have to do rollbacks?

Network Security, WS 2008/09, Chapter 9 118IN2045 – Discrete Event Simulation, WS 2010/2011 118

Why not parallel / distributed simulation? 2/2

� Parallel / distributed computing introduces overhead:

� CPU overhead for time synchronisation, rollbacks, …

� Memory overhead for keeping snapshots, message
counters, …

� Time / communication overhead: Waiting for
messages, sending ACKs, message transit times, …

� Amdahl’s law: Boundary
for any parallel program

� Speedup < #CPUs

� Reason: There are always
some non-parallelizable
parts in the program

Network Security, WS 2008/09, Chapter 9 119IN2045 – Discrete Event Simulation, WS 2010/2011 119

Another approach to parallelize…

� Often, you have to run multiple simulations anyway
� Different random seeds to get more measurements

� Try out different parameter sets

� In this case, the easiest way to parallize your simulation is to
run them in parallel…
☺ Scales linearly with the number of CPUs

(…unless RAM size, RAM accesses or disk I/O are bottlenecks)

☺ No overhead for locking, synchronizing etc. means more efficient
use of CPU time than a parallel simulator

☺ Output always deterministic

☺ Less complex than a parallel simulator
☺Easier to debug

☺No thoughts about improving lookahead in the model, etc.

/ Often needs more RAM than a parallel simulator
(…although Time Warp may be a memory hog, too)

/ Does not work with hardware-in-the-loop, human-in-the-loop etc.

Network Security, WS 2008/09, Chapter 9 120IN2045 – Discrete Event Simulation, WS 2010/2011 120

Parallel simulation: Summary/Outline

� Motivation: Why to use parallel simulators and why it’s difficult
� Conservative algorithms: Only do what is allowed

� Local causality constraint
� Null messages: deadlock avoidance

• Lookahead
• Time creep problem

� Deadlock detection and recovery
� Barrier synchronization

• LBTS (lower bound on time stamp) calculation
• Transient message problem and flush barriers

� Possible optimization: Exploit distance between processes

� Optimistic algorithms: Do anything, possibly roll back
� Time Warp algorithm
� Anti-Messages for rollback
� Global Virtual Time (GVT) for fossil collection
� State Saving Techniques
� (Issues with Zero lookahead; Wide Virtual Time)
� (Artificial Rollbacks to save memory)

� Summary
� Pros and Cons of conservative and optimistic algorithms
� Why not to use parallel simulators

