

Chair for Network Architectures and Services—Prof. Carle Department of Computer Science TU München

Experiment planning: Factorial design, factor analysis

Most slides/figures taken from: Oliver Rose Averill Law, David Kelton

- Introduction and motivation
- □ Comparing two alternative systems
- □ Linear and nonlinear regression
- □ Analysis of Variance (ANOVA)
 - One-way ANOVA
 - Two-way ANOVA
- Factorial designs
 - 2^k factorial designs
 - Fractional factorial designs
- Important background information (within above topics):
 Hypothesis testing

- A. Law, D. Kelton: "Simulation Modeling & Analysis", McGraw-Hill, 1991.
- G. Box, W. Hunter, J. Hunter: "Statistics for Experimenters", Wiley, 1978.
- D. Montgomery: "Design and Analysis of Experiments", Wiley, 1997.
- D. Goldberg: "Genetic Algorithms in Search, Optimization, and Machine Learning", Addison-Wesley, 1989.

□ Statistics chapter:

- Basic statistical concepts
- Hypothesis testing
- Analysis of a single simulation run
- But: Simulation not only used for single runs We want to compare alternative designs!

Approach for comparison

- Explorative approach ("Fiddle around with parameters" / "Hit or Miss" strategy) = inefficient or even dangerous
- \rightarrow Methodic design of Experiments (DOE)

Goals:

- Better understanding of system
- Better control of system
- Better performance of system

Methods:

- Try out in different simulated environments
 - Try out different workloads with different characteristics
 - Try out different network topologies
- Try out with different system parameters

factor: input variable (e.g., TCP window size), condition, structural assumption (e.g., TCP congestion control algorithm)

level: one factor value that is used in our experiments

- response: system parameter of interest that depends on given set of factors (e.g., achieved TCP throughput)
- run: evaluation of response for a given set of factor values
 - i.e., the analysed simulation result
 - There will (should!) be multiple runs

Remember:

- In simulation experiments, responses vary for runs of the same factor values due to random effects
- □ Therefore: several runs have to be performed!

- Comparison of two systems:
 Is there a difference in value for a given response variable?
 - e.g., difference in achieved network throughput
- □ Test criterion:
 - 1. Calculate difference between the two response variables
 - 2. This difference is statistically significant if its confidence interval (CI) does not contain 0
 - e.g.: CI (throughput_{TCP Reno} throughput_{TCP Vegas}) ∌ 0
 → We can assume that the difference in throughput which the two congestion control algorithms TCP Reno and TCP Vegas achieve is statistically significant

□ Good: Very simple

□ Bad: Quite restricted applicability

- Only should be applied if the response has the same variance for the two levels – not often the case
 - Better: Modified or Welch two-sample t confidence intervals
- Calculating the confidence interval for the response differences only can tell us if two levels of one factor make a difference
- What if we want to analyse more than two levels for a given factor?
 - E.g., TCP Reno vs. TCP Vegas vs. TCP Cubic: 3 levels
- What if we have more than one factor?
 - E.g., TCP congestion control algorithm, TCP window size, network delay, link bandwidth: 4 factors

- $\hfill\square$ Have n samples $x_{1\dots n}$ and $y_{1\dots n}$ of two random variables x and y
- y is 'not really' a random variable:
 it's also dependent on x
- **Linear model**: $y = a \cdot x + b + e$
 - a: slope
 - b: intercept
 - e: error

□ Idea: Chose a and b such that e is minimised

Calculate sum of squared errors:

$$SSE = \sum_{i=1}^{n} (y_i - b - ax_i)^2$$

Minimise SSE

$$a = \frac{Cov(x, y)}{Var(x)}$$
$$b = mean(y) - a \cdot mean(x)$$

 N.B.: different, but equivalent formulae in literature (you can omit dividing by n—1 in var and cov)

Usually built into statistical programs

- Graphical interpretation:
 Fit a straight line that goes through the points in the (x,y) scatterplot
 - b: intercept (Achsenabschnitt)
 - a: slope (Steigung)

□ Correlation coefficient r:

$$r = \frac{\sum_{i=1}^{n} \left(\frac{x_i - \overline{x}}{s_x}\right) \left(\frac{y_i - \overline{y}}{s_y}\right)}{n - 1}$$

Coefficient of determination: r²

- i.e., simply square above result
- Can be better compared than non-squared r, because it is proportional to the correlation, e.g.:
 r² = 0.4 provides double the correlation than r² = 0.2
- Can be simply added up if multiple independent factors are combined
- □ Don't confuse these two with the covariance!

Are we actually allowed to apply regression !?

□ Warning:

- The residuals e (as in y = a·x + b + e) must be normally distributed!
- Exploit the central limit theorem: Calculate averages of multiple independent simulation runs with the same factor level
- Check that it looks normal: QQ plots or some normality test
- N.B.: This check has, of course, nothing to do with the "quality" of the regression expressed as r²
 - Normality check: Are we allowed to look for linearity?
 - r²: How much linearity is there?

Regression and experiment planning

- \Box In our nomenclature: y = response, x = factor level
- Regression can tell us how much the factor influences the response. Answers questions like:
 - Does it make sense to explore further factor levels in a given direction?
 - Does it make sense to check factor levels in between?
- Good:
 - We now can have multiple factor levels
- □ Bad:
 - We still have only one factor
 - It must be linearly proportional
 - The residuals must be normally distributed (but that constraint won't go away with ANOVA either)

Often, the relationship between x and y is not linear
 Solution: Try to find a suitable transformation

- Let y be the simulation outcome (response)
- Then apply the model y* = a·x + b + e where y* = f(y)
- Transformation function f can be, for example:
 - Logarithm
 - Exponentiation
 - Square root
 - Square
 - Some other polynomial (usually quadratic or cubic)
 - Logistic function (logistic regression)
 - Inverse (1/x)
 - ...

- □ Which transformation function is the right one?
 - Careful consideration of the system: You have to think!
 - Check if the y* are normally distributed the y are probably not normally distributed in this case
- QQ plots can help
- □ Admittedly, a matter of experience
- □ Warning:
 - Overfitting, arbitrary curve fitting: "Just try around with some transformations and pick the one that matches best" – no, try to avoid that!
 - A correlation can be coincidence
 - Correlation does not imply causation
 - Example: Decreasing number of pirates leads to increasing global temperatures (Church of the Flying Spaghetti Monster)
 - Again: First *think* about the system, *then* postulate a meaningful transformation

- □ We want to look at multiple factors
- For historic reasons, we relabel our 'old' values a and b from the regression formulae as
 - $\beta_0 \dots \beta_m$ and the error as ε
 - Linear model is now:
 - $\mathbf{y} = \beta_1 \cdot \mathbf{x}_1 + \beta_2 \cdot \mathbf{x}_2 + \dots + \beta_m \cdot \mathbf{x}_m + \beta_0 + \varepsilon$
 - Warning about the indices:
 - Now, x_1 means 'the first factor', not 'the first simulation run' (there may be many simulation runs for the same choice of the x_i)
- □ Will not go into detail here

□ Short for 'analysis of variances'

- Historical term
- Explained in next slides
- Be careful: "variance analysis" is a more general term!
 Often, that term describes a slightly different analysis:
 - Calculate variances of the responses for different levels of one (or several) factors
 - Analyse statistically if the variances are the same
 - Very similar to ANOVA, but slightly different!

- Factor has a levels ('treatments' for historical reasons: ANOVA was developed in pharmaceutical research)
- □ Each level is replicated/observed *n* times

Data:	level	1	replication L	n
	1	y ₁₁	L	У _{1n}
	Μ	Μ		Μ
	а	y _{a1}	L	y _{an}

- Question we want to answer:
 - Is there an effect of factor levels on system responses?
 - If so: how much?

- □ i: factor level ('treatment')
- □ j: simulation run
- □ Please note: We're dealing with only one factor so far

□ Similar to linear regression:

- One factor, multiple levels
- $y_{ij} = \mu + \alpha_i + \varepsilon_i$
- µ: population mean (of the total population, i.e., across all different factor levels – in other words, across all simulation runs, regardless of their parameters!), also called grand average
- α_i: the influence of the different factor levels (how much do they contribute to a diversion from the mean?)
- ε_i: errors, also called 'residuals' or 'noise'

Important things to note about the model:

- Factor levels α_i
 - We do not require them to have a linear relationship on the response y
 - They even can be categorical data, e.g.: {male, female} or {child, student, employed, unemployed, retired, other}
- Residuals ε_i
 - Any deviation from the model that cannot be explained
 - Usually, the index is dropped for the errors, as ε is an independent random variable that must not (!) depend on the factor level
 - If that is not the case, we do not have a truly random but a systematic error. That's bad – it violates our assumptions!

- We suspect that the $\boldsymbol{\alpha}_i$ are different and influence the response variable \boldsymbol{y}
- Formulate this as a statistical test

Digression:

Statistical tests, revisited

- So far, we've seen the χ^2 distribution fitting test and the Kolmogorov-Smirnov test (KS)
- Both test if a given set of measurements is consistent
 with a theoretical distribution
 - Note the wording: "Consistent with", but not "comes from"
- There are many, many other statistical tests for many, many other applications

Statistical tests = hypothesis tests

- We would like to "prove" some statement, based on statistical calculations Examples:
 - Measurements x_i are consistent with a normal distribution
 - The mean of the measurements xi is greater than 5
- Call this statement our 'work hypothesis' or 'alternative hypothesis' (Arbeitshypothese) H_A
- Formulate the contrary: null hypothesis H₀
- H_A and H_0 need to be:
 - Exclusive: Either H_A is true or H_0 is true
 - Exhaustive: All possible results will satisfy one of the two

- Hope to find statistical evidence that H₀ is highly improbable
- Mathematically:
 - Input data = x_i (...rather arbitrary label)
 - Calculate a so-called test statistic: TS(x_i)
 - Usually: If test statistic is above some threshold, then refuse H₀
 - Test statistic depends on specific test
 - Threshold depends on specific test and on desired accuracy

- As mentioned before: No test can give a 100% guarantee – we're talking about statistics here, and statistics always deals with the unknown
- Differentiate between two types of errors:

	Test rejects H ₀	Test accepts H ₀
In reality, H ₀ is false	Correct decision	Type II error, β error, false negative
In reality, H ₀ is true	Type I error, α error, false positive	Correct decision (albeit not the one that we wanted in most cases)

Error types explained by example (1/2)

- Suppose you have developed a medical drug.
 Development has cost an enormous amount of money.
 Now you want to test if the drug is harmful to your patients
- Type I error (α error)
 - Probability that people get harmed
 - Can cost lives: Invest a lot of effort to avoid it.
- Type II error (β error)
 - Probability that you reject a drug that is actually perfectly safe
 - Can waste money: Unpleasant, but more acceptable.

Error types explained by example (2/2)

- Suppose you have developed a new network protocol. By applying a statistical test to the output of some network simulations, you hope to show that the protocol increases network performance (=H_A).
- Type I error (α error)
 - Probability that you claim that the protocol is great, whereas it is actually rubbish
 - If you don't specify your α error, or if it is too large (i.e., your confidence level is too low), then nobody will believe your results!
- Type II error (β error)
 - Probability that you wrongly assume that your great protocol does not help anything
 - Presumably interesting to you, but the reader of your paper does not care about the risk that you might have failed detecting the performance increase: Obviously, you did not fail, since otherwise the paper would not have been written...

- Problem:
 - Reducing one error increases the other and vice versa. Damn.
 - Only solution to reduce both: Increase the sample size. Usually a superlinear factor (e.g., to reduce one error by 1/2 while keeping the other constant, we must increase sample size by 4)
- In the majority of the cases, keeping the *α* error low is more important
 - α = 5% has been accepted for years (although there has been some criticism), 1% is better, 0.1% is extremely good
 - β = 10% or 20% is usually acceptable; but usually, it's not calculated
 - Don't choose α too small if there are only few samples: Small sample size and small α both will increase β to unacceptable values then you would almost always accept the null hypothesis and thus (wrongly) reject your work hypothesis

- 'Power' of a test := (1β)
 - Obviously the higher, the better
- Can be used to compare tests:
 - Fix an α and a number of measurements
 - The better test will feature a higher power for this input
- Rules of thumb:
 - Parametric tests (make assumptions about input distribution) are stronger than nonparametric tests (work with any distribution)
 - One-sided tests are stronger than two-sided tests (later slide).
 - The more general the test, the weaker it is.

- Usually, Type-1 errors (α errors) are the more serious ones
- In order to minimise one type of error (e.g., Type 1 error), you only have the choice between...:
 - Increasing the Type 2 error
 - Increasing the sample size
 - Picking a different statistical test that has better error properties

An "alternative": significance tests

P-value (R. A. Fisher): How likely is the result to happen?

- Test statistic is a dependent random variable that follows a specific distribution (test distribution, e.g., Student's t distribution or χ^2 distribution) if the null hypothesis holds
- Using the theoretical distribution, calculate the probability that our measurements attain our given values or even more extreme values if the null hypothesis holds:
 - This is defined as the p value
 - Note that the p value itself is uniformly distributed in [0...1] if the null hypothesis holds, and it is near 0 if it does not hold.
- Refuse H_0 if this seems unlikely: i.e., refuse if $p \le \alpha$
- In other words: Our threshold for the test statistic is the point where its distribution "has no meat", i.e., the p value gets too low

- In theory, distinguish:
 - Hypothesis test that we just explained:
 Fix an α, calculate the test statistic and accept or reject the null hypothesis
 - Fisher's probability test:
 For the given data, calculate the p value for the null hypothesis, and decide how likely the null hypothesis is
- In practice, combine both!
 - p value is more expressive
 - Fixed α is more commonly known/accepted; often allows better comparisons to other studies

How to combine both types of a test?

- With modern statistical programs, this is possible in most cases, it's even done automatically!
- Good practice:
 - Tell the reader your p value (especially if null hypothesis sounds quite likely!)
 - Traditionally, the p value is judged with star symbols within braces:
 - [***] means: P ≤ 0.1%
 - [**] means: 0.1% < P ≤ 1%
 - [*] means: 1% < P ≤ 5%
- If possible, calculate the p value and derive statements about α
 - e.g.: "The null hypothesis could be refused at a confidence level of α =0.5, but not at a confidence level of α =0.1"

- One-sided test:
 - $H_{A}: \mu < \mu_{0}$ (or $\mu > \mu_{0}$)
 - Example: "With the new routing protocol, network latency is significantly reduced from the old value"
- Two-sided test:
 - $\boldsymbol{H}_{\boldsymbol{A}}\!\!:\boldsymbol{\mu}\neq\boldsymbol{\mu}_{\boldsymbol{0}}$
 - Example: "With the new routing protocol, network throughput has significantly changed from the old value (either better or worse)"
- Which one to choose?
 - One-sided tests are stronger than two-sided tests
 - Two-sided tests are more expressive

- Recall our model: $y_{ii} = \mu + \alpha_i + \varepsilon_i$
- We suspect that the $\alpha_{_i}$ are different and influence the response variable y
- Formulate this as a statistical test:
 - Hypothesis: At least one of the α_i influences y
 - Null hypothesis: $\alpha_1 = \alpha_2 = \dots = 0$
 - Equivalent formulation of null hypothesis: The means of the factor levels are equal

- Analysis of variance: Analyse total sum of squares
- Introduce these variables (SS = sum of squares):
 - SS_{Total}
 - The total variation across all samples
 - I.e.: the total sum of squared deviations from the general mean $\boldsymbol{\mu}$
 - How much variability is in the general population?
 - SS_{Between}
 - The variation between the different sample groups (i.e., one group for each different factor level)
 - How much variability can be attributed to the different factor levels?
 - SS_{Within}
 - The variation between the samples of one factor group (i.e., all samples that hold for the same factor)
 - As we can see, we need to do multiple simulation runs for one factor level
 - How much variability can be attributed to the errors (,noise')?

Important observation: SS_{Total} = SS_{Between} + SS_{Within}
 Coarse idea:

- If SS_{Between} (the treatment variability) is much larger than SS_{Within} (the error variability), then the overall variability is likely to be caused by the factor
- Otherwise, the overall variability is likely to be caused by ,random' noise
 - Take care: The errors also can be unexplained effects
- More precisely: If H₀ holds, then SS_{Between} and SS_{Within} have the same value
- Check this by applying the F test

- Developed by R. A. Fisher
- Input: two samples from two different populations
 - Populations have to be normally distributed (!)
- F test tells if the populations have a large difference in variance
- Test statistic: the F value

$$F = \frac{Var(X_1)}{Var(X_2)}$$

- If the null hypothesis holds, then the F value is F distributed
 - F distribution: a test distribution
 - As usual: degrees of freedom = #samples 1

□ Further mathematical details...?

- Usually, the F test is built into statistical software
- Usually, ANOVA is built into statistical software
- We want to apply statistics, not learn any proofs of theorems → For more details, refer to literature

Prerequisites similar to linear regression:

- □ The *measurements* have to be normally distributed
 - Easy if the response can be expected to be normally distributed (but that's generally not the case)
 - Easy if means are sampled from several (i.e., enough!) simulation runs: central limit theorem
- □ The residuals have to be normally distributed
 - Residuals: $e_{ij} = y_{ij} \overline{y}_i$ (i.e., the deviation from the group mean)
 - Warning: You must ensure that this is really the case!
 - If not, the result is meaningless!
- \Box The variances of the α_i need to be equal
 - F test
- □ How to check for normality?
 - QQ-plots
 - or some statistical test for normality

- Two factor response analysis Factor A and B at levels a and b, n replications
- Change in quality of the results compared to oneway ANOVA?
 - Yes!

Both factor effects *and* effects from interacting factors

main effect of each factor

Data

		1	L	b
	1	$y_{111}L y_{11n}$	L	y _{1b1} L y _{1bn}
Factor B	М	М		М
	а	y _{a11} L y _{a1n}	L	y _{ab1} L y _{abn}

Factor A

□ Three null hypotheses:

- $\alpha_i = 0$
- β_j = 0
- γ_{ij} = 0

□ Sums and averages similar to one-way ANOVA:

• $SS_{Total} = SS_A + SS_B + SS_{AB} + SS_{Within}$

Usually built into statistical software packages

□ Two-way ANOVA table

Source of Variation	Sum of Squares	Degrees of Freedom	Mean Square	F_{0}
A treatments	SS _A	<i>a</i> -1	$MS_A = \frac{SS_A}{a-1}$	$rac{MS_A}{MS_E}$
B treatments	SSB	<i>b</i> - 1	$MS_{B} = \frac{SS_{B}}{b-1}$	$rac{MS_{\scriptscriptstyle B}}{MS_{\scriptscriptstyle E}}$
Interaction	SS _{AB}	(a-1)(b-1)	$MS_{AB} = rac{SS_{AB}}{(a-1)(b-1)}$	$rac{MS_{AB}}{MS_{E}}$
Error	SS _E	ab(n-1)	$MS_E = \frac{SS_E}{ab(n-1)}$	
Total	SS_{τ}	<i>abn</i> - 1		

 Interpretation of the results: Check the p-values corresponding to the individual tests; if they are small, there are significant effects.

Note: statistical significance does not tell anything about practical relevance! Decide yourself!

□ Check model adequacy by analysis of residuals:

- They should be consistent with a normal distribution
- They should be free of structure (e.g., check that a higher response value does not usually imply higher error values)

- □ Generalisation: n-way ANOVA
- Usually performed using a statistical program
- Usually only two levels per factor.
 Examples:
 - Small window size, large window size
 - TCP Reno, TCP Cubic
- Tests if one or several factors have or have no influence on some response variable
 - E.g.: Does TCP window size affect TCP throughput?
- Can tell how much influence the individual factors have
- □ Can tell how much influence the interactions of the factors have
 - E.g.: Window size and congestion control algorithm taken together have significant influence

Usually many factors

- Example: TCP window size, TCP congestion control algorithm, network bandwidth, network delay, packet loss rate
- Which factor combinations should we try out? ANOVA can give answers to these questions:
 - Which factors are interesting factors (i.e., have much influence), so we should try out more levels for them?
 - Which factors have interesting interactions, so we should try out more factor level combinations for them?
 - Which factors, which interactions can be left out?
- Structuring the experiments like this is called factorial design
 - Of course, not limited to simulation experiments

- Problem with general factorial designs: explosion of number of runs for multi-factor multi-level designs
- □ Solution:

Two levels are often enough for detecting general trends and to screen out important factors

- □ k factors, each one with 2 levels: 2^k design points
- Underlying assumption: effects depend linearly on factors

Design matrix:	Run	Factor A	Factor B	Response
0	1	-	-	<i>r</i> ₁
	2	+	-	r_2
	3	-	+	r_3
	4	+	+	<i>r</i> ₄

□ Construction of the "+/-" area of the design matrix:

- Each row is the binary coding of the run number minus 1
- with the least significant bit on the left side
- where '-' represents 0 and '+' represents 1

□ Computation of the effects:

Main effect of factor A: how does the response change if A is changed while B is left constant?

• effect_A = $\frac{1}{2} ((r_2 - r_1) + (r_4 - r_3))$

 Main effect of factor B: how does the response change if B is changed while A is left constant?

• effect_B = $\frac{1}{2}$ ((r₃ - r₁) + (r₄ - r₂))

- Main effect equations for other designs: Similar (Use factor column as signs for responses and sum up, then divide sum by 2^{k-1})
- Usually, the ANOVA module of a statistical program will help

 Interaction of factors A and B: Is there a difference in the changes of the response if A is changed while B is kept either on level '+' or '-'?

- How to find the interaction equations for other designs?
 - In theory: Multiply columns of factors of interest element by element and use the resulting column as signs for responses and sum up. Then divide sum by 2^{k-1}.
 - In practice: Built into statistical software...
 - In addition to main effects and interactions, the average response is usually computed

Example: main effects and interactions of the 2³ design

average	А	В	С	AB	AC	BC	ABC
+	-	-	-	+	+	+	-
+	+	-	-	-	-	+	+
+	-	+	-	-	+	-	+
+	+	+	-	+	-	-	-
+	-	-	+	+	-	-	+
+	+	-	+	-	+	-	-
+	-	+	+	-	-	+	-
+	+	+	+	+	+	+	+

Fractional factorial designs (1)

- Full factorial design can be costly for larger number of factors
- In most cases, we are only interested in main effects and two-way interactions
- Example: Full 2⁷ design requires 128 times replications runs! (And each needs to be run multiple times.) Effects obtained:

Avg.	Main effects	2-way	3-way	4-way	5-way	6-way	7-way
1	7	21	35	35	21	7	1

- More than 75% of the effects are 3-way interactions and higher
- Obtain the main effects and two-way interactions with less runs? Yes, by using fractional factorial designs!

□ Example: Full 2³ design requires 8 runs

Average	Main effects	2-way inter.	3-way inter.
1	3	3	1

- Only interested in main effects let's do only 4 runs and ignore the interactions
- \square 2³⁻¹ design requires 4 runs, but:
 - how to accommodate 3 factors with a 2 factor design?

Factor A	Factor B	Factor C	C = AB
-	-	+	
+	-	-	
-	+	-	
+	+	+	

- Did we get information for free?
 Half the runs to obtain the same result?
- □ NO! There are confounded (or aliased) effects!
- □ Main effects and two-way interactions are confounded, i.e.:
 - Influence of C indistinguishable from influence of interaction AB
 - Influence of B indistinguishable from influence of interaction AC
 - Influence of A indistinguishable from influence of interaction BC
- □ What does this mean?
 - Main effect of factor C is only useful if interaction of A and B is small, i.e., 2³⁻¹ design is a bad choice if two-way interactions are significant.
- \Box N.B. There also is a graphical explanation for this (\rightarrow later slides)

Fractional factorial designs (4)

- Resolution of a fractional design (denoted in Roman numbers)
 - III: only main effects are not confounded
 - IV: main effects/two-way interactions not confounded
 - V: main effects/two-way interactions and twoway/two-way interactions not confounded
 - Higher order effects are confounded!
- Practical advice:
 - Use resolution III designs only in complete desperation!
 - Interactions of more than 3 factors are rarely relevant
- □ Notation: $2_{resolution}^{k-p}$, e.g., 2_{IV}^{4-1}
 - Examples:
 - **III**: $2^{3-1}_{III}, 2^{5-2}_{III}, 2^{6-3}_{III}, K$
 - IV: 2_{IV}^{4-1} , 2_{IV}^{6-2} , 2_{IV}^{7-3} , K
 - V: $2_V^{5-1}, 2_V^{8-2}, 2_V^{10-3}, K$

Construction of the design matrix

- Basis is always full factorial design for k—p factors, e.g., a 2³ matrix for a fractional 2⁵⁻²_{III} design
- Missing columns are computed from existing ones by rules from DOE text books. These rules guarantee fractional designs of maximum resolution.
 Example: for 2⁵⁻²_{III} design, columns D and E missing rules: D = AB or -AB, E = AC or -AC (AB: multiply signs of columns A and B)
- Resolution and construction of design matrix for fractional designs from DOE text books
- Often already built in run controllers of simulation tools or statistical programs

Motivation for the graphical approach:

- Successful application of graphical methods in other areas of statistics, in particular, for data analysis and data mining
- Application of the creative potential of the right brain half
- Intuitive understanding of "good" characteristics of DOE
- Approach was used for the development of DOE methods, but no longer in the application phase
- Straightforward approach, often even without use of computers

Approach: Transform the design matrix into an appropriate and equivalent graphical representation

We're talking about an optimisation problem

- Goal: Minimize information loss of a fractional factorial design reduced by *p* factors
- Graphically: Projections of the design graph where p dimensions disappear (graph collapses)
- \Box Example: 1 factor of a 2³ design disappears

Optimum location of the design points

- Important graphical optimisation criteria for maximizing the information content in fractional designs:
 - Each projection must be a complete design graph
 - No multiple design points at the corners of the graph
- □ Example: Reduction of a 2^3 design to a 2^{3-1} design, i.e., from 8 to 4 design points → optimum location?

 Optimum 2³⁻¹ design as as basic building block ("DOE lego")

- Projections as complete as possible, but with single design points at the corners
- Maximising the minimum distance of the design points (even distribution of points)

