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Topics

 System Initialization

 Estimator

 Consistent Estimator

 Unbiased Estimator

 Variance of an Estimator

 Efficient Calculation of an Estimator

 Confidence Interval

 Tschebyscheff Confidence Interval

 Central Limit Theorem

 t-Distribution Confidence Interval

 Evaluation of Simulation Results

 Replicate-Delete Method

 Batch Means Method

 Stationarity

 How to lie with statistics
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Evaluation of Simulation Results

 Simulation study

 Goals:

• Evaluation of system S

• Impact of (manageable) input variables C

• Impact of (unmanageable) input variables U

• Evaluation of outcome (result) P

• Performance parameter Y

 Problem:

• Infinite number of different outcomes

• Probability of a certain outcome cannot determined in advance

• Parameter of interest can be regarded as random variable
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Evaluation of Simulation Results

Pictures taken from Buchholz

Trajectories

Observation interval

Observation intervalObservation interval
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Evaluation of Simulation Results

Picture taken from Buchholz
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Evaluation of Simulation Results

 Evaluation:

 m samples per simulation run

 n simulation runs

 jth sample of the corresponding simulation run

 i – number of simulation run 
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Evaluation of Simulation Results

 System Initialization

 Initialization state has to be chosen with respect to the expectation of the 

random variable

 The transient phase of the system depends on the initialization state

 The mean of the random variable (usually) converges to a certain level

 Subsequent measurements are often correlated 

(e.g. waiting queue length) 

Pictures taken from Buchholz

Random variable Y for different 

simulation runs

Mean of random variable Y 

depending on the initialization state
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Evaluation of Simulation Results

 Estimator (Schätzer)

 Definition:

An estimator is a statistic which is used to infer the value of an unknown 

parameter(estimand) in a statistic model. 

 Problem:  

• Estimate different characteristics (e.g. mean) of an observed parameter 

(e.g. delay or packet loss) with a small/certain number of samples.

• Calculate the quality of the estimation

 Consistent estimator (konsistenter Schätzer)

 Definition: 

An estimator is called consistent if its precision increases with the 

number of samples 
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Evaluation of Simulation Results

 Unbiased estimator (erwartungstreuer Schätzer)

 Definition: 

An estimator is called unbiased if its mean equals the true mean of the 

estimation parameter. 

 Example:

• Assume a very large population of elements with a different 

characteristic (e.g. height of individuals) and μ being the mean of the 

characteristic

• Let           be the mean of n collected sample values and     the random 

variable which consists of these mean values.
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Evaluation of Simulation Results

 Estimation of E(Y)

 Estimator

 Estimation (value)

 Point Estimator of E(Y)

 Random Variable

 Outcome of  

 Consistency of 
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 Variance of the estimator      represents a first indicator of its quality

 Calculation of the variance of the estimator after n samples

 Variances of the estimator increases

 with the variance of the estimand

 if the number of samples is reduced

Evaluation of Simulation Results
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Evaluation of Simulation Results

 Unbiased estimator for 

Picture taken from Buchholz

Distribution of the estimator 
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Evaluation of Simulation Results

 Assume that the probability density function of the estimator            is 

known in advance

 The probability that       lies within the interval is  

Picture taken from Buchholz
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Evaluation of Simulation Results

 Biased estimator for the sample variance

is a biased estimator of the sample variance since it systematically 

underestimates it. 

 Bessel’s correction

The biased estimator can be transformed in an unbiased estimator of the

sample variance by applying Bessels„s correction.

 Unbiased estimator for the sample variance 
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Evaluation of Simulation Results

 Efficient calculation of the estimator

 1. Problem

Number of samples yij can become high which results in high memory 

consumption

• Solution

Recursion

 2. Problem

The calculation of the sample variance requires the direct evaluation of 

the estimation of the variance

Every sample yij has to be stored

• Solution

– Store the sums of      and  

– Calculate

k

y
kY

k

k
kY

kj

jj 


 )1(ˆ1
)(ˆ

 
2

1

2 ˆ
1

1ˆ 






n

i

jijj Yy
n

S

ijy 2

ij
y

   
















 



2
2

1

2 ˆ
1

1ˆ
j

n

i

ijj Yny
n

S

The size of n can be reduced 

if means are used instead of 

single sample values



Network Security, WS 2008/09, Chapter 9 16IN2045 – Discrete Event Simulation, WS 2010/2011 16

Evaluation of Simulation Results

 Confidence interval

 Definition: 

 Calculate  an interval 2ε around the           such that a sample of       lies  in 

the interval with a probability of 

Larger  Smaller 

Smaller Larger 

 is called                      confidence interval of 

 is called interval estimator

Interval estimators are more important than point estimators since they 

make probability based assumptions which consider the variance of the 

estimator
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Evaluation of Simulation Results

 Confidence interval according to Tschebyscheff

 Let X be a random variable with mean          and variance

 Replace c by ε and X by . Variance of       is 
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Evaluation of Simulation Results

 Confidence interval according to Tschebyscheff

 Example:

• Calculate the 90% confidence interval of 

• Now assume a sample size n = 10

• Thus, a confidence interval of half size requires four times the number 

of samples
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Evaluation of Simulation Results

 Confidence interval according to Tschebyscheff

 Disadvantages:

• The calculation requires knowledge of the variance            of the 

estimand which is typically unknown and must thus be replaced by the 

estimator      .

• Tschebyscheff intervals are very large / pessimistic since they are 

valid for any given distribution.
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which makes the calculated bounds invalid 

The pessimistic characteristic of Tschebyscheff  is often 

used as justification for replacing the variance               

with the estimator     
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Evaluation of Simulation Results

 Confidence interval according to Tschebyscheff

 Example:

• Flipping a coin. RV Y => Y ℮ {0-head, 1-tail}

• ,  

• Flipping the coin 10 times after another                   n = 10 (samples)

• Calculate 90% confidence interval 

• Experiment 1:  0000101001

[-0.183, 0.783]                              [0, 0.783]

• Experiment 2:  0110111001

[0.084, 1.116]                              [0.084, 1.000]
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Evaluation of Simulation Results

 Confidence interval according to Tschebyscheff

 Example:

• Flipping a coin. RV Y => Y ℮ {0-head, 1-tail}

• ,  

• Flipping the coin 10 times after another                   n = 20 (samples)

• Calculate 90% confidence interval 

• Concatenation of Experiment 1 and 2:  00001 01001     01101 11001

[0.089, 0.811] 

• Summary:

– The true mean lies within the interval with a probability of 90%

– 1 of 10 experiments will not contain the true mean
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Evaluation of Simulation Results

 Central limit theorem

The distribution of the (normalized and centralized) sum of a large number 

of independent and identical distributed random variables can be 

approximated by the (standard) normal distribution.

Lindeberg-Lévy theorem

Let                        be a sequence of random variables within the same 

probability space which are independent and follow the same distribution.

The mean of each random variable is μ and the standard variation is σ.

In the following we take a closer look at the nth sum of the sequence.

Introduce a new standardized random variable 
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Evaluation of Simulation Results

 Central limit theorem

The distribution of the random variable       converges against the 

(standard) normal distribution according to the central limit theorem if the 

number of summands n increases.

With           representing the (standard) normal distribution
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Evaluation of Simulation Results

 Central limit theorem

Sum of binomial distributed random variables
Pictures taken from Wikipedia
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Evaluation of Simulation Results

 Confidence interval according to the central limit theorem

 Idea: The central limit theorem is still valid if        is replaced by     . Thus, it 

is possible to calculate the critical values out of the normal           

distribution.

 Recapitulate the “flipping of a coin example” with       representing the 

distribution of the estimator and       being the distribution of the estimand. 

Then we can calculate the confidence interval as follows:
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Evaluation of Simulation Results

 Confidence interval according to the central limit theorem

The central limit theorem generates smaller confidence intervals

– Tschebyscheff [0.089, 0.811] 

Central Limit [0.262, 0.638] 

 Question: What is the minimum value for n to allow the assumption that          

the estimator is normally distributed?

– The minimum value of n depends on the distribution of the 

estimand     . In worst case scenarios, the mean of the estimand

may be outside the confidence interval with a probability       

which is significantly higher than     . 
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 Empirical evaluation of the confidence interval calculation 

according to the (student) t-distribution

 Problem: 

Only a view results for different distributions are known.

 In the following we assume that     is already normal distributed

follows a t-distribution with n-1 degrees of freedom

 Critical / popular values of the t-distribution can be taken from tables 

Evaluation of Simulation Results
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 Empirical evaluation of the confidence interval calculation 

according to the (student) t-distribution

 Idea:

Apply a known distribution and calculate the confidence 

interval. Then repeat the experiment k times and estimate the 

probability with which the outcome of the experiment remains 

within the calculated boundaries. 

 Example: 90% confidence interval, k = 500 repetitions

Evaluation of Simulation Results

Table taken from Law: Simulation Modeling and Analysis, 4th Edition
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Evaluation of Simulation Results

 Student-t distribution

Picture taken from Law: Simulation Modeling and Analysis, 4th Edition

Student-t distribution converges against the normal distribution with increasing 

numbers of degrees of freedom
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Evaluation of Simulation Results

 Breakdown point

 The Breakdown point represents a metric for the robustness of an 

estimator since it defines the percentage of samples which are required to 

falsify the result of the estimator. 
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Evaluation of Simulation Results

How to get useful simulation results out of a simulation
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Evaluation of Simulation Results

 Replicate-Delete Method (LK 9.5.2)

 Estimate the duration of the transient phase

 Replicate – Simulate a large number of runs 

 Delete – Remove the transient phase since it does not contain meaningful 

results

 The duration of the simulation has to be a much longer than the duration of 

the transient phase

 Calculate the confidence intervals by using the mean values of the 

individual simulation runs
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Evaluation of Simulation Results

 Replicate-Delete Method

 Advantage:

• Most simple approach

• Less affected by correlation

• Typically supported by all simulation tools

 Disadvantage:

• Requires correct estimation of the duration of the transient phase

• Underestimation of the duration of transient phase results in falsified 

simulation results

• Requires more time compared to Batch-Means since the transient 

phase has to be simulated several times
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Evaluation of Simulation Results / 

Statistics Fundamentals

 Covariance

Covariance is a measure which describes how two variables change together

 Special Case:

 Other Characteristics: 

•

•

•

•
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Evaluation of Simulation Results / 

Statistics Fundamentals

 Correlation function

Correlation function describes how two random variable tend to derivate 

from their expectation

 Characteristics:

• (Maximum positive)

• (Maximum negative)

• Both random variable tend to have either high or 

low values (difference to their expectation)

•
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0),( YXCor The random variables differ from each other such                                              

that one has high values while the other has low 

values and vice versa (difference to their 

expectation)
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Evaluation of Simulation Results / 

Statistics Fundamentals

 Autocorrelation (LK 4.9)

 Autocorrelation is the cross-correlation of a signal with itself. In the context 

of statistics it represents a metric for the similarity between observations of 

a stochastic process. From a mathematical point of view, autocorrelation 

can be regarded as a tool for finding repeating patterns of a stochastic 

process.

Definition:

 Correlation of two samples with distance k from a stochastic process X is 

given by:

with 

Use case:

 Test of random number generators (remember spectral test)

 Evaluation of simulation results (c.f. Batch-Means)

),( YXCor jii XY 
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Evaluation of Simulation Results

 Batch-Means Method (LK 9.5.3)

 Estimate the duration of the transient phase

 Perform a long simulation run

 Remove the transient phase

 Divide the gathered results in n intervals of equal length (Batches) which 

hold m samples

Assure that the mean of subsequent batches is uncorrelated

(calculate the empirical autocorrelation)

Number of batches                        Batch size 10n xm 10
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Evaluation of Simulation Results

 Batch-Means Method

 Calculate the confidence intervals by using the mean values of the batches

 Minimize the absolute and relative error by increasing the number of 

batches (longer simulation run)

Optional approach:

 Estimate the duration of the transient phase

 Choose a sufficient value for m

 Simulate until the confidence interval has the desired size
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Evaluation of Simulation Results

 Batch-Means Method

 Advantage:

• Minimizes the time to get meaningful results since only a single 

transient phase has to be simulated

• Errors of the estimation of the duration of the transient phase decrease 

with increasing number of batches

 Disadvantage:

• Calculation of n and m is complicated and usually requires detailed 

knowledge of the simulation

• Calculation of the autocorrelation of the intervals have to be calculated 

in order to assure that the corresponding means are not correlated
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Stationarity

 What’s stationarity? – An intuitive graphical explanation:
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Stationarity

 Its not just trends
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Mathematical definitions of stationarity

 Strong stationarity:

 All samples Xi are drawn from exactly the same underlying 

distribution

 In practice, this is hard or impossible to prove

 Other types of stationarity:

 Mean stationary: μ(Xi) = const ∀i

 Variance stationary: Var(Xi) = const ∀i

 Covariance stationary: Cov(Xi, Xi+k) = const(k) ∀i

(only dependent on lag)

 Weakly stationary: The Xi are mean stationary

and covariance stationary

 In practice, weak stationarity is most commonly used
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Arithmetics

Assume Xi and Yi are [weakly] stationary processes. Then…:

 You can shift a stationary process:

α + Xi is stationary, too

 You can scale a stationary process:

β ∙ Xi is stationary, too

 You can add stationary processes together:

Xi + Yi is stationary, too
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Why…?

 Important term in statistics

 Many methods, algorithms, mechanisms assume that all samples 

come from the same distribution

• Warning: We experience phenomena such as convergence phases at 

the beginning of simulations, etc. – this means it‟s not stationary [yet]!

• Often would need strong stationarity, but often weak can do the trick

 May be interesting to analyse if the output of a simulator / 

experiment / … is [weakly] stationary or not

 How to test for [weak] stationarity?

 Tests usually built into statistics packages

 Parametric tests for stationarity

• Make assumptions about underlying data (e.g., normally distributed)

 Nonparametric tests for stationarity

• Need more measurements (usually 5%–35% more samples)
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Example

 Calculating confidence intervals

 Assumption: All samples are drawn from the same population

 But what if you take measurements from a process that has not converged 

yet?

 Solution: Check the time series of measurements for stationarity


