Chair for Network Architectures and Services — Prof. Carle
Department of Computer Science

TU Minchen

Discrete Event Simulation

IN2045

Dipl.-Inform. Alexander Klein
Dr. Nils Kammenhuber
Prof. Dr.-Ing Georg Carle

Chair for Network Architectures and Services

Department of Computer Science
Technische Universitat Minchen
http://www.net.in.tum.de




X .
2g Topics

0 Generation of Random Variables
= |nversion, Composition, Convolution, Accept-Reject

a Distributions — Continuous
= Uniform, Normal, Triangle, Lognormal
= Exponential, Erlang-k, Gamma,

a Distributions - Discrete
= Uniform(discrete), Bernoulli, Geom, Poisson, General Discrete

Random Number Generator (RNG)
Linear Congruential Generator (LCG)
X? Test

Serial Test

Spectral Test

Shift Register

Generalized Feedback Shift Register
Mersenne Twister

o 0O 0 0 o0 o0 o0 o

Chapter is based on LK 6+8




— X/ : :
vog ntroduction - Random variates
=\

a Generation of U(0,1) random numbers
= (Generation approaches
» “Real”, “natural” random numbers: sampling from radioactive material or
white noise from electronic circuits, throwing dice, drawing from an urn, ...
* Problems:
— If used online: not reproducible
— Tables: uncomfortable, not enough samples
» USB - Random Number Generator — Developed at TUM

http://www.heise.de/newsticker/meldung/Appliance-liefert-50-Millionen-Zufallsbits-pro-
Sekunde-1125288.html

» Pseudo random numbers: recursive arithmetic formulas with a given
starting value (seed)

 in hardware: shift register with feedback (based on primitive
polynomials as feedback patterns)

* in software: linear congruential generator (LCG) (Lehmer, 1951), ...



http://www.heise.de/newsticker/meldung/Appliance-liefert-50-Millionen-Zufallsbits-pro-Sekunde-1125288.html
http://www.heise.de/newsticker/meldung/Appliance-liefert-50-Millionen-Zufallsbits-pro-Sekunde-1125288.html
http://www.heise.de/newsticker/meldung/Appliance-liefert-50-Millionen-Zufallsbits-pro-Sekunde-1125288.html
http://www.heise.de/newsticker/meldung/Appliance-liefert-50-Millionen-Zufallsbits-pro-Sekunde-1125288.html
http://www.heise.de/newsticker/meldung/Appliance-liefert-50-Millionen-Zufallsbits-pro-Sekunde-1125288.html
http://www.heise.de/newsticker/meldung/Appliance-liefert-50-Millionen-Zufallsbits-pro-Sekunde-1125288.html
http://www.heise.de/newsticker/meldung/Appliance-liefert-50-Millionen-Zufallsbits-pro-Sekunde-1125288.html
http://www.heise.de/newsticker/meldung/Appliance-liefert-50-Millionen-Zufallsbits-pro-Sekunde-1125288.html
http://www.heise.de/newsticker/meldung/Appliance-liefert-50-Millionen-Zufallsbits-pro-Sekunde-1125288.html
http://www.heise.de/newsticker/meldung/Appliance-liefert-50-Millionen-Zufallsbits-pro-Sekunde-1125288.html
http://www.heise.de/newsticker/meldung/Appliance-liefert-50-Millionen-Zufallsbits-pro-Sekunde-1125288.html
http://www.heise.de/newsticker/meldung/Appliance-liefert-50-Millionen-Zufallsbits-pro-Sekunde-1125288.html
http://www.heise.de/newsticker/meldung/Appliance-liefert-50-Millionen-Zufallsbits-pro-Sekunde-1125288.html
http://www.heise.de/newsticker/meldung/Appliance-liefert-50-Millionen-Zufallsbits-pro-Sekunde-1125288.html
http://www.heise.de/newsticker/meldung/Appliance-liefert-50-Millionen-Zufallsbits-pro-Sekunde-1125288.html

Y : :
g Generating random variates

a All algorithms are based on U(0,1) random variates

Q Selection criteria
= Exactness (generation of the desired distribution)
= Efficiency
« Storage requirements (large tables required?)
« Execution time
— Marginal execution time (for each sample)
— Setup time (at start time)
» Robustness (characteristics do not change for different parameters)
= Complexity (you have to understand before you implement it)

QO Huge literature available




'4" Random variates

o Measurement o Simulation
» Samples of a random variable X = Distribution function of the
random variable is known in
advance

= \What is the distribution function
of random variable X? - How to generate samples
which follow the distribution of

the random variable?

O ldea

= Generation of uniform distributed random numbers U(0,1)
(Random number generator)

= Transformation of the generated numbers according to the desired
distribution of the random variable




Xo=x> X=X

0 Random variable yi ~ U(0,1)

o Transformation of yi according to a distribution function F(x) in a
random variable Xi

= Vi=F(X)—>Xx= F_l(Yi)



iﬁ".‘ Inversion (LK 8.2)

Example: Generation of an exponential distribution with a mean value of A

a Algorithm:
» Generate U~U(0,1) (pseudo random numbers)

« Return X =F*(U)

0 Random variable yi ~ U(0,1)

o Transformation of yi according to a distribution function F(x) in a
random variable Xi

F(X)=<1_eﬂ If x>0
0 otherwise

symmetry

Flu)=-AIn(l-u) | >  Fu)=-Alnu




X .
w4 Composition

0 Desired distribution function expressed as a convex combination of
other distribution function

F(x)=> p,F;(x) where p>0,>p =1
=1 j

» Generate positive random integer J

P(J=])=0p, for 1=12,....

* Return X with distribution function F;




X .
VA%
,"4‘ Convolution

o Desired random variable can be described as the sum of other random

variable
= 1. Generate Y, Y, Ya, Y,
= Return X=Y+Y, +Y;+---+Y,
o Example:

» k- Erlang distributed random variable with a mean € can be expressed
as the sum of k exponential random variables with a common mean
k/e

o Advantage: simple and intuitive approach

0 Disadvantage: slow since multiple random number have to be
generated in order to get a single sample




;ﬁ"“ Accept-Reject-Method (LK 8.2.4)

o Inverse transform, combination, and convolution are direct methods
(work directly with the distribution function)

0 Accept-Reject is used when other methods fail or are inefficient

o Density function is complex — select a “simpler” density function r




'f‘ Accept-Reject-Method (LK 8.2.4)

0 Geometrical interpretation
Y will be accepted if the point (Y,U -t(Y)) falls under the curve f .

a The acceptance probability is high if t(Y)-f(Y) is small.

a0 Majorante von f(x) |:> VX :t(x) > f(x)




iﬁ'.“ Accept-Reject-Method (LK 8.2.4)

a Indirect approach:

Q Preparation:
= We need a function t that majorizes density f

t(x)> f(x) forall x
C= j_fot(x)dx > j‘i f (x)dx =1

= We obtain a density r by r(x):m
a Algorithm ¢

1. Generate a random variable Y according to a density r

2. Generate a random number U ~U(0,1) (independent of Y)

3. Retun X =Y if UK 1) (ACCEPT)

t((Y)
Otherwise, go back to step 1 and try again (REJECT)




;ﬁ"“ Accept-Reject-Method (LK 8.2.4)

0 Example: beta(4,3) distribution (6th order polynomial, hard to invert)

3(1—-xY if 0<x<
f(x): 60x° (1—x) if0<x<1
0 otherwise
Majorante -
von f(x) ’ t(X)
T 2.0736
1,5 -

r(x)

1

0,5 A




iﬁ'.“ Accept-Reject-Method (LK 8.2.4)

a Efficiency:
= Depends on the majorant series (X)
= Probability of acceptance is 1/c |:> Average number of iterations

0 Advantage:
= Works for arbitrary density functions

o Disadvantage:

= Number of required U(0,1) random numbers depends on the generated
numbers (may causes problems with some statistics and may result
variations of the simulation duration)

= Requires at two U(0,1) random numbers in each iterations




Y :
g Random number generation

How to generate random numbers according to different distributions?

TOUR OF ACCOUNTING

MINE NINE
NIMNE MINE
MIME MINE

OVER HERE
LIE HAVE QUR

RANDOM NUMBER
GEMERATOR.

oy & THA Walngd Faghing Smdiaaie, Int,




'4'. Random numbers - Continuous

o Uniform distribution: RV X ~U(a,b) (LK 8.3.1)
1

= Density function: f(x)= b—’ X e [a; b]
—d
= Range: [a- b]
= Distribution function: F(x)= b—a
= Expectation: E()( ) — a ;— b
2
= Variance: VAR(X) = (b-a)

12

= Generation: U~U(01,X =a+((b-a)u




(/
7

Y )
;q.‘ Random numbers - Continuous
/ N\

o Triangle distribution (1/3): RV X ~triang(a,b,c) (LK 8.3.15)
2-(x-2) if a<x<c
(b—a)-(c—a)
2-(b—x)
. i ion: f(x)= f c<x<b
Density function: (X) =+ (b—a)-(b—c)
otherwise
| 0
0 if x<a
2
- (x-a) if a<x<c
= Distribution function: f(X)=<( _a).b(c_%)
__(b=x) f c<x<b
(b—a)-(b—c)

1 If b<x

.




X )
;4(“ Random numbers - Continuous
/ N\

o Triangle distribution (2/3): RV X ~triang(a,b,c) (LK 8.3.15)

= Mode C

= Range [a; b]

» Expectation:  E(X)= aT_I_b

(a’+b*+c’*—ab—ac—hc)
12

= Variance: VAR(X) =

= Generation: Inversion (U < ¢)

U-~U(01,X ~triang(0,L,c) 0O<c<l




e

o Triangle distribution (3/3): RV X ~triang(a,b,c) (LK 8.3.15)

a ¥ c b a < c b

Probability Density Function Cumulative Density Function

Pictures taken from Wikipedia



X
Wa R m m
,"4‘ andom numbers

- Continuous

a Normal distribution(1/3):

= Density function:

Distribution function:
Range:

Mode:

Expectation:

Variance:

Scalability:

RV X ~N(u, o)

o

(LK 8.3.6)
(x—u)zj

2.5°

f(x) =

F(x) =
O
frooion]
Y7
E(X)=wu

VAR(X) =0"

Vor

X ~N(@0)1) = (u+0X)~N(u,c°)



X )
;4(“ Random numbers - Continuous
/ N\

o Normal distribution(2/3): RV X ~N(u,0°) (LK 8.3.6)

» (Generation Accept-Reject
- Two independent random variables  U,,U, ~U (0,1)

- V. =2U. -1
« W =V2+V2
 Algorithm:

Acceptif W <1

yo |22y vy X, =V, Y

W

Reject otherwise




X
Wa R
,"4‘ andom numbers

a Normal distribution(3/3):

RV X ~N(u, o)

T

1.0
N p=o0, a?=o.
f\ p=o0, 0?=1.

058 g=0, 02%=5.
= / \ H=-2, 0%=0.

2, —
0, m—
0, m—

5, —

Probability Density Function

(LK 8.3.6)

RN LSS EE EA R T2 EE RN AL

1.0
[ [g=0, 0%=0.2, =—
L (=0, 0%=1.0, =—
08 p=0, 0%=5.0, =
| | p=-2, 02=0.5, ==

LA f

=8 -4 =3 =2 =]l 0 1 2 3 4 5

Cumulative Density Function

Pictures taken from Wikipedia




X
Wa R
,"4‘ andom numbers

o Lognormal distribution(1/3): RV X ~LN(u,0°) (LK 8.3.7)

Special property of the lognormal distribution

it Y ~N(u o) I:> e" ~LN(u, o)

= Range: [0,0)

= Algorithm: Composition
— Y -~ N ,0'2 X = Y
(mo%) =
-

= Variance: VAR(X) = g2+’ (eaz —l)

Note that y and o are NOT the mean and the variance of the lognormal distribution!




X
Wa R
,"4‘ andom numbers

o Lognormal distribution(2/3): RV X ~LN(u,0°) (LK 8.3.7)

= Parameters of the normal distribution which is used to generate LN

- u=E[¥]=in —EXT
JE[XT +VAR[X]

- o’ =VAR[Y]= In[ E[XT" j

JE[XT +VAR[X]




e

a Lognormal distribution(3/3):

X ~LN(u,0°) (LK 8.3.7)

2'0ﬂ — T T T T T T[T T ] 10- —r T T T T T T T
] 0_8.-_ —
1.5 . . -
0.6-— —
1.0 —
. 1 04 | — 0=10 -
I - — 06=3/2 7
05,# b
: B — 0=1/2 1
| 1 %7 — o=1/4 ]
— o=1/8
. e e W : —1 ool & A R
0.0 0.5 1.0 1.5 2.0 2.5 30 00 0.5 1.0 1.5 20 2.5 3.0
X X
Probability Density Function Cumulative Density Function

Pictures taken from Wikipedia



X
Wa R
,"4‘ andom numbers

0 Exponential distribution(1/2): RV X ~exp(A) (LK 8.3.2)
= Density function: f(x)=4-e™ fur x>0

= Distribution function:  F(X) =1— p M

= Range: [0, OO[ Mode: 0
1

= Expectation: E(X)= 7

= Variance: VAR (X) = %

= Coefficient of variation: C,,, =1

—In(U)

= Generation: Inversion U ~U(0,1), X =




X )
;4(“ Random numbers - Continuous
/ N\

0 Exponential distribution(2/2): RV X ~exp(A) (LK 8.3.2)
1.6 . . . .
1.4k = A=0.5
1.2} — A=l
10 A=15
§ 0.8f -
0.6 -
0.4\ |
0.2} & ]
% 1 2 3 a4 s
X
Probability Density Function Cumulative Density Function

Pictures taken from Wikipedia




X )
;4(“ Random numbers - Continuous
/ N\

o Erlang-k distribution(1/3): RV X ~k—FErlang(1) (LK 8.3.3)

« RV X =Y, +Y,+Y,+---4+Y, where the Yi’s are IID exponential
random variables

( 2k k—=1,—Ax
AXe for x>0
= Density function: f(x)=9 (k=D!
0 Otherwise

r

k-1 (iX)i
I!

1-e ™.
= Distribution function: F (X) =9 i=0
0 Otherwise

for x>0

.

RV X represents the sum of k exponential random variables




X )
;4(“ Random numbers - Continuous
/ N\

o Erlang-k distribution(2/3): RV X ~k—FErlang(41) (LK 8.3.3)

= Range: [O,oo[
K
= Expectation: E(X) :Z
= Variance: VAR(X) zhz
k-1
= Mode: —
& 1
= Coefficient of variation: C,,, = —=
ar \/E
= Generation: _In(ol'_[kUi]

» Inversion U. ~U(0), X =

» Convolution RV X =Y, +Y, +Y;+---+Y,




'4'. Random numbers - Continuous

o Erlang-k distribution(3/3): RV X ~k—FErlang(41) (LK 8.3.3)

005 L L L L L L 1 T l
k=1,0=20 ——
k=2.0=20 —
k=3,0=20 —— 0.9
k=5.0=10 ——
04 I k=9.6=05 — 1 038
0.7
0.6
0.5
0.4
03
I k=1,0=20 —
0.2 k=20=20
k=3,6=20 ——
0.1 k=50=10 ——
0 k.=9'9=.0'5 —_—

._.
=
—
o
— b
)
(3]
(=]

0 2 - 6 8 10 12 14 16 18 20 0 2 4 6 8 10 12

Probability Density Function Cumulative Density Function

Pictures taken from Wikipedia




X )
;4(“ Random numbers - Continuous
/ N\

0 Gammadistribution(1/3): RV X ~gamma(a, ) (LK 8.3.4)

X

ﬂ—a . Xa_le p
= Density function: f(x)=+ ')

for x<0

0 Otherwise

_ Xj'
= Distribution function: ~ F(X) =5 1_37 : Z ( P

for x>0

0 Otherwise

= Parameter description:
» Location parameter y.  Shifting the distribution along the x-axis
« Scale parameter [3: Linear impact on the expectation
» Shape parameter a: Changes the shape of the distribution




X )
;4(“ Random numbers - Continuous
/ N\

o Gammadistribution(2/3): RV X ~gamma(a, ff) (LK 8.3.4)

j t7letdt  if x>0
0

= Gamma function: F(z) =
0 If x<0O
= Expectation: E(X)=a-pf
= Coefficient of variation:  C,,, =1
= Mode: 0 If a<l1
(-1 If =1

= (Generation:

« Stepl X ~gamma(e, ) > X =£4-Y Y ~gamma(a,l)

. Step2 Generation of X ~ gamma(a,l) with Accept-Reject




e

o Gammadistribution(3/3): RV X ~gamma(a, /) (LK 8.3.4)

f(x A
1.2

1.0

0.8

0.6

0.4

02F

Probability Density Function
Picture taken from LK, p. 285



(/
7

ey :
7 _
,A. Random numbers - Discrete

o Uniform (discrete) (1/2) RV X ~DU(, }) (LK 8.4.2)

= Distribution:

= Range:

= Expectation:

= Variance:

= Generation:

-

oK) = j_1i+1 if keli,i+Li+2,..,j}
0 Otherwise
i<k<j
(i+])

E(X)=

(X) >

VAR(X):(j—i+1)2—1

12
Inversion

U-~U@©01) X=i+|(j-i+1)-U|

DU(0,1) and Bernoulli(0.5) distributions are the same




e

o Uniform (discrete) (2/2) RV X ~DU(, }) (LK 8.4.2)

p(x) A

0i—i+ 1Dt

Distribution



X/ .
vsg Random numbers - Discrete
/N

a Bernoulli (1/2) RV X ~Bernoulli (p) (LK 8.4.1)

= Example: Flipping a coin (1_ p if k=0
= Distribution: p(k)=<p If k=1
\O Otherwise
. Range: i<k<j
= Expectation: E(X)=p
- Variance: VAR(X)=p-(1-p)
1-p

=  Coefficient of variation: Coar = .| ——




X/ .
vsg Random numbers - Discrete
/N

a Bernoulli (2/2) RV X ~Bernoulli (p) (LK 8.4.1)

Mode:

Generation:

Distribution

Bernoulli (0.3)

O or 1 (depends on the definition of the
outcome)

Inversion U ~U(0,1)

OiIf U<p
1 Otherwise

Random Variable X



X/ .
vsg Random numbers - Discrete
/N

o N-Bernoulli (1/2) RV X ~ Bernoulli (n, p) (LK 8.4.4)

= Example: Flipping a coin

n times
+ Distribution: o(k) = @ o (= p)™*  0<k<n
= Range: 0<k<n
= Expectation: E(X)=np
= Variance: VAR(X)=n-p-({1-p)

1-p

= Coefficient of variation: G, = .|———

n-p




X/ .
vsg Random numbers - Discrete
/N

o N-Bernoulli (2/2) RV X ~ Bernoulli (n, p) (LK 8.4.4)

= Mode: O or 1 (depends on the definition of the

outcome)
= Generation: Composition

Bernoulli (n, p) = ZBernouIIi (p)

0<i<n

= Distribution T

Bernou"l (20’03) &0:4~ ~ Bernou"i (20’07)

91011121314151617181920
m Variable X




X/ .
vsg Random numbers - Discrete
/N

o Geom (1/2) RV X ~Geom (p) (LK 8.4.5)

Example: Number of unsuccessful Bernoulli — Experiments until a
successful outcome (e.g. number of retransmissions)

Distribution: p(X)=p-(1-p)
Distribution function: F(X)=1-(1- p)LXJ+1
Expectation: E(X)= 1-p

P

e 1-p
Variance: VAR(X) =
P
1

Coefficient of variation: CVar = |—



e

o Geom (2/2) RV X ~Geom (p) (LK 8.4.5)

= Mode: 0

= Generation: Inversion U ~U(0,1)
| )
In(1— p)

= Distribution BB EEEEEEEEEEEEREREE
09

Geom (0.7) —

Bosf | 0o
O

| PO=p |

Geom (0.3) — ..

2 8 8 8 & & & 4 & & & o




X/ .
vsg Random numbers - Discrete
/N

o Poisson(1/3) RV X ~ Poisson (A1) (LK 6.2.4)

Example: Number of events that occur in an interval of time when the
events are occurring at a constant rate (number of items in a
batch of random size)

/IX

= Distribution: p(X) = R e it ¥ {0’1’2’".}
X!
(g
DI PR

= Distribution function: F (x) = i-o I

0 If x<O

Parameter: A>0




X/ .
vsg Random numbers - Discrete
/N

o Poisson(2/3) RV X ~ Poisson (1) (LK 6.2.4)

= Range: {0,1,2,3, }

= Expectation: E(X)=A4

= Variance: VAR(X) =41
1

=  Coefficient of variation: Coar = —7—
Ja

= Mode ANA-1 \isaninteger
I_lJ otherwise

= Special characteristics:

- Xx=0 |:> exponential distribution

(time interval between two consecutive events)
« Number of events until a certain point in time is Poisson distributed
« Period of time until n events have occurred is Erlang distributed




e

o Poisson(3/3) RV X ~Poisson (1) (LK 6.2.4)

PLxA plx)A

o061 A=05 ol A=1

0.5} 05

04+ 0.4T—

03+ 03 F

02F 02}

0.1+ 0.1

0 I 1 > 0 | 1 >

0 | 2 3 4 5 x 0 | 2 3 4 5 ¥

plx) B plx) N

0.6 8 A=2 0.6 A=6

05+ 05

04+ 04

03 0.3

02 | 0.2

0.1+ | 0.1 ' l |
01 23 45678910F 0123 45678910¢F

Picture taken from LK, p.309




e

a General Discrete(1/1) RV X ~GD (LK 8.4.3)

(p, if x=x,0<k<n
= Distribution: pP(X) =+ 0 Otherwise
= Generation: Inversion U~U(0,1

k-1 k
X =% fals > p;<U<> p,
j=0 j=0




Chair for Network Architectures and Services — Prof. Carle
Department of Computer Science

TU Minchen

Random number generator
algorithms and their quality

Some slides/figures taken from:
Oliver Rose
Averill Law, David Kelton
Wikimedia Commolnbs (user Matt Crypto)
Dilbert




e

Random Number Generator (RNG)
Linear Congruential Generator (LCG)
X? Test

Serial Test

Spectral Test

Shift Regqister

Generalised Feedback Shift Register
Mersenne Twister

U I Iy N A B R




iﬁ"“ Structure of this lecture

a Generating U(0,1) random numbers
= Motivation
= Qverview on RNG families
a Linear Congruential generators (LCG)
Q Statistical properties, statistical (empirical) tests
= x? test for uniformity
= Correlation tests: Runs-up, sequence
a Theoretical aspects, theoretical tests
= Period length
= Spectral test
0 RNG that are better than LCG




¥og Recall the inversion method
/N

U~u@ 1) | A®)

0 Generate uniformly distributed numbers € 0.0 ... 1.0
o Compute inverse Al(t) of PDF A(t)
0 Generate samples




gi(“ Generating U(0,1) random numbers is crucial

a For all random number generation methods, we need uniformly
distributed random numbers from ]0,1[
= U(0,1) random numbers are required

0 Mandatory characteristics

Random (...obviously)

Uniform (make use of the whole distribution function)
Uncorrelated (no dependencies): difficult!

Reproducible (for verification of experiments)
— use pseudo random numbers

Fast (usually, there is a need for a lot of samples)




iﬁ".‘ RNG in simulation vs. RNG in cryptography

a Also need for random numbers in cryptography

= Key generation

= Challenge generation in challenge-response systems
o Additional requirement:

» Prediction of future “random” values by sampling previous values must not
be possible

= |n simulation: not an issue if there is no real correlation
Q Lighter requirement:

= RNSs are not used constantly, only in ~start-up phases
= speed is not of much importance

= |n simulation: need lots of numbers
= speed is very important




vog Generation of U(0,1) random numbers: overview

Main families:
a Linear Congruential Generator (LCG): the simplest
o General Congruential Generators
» Quadratic Congruential Generator
= Multiple recursive generators
a Shift register with feedback (Tausworthe)
= E.g., Mersenne Twister: state-of-the-art

0 Composite generators: output of multiple RNG
= E.g., use one to shuffle (“twist”) the output of the other




g RNG: alternatives unsuitable for simulation
=\

a Algorithms from cryptography
» For example: counter—AES, counter—-SHA1, counter—MDY5, etc.
= Usually way too slow

o Calculate transcendent numbers (e.g., 1 or e), view their digits as
random

= E.g.: digits of 100,000" decimal place of T onwards
= Problem: Are they really random? There seems to be some structure...
a Physical generators (cf. previous lecture)
= Not reproducible, no seed
o Tables with pre-computed random numbers
= We need too many random numbers, the tables would have to be huge...




'4" Linear Congruential Generators

o Calculate RN from previous RN using some formula
o Sequence of integers Z;, Z,,... defined by

Z =(a-Z_,+c)(modm)

o with modulus M, multiplier A,

increment C, and seed ZO

Q C=0: multiplicative LCG

Example:
Z,=16807-Z,, (mod 2% -1)

(Lewis, Goodman, Miller, 1969)

O C>0: mixed LCG




;ﬁ"“ ...but they don’t create floats, but integers > 17!

a Obviously,
Z; = something mod m
and

something mod m<m

Q = Just normalise the result!
= Divide by m? But then, 1.0 cannot be attained.
= Better: Divide by m-1.




. Do they really generate uniformly distributed random

\/
'i. numbers?

a Test for uniformity:
= Create a number of samples from RNG
» Test if these numbers are uniformly distributed
a A number of statistical tests to do this:
= x° test (deutsch: Chi-Quadrat-Anpassungstest)
=  Kolmogorov-Smirnov test
= ... and a whole lot of others! For example:
« Crameér-von Mises test
» Anderson-Darling test

a Graphical examination (not real tests):
» Plot histogram / density / PDF
= Distribution-function-difference plot
= Quantile-quantile plot (Q-Q plot)
» Probability-probability plot (P-P plot)

> (later in course)




X .
W Histogram

a Given a series of n measurements X

a Partition the domain min{X} ... max{X}
Into m intervals 1,...1,

a Count how many X; fall into which interval |,
o Plotit:

Histogram of Xi

300
J

250
|

200
|

Frequency
150
|

100
|

o ~discretised density function
o Recommendation:

50
|

:
F




e

Obviously not U(0,1) random variables:

Histogram of RN

350
|

Frequency
150 200 250 300
L | \ |
I
|
I
I
|
I

100
|

50
|

0
|

(...0kay,




e

Obviously not U(0,1) random variables:

Histogram of RN

4000 5000
|

3000

Frequency

2000




e

Looks like a U(0,1) random variable...:

Histogram of RN

2000

1500
|

Frequency




e

...but obviously not U(0,1) random variables: huge gaps!

Histogram of RN

1000

800
\

Frequency




X .
W Histograms

a Gummibears — Original - 300g — (~130 Gummibears per package)

¥ oo m e
R e e T

e g 98 S g, e un

Lt be e

Histograms are based on samples taken from a 300g packages




7
". |stograms

a Gummibears — Original — 15009

200

180_“”””””

160_m,““m.

140+

iy

N

(=]
T

frequency
S
(@)

red orange

Histogram is based on samples taken from 5 x 300g packages

yellow green white

IN2045 — Discrete Event Simulation, WS 2010/2011

64



7
". |stograms

o Gummibears — Eaten by students during the lecture

60 ] !

(&)}
O
T

AN
O
T

N
(=
T

Number of eaten gummibears
w
(@]
T

—_
(=
T

IN2045 — Discrete Event Simulation, WS 2010/2011

65



52".‘ Statistical tests

Q

Scenario: Given a set of measurements, we want to check if they
conform to a distribution; here: U(0,1)

Graphs like presented before are nice indicators,
but not really tangible: “How straight is that line?” etc.

We want clearer things: Numbers or yes/no decisions

Statistical tests can do the trick, but...

= Warning #1: Tests only can tell if measurements do not fit a particular
distribution—i.e., no “yes, it fits” proof!
= Warning #2: The result is never absolutely certain, there is always an error
margin.
= Warning #3: Usually, the input must be ‘iid’:
* Independent
* |dentically distributed
= =You never get a ‘proof’, not even with an error margin!

IN2045 — Discrete Event Simulation, WS 2010/2011 66



iﬁ«"‘ X test (Pearson, 1900)

a Input:
= Series of n measurements X, ... X,
= A distribution function f (the ‘theoretical function’)
o Measurements will be tested against the distribution

= ~formal comparison of a histogram with the density function of the
theoretical function

a Null hypothesis HO:
The X are IID random variables with distribution function f




>\

— A/ : '
o' X test: How it works

Q
Q

Q

Divide [0...1] into k equal-size intervals

Count how many X; fall into which interval (histogram):
Nj = number of X; in j-th interval [a;; ... g
Calculate how many X; would fall into the j-th interval if they were

sampled from the theoretical distribution:

p, = E f(x)dx  (f: density of theor. dist.)

J

Calculate squared normalized difference between the observed and
the expected:

< (N —np;)’
2 . J J
X =

jzzl: P,

Obviously, if x2 is “too large”, the differences are too large, and we
must reject the null hypothesis

But what is “too large™?

IN2045 — Discrete Event Simulation, WS 2010/2011

68



iﬁ«"‘ X° test: Using the x# distribution

o X distribution
= A test distribution
= Parameter: degrees of freedom (short df)
» x2(k-1df) =T(*2(k-1), 2)
= Mathematically: The sum of n independent
squared normal distributions
o Compare the calculated x? against the x? distribution

= |f we use k intervals, then x? is distributed corresponding to the x?
distribution with k-1 df

= Let x°_1 1o be the (1—a) quantile of the distribution
= qais called the confidence level

= Reject HOif x> > ¥2,_, ;4 (i.e., the X; do not follow the theoretical
distribution function)




iﬁ«"‘ X’ test and degrees of freedom

O X2 test can be used to test against any distribution

a Easy in our case: We know the parameters of the theoretical
distribution f —it's U(0,1)
a Different in the general case:

= For example, we may know it's N(u, o) (normal distribution)
but we know neither y nor o

= Fitting a distribution: Find parameters for f that make f fit the
measurements X; best

= Topic of a later lecture
a Theoretically:
Have to estimate m parameters = Also have to take %, 1, 4 INtO
account

a Practically:
m<2 and large k = Don’t care...




'y, :
wa X ?
e X which parameters

o How many intervals (k)?
= A difficult problem for the general case
= Warning: A smaller or a greater k may change the outcome of the test!
= As a general rule, use k>100
= As a general rule, make the intervals equal-sized

= As another general rule, make sure that Vj: np; 2 5

(i.e., have enough samples that we expect to have at least 5 samples in
each interval)

O = As ageneral rule, you need a lot of measurements!
a What confidence level?

= At most a=0.10 (almost too much);
typical values: 0.001, 0.01, 0.05 [, and 0.10]

= The smaller, the better confidence in the test result




iﬁ".‘ Alternatives to test

0 Kolmogorov-Smirnov test (K-S test)
= Another very popular test
» Advantages:
« No grouping into intervals required
 Valid for any sample size, not only for large n
« More powerful than x? for a number of distributions
» Disadvantages:
 Applicability more limited than x2
« Difficult to apply to discrete data

« |f distribution needs to be fitted (unknown parameters),
then K-S works only for a number of distributions

0 Anderson-Darling test (A-D test)
= Higher power than K-S for some distributions

a ...a lot of other tests




Index (i-th random number)
but do they seem random!?

laquinu wopuel Yi-l jo anjep

0
[ -
o)

o
&
S
c
&
@)

Lo
c
©

‘r
c
=
©
e

o

Y—
o
®
O
c
o)
S
o
b}
7

2

e
-+
[ -
@

©
n
c
o

@)
O

a Theyarein U(0,1) ...

e



ey :
w4 Recall our requirements for RNG

o RNs have to be uncorrelated — how to test this?

o Statistical tests:
Draw some random numbers and examine them
= Runs-up test
= Serial test

a Theoretical parameters and theoretical tests:
» Length of period
= Spectral test
= Lattice test




'4" Runs-up test

a Run up :=the length of
a contiguous sequence
of monotonically increasing X..

a0 Example sequence:

0.86 > length: 1
0.11<0.23> length: 2
0.03<0.13> length: 2
0.06<0.55<0.64<0.87> length: 4
0.10 length: 1

o Calculate r, (number of runs up of length i)

o Compute a test statistic value R, using the r; and
a bestranging zoo of esoteric constants a; and b;

o R will have an approximate x? distribution with 6 df.




e

a Find possible correlations between subsequently drawn values

o Visual “tests”:
= 2D plot of X; and X ,
= 3D plot of X; and X, ; and X,
0 Generalisation: Serial test



/.




7
%4

LCG examples (2/5)

X(n+1)=(3141592653*X(n)+2718281829) mod 235, X(0)=5772156649, 0 < n < 10000

0.5
X(n) (normiert auf [0,1])




0<n <50000

)=0,

X(0

(129*X(n)+1) mod 2"35,

X(n+1)

LCG examples (3/5)

L

[
)

/

/2

X(n) (normiertauf[0,1])

e ki

— ()]

o




;ﬁ"“ LCG examples (4/5)

X(n+1)=(262145*X(n)+1) mod 2735, X(0)=47594188, 0 < n < 10000

1 T T L T
'.if-l "
ey 'ggi:';
. P 3 *

B ot ot
s B gy ]

oy 5

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
X(n) (normiert auf [0,1])




—~~
LO
S~~~
LO
~—
N
A
Q.
=
@©
x
o
O
O
-

n

=81

1.0

0.75

05

0.25%

0.0

0.0

19683

n=




X ;
VA%
,"4. Serial test

“a generalised and formalised version of the plots”

a Consider non-overlapping d-tuples of subsequently drawn random
variables X; :
Up = (X0, Xg, - Xg) - Uz = (Kgars Xazs -5 Xoq)

o These U;'s are vectors in the d-dimensional space

a Ifthe X are truly iid random variables, then the U, are truly random iid
vectors in the space [0...1]¢
(the d-dimensional hypercube)
o Test for d-dimensional uniformity (rough outline):
= Divide [0...1] into k equal-sized intervals

= Calculate a value x?(d) based on the number of U,
for each possible interval combination

= x2(d) has approximate distribution x2(k9-1 df)
= Rest: same as x? test above

IN2045 — Discrete Event Simulation, WS 2010/2011

82



iﬁ% RANDU

o A LCG with setup:
Z.=65,539 - Z_, mod 23!
o Advantage: It's fast.
= mod 231 can be calculated with a simple AND operation
= 65,539 is a bit more than 216; thus the multiplication (=expensive
operation) can be replaced by a bit shift of 16 bit plus three additions
(=cheap operations)
= Why 65,5397 It's a prime number.
0 Disadvantage:
= An infamously bad RNG! Never, ever use it!

= d=3: The tuples are clumped into 15 plains (remember the animated 3D
cube? That was RANDU!)

0 A lot of simulations in the 1970s used RANDU
= sceptical view on simulation results from that time




— A/ : :
¥og Theoretical parameters, theoretical tests
=\

o Tests so far: Based on drawing samples from RNG

o No absolute certainty!

= Usually, only a small subset of entire period is used
= Remember the x? test

a Theoretical parameters and tests
» Based directly on the algorithm and its parameters
= No samples to be drawn
= Often complicated




iﬁ".‘ Period length

o After some time, the “random” numbers must repeat themselves.
Why?
= LCG: Z;is entirely determined by Z,_,
= The same Z_, will always produce the same Z,
= There are only finitely many different Z,

= How many?
We take mod m = at most m different values

a Call this the period length




iﬁ'.“ Theorem by Hull and Dobell 1962

a ALCG has full period if and only if the following three conditions hold:

1. cisrelatively prime to m
(i.e., they do not have a prime factor in common)

2. If m has a prime factor q,
then (a—1) must have a prime factor g, too

3. If mis divisible by 4,
then (a—1) must be divisible by 4, too

a =Prime numbers play an important role

= Remember RANDU?
At least, it used a prime number...
o Multiplicative RNGs (i.e., no increment Z+c) cannot have period m.
(But period (m—1) is possible if m and a are chosen carefully.)




't". LCG and period length considerations

Q

On 32 bit machines, m<231 or m<232? due to efficiency reasons = period
length 4.3 billion

Calculating that many random numbers only takes a couple of seconds
on today’s hardware

Theory suggests to use only \/ period length numbers;
that's only 65,000 random numbers

How many random numbers do we need?

Example:
» Simulate behaviour of 1,000 Web hosts
= Each host consumes on average 1 random number per simulation second
» Result: We can only simulate for one minute!

We need much longer period lengths

IN2045 — Discrete Event Simulation, WS 2010/2011

87



&v’.‘ Spectral test (coarse description)

a ~ The theoretical variant of the serial test
a Observation by Marsaglia (1968):
“‘Random numbers fall mainly in planes.”

= Subsequent overlapping (!) tuples U..
Ul (X1’ Xza . Xd) U (Xz’ Xss . Xd+1)
fall on a relatlvely small number of (d-1)- dlmenS|onaI hyperplanes within
the d-dimensional space

» Note the difference to the serial test! (overlapping)
= ‘Lattice’ structure
o Consider hyperplane families that cover all tuples U,
Calculate the maximum distance between hyperplanes. Call it &.

a If 4 is small, then the generator can ~uniformly fill up the d-
dimensional space

(]

IN2045 — Discrete Event Simulation, WS 2010/2011

88



iﬁ"“ Spectral test and LCG

Q

For LCG, it is possible to give a theoretical lower bound d,*:
04204 =11 (yqy mtd)
Y4 IS a constant whose exact value is only known for d<8 (dimensions
up to 8)
LCG do not perform very well in the spectral test:

= All points lie on at most m¥" hyperplanes (Marsaglia’s theorem)
= Serial test: similar

= There are way better random number generators than linear congruential
generators.




n'ay : :
L/
,'A. Discussion of LCGs

o Advantages:
= Easy to implement
» Reproducible
= Simple and fast

0 Disadvantages:

» Period (length of a cycle) depends on
parameters a, ¢, and m

= Distribution and correlation properties of generated sequences are not
obvious

= A value can occur only once per period (unrealistic!)

= By making a bad choice of parameters, you can
screw up things massively

» Bad performance in serial test / spectral test even for good choice of
parameters




iﬁ"“ Beyond LCGs

a Why linear?

» Quadratic congruential generator:

Zi=(@-(£i)”ta - Z)modm

= Period is still at most m
a Why only use one previous X?

= Multiple recursive generator:

Zi= (i taZ ,+agZi 5+ ... +aZ,) mod m
= Period can be mY-1 if parameters are chosen properly

a Why not change multiplier a and increment ¢ dynamically, according to
some other congruential formula?

= Seems to work alright




iﬁ'.“ Feedback Shift Register Generators (1/2)

Q

Linear feedback shift register generator (LFSR) introduced by
Tausworthe (1965)

Operate on binary numbers (bits), not on integers
Mathematically, a multiple recursive generator:
b, = (c,biy + b, +C3b 5+ ... + cby) mod 2
= ¢ constants that are either O or 1
" ¢, =1 (why?)
= Observe that + mod 2 is the same as XOR
(makes things faster)

In hardware:
Feedback Output

3 0|1,1(0(1{0j0|0j1|1f1|1{0(0|1|1




'f. Feedback Shift Register Generators (2/2)

o Usually only two cj coefficients are 1, thus:
b, = (b, +b;_,) mod 2

0 LFSR create random bits, not integers
» Concatenate { bits to form an £-bit integer:

= b(i—1)8+1 b(i—1)8+2 ... bit

a Properties

» Period length of the bi = 2g-1 if parameters chosen accordingly
(Note: characteristic polynomial has to be primitive over Galois field
F2...)

= Period length of the generated ints accordingly lower?
« Depends on whether £ | 2g—1 or not—probably not the case
« But there may be some correlation after one period

= Statistical properties not very good

= Combining LFSRs improves statistics and period

IN2045 — Discrete Event Simulation, WS 2010/2011

93



Y@ Generalised feedback shift register (GFSR)

a Lewis and Payne (1973)

0 To obtain sequence of {-bit integers Y,, Y,, ...
= Leftmost bit of Y, is filled with LFSR-generated bit b,

Next bit of Yi is filled with LFSR-generated bit after some “delay” d: b,
Repeat that with same delay for remaining bits up to length £

o Mathematical properties

Period length can be very large if g is very large, e.g., Fushimi (1990):
period length = 25211 = 6.86 - 1016

If £<q, then many Y;’s will repeat during one period run (Is that good or
bad?)

If two bits (as with LFSR), then Y; =Y, @D Y




iﬁ".‘ Mersenne Twister (1/2)

0 Before we go into the mathematical details...
= Very, very long period length: 219.937—1 > 1(06.000
= Very good statistical properties: OK in 623 dimensions
= Quite fast
o State of the art: One of the best we have right now
= The RNG of choice for simulations
» Default RNG in Python, Ruby, Matlab, GNU R
= Admittedly, there are even (slightly) better RNGs, cf. TestUO1
paper
o Two warnings:

= Not suitable for cryptographic applications:
Draw 624 random numbers and you can predict all others!
= Can take some time (“warm-up period”) until the stream generates
good random numbers
« Usually hidden from programmer through library
 |If in doubt, discard the first 10,000 drawn numbers

IN2045 — Discrete Event Simulation, WS 2010/2011

85



iﬁ".‘ Mersenne Twister (2/2)

a Twisted GFSR (TGFSR)
= Matsumoto, Kurita (1992, 1994)

= Replace the recurrence of the GFSR by
Y=Y DA Y,
where:
 the Y, are f x 1 binary vectors
« Ais an{ x{ binary matrix

= Period length = 29-1 with suitable choices forr, g, A
a Mersenne Twister (MT19937)
= Matsumoto, Nishimura (1997, 1998)
= Clever choice of r, g, A and the first Y, to obtain good statistical properties
= Period length 219937—1 = 4,3 - 105901 (Mersenne prime: 2"-1)




iﬁ"“ Digression: Period lengths revisited

What period lengths do we actually require?

0o Estimate #1:
= A cluster of 1 million hosts

= each of which draws 1,000,000 - 232 per second (~1,000,000 times as fast
as today’s desktop PCs)

= for ten years
will require...
= 5.6 - 102” random numbers
= (Make the PCs again 106 times faster > 5.6 - 1039)
0 Estimate #2: What's the estimated number of electrons within the
observable universe (a sphere with a radius of ~46.5 billion light years)
= About 1080 (+ take or leave a few powers of 10)




iﬁ"“ Test batteries

o A lot of tests, a lot of different RNGs
a How to compare them?

0 Benchmark suites (‘Test batteries’)
that bundle many statistical tests:

= TestUO1 (L’Ecuyer)
= DIEHARD suite (Marsaglia)

= NIST test suite (National Institute of Standards and Technologies;
2 Physikalisch-Technische Bundesanstalt)




iﬁ".‘ Conclusion: Quality tests for RNG

0 Empirical tests (based on generated samples)
= For U(0,1) distribution: x? test
» For independence: autocorrelation, serial, run-up tests
a Theoretical tests (based on generation formula)
» Basic idea: test for k-dimensional uniformity
» Points of sequence form system of hyperplanes
= Computation of distance of hyperplanes for several dimensions k
» Rather difficult optimization problem

o Conclusion

» |Implement/use only tested random number generators from literature, no
“‘home-brewed” generators!

= When in doubt, use the Mersenne Twister
(but not for cryptography!)




'4" RNG: outlook

a A wide research field, still somewhat active
= Many more algorithms exist
= Many more tests for randomness exist
= More are being developed
a If you are interested in this topic, you might want to have a look at this
quite readable paper:

= L’Ecuyer, Simard
TestUOL: a C library for empirical testing of random number

generators
ACM Transactions on Mathematical Software,

Volume 33, No. 4, 2007

100




