Discrete Event Simulation

IN2045

Dipl.-Inform. Alexander Klein
Dr. Nils Kammenhuber
Prof. Dr.-Ing Georg Carle

Chair for Network Architectures and Services
Department of Computer Science Technische Universität München http://www.net.in.tum.de

Topics

- Waiting Queues
- Random Variable
- Probability Space
- Discrete and Continuous RV
- Frequency Probability(Relative Häufigkeit)
- Distribution(discrete)
- Distribution Function(discrete)
- PDF,CDF
- Expectation/Mean, Mode,
- Standard Deviation, Variance, Coefficient of Variation
- p-percentile(quantile), Skewness, Scalability Issues(Addition)
- Covariance, Correlation, Autocorrelation
- Visualization of Correlation
- PP-Plot
- QQ-Plot

Statistics Fundamentals

Waiting Queue Theory

3.4
0.6
1.7
1.6
0.7
0.7
1.3
inter-arrival times
service times

Statistics Fundamentals

What are we talking about... and why?

- Simple queue model:
- Customers arrive at random times
- Execution unit serves customers (random duration)
- Only one customer at a time; others need to queue
- Standard example
- Give deeper understanding of important aspects, e.g.
- Random distributions (input)
- Measurements, time series (output)

Statistics Fundamentals

Queuing model: Input and output

- Input:
- (Inter-)arrival times of customers (usually random)
- Job durations (usually random)

- Direct output:
- Departure times of customers
- Indirect output:
- Inter-arrival times for departure times of customers
- Queue length
- Waiting time in the queue
- Load of service unit (how often idle, how often working)

Statistics Fundamentals

Little Theorem

event

Statistics Fundamentals

Little Theorem

a λ : average arrival rate

- $E[X]$: average number of packets in the system
- $E[T]$: average retention time of packets in the system

$$
t_{o} \rightarrow \infty
$$

$\bar{T}=\frac{1}{N} \sum_{i=1}^{N} T_{i} \approx \frac{1}{N} \int_{0}^{t_{o}} X(t) d t$
$\lambda=\lim _{t_{o} \rightarrow \infty} \bar{\lambda}=\lim _{t_{o} \rightarrow \infty} \frac{N}{t_{o}}$
$\bar{X}=\frac{1}{t_{o}} \int_{0}^{t_{o}} X(t) d t \longleftrightarrow \bar{X} \approx \frac{N}{t_{o}} E[T]$
$E[T]=\lim _{t_{o} \rightarrow \infty} \bar{T}=\lim _{t_{o} \rightarrow \infty} \frac{1}{N} \sum_{i=1}^{N} T_{i}$
$\bar{\lambda} \approx \frac{N}{t_{o}} \longleftrightarrow \bar{\lambda} \cdot \bar{T} \approx \bar{X}$
$E[X]=\lim _{t_{o} \rightarrow \infty} \bar{X}=\lim _{t_{o} \rightarrow \infty} \frac{1}{t_{o}} \int_{0}^{t_{o}} X(t) d t$

Statistics Fundamentals

- Kendall Notation
$\mathrm{Gl}^{[\mathrm{x}]} / \mathrm{Gl} / \mathrm{n}-\mathrm{S}$

Number of Places in the Queue S = 0 Loss/Blocking System
$S=\infty$ Waiting System
Number of Servers
Service Time Distribution
Batch Arrival Process
Arrival Process

Statistics Fundamentals

- Queuing Discipline
- FIFO/FCFS
- LIFO / LCFS
- SIRO
- PNPN
- EDF
- Distributions
- M
- D
- Ek
- Gl
- H_{k}

Markovian
Degenerate Distribution
Erlang Distribution
General distribution
Hyper exponential

Exponential Service Time
A deterministic service time
Erlang k distribution
General independent
Hyper k distribution

Statistics Fundamentals

- System Characteristics
- Average customer waiting time
- Average processing time of a customer
- Average retention time of a customer
- Average number of customers in the queue
- Customer blocking probability
- Utilization of the system / individual processing units
- Example

How to model and evaluate waiting queues in OPNET

Statistics Fundamentals

- Exercise
- System A: D / D / 1-m
- Arrival rate $\lambda=1 / \mathrm{s}$
- Service rate $\mu=[1 ; 10] / \mathrm{s}$
- System B: M / M / 1-m
- Arrival rate $\lambda=1 / \mathrm{s}$
- Service rate $\mu=[1 ; 10] / \mathrm{s}$
- System C: M / M / 20-m
- Arrival rate $\lambda=10 / \mathrm{s}$
- Service rate $\mu=1$ / s
- System D: M / M / 1-m
- Arrival rate $\lambda=10 / \mathrm{s}$
- Service rate $\mu=20$ / s
- What is the maximum (meaningful) utilization of the system?
- Which system performs better?
- What impact does the utilization have on the system?
- Which system performs better?
- Would you prefer a single fast processing unit instead of multiple slow processing units?

Statistics Fundamentals

- Exercise
- System E: M / M / 10- $-\infty$
- Arrival rate $\lambda=9 / \mathrm{s}$
- Service rate $\mu=1$ / s
- System F: M / M / 100-m
- Arrival rate $\lambda=90 / \mathrm{s}$
- Service rate $\mu=1$ / s
- System G: M / D / 1-m
- Arrival rate $\lambda=1 / \mathrm{s}$
- Service rate $\mu=1$ / 0.7 / s
- System H: D / M / 1-m
- Arrival rate $\lambda=1 / \mathrm{s}$
- Service rate $\mu=1$ / 0.7 / s

Statistics Fundamentals

- System G: M / D / 1- $-\infty$

$\lambda=1$

$$
P(T>0.7 s)=1-P(T \leq 0.7 s)=0.55
$$

- System H: D / M / 1-m

$$
P(T<1 s)=0.75
$$

Statistics Fundamentals

Flowchart
Arrival Process

Statistics Fundamentals

Statistics Fundamentals

- M/M/n-m
- System of equations

$$
\begin{aligned}
& \lambda x(i-1)=i \mu x(i), \quad i=1,2,3, \ldots, n, \\
& \lambda x(i-1)=n \mu x(i), \quad i=n+1, \ldots \\
& \sum_{i=0}^{\infty} x(i)=1
\end{aligned}
$$

State Transition Diagram - M / M / n- ∞
Picture taken from Tran-Gia, Analytische Leistungsbewertung verteilter Systeme, p. 98

Statistics Fundamentals

- M/M/10-

State Distribution - M / M / 10-
Picture taken from Tran-Gia, Analytische Leistungsbewertung verteilter Systeme, p. 99

Statistics Fundamentals

- M/M/10-
- The waiting probability decreases with an increasing number of processing units (assuming constant utilization)

- $\mathrm{n}=$ number of processing units
- ρ_{W} - Waiting probability

Picture taken from Tran-Gia, Analytische Leistungsbewertung verteilter Systeme, p. 100

Statistics Fundamentals

Classic definition of probability

The theory of chance consists in reducing all the events of the same kind to a certain number of cases equally possible, that is to say, to such as we may be equally undecided about in regard to their existence, and in determining the number of cases favorable to the event whose probability is sought. The ratio of this number to that of all the cases possible is the measure of this probability, which is thus simply a fraction whose numerator is the number of favorable cases and whose denominator is the number of all the cases possible.

[^0]
Statistics Fundamentals

- Random Variable

Probability Space (Ereignisraum) $\boldsymbol{\Omega}=\left\{\omega_{1}, \omega_{2}, \omega_{3}, \omega_{4}, \ldots, \omega_{i}\right\}$

Statistics Fundamentals

- Discrete Random Variable:
- Example: Flipping of a coin
- $\omega_{1}=\{$ head -0$\}, \omega_{2}=\{$ tail -1$\}$
- Xe\{0,1\}
- Example: Rolling two dice

Countable

$$
=>\Omega=\left\{\omega_{1}, \omega_{2}\right\}
$$

- $\omega_{1}=\{2\}, \omega_{2}=\{3\}, \ldots, \omega_{11}=\{12\} \quad=>\Omega=\left\{\omega_{1}, \omega_{2}, \ldots, \omega_{11}\right\}$
- Xe e $2,3,4, \ldots, 12\}$
- Continuous Random Variable:
- Example: Round Trip Time
- T e $\{5 \mathrm{~ms}, 200 \mathrm{~ms}\}$
- $\omega_{1}=\{\mathrm{t}<10 \mathrm{~ms}\}, \omega_{2}=\{10 \mathrm{~ms} \leq \mathrm{t}<20 \mathrm{~ms}\}$,

$$
\omega_{3}=\{t \geq 20 \mathrm{~ms}\}=>\Omega=\left\{\omega_{1}, \omega_{2}\right\}
$$

- Example: Sensed Interference Level

Discrete or not discrete

Statistics Fundamentals

- Frequency Probability / Law of large numbers (Relative Häufigkeit)
- Number of random experiments
- n total number of trials
- X_{i} event or characteristic of the outcome
- ni number of trials where the event Xi_{i} occurred

$$
\begin{array}{llll}
h\left(X_{i}\right)=\frac{n_{i}}{n} & 0 \leq h\left(X_{i}\right) \leq 1 & \sum_{i} h\left(X_{i}\right)=1 & \begin{array}{l}
\text { Vollständigkeits- } \\
\text { relation }
\end{array} \\
P\left(X_{i}\right)=\lim _{n \rightarrow \infty} \frac{n_{i}}{n} & 0 \leq P\left(X_{i}\right) \leq 1 & \sum_{i} P\left(X_{i}\right)=1 & \text { Xi disjoint }
\end{array}
$$

Statistics Fundamentals

- Vollständiges Ereignissystem

$$
P(Y)=\sum_{i=1}^{N} P\left(X_{i}\right)
$$

- Verbundereignis

$$
\begin{aligned}
& P(X \cap Y)=P(X, Y)=P(Y, X) \\
& P(X \cup Y)=P(X)+P(Y)-P(X \cap Y)
\end{aligned}
$$

- Bedingte Wahrscheinlichkeit

$$
P(X \mid Y)=\frac{P(X, Y)}{P(Y)} \quad \longleftrightarrow \quad P(X \mid Y) \geq P(X, Y)
$$

- Statistische Unabhängigkeit

$$
P(X \mid Y)=P(X) \quad v \quad P(X, Y)=P(X) P(Y)
$$

Statistics Fundamentals

- Vollständiges Ereignissystem
- $P(Y)=\sum_{i=1}^{N} P\left(X_{i}, Y\right)$

- Bayes Function
- $P\left(X_{i} \mid Y\right)=\frac{P\left(Y \mid X_{i}\right) \cdot P\left(X_{i}\right)}{P(Y)}=\frac{P\left(Y \mid X_{i}\right) \cdot P\left(X_{i}\right)}{\sum_{k=1}^{N} P\left(Y \mid X_{k}\right) \cdot P\left(X_{k}\right)}$

Statistics Fundamentals

- Distribution (Verteilung)

X - discrete random variable

- Function $x(i)=P(X=i) \quad, \quad i=0,1,2, \ldots, X \max \quad$ (Distribution)
$-x(i)$ e [0,1]

$$
-\sum_{i=0}^{X_{\text {max }}} x(i)=1 \quad \text { (Vollständigkeitsrelation) }
$$

- Example:

Rolling two dice

- $\omega_{1}=\{2\}, \omega_{2}=\{3\}, \ldots, \omega_{11}=\{12\} \quad \Rightarrow>=\left\{\omega_{1}, \omega_{2}, \ldots, \omega_{11}\right\}$
- X e $\{2,3,4, \ldots, 12\}$

Statistics Fundamentals

- Example: Throwing two dice

Sample Space (Ereignisraum)

$(1,1)$	$(1,2)$	$(1,3)$	$(1,4)$	$(1,5)$	$(1,6)$
$(2,1)$	$(2,2)$	$(2,3)$	$(2,4)$	$(2,5)$	$(2,6)$
$(3,1)$	$(3,2)$	$(3,3)$	$(3,4)$	$(3,5)$	$(3,6)$
$(4,1)$	$(4,2)$	$(4,3)$	$(4,4)$	$(4,5)$	$(4,6)$
$(5,1)$	$(5,2)$	$(5,3)$	$(5,4)$	$(5,5)$	$(5,6)$
$(6,1)$	$(6,2)$	$(6,3)$	$(6,4)$	$(6,5)$	$(6,6)$

Statistics Fundamentals

- Example: Throwing two dice

Sample Space (Ereignisraum)

$(1,1)$	$(1,2)$	$(1,3)$	$(1,4)$	$(1,5)$
$(1,6)$				
$(2,1)$	$(2,2)$	$(2,3)$	$(2,4)$	$(2,5)$
$(2,6)$				
$(3,1)$	$(3,2)$	$(3,3)$	$(3,4)$	$(3,5)$
$(3,6)$				
$(4,1)$	$(4,2)$	$(4,3)$	$(4,4)$	$(4,5)$
$(4,6)$				
$(5,1)$	$(5,2)$	$(5,3)$	$(5,4)$	$(5,5)$
$(5,6)$				
$(6,1)$	$(6,2)$	$(6,3)$	$(6,4)$	$(6,5)$
$(6,6)$				

Statistics Fundamentals

Statistics Fundamentals

Palour Game: Die Siedler von Catan

- Rules:
- Players are only allowed to build along borders of a field
- Players roll two dice
- If the sum of the dice corresponds to the number of the field, the player gets the resources from this field
- Question
- Where is the best place for a
 building?

Statistics Fundamentals

Statistics Fundamentals

Are all fields reached with the same probability?

Statistics Fundamentals

- Distribution (Verteilung)
- Discrete random variable X
- i value of the random variable X
- $x(i)$ probability that the outcome of random variable X is i
- $x(i)=P\{X=i\}, \quad i=0,1, \ldots, X_{\max } \quad$ (Distribution)
- $\sum_{i=0}^{X_{\text {max }}} x(1)=1 \quad$ (Vollständigkeitsrelation)

Statistics Fundamentals

- Distribution function (Verteilungsfunktion)

$$
X(t)=P\{X \leq t\}
$$

- $t_{1}<t_{2} \longmapsto X\left(t_{1}\right) \leq X\left(t_{2}\right) \quad$ (monotony)
- $t_{1}<t_{2} \quad \longrightarrow P\left\{t_{1}<X \leq t_{2}\right\}=X\left(t_{2}\right)-X\left(t_{1}\right)$
- $X(-\infty)=0 \wedge \quad X(\infty)=1$
- $X^{c}(t)=1-X(t)=P\{X>t\}$

Statistics Fundamentals

Difference between distribution and distribution function

Distribution
(Verteilung)

Distribution function (Verteilungsfunktion)

Statistics Fundamentals

- Continuous random variable

Probability Density Function (Verteilungsdichtefunktion)

$$
x(t)=\frac{d}{d t} X(t)
$$

Cumulative Density Function

$$
X(t)=\int_{-\infty}^{t} x(t) d t
$$

Statistics Fundamentals

- Expectation (Erwartungswert)
- X : Probability density function
- $g(x)$: Function of random variable X

$$
E[g(X)]=\int_{-\infty}^{\infty} g(t) \cdot x(t) d t
$$

- Mean (Mittelwert einer Zufallsvariablen)

$$
m_{1}=E[X]=\int_{-\infty}^{\infty} t \cdot x(t) d t
$$

- Mode (Outcome of the random variable with the highest probability)

$$
c=\operatorname{Max}(x(t))
$$

Statistics Fundamentals

- Gewöhnliche Momente einer Zufallsvariablen
- $g(X)=X^{k} \longleftrightarrow m_{k}=E\left[X^{k}\right]=\int_{-\infty}^{\infty} t^{k} \cdot x(t) d t, \quad k=0,1,2, \ldots$
- Central moment (Zentrales Moment)
- Variation of the random variable in respect to its mean

$$
\begin{aligned}
& g(X)=\left(X-m_{1}\right)^{k} \\
\longleftrightarrow & \mu_{k}=E\left[\left(X-m_{1}\right)^{k}\right]=\int_{-\infty}^{\infty}\left(t-m_{1}\right) \cdot x(t) d t, \quad k=0,1,2, \ldots
\end{aligned}
$$

- Special Case (k=2):

$$
\mu_{2}=E\left[\left(X-m_{1}\right)^{2}\right]=\operatorname{VAR}[X]
$$

Statistics Fundamentals

- Standard deviation (Standardabweichung)
- $\sigma_{X}=\sqrt{\operatorname{VAR}[X]}$

- Coefficient of variation (Variationskoeffizient)
- $c_{X}=\frac{\sigma_{X}}{E[X]}, \quad E[X]>0$
- The coefficient of variation is a normalized measure of dispersion of a probability distribution
- It is a dimensionless number which does not require knowledge of the mean of the distribution in order to describe the distribution

Picture taken from Wikipedia

Statistics Fundamentals

- p-percentile tp (p-Quantil)

A percentile is the value of a variable below which a certain percent of observations fall

- VDF $F: R \rightarrow(0,1) \quad$ (bijective)
- $F(x)=P(X<x)=p$
- $F^{-1}(x)=\inf \{x \in R: p \leq F(x)\}$
- Special Case:
- Median 0.5-percentile
- Upper percentile 0.75-percentile
- Lower percentile 0.25-percentile
- Typical Use Case:
- QoS in networks (e.g. 99.9\%-percentile of the delay)

Cumulative Density Function

Statistics Fundamentals

- Skewness (Schiefe)

Skewness describes the asymmetry of a distribution

- $\mathrm{v}<0$: The left tail of the distribution is longer (linksschief)
=> Mass is concentrated in the right
- $v>0$: The right tail of the distribution is longer (rechtsschief)
=> Mass is concentrated in the left

$$
v_{X}=E\left[\left(\frac{X-\mu}{\sigma}\right)^{3}\right]=\frac{\mu_{3}}{\sigma^{3}}
$$

Negative Skew

Positive Skew
Picture taken from Wikipedia

Statistics Fundamentals

- Scalability Issues
- Multiplication of a random variable X with a scalar s
- $\quad Y=s \cdot X$
- $E[Y]=s \cdot E[X]$
- $\operatorname{VAR}[Y]=s^{2} \cdot \operatorname{VAR}[X]$
- Addition of two random variables X and Y
- $Z=X+Y$
- $E[Z]=E[X]+E[Y]$
- $\operatorname{VAR}[Z]=\operatorname{VAR}[X]+V A R[Y]$ (only if A and B independent)

Statistics Fundamentals

- Covariance

Covariance is a measure which describes how two variables change together

$$
\operatorname{Cov}(X, Y)=E[(X-E[X])(Y-E[Y])]=E[X Y]-E[X] \cdot E[Y]
$$

- Special Case: $\operatorname{Cov}(X, X)=\operatorname{VAR}[X]$
- Other Characteristics:
- $\operatorname{Cov}(X, a)=0$
- $\operatorname{Cov}(X, Y)=\operatorname{Cov}(Y, X)$
- $\operatorname{Cov}(a X, b Y)=a b \operatorname{Cov}(X, Y)$
- $\operatorname{Cov}(X+a, Y+b)=\operatorname{Cov}(X, Y)$

Statistics Fundamentals

- Correlation function

Correlation function describes how two random variable tend to derivate from their expectation

- Characteristics:

$$
\operatorname{Cor}(X, Y)=\frac{\operatorname{Cov}(X, Y)}{\sqrt{\operatorname{VAR}(X) \cdot \operatorname{VAR}(Y)}}
$$

- $Y=X$

$\operatorname{Cor}(X, Y)=1$
(Maximum positive)
- $Y=-X \quad \operatorname{Cor}(X, Y)=-1 \quad$ (Maximum negative)
- $\operatorname{Cor}(X, Y)>0 \quad$ Both random variable tend to have either high or low values (difference to their expectation)
- $\operatorname{Cor}(X, Y)<0 \quad$ The random variables differ from each other such that one has high values while the other has low values and vice versa (difference to their expectation)

Statistics Fundamentals

- Autocorrelation (LK 4.9)
- Autocorrelation is the cross-correlation of a signal with itself. In the context of statistics it represents a metric for the similarity between observations of a stochastic process. From a mathematical point of view, autocorrelation can be regarded as a tool for finding repeating patterns of a stochastic process.

Definition:

- Correlation of two samples with distance k from a stochastic process X is given by:

Use case:

- Test of random number generators
- Evaluation of simulation results (c.f. Batch-Means)

Statistics Fundamentals

Example:

00101110101001101100010011101010100011 00101110101001101100010011101010100011

Random

Autocorrelation Lag 4

Statistics Fundamentals

- Visualization of Correlation

Example: Two random variables X and Y are plotted against each other

1.0	0.8	0.4	0.0	-0.4	-0.8	-1.0
						Δ
1.0	1.0	1.0		-1.0	-1.0	-1.0
			.----------....		ϑ	
0.0	0.0	0.0	0.0	0.0	0.0	0.0

Picture taken from Wikipedia

Statistics Fundamentals

- Visual comparison of different distributions
- Quantile-Quantile Plot
- Probability-Probability Plot

Statistics Fundamentals

Quantile-Quantile plots (QQ plots)

- Usage: Compare two distributions against each other
- Usually: Measurement distribution vs. theoretical distribution - do the measurements fit an assumed underlying theoretical model?
- Also possible: Measurement distribution vs. other measurement distribution - are the two measurement runs really from the same population, or is there variation between the two?
- How it works:
- Determine 1% quantile, 2% quantile, ..., 100% quantile for distributions
- Plot 1% quantile vs. 1% quantile, 2% quantile vs 2% quantile, etc.
- Not restricted to percentiles - usually, each of the n data points from the measurement is taken as its own $1 / n$ quantile
- How to read:
- If everything is located along the line $x=y$ then the two distributions are very similar
- QQ plots amplify discrepancies near the "tail" of the distributions
- Warning about scales:
- Plot program often automatically assign X and Y different scales
- Straight line indicates: choice of distribution OK, but parameters don't fit

Statistics Fundamentals

- QQ Plot

Statistics Fundamentals

- QQ Plot

Statistics Fundamentals

Probability-Probability plots (PP plots)

- Very similar to QQ plot
- QQ plot is more common, though
- Difference to QQ plot:
- QQ plot compares [quantiles of] two distributions:
1% quantile vs. 1% quantile, etc.
- Graphically: the y axes of the cumulative density distribution functions are plotted against each other
- PP plot compares probabilities of two distributions
- Graphically: the y axes of the probability density functions are plotted against each other
- How to read:
- Basically the same as QQ plot
- PP plots highlight differences near the centers of the distributions (whereas QQ plots highlight differences near the ends of the distributions)

Statistics Fundamentals

- PP Plot

Statistics Fundamentals

- PP Plot

The difference between the right tails of $\hat{F}(x)$ and $\tilde{F}_{n}(x)$ amplified by the $Q-Q$ plot.

[^0]: - Pierre-Simon Laplace, A Philosophical Essay on Probabilities

