Discrete Event Simulation

IN2045

Dr. Alexander Klein
Dr. Nils Kammenhuber
Prof. Dr.-Ing Georg Carle

Chair for Network Architectures and Services
Department of Computer Science Technische Universität München
http://www.net.in.tum.de

Topics

- Point Fields
- Generation of Point Fields
- Constant / Variable Number of Points
- Rectangle / Arbitrary Area
- Homogeneous Point Fields
- Inhomogeneous Point Fields

- Poisson Field
- Matern Cluster Field
- Random Graphs
- Generation of Random Graphs
- Probabilistic Model
- Waxman Model
- Implementation Issues:
- Adjacency Matrix/List

- Incidence Matrix
- Scale-free Graphs

Point Fields

Point Fields

Point Fields

- Point fields:

Point Fields

- Point field:
- Two dimensional random process
- Spatial distribution of objects in two dimensional space
- Seismology (epicenters of earthquakes)
- Plant ecology (position of trees or other plants)
- Epidemiology (home locations of infected people)
- Zoology (burrows or nests of animals)
- Astronomy (location of stars)
- Telecommunication (spatial distribution of mobile users)
- The development of many system parameters is influenced by the spatial distribution of the simulated objects

Point Fields

- Point fields with a constant number of points (rectangle):
- Task:

Generate a homogeneous point field with n points in a rectangle which is given by $\left(a_{1}, b_{1}\right),\left(a_{1}, b_{2}\right),\left(a_{2}, b_{1}\right),\left(a_{2}, b_{2}\right)$

- Algorithm:
- for $\mathrm{i}=1$:n
- Generate random variable $z 1 \sim \mathrm{U}(0,1)$
- Generate random variable z2 ~ $\mathrm{U}(0,1)$
- Point $\quad(x, y)=\left(a_{1}+z_{1} \cdot\left(a_{2}-a_{1}\right), b_{1}+z_{2} \cdot\left(b_{2}-b_{1}\right)\right)$
end

Point Fields

- Point fields with a variable number of points (rectangle):
- F - size of the rectangle
- $E[X]$ - average number of points in F
- $\lambda=\frac{E[X]}{F}$ - intensity of the point field
- X - discrete random variable which describes the number of points in the rectangle
- Generate a homogeneous point field with X points

Point Fields

- Binomial - Point Field
- Binomial distributed number of points

$$
P(X=i)=\binom{n}{i} p^{i}(1-p)^{n-1}, p=\frac{E[X]}{n}
$$

- Upper bound: n
- Poisson - Point Field
- Poisson distributed number of points

$$
P(X=i)=\frac{(\lambda F)^{i}}{i!} e^{-\lambda F}, \lambda=\frac{E[X]}{F}
$$

- Upper bound: no upper bound !!!
- Generation: c.f. point fields with variable number of points

Point Fields

- Poisson - Point Field
- Optimized Generation:

1. Generate x-coordinates by using a one dimensional Poisson process

$$
\text { in }\left(\mathrm{a}_{1}, \mathrm{a}_{2}\right) \text { with rate } \lambda^{*}=\frac{E[X]}{a_{2}-a_{1}}
$$

Note that the one dimensional process specifies the number of points in the point field.
2. Generate the y-coordinates according to a uniform distribution in the interval ($\mathrm{b}_{1}, \mathrm{~b}_{2}$)

Point Fields

- Poisson - Point Field
- Optimized Generation:

Point Fields

- Point fields with a variable number of points in an arbitrary area:
- Problem:
- Area has arbitrary shape and size F^{*}
- Average number of points in $\mathrm{F}^{*}=\mathrm{E}\left[\mathrm{X}^{*}\right]$
- Point intensity in $\mathrm{F}^{*}: \lambda^{*}=\frac{E\left[X^{*}\right]}{F^{*}}$
- Previously introduced algorithms only work for rectangles
- Solution:
- Generate a rectangle such that the arbitrary area F* fits in the rectangle
- Generate points in the rectangle which includes the area F^{*} until the desired number of points are in the area F^{*}

Point Fields

- Point fields with a variable number of points in an arbitrary area:
- Optimized Generation:

Area F^{*} contains X points

- Generation similar to Accept-Reject method:
- No additional random number required
- Efficiency of the algorithm is given by $\mathrm{F}^{*} / \mathrm{F}$

Point Fields

- Inhomogeneous point fields
- Characteristics
- Point intensity $\lambda(x, y)$ depends on the position
- Maximum $\lambda_{\text {max }}=\max _{(x, y)}(\lambda(x, y))$
- Point intensity in $\mathrm{F}^{*}: \quad \lambda^{*}=\frac{E\left[X^{*}\right]}{F^{*}}$
- Generation:
- Calculate $\mathrm{E}[\mathrm{x}]$ by integrating $\lambda(x, y)$ over F
- Choose RV X according to E[x]
- Repeat the following three steps until X points are generated

1. Generate a point (x, y) in F
2. Choose a random number $z \longmapsto R V Z \sim U(0,1)$
3. Accept if $z \leq \frac{\lambda(x, y)}{\lambda_{\max }}$, otherwise reject

Point Fields

Inhomogeneous / homogeneous point fields

- Impact of the chosen distribution on the point field

Example 1:

- x-axis - uniform distributed
- y-axis - uniform distributed

Example 2:

- x-axis - normal distributed
- y-axis - normal distributed

Point Fields

- Cluster point fields
- Idea:
- Generate a point field with low density where each point represents a parent point
- Generate a homogeneous Poisson field with intensity λ_{e} around parent points which represent the centre of the clusters
- Matern cluster field:
- Create a homogeneous Poisson field around each parent point with radius R
- Average number of points in each circle is given by $E[X]$
- Intensity in each field around a parent point $\lambda=\frac{E[X]}{F}=\frac{E[X]}{\pi R^{2}}$

Point Fields

- Cluster point fields
- Matern cluster field:

A Matern cluster field can be generated in different ways

- 1. Generation: Accept-Reject method
\longrightarrow inefficient due to the high number of circle shaped Poisson field
- 2. Generation: Usage of polar coordinates (φ, r)
- Generate uniform distributed coordinate $\varphi \in[0,2 \pi($
- Generate distance $r \in[0, R($ according to the following density function

$$
f(r)=\left\{\begin{array}{cc}
\frac{2 r}{R^{2}} & r \leq R \\
0 & \text { sonst }
\end{array}\right.
$$

- Uniform distribution of r results in a decrease of the intensity towards the border of the circle
- The rectangle for parent point generation has to be smaller than the Matern cluster field in order to mitigate border effects

Point Fields

- Matern cluster field

O Parent Point
O Cluster Point
Example: Each parent has 5 points in his cluster

Random Graphs

Random Graphs

Random Graphs

- Random Graphs

A graph is an abstract representation of a set of objects where pairs of objects can be connected by links.

- Graph $G=(V, E)$
- V: Vertices/Nodes = Router
- E: Edges = Links
- $e=\{u, v\} \in V \times V$
- Undirected
- Directed

bidirectional
unidirectional
- Node degree $\delta(v), v \in V \quad$ Number of edges that are connected with v
- Average node degree: $\delta^{*}=2 \cdot|E| /|V|$
- In-degree $\delta^{-}(v)$: number of edges that point to node v
- Out-degree $\delta^{+}(v)$: number of edges that point away from node v
- Distance $d_{G}(u, v)$: shortest path between two vertices in the graph
- Network diameter: longest path between two vertices in the graph
- K-(edge/vertex)-connected: A graph is called k-connected if at least k edges have to be removed in order to partition the graph

Random Graphs

- Random Graphs with predefined characteristics
- Generate a predefined number of nodes in a plane (point field)
- Connect the nodes in the network by applying one of the following models

1. Basic model($1 / 2$):

- Generation:

Generate an edge between two nodes with probability p

- Advantage:
" Fast and simple
- Disadvantage:
" Number of links per node varies
" Average node degree only depends on the number of nodes
" Connectivity between two nodes does not depend on the distance between them
" Does not guarantee full connectivity of the network
" Does not fit for large networks

Random Graphs

- Random Graphs with predefined characteristics

1. Basic model(2/2):

Random Graphs

- Random Graphs with predefined characteristics

2. Waxman model:

- Connectivity between two nodes becomes more likely the shorter the distance between them
- Probability that two nodes are connected is given by

$$
P(u, v)=\alpha \cdot e^{\frac{-d}{\beta \cdot L}} \quad \text { with } \alpha>0, \beta \leq 1
$$

» D : Euclidean distance between the two nodes
» L : The maximum distance between two nodes

2D Plane - 100 nodes

Waxman:

$$
\alpha=10, \beta=0.025, L=1400
$$

Waxman:

$$
\alpha=10, \beta=0.030, L=1400
$$

Random Graphs

- Random Graphs with predefined characteristics

3. Node degree model:

Problem: Generate a random graph where nodes have at least a minimum degree but less than a maximum degree

- These graphs are usually generated in an iterative way by adding

$$
|E|=\frac{\delta^{*} \cdot|V|}{2} \text { edges }
$$

- k-connected topologies are often used to make the network more resilient against node failures

Random Graphs

- Implementation of a graph:
- Basic operations:
- add / remove (Edge e / Vertex v)
- find
- getVertices (Edge e / Vertex v)
- getEdges (Graph g)

(Graph g)
- Complex operations:
- getDegree (Vertex v)
- isReachable (Vertex src, Vertex dst)
- Degree of node v
- True if a path exists from src to dst, false otherwise.
- shortestPath (Vertex src, Vertex dst)
- isComplete (Graph g)
- isConnected (Graph g)
- totalWeight (Graph g)
- getOneHopNeighbors (Graph g, Vertex v) - List of all direct neighbors.

Random Graphs

- Implementation of a graph:
- Matrix structures:
- Adjacency matrix:

Is an n by n matrix A where n is the number of vertices $|V|$ in the graph. Two vertices i and j are connected with an edge pointing from vertex I to vertex j if the element $a_{i, j}$ is 1 , otherwise 0 .

Example:

Src Vertex / Dst Vertex	\mathbf{A}	\mathbf{B}	\mathbf{C}	\mathbf{D}	\mathbf{E}	F
\mathbf{A}	0	1	1	1	0	0
B	0	0	0	1	0	0
C	0	0	0	1	0	0
D	1	0	0	0	0	0
E	0	0	0	0	0	1
F	0	0	0	0	1	0

Random Graphs

- Implementation of a graph:
- Matrix structures:
- Adjacency matrix:

Is an n by n matrix A where n is the number of vertices $|V|$ in the graph. Two vertices i and j are connected with an edge pointing from vertex I to vertex j if the element $a_{i, j}$ is 1 , otherwise 0 .

Example:

Src Vertex $/$ Dst Vertex	A	B	C	D	E	F
A	Q	1	1	1	0	0
B	0	Q	0	Outgoing		
C	0	0	Q	1	0	0
D	1	0	0	Q	0	0
E	Incoming					
F	0	0	Q	0	1	

Random Graphs

- Implementation of a graph:
- Matrix structures:
- Adjacency matrix:

Out-degree / in-degree

Src Vertex / Dst Vertex	A	B	C	\mathbf{D}	\mathbf{E}	F	Out-degree
A	0	1	1	1	0	0	3
B	0	0	0	1	0	0	1
C	0	0	0	1	0	0	1
D	1	0	0	0	0	0	1
E	0	0	0	0	0	1	1
F	0	0	0	0	1	0	1
In-degree	1	1	1	$\mathbf{3}$	1	1	0

Out-degree and in-degree of each vertex is represented by the sum of the corresponding row or column of the adjacency matrix

Random Graphs

- Implementation of a graph:
- Matrix structures:
- Adjacency matrix:
- Characteristics:
» Complexity:
- Insert / Delete $\quad \mathrm{O}(1)$
- Find $O(1)$
- Find neighbors $\quad \mathrm{O}(|\mathrm{V}|)$
» Memory consumption:
- Directed graph $\quad \mathrm{O}\left(|\mathrm{V}|^{2}\right)$
- Undirected graph $\mathrm{O}\left(|\mathrm{V}|^{2} / 2\right)$
" Use case:
- Small graphs due to simplicity and memory consumption
- Dense graphs due to low complexity

Random Graphs

- Implementation of a graph:
- Matrix structures:
- Incidence matrix:

Is a matrix B of size $|\mathrm{V}|$ (number of vertices) by $|\mathrm{E}|$ (number of edges) with entries $b_{i, j}$ which indicate whether the vertex i incidence edge j .
" Edge j enters vertex $\mathrm{i}: \quad b_{i, j}=1$
» Edge j leaves vertex i: $\quad b_{i, j}=-1$
» No incident:
0
Example:

Vertex $/$ Edge	e1	e2	e3	e4	e5	e6	e7	e8	e9
A	-1	-1	-1	0	0	1	0	0	0
B	1	0	0	-1	0	0	0	0	0
C	0	1	0	0	-1	0	0	0	0
D	0	0	1	1	1	-1	0	0	0
E	0	0	0	0	0	0	-1	1	0
F	0	0	0	0	0	0	1	-1	0

Random Graphs

- Implementation of a graph:
- Linked structures:
- Adjacency list:

Is an array/list of length |V| which holds for each node a list of its neighbor nodes.

Random Graphs

- Implementation of a graph:
- Linked structures:
- Adjacency list:
- Characteristics:
" Complexity:
- Insert O(1)
- Delete $\quad \mathrm{O}(|\mathrm{V}|)$
- Find $\quad \mathrm{O}(|\mathrm{V}|)$
- Find neighbors $\quad \mathrm{O}(1)$
" Memory consumption:
- Directed graph $\quad \mathrm{O}(|\mathrm{V}|+|\mathrm{E}|)$
- Undirected graph $\mathrm{O}(|\mathrm{V}|+2|\mathrm{E}|)$
» Use case:
- Sparse graphs
- Efficient if neighbor nodes have to be found frequently

Random Graphs

- Special Case:
- Scale-free graph:

A graph is called scale-free if its node degree k follows the power law.

$$
P(k)=c k^{-\gamma}
$$

c and γ are constants. Typical range $0<c<1,2<\gamma<3$.

- Examples:
- Social networks
- Collaboration networks
- Computer networks
- Disease transmission

Random Graph

Scale-free Graph

Random Graphs

- Special Case:

- Scale-free graph:

Characteristics:

- High number of nodes with a small node degree.
- Small number of nodes (hubs) with a high node degree.

Random Graphs

- Special Case:
- Scale-free graph:

A graph is called scale-free if its node degree k follows the power law.

$$
P(k)=c k^{-\gamma}
$$

c and y are constants. Typical range $0<c<1,2<\gamma<3$.

- Examples:

Scale-free Graph: $\mathrm{n}=200, \mathrm{p}=1.5$

Scale-free Graph: $\mathrm{n}=200, \mathrm{p}=2.0$

Random Graphs

- Scale-free networks - real-world examples:
- Six degrees of separation:
- Small-world phenomenon:

Experiment by Stanley Milgram (1967)

" Give letters to approx. 100 participants which should forward their letter to a specific person they do not know personally. Also the address of the person is not known.
" The participants where only allowed to forward the letter by hand to a person, which they think, could forward it more closer to the destination.
» The letters reached the destination via a maximum of 6 people.
" Experiment was repeated and confirmed several times with sender and receiver even being part of different ethnological groups.

Everybody on this planet is separated only by six other people.

Random Graphs

- Scale-free networks - real-world examples:
- Kevin Bacon Game and the movie actor network :
- The Kevin Bacon Number defines the separation of movie actors away from Kevin Bacon.
- One actor has distance 0 (Kevin Bacon himself). 1902 actors have distance 1 since they played in a movie starring Kevin Beacon. 160463 actors have distance 2 since they played in movie in which someone played who played in a movie starring Kevin Bacon.

Kevin Bacon Number	Number of Actors
0	1
1	1902
2	160463
3	457231
4	111310
5	8168
6	810
7	81
8	14

Random Graphs

- Scale-free networks - real-world examples:
- Kevin Bacon Game and the movie actor network :
- Kevin Bacon is only the 1049th best center out of nearly 800.000 movie actors. This makes make Kevin Bacon a better center than 99% of the actors.
- However, there are still some better centers, like Sean Connery due to his higher first and second degree.

Kevin Bacon Number	Number of Actors
0	1
1	1902
2	160463
3	457231
4	111310
5	8168
6	810
7	81
8	14

Sean Connery Number	Number of Actors
0	1
1	2272
2	218560
3	380721
4	40263
5	3537
6	535
7	66
8	2

Random Graphs

- Scale-free networks - real-world examples:
- The Internet:
- The network diameter of the Internet is shorter than expected.
- The maximum number of hops of a loop free path is approximately 30 hops.

Internet 2005
Picture taken from http://www.opte.org

Random Graphs

The Internet

ARPANET September 1969

ARPANET December 1969

The Internet was a success story already from the beginning where it increased its size within 3 months by a factor of four!

Pictures taken from http://www.cybergeography.org/atlas/historical.html

Random Graphs

- Scale-free networks - real-world examples:
- Social networks - Facebook:

Facebook Friendships
Picture taken from http://www.opte.org

