Discrete Event Simulation

IN2045

Dr. Alexander Klein
Dr. Nils Kammenhuber
Prof. Dr.-Ing Georg Carle

Chair for Network Architectures and Services
Department of Computer Science Technische Universität München
http://www.net.in.tum.de

Topics

- Mobility in General
- Realistic Movement
- Human Mobility Pattern
] Visualization
- Density
- Speed Histograms
- Characteristics of Mobility Pattern

- Link Duration, Transient Phase, Node Distribution, Speed Distribution, Correlated Movement
\square Synthetic Mobility Models
- Random Waypoint
- Random Direction
- Random Walk
- Levi-Flight
- Brownian Motion
- Group Mobility

Mobility

- What is (random) mobility?

IN2045 - Discrete Event Simulation, WS 2010/2011

Mobility

- Why simulate mobility?
- Improvements in technology enable new technologies and result in cheaper hardware prices
- Number of powerful mobile devices increases very quickly (Smartphones with high data rate interfaces)
- Number of applications for mobile devices increases
- Impact on the system performance can often not be predicted in advance
- Impact on wireless networks:
- Topology depends on the user mobility
- Routing protocols have to react on topology changes (link duration)
- Frequent changes of the user density result in variation of the interference
- May lead to a collapse of the network if the applied protocols are not optimized (overhead, dissemination of outdated information)
- Enables new information dissemination strategies (Delay-Tolerant-Networking)

Mobility

- What is realistic movement?
- Random movement?
- Correlated movement?
- Movement of humans?
- Mobility Pattern
- Pedestrians
- Police patrol / avalanche rescue
- Cars on the road
- Trains
- Air planes
- Animals (hunter and prey)
- Constraint by obstacles / infrastructure

Antony Gormley's Quantum Cloud sculpture in London (based on a random walk model)

Mobility

- Human mobility pattern:
- Short-term and long-term characteristics
- Often approximated by the levy-flight synthetic mobility model which is derived from the random walk model
- High probability that the next position is close to the previous one
- Low probability that the individual travels long distances
- High variation between different individuals

González, M. C.; Hidalgo, C. A. \& Barabási, A.
Understanding Individual Human Mobility Patterns Nature, 2008, 453, 779-782

Mobility

- Simulation
- Area (circle, square, rectangle, sphere, torus, ...)

- Long-term simulation
- Transient phase of the model
- Node distribution
- Speed distribution
- Partitioning of the network

Mobility

- Simulation
- Bouncing rule:

Node Distribution changes depending on the applied bouncing rule

Mobility

- Visualization
- Movement (Debugging)
- Debugging
- Detect correlated movement
- Evaluation
- Density
- Spatial node distribution
- Border effects
- Estimation of transient phase
- Histograms
- Node speed distribution
- Link duration
- Estimation of transient phase

IN2045 - Discrete Event Simulation, WS 2010/2011

Mobility

- Characteristics:
- Link duration
- Important wireless communication parameter
- Represents the time interval during which two nodes are able to communicate with each other
- Transient phase
- One or more parameters change significantly during this phase
- Duration of the transient phase varies between different synthetic mobility models
- Spatial node distribution
- Depends on the mobility model
- Often affected by the shape of the simulation plane
- Influenced by the applied bouncing rule

Mobility

- Characteristics:
- Speed distribution
- Good indicator for the duration of the transient phase
- Mainly influenced by the following parameters:
- Time-based or distance-based movement decision
- Pause time
- Shape of the simulation plane
- Correlated / Constraint movement
- Each move is affected by the previous one
- Objects may interact with each other
- Group mobility
- The movement of objects is a composition of the movement of the individual and a common (group leader) object

Mobility

- Synthetic Mobility Models

Mobility

- Random Waypoint

Algorithm:

> Step 1: Select a random destination within the scenario
> Step 2: Select a random speed speed $\in\left[\right.$ speed $_{\text {Min }} ;$ speed $\left._{\text {Max }}\right]$

Step 3: Move until the destination is reached
Step 4: Wait a random period of time pause $\in\left[0 ;\right.$ pause $\left._{\text {Max }}\right]$
Step 5: Go to step 1

Mobility

- Random Waypoint

Algorithm:

Mobility

- Random Waypoint
- Characteristics:
- Node density decreases towards the border
- Highest node density in the center
- The fraction of slow moving nodes increases over time
- Long transient phase
- Individual nodes recognize density waves while moving through the center
- Average node speed decreases over time \longmapsto speed decay problem
- Advantage:
- Simple to implement
- Challenging mobility due to changing node density
- Disadvantage:
- Has to be configured carefully (Minimum speed and pause duration)
- Movement affected by the shape of the simulation plane

Mobility

- Random Waypoint
- Node speed distribution:

Mobility

- Random Waypoint

- Node density:

(a) 100 Seconds

(c) 400 Seconds

(b) 200 Seconds

(d) 800 Seconds

Mobility

- Random Direction

Algorithm:
Step 1: Select a random direction direction $\in[0 ; 2 \pi]$
(such that the node does not leave the scenario)
Step 2: Select a random speed speed $\in\left[\right.$ speed $_{\text {Min }} ;$ speed $\left._{\text {Max }}\right]$
Step 3: Move until the border of the scenario is reached
Step 4: Bouncing rule:
a. Wait a random period of time pause $\in\left[0 ;\right.$ pause $\left._{\text {Max }}\right]$
b. Delete the node and replace it with a new node in the center or at a random position
c. Place the node at the opposite side of the simulation plane

Step 5: Go to step 1

Mobility

- Random Direction

Algorithm:

Mobility

- Random Direction
- Characteristics:
- Node density increases towards the border
- Highest node density at the border and in the corners
- The fraction of slow moving nodes increases over time
- Short transient phase
- Nodes in the corner are strongly affected by the applied bouncing rule
- Advantage:
- Simple to implement
- Uniform distributed node density (depends on the bouncing rule)
- Disadvantage:
- Has to be configured carefully (Minimum speed and pause duration)
- Movement affected by the shape of the simulation plane
- Large impact of the bouncing rule

Mobility

- Random Walk (time-based / distance-based)

Algorithm:

$$
\begin{aligned}
& \text { Step 1: } \text { Select a random speed speed } \in\left[\text { speed }_{\text {Min }} ; \text { speed }_{\text {Max }}\right] \\
& \text { Step 2: } \text { Select a random direction direction } \in[0 ; 2 \pi] \\
& \text { Step 3: } \text { Move into that direction } \\
& \text { a. for a pre-defined period of time } \\
& \text { b. for a certain distance } \\
& \begin{array}{l}
\text { c. if the border of the scenario is reached, } \\
\\
\\
\text { select a new direction (bouncing rule) }
\end{array} \\
& \text { Step 4: } \text { Wait a random period of time pause } \in\left[0 ; \text { pause }_{\text {Max }}\right] \\
& \text { Step 5: Go to step 1 }
\end{aligned}
$$

Mobility

- Random Walk (time-based / distance-based)

Algorithm:

Mobility

- Random Walk (time-based / distance-based)

Algorithm:

Mobility

- Random Walk (time-based / distance-based)

Algorithm:

Mobility

- Random Walk (time-based / distance-based)

Algorithm:

Mobility

- Random Walk (time-based / distance-based)

Algorithm:

Mobility

- Random Walk (time-based)
- Characteristics (time-based):
- Node density (almost) uniform distributed
- Nodes in are affected by the applied bouncing rule
- Node speed uniform distributed
- Advantage:
- Simple to implement
- Uniform distributed node density (depends on the bouncing rule)
- Disadvantage:
- Has to be configured carefully
- Minimum speed
- Pause duration
- Travel duration
- Affected by the bouncing rule
- Required computational power depends on the movement duration

Mobility

- Random Walk (distance-based)
- Characteristics (distance-based):
- Node density (almost) uniform distributed
- Nodes in the corner are affected by the applied bouncing rule
- Node speed decreases over time (similar to RWP)
\Longrightarrow Speed decay problem
- Advantage:
- Simple to implement
- Uniform distributed node density (depends on the bouncing rule)
- Disadvantage:
- Has to be configured carefully
- Minimum speed
- Pause duration
- Travel distance
- Movement affected by the shape of the simulation plane
- Required computational power depends on the travel distance

Mobility

- Random Walk (time-based)
- Node speed distribution:

speed $_{\text {Min }}$	$1 \mathrm{~m} / \mathrm{s}$
speed $_{\text {Max }}$	$20 \mathrm{~m} / \mathrm{s}$
pause $_{\text {Min }}$	0 s
pause $_{\text {Max }}$	0 s
Movement	time-based
Movement Duration	10 s

Mobility

- Random Walk (distance-based)
- Node speed distribution:

speed $_{\text {Min }}$	$1 \mathrm{~m} / \mathrm{s}$
speed $_{\text {Max }}$	$20 \mathrm{~m} / \mathrm{s}$
pause $_{\text {Min }}$	0 s
pause $_{\text {Max }}$	0 s
Movement	distance-based
Travel Distance	200 m

Mobility

- Random Walk (time-based)

- Node density:

Mobility

. Random Walk (distance-based)

- Node density:

(a) 100 Seconds

(c) 400 Seconds

(b) 200 Seconds

(d) 800 Seconds

Mobility

- Random Walk
- Lévy flight
- Distance-based random walk
- Distance is chosen according to a heavy-tailed distribution
- Probability is high that the object only moves a short distance
- Probability is low that the object moves straight over a long distance

Example: Lévy flight

- Often used to simulate the movement of humans and animals
- Brownian Motion
- Distance-based random walk
- Travel distance between subsequent points is close to zero
- Describes the movement of small particles in liquids

Example: Brownian Motion

Mobility

- Random Walk (according to Turchin)
- Uncorrelated random walk:
- Previous move does not affect the following move
- Each move is independent from the previous one
- Correlated random walk:
- Previous move affects the following move
- High probability of moving into the same direction
- Long travels are followed by short travels with high probability
- Biased random walk:
- The probability of moving in a certain direction is higher than moving into other directions (non-uniform selection of the direction)
- Biased correlated random walk:
- Each move is affected by the previous one and an absolute direction
- Constrained random walk:
- Measured parameters and estimated distributions are used as input for the synthetic mobility model
- The direction and speed are chosen with respect to the measurements

Mobility

- Random Group Mobility

Algorithm (1/2):
Preliminary steps
Step 1: Define a group of nodes
Step 2: Select one node as group leader and mark the others as fellows
Step 3: Choose the maximum allowed distance between a fellow node and the group leader
Group leader

Step 4:	Select a random speed speed $\in\left[\right.$ speed $_{\text {Min }} ;$ speed $\left._{\text {Max }}\right]$
Step 5:	Select a random direction direction $\in[0 ; 2 \pi]$
Step 6:	Go to step 10
Step 7:	Move into that direction a. for a pre-defined period of time / remaining movement duration b. for a pre-defined distance c. Go to step 15 if the border of the scenario is reached before the movement is complete
Step 8: Step 9:	Wait a random period of time pause $\in\left[0 ;\right.$ pause $\left._{\text {Max }}\right]$ Go to step 4

Mobility

- Random Group Mobility

Algorithm (2/2):
Fellow nodes

> Step 10: Calculate the position of the group leader at the next movement / bouncing position

Step 11: Calculate the allowed area around the group leader at the next movement / bouncing position
Step 12: Choose a random position within the allowed area
Step 13: Calculate speed and direction such that the new position is reached at the same time the group leader reaches its next movement / bouncing position
Step 14: Go to step 7

Group leader
Step 15: Select a new direction of the group leader
Step 16: Go to step 10

Mobility

- Random Group Mobility

Algorithm:

Mobility

- Random Group Mobility
- Node speed distribution:

Leader Mobility	Random Walk(time-based)
Leader-Fellow Distance	$<200 \mathrm{~m}$
Fellow Area	circle
speed $_{\text {Min }}$	$5 \mathrm{~m} / \mathrm{s}$
speed $_{\text {Max }}$	$20 \mathrm{~m} / \mathrm{s}$
pause	Max

(a) 100 Seconds

(c) 400 Seconds

(b) 200 Seconds

(d) 800 Seconds

Mobility

- Random Group Mobility
- Node density:

Leader Mobility	Random Walk(time-based)
Leader-Fellow Distance	$<200 \mathrm{~m}$
Fellow Area	circle
speed $_{\text {Min }}$	$5 \mathrm{~m} / \mathrm{s}$
speed $_{\text {Max }}$	$20 \mathrm{~m} / \mathrm{s}$
pause	Max

(a) 100 Seconds

(c) 400 Seconds

(b) 200 Seconds

(d) 800 Seconds

Mobility

- Obstacles:
- Movement of objects is usually constraint by
- obstacles
- pre-defined pathways
- Bouncing rule becomes more import with an increasing number of obstacles
- Obstacles block movement but do not necessarily affect the signal propagation (e.g. river or lake)
- Some models use Voronoi diagrams as predefined paths

Movement with obstacles

Movement with obstacles and predefined paths

Mobility

- How to describe position and orientation?
- Position:
- Geographic

Latitude φ, Longitude λ, Altitude

- Cartesian

X, Y, Z

- Orientation:

- Yaw
- Pitch
- Roll

Picture taken from nasa.gov

Mobility

- Implementation:
- Types of mobility
- Direct
- Change the position and orientation of objects directly at a given simulation time
- Trajectory
- Sequence of triples [position, orientation, simulation time] which describe the position and orientation at a given simulation time
- The movement is usually interpolated between subsequent triples
- Vector
- Bearing, ground speed, ascent rate
- Trajectories can be described by [bearing, ground speed, simulation time] triples
- External modification
- Co-simulation
- Hardware-In-The-Loop
- Can use any type of mobility

