of Munich

Network Security (NetSec)

IN2101 — WS 16/17
Prof. Dr.-Ing. Georg Carle

Cornelius Diekmann

Version: November 28, 2016

Chair of Network Architectures and Services
Department of Informatics
Technical University of Munich

Chapter 7: Cryptographic Hash Functions and MACs Add-on Tum

Motivation

Repetition: Cryptographic Hash Functions
Definition
Applications

Common Cryptographic Hash Functions

Repetition: Message Authentication Codes (MAC)
Definition
Application
Attack Against an Insecure MAC

Common MAC Functions

Literature

Chapter 7: Cryptographic Hash Functions and MACs Add-on 71

Chapter 7: Cryptographic Hash Functions and MACs Add-on TUTI

Motivation

Chapter 7: Cryptographic Hash Functions and MACs Add-on 7-2

Motivation TUT

+ Common practice in data communications: error detection code, to identify random
errors introduced during transmission

Examples: Parity, Bit-Interleaved Parity, Cyclic Redundancy Check (CRC)

Chapter 7: Cryptographic Hash Functions and MACs Add-on — Motivation 7-3

Motivation TUT

+ Common practice in data communications: error detection code, to identify random
errors introduced during transmission

Examples: Parity, Bit-Interleaved Parity, Cyclic Redundancy Check (CRC)

» Underlying idea of these codes: add redundancy to a message for being able to
detect, or even correct transmission errors

Chapter 7: Cryptographic Hash Functions and MACs Add-on — Motivation 7-3

Motivation TUT

+ Common practice in data communications: error detection code, to identify random
errors introduced during transmission

Examples: Parity, Bit-Interleaved Parity, Cyclic Redundancy Check (CRC)

» Underlying idea of these codes: add redundancy to a message for being able to
detect, or even correct transmission errors
= The error detection/correction code of choice and its parameters: trade-off between
+ Computational overhead
Increase of message length
Probability/characteristics of errors on the transmission medium

Chapter 7: Cryptographic Hash Functions and MACs Add-on — Motivation 7-3

Motivation

+ Essential security goal: Data integrity
+ We received message m. Has m been modified by an attacker?

Chapter 7: Cryptographic Hash Functions and MACs Add-on — Motivation

7-4

Motivation TUT

+ Essential security goal: Data integrity
+ We received message m. Has m been modified by an attacker?

- ltis a different (and much harder!) problem to determine if m has been modified on
purpose!

Chapter 7: Cryptographic Hash Functions and MACs Add-on — Motivation 7-4

Motivation TUT

+ Essential security goal: Data integrity
+ We received message m. Has m been modified by an attacker?
- ltis a different (and much harder!) problem to determine if m has been modified on
purpose!

- Consequently, we need to add a code that fulfills some additional properties which
should make it computationally infeasible for an attacker to tamper with messages

Chapter 7: Cryptographic Hash Functions and MACs Add-on — Motivation 7-4

Motivation TUT

Essential security goal: Data integrity

+ We received message m. Has m been modified by an attacker?
It is a different (and much harder!) problem to determine if m has been modified on
purpose!
Consequently, we need to add a code that fulfills some additional properties which
should make it computationally infeasible for an attacker to tamper with messages
Outline:

1. Repetition of Cryptographic Hash Functions
2. Repetition of Message Authentication Codes

Chapter 7: Cryptographic Hash Functions and MACs Add-on — Motivation 7-4

Chapter 7: Cryptographic Hash Functions and MACs Add-on Tum

Repetition: Cryptographic Hash Functions
Definition
Applications

Common Cryptographic Hash Functions

Chapter 7: Cryptographic Hash Functions and MACs Add-on 7-5

Definition Tm

Disclaimer

- Definition of Hash functions and MACs: Chapter 6 Modern Cryptography is authori-
tative.

Chapter 7: Cryptographic Hash Functions and MACs Add-on — Repetition: Cryptographic Hash Functions 7-6

Definition Tm

- Repetition: A function h is called a hash function if:

Chapter 7: Cryptographic Hash Functions and MACs Add-on — Repetition: Cryptographic Hash Functions 77

Definition Tm

- Repetition: A function h is called a hash function if:

« Compression: h maps an input x of arbitrary length to an output h(x) of fixed length n:
h: {0,1}* — {0,1}"
-+ Ease of computation: Given h and x it is easy to compute h(x)

Chapter 7: Cryptographic Hash Functions and MACs Add-on — Repetition: Cryptographic Hash Functions 77

Definition

- Repetition: A function h is called a hash function if:
Compression: h maps an input x of arbitrary length to an output h(x) of fixed length n:
h: {0,1}* — {0,1}"
Ease of computation: Given h and x it is easy to compute h(x)

- Repetition: A function h is called a one-way function if

+ his a hash function
- for all pre-specified outputs v, it is computationally infeasible to find an x with h(x) = y

Chapter 7: Cryptographic Hash Functions and MACs Add-on — Repetition: Cryptographic Hash Functions

77

Definition

- Repetition: A function h is called a hash function if:
Compression: h maps an input x of arbitrary length to an output h(x) of fixed length n:
h: {0,1}* — {0,1}"
-+ Ease of computation: Given h and x it is easy to compute h(x)
- Repetition: A function h is called a one-way function if
* his a hash function
- for all pre-specified outputs v, it is computationally infeasible to find an x with h(x) = y
+ Example: given a large prime number p and a primitive root g in Z;
Let h(x) = g¥ modp
Then his a one-way function

Chapter 7: Cryptographic Hash Functions and MACs Add-on — Repetition: Cryptographic Hash Functions

77

Definition Tm

+ Repetition: A function H is called a cryptographic hash function if:

Chapter 7: Cryptographic Hash Functions and MACs Add-on — Repetition: Cryptographic Hash Functions 7-8

Definition Tm

+ Repetition: A function H is called a cryptographic hash function if:

1. His a one-way function (15 pre-image resistance):
For all pre-specified outputs y, it is computationally infeasible to find an x with H(x) = y

Chapter 7: Cryptographic Hash Functions and MACs Add-on — Repetition: Cryptographic Hash Functions 7-8

Definition Tm

+ Repetition: A function H is called a cryptographic hash function if:
1. His a one-way function (15 pre-image resistance):
For all pre-specified outputs y, it is computationally infeasible to find an x with H(x) = y
2. 2" pre-image resistance:
Given x it is computationally infeasible to find any second input x” with x ¥ x’ such that
H(x) = H(x’)
Note: This property is very important for digital signatures.

Chapter 7: Cryptographic Hash Functions and MACs Add-on — Repetition: Cryptographic Hash Functions 7-8

Definition Tm

+ Repetition: A function H is called a cryptographic hash function if:

1. His a one-way function (15 pre-image resistance):
For all pre-specified outputs y, it is computationally infeasible to find an x with H(x) = y

2. 2" pre-image resistance:
Given x it is computationally infeasible to find any second input x” with x ¥ x’ such that
H(x) = H(x’)
Note: This property is very important for digital signatures.

3. Collision resistance:
It is computationally infeasible to find any pair (x, x’) with x % x ”such that H(x) = H(x’)

Chapter 7: Cryptographic Hash Functions and MACs Add-on — Repetition: Cryptographic Hash Functions 7-8

Definition Tm

Comparsion to CRC:

+ In networking there are codes for error detection.
+ Common example: Cyclic redundancy checks (CRC)

Based on binary polynomial division with Input / CRC divisor.
+ The remainder of the division is the resulting error detection code.
+ CRC is a fast compression function.

Chapter 7: Cryptographic Hash Functions and MACs Add-on — Repetition: Cryptographic Hash Functions 7-9

Definition Tm

Comparsion to CRC:

+ In networking there are codes for error detection.
+ Common example: Cyclic redundancy checks (CRC)

Based on binary polynomial division with Input / CRC divisor.
+ The remainder of the division is the resulting error detection code.
+ CRC is a fast compression function.

+ Why not use CRC?

Chapter 7: Cryptographic Hash Functions and MACs Add-on — Repetition: Cryptographic Hash Functions 7-9

Definition
Comparsion to CRC:

+ In networking there are codes for error detection.
+ Common example: Cyclic redundancy checks (CRC)
Based on binary polynomial division with Input / CRC divisor.
+ The remainder of the division is the resulting error detection code.
+ CRC is a fast compression function.
» Why not use CRC?

+ CRC is not a cryptographic hash function

-+ CRC does not provide 2™ pre-image resistance and collision resistance
+ CRC is additive

If x’ = x @ A, then CRC(x’) = CRC(x) @ CRC(A)
« CRC is useful for protecting against noisy channels
But not against intentional manipulation

Chapter 7: Cryptographic Hash Functions and MACs Add-on — Repetition: Cryptographic Hash Functions

7-9

Applications TI-ITI

Can Hashing ensure Integrity?

Case: f‘
No attacker ha

Alice (A) Bob (B)
m, H(m)
ok

Case:
With attacker E ‘

Alice (A) Bob (B)

m, H(m) m', H(m')
- ok

Chapter 7: Cryptographic Hash Functions and MACs Add-on — Repetition: Cryptographic Hash Functions 7-10

Applications
Can Hashing ensure Integrity?

Case: f‘
No attacker -

Alice (A)
m, H(m)
Case:
With attacker E
Alice (A)
m, H(m)

Bob (B)
ok
Bob (B)
m', H(m')
- ok

+ Applying a hash function is not sufficient to secure a message.

+ H(m) needs to be protected.

Chapter 7: Cryptographic Hash Functions and MACs Add-on — Repetition: Cryptographic Hash Functions

7-10

Applications TI-ITI

Can Hashing ensure Integrity?

Case: 5“
No attacker o share symmetric key K

Alice (A) Bob (B)
m, MACy (m)
ok
Case:
With attacker E ‘
Alice (A) Bob (B)
m, MACx (m) m', MAC, (m)
_— not ok

- Simply hashing a message and appending the hash is not secure against intentional
manipulation (compare with CRC)!

Chapter 7: Cryptographic Hash Functions and MACs Add-on — Repetition: Cryptographic Hash Functions 7-11

Applications TI-ITI

Can Hashing ensure Integrity?

Case: S‘
No attacker 4 share symmetric key K

Alice (A) Bob (B)
m, MACy (m)
ok
Case:
With attacker E !
Alice (A) Bob (B)
m, MAC, (m) m', MACy (m)
_— not ok

- Simply hashing a message and appending the hash is not secure against intentional
manipulation (compare with CRC)!
- Solution:
* Include a secret in the hash.
+ Since the secret key k is unknown to the attacker, the attacker cannot compute MACk(m’)
(see next section).
Chapter 7: Cryptographic Hash Functions and MACs Add-on — Repetition: Cryptographic Hash Functions 7-11

Applications TI-ITI

Other applications which require some caution:

+ Pseudo-random number generation

+ The output of a cryptographic hash function is assumed to be uniformly distributed
-+ Although this property has not been proven in a mathematical sense for common crypto-

graphic hash functions, such as MD5, SHA-1, it is often used
- Start with random seed, then hash

* b = seed
* bjy1 = H(bj|seed)

Chapter 7: Cryptographic Hash Functions and MACs Add-on — Repetition: Cryptographic Hash Functions 7-12

Applications TI-ITI

Other applications which require some caution:

+ Pseudo-random number generation
+ The output of a cryptographic hash function is assumed to be uniformly distributed
-+ Although this property has not been proven in a mathematical sense for common crypto-

graphic hash functions, such as MD5, SHA-1, it is often used
- Start with random seed, then hash

* b = seed
* biuy = Hbj|seed)
+ Encryption
- Remember: Output Feedback Mode (OFB) - encryption by generating a pseudo random
stream, and performing XOR with plain text
+ Generate a key stream as follow:
© ko = H(Kag|IV)
* kit = H(Ka g lki)
+ The plain text is XORed with the key stream to obtain the cipher text.

Chapter 7: Cryptographic Hash Functions and MACs Add-on — Repetition: Cryptographic Hash Functions 7-12

Applications TI-ITI
- Authentication with a challenge-response mechanism
| Z
L

Alice H(Kpp Ta) Bob

K

Chapter 7: Cryptographic Hash Functions and MACs Add-on — Repetition: Cryptographic Hash Functions 7-13

Applications TI-ITI

* Authentication with a challenge-response mechanism

L 6

Alice H(Kpp Ta) Bob

K

+ Given only Alice and Bob know the shared secret Ka g, Alice knows that an attacker
is not able to compute H(Ka g, ra). Therefore the response must be from Bob.

+ Mutual authentication can be achieved by a 2nd exchange in opposite direction

Chapter 7: Cryptographic Hash Functions and MACs Add-on — Repetition: Cryptographic Hash Functions 7-13

Applications TI-ITI

* Authentication with a challenge-response mechanism

S

Alice H(Kpp Ta) Bob

K

+ Given only Alice and Bob know the shared secret Ka g, Alice knows that an attacker
is not able to compute H(Ka g, ra). Therefore the response must be from Bob.

+ Mutual authentication can be achieved by a 2nd exchange in opposite direction

+ This type of authentication is based on a authentication method called challenge-
response and used e.g. by HTTP digest authentication

+ It avoids transmitting the transport of the shared key (e.g. password) in clear text

Chapter 7: Cryptographic Hash Functions and MACs Add-on — Repetition: Cryptographic Hash Functions 7-13

Applications TI-ITI

* Authentication with a challenge-response mechanism

S

Alice H(Kpp Ta) Bob

K

+ Given only Alice and Bob know the shared secret Ka g, Alice knows that an attacker
is not able to compute H(Ka g, ra). Therefore the response must be from Bob.

+ Mutual authentication can be achieved by a 2nd exchange in opposite direction

+ This type of authentication is based on a authentication method called challenge-
response and used e.g. by HTTP digest authentication

+ It avoids transmitting the transport of the shared key (e.g. password) in clear text

+ Another type of a challenge-response would be, e.g., if Bob signs the challenge “ry”
with his private key

- Note that this kind of authentication does not include negotiation of a session key.
- Protocols for key negotiation will be discussed in subsequent chapters.

Chapter 7: Cryptographic Hash Functions and MACs Add-on — Repetition: Cryptographic Hash Functions 7-13

Common Cryptographic Hash Functions 'I'I.ITI

-+ Cryptographic Hash Functions:

Chapter 7: Cryptographic Hash Functions and MACs Add-on — Repetition: Cryptographic Hash Functions 7-14

Common Cryptographic Hash Functions 'I'I.I'I'I

-+ Cryptographic Hash Functions:
+ Message Digest 5 (MD5): Considered broken.
 Invented by R. Rivest, Successor to MD4. Considered broken.

Chapter 7: Cryptographic Hash Functions and MACs Add-on — Repetition: Cryptographic Hash Functions 7-14

Common Cryptographic Hash Functions 'I'I.I'I'I

-+ Cryptographic Hash Functions:
+ Message Digest 5 (MD5): Considered broken.
 Invented by R. Rivest, Successor to MD4. Considered broken.
+ Secure Hash Algorithm 1 (SHA-1): Considered broken.

* Old NIST standard.
* Invented by the National Security Agency (NSA). Inspired by MD4.

Chapter 7: Cryptographic Hash Functions and MACs Add-on — Repetition: Cryptographic Hash Functions 7-14

Common Cryptographic Hash Functions

-+ Cryptographic Hash Functions:
+ Message Digest 5 (MD5): Considered broken.
 Invented by R. Rivest, Successor to MD4. Considered broken.
+ Secure Hash Algorithm 1 (SHA-1): Considered broken.

* Old NIST standard.
* Invented by the National Security Agency (NSA). Inspired by MD4.

-+ Secure Hash Algorithm 3 (SHA-3):

* Current NIST standard (since October 2012).
» Keccak algorithm by G. Bertoni, J. Daemen, M. Peeters und G. Van Assche.

Chapter 7: Cryptographic Hash Functions and MACs Add-on — Repetition: Cryptographic Hash Functions

Chapter 7: Cryptographic Hash Functions and MACs Add-on Tum

Repetition: Message Authentication Codes (MAC)
Definition
Application
Attack Against an Insecure MAC

Common MAC Functions

Chapter 7: Cryptographic Hash Functions and MACs Add-on 7-15

Definition Tm

- (Cryptographic) hashes alone don’t protect against tampering!
+ MAGCs include a secret key K in addition to the message m they aim to protect.
+ Only the persons with knowledge of K can (re-)compute the MAC.

Chapter 7: Cryptographic Hash Functions and MACs Add-on — Repetition: Message Authentication Codes (MAC) 7-16

Definition

- (Cryptographic) hashes alone don’t protect against tampering!

+ MAGCs include a secret key K in addition to the message m they aim to protect.
+ Only the persons with knowledge of K can (re-)compute the MAC.

+ Procedure:

+ Sender s computes MACk(m).

+ <m,MACk(m)> is sent to the receiver r.
* rreceives <m’,MACk(m)>.

* rcan compute MACK(ml) based on his knowledge of K and m’.
- If MACK(m/)=MACk (m), he knows that m=m’, since nobody else had knowledge of K.

Chapter 7: Cryptographic Hash Functions and MACs Add-on — Repetition: Message Authentication Codes (MAC)

Definition

- (Cryptographic) hashes alone don’t protect against tampering!

+ MAGCs include a secret key K in addition to the message m they aim to protect.
+ Only the persons with knowledge of K can (re-)compute the MAC.

+ Procedure:

+ Sender s computes MACk(m).

+ <m,MACk(m)> is sent to the receiver r.
* rreceives <m’,MACk(m)>.

* rcan compute MACK(ml) based on his knowledge of K and m’.
- If MACK(m/)=MACk (m), he knows that m=m’, since nobody else had knowledge of K.

* MACs:

+ Prove message authenticity < integrity.
-+ Do detect tampering.

+ Can't be forged.

+ Can be replayed.

Chapter 7: Cryptographic Hash Functions and MACs Add-on — Repetition: Message Authentication Codes (MAC)

Application

=
share symmetric key K
Alice (A) Bob (B)

m, MACy (m)

- Alice protects/authenticates her message m with a MAC function
+ Alice has to send m and the MAC value to Bob.

Chapter 7: Cryptographic Hash Functions and MACs Add-on — Repetition: Message Authentication Codes (MAC)

717

Application

=
share symmetric key K
Alice (A) Bob (B)

m, MACy (m)

- Alice protects/authenticates her message m with a MAC function
+ Alice has to send m and the MAC value to Bob.
- Examples for potential MAC constructions:

+ HMAC
+ CBC-MAC/CMAC
* Enck (h(m)) — NO!!

Chapter 7: Cryptographic Hash Functions and MACs Add-on — Repetition: Message Authentication Codes (MAC)

717

Application

=
share symmetric key K
Alice (A) Bob (B)

m, MACy (m)

+ Bob can verify the MAC code by using the shared key:

+ He reads Alice’'s MACk(m)

!
+ He can check if his MACx(m) matches the one sent by Alice.
+ Only Alice and Bob who know K can do this.

Chapter 7: Cryptographic Hash Functions and MACs Add-on — Repetition: Message Authentication Codes (MAC)

7-18

Application TI.ITI

<
share symmetric key K
Alice (A) Bob (B)

m, MACy (m)

+ Bob can verify the MAC code by using the shared key:

+ He reads Alice’'s MACk(m)

!
+ He can check if his MACx(m) matches the one sent by Alice.
+ Only Alice and Bob who know K can do this.

- Take home message: for authenticity checks the receiver needs to know m and a
secure modification check value that it can compare.

+ Think about it: Why is Enck(m) usually not sufficient?

Chapter 7: Cryptographic Hash Functions and MACs Add-on — Repetition: Message Authentication Codes (MAC) 7-18

Application TI.ITI

+ Reasons for constructing MACs from cryptographic hash functions:

- Cryptographic hash functions generally execute faster than symmetric block ciphers (Note:
with AES this isn’t much of a problem today)
+ There are no export restrictions to cryptographic hash functions

Chapter 7: Cryptographic Hash Functions and MACs Add-on — Repetition: Message Authentication Codes (MAC) 7-19

Application TI.ITI

+ Reasons for constructing MACs from cryptographic hash functions:
- Cryptographic hash functions generally execute faster than symmetric block ciphers (Note:
with AES this isn’t much of a problem today)
+ There are no export restrictions to cryptographic hash functions
- Basic idea: “mix” a secret key K with the input and compute a hash value.
- The assumption that an attacker needs to know K to produce a valid MAC neverthe-
less raises some cryptographic concern:
+ The construction H(K || m) is not secure
+ The construction H(m || K) is not secure
+ The construction H(K || p || m || K) with p denoting an additional padding field does
not offer sufficient security

Chapter 7: Cryptographic Hash Functions and MACs Add-on — Repetition: Message Authentication Codes (MAC) 7-19

Attack Against an Insecure MAC TI.ITI

- For illustrative purposes, consider the following MAC definition:

+ Input: message m = (x1, Xz, ..., Xn) With x; being 128-bit values, and key K
+ Compute A(m) = x1 @ X2 @ ... ® X, with @ denoting XOR
» Output: MACk(m) := Enck(/\(m)) with Enck(x) denoting AES encryption

Chapter 7: Cryptographic Hash Functions and MACs Add-on — Repetition: Message Authentication Codes (MAC) 7-20

Attack Against an Insecure MAC TI.ITI

- For illustrative purposes, consider the following MAC definition:
+ Input: message m = (x1, Xz, ..., Xn) With x; being 128-bit values, and key K
+ Compute A(m) = x1 @ X2 @ ... ® X, with @ denoting XOR
» Output: MACk(m) := Enck(/\(m)) with Enck(x) denoting AES encryption
+ The key and the MAC length are both 128 bit, so we would expect an effort of about
2127 gperations to break the MAC (being able to forge messages).

Chapter 7: Cryptographic Hash Functions and MACs Add-on — Repetition: Message Authentication Codes (MAC) 7-20

Attack Against an Insecure MAC TI.ITI

- For illustrative purposes, consider the following MAC definition:
+ Input: message m = (x1, Xz, ..., Xn) With x; being 128-bit values, and key K
+ Compute A(m) = x1 @ X2 @ ... ® X, with @ denoting XOR
» Output: MACk(m) := Enck(/\(m)) with Enck(x) denoting AES encryption
+ The key and the MAC length are both 128 bit, so we would expect an effort of about
2127 gperations to break the MAC (being able to forge messages).
+ Unfortunately the MAC definition is insecure:

* Attacker Eve wants to forge messages. Eve does not know K.

+ Alice and Bob exchange a message (m, MACk(m)), Eve eavesdrops it.
- Eve can construct a message m’ that yields the same MAC:

Chapter 7: Cryptographic Hash Functions and MACs Add-on — Repetition: Message Authentication Codes (MAC) 7-20

Attack Against an Insecure MAC TI.ITI

- For illustrative purposes, consider the following MAC definition:
+ Input: message m = (x1, Xz, ..., Xn) With x; being 128-bit values, and key K
+ Compute A(m) = x1 @ X2 @ ... ® X, with @ denoting XOR
» Output: MACk(m) := Enck(/\(m)) with Enck(x) denoting AES encryption

+ The key and the MAC length are both 128 bit, so we would expect an effort of about
2127 gperations to break the MAC (being able to forge messages).

+ Unfortunately the MAC definition is insecure:

* Attacker Eve wants to forge messages. Eve does not know K.
+ Alice and Bob exchange a message (m, MACk(m)), Eve eavesdrops it.
- Eve can construct a message m’ that yields the same MAC:

* Letyq,ys, ..., yn—1 be arbitrary 128-bit values

© Defineyn =y1 ®y2 @ ... & yn—1 & &)

* This yn allows to construct the new message m’ = (y1, ¥, ..., ¥n)

Chapter 7: Cryptographic Hash Functions and MACs Add-on — Repetition: Message Authentication Codes (MAC) 7-20

Attack Against an Insecure MAC TI.ITI

- For illustrative purposes, consider the following MAC definition:
+ Input: message m = (x1, Xz, ..., Xn) With x; being 128-bit values, and key K
+ Compute A(m) = x1 @ X2 @ ... ® X, with @ denoting XOR
» Output: MACk(m) := Enck(/\(m)) with Enck(x) denoting AES encryption

+ The key and the MAC length are both 128 bit, so we would expect an effort of about
2127 gperations to break the MAC (being able to forge messages).

+ Unfortunately the MAC definition is insecure:

* Attacker Eve wants to forge messages. Eve does not know K.

+ Alice and Bob exchange a message (m, MACk(m)), Eve eavesdrops it.
- Eve can construct a message m’ that yields the same MAC:
* Letyq,ys, ..., yn—1 be arbitrary 128-bit values
© Defineyn =y1 ®y2 @ ... & yn—1 & &)
* This yn allows to construct the new message m’ = (y1, ¥, ..., ¥n)
* Therefore, MACk(m’) = Enc(A(m’))
=Enck(y1 ®y2 @ ... @ Yn—1 D ¥n))
=Enck(y1 @y2 @ . D Yn—1 D Yy1 ® Y2 ® ... ®yn—1 & L(m))
= Ency (A (m))) = MACk(m)

Chapter 7: Cryptographic Hash Functions and MACs Add-on — Repetition: Message Authentication Codes (MAC) 7-20

Attack Against an Insecure MAC TI.ITI

- For illustrative purposes, consider the following MAC definition:
+ Input: message m = (x1, Xz, ..., Xn) With x; being 128-bit values, and key K
+ Compute A(m) = x1 @ X2 @ ... ® X, with @ denoting XOR
» Output: MACk(m) := Enck(/\(m)) with Enck(x) denoting AES encryption

+ The key and the MAC length are both 128 bit, so we would expect an effort of about
2127 gperations to break the MAC (being able to forge messages).

+ Unfortunately the MAC definition is insecure:

* Attacker Eve wants to forge messages. Eve does not know K.
+ Alice and Bob exchange a message (m, MACk(m)), Eve eavesdrops it.
- Eve can construct a message m’ that yields the same MAC:
* Letyq,ys, ..., yn—1 be arbitrary 128-bit values
* Defineyn :=y1 @ y2 @ ... ® yn—1 © A(M)
* This yn allows to construct the new message m’ = (y1, ¥, ..., ¥n)
* Therefore, MACk(m’) = Enc(A(m’))
= Enck(y1 ® Y2 @ . D Yn—1 D ¥n))
=Enck(y1 @ Y2 @ - @ Yn—1 Dy1 Dy2 © .. ® yp—1 & &(M))
= Ency (A (m))) = MACk(m)
+ Therefore, MACk(m) is a valid MAC for m’, since Am = Am’
- When Bob receives (m’, MACk(m)) from Eve, he will accept it as being originated from
Alice.

Chapter 7: Cryptographic Hash Functions and MACs Add-on — Repetition: Message Authentication Codes (MAC) 7-20

Common MAC Functions 'I'I.I'I'I

» MAC Functions:
+ Hash MAC (HMAC):

* Standardized in RFC 2104.
* Used in conjunction with cryptographic hash functions (e.g. SHA-3)
* See following slides.

Chapter 7: Cryptographic Hash Functions and MACs Add-on — Repetition: Message Authentication Codes (MAC) 7-21

Common MAC Functions TI.ITI

+ MAC Functions:

+ Hash MAC (HMAC):
* Standardized in RFC 2104.
* Used in conjunction with cryptographic hash functions (e.g. SHA-3)
* See following slides.

+ Cipher Block Chaining MAC (CBC-MAC):
* Recommended by NIST.
* Based on cbc mode encryption (e.g. with AES).
* See following slides.

Chapter 7: Cryptographic Hash Functions and MACs Add-on — Repetition: Message Authentication Codes (MAC) 7-21

Common MAC Functions

+ MAC Functions:

+ Hash MAC (HMAC):
* Standardized in RFC 2104.
* Used in conjunction with cryptographic hash functions (e.g. SHA-3)
* See following slides.

+ Cipher Block Chaining MAC (CBC-MAC):
* Recommended by NIST.
* Based on cbc mode encryption (e.g. with AES).
* See following slides.

+ Cipher based MAC (CMAC):
* AES-CMAC is standardized by IETF as RFC 4493 and its truncated form in RFC 4494.
* See following slides.

Chapter 7: Cryptographic Hash Functions and MACs Add-on — Repetition: Message Authentication Codes (MAC)

Common MAC Functions

+ MAC Functions:

+ Hash MAC (HMAC):
* Standardized in RFC 2104.
* Used in conjunction with cryptographic hash functions (e.g. SHA-3)
* See following slides.

+ Cipher Block Chaining MAC (CBC-MAC):
* Recommended by NIST.
* Based on cbc mode encryption (e.g. with AES).
* See following slides.

+ Cipher based MAC (CMAC):

* AES-CMAC is standardized by IETF as RFC 4493 and its truncated form in RFC 4494.
* See following slides.

+ Poly1305:
* Standardized in RFC 7539.

Chapter 7: Cryptographic Hash Functions and MACs Add-on — Repetition: Message Authentication Codes (MAC)

Common MAC Functions: Hash MACs (HMAC) Tum

+ The construction H(K | m | K), called prefix-suffix mode, has been used for a while.
- See for example RFC 1828

It has been also used in earlier implementations of the Secure Socket Layer (SSL) protocol
(until SSL 3.0)

However, it is now considered vulnerable to attack by the cryptographic community.

Chapter 7: Cryptographic Hash Functions and MACs Add-on — Repetition: Message Authentication Codes (MAC) 7-22

Common MAC Functions: Hash MACs (HMAC) Tum

+ The construction H(K | m | K), called prefix-suffix mode, has been used for a while.
- See for example RFC 1828

+ Ithas been also used in earlier implementations of the Secure Socket Layer (SSL) protocol
(until SSL 3.0)

+ However, it is now considered vulnerable to attack by the cryptographic community.

» The most used construction is HMAC: H (K@ opad | H (K ® ipad | m))

« The length of the key K is first extended to the block length required for the input of the
hash function H by appending zero bytes.

« Then it is xor'ed respectively with two constants opad and ipad

+ The hash function is applied twice in a nested way.

-+ Currently no attacks have been discovered on this MAC function.

Chapter 7: Cryptographic Hash Functions and MACs Add-on — Repetition: Message Authentication Codes (MAC) 7-22

Common MAC Functions: Cipher Block Chaining MACs (CBC-MAC) Tum

- A CBC-MAC is computed by encrypting a message in CBC Mode and taking the last
ciphertext block or a part of it as the MAC:

my mo mnp

v— d — v~

k — Enc k —| Enc k — Enc

o — o — Cn

Chapter 7: Cryptographic Hash Functions and MACs Add-on — Repetition: Message Authentication Codes (MAC) 7-23

Common MAC Functions: Cipher Block Chaining MACs (CBC-MAC) Tum

- A CBC-MAC is computed by encrypting a message in CBC Mode and taking the last
ciphertext block or a part of it as the MAC:

my my Mn

/b
IV —(H) () — on—1 —(P)
k — Enc k —| Enc k — Enc
oy —— Cp ———— Cn

* MAC(m) = cp for some publicly known, fixed, IV.

Chapter 7: Cryptographic Hash Functions and MACs Add-on — Repetition: Message Authentication Codes (MAC) 7-23

Common MAC Functions: Cipher Block Chaining MACs (CBC-MAC) Tum

- A CBC-MAC is computed by encrypting a message in CBC Mode and taking the last
ciphertext block or a part of it as the MAC:

my mz Mn
v JL — Cn—1
k — Enc k —| Enc k — Enc
¢ ————— G ——— Cn

* MACk(m) = cn for some publicly known, fixed, IV.
+ This MAC needs not to be mixed with a secret any further, as it has already been
produced using a shared secret K.
+ This scheme works with any block cipher (AES, Twofish, 3DES, ...)
It is used, e.g., for IEEE 802.11 (WLAN) WPA2, many modes in SSL / IPSec use
some CBC-MAC construction.
Chapter 7: Cryptographic Hash Functions and MACs Add-on — Repetition: Message Authentication Codes (MAC) 7-23

Common MAC Functions: Cipher Block Chaining MACs (CBC-MAC) Tum

+ CBC-MAC security

CBC-MAC must NOT be used with the same key as for the encryption

* In particular, if CBC mode is used for encryption, and CBC-MAC for authenticity with the
same key, the MAC will be equal to the last cipher text block

+ If the length of a message is unknown or no other protection exists, CBC-MAC can be
prone to length extension attacks. CMAC resolves the issue.

Chapter 7: Cryptographic Hash Functions and MACs Add-on — Repetition: Message Authentication Codes (MAC) 7-24

Common MAC Functions: Cipher Block Chaining MACs (CBC-MAC) Tum

+ CBC-MAC security
+ CBC-MAC must NOT be used with the same key as for the encryption
* In particular, if CBC mode is used for encryption, and CBC-MAC for authenticity with the
same key, the MAC will be equal to the last cipher text block
+ If the length of a message is unknown or no other protection exists, CBC-MAC can be
prone to length extension attacks. CMAC resolves the issue.

+ CBC-MAC performance

+ Older symmetric block ciphers (such as DES) require more computing effort than dedi-
cated cryptographic hash functions, e.g. MD5, SHA-1 therefore, these schemes are con-
sidered to be slower.

+ However, newer symmetric block ciphers (AES) is faster than conventional cryptographic
hash functions.

-+ Therefore, AES-CBC-MAC is becoming popular.

Chapter 7: Cryptographic Hash Functions and MACs Add-on — Repetition: Message Authentication Codes (MAC) 7-24

Common MAC Functions: Cipher-based MACs (CMAC) TI.ITI

+ CMAC is a modification of CBC-MAC

+ Compute keys ki and ky from shared key k.
+ Within the CBC processing

* XOR complete blocks before encryption with kq
* XOR incomplete blocks before encryption with ko
* kis used for the block encryption

+ Output is the last encrypted block or the | most significant bits of the last block.

+ XCBC-MAC (e.g. found in TLS) is a predecessor of CMAC where ky and kp are input
to algorithm and not derived from k.

Chapter 7: Cryptographic Hash Functions and MACs Add-on — Repetition: Message Authentication Codes (MAC) 7-25

Chapter 7: Cryptographic Hash Functions and MACs Add-on TUTI

Literature

Chapter 7: Cryptographic Hash Functions and MACs Add-on 7-26

Literature T|.|T|

(Beyond the scope of examination)
+ B. Coskun, N. Memon, Confusion/Diffusion Capabilities of Some Robust Hash Func-
tions, CISS 2006: Conference on Information Sciences and Systems

+ H. Krawczyk, M. Bellare, R. Canetti, HMAC: Keyed-Hashing for Message Authenti-
cation, Internet RFC 2104, February 1997.

+ R. Merkle, One Way Hash Functions and DES, Proceedings of Crypto ‘89, Springer,
1989.

+ Niels Ferguson, Bruce Schneier, Practical Cryptography, John Wiley & Sons, 2003
- Peter Selinger, http://www.mscs.dal.ca/ selinger/md5collision/

- P. Metzger, IP Authentication using Keyed MD5, IETF RFC 1828, August 1995

- R. L. Rivest. The MD5 Message Digest Algorithm, Internet RFC 1321, April 1992.

+ M. Robshaw. On Recent Results for MD2, MD4 and MD5, RSA Laboratories’ Bulletin,
No. 4, November 1996.

+ Xiaoyun Wang, Yiqun Lisa Yin, and Hongbo Yu, Collision Search Attacks on SHA1,
February 2005

+ G. Yuval. How to Swindle Rabin, Cryptologia, July 1979.

Chapter 7: Cryptographic Hash Functions and MACs Add-on — Literature 7-27

Literature T|.|T|

- Niels Ferguson, Stefan Lucks, Bruce Schneier, et. al., Skein Specification v1.1
* http://www.skein-hash.info

+ NIST (National Institute for Standards and Technology (USA)),
CRYPTOGRAPHIC HASH ALGORITHM COMPETITION,
http://csrc.nist.gov/groups/ST/hash/sha-3/index.html

+ G. Bertoni, J. Daemen, M. Peeters und G. Van Assche, Cryptographic Sponge Func-
tions http://sponge.noekeon.org/CSF-0.1.pdf

- G. Bertoni, J. Daemen, M. Peeters und G. Van Assche, Keccak Reference (version
3.0), http://keccak.noekeon.org/Keccak-reference-3.0.pdf

- G. Bertoni, J. Daemen, M. Peeters und G. Van Assche, Keccak sponge function
family main document, http://keccak.noekeon.org/Keccak-main-2.1.pdf

Chapter 7: Cryptographic Hash Functions and MACs Add-on — Literature 7-28

	Cryptographic Hash Functions and MACs Add-on
	Motivation
	Repetition: Cryptographic Hash Functions
	Definition
	Applications
	Common Cryptographic Hash Functions

	Repetition: Message Authentication Codes (MAC)
	Definition
	Application
	Attack Against an Insecure MAC
	Common MAC Functions

	Literature

