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Motivation TUT

+ Common practice in data communications: error detection code, to identify random
errors introduced during transmission

Examples: Parity, Bit-Interleaved Parity, Cyclic Redundancy Check (CRC)
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+ Common practice in data communications: error detection code, to identify random
errors introduced during transmission

Examples: Parity, Bit-Interleaved Parity, Cyclic Redundancy Check (CRC)

» Underlying idea of these codes: add redundancy to a message for being able to
detect, or even correct transmission errors
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Motivation TUT

+ Common practice in data communications: error detection code, to identify random
errors introduced during transmission

Examples: Parity, Bit-Interleaved Parity, Cyclic Redundancy Check (CRC)

» Underlying idea of these codes: add redundancy to a message for being able to
detect, or even correct transmission errors
= The error detection/correction code of choice and its parameters: trade-off between
+ Computational overhead
Increase of message length
Probability/characteristics of errors on the transmission medium
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Motivation

+ Essential security goal: Data integrity
+ We received message m. Has m been modified by an attacker?
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Motivation TUT

+ Essential security goal: Data integrity
+ We received message m. Has m been modified by an attacker?

- ltis a different (and much harder!) problem to determine if m has been modified on
purpose!
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Motivation TUT

+ Essential security goal: Data integrity
+ We received message m. Has m been modified by an attacker?
- ltis a different (and much harder!) problem to determine if m has been modified on
purpose!

- Consequently, we need to add a code that fulfills some additional properties which
should make it computationally infeasible for an attacker to tamper with messages
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Motivation TUT

Essential security goal: Data integrity

+ We received message m. Has m been modified by an attacker?
It is a different (and much harder!) problem to determine if m has been modified on
purpose!
Consequently, we need to add a code that fulfills some additional properties which
should make it computationally infeasible for an attacker to tamper with messages
Outline:

1. Repetition of Cryptographic Hash Functions
2. Repetition of Message Authentication Codes
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Definition Tm

Disclaimer

- Definition of Hash functions and MACs: Chapter 6 Modern Cryptography is authori-
tative.
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Definition Tm

- Repetition: A function h is called a hash function if:
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Definition Tm

- Repetition: A function h is called a hash function if:

« Compression: h maps an input x of arbitrary length to an output h(x) of fixed length n:
h: {0,1}* — {0,1}"
-+ Ease of computation: Given h and x it is easy to compute h(x)
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Definition

- Repetition: A function h is called a hash function if:
Compression: h maps an input x of arbitrary length to an output h(x) of fixed length n:
h: {0,1}* — {0,1}"
Ease of computation: Given h and x it is easy to compute h(x)

- Repetition: A function h is called a one-way function if

+ his a hash function
- for all pre-specified outputs v, it is computationally infeasible to find an x with h(x) = y
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Definition

- Repetition: A function h is called a hash function if:
Compression: h maps an input x of arbitrary length to an output h(x) of fixed length n:
h: {0,1}* — {0,1}"
-+ Ease of computation: Given h and x it is easy to compute h(x)
- Repetition: A function h is called a one-way function if
* his a hash function
- for all pre-specified outputs v, it is computationally infeasible to find an x with h(x) = y
+ Example: given a large prime number p and a primitive root g in Z;
Let h(x) = g¥ modp
Then his a one-way function
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Definition Tm

+ Repetition: A function H is called a cryptographic hash function if:
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Definition Tm

+ Repetition: A function H is called a cryptographic hash function if:

1. His a one-way function (15 pre-image resistance):
For all pre-specified outputs y, it is computationally infeasible to find an x with H(x) = y
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Definition Tm

+ Repetition: A function H is called a cryptographic hash function if:
1. His a one-way function (15 pre-image resistance):
For all pre-specified outputs y, it is computationally infeasible to find an x with H(x) = y
2. 2" pre-image resistance:
Given x it is computationally infeasible to find any second input x” with x ¥ x’ such that
H(x) = H(x’)
Note: This property is very important for digital signatures.
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Definition Tm

+ Repetition: A function H is called a cryptographic hash function if:

1. His a one-way function (15 pre-image resistance):
For all pre-specified outputs y, it is computationally infeasible to find an x with H(x) = y

2. 2" pre-image resistance:
Given x it is computationally infeasible to find any second input x” with x ¥ x’ such that
H(x) = H(x’)
Note: This property is very important for digital signatures.

3. Collision resistance:
It is computationally infeasible to find any pair (x, x’) with x % x ”such that H(x) = H(x’)
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Definition Tm

Comparsion to CRC:

+ In networking there are codes for error detection.
+ Common example: Cyclic redundancy checks (CRC)

Based on binary polynomial division with Input / CRC divisor.
+ The remainder of the division is the resulting error detection code.
+ CRC is a fast compression function.

Chapter 7: Cryptographic Hash Functions and MACs Add-on — Repetition: Cryptographic Hash Functions 7-9



Definition Tm

Comparsion to CRC:

+ In networking there are codes for error detection.
+ Common example: Cyclic redundancy checks (CRC)

Based on binary polynomial division with Input / CRC divisor.
+ The remainder of the division is the resulting error detection code.
+ CRC is a fast compression function.

+ Why not use CRC?
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Definition
Comparsion to CRC:

+ In networking there are codes for error detection.
+ Common example: Cyclic redundancy checks (CRC)
Based on binary polynomial division with Input / CRC divisor.
+ The remainder of the division is the resulting error detection code.
+ CRC is a fast compression function.
» Why not use CRC?

+ CRC is not a cryptographic hash function

-+ CRC does not provide 2™ pre-image resistance and collision resistance
+ CRC is additive

If x’ = x @ A, then CRC(x’) = CRC(x) @ CRC(A)
« CRC is useful for protecting against noisy channels
But not against intentional manipulation
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Applications TI-ITI

Can Hashing ensure Integrity?

Case: f‘
No attacker ha

Alice (A) Bob (B)
m, H(m)
ok

Case:
With attacker E ‘

Alice (A) Bob (B)

m, H(m) m', H(m')
- ok
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Applications
Can Hashing ensure Integrity?

Case: f‘
No attacker -

Alice (A)
m, H(m)
Case:
With attacker E
Alice (A)
m, H(m)

Bob (B)
ok
Bob (B)
m', H(m')
- ok

+ Applying a hash function is not sufficient to secure a message.

+ H(m) needs to be protected.
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Applications TI-ITI

Can Hashing ensure Integrity?

Case: 5“
No attacker o share symmetric key K

Alice (A) Bob (B)
m, MACy (m)
ok
Case:
With attacker E ‘
Alice (A) Bob (B)
m, MACx (m) m', MAC, (m)
_— not ok

- Simply hashing a message and appending the hash is not secure against intentional
manipulation (compare with CRC)!
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Applications TI-ITI

Can Hashing ensure Integrity?

Case: S‘
No attacker 4 share symmetric key K

Alice (A) Bob (B)
m, MACy (m)
ok
Case:
With attacker E !
Alice (A) Bob (B)
m, MAC, (m) m', MACy (m)
_— not ok

- Simply hashing a message and appending the hash is not secure against intentional
manipulation (compare with CRC)!
- Solution:
* Include a secret in the hash.
+ Since the secret key k is unknown to the attacker, the attacker cannot compute MACk(m’)
(see next section).
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Applications TI-ITI

Other applications which require some caution:

+ Pseudo-random number generation

+ The output of a cryptographic hash function is assumed to be uniformly distributed
-+ Although this property has not been proven in a mathematical sense for common crypto-

graphic hash functions, such as MD5, SHA-1, it is often used
- Start with random seed, then hash

* b = seed
* bjy1 = H(bj|seed)
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Applications TI-ITI

Other applications which require some caution:

+ Pseudo-random number generation
+ The output of a cryptographic hash function is assumed to be uniformly distributed
-+ Although this property has not been proven in a mathematical sense for common crypto-

graphic hash functions, such as MD5, SHA-1, it is often used
- Start with random seed, then hash

* b = seed
* biuy = Hbj|seed)
+ Encryption
- Remember: Output Feedback Mode (OFB) - encryption by generating a pseudo random
stream, and performing XOR with plain text
+ Generate a key stream as follow:
© ko = H(Kag|IV)
* kit = H(Ka g lki)
+ The plain text is XORed with the key stream to obtain the cipher text.
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Applications TI-ITI
- Authentication with a challenge-response mechanism
| Z
L

Alice H(Kpp Ta) Bob

K
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Applications TI-ITI

* Authentication with a challenge-response mechanism

L 6

Alice H(Kpp Ta) Bob

K

+ Given only Alice and Bob know the shared secret Ka g, Alice knows that an attacker
is not able to compute H(Ka g, ra). Therefore the response must be from Bob.

+ Mutual authentication can be achieved by a 2nd exchange in opposite direction
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Applications TI-ITI

* Authentication with a challenge-response mechanism

S

Alice H(Kpp Ta) Bob

K

+ Given only Alice and Bob know the shared secret Ka g, Alice knows that an attacker
is not able to compute H(Ka g, ra). Therefore the response must be from Bob.

+ Mutual authentication can be achieved by a 2nd exchange in opposite direction

+ This type of authentication is based on a authentication method called challenge-
response and used e.g. by HTTP digest authentication

+ It avoids transmitting the transport of the shared key (e.g. password) in clear text
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Applications TI-ITI

* Authentication with a challenge-response mechanism

S

Alice H(Kpp Ta) Bob

K

+ Given only Alice and Bob know the shared secret Ka g, Alice knows that an attacker
is not able to compute H(Ka g, ra). Therefore the response must be from Bob.

+ Mutual authentication can be achieved by a 2nd exchange in opposite direction

+ This type of authentication is based on a authentication method called challenge-
response and used e.g. by HTTP digest authentication

+ It avoids transmitting the transport of the shared key (e.g. password) in clear text

+ Another type of a challenge-response would be, e.g., if Bob signs the challenge “ry”
with his private key

- Note that this kind of authentication does not include negotiation of a session key.
- Protocols for key negotiation will be discussed in subsequent chapters.
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Common Cryptographic Hash Functions 'I'I.ITI

-+ Cryptographic Hash Functions:
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Common Cryptographic Hash Functions 'I'I.I'I'I

-+ Cryptographic Hash Functions:
+ Message Digest 5 (MD5): Considered broken.
 Invented by R. Rivest, Successor to MD4. Considered broken.
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Common Cryptographic Hash Functions 'I'I.I'I'I

-+ Cryptographic Hash Functions:
+ Message Digest 5 (MD5): Considered broken.
 Invented by R. Rivest, Successor to MD4. Considered broken.
+ Secure Hash Algorithm 1 (SHA-1): Considered broken.

* Old NIST standard.
* Invented by the National Security Agency (NSA). Inspired by MD4.
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Common Cryptographic Hash Functions

-+ Cryptographic Hash Functions:
+ Message Digest 5 (MD5): Considered broken.
 Invented by R. Rivest, Successor to MD4. Considered broken.
+ Secure Hash Algorithm 1 (SHA-1): Considered broken.

* Old NIST standard.
* Invented by the National Security Agency (NSA). Inspired by MD4.

-+ Secure Hash Algorithm 3 (SHA-3):

* Current NIST standard (since October 2012).
» Keccak algorithm by G. Bertoni, J. Daemen, M. Peeters und G. Van Assche.
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Common MAC Functions
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Definition Tm

- (Cryptographic) hashes alone don’t protect against tampering!
+ MAGCs include a secret key K in addition to the message m they aim to protect.
+ Only the persons with knowledge of K can (re-)compute the MAC.
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Definition

- (Cryptographic) hashes alone don’t protect against tampering!

+ MAGCs include a secret key K in addition to the message m they aim to protect.
+ Only the persons with knowledge of K can (re-)compute the MAC.

+ Procedure:

+ Sender s computes MACk(m).

+ <m,MACk(m)> is sent to the receiver r.
* rreceives <m’,MACk(m)>.

* rcan compute MACK(ml) based on his knowledge of K and m’.
- If MACK(m/ )=MACk (m), he knows that m=m’, since nobody else had knowledge of K.
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Definition

- (Cryptographic) hashes alone don’t protect against tampering!

+ MAGCs include a secret key K in addition to the message m they aim to protect.
+ Only the persons with knowledge of K can (re-)compute the MAC.

+ Procedure:

+ Sender s computes MACk(m).

+ <m,MACk(m)> is sent to the receiver r.
* rreceives <m’,MACk(m)>.

* rcan compute MACK(ml) based on his knowledge of K and m’.
- If MACK(m/ )=MACk (m), he knows that m=m’, since nobody else had knowledge of K.

* MACs:

+ Prove message authenticity < integrity.
-+ Do detect tampering.

+ Can't be forged.

+ Can be replayed.
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Application

=
share symmetric key K
Alice (A) Bob (B)

m, MACy (m)

- Alice protects/authenticates her message m with a MAC function
+ Alice has to send m and the MAC value to Bob.

Chapter 7: Cryptographic Hash Functions and MACs Add-on — Repetition: Message Authentication Codes (MAC)

717



Application

=
share symmetric key K
Alice (A) Bob (B)

m, MACy (m)

- Alice protects/authenticates her message m with a MAC function
+ Alice has to send m and the MAC value to Bob.
- Examples for potential MAC constructions:

+ HMAC
+ CBC-MAC/CMAC
* Enck (h(m)) — NO!!
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Application

=
share symmetric key K
Alice (A) Bob (B)

m, MACy (m)

+ Bob can verify the MAC code by using the shared key:

+ He reads Alice’'s MACk(m)

!
+ He can check if his MACx(m ) matches the one sent by Alice.
+ Only Alice and Bob who know K can do this.

Chapter 7: Cryptographic Hash Functions and MACs Add-on — Repetition: Message Authentication Codes (MAC)
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Application TI.ITI

<
share symmetric key K
Alice (A) Bob (B)

m, MACy (m)

+ Bob can verify the MAC code by using the shared key:

+ He reads Alice’'s MACk(m)

!
+ He can check if his MACx(m ) matches the one sent by Alice.
+ Only Alice and Bob who know K can do this.

- Take home message: for authenticity checks the receiver needs to know m and a
secure modification check value that it can compare.

+ Think about it: Why is Enck(m) usually not sufficient?
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Application TI.ITI

+ Reasons for constructing MACs from cryptographic hash functions:

- Cryptographic hash functions generally execute faster than symmetric block ciphers (Note:
with AES this isn’t much of a problem today)
+ There are no export restrictions to cryptographic hash functions
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Application TI.ITI

+ Reasons for constructing MACs from cryptographic hash functions:
- Cryptographic hash functions generally execute faster than symmetric block ciphers (Note:
with AES this isn’t much of a problem today)
+ There are no export restrictions to cryptographic hash functions
- Basic idea: “mix” a secret key K with the input and compute a hash value.
- The assumption that an attacker needs to know K to produce a valid MAC neverthe-
less raises some cryptographic concern:
+ The construction H(K || m) is not secure
+ The construction H(m || K) is not secure
+ The construction H(K || p || m || K) with p denoting an additional padding field does
not offer sufficient security
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Attack Against an Insecure MAC TI.ITI

- For illustrative purposes, consider the following MAC definition:

+ Input: message m = (x1, Xz, ..., Xn) With x; being 128-bit values, and key K
+ Compute A(m) = x1 @ X2 @ ... ® X, with @ denoting XOR
» Output: MACk(m) := Enck(/\(m)) with Enck(x) denoting AES encryption
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- For illustrative purposes, consider the following MAC definition:
+ Input: message m = (x1, Xz, ..., Xn) With x; being 128-bit values, and key K
+ Compute A(m) = x1 @ X2 @ ... ® X, with @ denoting XOR
» Output: MACk(m) := Enck(/\(m)) with Enck(x) denoting AES encryption
+ The key and the MAC length are both 128 bit, so we would expect an effort of about
2127 gperations to break the MAC (being able to forge messages).
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Attack Against an Insecure MAC TI.ITI

- For illustrative purposes, consider the following MAC definition:
+ Input: message m = (x1, Xz, ..., Xn) With x; being 128-bit values, and key K
+ Compute A(m) = x1 @ X2 @ ... ® X, with @ denoting XOR
» Output: MACk(m) := Enck(/\(m)) with Enck(x) denoting AES encryption
+ The key and the MAC length are both 128 bit, so we would expect an effort of about
2127 gperations to break the MAC (being able to forge messages).
+ Unfortunately the MAC definition is insecure:

* Attacker Eve wants to forge messages. Eve does not know K.

+ Alice and Bob exchange a message (m, MACk(m)), Eve eavesdrops it.
- Eve can construct a message m’ that yields the same MAC:

Chapter 7: Cryptographic Hash Functions and MACs Add-on — Repetition: Message Authentication Codes (MAC) 7-20



Attack Against an Insecure MAC TI.ITI

- For illustrative purposes, consider the following MAC definition:
+ Input: message m = (x1, Xz, ..., Xn) With x; being 128-bit values, and key K
+ Compute A(m) = x1 @ X2 @ ... ® X, with @ denoting XOR
» Output: MACk(m) := Enck(/\(m)) with Enck(x) denoting AES encryption

+ The key and the MAC length are both 128 bit, so we would expect an effort of about
2127 gperations to break the MAC (being able to forge messages).

+ Unfortunately the MAC definition is insecure:

* Attacker Eve wants to forge messages. Eve does not know K.
+ Alice and Bob exchange a message (m, MACk(m)), Eve eavesdrops it.
- Eve can construct a message m’ that yields the same MAC:

* Letyq,ys, ..., yn—1 be arbitrary 128-bit values

© Defineyn =y1 ®y2 @ ... & yn—1 & &)

* This yn allows to construct the new message m’ = (y1, ¥, ..., ¥n)
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Attack Against an Insecure MAC TI.ITI

- For illustrative purposes, consider the following MAC definition:
+ Input: message m = (x1, Xz, ..., Xn) With x; being 128-bit values, and key K
+ Compute A(m) = x1 @ X2 @ ... ® X, with @ denoting XOR
» Output: MACk(m) := Enck(/\(m)) with Enck(x) denoting AES encryption

+ The key and the MAC length are both 128 bit, so we would expect an effort of about
2127 gperations to break the MAC (being able to forge messages).

+ Unfortunately the MAC definition is insecure:

* Attacker Eve wants to forge messages. Eve does not know K.

+ Alice and Bob exchange a message (m, MACk(m)), Eve eavesdrops it.
- Eve can construct a message m’ that yields the same MAC:
* Letyq,ys, ..., yn—1 be arbitrary 128-bit values
© Defineyn =y1 ®y2 @ ... & yn—1 & &)
* This yn allows to construct the new message m’ = (y1, ¥, ..., ¥n)
* Therefore, MACk(m’) = Enc(A(m’))
=Enck(y1 ®y2 @ ... @ Yn—1 D ¥n))
=Enck(y1 @y2 @ . D Yn—1 D Yy1 ® Y2 ® ... ®yn—1 & L(m))
= Ency (A (m))) = MACk(m)

Chapter 7: Cryptographic Hash Functions and MACs Add-on — Repetition: Message Authentication Codes (MAC) 7-20



Attack Against an Insecure MAC TI.ITI

- For illustrative purposes, consider the following MAC definition:
+ Input: message m = (x1, Xz, ..., Xn) With x; being 128-bit values, and key K
+ Compute A(m) = x1 @ X2 @ ... ® X, with @ denoting XOR
» Output: MACk(m) := Enck(/\(m)) with Enck(x) denoting AES encryption

+ The key and the MAC length are both 128 bit, so we would expect an effort of about
2127 gperations to break the MAC (being able to forge messages).

+ Unfortunately the MAC definition is insecure:

* Attacker Eve wants to forge messages. Eve does not know K.
+ Alice and Bob exchange a message (m, MACk(m)), Eve eavesdrops it.
- Eve can construct a message m’ that yields the same MAC:
* Letyq,ys, ..., yn—1 be arbitrary 128-bit values
* Defineyn :=y1 @ y2 @ ... ® yn—1 © A(M)
* This yn allows to construct the new message m’ = (y1, ¥, ..., ¥n)
* Therefore, MACk(m’) = Enc(A(m’))
= Enck(y1 ® Y2 @ . D Yn—1 D ¥n))
=Enck(y1 @ Y2 @ - @ Yn—1 Dy1 Dy2 © .. ® yp—1 & &(M))
= Ency (A (m))) = MACk(m)
+ Therefore, MACk(m) is a valid MAC for m’, since Am = Am’
- When Bob receives (m’, MACk(m)) from Eve, he will accept it as being originated from
Alice.
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Common MAC Functions 'I'I.I'I'I

» MAC Functions:
+ Hash MAC (HMAC):

* Standardized in RFC 2104.
* Used in conjunction with cryptographic hash functions (e.g. SHA-3)
* See following slides.
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Common MAC Functions TI.ITI

+ MAC Functions:

+ Hash MAC (HMAC):
* Standardized in RFC 2104.
* Used in conjunction with cryptographic hash functions (e.g. SHA-3)
* See following slides.

+ Cipher Block Chaining MAC (CBC-MAC):
* Recommended by NIST.
* Based on cbc mode encryption (e.g. with AES).
* See following slides.
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Common MAC Functions

+ MAC Functions:

+ Hash MAC (HMAC):
* Standardized in RFC 2104.
* Used in conjunction with cryptographic hash functions (e.g. SHA-3)
* See following slides.

+ Cipher Block Chaining MAC (CBC-MAC):
* Recommended by NIST.
* Based on cbc mode encryption (e.g. with AES).
* See following slides.

+ Cipher based MAC (CMAC):
* AES-CMAC is standardized by IETF as RFC 4493 and its truncated form in RFC 4494.
* See following slides.
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Common MAC Functions

+ MAC Functions:

+ Hash MAC (HMAC):
* Standardized in RFC 2104.
* Used in conjunction with cryptographic hash functions (e.g. SHA-3)
* See following slides.

+ Cipher Block Chaining MAC (CBC-MAC):
* Recommended by NIST.
* Based on cbc mode encryption (e.g. with AES).
* See following slides.

+ Cipher based MAC (CMAC):

* AES-CMAC is standardized by IETF as RFC 4493 and its truncated form in RFC 4494.
* See following slides.

+ Poly1305:
* Standardized in RFC 7539.

Chapter 7: Cryptographic Hash Functions and MACs Add-on — Repetition: Message Authentication Codes (MAC)



Common MAC Functions: Hash MACs (HMAC) Tum

+ The construction H(K | m | K), called prefix-suffix mode, has been used for a while.
- See for example RFC 1828

It has been also used in earlier implementations of the Secure Socket Layer (SSL) protocol
(until SSL 3.0)

However, it is now considered vulnerable to attack by the cryptographic community.
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Common MAC Functions: Hash MACs (HMAC) Tum

+ The construction H(K | m | K), called prefix-suffix mode, has been used for a while.
- See for example RFC 1828

+ Ithas been also used in earlier implementations of the Secure Socket Layer (SSL) protocol
(until SSL 3.0)

+ However, it is now considered vulnerable to attack by the cryptographic community.

» The most used construction is HMAC: H (K@ opad | H (K ® ipad | m))

« The length of the key K is first extended to the block length required for the input of the
hash function H by appending zero bytes.

« Then it is xor'ed respectively with two constants opad and ipad

+ The hash function is applied twice in a nested way.

-+ Currently no attacks have been discovered on this MAC function.
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Common MAC Functions: Cipher Block Chaining MACs (CBC-MAC) Tum

- A CBC-MAC is computed by encrypting a message in CBC Mode and taking the last
ciphertext block or a part of it as the MAC:

my mo mnp

v— d — v~

k — Enc k —| Enc k — Enc

o — o — Cn

Chapter 7: Cryptographic Hash Functions and MACs Add-on — Repetition: Message Authentication Codes (MAC) 7-23



Common MAC Functions: Cipher Block Chaining MACs (CBC-MAC) Tum

- A CBC-MAC is computed by encrypting a message in CBC Mode and taking the last
ciphertext block or a part of it as the MAC:

my my Mn

/b
IV —(H) () — on—1 —(P)
k — Enc k —| Enc k — Enc
oy —— Cp ———— Cn

* MAC(m) = cp for some publicly known, fixed, IV.

Chapter 7: Cryptographic Hash Functions and MACs Add-on — Repetition: Message Authentication Codes (MAC) 7-23



Common MAC Functions: Cipher Block Chaining MACs (CBC-MAC) Tum

- A CBC-MAC is computed by encrypting a message in CBC Mode and taking the last
ciphertext block or a part of it as the MAC:

my mz Mn
v JL — Cn—1
k — Enc k —| Enc k — Enc
¢ ————— G ——— Cn

* MACk(m) = cn for some publicly known, fixed, IV.
+ This MAC needs not to be mixed with a secret any further, as it has already been
produced using a shared secret K.
+ This scheme works with any block cipher (AES, Twofish, 3DES, ...)
It is used, e.g., for IEEE 802.11 (WLAN) WPA2, many modes in SSL / IPSec use
some CBC-MAC construction.
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Common MAC Functions: Cipher Block Chaining MACs (CBC-MAC) Tum

+ CBC-MAC security

CBC-MAC must NOT be used with the same key as for the encryption

* In particular, if CBC mode is used for encryption, and CBC-MAC for authenticity with the
same key, the MAC will be equal to the last cipher text block

+ If the length of a message is unknown or no other protection exists, CBC-MAC can be
prone to length extension attacks. CMAC resolves the issue.

Chapter 7: Cryptographic Hash Functions and MACs Add-on — Repetition: Message Authentication Codes (MAC) 7-24



Common MAC Functions: Cipher Block Chaining MACs (CBC-MAC) Tum

+ CBC-MAC security
+ CBC-MAC must NOT be used with the same key as for the encryption
* In particular, if CBC mode is used for encryption, and CBC-MAC for authenticity with the
same key, the MAC will be equal to the last cipher text block
+ If the length of a message is unknown or no other protection exists, CBC-MAC can be
prone to length extension attacks. CMAC resolves the issue.

+ CBC-MAC performance

+ Older symmetric block ciphers (such as DES) require more computing effort than dedi-
cated cryptographic hash functions, e.g. MD5, SHA-1 therefore, these schemes are con-
sidered to be slower.

+ However, newer symmetric block ciphers (AES) is faster than conventional cryptographic
hash functions.

-+ Therefore, AES-CBC-MAC is becoming popular.
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Common MAC Functions: Cipher-based MACs (CMAC) TI.ITI

+ CMAC is a modification of CBC-MAC

+ Compute keys ki and ky from shared key k.
+ Within the CBC processing

* XOR complete blocks before encryption with kq
* XOR incomplete blocks before encryption with ko
* kis used for the block encryption

+ Output is the last encrypted block or the | most significant bits of the last block.

+ XCBC-MAC (e.g. found in TLS) is a predecessor of CMAC where ky and kp are input
to algorithm and not derived from k.
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