
Chair of Network Architectures and Services
Department of Informatics
Technical University of Munich

Network Security (NetSec)

IN2101 – WS 16/17

Prof. Dr.-Ing. Georg Carle

Cornelius Diekmann

Version: November 28, 2016

Chair of Network Architectures and Services
Department of Informatics

Technical University of Munich

Chapter 7: Cryptographic Hash Functions and MACs Add-on

Motivation

Repetition: Cryptographic Hash Functions

Definition

Applications

Common Cryptographic Hash Functions

Repetition: Message Authentication Codes (MAC)

Definition

Application

Attack Against an Insecure MAC

Common MAC Functions

Literature

Chapter 7: Cryptographic Hash Functions and MACs Add-on 7-1

Chapter 7: Cryptographic Hash Functions and MACs Add-on

Motivation

Repetition: Cryptographic Hash Functions

Repetition: Message Authentication Codes (MAC)

Literature

Chapter 7: Cryptographic Hash Functions and MACs Add-on 7-2

Motivation

• Common practice in data communications: error detection code, to identify random
errors introduced during transmission

• Examples: Parity, Bit-Interleaved Parity, Cyclic Redundancy Check (CRC)

• Underlying idea of these codes: add redundancy to a message for being able to
detect, or even correct transmission errors

• The error detection/correction code of choice and its parameters: trade-off between
• Computational overhead
• Increase of message length
• Probability/characteristics of errors on the transmission medium

Chapter 7: Cryptographic Hash Functions and MACs Add-on – Motivation 7-3

Motivation

• Common practice in data communications: error detection code, to identify random
errors introduced during transmission

• Examples: Parity, Bit-Interleaved Parity, Cyclic Redundancy Check (CRC)

• Underlying idea of these codes: add redundancy to a message for being able to
detect, or even correct transmission errors

• The error detection/correction code of choice and its parameters: trade-off between
• Computational overhead
• Increase of message length
• Probability/characteristics of errors on the transmission medium

Chapter 7: Cryptographic Hash Functions and MACs Add-on – Motivation 7-3

Motivation

• Common practice in data communications: error detection code, to identify random
errors introduced during transmission

• Examples: Parity, Bit-Interleaved Parity, Cyclic Redundancy Check (CRC)

• Underlying idea of these codes: add redundancy to a message for being able to
detect, or even correct transmission errors

• The error detection/correction code of choice and its parameters: trade-off between
• Computational overhead
• Increase of message length
• Probability/characteristics of errors on the transmission medium

Chapter 7: Cryptographic Hash Functions and MACs Add-on – Motivation 7-3

Motivation

• Essential security goal: Data integrity
• We received message m. Has m been modified by an attacker?

• It is a different (and much harder!) problem to determine if m has been modified on
purpose!

• Consequently, we need to add a code that fulfills some additional properties which
should make it computationally infeasible for an attacker to tamper with messages

• Outline:
1. Repetition of Cryptographic Hash Functions
2. Repetition of Message Authentication Codes

Chapter 7: Cryptographic Hash Functions and MACs Add-on – Motivation 7-4

Motivation

• Essential security goal: Data integrity
• We received message m. Has m been modified by an attacker?

• It is a different (and much harder!) problem to determine if m has been modified on
purpose!

• Consequently, we need to add a code that fulfills some additional properties which
should make it computationally infeasible for an attacker to tamper with messages

• Outline:
1. Repetition of Cryptographic Hash Functions
2. Repetition of Message Authentication Codes

Chapter 7: Cryptographic Hash Functions and MACs Add-on – Motivation 7-4

Motivation

• Essential security goal: Data integrity
• We received message m. Has m been modified by an attacker?

• It is a different (and much harder!) problem to determine if m has been modified on
purpose!

• Consequently, we need to add a code that fulfills some additional properties which
should make it computationally infeasible for an attacker to tamper with messages

• Outline:
1. Repetition of Cryptographic Hash Functions
2. Repetition of Message Authentication Codes

Chapter 7: Cryptographic Hash Functions and MACs Add-on – Motivation 7-4

Motivation

• Essential security goal: Data integrity
• We received message m. Has m been modified by an attacker?

• It is a different (and much harder!) problem to determine if m has been modified on
purpose!

• Consequently, we need to add a code that fulfills some additional properties which
should make it computationally infeasible for an attacker to tamper with messages

• Outline:
1. Repetition of Cryptographic Hash Functions
2. Repetition of Message Authentication Codes

Chapter 7: Cryptographic Hash Functions and MACs Add-on – Motivation 7-4

Chapter 7: Cryptographic Hash Functions and MACs Add-on

Motivation

Repetition: Cryptographic Hash Functions

Definition

Applications

Common Cryptographic Hash Functions

Repetition: Message Authentication Codes (MAC)

Literature

Chapter 7: Cryptographic Hash Functions and MACs Add-on 7-5

Definition

Disclaimer

• Definition of Hash functions and MACs: Chapter 6 Modern Cryptography is authori-
tative.

Chapter 7: Cryptographic Hash Functions and MACs Add-on – Repetition: Cryptographic Hash Functions 7-6

Definition

• Repetition: A function h is called a hash function if:

• Compression: h maps an input x of arbitrary length to an output h(x) of fixed length n:
h: {0, 1}∗ → {0, 1}n

• Ease of computation: Given h and x it is easy to compute h(x)

• Repetition: A function h is called a one-way function if
• h is a hash function
• for all pre-specified outputs y, it is computationally infeasible to find an x with h(x) = y

• Example: given a large prime number p and a primitive root g in Z∗p
Let h(x) = gx mod p
Then h is a one-way function

Chapter 7: Cryptographic Hash Functions and MACs Add-on – Repetition: Cryptographic Hash Functions 7-7

Definition

• Repetition: A function h is called a hash function if:
• Compression: h maps an input x of arbitrary length to an output h(x) of fixed length n:

h: {0, 1}∗ → {0, 1}n

• Ease of computation: Given h and x it is easy to compute h(x)

• Repetition: A function h is called a one-way function if
• h is a hash function
• for all pre-specified outputs y, it is computationally infeasible to find an x with h(x) = y

• Example: given a large prime number p and a primitive root g in Z∗p
Let h(x) = gx mod p
Then h is a one-way function

Chapter 7: Cryptographic Hash Functions and MACs Add-on – Repetition: Cryptographic Hash Functions 7-7

Definition

• Repetition: A function h is called a hash function if:
• Compression: h maps an input x of arbitrary length to an output h(x) of fixed length n:

h: {0, 1}∗ → {0, 1}n

• Ease of computation: Given h and x it is easy to compute h(x)

• Repetition: A function h is called a one-way function if
• h is a hash function
• for all pre-specified outputs y, it is computationally infeasible to find an x with h(x) = y

• Example: given a large prime number p and a primitive root g in Z∗p
Let h(x) = gx mod p
Then h is a one-way function

Chapter 7: Cryptographic Hash Functions and MACs Add-on – Repetition: Cryptographic Hash Functions 7-7

Definition

• Repetition: A function h is called a hash function if:
• Compression: h maps an input x of arbitrary length to an output h(x) of fixed length n:

h: {0, 1}∗ → {0, 1}n

• Ease of computation: Given h and x it is easy to compute h(x)

• Repetition: A function h is called a one-way function if
• h is a hash function
• for all pre-specified outputs y, it is computationally infeasible to find an x with h(x) = y

• Example: given a large prime number p and a primitive root g in Z∗p
Let h(x) = gx mod p
Then h is a one-way function

Chapter 7: Cryptographic Hash Functions and MACs Add-on – Repetition: Cryptographic Hash Functions 7-7

Definition

• Repetition: A function H is called a cryptographic hash function if:

1. H is a one-way function (1st pre-image resistance):
For all pre-specified outputs y, it is computationally infeasible to find an x with H(x) = y

2. 2nd pre-image resistance:
Given x it is computationally infeasible to find any second input x’ with x 6= x’ such that
H(x) = H(x’)
Note: This property is very important for digital signatures.

3. Collision resistance:
It is computationally infeasible to find any pair (x, x’) with x 6= x’ such that H(x) = H(x’)

Chapter 7: Cryptographic Hash Functions and MACs Add-on – Repetition: Cryptographic Hash Functions 7-8

Definition

• Repetition: A function H is called a cryptographic hash function if:
1. H is a one-way function (1st pre-image resistance):

For all pre-specified outputs y, it is computationally infeasible to find an x with H(x) = y

2. 2nd pre-image resistance:
Given x it is computationally infeasible to find any second input x’ with x 6= x’ such that
H(x) = H(x’)
Note: This property is very important for digital signatures.

3. Collision resistance:
It is computationally infeasible to find any pair (x, x’) with x 6= x’ such that H(x) = H(x’)

Chapter 7: Cryptographic Hash Functions and MACs Add-on – Repetition: Cryptographic Hash Functions 7-8

Definition

• Repetition: A function H is called a cryptographic hash function if:
1. H is a one-way function (1st pre-image resistance):

For all pre-specified outputs y, it is computationally infeasible to find an x with H(x) = y
2. 2nd pre-image resistance:

Given x it is computationally infeasible to find any second input x’ with x 6= x’ such that
H(x) = H(x’)
Note: This property is very important for digital signatures.

3. Collision resistance:
It is computationally infeasible to find any pair (x, x’) with x 6= x’ such that H(x) = H(x’)

Chapter 7: Cryptographic Hash Functions and MACs Add-on – Repetition: Cryptographic Hash Functions 7-8

Definition

• Repetition: A function H is called a cryptographic hash function if:
1. H is a one-way function (1st pre-image resistance):

For all pre-specified outputs y, it is computationally infeasible to find an x with H(x) = y
2. 2nd pre-image resistance:

Given x it is computationally infeasible to find any second input x’ with x 6= x’ such that
H(x) = H(x’)
Note: This property is very important for digital signatures.

3. Collision resistance:
It is computationally infeasible to find any pair (x, x’) with x 6= x’ such that H(x) = H(x’)

Chapter 7: Cryptographic Hash Functions and MACs Add-on – Repetition: Cryptographic Hash Functions 7-8

Definition
Comparsion to CRC:

• In networking there are codes for error detection.

• Common example: Cyclic redundancy checks (CRC)
• Based on binary polynomial division with Input / CRC divisor.
• The remainder of the division is the resulting error detection code.
• CRC is a fast compression function.

• Why not use CRC?
• CRC is not a cryptographic hash function
• CRC does not provide 2nd pre-image resistance and collision resistance
• CRC is additive

• If x’ = x ⊕4, then CRC(x’) = CRC(x)⊕ CRC(4)

• CRC is useful for protecting against noisy channels
• But not against intentional manipulation

Chapter 7: Cryptographic Hash Functions and MACs Add-on – Repetition: Cryptographic Hash Functions 7-9

Definition
Comparsion to CRC:

• In networking there are codes for error detection.

• Common example: Cyclic redundancy checks (CRC)
• Based on binary polynomial division with Input / CRC divisor.
• The remainder of the division is the resulting error detection code.
• CRC is a fast compression function.

• Why not use CRC?

• CRC is not a cryptographic hash function
• CRC does not provide 2nd pre-image resistance and collision resistance
• CRC is additive

• If x’ = x ⊕4, then CRC(x’) = CRC(x)⊕ CRC(4)

• CRC is useful for protecting against noisy channels
• But not against intentional manipulation

Chapter 7: Cryptographic Hash Functions and MACs Add-on – Repetition: Cryptographic Hash Functions 7-9

Definition
Comparsion to CRC:

• In networking there are codes for error detection.

• Common example: Cyclic redundancy checks (CRC)
• Based on binary polynomial division with Input / CRC divisor.
• The remainder of the division is the resulting error detection code.
• CRC is a fast compression function.

• Why not use CRC?
• CRC is not a cryptographic hash function
• CRC does not provide 2nd pre-image resistance and collision resistance
• CRC is additive

• If x’ = x ⊕4, then CRC(x’) = CRC(x)⊕ CRC(4)

• CRC is useful for protecting against noisy channels
• But not against intentional manipulation

Chapter 7: Cryptographic Hash Functions and MACs Add-on – Repetition: Cryptographic Hash Functions 7-9

Applications
Can Hashing ensure Integrity?

Alice (A) Bob (B)
m, H(m)

Alice (A) Bob (B)
m, H(m) m‘, H(m‘)

ok

ok

Case:
No attacker

Case:
With attacker

• Applying a hash function is not sufficient to secure a message.

• H(m) needs to be protected.

Chapter 7: Cryptographic Hash Functions and MACs Add-on – Repetition: Cryptographic Hash Functions 7-10

Applications
Can Hashing ensure Integrity?

Alice (A) Bob (B)
m, H(m)

Alice (A) Bob (B)
m, H(m) m‘, H(m‘)

ok

ok

Case:
No attacker

Case:
With attacker

• Applying a hash function is not sufficient to secure a message.

• H(m) needs to be protected.

Chapter 7: Cryptographic Hash Functions and MACs Add-on – Repetition: Cryptographic Hash Functions 7-10

Applications
Can Hashing ensure Integrity?

Alice (A) Bob (B)
m, MACK (m)

Alice (A) Bob (B)
m, MACK (m) m', MACK (m)

ok

not ok

Case:
No attacker

Case:
With attacker

share symmetric key K

• Simply hashing a message and appending the hash is not secure against intentional
manipulation (compare with CRC)!

• Solution:
• Include a secret in the hash.
• Since the secret key k is unknown to the attacker, the attacker cannot compute MACK (m’)

(see next section).

Chapter 7: Cryptographic Hash Functions and MACs Add-on – Repetition: Cryptographic Hash Functions 7-11

Applications
Can Hashing ensure Integrity?

Alice (A) Bob (B)
m, MACK (m)

Alice (A) Bob (B)
m, MACK (m) m', MACK (m)

ok

not ok

Case:
No attacker

Case:
With attacker

share symmetric key K

• Simply hashing a message and appending the hash is not secure against intentional
manipulation (compare with CRC)!

• Solution:
• Include a secret in the hash.
• Since the secret key k is unknown to the attacker, the attacker cannot compute MACK (m’)

(see next section).
Chapter 7: Cryptographic Hash Functions and MACs Add-on – Repetition: Cryptographic Hash Functions 7-11

Applications
Other applications which require some caution:

• Pseudo-random number generation
• The output of a cryptographic hash function is assumed to be uniformly distributed
• Although this property has not been proven in a mathematical sense for common crypto-

graphic hash functions, such as MD5, SHA-1, it is often used
• Start with random seed, then hash

• b0 = seed
• bi+1 = H(bi |seed)

• Encryption
• Remember: Output Feedback Mode (OFB) - encryption by generating a pseudo random

stream, and performing XOR with plain text
• Generate a key stream as follow:
• k0 = H(KA ,B |IV)
• ki+1 = H(KA ,B |ki)
• The plain text is XORed with the key stream to obtain the cipher text.

Chapter 7: Cryptographic Hash Functions and MACs Add-on – Repetition: Cryptographic Hash Functions 7-12

Applications
Other applications which require some caution:

• Pseudo-random number generation
• The output of a cryptographic hash function is assumed to be uniformly distributed
• Although this property has not been proven in a mathematical sense for common crypto-

graphic hash functions, such as MD5, SHA-1, it is often used
• Start with random seed, then hash

• b0 = seed
• bi+1 = H(bi |seed)

• Encryption
• Remember: Output Feedback Mode (OFB) - encryption by generating a pseudo random

stream, and performing XOR with plain text
• Generate a key stream as follow:
• k0 = H(KA ,B |IV)
• ki+1 = H(KA ,B |ki)
• The plain text is XORed with the key stream to obtain the cipher text.

Chapter 7: Cryptographic Hash Functions and MACs Add-on – Repetition: Cryptographic Hash Functions 7-12

Applications

• Authentication with a challenge-response mechanism

Alice Bob

rA

• Given only Alice and Bob know the shared secret KA ,B , Alice knows that an attacker
is not able to compute H(KA ,B , rA). Therefore the response must be from Bob.

• Mutual authentication can be achieved by a 2nd exchange in opposite direction

• This type of authentication is based on a authentication method called challenge-
response and used e.g. by HTTP digest authentication

• It avoids transmitting the transport of the shared key (e.g. password) in clear text

• Another type of a challenge-response would be, e.g., if Bob signs the challenge “rA ”
with his private key

• Note that this kind of authentication does not include negotiation of a session key.

• Protocols for key negotiation will be discussed in subsequent chapters.

Chapter 7: Cryptographic Hash Functions and MACs Add-on – Repetition: Cryptographic Hash Functions 7-13

Applications

• Authentication with a challenge-response mechanism

Alice Bob

rA

• Given only Alice and Bob know the shared secret KA ,B , Alice knows that an attacker
is not able to compute H(KA ,B , rA). Therefore the response must be from Bob.

• Mutual authentication can be achieved by a 2nd exchange in opposite direction

• This type of authentication is based on a authentication method called challenge-
response and used e.g. by HTTP digest authentication

• It avoids transmitting the transport of the shared key (e.g. password) in clear text

• Another type of a challenge-response would be, e.g., if Bob signs the challenge “rA ”
with his private key

• Note that this kind of authentication does not include negotiation of a session key.

• Protocols for key negotiation will be discussed in subsequent chapters.

Chapter 7: Cryptographic Hash Functions and MACs Add-on – Repetition: Cryptographic Hash Functions 7-13

Applications

• Authentication with a challenge-response mechanism

Alice Bob

rA

• Given only Alice and Bob know the shared secret KA ,B , Alice knows that an attacker
is not able to compute H(KA ,B , rA). Therefore the response must be from Bob.

• Mutual authentication can be achieved by a 2nd exchange in opposite direction

• This type of authentication is based on a authentication method called challenge-
response and used e.g. by HTTP digest authentication

• It avoids transmitting the transport of the shared key (e.g. password) in clear text

• Another type of a challenge-response would be, e.g., if Bob signs the challenge “rA ”
with his private key

• Note that this kind of authentication does not include negotiation of a session key.

• Protocols for key negotiation will be discussed in subsequent chapters.

Chapter 7: Cryptographic Hash Functions and MACs Add-on – Repetition: Cryptographic Hash Functions 7-13

Applications

• Authentication with a challenge-response mechanism

Alice Bob

rA

• Given only Alice and Bob know the shared secret KA ,B , Alice knows that an attacker
is not able to compute H(KA ,B , rA). Therefore the response must be from Bob.

• Mutual authentication can be achieved by a 2nd exchange in opposite direction

• This type of authentication is based on a authentication method called challenge-
response and used e.g. by HTTP digest authentication

• It avoids transmitting the transport of the shared key (e.g. password) in clear text

• Another type of a challenge-response would be, e.g., if Bob signs the challenge “rA ”
with his private key

• Note that this kind of authentication does not include negotiation of a session key.

• Protocols for key negotiation will be discussed in subsequent chapters.

Chapter 7: Cryptographic Hash Functions and MACs Add-on – Repetition: Cryptographic Hash Functions 7-13

Common Cryptographic Hash Functions

• Cryptographic Hash Functions:

• Message Digest 5 (MD5): Considered broken.
• Invented by R. Rivest, Successor to MD4. Considered broken.

• Secure Hash Algorithm 1 (SHA-1): Considered broken.
• Old NIST standard.
• Invented by the National Security Agency (NSA). Inspired by MD4.

• Secure Hash Algorithm 3 (SHA-3):
• Current NIST standard (since October 2012).
• Keccak algorithm by G. Bertoni, J. Daemen, M. Peeters und G. Van Assche.

Chapter 7: Cryptographic Hash Functions and MACs Add-on – Repetition: Cryptographic Hash Functions 7-14

Common Cryptographic Hash Functions

• Cryptographic Hash Functions:
• Message Digest 5 (MD5): Considered broken.

• Invented by R. Rivest, Successor to MD4. Considered broken.

• Secure Hash Algorithm 1 (SHA-1): Considered broken.
• Old NIST standard.
• Invented by the National Security Agency (NSA). Inspired by MD4.

• Secure Hash Algorithm 3 (SHA-3):
• Current NIST standard (since October 2012).
• Keccak algorithm by G. Bertoni, J. Daemen, M. Peeters und G. Van Assche.

Chapter 7: Cryptographic Hash Functions and MACs Add-on – Repetition: Cryptographic Hash Functions 7-14

Common Cryptographic Hash Functions

• Cryptographic Hash Functions:
• Message Digest 5 (MD5): Considered broken.

• Invented by R. Rivest, Successor to MD4. Considered broken.

• Secure Hash Algorithm 1 (SHA-1): Considered broken.
• Old NIST standard.
• Invented by the National Security Agency (NSA). Inspired by MD4.

• Secure Hash Algorithm 3 (SHA-3):
• Current NIST standard (since October 2012).
• Keccak algorithm by G. Bertoni, J. Daemen, M. Peeters und G. Van Assche.

Chapter 7: Cryptographic Hash Functions and MACs Add-on – Repetition: Cryptographic Hash Functions 7-14

Common Cryptographic Hash Functions

• Cryptographic Hash Functions:
• Message Digest 5 (MD5): Considered broken.

• Invented by R. Rivest, Successor to MD4. Considered broken.

• Secure Hash Algorithm 1 (SHA-1): Considered broken.
• Old NIST standard.
• Invented by the National Security Agency (NSA). Inspired by MD4.

• Secure Hash Algorithm 3 (SHA-3):
• Current NIST standard (since October 2012).
• Keccak algorithm by G. Bertoni, J. Daemen, M. Peeters und G. Van Assche.

Chapter 7: Cryptographic Hash Functions and MACs Add-on – Repetition: Cryptographic Hash Functions 7-14

Chapter 7: Cryptographic Hash Functions and MACs Add-on

Motivation

Repetition: Cryptographic Hash Functions

Repetition: Message Authentication Codes (MAC)

Definition

Application

Attack Against an Insecure MAC

Common MAC Functions

Literature

Chapter 7: Cryptographic Hash Functions and MACs Add-on 7-15

Definition

• (Cryptographic) hashes alone don’t protect against tampering!

• MACs include a secret key K in addition to the message m they aim to protect.
• Only the persons with knowledge of K can (re-)compute the MAC.

• Procedure:
• Sender s computes MACK (m).
• <m,MACK (m)> is sent to the receiver r.
• r receives <m’,MACK (m)>.

• r can compute MACK (m
′

) based on his knowledge of K and m’.
• If MACK (m

′
)=MACK (m), he knows that m=m’, since nobody else had knowledge of K.

• MACs:
• Prove message authenticity↔ integrity.
• Do detect tampering.
• Can’t be forged.
• Can be replayed.

Chapter 7: Cryptographic Hash Functions and MACs Add-on – Repetition: Message Authentication Codes (MAC) 7-16

Definition

• (Cryptographic) hashes alone don’t protect against tampering!

• MACs include a secret key K in addition to the message m they aim to protect.
• Only the persons with knowledge of K can (re-)compute the MAC.

• Procedure:
• Sender s computes MACK (m).
• <m,MACK (m)> is sent to the receiver r.
• r receives <m’,MACK (m)>.

• r can compute MACK (m
′

) based on his knowledge of K and m’.
• If MACK (m

′
)=MACK (m), he knows that m=m’, since nobody else had knowledge of K.

• MACs:
• Prove message authenticity↔ integrity.
• Do detect tampering.
• Can’t be forged.
• Can be replayed.

Chapter 7: Cryptographic Hash Functions and MACs Add-on – Repetition: Message Authentication Codes (MAC) 7-16

Definition

• (Cryptographic) hashes alone don’t protect against tampering!

• MACs include a secret key K in addition to the message m they aim to protect.
• Only the persons with knowledge of K can (re-)compute the MAC.

• Procedure:
• Sender s computes MACK (m).
• <m,MACK (m)> is sent to the receiver r.
• r receives <m’,MACK (m)>.

• r can compute MACK (m
′

) based on his knowledge of K and m’.
• If MACK (m

′
)=MACK (m), he knows that m=m’, since nobody else had knowledge of K.

• MACs:
• Prove message authenticity↔ integrity.
• Do detect tampering.
• Can’t be forged.
• Can be replayed.

Chapter 7: Cryptographic Hash Functions and MACs Add-on – Repetition: Message Authentication Codes (MAC) 7-16

Application

Alice (A) Bob (B)

share symmetric key K

m, MACK (m)

• Alice protects/authenticates her message m with a MAC function

• Alice has to send m and the MAC value to Bob.

• Examples for potential MAC constructions:
• HMAC
• CBC-MAC / CMAC
• EncK (h(m))→ NO!!

Chapter 7: Cryptographic Hash Functions and MACs Add-on – Repetition: Message Authentication Codes (MAC) 7-17

Application

Alice (A) Bob (B)

share symmetric key K

m, MACK (m)

• Alice protects/authenticates her message m with a MAC function

• Alice has to send m and the MAC value to Bob.

• Examples for potential MAC constructions:
• HMAC
• CBC-MAC / CMAC
• EncK (h(m))→ NO!!

Chapter 7: Cryptographic Hash Functions and MACs Add-on – Repetition: Message Authentication Codes (MAC) 7-17

Application

Alice (A) Bob (B)

share symmetric key K

m, MACK (m)

• Bob can verify the MAC code by using the shared key:
• He reads Alice‘s MACK (m)
• He can check if his MACK (m

′
) matches the one sent by Alice.

• Only Alice and Bob who know K can do this.

• Take home message: for authenticity checks the receiver needs to know m and a
secure modification check value that it can compare.

• Think about it: Why is EncK (m) usually not sufficient?

Chapter 7: Cryptographic Hash Functions and MACs Add-on – Repetition: Message Authentication Codes (MAC) 7-18

Application

Alice (A) Bob (B)

share symmetric key K

m, MACK (m)

• Bob can verify the MAC code by using the shared key:
• He reads Alice‘s MACK (m)
• He can check if his MACK (m

′
) matches the one sent by Alice.

• Only Alice and Bob who know K can do this.

• Take home message: for authenticity checks the receiver needs to know m and a
secure modification check value that it can compare.

• Think about it: Why is EncK (m) usually not sufficient?

Chapter 7: Cryptographic Hash Functions and MACs Add-on – Repetition: Message Authentication Codes (MAC) 7-18

Application

• Reasons for constructing MACs from cryptographic hash functions:
• Cryptographic hash functions generally execute faster than symmetric block ciphers (Note:

with AES this isn’t much of a problem today)
• There are no export restrictions to cryptographic hash functions

• Basic idea: “mix” a secret key K with the input and compute a hash value.

• The assumption that an attacker needs to know K to produce a valid MAC neverthe-
less raises some cryptographic concern:

• The construction H(K ‖ m) is not secure
• The construction H(m ‖ K) is not secure
• The construction H(K ‖ p ‖ m ‖ K) with p denoting an additional padding field does

not offer sufficient security

Chapter 7: Cryptographic Hash Functions and MACs Add-on – Repetition: Message Authentication Codes (MAC) 7-19

Application

• Reasons for constructing MACs from cryptographic hash functions:
• Cryptographic hash functions generally execute faster than symmetric block ciphers (Note:

with AES this isn’t much of a problem today)
• There are no export restrictions to cryptographic hash functions

• Basic idea: “mix” a secret key K with the input and compute a hash value.

• The assumption that an attacker needs to know K to produce a valid MAC neverthe-
less raises some cryptographic concern:

• The construction H(K ‖ m) is not secure
• The construction H(m ‖ K) is not secure
• The construction H(K ‖ p ‖ m ‖ K) with p denoting an additional padding field does

not offer sufficient security

Chapter 7: Cryptographic Hash Functions and MACs Add-on – Repetition: Message Authentication Codes (MAC) 7-19

Attack Against an Insecure MAC

• For illustrative purposes, consider the following MAC definition:
• Input: message m = (x1, x2, ..., xn) with xi being 128-bit values, and key K
• Compute4(m) := x1 ⊕ x2 ⊕ ...⊕ xn with ⊕ denoting XOR
• Output: MACK (m) := EncK (4(m)) with EncK (x) denoting AES encryption

• The key and the MAC length are both 128 bit, so we would expect an effort of about
2127 operations to break the MAC (being able to forge messages).

• Unfortunately the MAC definition is insecure:
• Attacker Eve wants to forge messages. Eve does not know K.
• Alice and Bob exchange a message (m, MACK (m)), Eve eavesdrops it.
• Eve can construct a message m’ that yields the same MAC:

• Let y1 , y2 , ..., yn−1 be arbitrary 128-bit values
• Define yn := y1 ⊕ y2 ⊕ ...⊕ yn−1 ⊕4(m)
• This yn allows to construct the new message m’ := (y1 , y2 , ..., yn)
• Therefore, MACK (m’) = Enc(4(m’))

= EncK (y1 ⊕ y2 ⊕ ...⊕ yn−1 ⊕ yn))
= EncK (y1 ⊕ y2 ⊕ ...⊕ yn−1 ⊕ y1 ⊕ y2 ⊕ ...⊕ yn−1 ⊕4(m)))
= EncK (4(m))) = MACK (m)

• Therefore, MACk (m) is a valid MAC for m’, since4m = 4m’
• When Bob receives (m’, MACK (m)) from Eve, he will accept it as being originated from

Alice.

Chapter 7: Cryptographic Hash Functions and MACs Add-on – Repetition: Message Authentication Codes (MAC) 7-20

Attack Against an Insecure MAC

• For illustrative purposes, consider the following MAC definition:
• Input: message m = (x1, x2, ..., xn) with xi being 128-bit values, and key K
• Compute4(m) := x1 ⊕ x2 ⊕ ...⊕ xn with ⊕ denoting XOR
• Output: MACK (m) := EncK (4(m)) with EncK (x) denoting AES encryption

• The key and the MAC length are both 128 bit, so we would expect an effort of about
2127 operations to break the MAC (being able to forge messages).

• Unfortunately the MAC definition is insecure:
• Attacker Eve wants to forge messages. Eve does not know K.
• Alice and Bob exchange a message (m, MACK (m)), Eve eavesdrops it.
• Eve can construct a message m’ that yields the same MAC:

• Let y1 , y2 , ..., yn−1 be arbitrary 128-bit values
• Define yn := y1 ⊕ y2 ⊕ ...⊕ yn−1 ⊕4(m)
• This yn allows to construct the new message m’ := (y1 , y2 , ..., yn)
• Therefore, MACK (m’) = Enc(4(m’))

= EncK (y1 ⊕ y2 ⊕ ...⊕ yn−1 ⊕ yn))
= EncK (y1 ⊕ y2 ⊕ ...⊕ yn−1 ⊕ y1 ⊕ y2 ⊕ ...⊕ yn−1 ⊕4(m)))
= EncK (4(m))) = MACK (m)

• Therefore, MACk (m) is a valid MAC for m’, since4m = 4m’
• When Bob receives (m’, MACK (m)) from Eve, he will accept it as being originated from

Alice.

Chapter 7: Cryptographic Hash Functions and MACs Add-on – Repetition: Message Authentication Codes (MAC) 7-20

Attack Against an Insecure MAC

• For illustrative purposes, consider the following MAC definition:
• Input: message m = (x1, x2, ..., xn) with xi being 128-bit values, and key K
• Compute4(m) := x1 ⊕ x2 ⊕ ...⊕ xn with ⊕ denoting XOR
• Output: MACK (m) := EncK (4(m)) with EncK (x) denoting AES encryption

• The key and the MAC length are both 128 bit, so we would expect an effort of about
2127 operations to break the MAC (being able to forge messages).

• Unfortunately the MAC definition is insecure:
• Attacker Eve wants to forge messages. Eve does not know K.
• Alice and Bob exchange a message (m, MACK (m)), Eve eavesdrops it.
• Eve can construct a message m’ that yields the same MAC:

• Let y1 , y2 , ..., yn−1 be arbitrary 128-bit values
• Define yn := y1 ⊕ y2 ⊕ ...⊕ yn−1 ⊕4(m)
• This yn allows to construct the new message m’ := (y1 , y2 , ..., yn)
• Therefore, MACK (m’) = Enc(4(m’))

= EncK (y1 ⊕ y2 ⊕ ...⊕ yn−1 ⊕ yn))
= EncK (y1 ⊕ y2 ⊕ ...⊕ yn−1 ⊕ y1 ⊕ y2 ⊕ ...⊕ yn−1 ⊕4(m)))
= EncK (4(m))) = MACK (m)

• Therefore, MACk (m) is a valid MAC for m’, since4m = 4m’
• When Bob receives (m’, MACK (m)) from Eve, he will accept it as being originated from

Alice.

Chapter 7: Cryptographic Hash Functions and MACs Add-on – Repetition: Message Authentication Codes (MAC) 7-20

Attack Against an Insecure MAC

• For illustrative purposes, consider the following MAC definition:
• Input: message m = (x1, x2, ..., xn) with xi being 128-bit values, and key K
• Compute4(m) := x1 ⊕ x2 ⊕ ...⊕ xn with ⊕ denoting XOR
• Output: MACK (m) := EncK (4(m)) with EncK (x) denoting AES encryption

• The key and the MAC length are both 128 bit, so we would expect an effort of about
2127 operations to break the MAC (being able to forge messages).

• Unfortunately the MAC definition is insecure:
• Attacker Eve wants to forge messages. Eve does not know K.
• Alice and Bob exchange a message (m, MACK (m)), Eve eavesdrops it.
• Eve can construct a message m’ that yields the same MAC:

• Let y1 , y2 , ..., yn−1 be arbitrary 128-bit values
• Define yn := y1 ⊕ y2 ⊕ ...⊕ yn−1 ⊕4(m)
• This yn allows to construct the new message m’ := (y1 , y2 , ..., yn)

• Therefore, MACK (m’) = Enc(4(m’))
= EncK (y1 ⊕ y2 ⊕ ...⊕ yn−1 ⊕ yn))
= EncK (y1 ⊕ y2 ⊕ ...⊕ yn−1 ⊕ y1 ⊕ y2 ⊕ ...⊕ yn−1 ⊕4(m)))
= EncK (4(m))) = MACK (m)

• Therefore, MACk (m) is a valid MAC for m’, since4m = 4m’
• When Bob receives (m’, MACK (m)) from Eve, he will accept it as being originated from

Alice.

Chapter 7: Cryptographic Hash Functions and MACs Add-on – Repetition: Message Authentication Codes (MAC) 7-20

Attack Against an Insecure MAC

• For illustrative purposes, consider the following MAC definition:
• Input: message m = (x1, x2, ..., xn) with xi being 128-bit values, and key K
• Compute4(m) := x1 ⊕ x2 ⊕ ...⊕ xn with ⊕ denoting XOR
• Output: MACK (m) := EncK (4(m)) with EncK (x) denoting AES encryption

• The key and the MAC length are both 128 bit, so we would expect an effort of about
2127 operations to break the MAC (being able to forge messages).

• Unfortunately the MAC definition is insecure:
• Attacker Eve wants to forge messages. Eve does not know K.
• Alice and Bob exchange a message (m, MACK (m)), Eve eavesdrops it.
• Eve can construct a message m’ that yields the same MAC:

• Let y1 , y2 , ..., yn−1 be arbitrary 128-bit values
• Define yn := y1 ⊕ y2 ⊕ ...⊕ yn−1 ⊕4(m)
• This yn allows to construct the new message m’ := (y1 , y2 , ..., yn)
• Therefore, MACK (m’) = Enc(4(m’))

= EncK (y1 ⊕ y2 ⊕ ...⊕ yn−1 ⊕ yn))
= EncK (y1 ⊕ y2 ⊕ ...⊕ yn−1 ⊕ y1 ⊕ y2 ⊕ ...⊕ yn−1 ⊕4(m)))
= EncK (4(m))) = MACK (m)

• Therefore, MACk (m) is a valid MAC for m’, since4m = 4m’
• When Bob receives (m’, MACK (m)) from Eve, he will accept it as being originated from

Alice.

Chapter 7: Cryptographic Hash Functions and MACs Add-on – Repetition: Message Authentication Codes (MAC) 7-20

Attack Against an Insecure MAC

• For illustrative purposes, consider the following MAC definition:
• Input: message m = (x1, x2, ..., xn) with xi being 128-bit values, and key K
• Compute4(m) := x1 ⊕ x2 ⊕ ...⊕ xn with ⊕ denoting XOR
• Output: MACK (m) := EncK (4(m)) with EncK (x) denoting AES encryption

• The key and the MAC length are both 128 bit, so we would expect an effort of about
2127 operations to break the MAC (being able to forge messages).

• Unfortunately the MAC definition is insecure:
• Attacker Eve wants to forge messages. Eve does not know K.
• Alice and Bob exchange a message (m, MACK (m)), Eve eavesdrops it.
• Eve can construct a message m’ that yields the same MAC:

• Let y1 , y2 , ..., yn−1 be arbitrary 128-bit values
• Define yn := y1 ⊕ y2 ⊕ ...⊕ yn−1 ⊕4(m)
• This yn allows to construct the new message m’ := (y1 , y2 , ..., yn)
• Therefore, MACK (m’) = Enc(4(m’))

= EncK (y1 ⊕ y2 ⊕ ...⊕ yn−1 ⊕ yn))
= EncK (y1 ⊕ y2 ⊕ ...⊕ yn−1 ⊕ y1 ⊕ y2 ⊕ ...⊕ yn−1 ⊕4(m)))
= EncK (4(m))) = MACK (m)

• Therefore, MACk (m) is a valid MAC for m’, since4m = 4m’
• When Bob receives (m’, MACK (m)) from Eve, he will accept it as being originated from

Alice.

Chapter 7: Cryptographic Hash Functions and MACs Add-on – Repetition: Message Authentication Codes (MAC) 7-20

Common MAC Functions

• MAC Functions:
• Hash MAC (HMAC):

• Standardized in RFC 2104.
• Used in conjunction with cryptographic hash functions (e.g. SHA-3)
• See following slides.

• Cipher Block Chaining MAC (CBC-MAC):
• Recommended by NIST.
• Based on cbc mode encryption (e.g. with AES).
• See following slides.

• Cipher based MAC (CMAC):
• AES-CMAC is standardized by IETF as RFC 4493 and its truncated form in RFC 4494.
• See following slides.

• Poly1305:
• Standardized in RFC 7539.

Chapter 7: Cryptographic Hash Functions and MACs Add-on – Repetition: Message Authentication Codes (MAC) 7-21

Common MAC Functions

• MAC Functions:
• Hash MAC (HMAC):

• Standardized in RFC 2104.
• Used in conjunction with cryptographic hash functions (e.g. SHA-3)
• See following slides.

• Cipher Block Chaining MAC (CBC-MAC):
• Recommended by NIST.
• Based on cbc mode encryption (e.g. with AES).
• See following slides.

• Cipher based MAC (CMAC):
• AES-CMAC is standardized by IETF as RFC 4493 and its truncated form in RFC 4494.
• See following slides.

• Poly1305:
• Standardized in RFC 7539.

Chapter 7: Cryptographic Hash Functions and MACs Add-on – Repetition: Message Authentication Codes (MAC) 7-21

Common MAC Functions

• MAC Functions:
• Hash MAC (HMAC):

• Standardized in RFC 2104.
• Used in conjunction with cryptographic hash functions (e.g. SHA-3)
• See following slides.

• Cipher Block Chaining MAC (CBC-MAC):
• Recommended by NIST.
• Based on cbc mode encryption (e.g. with AES).
• See following slides.

• Cipher based MAC (CMAC):
• AES-CMAC is standardized by IETF as RFC 4493 and its truncated form in RFC 4494.
• See following slides.

• Poly1305:
• Standardized in RFC 7539.

Chapter 7: Cryptographic Hash Functions and MACs Add-on – Repetition: Message Authentication Codes (MAC) 7-21

Common MAC Functions

• MAC Functions:
• Hash MAC (HMAC):

• Standardized in RFC 2104.
• Used in conjunction with cryptographic hash functions (e.g. SHA-3)
• See following slides.

• Cipher Block Chaining MAC (CBC-MAC):
• Recommended by NIST.
• Based on cbc mode encryption (e.g. with AES).
• See following slides.

• Cipher based MAC (CMAC):
• AES-CMAC is standardized by IETF as RFC 4493 and its truncated form in RFC 4494.
• See following slides.

• Poly1305:
• Standardized in RFC 7539.

Chapter 7: Cryptographic Hash Functions and MACs Add-on – Repetition: Message Authentication Codes (MAC) 7-21

Common MAC Functions: Hash MACs (HMAC)

• The construction H(K | m | K), called prefix-suffix mode, has been used for a while.
• See for example RFC 1828
• It has been also used in earlier implementations of the Secure Socket Layer (SSL) protocol

(until SSL 3.0)
• However, it is now considered vulnerable to attack by the cryptographic community.

• The most used construction is HMAC: H (K ⊕ opad | H (K ⊕ ipad | m))
• The length of the key K is first extended to the block length required for the input of the

hash function H by appending zero bytes.
• Then it is xor’ed respectively with two constants opad and ipad
• The hash function is applied twice in a nested way.
• Currently no attacks have been discovered on this MAC function.

Chapter 7: Cryptographic Hash Functions and MACs Add-on – Repetition: Message Authentication Codes (MAC) 7-22

Common MAC Functions: Hash MACs (HMAC)

• The construction H(K | m | K), called prefix-suffix mode, has been used for a while.
• See for example RFC 1828
• It has been also used in earlier implementations of the Secure Socket Layer (SSL) protocol

(until SSL 3.0)
• However, it is now considered vulnerable to attack by the cryptographic community.

• The most used construction is HMAC: H (K ⊕ opad | H (K ⊕ ipad | m))
• The length of the key K is first extended to the block length required for the input of the

hash function H by appending zero bytes.
• Then it is xor’ed respectively with two constants opad and ipad
• The hash function is applied twice in a nested way.
• Currently no attacks have been discovered on this MAC function.

Chapter 7: Cryptographic Hash Functions and MACs Add-on – Repetition: Message Authentication Codes (MAC) 7-22

Common MAC Functions: Cipher Block Chaining MACs (CBC-MAC)

• A CBC-MAC is computed by encrypting a message in CBC Mode and taking the last
ciphertext block or a part of it as the MAC:

m1

c1

Enck

m2

c2

Enck

...

...

...

mn

cn

Enck

IV cn−1

• MACk (m) = cn for some publicly known, fixed, IV .
• This MAC needs not to be mixed with a secret any further, as it has already been

produced using a shared secret K.
• This scheme works with any block cipher (AES, Twofish, 3DES, ...)
• It is used, e.g., for IEEE 802.11 (WLAN) WPA2, many modes in SSL / IPSec use

some CBC-MAC construction.

Chapter 7: Cryptographic Hash Functions and MACs Add-on – Repetition: Message Authentication Codes (MAC) 7-23

Common MAC Functions: Cipher Block Chaining MACs (CBC-MAC)

• A CBC-MAC is computed by encrypting a message in CBC Mode and taking the last
ciphertext block or a part of it as the MAC:

m1

c1

Enck

m2

c2

Enck

...

...

...

mn

cn

Enck

IV cn−1

• MACk (m) = cn for some publicly known, fixed, IV .

• This MAC needs not to be mixed with a secret any further, as it has already been
produced using a shared secret K.

• This scheme works with any block cipher (AES, Twofish, 3DES, ...)
• It is used, e.g., for IEEE 802.11 (WLAN) WPA2, many modes in SSL / IPSec use

some CBC-MAC construction.

Chapter 7: Cryptographic Hash Functions and MACs Add-on – Repetition: Message Authentication Codes (MAC) 7-23

Common MAC Functions: Cipher Block Chaining MACs (CBC-MAC)

• A CBC-MAC is computed by encrypting a message in CBC Mode and taking the last
ciphertext block or a part of it as the MAC:

m1

c1

Enck

m2

c2

Enck

...

...

...

mn

cn

Enck

IV cn−1

• MACk (m) = cn for some publicly known, fixed, IV .
• This MAC needs not to be mixed with a secret any further, as it has already been

produced using a shared secret K.
• This scheme works with any block cipher (AES, Twofish, 3DES, ...)
• It is used, e.g., for IEEE 802.11 (WLAN) WPA2, many modes in SSL / IPSec use

some CBC-MAC construction.
Chapter 7: Cryptographic Hash Functions and MACs Add-on – Repetition: Message Authentication Codes (MAC) 7-23

Common MAC Functions: Cipher Block Chaining MACs (CBC-MAC)

• CBC-MAC security
• CBC-MAC must NOT be used with the same key as for the encryption
• In particular, if CBC mode is used for encryption, and CBC-MAC for authenticity with the

same key, the MAC will be equal to the last cipher text block
• If the length of a message is unknown or no other protection exists, CBC-MAC can be

prone to length extension attacks. CMAC resolves the issue.

• CBC-MAC performance
• Older symmetric block ciphers (such as DES) require more computing effort than dedi-

cated cryptographic hash functions, e.g. MD5, SHA-1 therefore, these schemes are con-
sidered to be slower.

• However, newer symmetric block ciphers (AES) is faster than conventional cryptographic
hash functions.

• Therefore, AES-CBC-MAC is becoming popular.

Chapter 7: Cryptographic Hash Functions and MACs Add-on – Repetition: Message Authentication Codes (MAC) 7-24

Common MAC Functions: Cipher Block Chaining MACs (CBC-MAC)

• CBC-MAC security
• CBC-MAC must NOT be used with the same key as for the encryption
• In particular, if CBC mode is used for encryption, and CBC-MAC for authenticity with the

same key, the MAC will be equal to the last cipher text block
• If the length of a message is unknown or no other protection exists, CBC-MAC can be

prone to length extension attacks. CMAC resolves the issue.

• CBC-MAC performance
• Older symmetric block ciphers (such as DES) require more computing effort than dedi-

cated cryptographic hash functions, e.g. MD5, SHA-1 therefore, these schemes are con-
sidered to be slower.

• However, newer symmetric block ciphers (AES) is faster than conventional cryptographic
hash functions.

• Therefore, AES-CBC-MAC is becoming popular.

Chapter 7: Cryptographic Hash Functions and MACs Add-on – Repetition: Message Authentication Codes (MAC) 7-24

Common MAC Functions: Cipher-based MACs (CMAC)

• CMAC is a modification of CBC-MAC
• Compute keys k1 and k2 from shared key k.
• Within the CBC processing

• XOR complete blocks before encryption with k1
• XOR incomplete blocks before encryption with k2
• k is used for the block encryption

• Output is the last encrypted block or the l most significant bits of the last block.

• XCBC-MAC (e.g. found in TLS) is a predecessor of CMAC where k1 and k2 are input
to algorithm and not derived from k.

Chapter 7: Cryptographic Hash Functions and MACs Add-on – Repetition: Message Authentication Codes (MAC) 7-25

Chapter 7: Cryptographic Hash Functions and MACs Add-on

Motivation

Repetition: Cryptographic Hash Functions

Repetition: Message Authentication Codes (MAC)

Literature

Chapter 7: Cryptographic Hash Functions and MACs Add-on 7-26

Literature

(Beyond the scope of examination)

• B. Coskun, N. Memon, Confusion/Diffusion Capabilities of Some Robust Hash Func-
tions, CISS 2006: Conference on Information Sciences and Systems

• H. Krawczyk, M. Bellare, R. Canetti, HMAC: Keyed-Hashing for Message Authenti-
cation, Internet RFC 2104, February 1997.

• R. Merkle, One Way Hash Functions and DES, Proceedings of Crypto ‘89, Springer,
1989.

• Niels Ferguson, Bruce Schneier, Practical Cryptography, John Wiley & Sons, 2003

• Peter Selinger, http://www.mscs.dal.ca/ selinger/md5collision/

• P. Metzger, IP Authentication using Keyed MD5, IETF RFC 1828, August 1995

• R. L. Rivest. The MD5 Message Digest Algorithm, Internet RFC 1321, April 1992.

• M. Robshaw. On Recent Results for MD2, MD4 and MD5, RSA Laboratories’ Bulletin,
No. 4, November 1996.

• Xiaoyun Wang, Yiqun Lisa Yin, and Hongbo Yu, Collision Search Attacks on SHA1,
February 2005

• G. Yuval. How to Swindle Rabin, Cryptologia, July 1979.

Chapter 7: Cryptographic Hash Functions and MACs Add-on – Literature 7-27

Literature

• Niels Ferguson, Stefan Lucks, Bruce Schneier, et. al., Skein Specification v1.1

• http://www.skein-hash.info

• NIST (National Institute for Standards and Technology (USA)),
CRYPTOGRAPHIC HASH ALGORITHM COMPETITION,
http://csrc.nist.gov/groups/ST/hash/sha-3/index.html

• G. Bertoni, J. Daemen, M. Peeters und G. Van Assche, Cryptographic Sponge Func-
tions http://sponge.noekeon.org/CSF-0.1.pdf

• G. Bertoni, J. Daemen, M. Peeters und G. Van Assche, Keccak Reference (version
3.0), http://keccak.noekeon.org/Keccak-reference-3.0.pdf

• G. Bertoni, J. Daemen, M. Peeters und G. Van Assche, Keccak sponge function
family main document, http://keccak.noekeon.org/Keccak-main-2.1.pdf

Chapter 7: Cryptographic Hash Functions and MACs Add-on – Literature 7-28

	Cryptographic Hash Functions and MACs Add-on
	Motivation
	Repetition: Cryptographic Hash Functions
	Definition
	Applications
	Common Cryptographic Hash Functions

	Repetition: Message Authentication Codes (MAC)
	Definition
	Application
	Attack Against an Insecure MAC
	Common MAC Functions

	Literature

