
Technische Universität München

Network Coding (IN2315)
WiSe 2014/15

Technische Universität München

Department of Computer Science
Chair for Network Architectures and Services

Prof. Dr.-Ing. Georg Carle

Stephan M. Günther

Department of Electrical Engineering and Information Technology
Associate Institute for Signal Processing

Prof. Dr.-Ing. Wolfgang Utschick

Maximilian Riemensberger

Network Coding (IN2315) 1

Technische Universität München

Organizational stuff
Introduction

What is Network Coding?
Applications of Network Coding
Mindmap: Network Coding and lecture outline

Finite fields
Binary extension fields
Discrete logarithm

Formal description of coding operations
Connection to Forward Error Correction
Network coding implementations

MORE – a MAC-independent opportunistic routing protocol

Networks as graphs
Graphs
Flows
Flow problems
Max-flow min-cut theorem
Multicommodity Flow Problems

Multicast in Networks
Max-flow min-cut theorem

Wireless Packet Networks
Bidirectional Communication
IEEE 802.11

IEEE 802.11 frame format
IEEE 80211 MAC
IEEE 802.11 service sets

libmoep80211
What is libmoep80211?
moep80211 frame format

Network Coding (IN2315): Organizational stuff 2

Technische Universität München

Organizational issues
I Prof. Dr.-Ing. Georg Carle
I Email: carle@tum.de
I Office: MI 03.05.054
I Office hours: Mo 18:00 – 18:30 or after arrangement

I Prof. Dr.-Ing. Wolfgang Utschick
I Email: utschick@tum.de
I Office: N1122
I Office hours: after arrangement

I Dipl.-Ing. Stephan M. Günther, M. Sc.
I Email: guenther@tum.de
I Office: MI 03.05.061
I Office hours: anytime

I Maximilian Riemensberger, M. Sc. (hons)
I Email: riemensberger@tum.de
I Office: N1121
I Office hours: anytime

Network Coding (IN2315): Organizational stuff 3

Technische Universität München

Lecture
I 6 ECTS (4 SWS)
I Targeted for Master students in Informatics
I Module number still tba (preliminary module is IN3300)
I Tuesday, 10:15 – 11:45, MI 03.07.023
I Thursday, 14:15 – 15:45, MI 03.07.023

Exercises
I Lecture with integrated exercises
I Regular participation in lecture strongly recommended

Projects
I Individual projects (programming assignments in C)
I Should be worked on by teams of 2 students
I Topic proposals are welcome

Time schedule

Oct Nov Dec Jan Feb

Lecture Project Talks

Proposals

Network Coding (IN2315): Organizational stuff 4

Technische Universität München

Supported by TUMLehrfonds

I The format of this course (lecture with integrated exercises, programming
assignments, and final talks) are kindly supported by the TUMLehrfonds

I Benefit for you: we will purchase hardware to support you in creating innovative
and interesting projects

(a) Odroid XU (b) ZBox pico (c) WLAN hardware

I We are still undecided which platform is the right one :)
I Hardware will be provided at the beginning of the project phase (December)

Network Coding (IN2315): Organizational stuff 5

Technische Universität München

Exam

I Written exam at the end of the lecture period
I 60 minutes / 60 credits
I 1 sheet of paper (A4), hand-written (cheatsheet)
I closed book otherwise

I No ”programming on paper”, promised
I Exam will be quite hard

Grading
I Exam gives 60 credits
I Project gives additional 40 bonus credits
I Credits earned in projects can only be added if you pass the exam with at least

grade 4.0 (approximately 40% of 60 credits)

In a nutshell
I We strongly encourage you to participate in the projects
I Getting a top grade

I should be easy if you participate in lecture and projects
I but will be quite hard if you skip the projects

Network Coding (IN2315): Organizational stuff 6

Technische Universität München

Grading example

Assuming that 40 % of 60 = 24 credits are needed to pass the written exam:
I Get 23 credits in the exam and 40 bonus credits from the project
) FAIL (thanks to APSO)

I Get 24 credits in the exam and 32 bonus credits
) Gives a total of 56 credits, which is most likely a 1.0

I Get 56 credits in the exam but 0 credits in the project
) Most likely a 1.0, same as above

Please note that this is only an example to illustrate the grading scheme.

Network Coding (IN2315): Organizational stuff 7

Technische Universität München

Lecture material

The lecture material (slides, exercises) will be eventually made available on
the course homepage. However:

I We will create an access-restricted git repository somewhere at
git@git.net.in.tum.de/nc/[somewildcard].

I It’s so much more convenient, and we can provide you with material
under copyright, e.g. book scans.

I Please send your RSA public key to guenther@tum.de.
I We will notify you as soon as the repository is online.

A note regarding attendance:
I We don’t check your attendance in class.

I You should attend anyway:
I Not everything may be on slides.
I There will be discussions in class and presentations on the whiteboard.

Network Coding (IN2315): Organizational stuff 8

http://www.net.in.tum.de
guenther@tum.de

Technische Universität München

Organizational stuff

Introduction
What is Network Coding?
Applications of Network Coding
Mindmap: Network Coding and lecture outline

Finite fields
Binary extension fields
Discrete logarithm

Formal description of coding operations

Connection to Forward Error Correction

Network coding implementations
MORE – a MAC-independent opportunistic routing protocol

Networks as graphs
Graphs
Flows
Flow problems
Max-flow min-cut theorem
Multicommodity Flow Problems

Multicast in Networks
Max-flow min-cut theorem

Wireless Packet Networks

Bidirectional Communication

IEEE 802.11
IEEE 802.11 frame format
IEEE 80211 MAC
IEEE 802.11 service sets

libmoep80211
What is libmoep80211?
moep80211 frame format

Network Coding (IN2315): Introduction 9

Technische Universität München

What is Network Coding (NC)?

NC can be considered as a generalization of routing and forwarding:
I Routing determines best-paths from source to destination.
I Forwarding switches packets along one of these paths.
I Forwarding merely creates replicas of incoming packets, i. e., a packet’s

payload remains unaltered.

NC drops this restriction:
I Outgoing packets are arbitrary combinations of previously received

packets.
I The process of combining packets in such a way is referred to as

coding.
I Since coding does not only happen at the source but on any node in the

network, the network codes on packets.

Network Coding (IN2315): Introduction – What is Network Coding? 10

Technische Universität München

Example 1: the famous butterfly network

Source s transmits 2 packets a, b to both t1, t2 (multicast):

s

1

2

3 4

t1

t2

a

b

a

b

a

b

a, b b

a

(a) Routing (with multicast)

(b) Network Coding

I The link (3, 4) poses a bottleneck
and must be used twice

I NC saves one transmission on the
critical link (3, 4)

I t1, t2 can decode the missing packet
by XORing the coded packet with a
and b, respectively

Network Coding (IN2315): Introduction – What is Network Coding? 11

Technische Universität München

Example 1: the famous butterfly network

Source s transmits 2 packets a, b to both t1, t2 (multicast):

s

1

2

3 4

t1

t2

a

b

a

b

a

b

a, b b

a

(a) Routing (with multicast)

s

1

2

3 4

t1

t2

a

b

a

b

a

b

a � b a � b

a � b

(b) Network Coding

I The link (3, 4) poses a bottleneck
and must be used twice

I NC saves one transmission on the
critical link (3, 4)

I t1, t2 can decode the missing packet
by XORing the coded packet with a
and b, respectively

Network Coding (IN2315): Introduction – What is Network Coding? 11

Technische Universität München

Example 2: diamond network

Nodes s, t want to communicate with each other (bidirectional unicasts):

s

1

2

t

a b

a, b

b a

(a) Routing

(b) Network Coding

I The link (1, 2) poses a bottleneck
and must be used twice.

I NC saves again one transmission on
the critical link (1, 2).

I s, t know what they have sent and
are thus able to decode.

Network Coding (IN2315): Introduction – What is Network Coding? 12

Technische Universität München

Example 2: diamond network

Nodes s, t want to communicate with each other (bidirectional unicasts):

s

1

2

t

a b

a, b

b a

(a) Routing

s

1

2

t

a b

a � b

a � b a � b

(b) Network Coding

I The link (1, 2) poses a bottleneck
and must be used twice.

I NC saves again one transmission on
the critical link (1, 2).

I s, t know what they have sent and
are thus able to decode.

Network Coding (IN2315): Introduction – What is Network Coding? 12

Technische Universität München

Example 3: wireless relay network

Nodes s, t want to communicate with each other (bidirectional unicasts):

Note:
I Only 1 node can transmit at any time (otherwise transmissions would collide).
I A transmission by r is seen by both s, t (broadcast-nature of wireless networks).

s r t
a b

a, b

(a) Routing

(b) Network Coding

I The relay has to transmit a, b
individually using 2 distinct
broadcasts.

I Although s, t might overhear
both transmissions, only one
transmission is interesting for
each node.

I With NC, the relay transmits
a� b.

I Both s, t know what they have
sent and are thus able to decode
the missing packet.

Network Coding (IN2315): Introduction – What is Network Coding? 13

Technische Universität München

Example 3: wireless relay network

Nodes s, t want to communicate with each other (bidirectional unicasts):

Note:
I Only 1 node can transmit at any time (otherwise transmissions would collide).
I A transmission by r is seen by both s, t (broadcast-nature of wireless networks).

s r t
a b

a, b

(a) Routing

s r t
a b

a � b

(b) Network Coding

I The relay has to transmit a, b
individually using 2 distinct
broadcasts.

I Although s, t might overhear
both transmissions, only one
transmission is interesting for
each node.

I With NC, the relay transmits
a� b.

I Both s, t know what they have
sent and are thus able to decode
the missing packet.

Network Coding (IN2315): Introduction – What is Network Coding? 13

Technische Universität München

Applications of Network Coding

Throughput gain and reduced complexity
I Examples 1–3 already demonstrated the potential gain in throughput.

I May be even more interesting: in certain situations NC allows for a
reduction in complexity:

I The problem to find an optimal solution for Example 1 with routing results
in the Steiner Tree problem, which is NP .

I With NC, a solution is found in polynomial time.

Robustness and adaptability
During the course of this class we will see that NC not only allows for

I more efficient channel usage but also
I reduces the cost of acknowledging and retransmitting packets.

Network Coding (IN2315): Introduction – Applications of Network Coding 14

Technische Universität München

Applications of Network Coding

Throughput gain and reduced complexity
I Examples 1–3 already demonstrated the potential gain in throughput.

I May be even more interesting: in certain situations NC allows for a
reduction in complexity:

I The problem to find an optimal solution for Example 1 with routing results
in the Steiner Tree problem, which is NP .

I With NC, a solution is found in polynomial time.

Robustness and adaptability
During the course of this class we will see that NC not only allows for

I more efficient channel usage but also
I reduces the cost of acknowledging and retransmitting packets.

Network Coding (IN2315): Introduction – Applications of Network Coding 14

Technische Universität München

Peer-to-peer content distribution (see Avalanche [4, 5])

Imagine a peer-to-peer network:
I A file is split into n = 3 blocks and spread over multiple nodes.
I Some node i has a set of N(i) = {1, 2, 3} neighbors.
I For simplicity assume that each j 2 N(i) posseses the whole file.
I i asks each j 2 N(i) to send 1 of its blocks.
I Each j 2 N(i) chooses a packet independently and uniformely distributed.
I What is the probability that i gets the whole file?

p = 1 ·
2
3
·

1
3
⇡ 22 %

Now assume the following:
I j 2 N(i) sends the XOR of a random number of blocks.
I To decide whether or not each of the blocks should be XORed, j flips a coin.
I The outcome of those trials is sent along with the XOR to i .
I i can obviously decode if those trials are linear independent.

p0 =
✓

1�
1
23

◆✓

1�
1
22

◆✓

1�
1
2

◆

⇡ 32 %

Network Coding (IN2315): Introduction – Applications of Network Coding 15

Technische Universität München

Peer-to-peer content distribution (see Avalanche [4, 5])

Imagine a peer-to-peer network:
I A file is split into n = 3 blocks and spread over multiple nodes.
I Some node i has a set of N(i) = {1, 2, 3} neighbors.
I For simplicity assume that each j 2 N(i) posseses the whole file.
I i asks each j 2 N(i) to send 1 of its blocks.
I Each j 2 N(i) chooses a packet independently and uniformely distributed.
I What is the probability that i gets the whole file?

p = 1 ·
2
3
·

1
3
⇡ 22 %

Now assume the following:
I j 2 N(i) sends the XOR of a random number of blocks.
I To decide whether or not each of the blocks should be XORed, j flips a coin.
I The outcome of those trials is sent along with the XOR to i .
I i can obviously decode if those trials are linear independent.

p0 =
✓

1�
1
23

◆✓

1�
1
22

◆✓

1�
1
2

◆

⇡ 32 %

Network Coding (IN2315): Introduction – Applications of Network Coding 15

Technische Universität München

Peer-to-peer content distribution (see Avalanche [4, 5])

Imagine a peer-to-peer network:
I A file is split into n = 3 blocks and spread over multiple nodes.
I Some node i has a set of N(i) = {1, 2, 3} neighbors.
I For simplicity assume that each j 2 N(i) posseses the whole file.
I i asks each j 2 N(i) to send 1 of its blocks.
I Each j 2 N(i) chooses a packet independently and uniformely distributed.
I What is the probability that i gets the whole file?

p = 1 ·
2
3
·

1
3
⇡ 22 %

Now assume the following:
I j 2 N(i) sends the XOR of a random number of blocks.
I To decide whether or not each of the blocks should be XORed, j flips a coin.
I The outcome of those trials is sent along with the XOR to i .
I i can obviously decode if those trials are linear independent.

p0 =
✓

1�
1
23

◆✓

1�
1
22

◆✓

1�
1
2

◆

⇡ 32 %

Network Coding (IN2315): Introduction – Applications of Network Coding 15

Technische Universität München

Peer-to-peer content distribution (see Avalanche [4, 5])

Imagine a peer-to-peer network:
I A file is split into n = 3 blocks and spread over multiple nodes.
I Some node i has a set of N(i) = {1, 2, 3} neighbors.
I For simplicity assume that each j 2 N(i) posseses the whole file.
I i asks each j 2 N(i) to send 1 of its blocks.
I Each j 2 N(i) chooses a packet independently and uniformely distributed.
I What is the probability that i gets the whole file?

p = 1 ·
2
3
·

1
3
⇡ 22 %

Now assume the following:
I j 2 N(i) sends the XOR of a random number of blocks.
I To decide whether or not each of the blocks should be XORed, j flips a coin.
I The outcome of those trials is sent along with the XOR to i .
I i can obviously decode if those trials are linear independent.

p0 =
✓

1�
1
23

◆✓

1�
1
22

◆✓

1�
1
2

◆

⇡ 32 %

Network Coding (IN2315): Introduction – Applications of Network Coding 15

Technische Universität München

Network security

I s wants to send messages to t .
I s knows that one of the four relay nodes is operated by an eavesdropper.

s

1 2

3 4

t

Routing:
I Since s does not know the eavesdropper, it has an odd by 1/2 to choose the

wrong path.
I Sending packets alternating over both paths might still yield information to the

eavesdropper.

Network Coding:
I s splits every message to be sent into four packets pi , 1  i  4 of equal size.
I s then calculates

c1 = p1 � p2, c2 = p3 � p4, c3 = p1 � p4, c4 = p2 � p3

and sends c1, c2 over one path and c3, c4 over the other one.
I As long as the eavesdropper is unable to guess the contents of at least one

packet, decoding is impossible.

Network Coding (IN2315): Introduction – Applications of Network Coding 16

Technische Universität München

Mindmap: Network Coding and lecture outline

Network

Coding

Applications

throughput

resilience

redundancy

content
distribution

Variants

RLNC

structural
codes

inter-session intra-session

Linear coding

operations

finite fields

random
numbers

linear
systems

linear
dependence

Traffic types

unicast bidirectional

multicast

broadcast

Networks

wireline

wireless

peer-to-peer

software
defined

Subgraph

selection

min-cut
max-flow

shortest
pathsflow

problems

optimzation

metrics

Implementation

generations

windowing

feedback

link es-
timation

medium
access

Network Coding (IN2315): Introduction – Mindmap: Network Coding and lecture outline 17

Technische Universität München

Mindmap: Network Coding and lecture outline

Network

Coding

Applications

throughput

resilience

redundancy

content
distribution

Variants

RLNC

structural
codes

inter-session intra-session

Linear coding

operations

finite fields

random
numbers

linear
systems

linear
dependence

Traffic types

unicast bidirectional

multicast

broadcast

Networks

wireline

wireless

peer-to-peer

software
defined

Subgraph

selection

min-cut
max-flow

shortest
pathsflow

problems

optimzation

metrics

Implementation

generations

windowing

feedback

link es-
timation

medium
access

Network Coding (IN2315): Introduction – Mindmap: Network Coding and lecture outline 17

Technische Universität München

Mindmap: Network Coding and lecture outline

Network

Coding

Applications

throughput

resilience

redundancy

content
distribution

Variants

RLNC

structural
codes

inter-session intra-session

Linear coding

operations

finite fields

random
numbers

linear
systems

linear
dependence

Traffic types

unicast bidirectional

multicast

broadcast

Networks

wireline

wireless

peer-to-peer

software
defined

Subgraph

selection

min-cut
max-flow

shortest
pathsflow

problems

optimzation

metrics

Implementation

generations

windowing

feedback

link es-
timation

medium
access

Network Coding (IN2315): Introduction – Mindmap: Network Coding and lecture outline 17

Technische Universität München

Mindmap: Network Coding and lecture outline

Network

Coding

Applications

throughput

resilience

redundancy

content
distribution

Variants

RLNC

structural
codes

inter-session intra-session

Linear coding

operations

finite fields

random
numbers

linear
systems

linear
dependence

Traffic types

unicast bidirectional

multicast

broadcast

Networks

wireline

wireless

peer-to-peer

software
defined

Subgraph

selection

min-cut
max-flow

shortest
pathsflow

problems

optimzation

metrics

Implementation

generations

windowing

feedback

link es-
timation

medium
access

Network Coding (IN2315): Introduction – Mindmap: Network Coding and lecture outline 17

Technische Universität München

Mindmap: Network Coding and lecture outline

Network

Coding

Applications

throughput

resilience

redundancy

content
distribution

Variants

RLNC

structural
codes

inter-session intra-session

Linear coding

operations

finite fields

random
numbers

linear
systems

linear
dependence

Traffic types

unicast bidirectional

multicast

broadcast

Networks

wireline

wireless

peer-to-peer

software
defined

Subgraph

selection

min-cut
max-flow

shortest
pathsflow

problems

optimzation

metrics

Implementation

generations

windowing

feedback

link es-
timation

medium
access

Network Coding (IN2315): Introduction – Mindmap: Network Coding and lecture outline 17

Technische Universität München

Mindmap: Network Coding and lecture outline

Network

Coding

Applications

throughput

resilience

redundancy

content
distribution

Variants

RLNC

structural
codes

inter-session intra-session

Linear coding

operations

finite fields

random
numbers

linear
systems

linear
dependence

Traffic types

unicast bidirectional

multicast

broadcast

Networks

wireline

wireless

peer-to-peer

software
defined

Subgraph

selection

min-cut
max-flow

shortest
pathsflow

problems

optimzation

metrics

Implementation

generations

windowing

feedback

link es-
timation

medium
access

Network Coding (IN2315): Introduction – Mindmap: Network Coding and lecture outline 17

Technische Universität München

Mindmap: Network Coding and lecture outline

Network

Coding

Applications

throughput

resilience

redundancy

content
distribution

Variants

RLNC

structural
codes

inter-session intra-session

Linear coding

operations

finite fields

random
numbers

linear
systems

linear
dependence

Traffic types

unicast bidirectional

multicast

broadcast

Networks

wireline

wireless

peer-to-peer

software
defined

Subgraph

selection

min-cut
max-flow

shortest
pathsflow

problems

optimzation

metrics

Implementation

generations

windowing

feedback

link es-
timation

medium
access

Network Coding (IN2315): Introduction – Mindmap: Network Coding and lecture outline 17

Technische Universität München

Mindmap: Network Coding and lecture outline

Network

Coding

Applications

throughput

resilience

redundancy

content
distribution

Variants

RLNC

structural
codes

inter-session intra-session

Linear coding

operations

finite fields

random
numbers

linear
systems

linear
dependence

Traffic types

unicast bidirectional

multicast

broadcast

Networks

wireline

wireless

peer-to-peer

software
defined

Subgraph

selection

min-cut
max-flow

shortest
pathsflow

problems

optimzation

metrics

Implementation

generations

windowing

feedback

link es-
timation

medium
access

Network Coding (IN2315): Introduction – Mindmap: Network Coding and lecture outline 17

Technische Universität München

Literature

(a) Network Coding: Fundamentals and
Applications [8]

(b) Network Coding: An Introduction [6]

And don’t forget to study the Linux Kernel Coding Style [7]!

Network Coding (IN2315): Introduction – Mindmap: Network Coding and lecture outline 18

Technische Universität München

Organizational stuff

Introduction
What is Network Coding?
Applications of Network Coding
Mindmap: Network Coding and lecture outline

Finite fields
Binary extension fields
Discrete logarithm

Formal description of coding operations

Connection to Forward Error Correction

Network coding implementations
MORE – a MAC-independent opportunistic routing protocol

Networks as graphs
Graphs
Flows
Flow problems
Max-flow min-cut theorem
Multicommodity Flow Problems

Multicast in Networks
Max-flow min-cut theorem

Wireless Packet Networks

Bidirectional Communication

IEEE 802.11
IEEE 802.11 frame format
IEEE 80211 MAC
IEEE 802.11 service sets

libmoep80211
What is libmoep80211?
moep80211 frame format

Network Coding (IN2315): Finite fields 19

Technische Universität München

Finite fields

Remember finite fields hFq , +, ·i with q = pn elements where p 2 N is prime?

Definition: Finite fields (Galois fields)
A field F is a set of elements with two binary operators (+, ·) such that hF, +i and
hF\{0}, ·i form Abelian groups with · being distributive over +. If the number of
elements in F is finite, the field is said to be finite.

If q = p, and we define for any a, b 2 Fp

a +p b = (a + b) mod p, and
a ·p b = (a · b) mod p,

then hZp , +p , ·pi is a finite field.

Beware:
I hZ4, +4, ·4i is not a finite field as 4 is obviously not prime.
I However, there is a finite field with 4 elements, since 4 is a prime power. We just

have to define addition and multiplication accordingly.

Network Coding (IN2315): Finite fields 20

Technische Universität München

Finite fields

Remember finite fields hFq , +, ·i with q = pn elements where p 2 N is prime?

Definition: Finite fields (Galois fields)
A field F is a set of elements with two binary operators (+, ·) such that hF, +i and
hF\{0}, ·i form Abelian groups with · being distributive over +. If the number of
elements in F is finite, the field is said to be finite.

If q = p, and we define for any a, b 2 Fp

a +p b = (a + b) mod p, and
a ·p b = (a · b) mod p,

then hZp , +p , ·pi is a finite field.

Beware:
I hZ4, +4, ·4i is not a finite field as 4 is obviously not prime.
I However, there is a finite field with 4 elements, since 4 is a prime power. We just

have to define addition and multiplication accordingly.

Network Coding (IN2315): Finite fields 20

Technische Universität München

Finite fields

Remember finite fields hFq , +, ·i with q = pn elements where p 2 N is prime?

Definition: Finite fields (Galois fields)
A field F is a set of elements with two binary operators (+, ·) such that hF, +i and
hF\{0}, ·i form Abelian groups with · being distributive over +. If the number of
elements in F is finite, the field is said to be finite.

If q = p, and we define for any a, b 2 Fp

a +p b = (a + b) mod p, and
a ·p b = (a · b) mod p,

then hZp , +p , ·pi is a finite field.

Beware:
I hZ4, +4, ·4i is not a finite field as 4 is obviously not prime.
I However, there is a finite field with 4 elements, since 4 is a prime power. We just

have to define addition and multiplication accordingly.

Network Coding (IN2315): Finite fields 20

Technische Universität München

Finite fields

Remember finite fields hFq , +, ·i with q = pn elements where p 2 N is prime?

Definition: Finite fields (Galois fields)
A field F is a set of elements with two binary operators (+, ·) such that hF, +i and
hF\{0}, ·i form Abelian groups with · being distributive over +. If the number of
elements in F is finite, the field is said to be finite.

If q = p, and we define for any a, b 2 Fp

a +p b = (a + b) mod p, and
a ·p b = (a · b) mod p,

then hZp , +p , ·pi is a finite field.

Beware:
I hZ4, +4, ·4i is not a finite field as 4 is obviously not prime.
I However, there is a finite field with 4 elements, since 4 is a prime power. We just

have to define addition and multiplication accordingly.

Network Coding (IN2315): Finite fields 20

Technische Universität München

Example: the binary field hF2, +, ·i

+ 0 1
0 0 1
1 1 0

· 0 1
0 0 0
1 0 1

) addition is a bitwise XOR, multiplication a bitwise AND.

I Cool for computers since those machines tend to work in bits.
I Even cooler if it was possible to work on their native block size, which are bytes1

of 8 bit.
I However, q = 256 with + and · defined modulo-style is not a finite field. :(
I But wait: q = 28 is a prime power, and our definition claimed that there are finite

fields for any pn as long as p is prime. :)
I For the same reason there is also a finite field with 4 elements...

1Fun fact: the size of a byte is not defined. We merely assume it as 8 bit block since there are few computers
around that work on 7 bit blocks.

Network Coding (IN2315): Finite fields 21

Technische Universität München

Binary extension fields

Definition: binary extension fields
A binary extension field is a set of polynomials

Fq [x] =

8

<

:

n�1
X

i=0

ai x i

�

�

�

�

�

�

ai 2 F2

9

=

;

of order q = 2n with appropriately defined binary operators (+, ·).

Examples:
I q = 2) F2[x] = {0, 1} (same as F2)
I q = 4) F4[x] = {0, 1, x , x + 1}

Addition of any a, b 2 Fq [x] is defined as

a(x) + b(x) =
n�1
X

i=0

ai x i +
n�1
X

i=0

bi x i =
n�1
X

i=0

(ai + bi)xi ,

where + means XOR, which makes sense considering that the polynomials’
coefficients are elements of F2.

Network Coding (IN2315): Finite fields – Binary extension fields 22

Technische Universität München

Binary extension fields

Definition: binary extension fields
A binary extension field is a set of polynomials

Fq [x] =

8

<

:

n�1
X

i=0

ai x i

�

�

�

�

�

�

ai 2 F2

9

=

;

of order q = 2n with appropriately defined binary operators (+, ·).

Examples:
I q = 2) F2[x] = {0, 1} (same as F2)
I q = 4) F4[x] = {0, 1, x , x + 1}

Addition of any a, b 2 Fq [x] is defined as

a(x) + b(x) =
n�1
X

i=0

ai x i +
n�1
X

i=0

bi x i =
n�1
X

i=0

(ai + bi)xi ,

where + means XOR, which makes sense considering that the polynomials’
coefficients are elements of F2.

Network Coding (IN2315): Finite fields – Binary extension fields 22

Technische Universität München

Binary extension fields

Definition: binary extension fields
A binary extension field is a set of polynomials

Fq [x] =

8

<

:

n�1
X

i=0

ai x i

�

�

�

�

�

�

ai 2 F2

9

=

;

of order q = 2n with appropriately defined binary operators (+, ·).

Examples:
I q = 2) F2[x] = {0, 1} (same as F2)
I q = 4) F4[x] = {0, 1, x , x + 1}

Addition of any a, b 2 Fq [x] is defined as

a(x) + b(x) =
n�1
X

i=0

ai x i +
n�1
X

i=0

bi x i =
n�1
X

i=0

(ai + bi)xi ,

where + means XOR, which makes sense considering that the polynomials’
coefficients are elements of F2.

Network Coding (IN2315): Finite fields – Binary extension fields 22

Technische Universität München

What about multiplication?
I Multiplication of two polynomials of degree n and m yield another polynomial of

degree at most n + m.
I Ordinary multiplication of a, c 2 Fq [x] would in general give a result /2 Fq [x].

The trick: reduce the multiplication result subject to some prime element (compare Fp).

Definition: irreducible polynomial (reduction polynomial)
A polynomial of degree n over the binary field F2 is called irreducible if it cannot be
represented as product of two polynomials a, b 2 Fq [x] of degree strictly less than
n. Such a polynomial is guaranteed to exist and in general not unique.

Multiplication of any two a, c 2 Fq [x] is defined as

b(x) = (a(x) · c(x)) mod r (x),

where r (x) is irreducible.

Example: F4[x] = {0, 1, x , x + 1} and r (x) = x2 + x + 1

Network Coding (IN2315): Finite fields – Binary extension fields 23

Technische Universität München

What about multiplication?
I Multiplication of two polynomials of degree n and m yield another polynomial of

degree at most n + m.
I Ordinary multiplication of a, c 2 Fq [x] would in general give a result /2 Fq [x].

The trick: reduce the multiplication result subject to some prime element (compare Fp).

Definition: irreducible polynomial (reduction polynomial)
A polynomial of degree n over the binary field F2 is called irreducible if it cannot be
represented as product of two polynomials a, b 2 Fq [x] of degree strictly less than
n. Such a polynomial is guaranteed to exist and in general not unique.

Multiplication of any two a, c 2 Fq [x] is defined as

b(x) = (a(x) · c(x)) mod r (x),

where r (x) is irreducible.

Example: F4[x] = {0, 1, x , x + 1} and r (x) = x2 + x + 1

Network Coding (IN2315): Finite fields – Binary extension fields 23

Technische Universität München

Example: F4[x]

I F4[x] = {0, 1, x , x + 1}
I r (x) = x2 + x + 1

+ 0 1 x x + 1
0 0 1 x x + 1
1 1 0 x + 1 x
x x x + 1 0 1

x + 1 x + 1 x 1 0

· 0 1 x x + 1
0 0 0 0 0
1 0 1 x x + 1
x 0 x x + 1 1

x + 1 0 x + 1 1 x

I Except for the highlighted values, the tables should be clear.
I Here is an example for the reduction of x · x :

x · x mod x2 + x + 1 = x2 mod x2 + x + 1
+x2 + x + 1

x + 1

Homework: Do the same for F8[x], and does it work for F6[x]?

Network Coding (IN2315): Finite fields – Binary extension fields 24

Technische Universität München

Example: F4[x]

I F4[x] = {0, 1, x , x + 1}
I r (x) = x2 + x + 1

+ 0 1 x x + 1
0 0 1 x x + 1
1 1 0 x + 1 x
x x x + 1 0 1

x + 1 x + 1 x 1 0

· 0 1 x x + 1
0 0 0 0 0
1 0 1 x x + 1
x 0 x x + 1 1

x + 1 0 x + 1 1 x

I Except for the highlighted values, the tables should be clear.
I Here is an example for the reduction of x · x :

x · x mod x2 + x + 1 = x2 mod x2 + x + 1
+x2 + x + 1

x + 1

Homework: Do the same for F8[x], and does it work for F6[x]?

Network Coding (IN2315): Finite fields – Binary extension fields 24

Technische Universität München

Primitive element (generator)

Definition: primitive element
A primitive element g 2 Fq is an polynomial such that

q�1
[

i=1

n

gi
o

= Fq\{0},

and is in general not unique.

Primitive elements are also referred to as generators. Each finite field has at
least one. This also holds for extension fields Fq [x].

Examples:
I For F7, g = 3 is a generator.
I For F4[x], g(x) = x + 1 is a generator.

Network Coding (IN2315): Finite fields – Binary extension fields 25

Technische Universität München

Discrete logarithm

Primitive elements give raise for another multiplication algorithm: let
I L[a] denote the discrete logarithm of a 2 Fq [x] and
I A[a] the discrete power (antilog) of a.

Then, product and quotient of a, b 2 Fq [x] are given as

a · b = A[L[a] + L[b]] and a/b = A[L[a]� L[b]].

First, we create two tables:
1. A containing all powers of g, i. e., A[i] = gi

2. L containing the inverse elements, i. e., L[gi] = i

For these steps we need to choose a reduction polyomial r . All calculations are done
subject to this polynomial.

Multiplication a · b mod r is done as follows:
1. Determine L[a] and L[b], which yields the powers i , j such that gi = a and gj = b.
2. Find A[i + j], where addition is done modulo q (no XOR here).

Network Coding (IN2315): Finite fields – Discrete logarithm 26

Technische Universität München

Discrete logarithm

Primitive elements give raise for another multiplication algorithm: let
I L[a] denote the discrete logarithm of a 2 Fq [x] and
I A[a] the discrete power (antilog) of a.

Then, product and quotient of a, b 2 Fq [x] are given as

a · b = A[L[a] + L[b]] and a/b = A[L[a]� L[b]].

First, we create two tables:
1. A containing all powers of g, i. e., A[i] = gi

2. L containing the inverse elements, i. e., L[gi] = i

For these steps we need to choose a reduction polyomial r . All calculations are done
subject to this polynomial.

Multiplication a · b mod r is done as follows:
1. Determine L[a] and L[b], which yields the powers i , j such that gi = a and gj = b.
2. Find A[i + j], where addition is done modulo q (no XOR here).

Network Coding (IN2315): Finite fields – Discrete logarithm 26

Technische Universität München

Example: F256[x], r (x) = x8 + x4 + x3 + x + 1, g(x) = x + 1

⇣

x2 + x
⌘

| {z }

0x06

⇣

x6 + x4 + x + 1
⌘

| {z }

0x53

= ?

1. Lookup 0x06 and 0x53 in L, which yields 0x1a and 0x30, respectively.
2. Lookup 0x1a + 0x30mod 0xff = 0x4a in A.
3. This gives 0xf1 = x7 + x6 + x5 + x4 + 1, which is the result.

01 03 05 0f 11 33 55 ff 1a 2e 72 96 a1 f8 13 35
5f e1 38 48 d8 73 95 a4 f7 02 06 0a 1e 22 66 aa
e5 34 5c e4 37 59 eb 26 6a be d9 70 90 ab e6 31
53 f5 04 0c 14 3c 44 cc 4f d1 68 b8 d3 6e b2 cd
4c d4 67 a9 e0 3b 4d d7 62 a6 f1 08 18 28 78 88
83 9e b9 d0 6b bd dc 7f 81 98 b3 ce 49 db 76 9a
b5 c4 57 f9 10 30 50 f0 0b 1d 27 69 bb d6 61 a3
fe 19 2b 7d 87 92 ad ec 2f 71 93 ae e9 20 60 a0
fb 16 3a 4e d2 6d b7 c2 5d e7 32 56 fa 15 3f 41
c3 5e e2 3d 47 c9 40 c0 5b ed 2c 74 9c bf da 75
9f ba d5 64 ac ef 2a 7e 82 9d bc df 7a 8e 89 80
9b b6 c1 58 e8 23 65 af ea 25 6f b1 c8 43 c5 54
fc 1f 21 63 a5 f4 07 09 1b 2d 77 99 b0 cb 46 ca
45 cf 4a de 79 8b 86 91 a8 e3 3e 42 c6 51 f3 0e
12 36 5a ee 29 7b 8d 8c 8f 8a 85 94 a7 f2 0d 17
39 4b dd 7c 84 97 a2 fd 1c 24 6c b4 c7 52 f6 01

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

(c) A

00 ff 19 01 32 02 1a c6 4b c7 1b 68 33 ee df 03
64 04 e0 0e 34 8d 81 ef 4c 71 08 c8 f8 69 1c c1
7d c2 1d b5 f9 b9 27 6a 4d e4 a6 72 9a c9 09 78
65 2f 8a 05 21 0f e1 24 12 f0 82 45 35 93 da 8e
96 8f db bd 36 d0 ce 94 13 5c d2 f1 40 46 83 38
66 dd fd 30 bf 06 8b 62 b3 25 e2 98 22 88 91 10
7e 6e 48 c3 a3 b6 1e 42 3a 6b 28 54 fa 85 3d ba
2b 79 0a 15 9b 9f 5e ca 4e d4 ac e5 f3 73 a7 57
af 58 a8 50 f4 ea d6 74 4f ae e9 d5 e7 e6 ad e8
2c d7 75 7a eb 16 0b f5 59 cb 5f b0 9c a9 51 a0
7f 0c f6 6f 17 c4 49 ec d8 43 1f 2d a4 76 7b b7
cc bb 3e 5a fb 60 b1 86 3b 52 a1 6c aa 55 29 9d
97 b2 87 90 61 be dc fc bc 95 cf cd 37 3f 5b d1
53 39 84 3c 41 a2 6d 47 14 2a 9e 5d 56 f2 d3 ab
44 11 92 d9 23 20 2e 89 b4 7c b8 26 77 99 e3 a5
67 4a ed de c5 31 fe 18 0d 63 8c 80 c0 f7 70 07

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

(d) L

Network Coding (IN2315): Finite fields – Discrete logarithm 27

Technische Universität München

Organizational stuff

Introduction
What is Network Coding?
Applications of Network Coding
Mindmap: Network Coding and lecture outline

Finite fields
Binary extension fields
Discrete logarithm

Formal description of coding operations

Connection to Forward Error Correction

Network coding implementations
MORE – a MAC-independent opportunistic routing protocol

Networks as graphs
Graphs
Flows
Flow problems
Max-flow min-cut theorem
Multicommodity Flow Problems

Multicast in Networks
Max-flow min-cut theorem

Wireless Packet Networks

Bidirectional Communication

IEEE 802.11
IEEE 802.11 frame format
IEEE 80211 MAC
IEEE 802.11 service sets

libmoep80211
What is libmoep80211?
moep80211 frame format

Network Coding (IN2315): Formal description of coding operations 28

Technische Universität München

Linear coding operations

Encoding

I Data words are represented by polynomials a 2 Fq [x] over some binary
extension field.

I A data packet is sequence of M words and thus a vector a 2 F M
q [x].

I A generation of N packets is written as matrix A

T = [a1, ... , aN].

I A coded packet is obtained by

b = A

T
c =

N
X

i=1

ciai ,

where c = [c1, ... , cN]T 2 F N
q [x] denotes a vector of coding coefficients.

Network Coding (IN2315): Formal description of coding operations 29

Technische Universität München

Transmission and recoding

I Packets are sent in general along with their coding vectors, i. e.,
x

T =
⇥

c

T
b

T ⇤.

I Intermediate nodes may recode packets that have previously been
received. Assume that some node has k  N packets buffered, then

x

0 =
k�1
X

i=0

c0
i xi

is the recoded packet, where c0
i 2 Fq [x] are coding coefficient chosen

by the intermediate node.

I Note that the original coding vector c is also recoded, i. e., the same
linear transformation is applied to both the payload and the coding
vector.

Network Coding (IN2315): Formal description of coding operations 30

Technische Universität München

Decoding

I Packets are buffered at the receiver:
2

6

4

x

T
1
...

x

T
k

3

7

5

=

2

6

4

c

T
1 b

T
1

...
...

c

T
k b

T
k

3

7

5

=

2

6

4

c11 ... c1N b11 ... b1M
...

. . .
...

...
. . .

...
ck1 ... ckN bk1 ... bkM

3

7

5

= [C B] = X

I The receiver can decode if it has received N linear independent
packets, i. e., C 2 F N⇥N

q [x] and rank C = N:

XC

�1 = [C B] C

�1 = [1 A]

I
C

�1 can be determined using Gaussian elimination.2

I Decoded packets are indicated by the rows of the unit matrix 1.

I Decoded packets are naturally in-order.

2Who not remembers Gaussian elemination should look it up until next time.

Network Coding (IN2315): Formal description of coding operations 31

Technische Universität München

Observations:

I The coding matrix C fully describes the state of a generation:
I rank C denotes the number of (eventually coded) packets in that

generation.
I

C = 1 means that all packets are decoded.
I If C is in row-echelon3 form, then a subset of packets may be decoded.
I Recoding operations applied to C (or to a subset of its columns) are

correspondingly applied to the packets (or a subset of those).

I The coding matrix at each node spans a vector space span C, which is
a subspace of the N-dimensional vector space F N

q [x].

I The dimension dim C and its changes over time are a concise
description of the state of the network.

3more on that later

Network Coding (IN2315): Formal description of coding operations 32

Technische Universität München

Example

I Erasure network with symmetric loss probabilities ✏st , ✏sr , and ✏rt .
I Unidirectional traffic from s to t .
I We assume that randomly choosen coding vectors are all linear independent.
I Vi is the subspace known to i , in particular we have dim Vs = N and Vr , Vt ⇢ Vs .
I To keep it short we assume N = 3.

s t

r

b1, b2, b3

dim Vs = 3

dim Vr = 0

dim Vt = 0

The recoded packets x

0
j for j 2 {1, 2} can be written as x

0
1 = X

T
c

0
1 =

3
X

i=1

c0
1i xi .

Network Coding (IN2315): Formal description of coding operations 33

Technische Universität München

Example

I Erasure network with symmetric loss probabilities ✏st , ✏sr , and ✏rt .
I Unidirectional traffic from s to t .
I We assume that randomly choosen coding vectors are all linear independent.
I Vi is the subspace known to i , in particular we have dim Vs = N and Vr , Vt ⇢ Vs .
I To keep it short we assume N = 3.

s t

r

b1, b2, b3

dim Vs = 3

dim Vr = 1

dim Vt = 0

×

x1

The recoded packets x

0
j for j 2 {1, 2} can be written as x

0
1 = X

T
c

0
1 =

3
X

i=1

c0
1i xi .

Network Coding (IN2315): Formal description of coding operations 33

Technische Universität München

Example

I Erasure network with symmetric loss probabilities ✏st , ✏sr , and ✏rt .
I Unidirectional traffic from s to t .
I We assume that randomly choosen coding vectors are all linear independent.
I Vi is the subspace known to i , in particular we have dim Vs = N and Vr , Vt ⇢ Vs .
I To keep it short we assume N = 3.

s t

r

b1, b2, b3

dim Vs = 3

dim Vr = 2

dim Vt = 1

x1, x2

x2

The recoded packets x

0
j for j 2 {1, 2} can be written as x

0
1 = X

T
c

0
1 =

3
X

i=1

c0
1i xi .

Network Coding (IN2315): Formal description of coding operations 33

Technische Universität München

Example

I Erasure network with symmetric loss probabilities ✏st , ✏sr , and ✏rt .
I Unidirectional traffic from s to t .
I We assume that randomly choosen coding vectors are all linear independent.
I Vi is the subspace known to i , in particular we have dim Vs = N and Vr , Vt ⇢ Vs .
I To keep it short we assume N = 3.

s t

r

b1, b2, b3

dim Vs = 3

dim Vr = 3

dim Vt = 1

×

x1, x2, x3

x2

The recoded packets x

0
j for j 2 {1, 2} can be written as x

0
1 = X

T
c

0
1 =

3
X

i=1

c0
1i xi .

Network Coding (IN2315): Formal description of coding operations 33

Technische Universität München

Example

I Erasure network with symmetric loss probabilities ✏st , ✏sr , and ✏rt .
I Unidirectional traffic from s to t .
I We assume that randomly choosen coding vectors are all linear independent.
I Vi is the subspace known to i , in particular we have dim Vs = N and Vr , Vt ⇢ Vs .
I To keep it short we assume N = 3.

s t

r

b1, b2, b3

dim Vs = 3

dim Vr = 3

dim Vt = 2

x1, x2, x3

x2, x

0
1

The recoded packets x

0
j for j 2 {1, 2} can be written as x

0
1 = X

T
c

0
1 =

3
X

i=1

c0
1i xi .

Network Coding (IN2315): Formal description of coding operations 33

Technische Universität München

Example

I Erasure network with symmetric loss probabilities ✏st , ✏sr , and ✏rt .
I Unidirectional traffic from s to t .
I We assume that randomly choosen coding vectors are all linear independent.
I Vi is the subspace known to i , in particular we have dim Vs = N and Vr , Vt ⇢ Vs .
I To keep it short we assume N = 3.

s t

r

b1, b2, b3

dim Vs = 3

dim Vr = 3

dim Vt = 3

x1, x2, x3

x2, x

0
1, x

0
2

The recoded packets x

0
j for j 2 {1, 2} can be written as x

0
1 = X

T
c

0
1 =

3
X

i=1

c0
1i xi .

Network Coding (IN2315): Formal description of coding operations 33

Technische Universität München

Example

I Erasure network with symmetric loss probabilities ✏st , ✏sr , and ✏rt .
I Unidirectional traffic from s to t .
I We assume that randomly choosen coding vectors are all linear independent.
I Vi is the subspace known to i , in particular we have dim Vs = N and Vr , Vt ⇢ Vs .
I To keep it short we assume N = 3.

s t

r

b1, b2, b3

dim Vs = 3

dim Vr = 3

dim Vt = 3

x1, x2, x3

x2, x

0
1, x

0
2

The recoded packets x

0
j for j 2 {1, 2} can be written as x

0
1 = X

T
c

0
1 =

3
X

i=1

c0
1i xi .

Network Coding (IN2315): Formal description of coding operations 33

Technische Universität München

Flows and sessions

Definition: (unicast) flow
In the context of network coding, we define an unicast flow (s, t) as the
sequence of packets originating at some source node s and destined for
precisely one destination node t .

Definition: (unicast) session
In the context of network coding, we define an unicast session as the
tuple h(s, t), (t , s)i of two (unicast) flows in opposite directions.

Above definitions naturally extend to (single source) multicasts.

Network Coding (IN2315): Formal description of coding operations – 34

Technische Universität München

Intra-session vs. inter-session coding

Intra-session coding:
I Only packets belonging to the same session may be coded together.
I Flows belonging to the same session may be coded together provided

that bidirectional coding is allowed.
I Easier to implement, but fewer coding opportunities and thus potentially

lower coding gain.

Inter-session coding:
I Packets of arbitrary flows / sessions may be combined.
I More coding opportunities but more also more complex.

We will mainly focus on intra-session coding (particular in projects).

Network Coding (IN2315): Formal description of coding operations – 35

Technische Universität München

Organizational stuff

Introduction
What is Network Coding?
Applications of Network Coding
Mindmap: Network Coding and lecture outline

Finite fields
Binary extension fields
Discrete logarithm

Formal description of coding operations

Connection to Forward Error Correction

Network coding implementations
MORE – a MAC-independent opportunistic routing protocol

Networks as graphs
Graphs
Flows
Flow problems
Max-flow min-cut theorem
Multicommodity Flow Problems

Multicast in Networks
Max-flow min-cut theorem

Wireless Packet Networks

Bidirectional Communication

IEEE 802.11
IEEE 802.11 frame format
IEEE 80211 MAC
IEEE 802.11 service sets

libmoep80211
What is libmoep80211?
moep80211 frame format

Network Coding (IN2315): Connection to Forward Error Correction 36

Technische Universität München

Connection to forward error correction (FEC)

What is FEC?
I FEC systematically adds redundancy to a transmission (at the

symbol/packet/file/block-level depending on layer and application).
I It allows to detect and correct certain classes of transmission errors.
I We assume for now erasures, i. e., we want to correct lost (missing) symbols or

blocks.

The code rate R is a measure of how much redundancy is added. Assuming an FEC
code that maps k source symbols to n � k output symbols, the code rate is defined as
R = k/n.

We can differentiate between fixed-rate and rateless codes.
I Fixed-rate codes have a predefined R that remains constant. (Hamming codes,

Reed-Solomon codes, Bose-Chaudhuri-Hocquenghem (BCH) codes)
I Rateless codes (fountain codes) are, in principle, able to output an endless

sequence of coded symbols. R is not fixed but may vary over time for the very
same code. (Luby transform (LT) codes, Raptor codes)

Network Coding (IN2315): Connection to Forward Error Correction 37

Technische Universität München

Example: Luby transform codes

The transmitter divides a packet into N blocks of equal size and then encodes blocks
as follows:

1. Randomly choose 1  d  N blocks, where d is the degree of the encoded
block.

2. XOR exactly these d blocks.
3. Transmit the encoded block along with its degree, the list of indices (positions of

blocks used for encoding), and a checksum.

It is obvious that the receiver can decode after receiving a sufficient number of
encoded blocks.

What’s the difference to network coding?
I Coding operations are performed at the source node only. Alternatively,

intermediate nodes may decode blocks and encode from scratch. With NC,
intermediate nodes may re-encode packets without decoding.

Network Coding (IN2315): Connection to Forward Error Correction 38

Technische Universität München

Example: Luby transform codes

The transmitter divides a packet into N blocks of equal size and then encodes blocks
as follows:

1. Randomly choose 1  d  N blocks, where d is the degree of the encoded
block.

2. XOR exactly these d blocks.
3. Transmit the encoded block along with its degree, the list of indices (positions of

blocks used for encoding), and a checksum.

It is obvious that the receiver can decode after receiving a sufficient number of
encoded blocks.

What’s the difference to network coding?
I Coding operations are performed at the source node only. Alternatively,

intermediate nodes may decode blocks and encode from scratch. With NC,
intermediate nodes may re-encode packets without decoding.

Network Coding (IN2315): Connection to Forward Error Correction 38

Technische Universität München

Example: Raptor codes

Work similar to the LT codes but
1. use degree d ⌧ N for combining blocks (inner code) and
2. employ a precoding stage (outer code) to recover blocks that are not transmitted

due to sparsity.

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7 8 9

+ + + + + + + + + + + +

source blocks

precoding

encoding d = 2

Raptor codes are thus
I a concatenation of two codes (inner and outer), where
I the inner code is some kind of LT code.

Network Coding (IN2315): Connection to Forward Error Correction 39

Technische Universität München

Raptor codes vs. random linear network codes

I Encoding/Decoding
I Raptor codes have a particular sparsity structure that enables fast

encoding and decoding operations.
I Network codes have no particular structure: decoding via Gauss

elimination.

I Recoding at intermediate nodes
I Raptor structure is lost when partially recoded at intermediate nodes. The

structure could only be conserved if they knew all source data.
I Network codes can be arbitrarily recoded from any set of coded blocks.

Network Coding (IN2315): Connection to Forward Error Correction 40

Technische Universität München

Organizational stuff

Introduction
What is Network Coding?
Applications of Network Coding
Mindmap: Network Coding and lecture outline

Finite fields
Binary extension fields
Discrete logarithm

Formal description of coding operations

Connection to Forward Error Correction

Network coding implementations
MORE – a MAC-independent opportunistic routing protocol

Networks as graphs
Graphs
Flows
Flow problems
Max-flow min-cut theorem
Multicommodity Flow Problems

Multicast in Networks
Max-flow min-cut theorem

Wireless Packet Networks

Bidirectional Communication

IEEE 802.11
IEEE 802.11 frame format
IEEE 80211 MAC
IEEE 802.11 service sets

libmoep80211
What is libmoep80211?
moep80211 frame format

Network Coding (IN2315): Network coding implementations 41

Technische Universität München

MORE

MORE – a MAC-independent opportunistic routing protocol
I Originally proposed by Chachulski [1, 2] in 2007
I Unidirectional intra-session network coding as discussed in Section 4
I Coding done between layer 2 and 3
I Opportunistic routing

MORE framing:

IEEE 802.11 Header IP HeaderMORE Header ...

To achieve opportunistic routing, MORE has
I to send packets as MAC-layer broadcasts or
I use IEEE 802.11 MAC in promiscuous or monitor mode.

Network Coding (IN2315): Network coding implementations – MORE – a MAC-independent opportunistic routing protocol 42

Technische Universität München

MORE

MORE – a MAC-independent opportunistic routing protocol
I Originally proposed by Chachulski [1, 2] in 2007
I Unidirectional intra-session network coding as discussed in Section 4
I Coding done between layer 2 and 3
I Opportunistic routing

MORE framing:

IEEE 802.11 Header IP HeaderMORE Header ...

To achieve opportunistic routing, MORE has
I to send packets as MAC-layer broadcasts or
I use IEEE 802.11 MAC in promiscuous or monitor mode.

Network Coding (IN2315): Network coding implementations – MORE – a MAC-independent opportunistic routing protocol 42

Technische Universität München

MORE

MORE – a MAC-independent opportunistic routing protocol
I Originally proposed by Chachulski [1, 2] in 2007
I Unidirectional intra-session network coding as discussed in Section 4
I Coding done between layer 2 and 3
I Opportunistic routing

MORE framing:

IEEE 802.11 Header IP HeaderMORE Header ...

To achieve opportunistic routing, MORE has
I to send packets as MAC-layer broadcasts or
I use IEEE 802.11 MAC in promiscuous or monitor mode.

Network Coding (IN2315): Network coding implementations – MORE – a MAC-independent opportunistic routing protocol 42

Technische Universität München

MORE header

IEEE 802.11 Header IP HeaderMORE Header ...

encoded data

packet type source IP destination IP

flow identifier sequence number coding vector

forwarder count forwarder identifier

I packet type differentiates between data packets and acknowledgements
I flow identifier is used to identify the flow coded packets belong to
I sequence number is identifies a specific generation of packets within a flow
I coding vector is the vector c 2 F N

q [x] of random coefficients
I forwarder fields are used for routing more on that later

Network Coding (IN2315): Network coding implementations – MORE – a MAC-independent opportunistic routing protocol 43

Technische Universität München

Routing metric used by MORE

MORE uses the ETX (estimated transmission count) [3] metric:

I The distance dij between two nodes i , j is the estimated number of transmissions
along the best path between i , j .

I Consider the network below, assuming that there is no link between k and l :

i

k

l

j

✏ik

✏il

✏kj

✏lj

I Then the ETX distance dij in this example is

dij = min

(

1
(1� ✏ik)(1� ✏kj)

,
1

(1� ✏il)(1� ✏lj)
,

)

Note: dik =
1

1� ✏ik
is the expectation of a random variable X ⇠ Geo(1� ✏ik).

Network Coding (IN2315): Network coding implementations – MORE – a MAC-independent opportunistic routing protocol 44

Technische Universität München

Routing metric used by MORE

MORE uses the ETX (estimated transmission count) [3] metric:

I The distance dij between two nodes i , j is the estimated number of transmissions
along the best path between i , j .

I Consider the network below, assuming that there is no link between k and l :

i

k

l

j

✏ik

✏il

✏kj

✏lj

I Then the ETX distance dij in this example is

dij = min

(

1
(1� ✏ik)(1� ✏kj)

,
1

(1� ✏il)(1� ✏lj)
,

)

Note: dik =
1

1� ✏ik
is the expectation of a random variable X ⇠ Geo(1� ✏ik).

Network Coding (IN2315): Network coding implementations – MORE – a MAC-independent opportunistic routing protocol 44

Technische Universität München

Routing metric used by MORE

MORE uses the ETX (estimated transmission count) [3] metric:

I The distance dij between two nodes i , j is the estimated number of transmissions
along the best path between i , j .

I Consider the network below, assuming that there is no link between k and l :

i

k

l

j

✏ik

✏il

✏kj

✏lj

I Then the ETX distance dij in this example is

dij = min

(

1
(1� ✏ik)(1� ✏kj)

,
1

(1� ✏il)(1� ✏lj)
,

)

Note: dik =
1

1� ✏ik
is the expectation of a random variable X ⇠ Geo(1� ✏ik).

Network Coding (IN2315): Network coding implementations – MORE – a MAC-independent opportunistic routing protocol 44

Technische Universität München

MORE uses opportunistic routing, i. e.,
I nodes overhear all transmissions and
I decide somehow whether or not to recode.

But how?
I Let zi the number of transmissions by some i 2 N .
I Nodes estimate erasure probabilities by sending beacons.
I From this information the ETX distance between any i 2 N and destination t can

be computed.
I The expected number of packets that i receives from nodes with higher ETX

distance is given as

Rj =
X

i>j

zi
�

1� ✏ij
�

.

Network Coding (IN2315): Network coding implementations – MORE – a MAC-independent opportunistic routing protocol 45

Technische Universität München

Expected number of packets j has to forward for each packet sent by s:
I To avoid redundant transmissions node j should forward only if no other node k

with lower distance to t has received a specific packet.
I The expected number of packets that node j has to send is therefore

Lj =
X

i>j

0

@zi
�

1� ✏ij
�

Y

k<j

✏ik

1

A .

I Note that Ls = 1.

Expected number of transmissions at node j :
I j has to transmit encoded packets until Lj packets have been received by nodes

with lower ETX distance to t .
I That is given by

zj =
Lj

1�
Q

k<j ✏jk
.

Network Coding (IN2315): Network coding implementations – MORE – a MAC-independent opportunistic routing protocol 46

Technische Universität München

Expected number of packets j has to forward for each packet sent by s:
I To avoid redundant transmissions node j should forward only if no other node k

with lower distance to t has received a specific packet.
I The expected number of packets that node j has to send is therefore

Lj =
X

i>j

0

@zi
�

1� ✏ij
�

Y

k<j

✏ik

1

A .

I Note that Ls = 1.

Expected number of transmissions at node j :
I j has to transmit encoded packets until Lj packets have been received by nodes

with lower ETX distance to t .
I That is given by

zj =
Lj

1�
Q

k<j ✏jk
.

Network Coding (IN2315): Network coding implementations – MORE – a MAC-independent opportunistic routing protocol 46

Technische Universität München

TX credit counter

I In order to keep track of how many packets nodes may send, each i 2 N
maintains a TX credit counter Z TX

i .
I Z TX

i is decremented by 1 for every packet that is transmitted.
I Node i stops transmitting if Z TX

i < 0 (note that Z TX
i 2 R).

Problem:
I Each node has calculated its value zi denoting the number of packets i has to

send for each packet generated by s.
I However, i cannot know how many packets s generates.

Solution:
I In practice, Z TX

i should be incremented whenever i receives a packet from some
node with higher ETX distance.

I This incremental update is given by

�Z TX
i =

zi

Ri
=

zi
P

j>i zj
�

1� ✏ji
� .

Network Coding (IN2315): Network coding implementations – MORE – a MAC-independent opportunistic routing protocol 47

Technische Universität München

TX credit counter

I In order to keep track of how many packets nodes may send, each i 2 N
maintains a TX credit counter Z TX

i .
I Z TX

i is decremented by 1 for every packet that is transmitted.
I Node i stops transmitting if Z TX

i < 0 (note that Z TX
i 2 R).

Problem:
I Each node has calculated its value zi denoting the number of packets i has to

send for each packet generated by s.
I However, i cannot know how many packets s generates.

Solution:
I In practice, Z TX

i should be incremented whenever i receives a packet from some
node with higher ETX distance.

I This incremental update is given by

�Z TX
i =

zi

Ri
=

zi
P

j>i zj
�

1� ✏ji
� .

Network Coding (IN2315): Network coding implementations – MORE – a MAC-independent opportunistic routing protocol 47

Technische Universität München

TX credit counter

I In order to keep track of how many packets nodes may send, each i 2 N
maintains a TX credit counter Z TX

i .
I Z TX

i is decremented by 1 for every packet that is transmitted.
I Node i stops transmitting if Z TX

i < 0 (note that Z TX
i 2 R).

Problem:
I Each node has calculated its value zi denoting the number of packets i has to

send for each packet generated by s.
I However, i cannot know how many packets s generates.

Solution:
I In practice, Z TX

i should be incremented whenever i receives a packet from some
node with higher ETX distance.

I This incremental update is given by

�Z TX
i =

zi

Ri
=

zi
P

j>i zj
�

1� ✏ji
� .

Network Coding (IN2315): Network coding implementations – MORE – a MAC-independent opportunistic routing protocol 47

Technische Universität München

Which nodes should act as forwarders?

With MORE, the subgraph that participates in forwarding packets from s to t is
determine by s:

I Each packet sent by s contains a list of nodes that are closer to t than s ordered
by their distance.

I Whenever an intermediate node overhears a coded packet, it first checks this
forwarder list and discards the packet if it is not included in the list of possible
forwarders.

The use of such a forwarder list
I resembles a variant of source routing and
I allows to dynamically setup routes instead of calculating all possible routes in

advance,
I which limits the overhead induced by routing updates.

Network Coding (IN2315): Network coding implementations – MORE – a MAC-independent opportunistic routing protocol 48

Technische Universität München

Acknowledgements

The source s keeps transmitting redundant frames until successful decoding
is acknowledged by the destination t :

I t sends an uncoded acknowledgement back to s containing the
generation sequence number.

I The acknowledgement is routed along the shortest path from t to s
according to the ETX metric.

I For the acknowledgement, link layer retransmits provided by
IEEE 802.11 are used.

I Forwarders overhearing the acknowledgement prune the corresponding
generation.

Network Coding (IN2315): Network coding implementations – MORE – a MAC-independent opportunistic routing protocol 49

Technische Universität München

Throughput gain of MORE [2]

Network Coding (IN2315): Network coding implementations – MORE – a MAC-independent opportunistic routing protocol 50

Technische Universität München

Organizational stuff

Introduction
What is Network Coding?
Applications of Network Coding
Mindmap: Network Coding and lecture outline

Finite fields
Binary extension fields
Discrete logarithm

Formal description of coding operations

Connection to Forward Error Correction

Network coding implementations
MORE – a MAC-independent opportunistic routing protocol

Networks as graphs
Graphs
Flows
Flow problems
Max-flow min-cut theorem
Multicommodity Flow Problems

Multicast in Networks
Max-flow min-cut theorem

Wireless Packet Networks

Bidirectional Communication

IEEE 802.11
IEEE 802.11 frame format
IEEE 80211 MAC
IEEE 802.11 service sets

libmoep80211
What is libmoep80211?
moep80211 frame format

Network Coding (IN2315): Networks as graphs 51

Technische Universität München

Networks as Graphs

1 2 3
x

y

x

y

1

2

3

4

x y

x , y

y x

1

2

3

4 5

6

7

x

y

x

y

x

y

x , y y

x

I Wired networks can be modeled as
abstract graphs.

I Information flow in networks with routing
& forwarding can be modeled as
(multi-)commodity flow problem

I Gives nice problems (flow optimization
problems) and algorithms (Dijkstra,
Bellman-Ford, etc.)

I Special properties of “Information”
(arbitrarily reproducible, coded
representation, etc.) are not taken into
account in the standard commodity
model.

Network Coding (IN2315): Networks as graphs – Graphs 52

Technische Universität München

Graphs (directed) G = (N, A)
I Nodes N = {1, ... , n}
I Arcs A = {1, ... , m}
I Each arc j 2 A represents an ordered pair of nodes (a, b) with

a, b 2 N, a 6= b
I head(j) = b and tail(j) = a
I Important structures:

I Path (directed, undirected)
I Tree (directed, undirected)
I Cycle (directed, undirected)

I We assume G is connected, i.e., there exists an undirected path
between any pair of nodes.

Network Coding (IN2315): Networks as graphs – Graphs 53

Technische Universität München

Examples
1 2 3

nodes 1, 2, 3
arcs (1, 2), (2, 1), (2, 3), (3, 2)

nodes 1, 2, 3, 4
arcs (1, 2), (2, 3), (3, 1), (3, 4), (4, 2)

nodes 1, 2, 3, 4, 5, 6, 7
arcs (1, 2), (1, 3), (2, 4), (2, 6),

(3, 4), (3, 7), (4, 5), (5, 6), (5, 7)

Network Coding (IN2315): Networks as graphs – Graphs 54

Technische Universität München

Examples
1 2 3

nodes 1, 2, 3
arcs (1, 2), (2, 1), (2, 3), (3, 2)

nodes 1, 2, 3, 4
arcs (1, 2), (2, 3), (3, 1), (3, 4), (4, 2)

nodes 1, 2, 3, 4, 5, 6, 7
arcs (1, 2), (1, 3), (2, 4), (2, 6),

(3, 4), (3, 7), (4, 5), (5, 6), (5, 7)

Network Coding (IN2315): Networks as graphs – Graphs 54

Technische Universität München

Examples
1 2 3

1

2

3

4

nodes 1, 2, 3
arcs (1, 2), (2, 1), (2, 3), (3, 2)

nodes 1, 2, 3, 4
arcs (1, 2), (2, 3), (3, 1), (3, 4), (4, 2)

nodes 1, 2, 3, 4, 5, 6, 7
arcs (1, 2), (1, 3), (2, 4), (2, 6),

(3, 4), (3, 7), (4, 5), (5, 6), (5, 7)

Network Coding (IN2315): Networks as graphs – Graphs 54

Technische Universität München

Examples
1 2 3

1

2

3

4

nodes 1, 2, 3
arcs (1, 2), (2, 1), (2, 3), (3, 2)

nodes 1, 2, 3, 4
arcs (1, 2), (2, 3), (3, 1), (3, 4), (4, 2)

nodes 1, 2, 3, 4, 5, 6, 7
arcs (1, 2), (1, 3), (2, 4), (2, 6),

(3, 4), (3, 7), (4, 5), (5, 6), (5, 7)

Network Coding (IN2315): Networks as graphs – Graphs 54

Technische Universität München

Examples
1 2 3

1

2

3

4

1

2

3

4 5

6

7

nodes 1, 2, 3
arcs (1, 2), (2, 1), (2, 3), (3, 2)

nodes 1, 2, 3, 4
arcs (1, 2), (2, 3), (3, 1), (3, 4), (4, 2)

nodes 1, 2, 3, 4, 5, 6, 7
arcs (1, 2), (1, 3), (2, 4), (2, 6),

(3, 4), (3, 7), (4, 5), (5, 6), (5, 7)

Network Coding (IN2315): Networks as graphs – Graphs 54

Technische Universität München

Examples
1 2 3

1

2

3

4

1

2

3

4 5

6

7

nodes 1, 2, 3
arcs (1, 2), (2, 1), (2, 3), (3, 2)

nodes 1, 2, 3, 4
arcs (1, 2), (2, 3), (3, 1), (3, 4), (4, 2)

nodes 1, 2, 3, 4, 5, 6, 7
arcs (1, 2), (1, 3), (2, 4), (2, 6),

(3, 4), (3, 7), (4, 5), (5, 6), (5, 7)

Network Coding (IN2315): Networks as graphs – Graphs 54

Technische Universität München

Incidence matrix M

I
Mij = 1 if tail(j) = i (arc j leaves node i)

I
Mij = �1 if head(j) = i (arc j enters node i)

Fundamental subspaces of M (G is connected)

null MT = span{1}
null M = span{x : xi = 1 i 2 C forward, xi = �1 i 2 C backward,

xi = 0 else, C undirected cycle of G}

I rank M = n � 1 4

I dim null MT = 1
I dim null M = m � n + 1 5

4Proof via undirected tree in G, adding any further arc creates a cycle
5Number of linearly independent undirected cycles

Network Coding (IN2315): Networks as graphs – Graphs 55

Technische Universität München

Examples
1 2 3

M =


1 �1 0 0
�1 1 1 �1

0 0 �1 1

�

M =

"

1 0 �1 0 0
�1 1 0 0 �1

0 �1 1 1 0
0 0 0 �1 1

#

M =

2

6

6

4

1 1 0 0 0 0 0 0 0
�1 0 1 1 0 0 0 0 0

0 �1 0 0 1 1 0 0 0
0 0 �1 0 �1 0 1 0 0
0 0 0 0 0 0 �1 1 1
0 0 0 �1 0 0 0 �1 0
0 0 0 0 0 �1 0 0 �1

3

7

7

5

Network Coding (IN2315): Networks as graphs – Graphs 56

Technische Universität München

Examples
1 2 3

M =


1 �1 0 0
�1 1 1 �1

0 0 �1 1

�

M =

"

1 0 �1 0 0
�1 1 0 0 �1

0 �1 1 1 0
0 0 0 �1 1

#

M =

2

6

6

4

1 1 0 0 0 0 0 0 0
�1 0 1 1 0 0 0 0 0

0 �1 0 0 1 1 0 0 0
0 0 �1 0 �1 0 1 0 0
0 0 0 0 0 0 �1 1 1
0 0 0 �1 0 0 0 �1 0
0 0 0 0 0 �1 0 0 �1

3

7

7

5

Network Coding (IN2315): Networks as graphs – Graphs 56

Technische Universität München

Examples
1 2 3

1

2

3

4

M =


1 �1 0 0
�1 1 1 �1

0 0 �1 1

�

M =

"

1 0 �1 0 0
�1 1 0 0 �1

0 �1 1 1 0
0 0 0 �1 1

#

M =

2

6

6

4

1 1 0 0 0 0 0 0 0
�1 0 1 1 0 0 0 0 0

0 �1 0 0 1 1 0 0 0
0 0 �1 0 �1 0 1 0 0
0 0 0 0 0 0 �1 1 1
0 0 0 �1 0 0 0 �1 0
0 0 0 0 0 �1 0 0 �1

3

7

7

5

Network Coding (IN2315): Networks as graphs – Graphs 56

Technische Universität München

Examples
1 2 3

1

2

3

4

M =


1 �1 0 0
�1 1 1 �1

0 0 �1 1

�

M =

"

1 0 �1 0 0
�1 1 0 0 �1

0 �1 1 1 0
0 0 0 �1 1

#

M =

2

6

6

4

1 1 0 0 0 0 0 0 0
�1 0 1 1 0 0 0 0 0

0 �1 0 0 1 1 0 0 0
0 0 �1 0 �1 0 1 0 0
0 0 0 0 0 0 �1 1 1
0 0 0 �1 0 0 0 �1 0
0 0 0 0 0 �1 0 0 �1

3

7

7

5

Network Coding (IN2315): Networks as graphs – Graphs 56

Technische Universität München

Examples
1 2 3

1

2

3

4

1

2

3

4 5

6

7

M =


1 �1 0 0
�1 1 1 �1

0 0 �1 1

�

M =

"

1 0 �1 0 0
�1 1 0 0 �1

0 �1 1 1 0
0 0 0 �1 1

#

M =

2

6

6

4

1 1 0 0 0 0 0 0 0
�1 0 1 1 0 0 0 0 0

0 �1 0 0 1 1 0 0 0
0 0 �1 0 �1 0 1 0 0
0 0 0 0 0 0 �1 1 1
0 0 0 �1 0 0 0 �1 0
0 0 0 0 0 �1 0 0 �1

3

7

7

5

Network Coding (IN2315): Networks as graphs – Graphs 56

Technische Universität München

Examples
1 2 3

1

2

3

4

1

2

3

4 5

6

7

M =


1 �1 0 0
�1 1 1 �1

0 0 �1 1

�

M =

"

1 0 �1 0 0
�1 1 0 0 �1

0 �1 1 1 0
0 0 0 �1 1

#

M =

2

6

6

4

1 1 0 0 0 0 0 0 0
�1 0 1 1 0 0 0 0 0

0 �1 0 0 1 1 0 0 0
0 0 �1 0 �1 0 1 0 0
0 0 0 0 0 0 �1 1 1
0 0 0 �1 0 0 0 �1 0
0 0 0 0 0 �1 0 0 �1

3

7

7

5

Network Coding (IN2315): Networks as graphs – Graphs 56

Technische Universität München

Incidence matrix M

I
Mij = 1 if tail(j) = i (arc j leaves node i)

I
Mij = �1 if head(j) = i (arc j enters node i)

Fundamental subspaces of M (G is connected)

null MT = span{1}
null M = span{x : xi = 1 i 2 C forward, xi = �1 i 2 C backward,

xi = 0 else, C undirected cycle of G}

I rank M = n � 1 4

I dim null MT = 1
I dim null M = m � n + 1 5

4Proof via undirected tree in G, adding any further arc creates a cycle
5Number of linearly independent undirected cycles

Network Coding (IN2315): Networks as graphs – Graphs 57

Technische Universität München

Incidence matrix M

I
Mij = 1 if tail(j) = i (arc j leaves node i)

I
Mij = �1 if head(j) = i (arc j enters node i)

Fundamental subspaces of M (G is connected)

null MT = span{1}
null M = span{x : xi = 1 i 2 C forward, xi = �1 i 2 C backward,

xi = 0 else, C undirected cycle of G}

I rank M = n � 1 4

I dim null MT = 1
I dim null M = m � n + 1 5

4Proof via undirected tree in G, adding any further arc creates a cycle
5Number of linearly independent undirected cycles

Network Coding (IN2315): Networks as graphs – Graphs 57

Technische Universität München

Examples
1 2 3

M =


1 �1 0 0
�1 1 1 �1

0 0 �1 1

�

M =

"

1 0 �1 0 0
�1 1 0 0 �1

0 �1 1 1 0
0 0 0 �1 1

#

M =

2

6

6

4

1 1 0 0 0 0 0 0 0
�1 0 1 1 0 0 0 0 0

0 �1 0 0 1 1 0 0 0
0 0 �1 0 �1 0 1 0 0
0 0 0 0 0 0 �1 1 1
0 0 0 �1 0 0 0 �1 0
0 0 0 0 0 �1 0 0 �1

3

7

7

5

Network Coding (IN2315): Networks as graphs – Graphs 58

Technische Universität München

Examples
1 2 3 null M = span

⇢

1
1
0
0

�

,


0
0
1
1

��

null M = span

(" 1
1
1
0
0

#

,

" 0
1
0
1
1

#)

null M = span

8

>

>

>

<

>

>

>

:

2

6

6

6

4

1
�1

1
0

�1
0
0
0
0

3

7

7

7

5

,

2

6

6

6

4

0
0
1

�1
0
0
1
1
0

3

7

7

7

5

,

2

6

6

6

4

0
0
0
0
1

�1
1
0
1

3

7

7

7

5

9

>

>

>

=

>

>

>

;

Network Coding (IN2315): Networks as graphs – Graphs 59

Technische Universität München

Examples
1 2 3

1

2

3

4

M =


1 �1 0 0
�1 1 1 �1

0 0 �1 1

�

M =

"

1 0 �1 0 0
�1 1 0 0 �1

0 �1 1 1 0
0 0 0 �1 1

#

M =

2

6

6

4

1 1 0 0 0 0 0 0 0
�1 0 1 1 0 0 0 0 0

0 �1 0 0 1 1 0 0 0
0 0 �1 0 �1 0 1 0 0
0 0 0 0 0 0 �1 1 1
0 0 0 �1 0 0 0 �1 0
0 0 0 0 0 �1 0 0 �1

3

7

7

5

Network Coding (IN2315): Networks as graphs – Graphs 60

Technische Universität München

Examples
1 2 3

1

2

3

4

null M = span
⇢

1
1
0
0

�

,


0
0
1
1

��

null M = span

(" 1
1
1
0
0

#

,

" 0
1
0
1
1

#)

null M = span

8

>

>

>

<

>

>

>

:

2

6

6

6

4

1
�1

1
0

�1
0
0
0
0

3

7

7

7

5

,

2

6

6

6

4

0
0
1

�1
0
0
1
1
0

3

7

7

7

5

,

2

6

6

6

4

0
0
0
0
1

�1
1
0
1

3

7

7

7

5

9

>

>

>

=

>

>

>

;

Network Coding (IN2315): Networks as graphs – Graphs 61

Technische Universität München

Examples
1 2 3

1

2

3

4

1

2

3

4 5

6

7

M =


1 �1 0 0
�1 1 1 �1

0 0 �1 1

�

M =

"

1 0 �1 0 0
�1 1 0 0 �1

0 �1 1 1 0
0 0 0 �1 1

#

M =

2

6

6

4

1 1 0 0 0 0 0 0 0
�1 0 1 1 0 0 0 0 0

0 �1 0 0 1 1 0 0 0
0 0 �1 0 �1 0 1 0 0
0 0 0 0 0 0 �1 1 1
0 0 0 �1 0 0 0 �1 0
0 0 0 0 0 �1 0 0 �1

3

7

7

5

Network Coding (IN2315): Networks as graphs – Graphs 62

Technische Universität München

Examples
1 2 3

1

2

3

4

1

2

3

4 5

6

7

null M = span
⇢

1
1
0
0

�

,


0
0
1
1

��

null M = span

(" 1
1
1
0
0

#

,

" 0
1
0
1
1

#)

null M = span

8

>

>

>

<

>

>

>

:

2

6

6

6

4

1
�1

1
0

�1
0
0
0
0

3

7

7

7

5

,

2

6

6

6

4

0
0
1

�1
0
0
1
1
0

3

7

7

7

5

,

2

6

6

6

4

0
0
0
0
1

�1
1
0
1

3

7

7

7

5

9

>

>

>

=

>

>

>

;

Network Coding (IN2315): Networks as graphs – Graphs 63

Technische Universität München

Flows6

I The flow vector x = [x1, ... , xm]T represents the amount of
commodity (information) flow on each arc.

I The source vector d = [d1, ... , dn]T represents the amount of
commodity (information) that any node injects or consumes.

I Multiple information flows can be handled as a single commodity
for routing/forwarding if they are

I destined for a single common destination or
I originate from a single common source.

6Single commodity flows

Network Coding (IN2315): Networks as graphs – Flows 64

Technische Universität München

Flows
I Nonnegativity of flows

x � 0 , xj � 0 8j 2 A

I Flow conservation law (Kirchhoff current law):

Mx = d ,
X

j2A:tail(j)=i

xj �
X

j2A:head(j)=i

xj = di 8i 2 N

I FCL can not be satisfied if 1

T
d 6= 0 since 1

T
M = 0.

I FCL contains exactly one redundant constraint since
rank M = n � 1 (if graph is connected).

I Flows along directed cycles are independent of d , i.e.,
flows that satisfy Mx = 0, x � 0.

Network Coding (IN2315): Networks as graphs – Flows 65

Technische Universität München

Flows
I Nonnegativity of flows

x � 0 , xj � 0 8j 2 A

I Flow conservation law (Kirchhoff current law):

Mx = d ,
X

j2A:tail(j)=i

xj �
X

j2A:head(j)=i

xj = di 8i 2 N

I FCL can not be satisfied if 1

T
d 6= 0 since 1

T
M = 0.

I FCL contains exactly one redundant constraint since
rank M = n � 1 (if graph is connected).

I Flows along directed cycles are independent of d , i.e.,
flows that satisfy Mx = 0, x � 0.

Network Coding (IN2315): Networks as graphs – Flows 65

Technische Universität München

Flows
I Nonnegativity of flows

x � 0 , xj � 0 8j 2 A

I Flow conservation law (Kirchhoff current law):

Mx = d ,
X

j2A:tail(j)=i

xj �
X

j2A:head(j)=i

xj = di 8i 2 N

I FCL can not be satisfied if 1

T
d 6= 0 since 1

T
M = 0.

I FCL contains exactly one redundant constraint since
rank M = n � 1 (if graph is connected).

I Flows along directed cycles are independent of d , i.e.,
flows that satisfy Mx = 0, x � 0.

Network Coding (IN2315): Networks as graphs – Flows 65

Technische Universität München

Flows
I Nonnegativity of flows

x � 0 , xj � 0 8j 2 A

I Flow conservation law (Kirchhoff current law):

Mx = d ,
X

j2A:tail(j)=i

xj �
X

j2A:head(j)=i

xj = di 8i 2 N

I FCL can not be satisfied if 1

T
d 6= 0 since 1

T
M = 0.

I FCL contains exactly one redundant constraint since
rank M = n � 1 (if graph is connected).

I Flows along directed cycles are independent of d , i.e.,
flows that satisfy Mx = 0, x � 0.

Network Coding (IN2315): Networks as graphs – Flows 65

Technische Universität München

Flows
I Nonnegativity of flows

x � 0 , xj � 0 8j 2 A

I Flow conservation law (Kirchhoff current law):

Mx = d ,
X

j2A:tail(j)=i

xj �
X

j2A:head(j)=i

xj = di 8i 2 N

I FCL can not be satisfied if 1

T
d 6= 0 since 1

T
M = 0.

I FCL contains exactly one redundant constraint since
rank M = n � 1 (if graph is connected).

I Flows along directed cycles are independent of d , i.e.,
flows that satisfy Mx = 0, x � 0.

Network Coding (IN2315): Networks as graphs – Flows 65

Technische Universität München

Example 1: Diamond network from s = 1 to t = 4

1

2

3

4

I Incidence matrix and source vector

M =

"

1 0 �1 0 0
�1 1 0 0 �1

0 �1 1 1 0
0 0 0 �1 1

#

d =
 1

0
0

�1

�

I Feasible flows for M , d

F(M , d) = {x : Mx = d , x � 0}

I Flow solution(s) (Unique? How many solutions?)

I
x

T = [1 1 0 1 0]
I

x

T = [1 1 0 1 0] + ↵ [1 1 1 0 0] + � [0 1 0 1 1], ↵,� � 0

Network Coding (IN2315): Networks as graphs – Flows 66

Technische Universität München

Example 1: Diamond network from s = 1 to t = 4

1

2

3

4

I Incidence matrix and source vector

M =

"

1 0 �1 0 0
�1 1 0 0 �1

0 �1 1 1 0
0 0 0 �1 1

#

d =
 1

0
0

�1

�

I Feasible flows for M , d

F(M , d) = {x : Mx = d , x � 0}

I Flow solution(s) (Unique? How many solutions?)
I

x

T = [1 1 0 1 0]

I
x

T = [1 1 0 1 0] + ↵ [1 1 1 0 0] + � [0 1 0 1 1], ↵,� � 0

Network Coding (IN2315): Networks as graphs – Flows 66

Technische Universität München

Example 1: Diamond network from s = 1 to t = 4

1

2

3

4

I Incidence matrix and source vector

M =

"

1 0 �1 0 0
�1 1 0 0 �1

0 �1 1 1 0
0 0 0 �1 1

#

d =
 1

0
0

�1

�

I Feasible flows for M , d

F(M , d) = {x : Mx = d , x � 0}

I Flow solution(s) (Unique? How many solutions?)
I

x

T = [1 1 0 1 0]
I

x

T = [1 1 0 1 0] + ↵ [1 1 1 0 0] + � [0 1 0 1 1], ↵,� � 0

Network Coding (IN2315): Networks as graphs – Flows 66

Technische Universität München

Example 2: Extended butterfly from s = 1 to t = 8

1

2

3

4 5

6

7

8

I Incidence matrix and source vector

M =

2

6

6

6

4

1 1 0 0 0 0 0 0 0 0 0
�1 0 1 1 0 0 0 0 0 0 0

0 �1 0 0 1 1 0 0 0 0 0
0 0 �1 0 �1 0 1 0 0 0 0
0 0 0 0 0 0 �1 1 1 0 0
0 0 0 �1 0 0 0 �1 0 1 0
0 0 0 0 0 �1 0 0 �1 0 1
0 0 0 0 0 0 0 0 0 �1 �1

3

7

7

7

5

d =

2

6

6

4

1
0
0
0
0
0
0

�1

3

7

7

5

I Flow solution(s) (Unique? How many?)

I
x = [1 0 0 1 0 0 0 0 0 1 0]

I
x = [0 1 0 0 1 0 1 0 1 0 1]

I
x = � [1 0 0 1 0 0 0 0 0 1 0] + (1� �) [0 1 0 0 1 0 1 0 1 0 1], � 2 [0, 1]

I . . .

Network Coding (IN2315): Networks as graphs – Flows 67

Technische Universität München

Example 2: Extended butterfly from s = 1 to t = 8

1

2

3

4 5

6

7

8

I Incidence matrix and source vector

M =

2

6

6

6

4

1 1 0 0 0 0 0 0 0 0 0
�1 0 1 1 0 0 0 0 0 0 0

0 �1 0 0 1 1 0 0 0 0 0
0 0 �1 0 �1 0 1 0 0 0 0
0 0 0 0 0 0 �1 1 1 0 0
0 0 0 �1 0 0 0 �1 0 1 0
0 0 0 0 0 �1 0 0 �1 0 1
0 0 0 0 0 0 0 0 0 �1 �1

3

7

7

7

5

d =

2

6

6

4

1
0
0
0
0
0
0

�1

3

7

7

5

I Flow solution(s) (Unique? How many?)
I

x = [1 0 0 1 0 0 0 0 0 1 0]

I
x = [0 1 0 0 1 0 1 0 1 0 1]

I
x = � [1 0 0 1 0 0 0 0 0 1 0] + (1� �) [0 1 0 0 1 0 1 0 1 0 1], � 2 [0, 1]

I . . .

Network Coding (IN2315): Networks as graphs – Flows 67

Technische Universität München

Example 2: Extended butterfly from s = 1 to t = 8

1

2

3

4 5

6

7

8

I Incidence matrix and source vector

M =

2

6

6

6

4

1 1 0 0 0 0 0 0 0 0 0
�1 0 1 1 0 0 0 0 0 0 0

0 �1 0 0 1 1 0 0 0 0 0
0 0 �1 0 �1 0 1 0 0 0 0
0 0 0 0 0 0 �1 1 1 0 0
0 0 0 �1 0 0 0 �1 0 1 0
0 0 0 0 0 �1 0 0 �1 0 1
0 0 0 0 0 0 0 0 0 �1 �1

3

7

7

7

5

d =

2

6

6

4

1
0
0
0
0
0
0

�1

3

7

7

5

I Flow solution(s) (Unique? How many?)
I

x = [1 0 0 1 0 0 0 0 0 1 0]
I

x = [0 1 0 0 1 0 1 0 1 0 1]

I
x = � [1 0 0 1 0 0 0 0 0 1 0] + (1� �) [0 1 0 0 1 0 1 0 1 0 1], � 2 [0, 1]

I . . .

Network Coding (IN2315): Networks as graphs – Flows 67

Technische Universität München

Example 2: Extended butterfly from s = 1 to t = 8

1

2

3

4 5

6

7

8

I Incidence matrix and source vector

M =

2

6

6

6

4

1 1 0 0 0 0 0 0 0 0 0
�1 0 1 1 0 0 0 0 0 0 0

0 �1 0 0 1 1 0 0 0 0 0
0 0 �1 0 �1 0 1 0 0 0 0
0 0 0 0 0 0 �1 1 1 0 0
0 0 0 �1 0 0 0 �1 0 1 0
0 0 0 0 0 �1 0 0 �1 0 1
0 0 0 0 0 0 0 0 0 �1 �1

3

7

7

7

5

d =

2

6

6

4

1
0
0
0
0
0
0

�1

3

7

7

5

I Flow solution(s) (Unique? How many?)
I

x = [1 0 0 1 0 0 0 0 0 1 0]
I

x = [0 1 0 0 1 0 1 0 1 0 1]
I

x = � [1 0 0 1 0 0 0 0 0 1 0] + (1� �) [0 1 0 0 1 0 1 0 1 0 1], � 2 [0, 1]

I . . .

Network Coding (IN2315): Networks as graphs – Flows 67

Technische Universität München

Example 2: Extended butterfly from s = 1 to t = 8

1

2

3

4 5

6

7

8

I Incidence matrix and source vector

M =

2

6

6

6

4

1 1 0 0 0 0 0 0 0 0 0
�1 0 1 1 0 0 0 0 0 0 0

0 �1 0 0 1 1 0 0 0 0 0
0 0 �1 0 �1 0 1 0 0 0 0
0 0 0 0 0 0 �1 1 1 0 0
0 0 0 �1 0 0 0 �1 0 1 0
0 0 0 0 0 �1 0 0 �1 0 1
0 0 0 0 0 0 0 0 0 �1 �1

3

7

7

7

5

d =

2

6

6

4

1
0
0
0
0
0
0

�1

3

7

7

5

I Flow solution(s) (Unique? How many?)
I

x = [1 0 0 1 0 0 0 0 0 1 0]
I

x = [0 1 0 0 1 0 1 0 1 0 1]
I

x = � [1 0 0 1 0 0 0 0 0 1 0] + (1� �) [0 1 0 0 1 0 1 0 1 0 1], � 2 [0, 1]
I . . .

Network Coding (IN2315): Networks as graphs – Flows 67

Technische Universität München

Example 3: Flows from multiple sources to a single destination

1

2

3

4 5

6

7

8

I Incidence matrix and source vector

M =

2

6

6

6

4

1 1 0 0 0 0 0 0 0 0 0
�1 0 1 1 0 0 0 0 0 0 0

0 �1 0 0 1 1 0 0 0 0 0
0 0 �1 0 �1 0 1 0 0 0 0
0 0 0 0 0 0 �1 1 1 0 0
0 0 0 �1 0 0 0 �1 0 1 0
0 0 0 0 0 �1 0 0 �1 0 1
0 0 0 0 0 0 0 0 0 �1 �1

3

7

7

7

5

d =

2

6

6

4

1
1
1
1
0
0
0

�4

3

7

7

5

I Flow solution(s) (Unique? How many?)

I
x = [0 1 0 1 1 1 2 1 1 2 2]

I . . .

Network Coding (IN2315): Networks as graphs – Flows 68

Technische Universität München

Example 3: Flows from multiple sources to a single destination

1

2

3

4 5

6

7

8

I Incidence matrix and source vector

M =

2

6

6

6

4

1 1 0 0 0 0 0 0 0 0 0
�1 0 1 1 0 0 0 0 0 0 0

0 �1 0 0 1 1 0 0 0 0 0
0 0 �1 0 �1 0 1 0 0 0 0
0 0 0 0 0 0 �1 1 1 0 0
0 0 0 �1 0 0 0 �1 0 1 0
0 0 0 0 0 �1 0 0 �1 0 1
0 0 0 0 0 0 0 0 0 �1 �1

3

7

7

7

5

d =

2

6

6

4

1
1
1
1
0
0
0

�4

3

7

7

5

I Flow solution(s) (Unique? How many?)
I

x = [0 1 0 1 1 1 2 1 1 2 2]

I . . .

Network Coding (IN2315): Networks as graphs – Flows 68

Technische Universität München

Example 3: Flows from multiple sources to a single destination

1

2

3

4 5

6

7

8

I Incidence matrix and source vector

M =

2

6

6

6

4

1 1 0 0 0 0 0 0 0 0 0
�1 0 1 1 0 0 0 0 0 0 0

0 �1 0 0 1 1 0 0 0 0 0
0 0 �1 0 �1 0 1 0 0 0 0
0 0 0 0 0 0 �1 1 1 0 0
0 0 0 �1 0 0 0 �1 0 1 0
0 0 0 0 0 �1 0 0 �1 0 1
0 0 0 0 0 0 0 0 0 �1 �1

3

7

7

7

5

d =

2

6

6

4

1
1
1
1
0
0
0

�4

3

7

7

5

I Flow solution(s) (Unique? How many?)
I

x = [0 1 0 1 1 1 2 1 1 2 2]
I . . .

Network Coding (IN2315): Networks as graphs – Flows 68

Technische Universität München

Feasible flow region

F(M , d) = {x : Mx = d , x � 0}

I F(M , d) is a closed7 polyhedral8 convex9 set.
I F(M , d) is nonempty 1

T
d = 0 (if G is connected).

I F(M , d) is bounded10 if G is acyclic (contains no directed
cycles), i.e., F(M , 0) = {0}.

I In general, F(M , d) contains infinitely many solutions. Which
one is the best?

7A set X is closed if it contains all its limit points.
8A set X is a polyhedron if it is defined by a finite number of affine (in)equalities, i.e., X = {x : Ax � b}.
9A set X is convex if for any two points x , y 2 X and any real scalar � 2 [0, 1], �x + (1 � �)y 2 X .

10A set X is bounded if it is contained in some ball around the origin, i.e., X ⇢ Br (0) for some r > 0.

Network Coding (IN2315): Networks as graphs – Flows 69

Technische Universität München

Minimum cost flow problem
I Cost per unit flow on arcs: c = [c1, ... , cm]T

min c

T
x

s. t. Mx = d

x � 0

Example: Shortest path11

I
c “length” of each arc, e.g., c = 1 (number of hops metric)

I Shortest path from s to t : ds = 1, dt = �1, di = 0 8 i 6= s, t
I Simultaneous shortest paths to t : dt = �n + 1, di = 1 8 i 6= t

11Not all flow solutions to these two problems describe shortest paths, but at least one does.

Network Coding (IN2315): Networks as graphs – Flow problems 70

Technische Universität München

Minimum cost flow problem
I Cost per unit flow on arcs: c = [c1, ... , cm]T

min c

T
x

s. t. Mx = d

x � 0

Example: Shortest path11

I
c “length” of each arc, e.g., c = 1 (number of hops metric)

I Shortest path from s to t : ds = 1, dt = �1, di = 0 8 i 6= s, t
I Simultaneous shortest paths to t : dt = �n + 1, di = 1 8 i 6= t

11Not all flow solutions to these two problems describe shortest paths, but at least one does.

Network Coding (IN2315): Networks as graphs – Flow problems 70

Technische Universität München

Minimum cost flow problem
I Cost per unit flow on arcs: c = [c1, ... , cm]T

min c

T
x

s. t. Mx = d

x � 0

Solution approaches
I General purpose linear programming solver (Simplex, Interior

point, etc.)
I Specialized algorithms (Dijkstra, Bellman-Ford, network simplex,

etc.) exploiting graph structure and recursive structure of the
optimal solution (if available)

Network Coding (IN2315): Networks as graphs – Flow problems 71

Technische Universität München

Minimum cost flow problem
I Cost per unit flow on arcs: c = [c1, ... , cm]T

min c

T
x

s. t. Mx = d

x � 0

Solution approaches
I General purpose linear programming solver (Simplex, Interior

point, etc.)
I Specialized algorithms (Dijkstra, Bellman-Ford, network simplex,

etc.) exploiting graph structure and recursive structure of the
optimal solution (if available)

Network Coding (IN2315): Networks as graphs – Flow problems 71

Technische Universität München

Maximum s-t flow problem
I Source vector: ds = 1, dt = �1, di = 0 8 i 6= s, t
I Capacity vector (maximum flow on arcs): z = [z1, ... , zm]T

max r
s. t. Mx = rd

x  z

x � 0

Solution approaches
I General purpose linear programming solver (Simplex, Interior

point, etc.)
I Lagrangian duality approaches (selectively relax one constraint)
I Specialized algorithms (Ford-Fulkerson) exploiting graph

structure and relation to min-cut

Network Coding (IN2315): Networks as graphs – Flow problems 72

Technische Universität München

Maximum s-t flow problem
I Source vector: ds = 1, dt = �1, di = 0 8 i 6= s, t
I Capacity vector (maximum flow on arcs): z = [z1, ... , zm]T

max r
s. t. Mx = rd

x  z

x � 0

Solution approaches
I General purpose linear programming solver (Simplex, Interior

point, etc.)
I Lagrangian duality approaches (selectively relax one constraint)
I Specialized algorithms (Ford-Fulkerson) exploiting graph

structure and relation to min-cut

Network Coding (IN2315): Networks as graphs – Flow problems 72

Technische Universität München

Max-flow min-cut theorem
I An s-t cut is a subset of nodes S ⇢ N such that s 2 S and t /2 S.
I An arc j 2 A crosses S if tail(j) 2 S and head(j) /2 S. A(S)

denotes all crossing arcs.
I The value of an s-t cut given the capacity vector z is defined as

v (S) =
X

j2A(S)

zj

I The value of any s-t cut upper bounds the maximum s-t flow.

Network Coding (IN2315): Networks as graphs – Flow problems 73

Technische Universität München

Max-flow min-cut theorem
The value of the minimum s-t cut equals the value of the
maximum s-t flow, i.e.,

max{r : Mx = rd , 0  x  z} = min{v (S) : S is s-t cut}

Network Coding (IN2315): Networks as graphs – Max-flow min-cut theorem 74

Technische Universität München

Example 1: Diamond network from s = 1 to t = 4

1

2

3

4

I Incidence matrix, source vector, capacity vector

M =

"

1 0 �1 0 0
�1 1 0 0 �1

0 �1 1 1 0
0 0 0 �1 1

#

d =
 1

0
0

�1

�

z =

" 1
1
1
1
1

#

I Max-flow
max{r : Mx = rd , 0  x  z} = 1

I Min-cut
min{v (S) : S is s-t cut} = 1

Network Coding (IN2315): Networks as graphs – Max-flow min-cut theorem 75

Technische Universität München

Example 1: Diamond network from s = 1 to t = 4

1

2

3

4

I Incidence matrix, source vector, capacity vector

M =

"

1 0 �1 0 0
�1 1 0 0 �1

0 �1 1 1 0
0 0 0 �1 1

#

d =
 1

0
0

�1

�

z =

" 1
1
1
1
1

#

I Max-flow
max{r : Mx = rd , 0  x  z} = 1

I Min-cut
min{v (S) : S is s-t cut} = 1

Network Coding (IN2315): Networks as graphs – Max-flow min-cut theorem 75

Technische Universität München

Example 1: Diamond network from s = 1 to t = 4

1

2

3

4

I Incidence matrix, source vector, capacity vector

M =

"

1 0 �1 0 0
�1 1 0 0 �1

0 �1 1 1 0
0 0 0 �1 1

#

d =
 1

0
0

�1

�

z =

" 1
1
1
1
1

#

I Max-flow
max{r : Mx = rd , 0  x  z} = 1

I Min-cut
min{v (S) : S is s-t cut} = 1

Network Coding (IN2315): Networks as graphs – Max-flow min-cut theorem 75

Technische Universität München

Multicast in Networks as Flow Problems
I Multicast communication is identified by its terminal set T ⇢ N.
I We can consider one or multiple sources (there is no big

difference form a theoretical perspective).
I Special cases:

I Unicast (one source, one terminal)
I Bidirectional communication (two nodes that are sources and

terminals)
I Broadcast (all nodes are terminals)

How is multicast treated in networks?
I Convert to unicast (replicate packets at source and store-forward

at all other nodes)
I Allow replication at all nodes (multicast tree/Steiner tree based

forwarding)
I Allow coding at all nodes (network coding)

Network Coding (IN2315): Multicast in Networks 76

Technische Universität München

Multicast in Networks as Flow Problems
I Multicast communication is identified by its terminal set T ⇢ N.
I We can consider one or multiple sources (there is no big

difference form a theoretical perspective).
I Special cases:

I Unicast (one source, one terminal)
I Bidirectional communication (two nodes that are sources and

terminals)
I Broadcast (all nodes are terminals)

How is multicast treated in networks?
I Convert to unicast (replicate packets at source and store-forward

at all other nodes)
I Allow replication at all nodes (multicast tree/Steiner tree based

forwarding)
I Allow coding at all nodes (network coding)

Network Coding (IN2315): Multicast in Networks 76

Technische Universität München

Multicast in Networks as Flow Problems
I Multicast communication is identified by its terminal set T ⇢ N.
I We can consider one or multiple sources (there is no big

difference form a theoretical perspective).
I Special cases:

I Unicast (one source, one terminal)
I Bidirectional communication (two nodes that are sources and

terminals)
I Broadcast (all nodes are terminals)

How is multicast treated in networks?
I Convert to unicast (replicate packets at source and store-forward

at all other nodes)
I Allow replication at all nodes (multicast tree/Steiner tree based

forwarding)
I Allow coding at all nodes (network coding)

Network Coding (IN2315): Multicast in Networks 76

Technische Universität München

Preliminaries: Single commodity flow problems
I Source and flow vector: d , x

I Capacity and cost vector: z, c

min c

T
x

s. t. Mx = d

x � 0

x  z

Special cases
I Maximum s-t flow (see tutorial)
I Minimum cost flow (capacitated z < 1, uncapacitated z = 1)

Network Coding (IN2315): Multicast in Networks 77

Technische Universität München

Preliminaries: Single commodity flow problems
I Source and flow vector: d , x

I Capacity and cost vector: z, c

min c

T
x

s. t. Mx = d

x � 0

x  z

Special cases
I Maximum s-t flow (see tutorial)
I Minimum cost flow (capacitated z < 1, uncapacitated z = 1)

Network Coding (IN2315): Multicast in Networks 77

Technische Universität München

Preliminaries: Multicommodity flow problems
I Commodities C = {1, ... , c}
I Source, flow, and cost vector of commodity k : dk , xk , ck

I Capacity shared across all commodities: z

min
X

k2C

c

T
k xk

s. t. Mxk = dk 8k 2 C
xt � 0 8k 2 C

X

k2C

xk  z

Network Coding (IN2315): Multicast in Networks 78

Technische Universität München

Preliminaries: Multicommodity flow problems
I Commodities C = {1, ... , c}
I Source, flow, and cost vector of commodity k : dk , xk , ck

I Capacity shared across all commodities: z

min
X

k2C

c

T
k xk

s. t. Mxk = dk 8k 2 C
xt � 0 8k 2 C

X

k2C

xk  z

Properties
I Flow conservation applies to all commodities individually
I Capacity is shared among all commodities

Network Coding (IN2315): Multicast in Networks 78

Technische Universität München

Preliminaries: Multicommodity flow problems
I Commodities C = {1, ... , c}
I Source, flow, and cost vector of commodity k : dk , xk , ck

I Capacity shared across all commodities: z

min
X

k2C

c

T
k xk

s. t. Mxk = dk 8k 2 C
xt � 0 8k 2 C

X

k2C

xk  z

Solution approaches
I General purpose linear programming solver
I Lagrangian duality approaches (selectively relax one constraint,

mostly the capacity constraint which couples all flows)

Network Coding (IN2315): Multicast in Networks 78

Technische Universität München

Store-forward multicast

1

2

3

4 5

6

7

a

a0

a

a0

I The flows to the terminals are independent of each other.
I Capacity needs to be split among all flows.

Network Coding (IN2315): Multicast in Networks 79

Technische Universität München

Store-forward multicast: Max s–T flow problem
I One commodity for each terminal t 2 T
I Source vector dst such that dst ,s = 1, dst ,t = �1, and dst ,i = 0

otherwise
I Capacity vector z split among commodities

max r s. t. Mxt = rdst 8t 2 T
xt � 0 8t 2 T

X

t2T

xt  z

Network Coding (IN2315): Multicast in Networks 80

Technische Universität München

Store-forward multicast

1

2

3

4 5

6

7

1

1

1

1

1

1

1

1

1

I Optimal flow solutions
I

x6 = [1 0 0 1 0 0 0 0 0]T
I

x7 = [0 1 0 0 0 1 0 0 0]T

I Total flow which is capacity relevant
I

x6 + x7 = [1 1 0 1 0 1 0 0 0]T

Maximum Multicast s–T Flow = 1

Network Coding (IN2315): Multicast in Networks 81

Technische Universität München

Preliminaries: Maximum s-t flow (flow formulation)
I Source vector dst such that ds = 1, dt = �1, di = 0 8 i 6= s, t
I Capacity vector (maximum flow on arcs): z

I Flow vector x

I Flow conservation Mx = rdst

max r
s. t. Mx = rdst

x  z

x � 0

Network Coding (IN2315): Multicast in Networks 82

Technische Universität München

Preliminaries: Maximum s-t flow (path formulation)
I Paths Pst = {1, ... , K}
I Path incidence vector xk such that xk ,j = 1 if arc j is in the k -th

path, otherwise xk ,j = 0
I All incidence vectors satisfy flow conservation with s-t source

vector d , i.e., Mxk = dst

max
X

k2Pst

rk

s. t.
X

k2Pst

rkxk  z

rk � 0 8k 2 Pst

I Set of paths may be large.
I Path formulation based solution approaches generate only a few

good paths during the problem solution.

Network Coding (IN2315): Multicast in Networks 83

Technische Universität München

Preliminaries: Maximum s-t flow (path formulation)
I Paths Pst = {1, ... , K}
I Path incidence vector xk such that xk ,j = 1 if arc j is in the k -th

path, otherwise xk ,j = 0
I All incidence vectors satisfy flow conservation with s-t source

vector d , i.e., Mxk = dst

max
X

k2Pst

rk

s. t.
X

k2Pst

rkxk  z

rk � 0 8k 2 Pst

I Set of paths may be large.
I Path formulation based solution approaches generate only a few

good paths during the problem solution.

Network Coding (IN2315): Multicast in Networks 83

Technische Universität München

Multicast tree based forwarding

1

2

3

4 5

6

7

I s–T multicast tree: A tree rooted at s such that there exists a
directed path to each t 2 T (arcs belong to at least one path).

Network Coding (IN2315): Multicast in Networks 84

Technische Universität München

Multicast tree based forwarding

1

2

3

4 5

6

7

I s–T multicast tree: A tree rooted at s such that there exists a
directed path to each t 2 T (arcs belong to at least one path).

I Example 1–{6, 7} multicast trees:

I (1, 2), (1, 3), (2, 6), (3, 7)
I (1, 2), (2, 4), (2, 6), (4, 5), (5, 7)
I (1, 3), (3, 4), (3, 7), (4, 5), (5, 6)
I (1, 2), (2, 4), (4, 5), (5, 6), (5, 7)
I (1, 3), (3, 4), (4, 5), (5, 6), (5, 7)
I (1, 2), (1, 3), (2, 6), (3, 4), (4, 5), (5, 7)
I (1, 2), (1, 3), (2, 4), (3, 7), (4, 5), (5, 6)

Network Coding (IN2315): Multicast in Networks 84

Technische Universität München

Multicast tree based forwarding

1

2

3

4 5

6

7

I s–T multicast tree: A tree rooted at s such that there exists a
directed path to each t 2 T (arcs belong to at least one path).

I Example 1–{6, 7} multicast trees:
I (1, 2), (1, 3), (2, 6), (3, 7)

I (1, 2), (2, 4), (2, 6), (4, 5), (5, 7)
I (1, 3), (3, 4), (3, 7), (4, 5), (5, 6)
I (1, 2), (2, 4), (4, 5), (5, 6), (5, 7)
I (1, 3), (3, 4), (4, 5), (5, 6), (5, 7)
I (1, 2), (1, 3), (2, 6), (3, 4), (4, 5), (5, 7)
I (1, 2), (1, 3), (2, 4), (3, 7), (4, 5), (5, 6)

Network Coding (IN2315): Multicast in Networks 84

Technische Universität München

Multicast tree based forwarding

1

2

3

4 5

6

7

I s–T multicast tree: A tree rooted at s such that there exists a
directed path to each t 2 T (arcs belong to at least one path).

I Example 1–{6, 7} multicast trees:
I (1, 2), (1, 3), (2, 6), (3, 7)
I (1, 2), (2, 4), (2, 6), (4, 5), (5, 7)

I (1, 3), (3, 4), (3, 7), (4, 5), (5, 6)
I (1, 2), (2, 4), (4, 5), (5, 6), (5, 7)
I (1, 3), (3, 4), (4, 5), (5, 6), (5, 7)
I (1, 2), (1, 3), (2, 6), (3, 4), (4, 5), (5, 7)
I (1, 2), (1, 3), (2, 4), (3, 7), (4, 5), (5, 6)

Network Coding (IN2315): Multicast in Networks 84

Technische Universität München

Multicast tree based forwarding

1

2

3

4 5

6

7

I s–T multicast tree: A tree rooted at s such that there exists a
directed path to each t 2 T (arcs belong to at least one path).

I Example 1–{6, 7} multicast trees:
I (1, 2), (1, 3), (2, 6), (3, 7)
I (1, 2), (2, 4), (2, 6), (4, 5), (5, 7)
I (1, 3), (3, 4), (3, 7), (4, 5), (5, 6)

I (1, 2), (2, 4), (4, 5), (5, 6), (5, 7)
I (1, 3), (3, 4), (4, 5), (5, 6), (5, 7)
I (1, 2), (1, 3), (2, 6), (3, 4), (4, 5), (5, 7)
I (1, 2), (1, 3), (2, 4), (3, 7), (4, 5), (5, 6)

Network Coding (IN2315): Multicast in Networks 84

Technische Universität München

Multicast tree based forwarding

1

2

3

4 5

6

7

I s–T multicast tree: A tree rooted at s such that there exists a
directed path to each t 2 T (arcs belong to at least one path).

I Example 1–{6, 7} multicast trees:
I (1, 2), (1, 3), (2, 6), (3, 7)
I (1, 2), (2, 4), (2, 6), (4, 5), (5, 7)
I (1, 3), (3, 4), (3, 7), (4, 5), (5, 6)
I (1, 2), (2, 4), (4, 5), (5, 6), (5, 7)

I (1, 3), (3, 4), (4, 5), (5, 6), (5, 7)
I (1, 2), (1, 3), (2, 6), (3, 4), (4, 5), (5, 7)
I (1, 2), (1, 3), (2, 4), (3, 7), (4, 5), (5, 6)

Network Coding (IN2315): Multicast in Networks 84

Technische Universität München

Multicast tree based forwarding

1

2

3

4 5

6

7

I s–T multicast tree: A tree rooted at s such that there exists a
directed path to each t 2 T (arcs belong to at least one path).

I Example 1–{6, 7} multicast trees:
I (1, 2), (1, 3), (2, 6), (3, 7)
I (1, 2), (2, 4), (2, 6), (4, 5), (5, 7)
I (1, 3), (3, 4), (3, 7), (4, 5), (5, 6)
I (1, 2), (2, 4), (4, 5), (5, 6), (5, 7)
I (1, 3), (3, 4), (4, 5), (5, 6), (5, 7)

I (1, 2), (1, 3), (2, 6), (3, 4), (4, 5), (5, 7)
I (1, 2), (1, 3), (2, 4), (3, 7), (4, 5), (5, 6)

Network Coding (IN2315): Multicast in Networks 84

Technische Universität München

Multicast tree based forwarding

1

2

3

4 5

6

7

I s–T multicast tree: A tree rooted at s such that there exists a
directed path to each t 2 T (arcs belong to at least one path).

I Example 1–{6, 7} multicast trees:
I (1, 2), (1, 3), (2, 6), (3, 7)
I (1, 2), (2, 4), (2, 6), (4, 5), (5, 7)
I (1, 3), (3, 4), (3, 7), (4, 5), (5, 6)
I (1, 2), (2, 4), (4, 5), (5, 6), (5, 7)
I (1, 3), (3, 4), (4, 5), (5, 6), (5, 7)
I (1, 2), (1, 3), (2, 6), (3, 4), (4, 5), (5, 7)

I (1, 2), (1, 3), (2, 4), (3, 7), (4, 5), (5, 6)

Network Coding (IN2315): Multicast in Networks 84

Technische Universität München

Multicast tree based forwarding

1

2

3

4 5

6

7

I s–T multicast tree: A tree rooted at s such that there exists a
directed path to each t 2 T (arcs belong to at least one path).

I Example 1–{6, 7} multicast trees:
I (1, 2), (1, 3), (2, 6), (3, 7)
I (1, 2), (2, 4), (2, 6), (4, 5), (5, 7)
I (1, 3), (3, 4), (3, 7), (4, 5), (5, 6)
I (1, 2), (2, 4), (4, 5), (5, 6), (5, 7)
I (1, 3), (3, 4), (4, 5), (5, 6), (5, 7)
I (1, 2), (1, 3), (2, 6), (3, 4), (4, 5), (5, 7)
I (1, 2), (1, 3), (2, 4), (3, 7), (4, 5), (5, 6)

Network Coding (IN2315): Multicast in Networks 84

Technische Universität München

Multicast tree based forwarding

1

2

3

4 5

6

7

I s–T multicast tree: A tree rooted at s such that there exists a
directed path to each t 2 T (arcs belong to at least one path).

I Unit flow on multicast tree delivers one unit (the same unit) of
information to each terminal.

I Finding all/best multicast trees (directed Steiner trees) is a hard
problem.

I Capacity needs to be split among all trees.

Network Coding (IN2315): Multicast in Networks 84

Technische Universität München

Multicast tree based forwarding: Max s–T flow problem
I Multicast trees MTsT = {1, ... , K}
I Multicast tree incidence vector xk such that xk ,j = 1 if arc j is in

the k -th multicast tree, otherwise xk ,j = 0
I One commodity for the multicast, no flow conservation

constraint.
I Capacity vector z split among all trees.

max
X

k2MTsT

rk

s. t.
X

k2MTsT

rkxk  z

rk � 0 8k 2 MTsT

Network Coding (IN2315): Multicast in Networks 85

Technische Universität München

Multicast tree based forwarding

1

2

3

4 5

6

7

1

1

1

1

1

1

1

1

1

I Trees in optimal solution
I (1, 2), (1, 3), (2, 6), (3, 7) x1 = [1 1 0 1 0 1 0 0 0]T
I (1, 2), (2, 4), (2, 6), (4, 5), (5, 7) x2 = [1 0 1 1 0 0 1 0 1]T
I (1, 3), (3, 4), (3, 7), (4, 5), (5, 6) x2 = [0 1 0 0 1 1 1 1 0]T

I Each tree carries rate .5.
I Total flow which is capacity relevant

I 0.5(x1 + x2 + x3) = [1 1 .5 1 .5 1 1 .5 .5]T

Maximum Multicast s–T Flow = 1.5
Network Coding (IN2315): Multicast in Networks 86

Technische Universität München

Network coding

1

2

3

4 5

6

7

a

b

a

b

a

b

a � b a � b

a � b

I A single packet (coded unit of information) may serve multiple
terminals simultaneously.

I Consider flow to each terminal separately.
I But capacity is shared among all flows, i.e., each flow can use

the full capacity on each arc.
I Example (4, 5): Flow 1–6 and 1–7 transmit unit of information

over this arc, but only one coded packet is transmitted.

Network Coding (IN2315): Multicast in Networks 87

Technische Universität München

Network coding: Max s–T flow problem
I One commodity flow xt for each terminal t 2 T
I Source vector dst for each terminal t 2 T
I Capacity vector z is shared for all flows, i.e., capacity on each

arc can be fully exploited by each commodity flow.

max r s. t. Mxt = rdst 8t 2 T
xt � 0 8t 2 T
xt  z 8t 2 T

Network Coding (IN2315): Multicast in Networks 88

Technische Universität München

Multicast tree based forwarding

1

2

3

4 5

6

7

1

1

1

1

1

1

1

1

1

I Optimal flow solutions
I

x6 = [1 1 0 1 1 0 1 0 1]T
I

x7 = [1 1 1 0 0 1 1 1 0]T

I Total flow which is capacity relevant
I max(x6, x7) = [1 1 1 1 1 1 1 1 1]T

Maximum Multicast s–T Flow = 2

Network Coding (IN2315): Multicast in Networks 89

Technische Universität München

Comparison for Butterfly

1

2

3

4 5

6

7

1

1

1

1

1

1

1

1

1

I Store-forward 1
I Multicast tree 1.5
I Network coding 2
I Can we do even better?

No! Why?

Network Coding (IN2315): Multicast in Networks 90

Technische Universität München

Comparison for Butterfly

1

2

3

4 5

6

7

1

1

1

1

1

1

1

1

1

I Store-forward 1
I Multicast tree 1.5
I Network coding 2
I Can we do even better? No!

Why?

Network Coding (IN2315): Multicast in Networks 90

Technische Universität München

Comparison for Butterfly

1

2

3

4 5

6

7

1

1

1

1

1

1

1

1

1

I Store-forward 1
I Multicast tree 1.5
I Network coding 2
I Can we do even better? No! Why?

Network Coding (IN2315): Multicast in Networks 90

Technische Universität München

Min cut upper bound on multicast rate TODO

Network Coding (IN2315): Multicast in Networks – Max-flow min-cut theorem 91

Technische Universität München

Max-flow min-cut theorem
The value of the minimum s-t cut for all terminals t 2 T
equals the value of the maximum s-T flow with network
coding, i.e.,

max{r : Mxt = rdst , 0  xt  z, 8t 2 T}

=
min
t2T

min{v (S) : S is s-t cut}

Network Coding (IN2315): Multicast in Networks – Max-flow min-cut theorem 92

Technische Universität München

Min-cut for Butterfly

1

2

3

4 5

6

7

1

1

1

1

1

1

1

1

1

I min{v (S) : S is 1–6 cut} = 2
I min{v (S) : S is 1–7 cut} = 2

Multicast s–T Capacity = 2

Network Coding (IN2315): Multicast in Networks – Max-flow min-cut theorem 93

Technische Universität München

Example: Combination network

1

2 3 4 5

6 7 8 9 10 11

I Multicast s = 1 and T = {6, ... , 11}
I Unit arc capacities

Network Coding (IN2315): Multicast in Networks – Max-flow min-cut theorem 94

Technische Universität München

Example: Combination network

1

2 3 4 5

6 7 8 9 10 11

I Min-cut

2

I Store-forward

2
3

I Multicast tree

4
3

I Network coding (any code)

2 (Use flow model/min-cut)

I Network coding (XOR only)

4
3 ?? < 2 (Can not use flow model!)

Network Coding (IN2315): Multicast in Networks – Max-flow min-cut theorem 94

Technische Universität München

Example: Combination network

1

2 3 4 5

6 7 8 9 10 11

I Min-cut 2
I Store-forward

2
3

I Multicast tree

4
3

I Network coding (any code)

2 (Use flow model/min-cut)

I Network coding (XOR only)

4
3 ?? < 2 (Can not use flow model!)

Network Coding (IN2315): Multicast in Networks – Max-flow min-cut theorem 94

Technische Universität München

Example: Combination network

1

2 3 4 5

6 7 8 9 10 11

I Min-cut 2
I Store-forward 2

3

I Multicast tree

4
3

I Network coding (any code)

2 (Use flow model/min-cut)

I Network coding (XOR only)

4
3 ?? < 2 (Can not use flow model!)

Network Coding (IN2315): Multicast in Networks – Max-flow min-cut theorem 94

Technische Universität München

Example: Combination network

1

2 3 4 5

6 7 8 9 10 11

I Min-cut 2
I Store-forward 2

3

I Multicast tree 4
3

I Network coding (any code)

2 (Use flow model/min-cut)

I Network coding (XOR only)

4
3 ?? < 2 (Can not use flow model!)

Network Coding (IN2315): Multicast in Networks – Max-flow min-cut theorem 94

Technische Universität München

Example: Combination network

1

2 3 4 5

6 7 8 9 10 11

I Min-cut 2
I Store-forward 2

3

I Multicast tree 4
3

I Network coding (any code) 2 (Use flow model/min-cut)
I Network coding (XOR only)

4
3 ?? < 2 (Can not use flow model!)

Network Coding (IN2315): Multicast in Networks – Max-flow min-cut theorem 94

Technische Universität München

Example: Combination network

1

2 3 4 5

6 7 8 9 10 11

I Min-cut 2
I Store-forward 2

3

I Multicast tree 4
3

I Network coding (any code) 2 (Use flow model/min-cut)
I Network coding (XOR only) 4

3 ?? < 2 (Can not use flow model!)

Network Coding (IN2315): Multicast in Networks – Max-flow min-cut theorem 94

Technische Universität München

Wired vs. Wireless — Typical Properties

Wired Networks
I Wired networks are composed from individual point-to-point

links, which do not interact and share no resources.
I Links are next to lossless and error-free.
I Wired networks can be modeled as abstract graphs with perfect

capacitated links for throughput calculation.

Wireless Networks
I Wireless networks share a common transmission medium.
I The medium is shared and omnidirectional, which turns it into a

broadcast medium and causes interference.
I Wireless transmission are prone to errors leading to packet

errors or packet loss.
I How can we model wireless networks? Graph?

Network Coding (IN2315): Wireless Packet Networks 95

Technische Universität München

Packet Networks
I Information is encoded into packets, which are protected by an

I error correcting code on the physical layer (channel code) for
removing inevitable transmission errors and an

I error detecting code (e.g. CRC) to detect any residual errors or
decoding failures of the channel code.

Network Coding (IN2315): Wireless Packet Networks 96

Technische Universität München

Wireless Packet Networks
I Nodes agree who is transmitting at which end and how long its

transmission endures (medium access).
I Simultaneous transmissions may cause interference (BAD).
I No simultaneous transmissions may waste resources (BAD).
I Medium access needs to be organized (central or distributed).

I Transmitted packets are randomly lost (not decodable).
I Loss may be due to imperfections of wireless communication

(fading, mobility, etc.).
I Loss may also be due to interference (packet collisions).

I Transmitted packets are not only received by one (intended)
node but by multiple nodes (wireless broadcast advantage).

I Need to model selective overhearing of individual packets. Who
gets which packet?

I Need to integrate packet loss and packet overhearing with each
other.

Network Coding (IN2315): Wireless Packet Networks 97

Technische Universität München

Capacitated Graph Model for Wireless Packet Networks
I Ignore wireless broadcast advantage: Each packet is intended

for one particular receiver and all other nodes ignore it.
I Include medium access and interference in arc capacities
I Include packet losses into arc capacities

Wireless network model
I Graph (N, A)
I Arc capacity vector z

I Region of admissible capacity vectors Z from which capacity
vector z can be selected

I Each capacity vector z 2 Z corresponds to a different trade-off
between all arcs.

I Trade-off is necessary due to shared resources and interference.
I Compare to wired networks, where each arc capacity depends

only on the properties of the underlying link (Z = {z})

Network Coding (IN2315): Wireless Packet Networks 98

Technische Universität München

Model 1: Simple graph model with orthogonal medium access
I All packets use the same code rate (simplification).
I All resources are equal and can be split arbitrarily fine.
I No simultaneous transmissions
I No interference
I Shared transmission time/frequency resources: Resource share

⌧j of arc j s.t. total resource shares add up to 1.
I Packet loss (due to fading/noise/mobility/. . .): Packet loss

probability "j 2 [0, 1] on arc j ("j = 0 for all j means no packet
loss)

Arc Capacity Region (NC or ACK/NACK)

Z =
[

⌧�0:
1

T⌧1

{z : zj = ⌧j (1 � "j)}

Network Coding (IN2315): Wireless Packet Networks 99

Technische Universität München

Example: Skewed Diamond Network

Network Coding (IN2315): Wireless Packet Networks 100

Technische Universität München

Maximum s-t Flow
I Source vector dst

I Incidence matrix M

I Arc capacity region Z

max r
s. t. Mx = rdst

x � 0

x  z

z 2 Z

Network Coding (IN2315): Wireless Packet Networks 101

Technische Universität München

Maximum s-T Multicast Flow (Network Coding)
I Source vector dst for all t 2 T
I Incidence matrix M

I Arc capacity region Z

max r s. t. Mxt = rdst 8t 2 T
xt � 0 8t 2 T
xt  z 8t 2 T
z 2 Z

Network Coding (IN2315): Wireless Packet Networks 102

Technische Universität München

Multicast Max-Flow Min-Cut Theorem (Model 1)
The value of the minimum s-t cut for all terminals t 2 T
equals the value of the maximum s-T flow with network
coding, i.e.,

max
n

r : Mxt = rdst , 0  xt  z, 8t 2 T , z 2 Z
o

=
max
z2Z

min
t2T

min
n

v (S) =
X

j2A(S)
zj : S is s-t cut

o

Network Coding (IN2315): Wireless Packet Networks 103

Technische Universität München

Example: Skewed Diamond Network

Network Coding (IN2315): Wireless Packet Networks 104

Technische Universität München

Hypergraphs (directed) G = (N, H)
I Nodes N = {1, ... , n}
I Hyperarcs H = {1, ... , m}
I Each hyperarc j 2 H represents an ordered pair (a, B) of a node

a = Tail(j) 2 N and a subset of nodes B = Head(j) ⇢ N with a /2 B.
(Notation j ⌘ (a, B))

I Graph (N, A) (directed) induced by hypergraph (N, H) consists of all
arcs k with a = tail(k) and b = head(k) such that there exists j 2 H with
a = Tail(j) and b 2 Head(j). (Notation k ⌘ (a, b))

I Arcs Aj which are generated by hyperarc j
I Hyperarc-arc incidence matrix N : Njk = 1 if k 2 Aj , Njk = 0 else
I Important structures in hypergraphs (via induced graph (N, A)):12

I Path (directed, undirected)
I Tree (directed, undirected)
I Cycle (directed, undirected)

I We assume G is connected, i.e., there exists an undirected path
between any pair of nodes.

12. . . but may not make so much sense any more

Network Coding (IN2315): Wireless Packet Networks 105

Technische Universität München

Example: Skewed Diamond Network

Network Coding (IN2315): Wireless Packet Networks 106

Technische Universität München

Model 2: Lossless hypergraph model with orthogonal MAC
I Hypergraph (N, H)
I One hyperarc per node (simplification), enumerated according to

tail nodes (N = H)
I Inherits MAC properties from model 1
I Each node gets a resource share ⌧i � 0 such that

P

i2N ⌧i  1
I Packets transmitted on a hyperarc j ⌘ (a, B) (i.e., by its tail node

a) are received by all head nodes b 2 B.
I No packets are lost.

Network Coding (IN2315): Wireless Packet Networks 107

Technische Universität München

Information Flow in Lossless Hypergraphs (N, H) (Model 2)
I Information flow vector x on induced graph (N, A)
I Flow must be conserved on induced graph

Mx = d

I Receivers of a hyperarc get identical packets over this hyperarc
I Each piece of information can only be used once (by one node)

Nx  z ,
X

k2Aj

xk  zj 8j 2 H

I Lossless Hyperarc Capacity Region (NC)

Z =
[

⌧�0:
1

T⌧1

{z : zj = ⌧j}

Network Coding (IN2315): Wireless Packet Networks 108

Technische Universität München

Example: Skewed Diamond Network

Network Coding (IN2315): Wireless Packet Networks 109

Technische Universität München

Hyperarc Maximum s-t Flow (Routing/Network Coding)
I Source vector dst

I Incidence matrix M

I Hyperarc-arc incidence matrix N

I Hyperarc capacity region Z

max r
s. t. Mx = rdst

x � 0

Nx  z

z 2 Z

Network Coding (IN2315): Wireless Packet Networks 110

Technische Universität München

Hyperarc Maximum s-T Multicast Flow (Network Coding)
I Source vector dst

I Incidence matrix M

I Hyperarc-arc incidence matrix N

I Hyperarc capacity region Z

max r s. t. Mxt = rdst 8t 2 T
xt � 0 8t 2 T

Nxt  z 8t 2 T
z 2 Z

I We can use each hyperarc (packet) only once for each terminal.
I But we can use each hyperarc differently for each terminal.

Network Coding (IN2315): Wireless Packet Networks 111

Technische Universität München

Hyperarc Min-Cut Model
I An s-t cut is a subset of nodes S ⇢ N such that s 2 S and t /2 S.
I A hyperarc j 2 H crosses S if Tail(j) 2 S and Head(j) 6⇢ S. H(S)

denotes all crossing arcs.
I The value of any s-t cut upper bounds the maximum s-t flow.
I The value of an s-t cut given the capacity vector z is defined as

v (S) =
X

j2H(S)

zj

I Model 2 (only one HA per node, zj = ⌧tail(j))

v (S) =
X

j2H(S)

⌧tail(j)

Network Coding (IN2315): Wireless Packet Networks 112

Technische Universität München

Multicast Max-Flow Min-Cut Theorem (Model 2)
The value of the minimum s-t cut for all terminals t 2 T
equals the value of the maximum s-T flow with network
coding, i.e.,

max
n

r : Mxt = rdst , 0  xt , Nxt  z, 8t 2 T , z 2 Z
o

=
max
z2Z

min
t2T

min
n

v (S) =
X

j2H(S)
zj : S is s-t cut

o

Network Coding (IN2315): Wireless Packet Networks 113

Technische Universität München

Example: Skewed Diamond Network

Network Coding (IN2315): Wireless Packet Networks 114

Technische Universität München

Model 3: Lossy hypergraph model with orthogonal MAC
I Hypergraph (N, H) with induced graph (N, A)
I All possible hyperarcs for each node a up to some maximal set

Na (neighbors): j 2 H with j ⌘ (a, B) if B ⇢ Na (2|Na| hyperarcs)
I Inherits MAC properties from model 1
I Each node gets a resource share ⌧i � 0 such that

P

i2N ⌧i  1
I Packet loss is independent across all receivers (simplification)
I Packets from a to b are lost with probability "k where k ⌘ (a, b)
I Packets transmitted by a are transmitted on hyperarc j ⌘ (a, B)

(i.e., they are received by B ⇢ Na and lost by all other nodes
Na \ B) with probability

Pr[hyperarc j | Tail(j) transmits] =
Y

k2Aj

(1 � "k)
Y

k /2Aj
tail(k)=Tail(j)

"k

Network Coding (IN2315): Wireless Packet Networks 115

Technische Universität München

Information Flow in Lossy Hypergraphs (N, H) (Model 3)
I Information flow vector x on induced graph (N, A)
I Flow must be conserved on induced graph

Mx = d

I Receivers of a hyperarc get identical packets over this hyperarc
provided they have not lost the packets

I Each piece of information can only be used by one node of
those which received it

I The total flow to a set of nodes must be smaller than the total
fraction of different received packets of this set of nodes

Network Coding (IN2315): Wireless Packet Networks 116

Technische Universität München

Information Flow in Lossy Hypergraphs (N, H) (Model 3)
I Single receiver set b 2 Na and k ⌘ (a, b)

I Hyperarcs that bring packets from a to b: j with a = Tail(j) and
b 2 Head(j), or equivalently, j : k 2 Aj

I Flow bound

xk 
X

j :k2Aj

⌧tail(j)

Y

`2Aj

(1 � "`)
Y

`/2Aj
tail(`)=Tail(j)

"`

I Two receiver set B = {b, c} ⇢ Na and k1 ⌘ (a, b), k2 ⌘ (a, c)
I Hyperarcs that bring packets from a to either b or c: j with

a = Tail(j) and B \ Head(j) 6= ;, or equivalently, j : {k1, k2} \ Aj 6= ;
I Joint flow bound for both receivers

xk1 + xk2 
X

j2H:{k1,k2}\Aj 6=;

⌧tail(j)

Y

`2Aj

(1 � "`)
Y

`/2Aj
tail(`)=Tail(j)

"`

I . . .

Network Coding (IN2315): Wireless Packet Networks 117

Technische Universität München

Information Flow in Lossy Hypergraphs (N, H) (Model 3)
I Single receiver set b 2 Na and k ⌘ (a, b)

I Hyperarcs that bring packets from a to b: j with a = Tail(j) and
b 2 Head(j), or equivalently, j : k 2 Aj

I Flow bound

xk 
X

j :k2Aj

⌧tail(j)

Y

`2Aj

(1 � "`)
Y

`/2Aj
tail(`)=Tail(j)

"`

I Two receiver set B = {b, c} ⇢ Na and k1 ⌘ (a, b), k2 ⌘ (a, c)
I Hyperarcs that bring packets from a to either b or c: j with

a = Tail(j) and B \ Head(j) 6= ;, or equivalently, j : {k1, k2} \ Aj 6= ;
I Joint flow bound for both receivers

xk1 + xk2 
X

j2H:{k1,k2}\Aj 6=;

⌧tail(j)

Y

`2Aj

(1 � "`)
Y

`/2Aj
tail(`)=Tail(j)

"`

I . . .

Network Coding (IN2315): Wireless Packet Networks 117

Technische Universität München

Information Flow in Lossy Hypergraphs (N, H) (Model 3)
I Single receiver set b 2 Na and k ⌘ (a, b)

I Hyperarcs that bring packets from a to b: j with a = Tail(j) and
b 2 Head(j), or equivalently, j : k 2 Aj

I Flow bound

xk 
X

j :k2Aj

⌧tail(j)

Y

`2Aj

(1 � "`)
Y

`/2Aj
tail(`)=Tail(j)

"`

I Two receiver set B = {b, c} ⇢ Na and k1 ⌘ (a, b), k2 ⌘ (a, c)
I Hyperarcs that bring packets from a to either b or c: j with

a = Tail(j) and B \ Head(j) 6= ;, or equivalently, j : {k1, k2} \ Aj 6= ;
I Joint flow bound for both receivers

xk1 + xk2 
X

j2H:{k1,k2}\Aj 6=;

⌧tail(j)

Y

`2Aj

(1 � "`)
Y

`/2Aj
tail(`)=Tail(j)

"`

I . . .

Network Coding (IN2315): Wireless Packet Networks 117

Technische Universität München

Information Flow in Lossy Hypergraphs (N, H) (Model 3)
I Multiple receiver set: Each pair (a, B) corresponds to some

hyperarc j 0, i.e., j 0 ⌘ (a, B)
X

k2Aj0

xk 
X

j2H:Aj0\Aj 6=;

⌧Tail(j)
Y

`2Aj

(1 � "`)
Y

`/2Aj
tail(`)=Tail(j)

"`

I Hyperarc capacity

zj = ⌧Tail(j)
Y

`2Aj

(1 � "`)
Y

`/2Aj
tail(`)=Tail(j)

"`

I Hyperarc capacity region

Z =
[

⌧�0

1

T⌧1

(

z : zj = ⌧Tail(j)
Y

`2Aj

(1 � "`)
Y

`/2Aj
tail(`)=Tail(j)

"` 8j 2 H

)

Network Coding (IN2315): Wireless Packet Networks 118

Technische Universität München

Information Flow in Lossy Hypergraphs (N, H) (Model 3)
I Multiple receiver set: Each pair (a, B) corresponds to some

hyperarc j 0, i.e., j 0 ⌘ (a, B)
X

k2Aj0

xk 
X

j2H:Aj0\Aj 6=;

⌧Tail(j)
Y

`2Aj

(1 � "`)
Y

`/2Aj
tail(`)=Tail(j)

"`

I Hyperarc capacity

zj = ⌧Tail(j)
Y

`2Aj

(1 � "`)
Y

`/2Aj
tail(`)=Tail(j)

"`

I Hyperarc capacity region

Z =
[

⌧�0

1

T⌧1

(

z : zj = ⌧Tail(j)
Y

`2Aj

(1 � "`)
Y

`/2Aj
tail(`)=Tail(j)

"` 8j 2 H

)

Network Coding (IN2315): Wireless Packet Networks 118

Technische Universität München

Information Flow in Lossy Hypergraphs (N, H) (Model 3)
I Multiple receiver set: Each pair (a, B) corresponds to some

hyperarc j 0, i.e., j 0 ⌘ (a, B)
X

k2Aj0

xk 
X

j2H:Aj0\Aj 6=;

⌧Tail(j)
Y

`2Aj

(1 � "`)
Y

`/2Aj
tail(`)=Tail(j)

"`

I Hyperarc capacity

zj = ⌧Tail(j)
Y

`2Aj

(1 � "`)
Y

`/2Aj
tail(`)=Tail(j)

"`

I Hyperarc capacity region

Z =
[

⌧�0

1

T⌧1

(

z : zj = ⌧Tail(j)
Y

`2Aj

(1 � "`)
Y

`/2Aj
tail(`)=Tail(j)

"` 8j 2 H

)

Network Coding (IN2315): Wireless Packet Networks 118

Technische Universität München

Information Flow in Lossy Hypergraphs (N, H) (Model 3)
I Reformulation of the flow bound for receiver set Head(j 0)

X

k2Aj0

xk  ⌧Tail(j0)

1 �
Y

`2Aj0

"`

!

I Lossy flow bound (for all receiver set)

X

k2Aj

xk  ⌧Tail(j)

1 �
Y

`2Aj

"`

!

8j 2 H

I Broadcast capacity region

Y =
[

⌧�0

1

T⌧1

(

y : yj = ⌧Tail(j)

1 �
Y

`2Aj

"`

!

8j 2 H

)

Network Coding (IN2315): Wireless Packet Networks 119

Technische Universität München

Information Flow in Lossy Hypergraphs (N, H) (Model 3)
I Reformulation of the flow bound for receiver set Head(j 0)

X

k2Aj0

xk  ⌧Tail(j0)

1 �
Y

`2Aj0

"`

!

I Lossy flow bound (for all receiver set)

X

k2Aj

xk  ⌧Tail(j)

1 �
Y

`2Aj

"`

!

8j 2 H

I Broadcast capacity region

Y =
[

⌧�0

1

T⌧1

(

y : yj = ⌧Tail(j)

1 �
Y

`2Aj

"`

!

8j 2 H

)

Network Coding (IN2315): Wireless Packet Networks 119

Technische Universität München

Information Flow in Lossy Hypergraphs (N, H) (Model 3)
I Reformulation of the flow bound for receiver set Head(j 0)

X

k2Aj0

xk  ⌧Tail(j0)

1 �
Y

`2Aj0

"`

!

I Lossy flow bound (for all receiver set)

X

k2Aj

xk  ⌧Tail(j)

1 �
Y

`2Aj

"`

!

8j 2 H

I Broadcast capacity region

Y =
[

⌧�0

1

T⌧1

(

y : yj = ⌧Tail(j)

1 �
Y

`2Aj

"`

!

8j 2 H

)

Network Coding (IN2315): Wireless Packet Networks 119

Technische Universität München

Information Flow in Lossy Hypergraphs (N, H) (Model 3)
I Hyperarc-arc incidence matrix N :

Njk = 1 if k 2 Aj , Njk = 0 else.
I Hyperarc-hyperarc incidence matrix Q:

Qij = 1 if Ai \ Aj 6= ;, Qij = 0 else.
I Hyperarc-to-broadcast transformation

y = Qz

I Lossy hyperarc flow bound with hyperarc capacity region

Nx  Qz

I Lossy hyperarc flow bound with broadcast capacity region

Nx  y

Network Coding (IN2315): Wireless Packet Networks 120

Technische Universität München

Lossy Hyperarc Maximum s-t Flow (Opportunistic RT/NC)
I Source vector dst

I Incidence matrix M

I Hyperarc-arc incidence matrix N

I Broadcast capacity region Y

max r
s. t. Mx = rdst

x � 0

Nx  y

y 2 Y

Network Coding (IN2315): Wireless Packet Networks 121

Technische Universität München

Lossy Hyperarc Maximum s-T Multicast Flow (NC)
I Source vector dst

I Incidence matrix M

I Hyperarc-arc incidence matrix N

I Broadcast capacity region Y

max r s. t. Mxt = rdst 8t 2 T
xt � 0 8t 2 T

Nxt  y 8t 2 T
y 2 Y

Network Coding (IN2315): Wireless Packet Networks 122

Technische Universität München

Lossy Hyperarc Min-Cut Model
I An s-t cut is a subset of nodes S ⇢ N such that s 2 S and t /2 S.
I A hyperarc j 2 H crosses S if Tail(j) 2 S and Head(j) 6⇢ S. H(S)

denotes all crossing arcs.
I The value of any s-t cut upper bounds the maximum s-t flow.
I The value of an s-t cut given the capacity vector z is defined as

v (S) =
X

j2H(S)

zj

I Cut value of Model 3:

v (S) =
X

j2H(S)

⌧Tail(j)
Y

`2Aj

(1 � "`)
Y

`/2Aj
tail(`)=Tail(j)

"`

Network Coding (IN2315): Wireless Packet Networks 123

Technische Universität München

Lossy Hyperarc Min-Cut Model
I An s-t cut is a subset of nodes S ⇢ N such that s 2 S and t /2 S.
I A hyperarc j 2 H crosses S if Tail(j) 2 S and Head(j) 6⇢ S. H(S)

denotes all crossing arcs.
I The value of any s-t cut upper bounds the maximum s-t flow.
I The value of an s-t cut given the capacity vector z is defined as

v (S) =
X

j2H(S)

zj

I Cut value of Model 3:

v (S) =
X

j2H(S)

⌧Tail(j)
Y

`2Aj

(1 � "`)
Y

`/2Aj
tail(`)=Tail(j)

"`

Network Coding (IN2315): Wireless Packet Networks 123

Technische Universität München

Lossy Hyperarc Min-Cut Model
I Ai (S): Set of arcs k 2 A s.t. tail(k) = i , head(i) 2 (N \ S)
I Hi (S): Set of hyperarcs j 2 H s.t. Tail(j) = i , Head(j) \ (N \ S) 6= ;
I Characterize H(S):

H(S) = {j 2 H : Tail(j) 2 S, Head(j) \ (N \ S) 6= ;}

=
[

i2S

Hi (S)

=
[

i2S

{j 2 H : Aj \ Ai (S) 6= ;}

I Cut value of Model 3 (looks very much like flow bound)

v (S) =
X

i2S

X

j2H:Aj\Ai (S)6=;

⌧Tail(j)
Y

`2Aj

(1 � "`)
Y

`/2Aj
tail(`)=Tail(j)

"`

Network Coding (IN2315): Wireless Packet Networks 124

Technische Universität München

Lossy Hyperarc Min-Cut Model
I Ai (S): Set of arcs k 2 A s.t. tail(k) = i , head(i) 2 (N \ S)
I Hi (S): Set of hyperarcs j 2 H s.t. Tail(j) = i , Head(j) \ (N \ S) 6= ;
I Characterize H(S):

H(S) = {j 2 H : Tail(j) 2 S, Head(j) \ (N \ S) 6= ;}

=
[

i2S

Hi (S)

=
[

i2S

{j 2 H : Aj \ Ai (S) 6= ;}

I Cut value of Model 3 (looks very much like flow bound)

v (S) =
X

i2S

X

j2H:Aj\Ai (S)6=;

⌧Tail(j)
Y

`2Aj

(1 � "`)
Y

`/2Aj
tail(`)=Tail(j)

"`

Network Coding (IN2315): Wireless Packet Networks 124

Technische Universität München

Lossy Hyperarc Min-Cut Model
I Flow bound

X

k2Aj0

xk 
X

j2H:Aj0\Aj 6=;

⌧Tail(j)
Y

`2Aj

(1 � "`)
Y

`/2Aj
tail(`)=Tail(j)

"` 8j 0 2 H

X

k2Aj0

xk  ⌧Tail(j0)

1 �
Y

`2Aj0

"`

!

= yj0 8j 0 2 H

I Cut value of Model 3

v (S) =
X

i2S

X

j2H:Aj\Ai (S)6=;

⌧Tail(j)
Y

`2Aj

(1 � "`)
Y

`/2Aj
tail(`)=Tail(j)

"`

v (S) =
X

i2S

⌧i

1 �
Y

`2Ai (S)

"`

!

=
X

j02H:Tail(j0)2S,
Head(j)=NTail(j0)\S

yj0

Network Coding (IN2315): Wireless Packet Networks 125

Technische Universität München

Lossy Hyperarc Min-Cut Model
I Flow bound

X

k2Aj0

xk 
X

j2H:Aj0\Aj 6=;

⌧Tail(j)
Y

`2Aj

(1 � "`)
Y

`/2Aj
tail(`)=Tail(j)

"` 8j 0 2 H

X

k2Aj0

xk  ⌧Tail(j0)

1 �
Y

`2Aj0

"`

!

= yj0 8j 0 2 H

I Cut value of Model 3

v (S) =
X

i2S

X

j2H:Aj\Ai (S)6=;

⌧Tail(j)
Y

`2Aj

(1 � "`)
Y

`/2Aj
tail(`)=Tail(j)

"`

v (S) =
X

i2S

⌧i

1 �
Y

`2Ai (S)

"`

!

=
X

j02H:Tail(j0)2S,
Head(j)=NTail(j0)\S

yj0

Network Coding (IN2315): Wireless Packet Networks 125

Technische Universität München

Lossy Hyperarc Min-Cut Model
I Flow bound

X

k2Aj0

xk 
X

j2H:Aj0\Aj 6=;

⌧Tail(j)
Y

`2Aj

(1 � "`)
Y

`/2Aj
tail(`)=Tail(j)

"` 8j 0 2 H

X

k2Aj0

xk  ⌧Tail(j0)

1 �
Y

`2Aj0

"`

!

= yj0 8j 0 2 H

I Cut value of Model 3

v (S) =
X

i2S

X

j2H:Aj\Ai (S)6=;

⌧Tail(j)
Y

`2Aj

(1 � "`)
Y

`/2Aj
tail(`)=Tail(j)

"`

v (S) =
X

i2S

⌧i

1 �
Y

`2Ai (S)

"`

!

=
X

j02H:Tail(j0)2S,
Head(j)=NTail(j0)\S

yj0

Network Coding (IN2315): Wireless Packet Networks 125

Technische Universität München

Multicast Max-Flow Min-Cut Theorem (Model 3)
The value of the minimum s-t cut for all terminals t 2 T
equals the value of the maximum s-T flow with network
coding, i.e.,

max
n

r : Mxt = rdst , 0  xt , Nxt  y , 8t 2 T , y 2 Y
o

=
max
y2Y

min
t2T

min

(

v (S) =
X

j2H:Tail(j)2S
Head(j)=NTail(j)\S

yj : S is s-t cut

)

Network Coding (IN2315): Wireless Packet Networks 126

Technische Universität München

Example: Skewed Diamond Network

Network Coding (IN2315): Wireless Packet Networks 127

Technische Universität München

Compare Flow Bounds and Capacity Regions

Model 1 (Graph)

x  z Z =
[

⌧�0:1T⌧1

{z : zj = ⌧j (1 � "j)}

Model 2 (Lossless Hypergraph)

Nx  z Z =
[

⌧�0:1T⌧1

{z : zj = ⌧j}

Model 3 (Lossy Hypergraph)

Nx  Qz = y Y =
[

⌧�0

1

T⌧1

(

y : yj = ⌧Tail(j)

1 �
Y

`2Aj

"`

!

8j 2 H

)

Network Coding (IN2315): Wireless Packet Networks 128

Technische Universität München

Model 2 2 Model 3:
I Model 2 hyperarcs H2: j ⌘ (a, Na) 8a 2 N with capacity zj = ⌧Tail(j)

I Add hyperarcs j ⌘ (a, B) 8B (Na with capacity zj = 0) H3

I Flow bound (Model 2)
X

k2Aj

xk  zj = ⌧Tail(j) 8j 2 H2 (, 8j ⌘ (a, Na), a 2 N)

I Equivalent to the following bound since zj = 0 for all j /2 H2:
X

k2Aj

xk 
X

j02H3:
Aj\Aj0 6=;

zj0 = ⌧Tail(j) 8j 2 H3

I Corresponds to Model 3 with "k = 0 for all k 2 A
X

k2Aj

xk 
X

j02H3:
Aj\Aj0 6=;

⌧Tail(j0)
Y

`2Aj0

(1�"`)
Y

`/2Aj0

tail(`)=Tail(j0)

"` = ⌧Tail(j) 8j 2 H3

Network Coding (IN2315): Wireless Packet Networks 129

Technische Universität München

Medium Access Schemes
I Orthogonal MAC
I Centralized Scheduling
I Aloha Random Access (slotted/unslotted)
I Carrier Sense Multiple Access (slotted/unslotted)

Include MAC into Model 3:
I Different/More complex constraints on ⌧i

I Packet loss probabilities "k depend on active transmitters

Network Coding (IN2315): Wireless Packet Networks 130

Technische Universität München

Bidirectional Communication
I Two nodes s and t exchange information, all other nodes help by

relaying.
I Equivalent to a multicast with terminal set T = {s, t} and two

sources s and t .
I Maximize rate rs (source s) and rate rt (source t) jointly.

s r t
a b

a � b

I Packet a from s to t and packet b from t to a.
I Equivalent to s and t want to have both packets a and b.

Network Coding (IN2315): Bidirectional Communication 131

Technische Universität München

Flow model for the bidirectional rate region (Model 1)

R =
[

z2Z

n

[rs, rt]T � 0 : Mxt = rsdst , 0  xt  z,

Mxs = rtdts, 0  xs  z,
o

Cut model for the bidirectional rate region (Model 1)

R =
[

z2Z

(

[rs, rt]T � 0 : rs  v (S) =
X

j2A(S)

zj 8S is s-t cut

rt  v (S) =
X

j2A(S)

zj 8S is t-s cut

)

Max-Flow Min-Cut: Both rate regions are equal!

Network Coding (IN2315): Bidirectional Communication 132

Technische Universität München

Weighted Maximum Bidirectional Flow (Model 1)
I Source vectors dst , dts

I Incidence matrix M

I Weights ↵s,↵t � 0
I Arc capacity region Z

max ↵srs + ↵t rt

s. t. Mxt = rsdst

Mxs = rtdts

xt  z

xs  z

xs, xt � 0, rs, rt � 0
z 2 Z

Network Coding (IN2315): Bidirectional Communication 133

Technische Universität München

Flow model for the bidirectional rate region (Model 2 & 3)

R =
[

y2Y

n

[rs, rt]T � 0 : Mxt = rsdst , 0  xt , Nxt  y ,

Mxs = rtdts, 0  xs, Nxs  y ,
o

Cut model for the bidirectional rate region (Model 1)

R =
[

y2Y

(

[rs, rt]T � 0 : rs  v (S) =
X

j2H:Tail(j)2S
Head(j)=NTail(j)\S

yj 8S is s-t cut

rt  v (S) =
X

j2H:Tail(j)2S
Head(j)=NTail(j)\S

yj 8S is t-s cut

)

Max-Flow Min-Cut: Both rate regions are equal!

Network Coding (IN2315): Bidirectional Communication 134

Technische Universität München

Weighted Maximum Bidirectional Flow (Model 2 & 3)
I Source vectors dst , dts

I Incidence matrix M , hyperarc-arc incidence matrix N

I Weights ↵s,↵t � 0
I Broadcast capacity region Y

max ↵srs + ↵t rt

s. t. Mxt = rsdst

Mxs = rtdts

Nxt  y

Nxs  y

xs, xt � 0, rs, rt � 0
y 2 Y

Network Coding (IN2315): Bidirectional Communication 135

Technische Universität München

Max-Min Bidirectional Flow (Model 2 & 3)
I Source vectors dst , dts

I Incidence matrix M , hyperarc-arc incidence matrix N

I Broadcast capacity region Y

max min{rs, rt}
s. t. Mxt = rsdst

Mxs = rtdts

Nxt  y

Nxs  y

xs, xt � 0, rs, rt � 0
y 2 Y

Network Coding (IN2315): Bidirectional Communication 136

Technische Universität München

Bidirectional Max-Flow Min-Cut Theorem (Model 2 & 3)
The value of the minimum s-t and t-s cut equals the value of
the max-min bidirectional flow with network coding, i.e.,

max
n

min{rs, rt} : Mxt = rsdst , 0  xt , Nxt  y ,

Mxs = rtdts, 0  xs, Nxs  y , y 2 Y
o

=
max
y2Y

min

(

v (S) =
X

j2H:Tail(j)2S
Head(j)=NTail(j)\S

yj : S is s-t or t-s cut

)

Network Coding (IN2315): Bidirectional Communication 137

Technische Universität München

Example: Two-way relay network

1

3

2

"1 "2

"3 "4

I Cuts
I 1–2:

{1},{1, 3}

I 2–1:

{2},{2, 3}

I Cut values

I v ({1}) = ⌧1(1 � "1)
I v ({1, 3}) = ⌧3(1 � "4)
I v ({2}) = ⌧2(1 � "2)
I v ({2, 3}) = ⌧3(1 � "3)

I Rate bounds

I r1  min{v ({1}), v ({1, 3})} = min{⌧1(1 � "1), ⌧3(1 � "4)}
I r2  min{v ({2}), v ({2, 3})} = min{⌧2(1 � "2), ⌧3(1 � "3)}

Network Coding (IN2315): Bidirectional Communication 138

Technische Universität München

Example: Two-way relay network

1

3

2

"1 "2

"3 "4

I Cuts
I 1–2:

{1},{1, 3}

I 2–1:

{2},{2, 3}
I Cut values

I v ({1}) = ⌧1(1 � "1)
I v ({1, 3}) = ⌧3(1 � "4)
I v ({2}) = ⌧2(1 � "2)
I v ({2, 3}) = ⌧3(1 � "3)

I Rate bounds

I r1  min{v ({1}), v ({1, 3})} = min{⌧1(1 � "1), ⌧3(1 � "4)}
I r2  min{v ({2}), v ({2, 3})} = min{⌧2(1 � "2), ⌧3(1 � "3)}

Network Coding (IN2315): Bidirectional Communication 138

Technische Universität München

Example: Two-way relay network

1

3

2

"1 "2

"3 "4

I Cuts
I 1–2: {1},{1, 3}
I 2–1: {2},{2, 3}

I Cut values

I v ({1}) = ⌧1(1 � "1)
I v ({1, 3}) = ⌧3(1 � "4)
I v ({2}) = ⌧2(1 � "2)
I v ({2, 3}) = ⌧3(1 � "3)

I Rate bounds

I r1  min{v ({1}), v ({1, 3})} = min{⌧1(1 � "1), ⌧3(1 � "4)}
I r2  min{v ({2}), v ({2, 3})} = min{⌧2(1 � "2), ⌧3(1 � "3)}

Network Coding (IN2315): Bidirectional Communication 138

Technische Universität München

Example: Two-way relay network

1

3

2

"1 "2

"3 "4

I Cuts
I 1–2: {1},{1, 3}
I 2–1: {2},{2, 3}

I Cut values
I v ({1}) = ⌧1(1 � "1)

I v ({1, 3}) = ⌧3(1 � "4)
I v ({2}) = ⌧2(1 � "2)
I v ({2, 3}) = ⌧3(1 � "3)

I Rate bounds

I r1  min{v ({1}), v ({1, 3})} = min{⌧1(1 � "1), ⌧3(1 � "4)}
I r2  min{v ({2}), v ({2, 3})} = min{⌧2(1 � "2), ⌧3(1 � "3)}

Network Coding (IN2315): Bidirectional Communication 138

Technische Universität München

Example: Two-way relay network

1

3

2

"1 "2

"3 "4

I Cuts
I 1–2: {1},{1, 3}
I 2–1: {2},{2, 3}

I Cut values
I v ({1}) = ⌧1(1 � "1)
I v ({1, 3}) = ⌧3(1 � "4)

I v ({2}) = ⌧2(1 � "2)
I v ({2, 3}) = ⌧3(1 � "3)

I Rate bounds

I r1  min{v ({1}), v ({1, 3})} = min{⌧1(1 � "1), ⌧3(1 � "4)}
I r2  min{v ({2}), v ({2, 3})} = min{⌧2(1 � "2), ⌧3(1 � "3)}

Network Coding (IN2315): Bidirectional Communication 138

Technische Universität München

Example: Two-way relay network

1

3

2

"1 "2

"3 "4

I Cuts
I 1–2: {1},{1, 3}
I 2–1: {2},{2, 3}

I Cut values
I v ({1}) = ⌧1(1 � "1)
I v ({1, 3}) = ⌧3(1 � "4)
I v ({2}) = ⌧2(1 � "2)

I v ({2, 3}) = ⌧3(1 � "3)
I Rate bounds

I r1  min{v ({1}), v ({1, 3})} = min{⌧1(1 � "1), ⌧3(1 � "4)}
I r2  min{v ({2}), v ({2, 3})} = min{⌧2(1 � "2), ⌧3(1 � "3)}

Network Coding (IN2315): Bidirectional Communication 138

Technische Universität München

Example: Two-way relay network

1

3

2

"1 "2

"3 "4

I Cuts
I 1–2: {1},{1, 3}
I 2–1: {2},{2, 3}

I Cut values
I v ({1}) = ⌧1(1 � "1)
I v ({1, 3}) = ⌧3(1 � "4)
I v ({2}) = ⌧2(1 � "2)
I v ({2, 3}) = ⌧3(1 � "3)

I Rate bounds

I r1  min{v ({1}), v ({1, 3})} = min{⌧1(1 � "1), ⌧3(1 � "4)}
I r2  min{v ({2}), v ({2, 3})} = min{⌧2(1 � "2), ⌧3(1 � "3)}

Network Coding (IN2315): Bidirectional Communication 138

Technische Universität München

Example: Two-way relay network

1

3

2

"1 "2

"3 "4

I Cuts
I 1–2: {1},{1, 3}
I 2–1: {2},{2, 3}

I Cut values
I v ({1}) = ⌧1(1 � "1)
I v ({1, 3}) = ⌧3(1 � "4)
I v ({2}) = ⌧2(1 � "2)
I v ({2, 3}) = ⌧3(1 � "3)

I Rate bounds
I r1  min{v ({1}), v ({1, 3})} = min{⌧1(1 � "1), ⌧3(1 � "4)}

I r2  min{v ({2}), v ({2, 3})} = min{⌧2(1 � "2), ⌧3(1 � "3)}

Network Coding (IN2315): Bidirectional Communication 138

Technische Universität München

Example: Two-way relay network

1

3

2

"1 "2

"3 "4

I Cuts
I 1–2: {1},{1, 3}
I 2–1: {2},{2, 3}

I Cut values
I v ({1}) = ⌧1(1 � "1)
I v ({1, 3}) = ⌧3(1 � "4)
I v ({2}) = ⌧2(1 � "2)
I v ({2, 3}) = ⌧3(1 � "3)

I Rate bounds
I r1  min{v ({1}), v ({1, 3})} = min{⌧1(1 � "1), ⌧3(1 � "4)}
I r2  min{v ({2}), v ({2, 3})} = min{⌧2(1 � "2), ⌧3(1 � "3)}

Network Coding (IN2315): Bidirectional Communication 138

Technische Universität München

Example: Two-way relay network

1

3

2

"1 "2

"3 "4

I Rate region

R = {[r1, r2]T 2 R2 : r1  ⌧1(1 � "1), r1  ⌧3(1 � "4),
r2  ⌧2(1 � "2), r2  ⌧3(1 � "3),
⌧1 + ⌧2 + ⌧3  1, ⌧1, ⌧2, ⌧3 2 [0, 1]}

Network Coding (IN2315): Bidirectional Communication 139

Technische Universität München

Multicast Rate Region for Terminal Set T ⇢ N
I Max-Flow Region (Network Coding)

R =
[

y2Y

(

r � 0 : Mxt =
X

s2N\{t}

rsdst , 0  xt , Nxt  y 8t 2 T

)

I Min-Cut Region

R =
[

y2Y

(

r � 0 :
X

s2S

rs  v (S) =
X

j2H:Tail(j)2S
Head(j)=NTail(j)\S

yj 8t 2 T , S ⇢ N \ {t}
)

I Max-Flow Min-Cut Theorem: Both are equal!

Network Coding (IN2315): Bidirectional Communication 140

Technische Universität München

Organizational stuff

Introduction
What is Network Coding?
Applications of Network Coding
Mindmap: Network Coding and lecture outline

Finite fields
Binary extension fields
Discrete logarithm

Formal description of coding operations

Connection to Forward Error Correction

Network coding implementations
MORE – a MAC-independent opportunistic routing protocol

Networks as graphs
Graphs
Flows
Flow problems
Max-flow min-cut theorem
Multicommodity Flow Problems

Multicast in Networks
Max-flow min-cut theorem

Wireless Packet Networks

Bidirectional Communication

IEEE 802.11
IEEE 802.11 frame format
IEEE 80211 MAC
IEEE 802.11 service sets

libmoep80211
What is libmoep80211?
moep80211 frame format

Network Coding (IN2315): IEEE 802.11 141

Technische Universität München

IEEE 802.11 frame format

IEEE 802.11 uses three different frametypes:

I Data frames
I Contain data of any kind (both user data and ”management traffic” such as

ARP, neighbor discovery, DNS, etc.)
I Payload may be encrypted
I Various subtypes (e.g. QoS and many special formats for networks with

AP)

I Management frames
I Management traffic between stations, in particular to associate to an AP
I No encryption
I Various subtypes (e.g. beacons, association requests, etc.)

I Control frames
I Frames assisting in media access
I No encryption
I Various subtypes (e.g. RTS / CTS, ACK, etc.)

Each frame type (even subtypes) has custom headers
) variable length header (without explicit length specification)

Network Coding (IN2315): IEEE 802.11 – IEEE 802.11 frame format 142

Technische Universität München

The generic frame format looks as follows:

IEEE
PART 11: WIRELESS LAN MAC AND PHY SPECIFICATIONS Std 802.11-2012

Copyright © 2012 IEEE. All rights reserved. 381

Reception, in references to frames or fields within frames (e.g., received Beacon frames or a received
Duration/ID field), applies to MPDUs or MAC management protocol data units (MMPDUs) indicated from
the PHY layer without error and validated by FCS within the MAC sublayer. Without further qualification,
reception by the MAC sublayer implies that the frame contents are valid, and that the protocol version is
supported (see 8.2.4.1.2), with no implication regarding frame addressing or regarding whether the frame
type or other fields in the MAC header are meaningful to the MAC entity that has received the frame.

A frame that contains the HT Control field, including the Control Wrapper frame, is referred to as a +HTC
frame.

A QoS Data frame that is transmitted by a mesh STA is referred to as a Mesh Data frame.

Parentheses enclosing portions of names or acronyms are used to designate a set of related names that vary
based on the inclusion of the parenthesized portion. For example,

— QoS +CF-Poll frame refers to the three QoS data subtypes that include “+CF-Poll”: the QoS
Data+CF-Poll frame, subtype 1010; QoS Data+CF-Ack+CF-Poll frame, subtype 1011; and QoS CF-
Ack+CF-Poll frame, subtype 1111.

— QoS CF-Poll frame refers specifically to the QoS CF-Poll frame, subtype 1110.
— QoS (+)CF-Poll frame refers to all four QoS data subtypes with CF-Poll: the QoS CF-Poll frame,

subtype 1110; the QoS CF-Ack+CF-Poll frame, subtype 1111; the QoS Data+CF-Poll frame,
subtype 1010; and the QoS Data+CF-Ack+CF-Poll frame, subtype 1011.

— QoS (+)Null frame refers to all three QoS data subtypes with “no data”: the QoS Null (no data)
frame, subtype 1100; the QoS CF-Poll (no data) frame, subtype 1110; and the QoS CF-Ack+CF-Poll
frame, subtype 1111.

— QoS +CF-Ack frame refers to the three QoS data subtypes that include “+CF-Ack”: the QoS
Data+CF-Ack frame, subtype 1001; QoS Data+CF-Ack+CF-Poll frame, subtype 1011; and QoS
CF-Ack+CF-Poll frame, subtype 1111.

— Whereas (QoS) CF-Poll frame refers to the QoS CF-Poll frame, subtype 1110, and the CF-Poll
frame, subtype 0110.

Reserved fields and subfields are set to 0 upon transmission and are ignored upon reception.

8.2.3 General frame format

The MAC frame format comprises a set of fields that occur in a fixed order in all frames. Figure 8-1 depicts
the general MAC frame format. The first three fields (Frame Control, Duration/ID, and Address 1) and the
last field (FCS) in Figure 8-1 constitute the minimal frame format and are present in all frames, including
reserved types and subtypes. The fields Address 2, Address 3, Sequence Control, Address 4, QoS Control,
HT Control, and Frame Body are present only in certain frame types and subtypes. Each field is defined in
8.2.4. The format of each of the individual subtypes of each frame type is defined in 8.3. The components of
management frame bodies are defined in 8.4. The formats of management frames of subtype Action are
defined in 8.5.

Octets: 2 2 6 6 6 2 6 2 4 0–7951 4

Frame
Control

Duration
/ID

Address
1

Address
2

Address
3

Sequence
Control

Address
4

QoS
Control

HT
Control

Frame
Body FCS

MAC Header

Figure 8-1—MAC frame format
Figure: IEEE 802.11 generic header [?]

I Frame control
I Defines frame type and subtype
I Controls how MAC addresses shall be interpreted
I Fragmentation control
I Indicates whether or not a the payload is encrypted (but not how it is

encrypted)
I etc.

Network Coding (IN2315): IEEE 802.11 – IEEE 802.11 frame format 143

Technische Universität München

The generic frame format looks as follows:

IEEE
PART 11: WIRELESS LAN MAC AND PHY SPECIFICATIONS Std 802.11-2012

Copyright © 2012 IEEE. All rights reserved. 381

Reception, in references to frames or fields within frames (e.g., received Beacon frames or a received
Duration/ID field), applies to MPDUs or MAC management protocol data units (MMPDUs) indicated from
the PHY layer without error and validated by FCS within the MAC sublayer. Without further qualification,
reception by the MAC sublayer implies that the frame contents are valid, and that the protocol version is
supported (see 8.2.4.1.2), with no implication regarding frame addressing or regarding whether the frame
type or other fields in the MAC header are meaningful to the MAC entity that has received the frame.

A frame that contains the HT Control field, including the Control Wrapper frame, is referred to as a +HTC
frame.

A QoS Data frame that is transmitted by a mesh STA is referred to as a Mesh Data frame.

Parentheses enclosing portions of names or acronyms are used to designate a set of related names that vary
based on the inclusion of the parenthesized portion. For example,

— QoS +CF-Poll frame refers to the three QoS data subtypes that include “+CF-Poll”: the QoS
Data+CF-Poll frame, subtype 1010; QoS Data+CF-Ack+CF-Poll frame, subtype 1011; and QoS CF-
Ack+CF-Poll frame, subtype 1111.

— QoS CF-Poll frame refers specifically to the QoS CF-Poll frame, subtype 1110.
— QoS (+)CF-Poll frame refers to all four QoS data subtypes with CF-Poll: the QoS CF-Poll frame,

subtype 1110; the QoS CF-Ack+CF-Poll frame, subtype 1111; the QoS Data+CF-Poll frame,
subtype 1010; and the QoS Data+CF-Ack+CF-Poll frame, subtype 1011.

— QoS (+)Null frame refers to all three QoS data subtypes with “no data”: the QoS Null (no data)
frame, subtype 1100; the QoS CF-Poll (no data) frame, subtype 1110; and the QoS CF-Ack+CF-Poll
frame, subtype 1111.

— QoS +CF-Ack frame refers to the three QoS data subtypes that include “+CF-Ack”: the QoS
Data+CF-Ack frame, subtype 1001; QoS Data+CF-Ack+CF-Poll frame, subtype 1011; and QoS
CF-Ack+CF-Poll frame, subtype 1111.

— Whereas (QoS) CF-Poll frame refers to the QoS CF-Poll frame, subtype 1110, and the CF-Poll
frame, subtype 0110.

Reserved fields and subfields are set to 0 upon transmission and are ignored upon reception.

8.2.3 General frame format

The MAC frame format comprises a set of fields that occur in a fixed order in all frames. Figure 8-1 depicts
the general MAC frame format. The first three fields (Frame Control, Duration/ID, and Address 1) and the
last field (FCS) in Figure 8-1 constitute the minimal frame format and are present in all frames, including
reserved types and subtypes. The fields Address 2, Address 3, Sequence Control, Address 4, QoS Control,
HT Control, and Frame Body are present only in certain frame types and subtypes. Each field is defined in
8.2.4. The format of each of the individual subtypes of each frame type is defined in 8.3. The components of
management frame bodies are defined in 8.4. The formats of management frames of subtype Action are
defined in 8.5.

Octets: 2 2 6 6 6 2 6 2 4 0–7951 4

Frame
Control

Duration
/ID

Address
1

Address
2

Address
3

Sequence
Control

Address
4

QoS
Control

HT
Control

Frame
Body FCS

MAC Header

Figure 8-1—MAC frame format
Figure: IEEE 802.11 generic header [?]

I Duration / ID
I Meaning and content differs between frame types
I One application is to assist in virtual carrier sensing, i. e., the expected

duration of a transmission is specified

Network Coding (IN2315): IEEE 802.11 – IEEE 802.11 frame format 143

Technische Universität München

The generic frame format looks as follows:

IEEE
PART 11: WIRELESS LAN MAC AND PHY SPECIFICATIONS Std 802.11-2012

Copyright © 2012 IEEE. All rights reserved. 381

Reception, in references to frames or fields within frames (e.g., received Beacon frames or a received
Duration/ID field), applies to MPDUs or MAC management protocol data units (MMPDUs) indicated from
the PHY layer without error and validated by FCS within the MAC sublayer. Without further qualification,
reception by the MAC sublayer implies that the frame contents are valid, and that the protocol version is
supported (see 8.2.4.1.2), with no implication regarding frame addressing or regarding whether the frame
type or other fields in the MAC header are meaningful to the MAC entity that has received the frame.

A frame that contains the HT Control field, including the Control Wrapper frame, is referred to as a +HTC
frame.

A QoS Data frame that is transmitted by a mesh STA is referred to as a Mesh Data frame.

Parentheses enclosing portions of names or acronyms are used to designate a set of related names that vary
based on the inclusion of the parenthesized portion. For example,

— QoS +CF-Poll frame refers to the three QoS data subtypes that include “+CF-Poll”: the QoS
Data+CF-Poll frame, subtype 1010; QoS Data+CF-Ack+CF-Poll frame, subtype 1011; and QoS CF-
Ack+CF-Poll frame, subtype 1111.

— QoS CF-Poll frame refers specifically to the QoS CF-Poll frame, subtype 1110.
— QoS (+)CF-Poll frame refers to all four QoS data subtypes with CF-Poll: the QoS CF-Poll frame,

subtype 1110; the QoS CF-Ack+CF-Poll frame, subtype 1111; the QoS Data+CF-Poll frame,
subtype 1010; and the QoS Data+CF-Ack+CF-Poll frame, subtype 1011.

— QoS (+)Null frame refers to all three QoS data subtypes with “no data”: the QoS Null (no data)
frame, subtype 1100; the QoS CF-Poll (no data) frame, subtype 1110; and the QoS CF-Ack+CF-Poll
frame, subtype 1111.

— QoS +CF-Ack frame refers to the three QoS data subtypes that include “+CF-Ack”: the QoS
Data+CF-Ack frame, subtype 1001; QoS Data+CF-Ack+CF-Poll frame, subtype 1011; and QoS
CF-Ack+CF-Poll frame, subtype 1111.

— Whereas (QoS) CF-Poll frame refers to the QoS CF-Poll frame, subtype 1110, and the CF-Poll
frame, subtype 0110.

Reserved fields and subfields are set to 0 upon transmission and are ignored upon reception.

8.2.3 General frame format

The MAC frame format comprises a set of fields that occur in a fixed order in all frames. Figure 8-1 depicts
the general MAC frame format. The first three fields (Frame Control, Duration/ID, and Address 1) and the
last field (FCS) in Figure 8-1 constitute the minimal frame format and are present in all frames, including
reserved types and subtypes. The fields Address 2, Address 3, Sequence Control, Address 4, QoS Control,
HT Control, and Frame Body are present only in certain frame types and subtypes. Each field is defined in
8.2.4. The format of each of the individual subtypes of each frame type is defined in 8.3. The components of
management frame bodies are defined in 8.4. The formats of management frames of subtype Action are
defined in 8.5.

Octets: 2 2 6 6 6 2 6 2 4 0–7951 4

Frame
Control

Duration
/ID

Address
1

Address
2

Address
3

Sequence
Control

Address
4

QoS
Control

HT
Control

Frame
Body FCS

MAC Header

Figure 8-1—MAC frame format
Figure: IEEE 802.11 generic header [?]

I 4 MAC addresses
I Interpretation depends on the ToDS / FromDS bits in the frame control field
I Not all addresses may be present (infrastructure mode commonly uses 3

addresses)
I MAC addresses are compatible with IEEE 802.3

Network Coding (IN2315): IEEE 802.11 – IEEE 802.11 frame format 143

Technische Universität München

The generic frame format looks as follows:

IEEE
PART 11: WIRELESS LAN MAC AND PHY SPECIFICATIONS Std 802.11-2012

Copyright © 2012 IEEE. All rights reserved. 381

Reception, in references to frames or fields within frames (e.g., received Beacon frames or a received
Duration/ID field), applies to MPDUs or MAC management protocol data units (MMPDUs) indicated from
the PHY layer without error and validated by FCS within the MAC sublayer. Without further qualification,
reception by the MAC sublayer implies that the frame contents are valid, and that the protocol version is
supported (see 8.2.4.1.2), with no implication regarding frame addressing or regarding whether the frame
type or other fields in the MAC header are meaningful to the MAC entity that has received the frame.

A frame that contains the HT Control field, including the Control Wrapper frame, is referred to as a +HTC
frame.

A QoS Data frame that is transmitted by a mesh STA is referred to as a Mesh Data frame.

Parentheses enclosing portions of names or acronyms are used to designate a set of related names that vary
based on the inclusion of the parenthesized portion. For example,

— QoS +CF-Poll frame refers to the three QoS data subtypes that include “+CF-Poll”: the QoS
Data+CF-Poll frame, subtype 1010; QoS Data+CF-Ack+CF-Poll frame, subtype 1011; and QoS CF-
Ack+CF-Poll frame, subtype 1111.

— QoS CF-Poll frame refers specifically to the QoS CF-Poll frame, subtype 1110.
— QoS (+)CF-Poll frame refers to all four QoS data subtypes with CF-Poll: the QoS CF-Poll frame,

subtype 1110; the QoS CF-Ack+CF-Poll frame, subtype 1111; the QoS Data+CF-Poll frame,
subtype 1010; and the QoS Data+CF-Ack+CF-Poll frame, subtype 1011.

— QoS (+)Null frame refers to all three QoS data subtypes with “no data”: the QoS Null (no data)
frame, subtype 1100; the QoS CF-Poll (no data) frame, subtype 1110; and the QoS CF-Ack+CF-Poll
frame, subtype 1111.

— QoS +CF-Ack frame refers to the three QoS data subtypes that include “+CF-Ack”: the QoS
Data+CF-Ack frame, subtype 1001; QoS Data+CF-Ack+CF-Poll frame, subtype 1011; and QoS
CF-Ack+CF-Poll frame, subtype 1111.

— Whereas (QoS) CF-Poll frame refers to the QoS CF-Poll frame, subtype 1110, and the CF-Poll
frame, subtype 0110.

Reserved fields and subfields are set to 0 upon transmission and are ignored upon reception.

8.2.3 General frame format

The MAC frame format comprises a set of fields that occur in a fixed order in all frames. Figure 8-1 depicts
the general MAC frame format. The first three fields (Frame Control, Duration/ID, and Address 1) and the
last field (FCS) in Figure 8-1 constitute the minimal frame format and are present in all frames, including
reserved types and subtypes. The fields Address 2, Address 3, Sequence Control, Address 4, QoS Control,
HT Control, and Frame Body are present only in certain frame types and subtypes. Each field is defined in
8.2.4. The format of each of the individual subtypes of each frame type is defined in 8.3. The components of
management frame bodies are defined in 8.4. The formats of management frames of subtype Action are
defined in 8.5.

Octets: 2 2 6 6 6 2 6 2 4 0–7951 4

Frame
Control

Duration
/ID

Address
1

Address
2

Address
3

Sequence
Control

Address
4

QoS
Control

HT
Control

Frame
Body FCS

MAC Header

Figure 8-1—MAC frame format
Figure: IEEE 802.11 generic header [?]

I Sequence Control
I Consists of a fragment number (4 bit) amd a sequence number (12 bit)
I Fragment number is used fragmentation and reassemblation of frames
I Sequence number is needed for link-layer acknowledgements

Network Coding (IN2315): IEEE 802.11 – IEEE 802.11 frame format 143

Technische Universität München

The generic frame format looks as follows:

IEEE
PART 11: WIRELESS LAN MAC AND PHY SPECIFICATIONS Std 802.11-2012

Copyright © 2012 IEEE. All rights reserved. 381

Reception, in references to frames or fields within frames (e.g., received Beacon frames or a received
Duration/ID field), applies to MPDUs or MAC management protocol data units (MMPDUs) indicated from
the PHY layer without error and validated by FCS within the MAC sublayer. Without further qualification,
reception by the MAC sublayer implies that the frame contents are valid, and that the protocol version is
supported (see 8.2.4.1.2), with no implication regarding frame addressing or regarding whether the frame
type or other fields in the MAC header are meaningful to the MAC entity that has received the frame.

A frame that contains the HT Control field, including the Control Wrapper frame, is referred to as a +HTC
frame.

A QoS Data frame that is transmitted by a mesh STA is referred to as a Mesh Data frame.

Parentheses enclosing portions of names or acronyms are used to designate a set of related names that vary
based on the inclusion of the parenthesized portion. For example,

— QoS +CF-Poll frame refers to the three QoS data subtypes that include “+CF-Poll”: the QoS
Data+CF-Poll frame, subtype 1010; QoS Data+CF-Ack+CF-Poll frame, subtype 1011; and QoS CF-
Ack+CF-Poll frame, subtype 1111.

— QoS CF-Poll frame refers specifically to the QoS CF-Poll frame, subtype 1110.
— QoS (+)CF-Poll frame refers to all four QoS data subtypes with CF-Poll: the QoS CF-Poll frame,

subtype 1110; the QoS CF-Ack+CF-Poll frame, subtype 1111; the QoS Data+CF-Poll frame,
subtype 1010; and the QoS Data+CF-Ack+CF-Poll frame, subtype 1011.

— QoS (+)Null frame refers to all three QoS data subtypes with “no data”: the QoS Null (no data)
frame, subtype 1100; the QoS CF-Poll (no data) frame, subtype 1110; and the QoS CF-Ack+CF-Poll
frame, subtype 1111.

— QoS +CF-Ack frame refers to the three QoS data subtypes that include “+CF-Ack”: the QoS
Data+CF-Ack frame, subtype 1001; QoS Data+CF-Ack+CF-Poll frame, subtype 1011; and QoS
CF-Ack+CF-Poll frame, subtype 1111.

— Whereas (QoS) CF-Poll frame refers to the QoS CF-Poll frame, subtype 1110, and the CF-Poll
frame, subtype 0110.

Reserved fields and subfields are set to 0 upon transmission and are ignored upon reception.

8.2.3 General frame format

The MAC frame format comprises a set of fields that occur in a fixed order in all frames. Figure 8-1 depicts
the general MAC frame format. The first three fields (Frame Control, Duration/ID, and Address 1) and the
last field (FCS) in Figure 8-1 constitute the minimal frame format and are present in all frames, including
reserved types and subtypes. The fields Address 2, Address 3, Sequence Control, Address 4, QoS Control,
HT Control, and Frame Body are present only in certain frame types and subtypes. Each field is defined in
8.2.4. The format of each of the individual subtypes of each frame type is defined in 8.3. The components of
management frame bodies are defined in 8.4. The formats of management frames of subtype Action are
defined in 8.5.

Octets: 2 2 6 6 6 2 6 2 4 0–7951 4

Frame
Control

Duration
/ID

Address
1

Address
2

Address
3

Sequence
Control

Address
4

QoS
Control

HT
Control

Frame
Body FCS

MAC Header

Figure 8-1—MAC frame format
Figure: IEEE 802.11 generic header [?]

I QoS control
I Used for quality of service (traffic classes, priorities, etc.)

Network Coding (IN2315): IEEE 802.11 – IEEE 802.11 frame format 143

Technische Universität München

The generic frame format looks as follows:

IEEE
PART 11: WIRELESS LAN MAC AND PHY SPECIFICATIONS Std 802.11-2012

Copyright © 2012 IEEE. All rights reserved. 381

Reception, in references to frames or fields within frames (e.g., received Beacon frames or a received
Duration/ID field), applies to MPDUs or MAC management protocol data units (MMPDUs) indicated from
the PHY layer without error and validated by FCS within the MAC sublayer. Without further qualification,
reception by the MAC sublayer implies that the frame contents are valid, and that the protocol version is
supported (see 8.2.4.1.2), with no implication regarding frame addressing or regarding whether the frame
type or other fields in the MAC header are meaningful to the MAC entity that has received the frame.

A frame that contains the HT Control field, including the Control Wrapper frame, is referred to as a +HTC
frame.

A QoS Data frame that is transmitted by a mesh STA is referred to as a Mesh Data frame.

Parentheses enclosing portions of names or acronyms are used to designate a set of related names that vary
based on the inclusion of the parenthesized portion. For example,

— QoS +CF-Poll frame refers to the three QoS data subtypes that include “+CF-Poll”: the QoS
Data+CF-Poll frame, subtype 1010; QoS Data+CF-Ack+CF-Poll frame, subtype 1011; and QoS CF-
Ack+CF-Poll frame, subtype 1111.

— QoS CF-Poll frame refers specifically to the QoS CF-Poll frame, subtype 1110.
— QoS (+)CF-Poll frame refers to all four QoS data subtypes with CF-Poll: the QoS CF-Poll frame,

subtype 1110; the QoS CF-Ack+CF-Poll frame, subtype 1111; the QoS Data+CF-Poll frame,
subtype 1010; and the QoS Data+CF-Ack+CF-Poll frame, subtype 1011.

— QoS (+)Null frame refers to all three QoS data subtypes with “no data”: the QoS Null (no data)
frame, subtype 1100; the QoS CF-Poll (no data) frame, subtype 1110; and the QoS CF-Ack+CF-Poll
frame, subtype 1111.

— QoS +CF-Ack frame refers to the three QoS data subtypes that include “+CF-Ack”: the QoS
Data+CF-Ack frame, subtype 1001; QoS Data+CF-Ack+CF-Poll frame, subtype 1011; and QoS
CF-Ack+CF-Poll frame, subtype 1111.

— Whereas (QoS) CF-Poll frame refers to the QoS CF-Poll frame, subtype 1110, and the CF-Poll
frame, subtype 0110.

Reserved fields and subfields are set to 0 upon transmission and are ignored upon reception.

8.2.3 General frame format

The MAC frame format comprises a set of fields that occur in a fixed order in all frames. Figure 8-1 depicts
the general MAC frame format. The first three fields (Frame Control, Duration/ID, and Address 1) and the
last field (FCS) in Figure 8-1 constitute the minimal frame format and are present in all frames, including
reserved types and subtypes. The fields Address 2, Address 3, Sequence Control, Address 4, QoS Control,
HT Control, and Frame Body are present only in certain frame types and subtypes. Each field is defined in
8.2.4. The format of each of the individual subtypes of each frame type is defined in 8.3. The components of
management frame bodies are defined in 8.4. The formats of management frames of subtype Action are
defined in 8.5.

Octets: 2 2 6 6 6 2 6 2 4 0–7951 4

Frame
Control

Duration
/ID

Address
1

Address
2

Address
3

Sequence
Control

Address
4

QoS
Control

HT
Control

Frame
Body FCS

MAC Header

Figure 8-1—MAC frame format
Figure: IEEE 802.11 generic header [?]

I Frame body
I Everything that is considered as payload
I May be encrypted
I Contains other headers (even before the layer 3 header)

Network Coding (IN2315): IEEE 802.11 – IEEE 802.11 frame format 143

Technische Universität München

The generic frame format looks as follows:

IEEE
PART 11: WIRELESS LAN MAC AND PHY SPECIFICATIONS Std 802.11-2012

Copyright © 2012 IEEE. All rights reserved. 381

Reception, in references to frames or fields within frames (e.g., received Beacon frames or a received
Duration/ID field), applies to MPDUs or MAC management protocol data units (MMPDUs) indicated from
the PHY layer without error and validated by FCS within the MAC sublayer. Without further qualification,
reception by the MAC sublayer implies that the frame contents are valid, and that the protocol version is
supported (see 8.2.4.1.2), with no implication regarding frame addressing or regarding whether the frame
type or other fields in the MAC header are meaningful to the MAC entity that has received the frame.

A frame that contains the HT Control field, including the Control Wrapper frame, is referred to as a +HTC
frame.

A QoS Data frame that is transmitted by a mesh STA is referred to as a Mesh Data frame.

Parentheses enclosing portions of names or acronyms are used to designate a set of related names that vary
based on the inclusion of the parenthesized portion. For example,

— QoS +CF-Poll frame refers to the three QoS data subtypes that include “+CF-Poll”: the QoS
Data+CF-Poll frame, subtype 1010; QoS Data+CF-Ack+CF-Poll frame, subtype 1011; and QoS CF-
Ack+CF-Poll frame, subtype 1111.

— QoS CF-Poll frame refers specifically to the QoS CF-Poll frame, subtype 1110.
— QoS (+)CF-Poll frame refers to all four QoS data subtypes with CF-Poll: the QoS CF-Poll frame,

subtype 1110; the QoS CF-Ack+CF-Poll frame, subtype 1111; the QoS Data+CF-Poll frame,
subtype 1010; and the QoS Data+CF-Ack+CF-Poll frame, subtype 1011.

— QoS (+)Null frame refers to all three QoS data subtypes with “no data”: the QoS Null (no data)
frame, subtype 1100; the QoS CF-Poll (no data) frame, subtype 1110; and the QoS CF-Ack+CF-Poll
frame, subtype 1111.

— QoS +CF-Ack frame refers to the three QoS data subtypes that include “+CF-Ack”: the QoS
Data+CF-Ack frame, subtype 1001; QoS Data+CF-Ack+CF-Poll frame, subtype 1011; and QoS
CF-Ack+CF-Poll frame, subtype 1111.

— Whereas (QoS) CF-Poll frame refers to the QoS CF-Poll frame, subtype 1110, and the CF-Poll
frame, subtype 0110.

Reserved fields and subfields are set to 0 upon transmission and are ignored upon reception.

8.2.3 General frame format

The MAC frame format comprises a set of fields that occur in a fixed order in all frames. Figure 8-1 depicts
the general MAC frame format. The first three fields (Frame Control, Duration/ID, and Address 1) and the
last field (FCS) in Figure 8-1 constitute the minimal frame format and are present in all frames, including
reserved types and subtypes. The fields Address 2, Address 3, Sequence Control, Address 4, QoS Control,
HT Control, and Frame Body are present only in certain frame types and subtypes. Each field is defined in
8.2.4. The format of each of the individual subtypes of each frame type is defined in 8.3. The components of
management frame bodies are defined in 8.4. The formats of management frames of subtype Action are
defined in 8.5.

Octets: 2 2 6 6 6 2 6 2 4 0–7951 4

Frame
Control

Duration
/ID

Address
1

Address
2

Address
3

Sequence
Control

Address
4

QoS
Control

HT
Control

Frame
Body FCS

MAC Header

Figure 8-1—MAC frame format
Figure: IEEE 802.11 generic header [?]

I FCS
I Frame check sequence to detect transmission errors
I 32 bit CRC

Network Coding (IN2315): IEEE 802.11 – IEEE 802.11 frame format 143

Technische Universität München

There (at least) 2 weird things on this format:

1. There is nothing that specifies the next layer protocol

2. The maximum frame body size of 7951 B exceeds the common MTU of
1500 B quite a bit

The first one is quickly explained:
I The frame body contains a SNAP header (subnetwork access protocol)
I It specifies the next layer protocol, whatever it might be
I Unfortunately the SNAP header is again of variable length
I There might be encryption headers before the SNAP header

The second one takes a bit longer, more on that later.

Network Coding (IN2315): IEEE 802.11 – IEEE 802.11 frame format 144

Technische Universität München

IEEE 80211 MAC

CSMA / CA is used:
I Sense the medium for ongoing transmission before transmitting (”listen

before talk”)
I Since collisions cannot be reliably detected (hidden stations, sensing

while transmitting), collisions have to be avoided

How is collision avoidance implemented in IEEE 802.11:
I So called coordination functions define the collision avoidance scheme
I The most basic method is the distributed coordination function (DCF)
I All other methods are based or derived from the DCF
I Optionally, nodes may use RTS /CTS protection

Network Coding (IN2315): IEEE 802.11 – IEEE 80211 MAC 145

Technische Universität München

Distributed coordination function (DCF)

1

2

3

4 5

6

7

1

1

1

1

1

1

1

1

1

Figure: Media access via distributed coordination function (DCF)

Assuming that a node is backlogged:

1. Medium is sensed until it becomes idle

2. The medium has to be idle for a specific minimum idle time (called inter
frame spacing)

3. The node draws a independently and unformly distributed number from
a contention window

4. The node further defers transmission for this number of time slots
4.1 After this backoff and if the medium is still idle, the node starts transmitting
4.2 Otherwise transmission is deferred and the process starts from scratch

when the medium becomes idle again

Network Coding (IN2315): IEEE 802.11 – IEEE 80211 MAC 146

Technische Universität München

I In contrast to IEEE 802.3, the contention window W = {0, 1, ... , m} has a
minimum size of m > 0.

I If a transmission error eoccurs, i. e., a data frame is not acknowledged by the
receiver, the contention window increased:

m ⌘ C(n) = min
n

2n+k � 1, 255
o

,

where k defines the minimum size (depends on the coordination function) and n
is the number of failed transmission attempts.

I A common value for C(0) is 15.

How severe is it?
I Let the random variable Cn denote the number of backoff slots drawn for a given

transmission attempt.
I Assuming that only one node is backlogged and no transmission errors, there is

an additional idle time of E[C0].

Network Coding (IN2315): IEEE 802.11 – IEEE 80211 MAC 147

Technische Universität München

Example: HT mixed mode, 5 GHz (802.11n)

I Slot time is 9 µs, C(0) = 15) 67,5 µs
I Inter frame spacing with DCF adds another 34 µs
I The average total delay for media access (without PHY headers) is

therefore �t = 110,5 µs

How much time is needed for the actual tansmission?
I Assume an MPDU13 of l = 1500 B, and forget about any other overhead

that might exsist
I Assume a bit rate of r = 150 Mbit

s (maximum rate of 802.11n with one
antenna)

I The actual transmission lasts only t = l/r = 80 µs

such efficient, very speed, wow!

13MAC PDU

Network Coding (IN2315): IEEE 802.11 – IEEE 80211 MAC 148

Technische Universität München

Example: HT mixed mode, 5 GHz (802.11n)

I Slot time is 9 µs, C(0) = 15) 67,5 µs
I Inter frame spacing with DCF adds another 34 µs
I The average total delay for media access (without PHY headers) is

therefore �t = 110,5 µs

How much time is needed for the actual tansmission?
I Assume an MPDU13 of l = 1500 B, and forget about any other overhead

that might exsist
I Assume a bit rate of r = 150 Mbit

s (maximum rate of 802.11n with one
antenna)

I The actual transmission lasts only t = l/r = 80 µs

such efficient, very speed, wow!

13MAC PDU

Network Coding (IN2315): IEEE 802.11 – IEEE 80211 MAC 148

Technische Universität München

Example: HT mixed mode, 5 GHz (802.11n)

I Slot time is 9 µs, C(0) = 15) 67,5 µs
I Inter frame spacing with DCF adds another 34 µs
I The average total delay for media access (without PHY headers) is

therefore �t = 110,5 µs

How much time is needed for the actual tansmission?
I Assume an MPDU13 of l = 1500 B, and forget about any other overhead

that might exsist
I Assume a bit rate of r = 150 Mbit

s (maximum rate of 802.11n with one
antenna)

I The actual transmission lasts only t = l/r = 80 µs

such efficient, very speed, wow!

13MAC PDU

Network Coding (IN2315): IEEE 802.11 – IEEE 80211 MAC 148

Technische Universität München

0.20.51.01.52.02.53.03.5

0

8
16

24
31

20
40
60
80

100
120
140
160

MCS
MPDU size [kB]

D
at

a
ra

te
[M

bi
t

s
]

(a)

0.10.51.01.52.02.53.03.5

0

8

15

23
20
40
60
80

100
120
140
160

MCS
MPDU size [kB]

D
at

a
ra

te
[M

bi
t/s

]

(b)

Figure: TX simulation (a) and RX measurement (b) using AR9390 chipsets

Network Coding (IN2315): IEEE 802.11 – IEEE 80211 MAC 149

Technische Universität München

Besides large MPDUs, IEEE 802.11 has several mechanisms to reduce MAC
delays:

I APs help to coordinate medium access
I Stations may aggregate multiple frames into an AMPDU
I etc.

Most mechanisms require an AP, i. e., infrastructure mode, and more complex
coordination functions.

Network Coding (IN2315): IEEE 802.11 – IEEE 80211 MAC 150

Technische Universität München

IEEE 802.11 service sets

I Basic service set (BSS) or infrastructure mode consists of an AP with
all associated STAs

I Identified by its BSSID (usually the MAC address of the AP)
I STAs do not communicate directly with each other, the AP relays

messages

I Extended service set (ESS) or distribution system (DS) is a set of
connected APs (e.g. over Ethernet) and their associated STAs

I Identified by its ESSID (that is what you see when searching for networks)
I APs relay messages to other APs

I Independent basic service set (IBSS) or ad-hoc mode is a set of STAs
communicating directly with each other without AP

I STAs can communicate only with other STAs in range
I STAs do not automatically relay messages on behalf of others
I An IBSS may form a mesh network when suitable routing protocols are

installed

Network Coding (IN2315): IEEE 802.11 – IEEE 802.11 service sets 151

Technische Universität München

IEEE 802.11 service sets

I Basic service set (BSS) or infrastructure mode consists of an AP with
all associated STAs

I Identified by its BSSID (usually the MAC address of the AP)
I STAs do not communicate directly with each other, the AP relays

messages

I Extended service set (ESS) or distribution system (DS) is a set of
connected APs (e.g. over Ethernet) and their associated STAs

I Identified by its ESSID (that is what you see when searching for networks)
I APs relay messages to other APs

I Independent basic service set (IBSS) or ad-hoc mode is a set of STAs
communicating directly with each other without AP

I STAs can communicate only with other STAs in range
I STAs do not automatically relay messages on behalf of others
I An IBSS may form a mesh network when suitable routing protocols are

installed

Network Coding (IN2315): IEEE 802.11 – IEEE 802.11 service sets 151

Technische Universität München

IEEE 802.11 service sets

I Basic service set (BSS) or infrastructure mode consists of an AP with
all associated STAs

I Identified by its BSSID (usually the MAC address of the AP)
I STAs do not communicate directly with each other, the AP relays

messages

I Extended service set (ESS) or distribution system (DS) is a set of
connected APs (e.g. over Ethernet) and their associated STAs

I Identified by its ESSID (that is what you see when searching for networks)
I APs relay messages to other APs

I Independent basic service set (IBSS) or ad-hoc mode is a set of STAs
communicating directly with each other without AP

I STAs can communicate only with other STAs in range
I STAs do not automatically relay messages on behalf of others
I An IBSS may form a mesh network when suitable routing protocols are

installed

Network Coding (IN2315): IEEE 802.11 – IEEE 802.11 service sets 151

Technische Universität München

How is a BSS formed?

I The AP broadcasts beacons in regular intervals, which contain
I the BSSID (and ESSID),
I channel, frequency, supported hardware modes, data rates,
I and many more information.

I When an STA joins a BSS, a four-way-handshake is performed.
I Afterwards, the STA is associated, i. e., link-layer connectivity is

established.

After association many more things might happen, e.g.
I negotiation of encryption, authentication etc.,
I obtaining a network layer address,
I ...

Network Coding (IN2315): IEEE 802.11 – IEEE 802.11 service sets 152

Technische Universität München

Organizational stuff

Introduction
What is Network Coding?
Applications of Network Coding
Mindmap: Network Coding and lecture outline

Finite fields
Binary extension fields
Discrete logarithm

Formal description of coding operations

Connection to Forward Error Correction

Network coding implementations
MORE – a MAC-independent opportunistic routing protocol

Networks as graphs
Graphs
Flows
Flow problems
Max-flow min-cut theorem
Multicommodity Flow Problems

Multicast in Networks
Max-flow min-cut theorem

Wireless Packet Networks

Bidirectional Communication
Network Coding (IN2315): libmoep80211 153

Technische Universität München

IEEE 802.11
IEEE 802.11 frame format
IEEE 80211 MAC
IEEE 802.11 service sets

libmoep80211
What is libmoep80211?
moep80211 frame format

Network Coding (IN2315): libmoep80211 154

Technische Universität München

What is libmoep80211

libmoep80211 is a shared library written in C that allows to
I inject cooked IEEE 802.11 frames (native mode) or
I frames based on a proprietary, extensible frame format to develop and

evaluate custom link-layer protocols,
I and it is primarily developed and maintained by Maurice Leclaire.

Why not opening raw sockets? ...libmoep80211 uses raw sockets but

I it hides most of the complexity of
I creating monitor mode interfaces,
I setting interface parameters,
I parsing radiotap headers, etc.,

I and allows a convenient way to pair a monitor interface with a TAP
interface.

Network Coding (IN2315): libmoep80211 – What is libmoep80211? 155

Technische Universität München

What is libmoep80211

libmoep80211 is a shared library written in C that allows to
I inject cooked IEEE 802.11 frames (native mode) or
I frames based on a proprietary, extensible frame format to develop and

evaluate custom link-layer protocols,
I and it is primarily developed and maintained by Maurice Leclaire.

Why not opening raw sockets?

...libmoep80211 uses raw sockets but

I it hides most of the complexity of
I creating monitor mode interfaces,
I setting interface parameters,
I parsing radiotap headers, etc.,

I and allows a convenient way to pair a monitor interface with a TAP
interface.

Network Coding (IN2315): libmoep80211 – What is libmoep80211? 155

Technische Universität München

What is libmoep80211

libmoep80211 is a shared library written in C that allows to
I inject cooked IEEE 802.11 frames (native mode) or
I frames based on a proprietary, extensible frame format to develop and

evaluate custom link-layer protocols,
I and it is primarily developed and maintained by Maurice Leclaire.

Why not opening raw sockets? ...libmoep80211 uses raw sockets but

I it hides most of the complexity of
I creating monitor mode interfaces,
I setting interface parameters,
I parsing radiotap headers, etc.,

I and allows a convenient way to pair a monitor interface with a TAP
interface.

Network Coding (IN2315): libmoep80211 – What is libmoep80211? 155

Technische Universität München

Example: ptmsimple

The ptmsimple (PTM stands for packet transfer module) is
I the most simple kind of module using libmoep80211 to
I relay packets by

I accepting IEEE 802.3 frames over a virtual Ethernet interface (tap0),
I converting those frames to a custom format suitable for wireless

transmission,
I sending those frames over a monitor interface, and
I translating incoming frames from the monitor interface back to valid

IEEE 802.3 frames.

user space application

tap0

ptm

mon0

user space application

tap0

ptm

mon0

Network Coding (IN2315): libmoep80211 – What is libmoep80211? 156

Technische Universität München

Example: ptmsimple

The tap interface presents itself like a physical Ethernet device, i.e.,
I it has a MAC address and
I can be assigned IP(v6) addresses:

tap0: <BROADCAST ,UP ,LOWER_UP > mtu 1500 qdisc pfifo_fast ...
link/ether 06:36:10:3e:a8:b0 brd ff:ff:ff:ff:ff:ff
inet 10.0.0.1/24 brd 10.0.0.255 scope global tap0

valid_lft forever preferred_lft forever
inet6 fe80 ::436:10 ff:fe3e:a8b0 /64 scope link

Advantages:
I Applications are completely unaware of the translation.
I It works with any kind of traffic (even ARP).
I We have any control about the radio interface we can ever have without

writing custom device drivers.

Network Coding (IN2315): libmoep80211 – What is libmoep80211? 157

Technische Universität München

Example: ptmsimple

The tap interface presents itself like a physical Ethernet device, i.e.,
I it has a MAC address and
I can be assigned IP(v6) addresses:

tap0: <BROADCAST ,UP ,LOWER_UP > mtu 1500 qdisc pfifo_fast ...
link/ether 06:36:10:3e:a8:b0 brd ff:ff:ff:ff:ff:ff
inet 10.0.0.1/24 brd 10.0.0.255 scope global tap0

valid_lft forever preferred_lft forever
inet6 fe80 ::436:10 ff:fe3e:a8b0 /64 scope link

Advantages:
I Applications are completely unaware of the translation.
I It works with any kind of traffic (even ARP).
I We have any control about the radio interface we can ever have without

writing custom device drivers.

Network Coding (IN2315): libmoep80211 – What is libmoep80211? 157

Technische Universität München

How is it implemented?
1. Create a tap and a monitor device:

if (!(tap = moep_dev_ieee8023_tap_open(args.addr , &args.ip , 24,
args.mtu + sizeof(struct ether_header)))) {

fprintf(stderr , "ptmsimple:�error:�%s\n", strerror(errno));
return -1;

}

if (!(rad = moep_dev_moep80211_open(args.rad , args.freq ,
moep80211_chan_width_20_noht ,
0, 0, args.mtu + radiotap_len (-1) +
sizeof(struct moep80211_hdr) +
sizeof(struct moep80211_hdr_pctrl)))) {

fprintf(stderr , "ptmsimple:�error:�%s\n", strerror(errno));
moep_dev_close(tap);
return -1;

}

2. Set rx handler for both devices that will be used as callbacks upon frame arrival:

moep_dev_set_rx_handler(tap , taphandler);
moep_dev_set_rx_handler(rad , radhandler);

3. Pair both devices and turn control to libmoepgf:

moep_dev_pair(tap , rad);
moep_run(sigh);

Network Coding (IN2315): libmoep80211 – What is libmoep80211? 158

Technische Universität München

I The call to moep run() turns control to libmoep80211gf.
I The internal event loop is essentially a wrapper for pselect().

I Depending on which interface a frame is received, the appropriate hand
ler is called:

I If a frame arrives at the tap interface, the taphandler() is called and the
received frame is passed to this hand ler.

I The handler can translate the frame to a suitable format and sche dule it
for transmission on the radio interface

Do we have to turn control over to libmoepgf?
I Of course not.
I There is moep80211 select(), which works just like pselect() but still

supports rx handlers.
I More on that later ...

Network Coding (IN2315): libmoep80211 – What is libmoep80211? 159

Technische Universität München

I The call to moep run() turns control to libmoep80211gf.
I The internal event loop is essentially a wrapper for pselect().

I Depending on which interface a frame is received, the appropriate hand
ler is called:

I If a frame arrives at the tap interface, the taphandler() is called and the
received frame is passed to this hand ler.

I The handler can translate the frame to a suitable format and sche dule it
for transmission on the radio interface

Do we have to turn control over to libmoepgf?
I Of course not.
I There is moep80211 select(), which works just like pselect() but still

supports rx handlers.
I More on that later ...

Network Coding (IN2315): libmoep80211 – What is libmoep80211? 159

Technische Universität München

moep80211 frame format

There are two different ways to create radio interfaces:

I moep dev ieee80211 open()
I Frames passed to the rx handler will be ordinary IEEE 802.11 frames,

including their link-layer headers.
I The radiotap header will be in moep80211 radiotap since

ieee80211 radiotap sucks.

I moep dev moep80211 open()
I Frames passed to the rx handler will be custom format that is based on

the generic IEEE 802.11 header for data frames.
I The radiotap header is again moep80211 radiotap.

In both cases, libmoepgf uses common format:

struct moep_frame {
struct moep_frame_ops l1_ops;
struct moep_frame_ops l2_ops;
void *l1_hdr;
void *l2_hdr;
u8 *payload;
size_t payload_len;

};

Network Coding (IN2315): libmoep80211 – moep80211 frame format 160

Technische Universität München

I struct moep frame is private, typedeffed to moep frame t, and thus not

made accessible.
I Use the interfaces instead:

// Returns the radiotap header
struct moep80211_radiotap *moep_frame_radiotap(moep_frame_t frame);

// Returns the IEEE80211 header (generic format , your have to parse it)
struct ieee80211_hdr_gen *moep_frame_ieee80211_hdr(moep_frame_t frame);

// Returns the moep80211_hdr common to all our custom frames
struct moep80211_hdr *moep_frame_moep80211_hdr(moep_frame_t frame);

Warning
Never try to assemble a whole frame in memory and pass it to libmoepgf.
It will not work, and it is meant that way. The library will serialize the
frame for you before passing it to the driver.

Network Coding (IN2315): libmoep80211 – moep80211 frame format 161

Technische Universität München

I struct moep frame is private, typedeffed to moep frame t, and thus not

made accessible.
I Use the interfaces instead:

// Returns the radiotap header
struct moep80211_radiotap *moep_frame_radiotap(moep_frame_t frame);

// Returns the IEEE80211 header (generic format , your have to parse it)
struct ieee80211_hdr_gen *moep_frame_ieee80211_hdr(moep_frame_t frame);

// Returns the moep80211_hdr common to all our custom frames
struct moep80211_hdr *moep_frame_moep80211_hdr(moep_frame_t frame);

Warning
Never try to assemble a whole frame in memory and pass it to libmoepgf.
It will not work, and it is meant that way. The library will serialize the
frame for you before passing it to the driver.

Network Coding (IN2315): libmoep80211 – moep80211 frame format 161

Technische Universität München

The generic moep80211 header

When not operating in native mode, all radio frames will have this common
header:

struct moep80211_hdr {
u16 frame_control;
u16 duration_id;
u8 ra[IEEE80211_ALEN];
u8 ta[IEEE80211_ALEN];
u32 disc;
u16 txseq;
u16 seq_ctrl;

} __attribute__ ((packed));

Network Coding (IN2315): libmoep80211 – moep80211 frame format 162

Technische Universität München

The generic moep80211 header

When not operating in native mode, all radio frames will have this common
header:

struct moep80211_hdr {
u16 frame_control;
u16 duration_id;
u8 ra[IEEE80211_ALEN];
u8 ta[IEEE80211_ALEN];
u32 disc;
u16 txseq;
u16 seq_ctrl;

} __attribute__ ((packed));

I frame control has the same meaning as for ordinary IEEE 802.11
frames.

I We set it to FTYPE DATA | STYPE DATA for any of our frames to avoid
unexpected behavior of hardware.

Network Coding (IN2315): libmoep80211 – moep80211 frame format 162

Technische Universität München

The generic moep80211 header

When not operating in native mode, all radio frames will have this common
header:

struct moep80211_hdr {
u16 frame_control;
u16 duration_id;
u8 ra[IEEE80211_ALEN];
u8 ta[IEEE80211_ALEN];
u32 disc;
u16 txseq;
u16 seq_ctrl;

} __attribute__ ((packed));

I duration id may be interpreted by other STAs.
I We set it to zero for now.

Network Coding (IN2315): libmoep80211 – moep80211 frame format 162

Technische Universität München

The generic moep80211 header

When not operating in native mode, all radio frames will have this common
header:

struct moep80211_hdr {
u16 frame_control;
u16 duration_id;
u8 ra[IEEE80211_ALEN];
u8 ta[IEEE80211_ALEN];
u32 disc;
u16 txseq;
u16 seq_ctrl;

} __attribute__ ((packed));

I ra is the 6 B receiver address of this frame.
I If we exploit the wireless broadcast advantage, we set it to the MAC

broadcast address.

Network Coding (IN2315): libmoep80211 – moep80211 frame format 162

Technische Universität München

The generic moep80211 header

When not operating in native mode, all radio frames will have this common
header:

struct moep80211_hdr {
u16 frame_control;
u16 duration_id;
u8 ra[IEEE80211_ALEN];
u8 ta[IEEE80211_ALEN];
u32 disc;
u16 txseq;
u16 seq_ctrl;

} __attribute__ ((packed));

I ta is the 6 B transmitter address of this frame.
I This is not the MAC of our wireless interface but of the tap interface.

Think about it!

Network Coding (IN2315): libmoep80211 – moep80211 frame format 162

Technische Universität München

The generic moep80211 header

When not operating in native mode, all radio frames will have this common
header:

struct moep80211_hdr {
u16 frame_control;
u16 duration_id;
u8 ra[IEEE80211_ALEN];
u8 ta[IEEE80211_ALEN];
u32 disc;
u16 txseq;
u16 seq_ctrl;

} __attribute__ ((packed));

I disc is a 4 B field that we call frame discriminator.
I In IEEE 802.11 data frames this would be the third MAC address.
I We choose a value that should be invalid as MAC adress.
I This way we can differentiate our own frames from normal IEEE 802.11

traffic.

Network Coding (IN2315): libmoep80211 – moep80211 frame format 162

Technische Universität München

The generic moep80211 header

When not operating in native mode, all radio frames will have this common
header:

struct moep80211_hdr {
u16 frame_control;
u16 duration_id;
u8 ra[IEEE80211_ALEN];
u8 ta[IEEE80211_ALEN];
u32 disc;
u16 txseq;
u16 seq_ctrl;

} __attribute__ ((packed));

I txseq are the latter 2 B of the third MAC address in IEEE 802.11 data
frames.

I We use it as per-node TX sequence number, e.g. to estimate erasure
probabilities.

Network Coding (IN2315): libmoep80211 – moep80211 frame format 162

Technische Universität München

The generic moep80211 header

When not operating in native mode, all radio frames will have this common
header:

struct moep80211_hdr {
u16 frame_control;
u16 duration_id;
u8 ra[IEEE80211_ALEN];
u8 ta[IEEE80211_ALEN];
u32 disc;
u16 txseq;
u16 seq_ctrl;

} __attribute__ ((packed));

I seq ctrl is fragment number / sequence number of the normal
IEEE 802.11 data frame header.

I Problem with this field is that the NIC’s driver may play with it.
I It is safer to set it to zero and to ignore it on reception.

Network Coding (IN2315): libmoep80211 – moep80211 frame format 162

Technische Universität München

Only data frames?

Of course not. We use extension headers, e.g. the packet control header:

struct moep80211_hdr_pctrl {
struct moep80211_hdr_ext hdr;
u16 type; // corresponding to the Ethertype
u16 len; // explicit length of the frame ’s payload

} __attribute__ ((packed));

struct moep80211_hdr_ext {
u8 type; // type of the extension header , e.g. MOEP80211_HDR_PCTRL
u8 len; // total length of the extension header

} __attribute__ ((packed));

I After the moep80211 hdr at least one extension header must follow.
I Bit 7 in the extension header’s type field indicates whether or not

another extension header follows.
I Type and length field precisely specify the extension header, and allow

anyone to skip unknown extension headers.

Network Coding (IN2315): libmoep80211 – moep80211 frame format 163

Technische Universität München

How to add extension headers?

I Extension headers are part of the l2 header in the private struct
moep frame.

I How exactly extension headers are stored within a typedeffed
moep frame t is not your business.

Just let libmoep80211 do it for you:
I moep frame add moep80211 hdr ext()

Add a new extension header to an existing frame.
I moep frame set moep80211 hdr ext()

Replace an existing extension header by a new one
I moep frame del moep80211 hdr ext()

Delete an extension header.
I moep frame moep80211 hdr ext()

Get a pointer to a specific extension header (or NULL if it does not exist).

Network Coding (IN2315): libmoep80211 – moep80211 frame format 164

Technische Universität München

How to add extension headers?

I Extension headers are part of the l2 header in the private struct
moep frame.

I How exactly extension headers are stored within a typedeffed
moep frame t is not your business.

Just let libmoep80211 do it for you:
I moep frame add moep80211 hdr ext()

Add a new extension header to an existing frame.
I moep frame set moep80211 hdr ext()

Replace an existing extension header by a new one
I moep frame del moep80211 hdr ext()

Delete an extension header.
I moep frame moep80211 hdr ext()

Get a pointer to a specific extension header (or NULL if it does not exist).

Network Coding (IN2315): libmoep80211 – moep80211 frame format 164

Technische Universität München

Bibliography I

[1] S. Chachulski. Trading Structure for Randomness in Wireless Opportunistic
Routing. M.sc. thesis, Massachusetts Institute of Technology, 2007.

[2] S. Chachulski, M. Jennings, S. Katti, and D. Katabi. Trading Structure for
Randomness in Wireless Opportunistic Routing. In ACM SIGCOMM, pages
169–180, 2007.

[3] D. De Couto, D. Aguayo, J. Bicket, and R. Morris. A High-throughput Path Metric
for Multi-hop Wireless Routing. In Proceedings of the 9th Annual International
Conference on Mobile Computing and Networking, MobiCom 2003, pages
134–146, New York, NY, USA, 2003. ACM.

[4] C. Gkantsidis and M. Goldberg. Avalanche: File Swarming with Network Coding.
http://research.microsoft.com/en-us/projects/avalanche/.

[5] C. Gkantsidis and P. Rodriguez. Network Coding for Large Scale Content
Distribution. In Proceedings of the 24th Annual Joint Conference of the IEEE
Computer and Communications Societies (INFOCOMM)., volume 4, pages
2235–2245, March 2005.

[6] T. Ho and D. Lun. Network Coding: An Introduction. Cambridge University Press,
2008.

[7] G. Kroah. Linux Kernel Coding Syle.
https://www.kernel.org/doc/Documentation/CodingStyle.

Network Coding (IN2315): libmoep80211 – moep80211 frame format 165

http://research.microsoft.com/en-us/projects/avalanche/
https://www.kernel.org/doc/Documentation/CodingStyle

Technische Universität München

Bibliography II

[8] M. Médard and A. Sprintson. Network Coding: Fundamentals and Applications.
Academic Press, 2011.

Network Coding (IN2315): libmoep80211 – moep80211 frame format 166

	Organizational stuff
	Introduction
	What is Network Coding?
	Applications of Network Coding
	Mindmap: Network Coding and lecture outline

	Finite fields
	Binary extension fields
	Discrete logarithm

	Formal description of coding operations
	Connection to Forward Error Correction
	Network coding implementations
	MORE – a MAC-independent opportunistic routing protocol

	Networks as graphs
	Graphs
	Flows
	Flow problems
	Max-flow min-cut theorem
	Multicommodity Flow Problems

	Multicast in Networks
	Max-flow min-cut theorem

	Wireless Packet Networks
	Bidirectional Communication
	IEEE802.11
	IEEE802.11 frame format
	IEEE80211 MAC
	IEEE802.11 service sets

	libmoep80211
	What is libmoep80211?
	moep80211 frame format

