Master Course
Computer Networks
IN2097

Prof. Dr.-Ing. Georg Carle

Chair for Network Architectures and Services
Department of Computer Science
Technische Universität München
http://www.net.in.tum.de
Outline

- Interdomain Routing
 - BGP: Border Gateway Protocol
 - Business considerations
 - Policy routing
 - Traffic engineering
Interdomain Routing
BGP - Border Gateway Protocol
Hierarchical Routing

- Aggregate routers into regions called “autonomous systems” (short: AS; plural: ASes)
 - One AS ≈ one ISP / organisation
- Routers within one AS run same routing protocol
 - = “intra-AS” routing protocol (also called “intradomain”)
 - Routers in different ASes can run different intra-AS routing protocols
- ASes are connected: via gateway routers
 - Direct link to [gateway] router in another AS
 - = “inter-AS” routing protocol (also called “interdomain”)
 - Warning: Non-gateway routers may need to know about inter-AS routing as well!
Interconnected ASes

- Forwarding table configured by both intra- and inter-AS routing algorithm:
 - Intra-AS sets entries for internal destinations
 - Inter-AS and intra-AS set entries for external destinations
Suppose router in AS1 receives datagram destined outside of AS1:
- Router should forward packet to gateway router
- ...but to which one?

AS1 must:
1. learn which destinations are reachable through AS2, which through AS3
2. propagate this reachability info to all routers in AS1 (i.e., not just the gateway routers)

Job of inter-AS routing!
Example: Setting Forwarding Table in Router 1d

- Suppose AS1 learns (via inter-AS protocol) that subnet \(x \) is reachable via AS3 (gateway 1c) but not via AS2.
- Inter-AS protocol propagates reachability info to all internal routers.
- Router 1d determines from intra-AS routing info that its interface \(I \) (i.e., interface to 1a) is on the least cost path to 1c.
 - installs forwarding table entry \((x,I)\)
Example: Choosing among multiple ASes

- Now suppose AS1 learns from inter-AS protocol that subnet x is reachable from AS3 and from AS2.
- To configure forwarding table, router 1d must determine towards which gateway it should forward packets for destination x.
 - “Do we like AS2 or AS3 better?”
 - Also the job of inter-AS routing protocol!
Interplay of Inter-AS and Intra-AS Routing

- **Inter-AS routing**
 - Only for destinations outside of own AS
 - Used to determine gateway router
 - Also: Steers transit traffic
 (from AS x to AS y via our own AS)

- **Intra-AS routing**
 - Used for destinations within own AS
 - Used to reach gateway router for destinations outside own AS

⇒ Often, routers need to run both types of routing protocols… even if they are not directly connected to other ASes!
Internet inter-AS routing: BGP

- BGP (Border Gateway Protocol): The de facto standard for inter-AS routing
- BGP provides each AS a means to:
 1. Obtain subnet reachability information from neighboring ASes
 2. Propagate reachability information to all AS-internal routers
 3. Determine “good” routes to subnets based on reachability information and policy
- Allows an AS to advertise the existence of an IP prefix to rest of Internet: “This subnet is here”
BGP Basics

- Pairs of routers (BGP peers) exchange routing info over semi-permanent TCP connections:
 - BGP sessions
 - BGP sessions need not correspond to physical links!
- When AS2 advertises an IP prefix to AS1:
 - AS2 *promises* it will forward IP packets towards that prefix
 - AS2 can aggregate prefixes in its advertisement
 (e.g.: 10.11.12.0/26, 10.11.12.64/26, 10.11.12.128/25 into 10.11.12.0/24)
eBGP and iBGP

- External BGP: between routers in *different* ASes
- Internal BGP: between routers in *same* AS
 - Remember: In spite of intra-AS routing protocol, *all* routers need to know about external destinations (not only border routers)
- Not different protocols—just slightly different configurations!
Distributing reachability info

- Using eBGP session between 3a and 1c, AS3 sends reachability information about prefix x to AS1.
 - 1c can then use iBGP to distribute new prefix information to all routers in AS1
 - 1b can then re-advertise new reachability information to AS2 over 1b-to-2a eBGP session
- When router learns of new prefix x, it creates entry for prefix in its forwarding table.
AS Numbers

- How do we express a BGP path?
- ASes identified by AS Numbers (short: ASN)
 Examples:
 - Leibnitz-Rechenzentrum = AS12816
 - Deutsche Telekom = AS3320
 - AT&T = AS7018, AS7132, AS2685, AS2686, AS2687
- ASNs used to be 16bit, but also have 32bit nowadays
 - May have problems with 16bit ASNs on very old routers
- ASN assignment: similar to IP address space
 - ASN space administered IANA
 - Local registrars, e.g., RIPE NCC in Europe
Path attributes & BGP routes

- Advertised prefix includes [many] BGP attributes
 - prefix + attributes = “route”
- Most important attributes:
 - AS-PATH: contains ASes through which prefix advertisement has passed: e.g., AS 67, AS 17, AS 7018
 - NEXT-HOP: indicates specific internal-AS router to next-hop AS (may be multiple links from current AS to next-hop-AS)
- When gateway router receives route advertisement, it uses an import policy to accept/decline the route
 - More on this later
How does BGP work?

- BGP = “path++” vector protocol
- BGP messages exchanged using TCP
 - Possible to run eBGP sessions not on border routers
- BGP message types:
 - OPEN: set up new BGP session, after TCP handshake
 - NOTIFICATION: an error occurred in previous message → tear down BGP session, close TCP connection
 - KEEPALIVE: “null” data to prevent TCP timeout/auto-close; also used to acknowledge OPEN message
 - UPDATE:
 - Announcement: inform peer about new / changed route to some target
 - Withdrawal: (inform peer about non-reachability of a target)
BGP updates

- Update (Announcement) message consists of
 - Destination (IP prefix)
 - AS Path (=Path vector)
 - Next hop (=IP address of our router connecting to other AS)

- …but update messages also contain a lot of further attributes:
 - Local Preference: used to prefer one gateway over another
 - Origin: route learned via \{ intra-AS \mid inter-AS \mid unknown \}
 - MED (MULTI_EXIT_DISC): used on external (inter-AS) links to discriminate among multiple exit or entry points
 - Community: tags applied to prefixes for common treatment

⇒ Not a pure path vector protocol: More than just the path vector

- Local configuration uses much more information than what is exchanged in messages

⇒ BGP is an “information hiding protocol” (quote from Randy Bush)
BGP update: Very simple example

- **Type**: Announcement
 - Either this is a new route to the indicated destination,
 - or the existing route has been changed
- **Destination prefix**: 10.11.128.0/17
- **AS Path**: 7018 3320 4711 815 12816
- **Next Hop**: 192.168.69.96
 - The router that connects the current AS to AS 3320

Originator: The AS that “owns” 10.11.128.0/17

How the update travelled

How the IP packets will be forwarded (if this route gets chosen)
BGP route selection

- Router may learn about more than 1 route to some prefix ⇒ Router must select the best one among these
- Elimination rules (**simplified**):
 1. Local preference value attribute: policy decision
 2. Shortest AS-PATH
 3. Closest NEXT-HOP router outside AS: hot potato routing
 4. Additional criteria
Business and Hot-potato routing

- Interaction between Inter-AS and Intra-AS routing
 - Business: If traffic is destined for other AS, get rid of it ASAP
 - Technical: Intra-AS routing finds shortest path to gateway
- Multiple transit points ⇒ asymmetrical routing
 - Asymmetrical paths are very common on the Internet

![Diagram showing network with AS 7018 and AS 3320, Host A and Host B connected through the Atlantic Ocean]
Terminology: Transit AS, Stub AS, Multi-homed AS

Transit AS: Relays traffic between other ASes (Only about 15% of all ASes are Transit ASes.)

Stub AS: Buys transit from only one other AS, but does not offer transit for other ASes

Multi-homed AS: Buys transit from ≥2 other ASes, but does not offer transit for other ASes
Business relationships

- Internet = network of networks (ASes)
 - Many thousands of ASes
 - Not every network connected to every other network
 - BGP used for routing between ASes
- Differences in economical power/importance
 - Some ASes huge, intercontinental (AT&T, Cable&Wireless)
 - Some ASes small, local (e.g., München: M-Net, SpaceNet)
- Small ASes customers of larger ASes: Transit traffic
 - Smaller AS pays for connecting link + for data = buys transit
 - Business relationship = customer—provider
- Equal-size/-importance ASes
 - Usually share cost for connecting link[s]
 - Business relationship = peering (specific transit traffic is for free)
- Warning: peering (“equal-size” AS)
 ≠ peers of a BGP connection (also may be customer or provider)
 ≠ peer-to-peer network
Business and policy routing (1)

- Basic principle #1 (Routing)
 - Prefer routes that incur financial gain
- Corollary: If you have the choice, then…
 - …routes via a customer…
 - …are better than routes via a peer, which…
 - …are better than routes via a provider.
- Basic principle #2 (Route announcement)
 - Announce routes that incur financial gain if others use them
 - Others = customers
 - Announce routes that reduce costs if others use them
 - Others = peers
 - Do not announce routes that incur financial loss
 (…as long as alternative paths exist)
Business and policy routing (2)

- A tells C all routes it uses to reach other ASes
 - The more traffic comes from C, the more money A makes
- A and B tell C all routes they use to reach other ASes
 - The more traffic flows from C to A, the more money A makes
 - The more traffic flows from C to B, the more money B makes
 - C will pick the one with the cheaper offer / better quality / …
Business and policy routing (4)

- C tells A its own prefixes; C tells B its own prefixes
 - C wants to be reachable from outside
- C does not tell A routes learned from/via B
 - C does not want to pay money for traffic
- C does not tell B routes learned from/via A
 - C does not want to pay money for traffic

Diagram:

A (provider) → C (customer) → B (provider) → ...

A (provider) ← C (customer) ← B (provider) ← ...
Business and policy routing (5): AS path prepending

- C tells A its own prefixes
- C may tell B its own prefixes
 - …but inserts “C” multiple times into AS path. Why?
 - Result: Route available, but longer path = less attractive
 - Technique is called AS path prepending
AS path prepending

- The same ASN *subsequently* within an AS path does not constitute a loop
- Recall the elimination rule for selecting from multiple path alternatives
 - “Prefer the shortest AS path” is rule 2
 - Only ignored if *Local Pref* value is set
 - AS path prepending makes a route less attractive – will then only be used when there is no alternative
- How many times to repeat the AS number?
 - Usually just 1 or 2 repetitions
 - More than ≈5 is useless
Business and policy routing (6)

- What should C announce here?
 - C tells A about its own prefixes
 - C tells A about its route to D’s prefixes: loses money to A, but gains money from D

```
A
provider

C
customer

D
provider
customer
```
What should C announce here?

C tells peering partner E about its own prefixes and route to D:
no cost on link to E, but gains money from D
Business and policy routing (8a)

- Which route should C select?
 - B tells C about route to prefix p (lose money)
 - E tells C about route to prefix p (± 0)
 - C prefers route via E

Diagram:
- Customer C
- Provider B
- Peering C-E
- Provider E
- Prefix p
Business and policy routing (8b)

- Which route should C select?
 - B tells C about route to prefix p (lose money)
 - E tells C about route to prefix p ($0)
 - D tells C about route to prefix p (gain money)
 - C prefers route via D
What should C announce here?

- C announces to F and E: its own prefixes and D’s routes
- C does not announce to E: routes going via F
 - Otherwise: E could send traffic towards F but wouldn’t pay anything, F wouldn’t pay either, and C’s network gets loaded with additional traffic
- C does not announce to F: routes going via E
 - Same reason

Diagram:

- F → peering → C → peering → E
- D is a customer of C
 - C is a provider for D
Policy routing: Valley-Free Routing (Idealised)

Results: Packets always travel…

1. upstream: sequence of C→P links (possibly length = 0)
2. then possibly across one peering link
3. then downstream: sequence of P→C links (possibly length = 0)

But: horizontal sibling–sibling edges may occur at any position on a packet’s path
Siblings

- Not everything is provider/customer or peering
- Sibling = mutual transit agreement
 - Provide connectivity to the rest of the Internet for each other
 - ≈ very extensive peering
- Examples
 - Two small ASes close to each other that cannot / do not want to afford additional Internet services
 - Merging two companies
 - Merging two ASes into one = difficult,
 - Keeping two ASes and exchanging everything for free = easier
 - Example: AT&T has five different AS numbers (7018, 7132, 2685, 2686, 2687)
Business and policy routing (10): “Tiers” / “DFZ”

- Big players have no providers, only customers and peers
 - “Tier-1” ISPs
 - or “Default-Free Zone” (DFZ - have no default route to a “provider”)
- Each Tier-1 peers with each other

Diagram:
- Telekom
 - provider
 - customer
- Sprint
 - provider
 - customer
- Tata
 - provider
- C
 - provider
 - customer
 - peering
 - peering
 - peering
Tier-1, Tier-2, Tier-3 etc.

- Tier-1/DFZ = only peerings, no providers
- Tier-2 = only peerings and one or more Tier-1 providers
- Tier-3 = at least one Tier-2 as a provider
- Tier-n = at least one Tier-(n-1) provider
 - defined recursively
 - \(n \geq 4 \): Rare in Western Europe, North America, East Asia

- “Tier-1.5” = almost a Tier-1 but pays money for some links
 - Example: Deutsche Telekom used to pay money to Sprint, but is now Tier-1
 - Marketing purposes: Tier-1 sounds better
BGP Policy Routing: Technical summary

1. Receive BGP update
2. Apply import policies
 - Filter routes
 - Tweak attributes (advanced topic …)
3. Best route selection based on attribute values
 - Policy: Local Pref settings and other attributes
 - Install forwarding tables entries for best routes
 - Possibly transfer to Route Reflector
 (RR is alternative to logical full mesh of iBGP sessions)
4. Apply export policies
 - Filter routes
 - Tweak attributes
5. Transmit BGP updates
BGP policy routing: Business relationship summary

- Import Policy = Which routes to use
 - Select path that incurs most money
 - Special/political considerations (e.g., Iranian AS does not want traffic to cross Israeli AS; other kinds of censorship)

- Export Policy = Which routes to propagate to other ASes
 - Not all known routes are advertised:
 - Export only…
 - If it incurs revenue
 - If it reduces cost
 - If it is inevitable

- Policy routing = Money, Money, Money…
 - Route import and export driven by business considerations
 - But not driven by technical considerations!
 - Example: Slower route via peer may be preferred over faster route via provider
Where to Peer

(Here: Peering = having a BGP relationship)

A) Private peering

- The obvious solution: “Let’s have a cable from your server room to our server room”

B) At public peering locations (Internet Exchange Point, IX, IXP)

- “A room full of switches that many providers connect to”
- Configure VLAN connections in switch, instead of having to put in $O(n^2)$ separate wires

Examples:
- DE-CIX, Frankfurt (purportedly largest in world)
- AMS-IX, Amsterdam
- LINX, London
- MSK-IX, Moscow
1. Force10 Terascale E1200
2. Multiple 10G-Connections
3. Force10 Exascale E1200i
4. Multiple 10G-Connections
5. DWDM MUX 32 Channel
6. Lynx LightLeader Master Unit
7. Dark Fiber Working Line
8. Dark Fiber Protection Line
9. Lynx LightLeader Slave Unit
10. DWDM MUX 32 Channel
11. 2xBrocade MLX32 and 1xForce10 Exascale 1200i per Core

Source: de-cix.net