Announcements for Upcoming Lectures

- Tuesday, 19 November 2013: Exercise

- Monday, 25 November 2013
 - Special event: Network of Excellence in Internet Science talks
 - Time: 9:15-10:45
 - Location: lecture hall in LRZ (HE 009) (ground floor, entrance to the right)

- Tuesday, 26 November 2013: Lecture
Special event:
Network of Excellence in Internet Science

- Advisory Committee Talks
 - 09:15 – 09:45
 - “Triple revolution: the intersection of social network analysis, the far-flung personalized internet, and the mobile revolution”
 - Barry Wellman (University of Toronto)
 http://www.internet-science.eu/users/barrywellman
 - 09:45 – 10:15
 - “Evaluating Network Architectures”
 - David Clark (MIT)
 http://www.internet-science.eu/users/ddc
 - 10:15 – 10:45
 - “The (Moral) Responsibility of Internet Intermediaries”
 - M. Thompson (Hong Kong University)
 http://www.internet-science.eu/users/barrywellman
Barry Wellman

- Professor Barry Wellman
 - University of Toronto
 - directs NetLab at the Faculty of Information
 - is the former S.D. Clark Professor at the Department of Sociology
 - is a member of the Cities Centre and the Knowledge Media Design Institute
 - co-author of the prize-winning book

Dr. David Clark

- MIT Computer Science and Artificial Intelligence Laboratory
- has worked since receiving his Ph.D. there in 1973
- since the mid 70s, leading the development of the Internet
- from 1981-1989 acted as Chief Protocol Architect, and chaired the Internet Activities Board
- His current research looks at re-definition of the architectural underpinnings of the Internet, and the relation of technology and architecture to economic, societal and policy considerations.
- U.S. NSF: Future Internet Design program.
- past chairman of the Computer Science and Telecommunications Board of the National Academies
- co-director of the MIT Communications Futures Program, a project for industry collaboration
Dr. Marcelo Thompson

- Assistant Professor of Law
- Deputy Director of the LLM in Information Technology and Intellectual Property Law at the Faculty of Law, The University of Hong Kong
- Courses: "Law and Society", “Legal Theory”, "Privacy and Data Protection" and “Regulation of Cyberspace“
- Research: intersection between law, political theory and the study of technological change
- Doctorate at the University of Oxford, Oxford Internet Institute, on neutrality in technology law and politics.
- LLM (Law and Technology) from University of Ottawa, on copyright reform and the human right of access to knowledge
Virtual Private Networks

Acknowledgements:

John Jamison,
University of Illinois at Chicago

Philip Matthews
Nortel Networks
Deploying VPNs using Overlay Networks

- Operational model
 - PVCs overlay the shared infrastructure (ATM/Frame Relay)
 - Routing occurs at CPE

- Benefits
 - Mature technologies
 - Inherently ‘secure’
 - Service commitments (bandwidth, availability, etc.)

- Limitations
 - Scalability and management of the overlay model
 - Not a fully integrated IP solution
MPLS: A VPN Enabling Technology

- **Benefits**
 - Seamlessly integrates multiple “networks”
 - Permits a single connection to the service provider
 - Supports rapid delivery of new services
 - Minimizes operational expenses
 - Provides higher network reliability and availability
Different Types of VPNs

- Layer 2 VPNs
 - Virtual Circuit VPN, circuit cross-connect (CCC)
 - MPLS L2 VPN
- Layer 3 VPNs
 - RFC 2547bis / 4364: BGP/MPLS IP VPN
 - IPSEC VPN
 - IP-in-IP-encapsulation VPN
- End to End (CPE Based) VPNs
 - L2PT & PPTP
 - IPSEC
End to End VPNs: L2TP and PPTP

- Application: Dial access for remote users
- Point-to-Point Tunneling Protocol (PPTP)
 - Bundled with Windows
- Layer 2 Tunneling Protocol (L2TP)
 - Open standard, RFC 2661
 - Combination of L2F and PPTP
- Both support IPSec for authentication and encryption
 - Authentication & encryption at tunnel endpoints
End to End VPNs: IP Security Protocol (IPSec)

- Defines the IETF’s layer 3 security architecture
- Applications:
 - Strong security requirements
 - Extend a VPN across multiple service providers
- Security services include:
 - Access control
 - Data origin authentication
 - Replay protection
 - Data integrity
 - Data privacy (encryption)
 - Key management
- Issues with IPSec include
 - Complexity; in some cases firewall traversal issues, ...
 ⇒ L4/L7 tunneling alternatives with DTLS / TLS / HTTP tunnels
IPSec VPNs – Example

- Routing must be performed at CPE
- Tunnels terminate on subscriber premise
 - Only CPE equipment needs to support IPSec
- ESP tunnel mode
 - Authentication insures integrity from CPE to CPE
 - Encrypts original header/payload across internet
 - Supports private address space
- Issues with IPSec VPNs include
 - Complex tunnel structure may lead to high administration effort
- MPLS (Multiprotocol Label Switching) is used for forwarding packets over the backbone
- BGP (Border Gateway Protocol) is used for distributing routes over the backbone
- Multiple Forwarding Tables (FT) on some edge routers, one for each VPN
Network-based Layer 3 VPNs

CE routers send their routes to PE routers using BGP. Routes from different VPNs remain separate in PE routers. PE routers receive IP datagrams from CE routers. Each route within a VPN is assigned a MPLS label, which is distributed by BGP.

c.f. RFC 4364: BGP/MPLS IP Virtual Private Networks (VPNs)
Tunneling

Original header	Data
Encapsulation

New header	Original header	Data
Decapsulation

Forwarding based on original header

Provider edge router (PE)

Forwarding based on the new header
= tunneling

Provider edge router (PE)

Forwarding based on original header
L2 VPN: Routing occurs on CE switch, which must select the appropriate circuit to send traffic. The PE switch sends it across the service provider’s network to the PE switch connected to the receiving site. PE switches send data to the appropriate tunnel, and do not use customer’s IP routes.
MPLS
Multi-Protocol Label Switching

Acknowledgements:

Ping Pan
Kireeti Kompella
Juniper Networks

Philip Matthews
Nortel Networks
Multiprotocol label switching (MPLS)

- Initial goal: speed up IP forwarding by using fixed length label (instead of IP address) to do forwarding
 - borrowing ideas from Virtual Circuit (VC) approach
 - IP datagram still keeps IP address
 - RFC 3032 defines MPLS header
 - Label: has role of Virtual Circuit Identifier
 - Exp: experimental usage, may specify Class of Service (CoS)
 - S: Bottom of Stack - end of series of stacked headers
 - TTL: time to live

PPP or Ethernet header	MPLS header	IP header	remainder of link-layer frame
label | Exp. | S | TTL
20 | 3 | 1 | 8 bit | Total: 32 bit
MPLS forwarding tables

<table>
<thead>
<tr>
<th>in label</th>
<th>out label</th>
<th>dest</th>
<th>out interface</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>A</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>D</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>A</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>in label</th>
<th>out label</th>
<th>dest</th>
<th>out interface</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>6</td>
<td>A</td>
<td>1</td>
</tr>
<tr>
<td>12</td>
<td>-</td>
<td>D</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>in label</th>
<th>out label</th>
<th>dest</th>
<th>out interface</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td></td>
<td>A</td>
<td>0</td>
</tr>
</tbody>
</table>

[Diagram of network with routers R1 to R6 and MPLS forwarding tables]
Multi-Protocol Label Switching (MPLS)

- **Properties**
 - virtual connections for various protocols and technologies (at Layer 3 and Layer 2)
 - stackable labels

- **Processing of Labels in LSRs**
 (Label Switched Routers)
 - adding or dropping of labels
 - label-dependent forwarding

- **Label Distribution Protocol (LDP):**
 - One possible signalling protocol among LSRs

```
Layer 3 Protocol
Label 1
...
Label n
Layer 2 Protocol
```

- **Layer 3 Protocol**
 - Label 1
 - ... Label n
 - Layer 2 Protocol

```
+-----------------------------+---------------------+---------------------+---------------------+---------------------+---------------------+
|                Label                  | Exp |S|       TTL     | Stack              |
+-----------------------------+---------------------+---------------------+---------------------+---------------------+---------------------+
Label:  Label Value, 20 bits
Exp:   Experimental Use, 3 bits
S:     Bottom of Stack, 1 bit
TTL:   Time to Live, 8 bits
```
MPLS

- Rationale
 - Combine IP and connection-oriented technology
 - Leverage ATM hardware
 - Fast forwarding
 - IP Traffic Engineering
 - Virtual Private Networks
 - Support Voice and Video on IP (QoS constraints)

- Two signalling variants
 - LDP - Label Distribution Protocol
 - CR-LDP: Constraint-based Label Distribution protocol
 - Label Distribution Protocol + Explicit Routes
 - RSVP = Resource Reservation Protocol
 - RSVP ext = Resource Reservation Protocol
 + Explicit Routes + Scalability Extensions
MPLS Terminology

- **LSP**: Label Switched Path
 - part of a tree from every source to that destination (unidirectional)
- **LDP**: Label Distribution Protocol
 - builds that tree using IP forwarding tables to route the control messages
- **FEC**: Forwarding Equivalence Class
 - subset of packets are all treated the same by a router
 - assigned at MPLS network ingress
- **LSR**: Label Switching Router
- **LER**: Label Edge Router
MPLS: Label Switched Path

- Classification of packets into FECs (Forward Equivalent Classes)
- Beginning of LSP: add label (Label Push)

Label Switched Path (LSP)

- Label Swap, Forwarding

MPLS-Netzwerk

- End of LSP: drop label (Label Pop)
MPLS Hierarchy

- Label-Switching on different layers

Transport Network (e.g. SDH, ...)

IN2097 - Master Course Computer Networks, WS 2013/2014
Two types of LDP Label Switched Paths:

- Hop by hop ("standard" LDP)
- Explicit Routing (LDP+"ER")
A “standard” LSP creates MPLS paths for standard IP routing (from IP routing tables)

A “standard” LSP is actually part of a tree from every source to that destination (unidirectional)

Destination based forwarding tables as built by OSPF, IS-IS, RIP, etc.
Label Switched Path

<table>
<thead>
<tr>
<th>In</th>
<th>Label</th>
<th>Dest</th>
<th>Out</th>
<th>Label</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>50</td>
<td>47.1</td>
<td>1</td>
<td>40</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>In</th>
<th>Label</th>
<th>Dest</th>
<th>Out</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>40</td>
<td>47.1</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>In</th>
<th>Dest</th>
<th>Out</th>
<th>Label</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>47.1</td>
<td>1</td>
<td>50</td>
</tr>
</tbody>
</table>

IP 47.3.1.1

IP 47.1.1.1
MPLS Label Distribution

<table>
<thead>
<tr>
<th>Intf In</th>
<th>Label In</th>
<th>Dest</th>
<th>Intf Out</th>
<th>Label Out</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>50</td>
<td>47.1</td>
<td>1</td>
<td>40</td>
</tr>
</tbody>
</table>

Mapping: 40

<table>
<thead>
<tr>
<th>Intf In</th>
<th>Label In</th>
<th>Dest</th>
<th>Intf Out</th>
<th>Label Out</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>40</td>
<td>47.1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Request: 47.1

Mapping: 50

Mapping: 40

1 47.1

3 47.2
Explicitly Routed LSP (ER-LSP)

- ER-LSP follows the route that source chooses, i.e. control message to establish the LSP (label request) is source routed

Route= \{A, B, C\}
Explicitly Routed LSP (ER-LSP)

This entry gives the longest prefix match.

<table>
<thead>
<tr>
<th>Intf In</th>
<th>Dest</th>
<th>Intf Out</th>
<th>Label Out</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>47.1.1</td>
<td>2</td>
<td>33</td>
</tr>
<tr>
<td>3</td>
<td>47.1</td>
<td>1</td>
<td>50</td>
</tr>
</tbody>
</table>

Explicitly Routing LSP that does not follow the standard IP path.
Constraint-based Routing LDP (CR-LDP)

- Constraint-Based Routing is one method of Traffic Engineering
- RFC 2702: Requirements for Traffic Engineering Over MPLS
 - Strict & Loose ER
 - Specification of QoS
 - Specification of Traffic Parameters
 - Route Pinning
 - Preemption
 - Failure Recovery
Signalling Protocol CR-LDP

- Hard State Protocol
- UDP used for peer discovery
- TCP used for session, advertisement, notification, and LDP messages
- Supports Diffserv and Operator configurable QOS classes
- Failure reported using TCP
ER-LSP setup using RSVP-TE

- TE (Traffic Engineering) extensions to RSVP

- Built on RSVP messages over IP
 - In RSVP, a source requests resources along a path
 - Then the source regularly sends refresh messages to keep the reservations active

- Extensions to RSVP
 - Explicit Route Object
 - Label Request
 - Label Object
 - Session Attribute
 - Record Route Object

- Defines a set of constraints for LSP computation and admission
 - Expectation and Allocation of resources: Uses Inserv-style reservations
 - Preemption Level: Setup and Holding Priority with respect to other LSPs
Signalling Protocol Extended RSVP

- Extension of the classical connectionless RSVP
- **Path** and **Resv** messages used with
 - Label_Request Object
 - Explicit_Route Object
 - Label Object
- Aggregation of flows to reduce state information in routers
- Soft State Control and scalability concerns
MPLS TTL

- **MPLS TTL**
 - is 8 bits long, used as a control mechanism to prevent packets looping in the network.
 - TTL value is decremented by 1 at ingress LSR/eLER. A packet with TTL of 0 is not transmitted.

- **Two approaches to TTL handling on ingress to the MPLS network**
 - **Pipe Mode**
 - iLER decrements the IP TTL value and sets MPLS TTL to a value different than IP TTL.
 - At eLER MPLS TTL is decremented, IP TTL is decremented when IP packet is processed.
 - **Uniform Mode**
 - iLER decrements the IP TTL value and copies resulting value to the MPLS TTL field.
 - At eLER MPLS TTL is decremented and copied to IP TTL.
MPLS TTL Processing

c.f. RFC 3032 - MPLS Label Stack Encoding

- Protocol-independent rules
 - "outgoing TTL" of a labeled packet is either
 a) one less than the incoming TTL, or b) zero
 - Packets with TTL=0 are discarded

- IP-dependent rules
 - When an IP packet is first labeled, the TTL field of the label
 stack is set to the value of the IP TTL field
 - If the IP TTL field needs to be decremented, as part of the IP
 processing, it is assumed that this has already been done
 - When a label is popped, and the resulting label stack is
 empty, then the value of the IP TTL field SHOULD BE
 replaced with the outgoing MPLS TTL value
 - A network administration may prefer to decrement the IPv4
 TTL by one as it traverses an MPLS domain
ICMP

- When a router receives an IP datagram that it can not forward, it sends an ICMP message to the datagram’s originator.
- The ICMP message indicates why the datagram could not be delivered, e.g., Time Expired, Destination Unreachable.
- The ICMP message also contains the IP header and at least leading 8 octets of the original datagram.
 - RFC 1812 - Requirements for IP Version 4 Routers extends this to “as many bytes as possible”.
 - Historically, every ICMP error message has included the IP header and at least leading 8 octets.
 - Including only the first 8 data bytes of the datagram that triggered the error frequently is no longer adequate, due to use e.g. of IP-in-IP tunneling.
 - Therefore ICMP datagram SHOULD contain as much of original datagram as possible (max. ICMP length 576 bytes).
ICMP in presence of MPLS

- When a Label Switched Router (LSR) receives an MPLS encapsulated datagram that it can not deliver
 - It removes entire MPLS labels stack
 - It sends an ICMP message to datagram’s originator
- ICMP message indicates why the datagram could not be delivered (e.g., time expired, destination unreachable)
- ICMP message also contains IP header and leading 8 octets of the original datagram
 - RFC 1812 extends this to “as many bytes as possible”
ICMP in Presence of MPLS

Issue

- The ICMP message contains no information regarding the MPLS stack that encapsulated the datagram when it arrived at the LSR
- This is a significant omission because:
 - The LSR tried to forward the datagram based upon that label stack
 - Resulting ICMP message may be confusing
ICMP in Presence of MPLS

Issue

- ICMP Destination Unreachable
 - Message contains IP header of original datagram
 - Original datagram couldn’t be delivered because MPLS forwarding path was broken

- ICMP Time Expired
 - Message contains IP header of original datagram
 - TTL value in IP header is greater than 1
 - TTL expired on MPLS header. ICMP Message contains IP header of original datagram
ICMP with MPLS

c.f. RFC 4950 - ICMP Extensions for Multiprotocol Label Switching

- defines an ICMP extension object that permits LSR to append MPLS information to ICMP messages.
- ICMP messages include the MPLS label stack, as it arrived at the router that is sending the ICMP message.
- equally applicable to ICMPv4 [RFC792] and ICMPv6 [RFC4443]
- sample output from an enhanced TRACEROUTE:

```
> traceroute 192.0.2.1
traceroute to 192.0.2.1 (192.0.2.1), 30 hops max, 40 byte packets
1 192.0.2.13 (192.0.2.13) 0.661 ms 0.618 ms 0.579 ms
   MPLS Label=100048 Exp=0 TTL=1 S=1
2 192.0.2.9 (192.0.2.9) 0.861 ms 0.718 ms 0.679 ms
   MPLS Label=100016 Exp=0 TTL=1 S=1
3 192.0.2.5 (192.0.2.5) 0.822 ms 0.731 ms 0.708 ms
   MPLS Label=100016 Exp=0 TTL=1 S=1
4 192.0.2.1 (192.0.2.1) 0.961 ms 8.676 ms 0.875 ms
```
ICMP with MPLS

- MPLS Label Stack Object: can be appended to ICMP Time Exceeded and Destination Unreachable messages

```
+-------------+-------------+-------------+-------------+
|                    Label         |EXP |S|     TTL     |
+-------------+-------------+-------------+-------------+
// Remaining MPLS Label Stack Entries //
+-------------+-------------+-------------+-------------+
```

- Must be preceded by an ICMP Extension Structure Header and an ICMP Object Header, defined in [RFC4884].
Multi-Part ICMP Messages - RFC 4884

- ICMP Extension Structure may be appended to ICMP v4 / v6 Destination Unreachable and Time Exceeded messages
- ICMP Extension Structure Header

```
+----------------------------------+
| Version |      (Reserved)      |    Checksum    |
+----------------------------------+
```

ICMP extension version number: 2

- ICMP Object Header and Object Payload

```
+----------------------------------+
|          Length          |   Class-Num   |   C-Type    |
+----------------------------------+
|                               |               |             |
+----------------------------------+
```

```// (Object Payload) //```
MPLS for Linux

# The work of James Leu (last updated July 2011):
https://sourceforge.net/projects/mpls-linux/

Discussions:

# Bug fixes of Jorge Boncompte:
http://mpls-linux.git.sourceforge.net/git/gitweb.cgi?p=mpls-linux/net-next;a=shortlog;h=refs/heads/net-next-mpls

# Additional bug fixes by Igor Maravić:
https://github.com/i-maravic/MPLS-Linux
https://github.com/i-maravic/iproute2

# MPLS for Linux Labs
by Irina Dumitrascu and Adrian Popa: graduation project with purpose of teaching MPLS to university students, at Limburg Catholic University College
inlcudes e.g. Layer 2 VPN with MPLS, Layer 3 VPN with MPLS
MPLS Assessment

- Tunnels using MPLS vs. tunnels using IP

- MPLS: LDP – automated tunnel setup, following IP routing

- IP
  - IP-in-IP
  - GRE (Generic Routing Encapsulation Protocol)
  - IPSec
GRE: Generic Routing Encapsulation Protocol

- RFC 2784
- Structure of a GRE Encapsulated Packet

```

| Delivery Header |

| GRE Header |

| Payload packet |

```

- The GRE packet header has the form

```
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+
|C| Reserved0 | Protocol Type |
+-+
| Checksum (optional) | Reserved1 (Optional) |
+-+
```
<table>
<thead>
<tr>
<th>Tunnel Comparison</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>MPLS tunnels</strong></td>
</tr>
<tr>
<td>- Small header</td>
</tr>
<tr>
<td>- Label stacking</td>
</tr>
<tr>
<td>- Signaling for tunnel setup</td>
</tr>
<tr>
<td>- <strong>MPLS-specific routing</strong></td>
</tr>
<tr>
<td>- Harder to spoof</td>
</tr>
<tr>
<td>- No data security</td>
</tr>
<tr>
<td><strong>IP tunnels</strong></td>
</tr>
<tr>
<td>- Big header</td>
</tr>
<tr>
<td>- No stacking (typically)</td>
</tr>
<tr>
<td>- Configured tunnels (typically)</td>
</tr>
<tr>
<td>- <strong>IP-only routing</strong></td>
</tr>
<tr>
<td>- Spoofable</td>
</tr>
<tr>
<td>- IPSec</td>
</tr>
</tbody>
</table>