Potentials of

Information-Centric Networking in a 5G Environment and Its Deployment in a Specific Industrial Context

Matthias Waehlisch

FU Berlin

Dirk Kutscher

Huawei German Research Center Thomas Schmidt

HAW Hamburg

Network and Services Towards 5G 49th Meeting of VDE/ITG 5.2.4 Munich, December 5th, 2016

5G IoT Networking

- Communication in local networks
 - Home/factory/car networks etc.
 - Facilitating local connectivity and discovery
 - Usable security
 - Overcoming challenges with constrained devices and intermittent connectivity
- Connecting edge clouds to the Internet / Cloud
 - Making data available for application platforms, big data
 - In-network processing
 - Data security and privacy
 - Overcoming silo approaches

Example: Connected Mobility

Example: Connected Mobility

Example: Connected Mobility

Communication Abstractions for IoT

- Traditional IP communication model not perfect for IoT
 - Host IP addresses vs. application-layer names
 - TCP-based protocols vs. connection-less and disruption-prone communication
 - Routing overhead in more complex networks

5G: Optimized Forwarding for Heterogenous Access

- Low latency, high-bandwidth
 - Fiber, new radios

- Slow, ad-hoc, unpredictable
 - Low-power radios, sleep/duty cycles
 - Constrained devices
- Massively scalable distribution
 - Server-push or pub/sub style
 - Possibly in-network adaptation
- Variable performance
 - Dynamically changing network conditions
 - Disruptions and delays
 - On-board caching for all applications & protocols

Optimized Forwarding for Heterogenous Access

- Difficult to implement with TCP as is
 - Limited deployment options for applicationlayer gateways
- Network of TCP proxies?

Higher user mobility HIGH SPEED TRAIN

Broadcast-like

services

BROADCAST

SERVICES

Need more powerful forwarding layer and transport services

- •Hop-by-hop forwarding strategies, multipath support
- Caching for local retransmissions

5G Network Challenge

Need

Better security & user privacy

- Connection-based security good but not enough
- Object-based security
- More functionality in the network
- Transport performance
- Supporting Increasing heterogeneity

Want to keep

Permissionless innovation End-to-end communication principle

Challenge

Right transport abstraction
Empowering forwarding layer – but not too much
Sufficient general-purpose network capabilities

Mobile Edge Computing (MEC)?

Observations

- In most networking use cases today, we are not interested in establishing a (virtual) pipe to a peer host
- Rather: accessing named data
 - IoT sensor value
 - Netflix video chunk
- Application layer APIs *can* work that way
- But: under the hood, it's still connections
 - With the problems illustrated earlier
- Idea: Accessing named data as a network service
 - Making the next steps from telephone circuits and connections to a truly data-based approach

The Case for ICN in IoT

• Simplified, natural API

- GET /de/heidelberg/city-hall/0220/temp
- Increased robustness through caching
 - Good for lossy links and sleepy nodes
- Faciliating data diffusion through hop-wise replication
- Inherent auto-configuration
- Data-oriented security

Baccelli, Mehlis, Hahm, Schmidt, Wählisch; Information-Centric Networking in the IoT; ACM ICN Conference 2014

I3: Information-Centric Networking for an Industrial Internet

- Starting point: Surveillance of industrial environment
 - Collaboration with MSA
 - Major deployment target: oil platforms and refineries
- Special focus: Distributed Gas sensing
 - Regular reporting about overall situation
 - Alerting in cases of dangerous emissions
- Safety-critical information flows
 - Requirements on reliability
 - Requirements on timing
- Can ICN outperform IP in a full-fledged solution?

About MSA

- Manufacturer of worker's and facilities safety products
- Main customer segments
 - Oil, gas, chemical industries
 - Fire fighters and first responders
- Core product groups
 - Gas detection
 - Personal Protective Equipment (PPE) and Self Contained Breathing Apparatus (SCBAs)
 - Fall protection

Area of application for gas detection products

- Industrial environments
 - Dangerous events may occur
 - Gas exposure
 - Toxic (H2S in refineries)
 - Combustible gases
 - Oxygen depletion
 - Gas leaks and flames
 - Areas are heavily regulated
 - Constrained access
 - Mandatory equipment
 - Mission protocols and logs
- Fire fighters and first responders
 - Unknown environments
 - Time pressure

Opportunities with ICN for I3

- Mobility
 - Mobile devices are common for the use cases
 - Content counts, not addresses
- Security
 - False alarms may lead to shutdowns
 - Dropped alarms may lead to health risks
- Network management
 - Easy deployment and auto-configuration
 - Reducing total cost of ownership
- Network caches
 - May reduce latency for multiple services
 - Fixed devices provide network caches

Network Scenarios

- Sparse deployment (of fixed devices)
- Inhomogeneous node coverage
- Partitioned networks
- Mobility
- Intermittent connectivity
- Selected uplinks into a cloud environment

Typical IoT Communication Patterns in I3

- Request/response:
 - Access of configurations, system state, management policies, ...
- Periodic reporting
 - Data tracking and archiving (possibly in the cloud)
- Event-triggered reporting
 - Alerting in cases of anomaly detections
- Tentative: Multicast and convergecast

Research Challenges

- ICN Routing & Mobility
- Security & Resilience
- Reliability & Caching
- 13 Environment

Questions & Discussions?

http://i3.realmv6.org/

