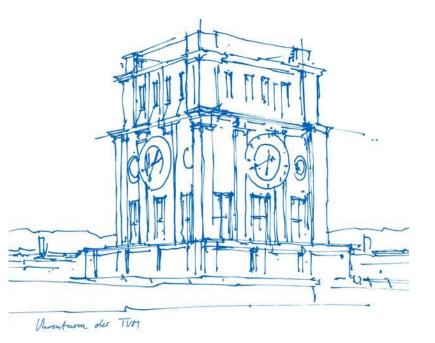
Options for Blockchain Acceleration on SmartNICs

Thomas Wild


Technical University of Munich

TUM School of Computation, Information and Technology

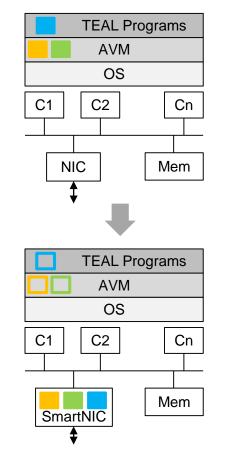
Chair of Integrated Systems

TUM Blockchain Salon

12.05.2023

Outline

- 1. Overview
- 2. Acceleration Options
- 3. Hardware / Software Codesign
- 4. SmartNIC Platforms
- 5. Summary


Overview

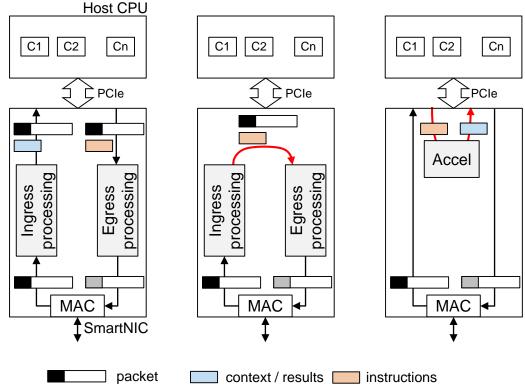
Targets

- Investigate potential of SmartNIC-based hardware acceleration (offload host CPUs)
 - · to increase performance in terms of
 - higher throughput and/or
 - · lower latencies,
 - to reduce power dissipation
- Apply acceleration for
 - Algorand-specific functions (message relaying and forwarding; sub-tasks of validation functions),
 - Generic networking functions (packet header parsing, packet modification).

Thomas Wild | Options for Blockchain Acceleration on SmartNICs | 12.05.2023

Algorand Node

Thomas Wild | Options for Blockchain Acceleration on SmartNICs | 12.05.2023

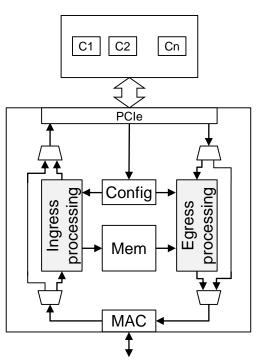

Generic Options for SmartNIC-based Acceleration

Reconfigurable hardware data path with deterministic latency on the FPGA Resources of a SmartNIC

- Ingress pre-processing, egress postprocessing
- Hardware only data path (w/o host involvement)

Acceleration of specific sub-functions as part of software processing chain

Call from a host CPU



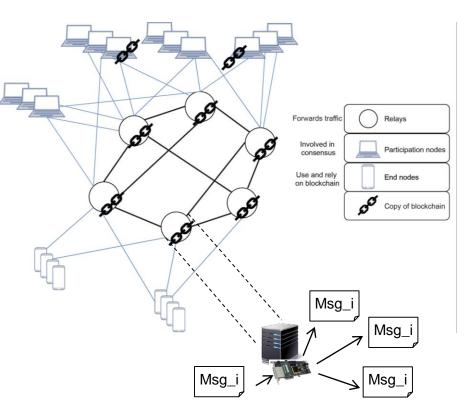
ТΠ

SmartNIC-based Acceleration - HW/SW Codesign

Frames can bypass ingress/egress processing

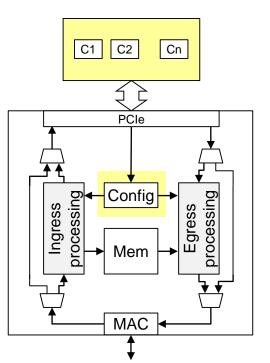
- Full software-based processing on host CPU for
 - standard/non-blockchain functions
 - complex functions
 - functions to control SmartNIC-based acceleration
- SmartNIC-based ingress/egress processing
 - controlled by software running on host CPU
 - processing on frame or message level
 - local storage of frames/messages and context information

SmartNIC-based Acceleration for Algorand



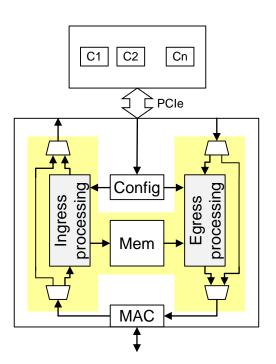
Relay nodes as candidates for SmartNIC

Potential functionalities in the consensus process to be accelerated


- message relaying / forwarding
- associated compute-intensive functions
- Message types to be relayed (size up to 5 MiB):
 - Transactions
 - Blocks
 - Consensus messages

All packets making up a message to be sent to a set of relay or participating nodes.

SmartNIC-based Acceleration for Algorand


- Setup membership in Algorand Network
- Establish connections to peer relay nodes
- Provide transport protocol port number to listen for Algorand packets
- Provide keys for message authentication
- Provide target addresses for relay targets

SmartNIC-based Acceleration for Algorand

- Packet parsing/classification: identify individual messages and their types and all associated packets
- Store Algorand messages to be relayed
- Verification / authentication of messages
- Prevent multiple relaying of messages based on hash
- Send copies of message / packets to recipients

FPGA Based SmartNIC Platforms

- 4x 10G Ethernet
- Xilinx Virtex-7 XC7V690T
- PCIe Gen3 x8
 (no DPDK support)

- 2x 100G Ethernet (with breakout cable also usable as 4x25G or 4x10G)
- UltraScale+ XCU55C FPGA
- PCIe Gen3 x16, PCIe Gen4 x8 (PCIe IP core with DPDK support)

Summary

- SmartNICs as potential blockchain accelerator
- First target function: message relaying for Algorand
- In-depth analysis of relaying function in GO software implementation
- Next steps:
 - Detailed specification of hardware/software interfaces
 - Stepwise implementation of associated sub-functions
 - Extend available hardware processing data path
 - Porting to FPGA based SmartNiC