
https://www.comsys.rwth-aachen.de/

In-Network Computation

and Processor-based SmartNICs

René Glebke, Klaus Wehrle

Munich / Zoom Cyberspace, September 2022

Lessons and suggestions

from pushing the boundaries

2

In-Network Computation: State-of-the-art applications

 Programmable data planes enable scenarios that

require low latencies & high bandwidths

Network operation & management

Distributed algorithms & databases

Partial offloading of application logic

Data (pre-)processing for compute centers & sensors in CPS

Industrial feedback control

Energy network stabilization

 AQM/load balanc.  Heavy-hitter handling  DDoS protection

 Consensus  Key-value caching  Failure protection

Common pattern in most considered scenarios:

Few individual operations on many small items

3

In-Network Computation Platforms: ASICs vs. NPUs

 Programmable ASICs (e.g., Intel/Barefoot Tofino)

Fixed-pipeline architecture, processing “stages”

Constant, predictable processing times, several Tbps

Limited arithmetic, limited memory (atomic r/w access)

More limited availability

 Network Processor Units (e.g., Netronome Agilio)

Many-core RISC architecture, thread-based processing

Shared buses require coordination  Timing hard to predict

Allow more complex operations, large stateful memory

Usually more affordable, less restrictive in application

 Inherent trade-off between flexibility & performance

4

INC Example: Coordinate Transformation [ICPS 21]: Setting

 Problem setting: Coordinate tracking in industry

Fast & accurate alignment of values from different systems

Problem: Calculation requires multiplication, trigonometry

Fixed point arithmetic, i.e., represent as ± [0…2^𝑑].[0…2^(31−𝑑)]

n x m matrix-vector multiplication

 Variant 1: Long multiplication (school variant)

- On ASICs: Recirculation  Throughput down by 1/(2mn)

- On NPUs: Direct multiplication possible

 Variant 2: Log-space mult. (a*b = exp(log(a) + log(b))) with LUTs

- On ASICs: Large table sizes, but cannot reuse tables

- On NPUs: Medium table sizes, tables often reusable

Trigonometry tables may grow large (230 * 32 bit  4 GB of space)

 On ASICs: Split tables via sin 𝑎 + 𝑏 = sin 𝑎 ∙ cos 𝑏 + cos 𝑎 ∙ sin 𝑏

 On NPUs: Also approximate via 6th degree Chebyshev poly.

5

INC Example: Coordinate Transformation [ICPS 21]: Results

 Evaluation 1: Calculation times in controlled setting

9000 calculations each

Raw calculation times (darker): CPUs perform best

Multiplication support on NPUs costly, optimizations help

Round-trip times (darker + lighter): ASICs/NPUs profit

6

INC Example: Coordinate Transformation [ICPS 21]: Results

 Evaluation 2: Accuracy

Maximum tolerable error of 10 µm met by most ASIC/NPU

configurations, NPU-based approximation approach fails

 Evaluation 3: Reliability

ASIC/Tofino drops randomly after saturation point

 Need to prioritize recirculated traffic on this platform

7

NPU-based INC Example: Computer Vision Offloading [ENCP 19]: Setting

 Problem setting: In-network edge detection

Given: Picture 𝑃 (grayscale, 𝑝 × 𝑞 pixels)

Define: Filter 𝐹 (grayscale or binary, 𝑚 × 𝑛 pixels)

Filter response: 𝑅Δ𝐷𝑖𝑟 𝑥, 𝑦 = 𝑖=1
𝑚 𝑗=1

𝑛 𝑃 𝑥 − 𝑖 + 𝑎, 𝑦 − 𝑗 + 𝑎 𝐹Δ𝐷𝑖𝑟(𝑖, 𝑗)

Maximum response 𝑀 = 𝑅Δ𝐻 𝑥, 𝑦
2 + 𝑅Δ𝑉 𝑥, 𝑦

2

Can be approximated: 𝑀 ∝ 𝑅Δ𝐻 𝑥, 𝑦 + 𝑅Δ𝑉(𝑥, 𝑦)

 Prewitt operator:  Scharr (symmetric Sobel) operator:

-47 0 47

-162 0 162

-47 0 47

-1 -1 -1

0 0 0

1 1 1

-47 -162 -47

0 0 0

47 162 47

𝐹Δ𝐻 𝐹Δ𝑉 𝐹Δ𝐻 𝐹Δ𝑉

-1 0 1

-1 0 1

-1 0 1

-1 0 1

-1 0 1

-1 0 1

8

NPU-based INC Example: Computer Vision Offloading [ENCP 19]: Setting

 Problem setting: In-network edge detection

Given: Picture 𝑃 (grayscale, 𝑝 × 𝑞 pixels)

Define: Filter 𝐹 (grayscale or binary, 𝑚 × 𝑛 pixels)

Filter response: 𝑅Δ𝐷𝑖𝑟 𝑥, 𝑦 = 𝑖=1
𝑚 𝑗=1

𝑛 𝑃 𝑥 − 𝑖 + 𝑎, 𝑦 − 𝑗 + 𝑎 𝐹Δ𝐷𝑖𝑟(𝑖, 𝑗)

Maximum response 𝑀 = 𝑅Δ𝐻 𝑥, 𝑦
2 + 𝑅Δ𝑉 𝑥, 𝑦

2

Can be approximated: 𝑀 ∝ 𝑅Δ𝐻 𝑥, 𝑦 + 𝑅Δ𝑉(𝑥, 𝑦)

 Prewitt operator:  Scharr (symmetric Sobel) operator:

-47 0 47

-162 0 162

-47 0 47

-1 -1 -1

0 0 0

1 1 1

-47 -162 -47

0 0 0

47 162 47

𝐹Δ𝐻 𝐹Δ𝑉 𝐹Δ𝐻 𝐹Δ𝑉

-1 0 1

-1 0 1

-1 0 1

Independent of other pictures

Only local information needed

(surroundings of a pixel)

Only addition/subtraction

and multiplication of integers

Minimal global state (if any,

maximum 𝑀 for normalization)

Independent of other pictures

Only local information needed

(surroundings of a pixel)

Only addition/subtraction

and multiplication of integers

Minimal global state (if any,

maximum 𝑀 for normalization)

Common pattern in most current scenarios:

Few individual operations on many small items

9

NPU-based INC Example: Computer Vision Offloading [ENCP 19]: Implementation

 Application: Steering a toy car via P4 edge detection

Captured & preprocessed on car (Python program),

identification of middle of line in (pure) P4 program on NPU

 Challenges

Large payload not accessible in P4 

Reduced chunk size  Messaging overhead

NPU’s P4 pipeline too short for “complete” convolution 

Use recirculations, split pipeline into multiple similar passes

NPU’s P4 also has no associative memory (neither ASIC’s)

Susceptible to re-ordering

NPU’s P4 programs are restricted in size 

Maximum filter sizes

10

NPU-based INC Example: Computer Vision Offloading [ENCP 19]: Evaluation

 Real-world and synthetic benchmarks on

Netronome Agilio CX 2x25GbE SmartNICs

2 connected NICs: 1 as car gateway/generator, 1 for P4

 Filter- & chunk sizes: Up to 10x10 pixels

O(1): Pipeline lengths (in-/egress)

O(𝑛): Table entries, calculations per action

Good results at 5x5 already

 Throughput: 19 fps (5x5); 77 fps (10x10)

Processing of last chunk at 5x5: 150µs (stddev 1.3ms)

Processing of last chunk at 10x10: 187µs (stddev 0.6ms)

13.7% drops at 5x5; none for 10x10  buffering/recirculation

Normal mode,

host w/wireless interface

P4 mode

11

NPU-based INC Work-in-Progress: Extended CV Functionality I: Setting

 Problem setting: Data reduction via area-of-interest

Only send packets containing region with pixels > threshold

 Challenges

Many-core architecture + memory hierarchy 

Using too much shared memory incurs overhead 

Split local (“for-each-packet”) / global (“for-trailer”) ops

Local: Save min/max x/y coordinates for pixel values > threshold

Global: Calculate min/max over “local” thresholds

Asynchronous thread operation 

Trailer of images may arrive before threads finish local ops

Process n locally directly, globally when n+1 trailer arrives 

Trade lag of >= 1 image for consistency

12

NPU-based INC Work-in-Progress: Extended CV Functionality I: Results

 Evaluation: Introduced error levels / throughput

Measured deviation from ground truth (exact are-of-interest)

Sustainable throughput with < 1% error

640 x 480 px: 341 FPS

1024 x 768 pix: 138 FPS

1440 x 1080 px: 70 FPS

13

NPU-based INC Work-in-Progress: Extended CV Functionality II

 Problem setting: Data reduction via image diff

Only send packets when image differs significantly from last

 Main challenge

Need to save entire image to memory  #Streams limited

 Evaluation: Again error levels, throughput

14

NPU-based INC Work-in-Progress: Extended CV Functionality III

 Problem setting: On-path Gaussian blur for images

Uses convolution operation from previous example

 Main challenge

Convolution costly + regions to convolute may cross packets

 Performing convolution on full packet too costly/slow

 Need to coordinate when to start which convolution (hard)

 Alternative: Sliding-window approach with lag

 Evaluation: Again error levels, throughput
Consistent error

rates of <1%

only for very

low bit rates

15

In-Network Computation, ASICs and NPUs: Challenges and Possible Directions

 Mathematical functionalities

ASICs: Need to diligently design LUTs early on

Further research LUT-based calculations in general?

Non-P4 NPUs: Few problems, but processing bounds unclear

P4 ASICs/NPUs: One-pass paradigm causes overhead

Recirculations required but reduce throughput

Recirculations also cause queueing problems (new vs. recirc’d pkts)

P4 ASICs/NPUs: One-stage-per-table paradigm

Recirculate packet (latency) vs. duplicate tables (memory)

 Introduce tables to read multiple entries from per pass?

Do we need “real” ALUs on Networking Hardware?

Divisions hard but needed even in “core networking” scenarios…

At least some statistical functions such as (rolling) avg, stddev?

16

In-Network Computation, ASICs and NPUs: Challenges and Possible Directions

 Architecture / memory organization

P4 ASICs/NPUs: Cannot access full packet

Workaround 1: Define payload as “headers”  Parsers limited…

Workaround 2: Make packets smaller  Messaging overhead…

Fundamental limitation?

P4 ASICs/NPUs: Read-modify-write memory access

Required for pipelined execution

Allow conditional admittance (“per-flow register locking”)?

ASICs/NPUs: Re-ordering and multiple-packet data hard

Re-formulate problems so that they are more “local”?

Consider “lagged” execution & “trigger packets”?

Introduce “accumulation memory” to compensate?

17

In-Network Computation, ASICs and NPUs: Challenges and Possible Directions

 Further challenges / thoughts

ASICs: Limited packet generation on the data plane

Packet generator highly limited (1 fixed packet / pipeline) to rewrite

Use templates that can replace ingress packets in egress?

ASICs: Limited time-awareness of DP (CP packets & pkgten)

Add further mechanism for time-triggred DP operations?

ASICs/NPUs: Lack of cryptographic support

Big Netronome NICs have “crypto” modules; functionality unclear

Allow hashes / checksums beyond CRC/IP?

Message authentication code support?

AES may map to lookup / match-action principle [Che20]

Safe mechanism to share/deploy secrets/keys on-path?

18

In-Network Computation and Processor-based SmartNICs: Summary

 Processing data on-path is still in its infancy

 Scenarios meant to show viability of the approach

and test out boundaries

 Further work on our side

Security/Reliability: SYMBIOSYS Project: Software Testing

Scalability: MAKI Project: Pipeline Multi-Tenancy

Standardization: IRTF COIN: Use Case Draft  RFC

19

Credits

 Parts of these slides are based on joint work with Johannes Krude, Ike Kunze, Jan Scheiper, Matthias

Bodenbenner, Robert H. Schmitt (all RWTH Aachen University)

 Pictures on slides 1, 3, 10: Barefoot Networks (Routers) & Netronome (NICs)

 Picture on slides 2/18: Wikimedia / Victorgrigas
(adapted (cropped) from https://commons.wikimedia.org/w/index.php?title=File:Wikimedia_Foundation_Servers-

8055_22.jpg&oldid=218547099)

CC BY-SA (https://creativecommons.org/licenses/by-sa/3.0/)

 Graphic on slide 3 bottom: Felix Senger, COMSYS, RWTH Aachen University

 Pictures on slides 7/8: University of Central Florida
(adapted (cropped, filtered) from https://www.ucf.edu/pegasus/files/2015/10/HEADER_Fairwinds_PEGF15.jpg)

 Pictures on slides 11-13: Felix Senger, COMSYS, RWTH Aachen University

 Picture on slide 14: Wikimedia / Cmglee
(adapted from https://commons.wikimedia.org/w/index.php?title=File:Image_pyramid.svg&oldid=474572310)

CC BY-SA (https://creativecommons.org/licenses/by-sa/3.0)

 Picture on slide 15: Wikimedia / Mykl Roventine
(adapted from https://commons.wikimedia.org/w/index.php?title=File:The_ladder_of_life_is_full_of_splinters.jpg&oldid=450746547)

CC BY-SA (https://creativecommons.org/licenses/by-sa/3.0)

https://creativecommons.org/licenses/by-sa/3.0/
https://www.ucf.edu/pegasus/files/2015/10/HEADER_Fairwinds_PEGF15.jpg
https://creativecommons.org/licenses/by-sa/3.0
https://creativecommons.org/licenses/by-sa/3.0

