Scaling Deep Learning ano
Datacenter Applications with
Programmable Networks

Marco Canini

-
©Cp

In-Network Computation is a Dumb Idea
Whose Time Has Come

Amedeo Sapio¢, Ibrahim Abdelaziz, Abdulla Aldilaijan,

Marco Canini, Panos Kalnis
KAUST

ABSTRACT

Programmable data plane hardware creates new opportuni-
ties for infusing intelligence into the network. This raises a
fundamental question: what kinds of computation should be
delegated to the network?

In this paper, we discuss the opportunities and challenges
for co-designing data center distributed systems with their
network layer. We believe that the time has finally come for
offloading part of their computation to execute in-network.
However, in-network computation tasks must be judiciously
crafted to match the limitations of the network machine archi-
tecture of programmable devices. With the help of our exper-
iments on machine learning and graph analytics workloads,
we identify that aggregation functions raise opportunities to
exploit the limited computation power of networking hard-
ware to lessen network congestion and improve the overall
application performance. Moreover, as a proof-of-concept,
we propose DAIET, a system that performs in-network data
aggregation. Experimental results with an initial prototype
show a large data reduction ratio (86.9%-89.3%) and a similar
decrease in the workers’ computation time.

Programmable networks create the opportunity for in-

HotNets 17

s this a dumb idea?

increased complexity
new kinds of failure modes
could affect correctness

will put application-specific logic

in the network. ..

ing incarnation in the Barefoot Networks’ Tofino [3] switch
chip has a flexible parser and a customizable match-action
engine. To process packets at high speed, this architecture has
a multi-stage pipeline where packets flow at line rate. Each
stage has a fixed amount of time to process every packet,
allowing for lookups in memory (SRAM and TCAM), manip-

In-Network Computation is a Dumb Idea
Whose Time Has Come HotNets '17

Amedeo Sapio¢, Ibrahim Abdelaziz, Abdulla Aldilaijan,

Marco Canini, Panos Kalnis
KAUST

ABSTRACT

Programmable data plane hardware creates new opportuni-
ties for infusing intelligence into the network. This raises a
fundamental question: what kinds of computation should be
delegated to the network?

In this paper, we discuss the opportunities and challenges
for co-designing data center distributed systems with their
network layer. We believe that the time has finally come for
offloading part of their computation to execute in-network.
However, in-network computation tasks must be judiciously
crafted to match the limitations of the network machine archi-
tecture of programmable devices. With the help of our exper-
iments on machine learning and graph analytics workloads,
we identify that aggregation functions raise opportunities to
exploit the limited computation power of networking hard-
ware to lessen network congestion and improve the overall
application performance. Moreover, as a proof-of-concept,
we propose DAIET, a system that performs in-network data
aggregation. Experimental results with an initial prototype
show a large data reduction ratio (86.9%-89.3%) and a similar
decrease in the workers’ computation time.

Programmable networks create the opportunity for in-

What to compute in network?
When, where and how to do it?

. do it judiciously:
1. network traffic is significantly reduced;
dpplication benelfits significantly
2. only a minimal change at the application
level is required
3. the correctness of the overall computation
is not affected

axluwuxs TUI 1UU1\UPB III 111\/111\}1] WINAIVI Al T O Ivly, uu,uuy

This talk

Will focus on two common DC workloads:
1. Distributed Deep Learning

2. Key-Value Storage Systems

Deep Increasingly Increasingly

sophisticated larger

L earni Nng models datasets

e =

Innovation fueled by leaps in (costly) infrastructure:
Clusters with hundreds of machines,
each with many HW accelerators (GPUs, TPUs, etc.)

Compute requirements doubling every 3 months!
Training models is still very time-consuming: days or even weeks!

5)

Data-parallel distributed DNN training

W,

-
Data
samples

- D
N
- D
N

<

~

I Gradient synchronization

~

W,

All-to-all intensive

communication
pattern

Wa 100s of MIBs to GBs

- - gradient

synchronization
in each iteration

6

All-to-all reduction
W,

w, 4
@ r| |%x -

Data _ _

samples
{ + } Gradient synchronization

N\ W,

: -

All-to-all reduction

w,
- ?Z&é}:ﬁ?

W,

Tile

Data _ _
samples _ —
{ ++ + } Gradient synchronization

N\ W,

F

All-to-all reduction

W,

-
Data
samples

&x

o

~

W,

-

Gradient synchronization

o

X

~

W,

-

All-to-all reduction

w, 5 I 4 E W,
Data _ \
samples
{ + } Gradient synchronization

N\ W,

: -

AllReduce

W,

-
Data
samples

s N
N
s N

22)

~

22)

W,

-

l Gradient synchronization

W,

-

Form a logical ring
(or tree, etc.) and
run peer-to-peer

communication

Parameter server (PS)

Wi

-
Data
samples

o

N 4 N
ma), |

N

NN N
_

4
-

Push gradients

. Aggregate

updates at PS
Pull aggregated

gradients

* (or updated model
parameters)

The network bottleneck

e Compute accelerators performance improvements
have so far outpaced network bandwidth increases

* Newer, larger DNN models spend more time on communication

Profile of benchmark DNNs (10Gbps)

m Communication

@ Overlapping communication

100%
90%
80%
70%
60%
50%
40%
30%
20%
10%

0%

Profile of benchmark DNNs (100Gbps)

m Communication

g Overlapping communication

13

A closer look at model synchronization

w, [~ E N W, E N e §) W, § N
_ I]

If only | could
help...

Distributed ML scales
poorly due to
communication costs

SwitchML: Co-design ML and networking

Challenges Design
</ > Limited computation * Pool-based streaming aggregation
|_I__LI Limited storage

 Combined switch-host architecture

— No floating points * Quantized integer operations

* Failure-recovery protocol

6.5 Tbps
@ Packet loss programmable

data plane * In-switch RDMA implementation

15

Streaming aggregation

Worker

A

1
e | B
J

Y

~100's of MB

Worker 2

Pool

3

(
-
G

vaitch\
— J

Y

~100's of KB

Combined switch-host architecture

" (,\/O\m A

Quantization &
failure recovery

W On)

Quantization &
failure recovery

-

Quantization &
failure recovery

Fixed-point
aggregation

Switch

-

Quantization &
failure recovery

N r—

Combined switch-host architecture

aggregation

aggregation

W - N\ w - N\ w. N\ w -
Block quantization

(Y4 Y4)
Scaling factors || Scaling factors || Scaling factors || Scaling factors
aggregation aggregation aggregation aggregation

. . J

\r \)f
Fixed-point Fixed-point Fixed-point Fixed-point

aggregation

. J

aggregation
. J \\

]

A\

J

"
RTT

Time

JVVIUCT |

Combined switch-host architecture

w - AN w - AN w O w = AN

Quantization allows training to similar accuracy in a similar number of
iterations as an unguantized network

1.00
>
§o.75]
-]
O 0.50 -
(U .
§(125 — SwitchML
— —— Baseline
0.00

0 5 10 15 20 25 30 35 40
Epoch

JVVIUCT |

How much faster is SwitchML?

SwitchML provides a speedup in training throughput up to 2.27x on 100Gbps networks
Speedup is higher with faster GPUs that reduce the computation/communication ratio

100Gbps GPU 10x - 100Gbps
2.5 5 57 W SwitchML/NCCL-RDMA | 2.5 B SwitchML/NCCL-RDMA |
. 2.1
20 1.71
o
315
0 1.24 113
o
1.0 -
0.5
0.0

DeepLight LSTM BERT NCF DeepLight LSTM BERT VGG19
20

How does SwitchML scale with the number of workers?

SwitchML performance does not depend on the number of workers

Bl SwitchML RDMA 256 @ NCCL-RDMA - Max RDMA goodput
3000

N
Ul
o
o

N
o
o
o

Millions of Aggregated Tensor
Elements per second

8 16
Number of workers

21

Sparse

Collective
Communication
Model Task

DeeplLight CTR prediction
LSTM Language modeling
BERT Qs answering

N@ Recommendation
VGGI19 Image classification
ResNet152 Image classification

Many gradients in huge models are

highly sparse
Model size Sparsity
2.3 GB 99%
1.5GB 94%
1.3GB 9%
680 MB 84%
548 MB 32%
230 MB AN

How tQ efficiently
aggregate sparse
gradients?

22

OmniReduce: sparse streaming aggregation

next block: oo

W, 2 2

next block: 2 next block: 3
4 Aggregator A

global next block: -co 2 | 2

- | =

W, W,
- Y,
W, 2 2

next block: 3

next block: oo

* Split data into blocks

e Stream non-zero blocks
to aggregator

* Keep global view of
next block

High performance
through fine-grained
parallelization (pool of
aggregation slots) and
pipelining to saturate
network bandwidth

23

Does OmniReduce speed up training?

OmniReduce is up to 2.23x faster than SwitchML* on 100Gbps networks
Models with higher sparsity gain more from efficient sparse collective communication

100Gbps « SwitchML* is a software-based implementation
B OmniReduce Of SWItChML
I AGsparse(NCCL) with 1% compression
- SwitchML* (fair comparison with software aggregator)
» AGsparse is allgather-based sparse allreduce

method
(compression overheads are not considered)

2.0

1.51

Speedup

0.51
OmniReduce is in

0.0 ertiaht — LsTM N BERT trial deploymentat =8 Meltuan
24

This talk

Will focus on two common DC workloads:

| Dictributed Deen Loarni

2. Key-Value Storage Systems

CPUs are
busy!

As server CPU cycles are increasingly scarce resource,
offload is gaining in popularity:
especially for common, often-repeated operations

NICs are in the network data path and can carry out operations on in-
flight data with low latency; RDMA NICs are ubiquitous
Can we enable complex offloads on RDMA NICs?

26

Basic NIC offloads

Server

- N
- B — [oool
— (Eo00

Client >

/

RDMA design oriented to data-movement operations
Lends well to accelerate data 10, shown effective for locking and even consensus

But lacks flexibility to offload “arbitrary” logic onto the NIC
Complex offloads require data-dependent execution

27

RedN offloads

/ Server \
4 Client N g \

9 Trigger response
/)m WRITE WaQ,
WQ . o,)

[.
- = L |
SEND Modify posted verb
v
0 Send response

RedN realizes self-modifying RDMA programs
RDMA ops (verbs) are pre-post on “idle” Work Queues ..,
Key insight: A verb can modify subsequent ones; a couple of obscure verbs

Can pace their execution »

Loops and conditionals with self-moditying

[teration 1

lteration 2

P

~

Increment i

[D0 O . wo)

set old to A[i]

@

o)

Input x
I = 0;
while (i < 2)
if(x == A[i])
send (i)
i++; 7

\

e If x == A[i]: Send response (change NOOP to WRITE)

OInputx

In theory, sufficient for Turing completeness
In practice, useful for Hash Lookups, List Traversal, and more. ..

29

Memcached get acceleration

B RedN] One-sided B Two-sided (VMA)

Requires 2 RTTs Extra memory copies

50

40

30

Latency (us)
20

10

A
2.6X I
) 64 1K 4K 16K 64K

Value Size (B)

30

Summary

Lots of pressure for efficiently handling DC workloads with
intensive communication, low-latency reqs

Our research shows that in-networking computing is an effective tool . ..
when used
What can be computed in-network? The answer is, it's general
But careful design to balance when, where, how

Examples: Deep Learning (in-network aggregation), KV Store (complex offloads)

References

e [SwitchML, NSDI '21]
Scaling Distributed Machine Learning with In-Network Aggregation

A. Sapio, M. Canini, C-Y. Ho, J. Nelson, P. Kalnis, C. Kim, A. Krishnamurthy,
M. Moshref, D. R. K. Ports, P. Richtarik

e [OmniReduce, SIGCOMM '21]
Ffficient Sparse Collective Communication and its application to

Accelerate Distributed Deep Learning
J. Fei, C-Y. Ho, A. N. Sahu, M. Canini, A. Sapio

* [RedN, NSDI 22]
RDMA is Turing complete, we just did not know it yet!
W. Reda, M. Canini, D. Kostic, S. Peter

32

https://mcanini.github.io/papers/switchml.nsdi21.pdf
https://mcanini.github.io/papers/omnireduce.sigcomm21.pdf
https://mcanini.github.io/papers/redn.nsdi22.pdf

Summa 8% Contact: marco@kaust.edu.sa

Lots of pressure for efficiently handling DC workloads with
intensive communication, low-latency reqs

Our research shows that in-networking computing is an effective tool . ..
when used
What can be computed in-network? The answer is, it's general
But careful design to balance when, where, how

Examples: Deep Learning (in-network aggregation), KV Store (complex offloads)

