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ABSTRACT

Programmable data plane hardware creates new opportuni-
ties for infusing intelligence into the network. This raises a
fundamental question: what kinds of computation should be
delegated to the network?

In this paper, we discuss the opportunities and challenges
for co-designing data center distributed systems with their
network layer. We believe that the time has finally come for
offloading part of their computation to execute in-network.
However, in-network computation tasks must be judiciously
crafted to match the limitations of the network machine archi-
tecture of programmable devices. With the help of our exper-
iments on machine learning and graph analytics workloads,
we identify that aggregation functions raise opportunities to
exploit the limited computation power of networking hard-
ware to lessen network congestion and improve the overall
application performance. Moreover, as a proof-of-concept,
we propose DAIET, a system that performs in-network data
aggregation. Experimental results with an initial prototype
show a large data reduction ratio (86.9%-89.3%) and a similar
decrease in the workers’ computation time.

Programmable networks create the opportunity for in-

HotNets 17

s this a dumb idea?

increased complexity
new kinds of failure modes
could affect correctness

will put application-specific logic

in the network. ..

ing incarnation in the Barefoot Networks’ Tofino [3] switch
chip has a flexible parser and a customizable match-action
engine. To process packets at high speed, this architecture has
a multi-stage pipeline where packets flow at line rate. Each
stage has a fixed amount of time to process every packet,
allowing for lookups in memory (SRAM and TCAM), manip-
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What to compute in network?
When, where and how to do it?

. do it judiciously:
1. network traffic is significantly reduced;
dpplication benelfits significantly
2. only a minimal change at the application
level is required
3. the correctness of the overall computation
is not affected
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This talk

Will focus on two common DC workloads:
1. Distributed Deep Learning

2. Key-Value Storage Systems



Deep Increasingly Increasingly

sophisticated larger

L earni Nng models datasets

e =

Innovation fueled by leaps in (costly) infrastructure:
Clusters with hundreds of machines,
each with many HW accelerators (GPUs, TPUs, etc.)

Compute requirements doubling every 3 months!
Training models is still very time-consuming: days or even weeks!
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Data-parallel distributed DNN training
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All-to-all reduction
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All-to-all reduction
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All-to-all reduction
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All-to-all reduction
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AllReduce
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Parameter server (PS)
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The network bottleneck

e Compute accelerators performance improvements
have so far outpaced network bandwidth increases

* Newer, larger DNN models spend more time on communication

Profile of benchmark DNNs (10Gbps)
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A closer look at model synchronization
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If only | could
help...

Distributed ML scales
poorly due to
communication costs



SwitchML: Co-design ML and networking

Challenges Design
</ > Limited computation * Pool-based streaming aggregation
|_I__LI Limited storage

 Combined switch-host architecture

— No floating points * Quantized integer operations

* Failure-recovery protocol

6.5 Tbps
@ Packet loss programmable

data plane * In-switch RDMA implementation
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Streaming aggregation
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Combined switch-host architecture
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Combined switch-host architecture
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Combined switch-host architecture
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Quantization allows training to similar accuracy in a similar number of
iterations as an unguantized network
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How much faster is SwitchML?

SwitchML provides a speedup in training throughput up to 2.27x on 100Gbps networks
Speedup is higher with faster GPUs that reduce the computation/communication ratio

100Gbps GPU 10x - 100Gbps
2.5 5 57 W SwitchML/NCCL-RDMA | 2.5 B SwitchML/NCCL-RDMA |
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How does SwitchML scale with the number of workers?

SwitchML performance does not depend on the number of workers
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Millions of Aggregated Tensor
Elements per second

8 16
Number of workers
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Sparse

Collective
Communication
Model Task

DeeplLight CTR prediction
LSTM Language modeling
BERT Qs answering

N@ Recommendation
VGGI19 Image classification
ResNet152 Image classification

Many gradients in huge models are

highly sparse
Model size Sparsity
2.3 GB 99%
1.5GB 94%
1.3GB 9%
680 MB 84%
548 MB 32%
230 MB AN

How tQ efficiently
aggregate sparse
gradients?
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OmniReduce: sparse streaming aggregation
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* Split data into blocks

e Stream non-zero blocks
to aggregator

* Keep global view of
next block

High performance
through fine-grained
parallelization (pool of
aggregation slots) and
pipelining to saturate
network bandwidth

23



Does OmniReduce speed up training?

OmniReduce is up to 2.23x faster than SwitchML* on 100Gbps networks
Models with higher sparsity gain more from efficient sparse collective communication

100Gbps « SwitchML* is a software-based implementation
B OmniReduce Of SWItChML
I AGsparse(NCCL) with 1% compression
- SwitchML* (fair comparison with software aggregator)
» AGsparse is allgather-based sparse allreduce

method
(compression overheads are not considered)

2.0

1.51

Speedup

0.51
OmniReduce is in

0.0 ertiaht — LsTM N BERT trial deploymentat =8 Meltuan
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This talk

Will focus on two common DC workloads:

| Dictributed Deen Loarni

2. Key-Value Storage Systems



CPUs are
busy!

As server CPU cycles are increasingly scarce resource,
offload is gaining in popularity:
especially for common, often-repeated operations

NICs are in the network data path and can carry out operations on in-
flight data with low latency; RDMA NICs are ubiquitous
Can we enable complex offloads on RDMA NICs?
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Basic NIC offloads

Server
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RDMA design oriented to data-movement operations
Lends well to accelerate data 10, shown effective for locking and even consensus

But lacks flexibility to offload “arbitrary” logic onto the NIC
Complex offloads require data-dependent execution
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RedN offloads

/ Server \
4 Client N g \

9 Trigger response
/)m WRITE WaQ,
WQ . o, )

[ .
- = L |
SEND Modify posted verb
v
0 Send response

RedN realizes self-modifying RDMA programs
RDMA ops (verbs) are pre-post on “idle” Work Queues ..,
Key insight: A verb can modify subsequent ones; a couple of obscure verbs

Can pace their execution »



Loops and conditionals with self-moditying

[teration 1

lteration 2
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set old to A[i]
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Input x
I = 0;
while (i < 2)
if(x == A[i])
send (i)
i++; 7

\

e If x == A[i]: Send response (change NOOP to WRITE)

OInputx

In theory, sufficient for Turing completeness
In practice, useful for Hash Lookups, List Traversal, and more. ..
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Memcached get acceleration
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Summary

Lots of pressure for efficiently handling DC workloads with
intensive communication, low-latency reqs

Our research shows that in-networking computing is an effective tool . ..
when used
What can be computed in-network? The answer is, it's general
But careful design to balance when, where, how

Examples: Deep Learning (in-network aggregation), KV Store (complex offloads)
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