Self-Configuring and Self-Healing Time-Sensitive Networking

Prof. Paul Pop
Technical University of Denmark

Credits: DTU PhD students, postdocs: Dr. Luxi Zhao, Michael Raagaard
Silviu S. Craciunas, TTTech Computertechnik AG, “Deterministic Ethernet” presentation
Some figures reused from Belden/Hirschmann “Time-Sensitive Networking for Dummies”
Time-Sensitive Networking (TSN)

- **IEEE 802.1 Time-Sensitive Networking (TSN)** Task Group proposes sub-standards that extend Ethernet for safety-critical and real-time communication:
 - Time synchronization
 - Scheduling
 - Reservation and configuration, etc.

<table>
<thead>
<tr>
<th>Standard</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>802.1ASrev</td>
<td>Timing & Synchronization</td>
</tr>
<tr>
<td>802.1Qbv</td>
<td>Enhancements for Scheduled Traffic (Timed Gates for Egress Queues)</td>
</tr>
<tr>
<td>802.1Qbu</td>
<td>Frame Preemption</td>
</tr>
<tr>
<td>802.1Qca</td>
<td>Path Control and Reservation</td>
</tr>
<tr>
<td>802.1Qcc</td>
<td>Central Configuration Management</td>
</tr>
<tr>
<td>802.1Qci</td>
<td>Per-Stream Time-based Ingress Filtering and Policing</td>
</tr>
<tr>
<td>802.1CB</td>
<td>Redundancy, Frame Replication & Elimination</td>
</tr>
</tbody>
</table>

Figure source: TSN for Dummies - Belden's free guide to Time Sensitive Networking
TSN configuration challenges

Each substandard has configuration “knobs” and their configuration forms interconnected intractable optimization problems.
GCL synthesis problem

The TSN (Qbv) schedule defines open and close events for the Gate Control List (GCL) in each output port of every TSN device in the network.

The schedule is built off-line taking into account the maximum end-to-end latency, frame length, as well as constraints derived from resources and physical limitations.

Advantage: the worst-case delays (latency) and the jitters can be minimized via the way the GCL is built.

Given
- A network topology
- A set of TT streams

Find A feasible schedule
- Assign flows to egress port queues
- Determine periodic offsets for frames

With minimized
- Queue usage
- End-to-end latency
GCL synthesis: an intractable problem

• Combinatorial optimization: finding an optimal object from a finite set of objects; typically, exhaustive search is not tractable

• Intractable problems: cannot be solved by a polynomial-time algorithm

• Solutions proposed in the literature for GCL synthesis: SMT/OMT, ILP, CP, Heuristics, Metaheuristics
Assumptions: flow isolation and scheduled end-systems

Non-determinism
- Roughly same arrival time
- Frame loss

Solution
- Stream isolation

Time t_i
- Scenario 1
- Scenario 2

Time t_{i+1}
- Scenario 1
- Scenario 2
What if the end systems are not scheduled?

- If the previous assumptions do not hold, the GCL synthesis problem changes from a combinatorial optimization problem to a schedulability analysis problem.
Network Calculus-based schedulability analysis

• Network calculus: a theory to get guaranteed upper bounds h for delays
 – Based on the min-plus (min,+) algebra
 – Two basic mathematics operations: convolution and deconvolution

• Network calculus concepts:
 – Streams and arrival Curve α
 – Servers and service Curve β

• Network calculus is too slow to be used for guiding a search for configurations
Streams routing problem (for TT)

Given
- A network topology
- A set of TT streams

Find
- Routes for the TT streams
- A feasible schedule

With minimized
- Link utilization
- End-to-end latency
Routing example: shortest paths

Streams s_1, s_2: ES3 \Rightarrow ES2 with route r_2

Streams s_3, s_4, s_5: ES1 \Rightarrow ES4 with route r_1

Congestion on SW$_1$-SW$_2$ Stream s_5 cannot be scheduled
Moving s_1 to a longer route

Streams s_4, s_5 ES3 => ES2 with route r_2
Streams s_2, s_3 ES1 => ES4 with route r_1
Stream s_1 ES1 => ES4 with route r_3

Congestion is reduced
A feasible schedule can be derived
IEEE 802.1CB: Seamless redundancy in TSN

• **Seamless redundancy:** All network paths are used in parallel, so no disruption occurs if one path fails.

• **Non-seamless (failover) redundancy:** The protocol recovers the fault by switching from the primary path to the secondary path; it may result in a very brief disruption.

• 802.1CB implements Frame Replication and Elimination for Reliability
Configuration challenges

Configuration parameters

- Traffic types for flows and their configuration
 - Qbv: Time-Aware Scheduler (TAS)
 - Qch: Cyclic queuing and forwarding
 - Qcr: Asynchronous Traffic Shaping (ATS)
 - QBA: Audio-Video Bridging (AVB)
- Queue assignment
- Gate Control Lists (GCLs)
- Routing including redundancy (802.1CB)

Competing objectives, constraints

- Mixed-criticality applications: safety-critical, hard and soft real-time, best effort
- Performance
 - Jitter, latency and worst-case delays
 - Link utilization
- Safety and security: guaranteeing constraints and mitigating attacks and failures

Parameters influence each other in unexpected ways
The configuration problems are intractable and interconnected
Vision: Self-configuring and self-healing TSN

We need researchers working on multi-disciplinary challenges to realize this vision
Vision: Self-configuring & self-healing TSN

Monitoring & Learning
- Runtime formal performance analysis, metric estimations
- ML for anomaly detection, performance prediction
- Safety and security monitoring

Self-configuration
- Multi-Agent Learning
- Heuristics & metaheuristics guided by ML predictors
- Runtime safety assurance
- Security mitigations

Standards
- 802.1Qcc: Stream reservation protocol enhancements and performance improvements
- 802.1Qca-2015: Path control and reservation
- 802.1CB-2017: Frame replication and elimination for reliability

Related:
- Intent-based networking (IBN)
- ETSI’s Zero touch network & Service Management (ZSM)
Self-configuring TSN

Centralized vs. decentralized configuration

Runtime algorithms

- Receive inputs from the monitoring module.
- AI-based optimization, hybrid heuristic and meta-heuristic algorithms: good quality solutions in a short time.
- Incremental evaluation & impact analysis for objective functions (e.g., incremental network calculus).
- Limitations of state-of-the-art: single domains, single traffic types, limited configuration, algorithms do not scale.
AI for self-configuration

Self-configuring and healing TSN

Runtime Self-Configuration

Optimization
- Multi-Agent Learning
- ML-predictor DSE

Evaluation
- Situation Awareness
- Estimations, Worst-cases

Opt: Optimizers

Mon: Monitors

Adversarial training

TSN Domain $n-1$
TSN Domain n
TSN Domain $n+1$
Runtime assurance for safety & security

Self-configuring and healing TSN

TSN Domain n-1
TSN Domain n
TSN Domain n+1

Safety & Security

Managers

Monitors

TSN device

Safety Managers

Security Mitigations

Predictors

Anomaly detection

Performance evaluations
Example heuristic runtime scheduling

• Given
 – existing configuration (feasible schedule)
 – disappeared flows in red
 – appeared flows in green
• Determine a new configuration excluding red flows and including green
• Scheduling Heuristic