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Abstract

Increasing complexity of computer systems raises the amount of possible vulnerabilities
in those systems. Thus, providing security becomes a more challenging goal, especially
for safety and security critical systems, such as aircraft cabin core system. In order
to make sure that a system is secure, experts do a risk analysis of the system, using a
special methodology.

Currently, there are many methodologies that provide instructions, how do make a risk
analysis. Some of them are freely available in the Internet, some of them are proprietary
ones, like the one used at Airbus Group for assessing risks in the cabin core system.
This methodology describes the algorithm of actions regarding the identi�ed threats,
but the responsibility for identi�ed threats remains fully on security experts.

Until now, risk analysis of the cabin core system has been made manually by Airbus
Group experts. Due to its manual nature, risk analysis process is time consuming and
error-prone. Therefore, in this thesis an opportunity of automating threat detection is
investigated.

There are multiple tools for threat modeling available now in the Internet. Four examples
of such tools are: Practical Threat Analysis (PTA), Trike, Microsoft Threat Analysis and
Modeling v2.1 and Microsoft Threat Modeling Tool 2016. The idea of how these tools
work are presented. In addition, all tools are examined with respect to their application
for modeling threats in the aircraft cabin core system.

None of the existing tools is capable to model end-to-end threats, which is necessary
for risk assessment in the cabin core system. Hence, a new solution has to be built. A
concept of the tool chain, which was developed during this work, o�ers an automated
approach to end-to-end threat modeling. The developed concept assumes the usage of
Microsoft Threat Modeling Tool 2016 and new threat modeling tool that is aimed to
identify end-to-end threats in the system model.

The insights gained by this thesis can be applied to implement the framework for
automating threat identi�cation during risk assessment. Additionally, the developed
framework is critically evaluated, providing information about disadvantages of the
whole approach and about feasibility of used algorithms.





Zusammenfassung

Steigende Komplexität der Rechnersystemen ehöht die Anzahl der möglichen Schwach-
stellen in diesen Systemen. Folglich, die Versorgung der Sicherheit wird ein herausfor-
dernderes Ziel, insbesondere für sicherheitskritische Systeme, wie z. B. Kabinenkern-
system am Flugzeug. Um die Sicherheit zu gewährleisten, führen die Experten eine
Risikoanalyse des Systems mit Hilfe der speziellen Methodologie durch.

Heutzutage gibt es viele Methodologien, die Instruktionen bieten, wie man eine Risiko-
analyse durchführen soll. Manche Methodologien sind kostenlos verfügbar im Internet,
manche sind privat, wie z. B. Methodologie, die bei Airbus Group eingesetzt wird um
die Risiken im Kabinenkernsystem zu bewerten. Diese Methodologie beschreibt den
Algorithmus von Maßnahmen bezüglich der gefundenen Bedrohungen, aber die Ver-
antwortung für identi�zierten Bedrohungen haben nur die Sicherheitsexperten.

Bisher wurde die Risikoanalyse des Kabinenkernsystems bei Airbus Group Experten
gemacht. Wegen der manuellen Herangehensweise ist dieses Prozess zeitaufwendig und
fehleranfällig. Deswegen wird die Möglichkeit der Automatisierung der Risikoanalyse
in dieser Masterarbeit untersucht.

Es gibt mehrere Tools für Bedrohungsmodellieren, die jetzt im Internet verfügbar sind.
Vier Beispiele von solchen Tools sind: Practical Threat Analysis (PTA), Trike, Micro-
soft Threat Analysis und Modeling v2.1 and Microsoft Threat Modeling Tool 2016. Die
Vorgehensweise, wie diese Tools funktionieren, sind vorgestellt. Zudem wurden alle
Werkzeuge bezüglich ihrer Anwendung auf Modellieren von Bedrohungen im Kabinen-
kernsystem überprüft.

Keiner der bestehenden Werkzeuge ist fähig, die Ende-zu-Ende Bedrohungen zu model-
lieren, was für die Risikoanalyse im Kabinenkernsystem notwendig ist. Deshalb muss
eine neue Lösung entwickelt werden. Ein Konzept der Werkzeugkette, das während die-
ser Masterarbeit entwickelt wurde, bietet einen automatisierten Ansatz zum Modellieren
der Ende-zu-Ende Bedrohungen. Das entwickelte Konzept setzt die Nutzung des Werk-
zeugs "Microsoft Threat Modeling Toolünd eines neuen Tools voraus. Das neue Tool
fokussiert sich auf Identi�zierung von Ende-zu-Ende Bedrohungen im Systemmodell.

Die von dieser Masterarbeit erworbenen Erkenntnisse können auf die Implementie-
rung des Frameworks für automatisierte Bedrohungsidenti�zierung angewandt werden.
Außerdem wird das entwickelte Framework kritisch bewertet, Informationen über die
Nachteile des ganzen Ansatzes und über die Realisierbarkeit der verwendeten Algorith-
men werden auch gegeben.
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Chapter 1

Introduction

Nowadays modeling is being considered as a useful approach to solving many kinds
of problems. One of the application areas for modeling is information security. Up
until today, one of the major modeling applications for information security is threat
modeling. Threat modeling is a structured and methodical approach that allows to
identify threats that are potential for the analyzed information system, classify them
by risk, and prioritize mitigation e�orts based on the impact, which is posed by those
threats.

Security is crucial in security- and safety-critical systems, such as ones on the board of
an aircraft. Evolving nature of the technological requirements on the board results in
the higher complexity of methods and techniques that are applied to creating functional
onboard systems. To ensure a safe, secure, reliable and e�cient air transportation
system with high capacity, hardware and software security of the airplane’s onboard
systems must be ensured [14]. Nowadays, aircraft manufacturers and their avionics
system vendors are responding to the need for onboard information technology with
sophisticated, networked aircraft information systems. Due to the high integration of
the airplanes with wired and wireless technologies the airplanes are neither completely
regulated nor isolated from external network access. Therefore, the probability of new
vulnerabilities that may open access to onboard systems and disturb their operation
grows. For this reason security measures have to be introduced. Aircraft information
security is necessary to mitigate the risk of external and internal attacks to an acceptable
level, to protect aircraft information systems, and to protect the con�dentiality, integrity,
and availability of information processed by those systems.

In order to provide reliable security mechanisms it is necessary to assure that the used
techniques are indeed secure and do not allow the attackers to compromise the system.
One way to do this is carrying out a risk assessment of the system. Risk assessment is
the process to ensure that the equipment/system is protected from attacks on data and
interfaces, both intentional and unintentional. It also includes the threat occurrence
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probability estimation, evaluation of the impact arisen from those threats and risk
mitigation proposals. The main goal of the risk assessment is to �nd out all information
security risks that are present in the system, so that an organization could use the output
of this analysis for introduce countermeasures to eliminate the undesired impact. Risk
assessment can be accomplished in multiple ways.

Currently there are many known methodologies for risk analysis due to the fact that
no worldwide accepted standards for threat analysis exist. In fact, there exist di�erent
risk assessment methodologies, which are suitable for di�erent kinds of systems, and
they are widely used. For instance, the one that is used by Airbus Group experts for
assessing security risks in cabin avionics systems is a proprietary methodology that
was developed internally. Risk assessment methodologies provide the user a guide for
classifying, evaluating and processing of existing threats, but threats themselves have
to be detected manually. The main drawback is the lack of automation. Automating
phases of the risk assessment process would be bene�cial in terms of time, �exibility
and universality, meaning that the automated approach to risk assessment would faster,
would be suited for di�erent methodologies and would be used by di�erent experts.
Hence, the possibility of threat analysis automation by making use of threat modeling
should be investigated.

1.1 Goals

In this Master’s Thesis threat modeling is considered as a potential approach to au-
tomated risk assessment. The main goal of this work is to �nd an appropriate threat
modeling approach in order to automate the risk assessment process for the aircraft
cabin system. Therefore, this thesis examines the current state of the art in �eld of
threat modeling and gives an overview of existing solutions. As long as the main subject
of the research is risk assessment in aircraft cabin systems, the applicability of existing
solutions to modeling airborne systems is also studied.

The theoretical background of risk assessment methodologies and current developments
in the �eld of threat modeling must be investigated in order to �nd out to what extent
they satisfy the needs of risk analysis in aircraft systems. Finally, based on the require-
ments for the airborne system threat analysis, a concept of automated threat detection
has to be proposed.

1.2 Outline

Chapter 1: Introduction
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Chapter 1 introduces the motivation behind the research, mentions actual problems and
de�nes the goals of the work.

Chapter 2: Background

In chapter 2 the background knowledge about risk assessment and existing threat
analysis methodologies is provided. Then, the motivation for using threat modeling
tools for assessing risks and an overview of existing threat modeling solutions is given.
In the end of the chapter two threat modeling approaches are de�ned and the choice of
the most suitable one for assessing risks in aircraft systems is explained.

Chapter 3: Related work

In chapter 3 studied scienti�c publications, which are related to the topic of this thesis,
are enumerated.

Chapter 4: High-level concept

Chapter 4 proposes a tool chain for addressing automated threat modeling. As long as
one of the existing threat modeling Tools, namely Microsoft Threat Modeling Tool, is
considered as partially suitable for modeling threats in airborne systems, it is adopted
as an important part of the new framework. However, it does not fully satisfy the actual
needs, and hence, the missing capabilities of the designed work�ow are de�ned. In
order to de�ne the requirements for the missing functionality, an additional step called
“Threat mapping” was necessary. Threat mapping is described in the end of the chapter.

Chapter 5: Low-level concept

In order to provide the missing capabilities of the previously developed framework an
additional tool has to be implemented. Based on the requirements de�ned during the
threat mapping the low-level concept was developed and described in chapter 5.

Chapter 6: Evaluation

Chapter 6 assesses the accomplished work by a critical review of the developed concept.
The results of threat mapping are analyzed, as well as advantages and disadvantages of
the new approach are enumerated.

Chapter 7: Conclusion

Chapter 7 gives a summary of the entire research and an overview of future work that
is yet to be done for this topic.
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Chapter 2

Background

In this chapter background knowledge about the �eld of research is provided. This
includes the introduction to the automated risk assessment, involving threat modeling
approach into the risk analysis and an overview of the existing methods to carry out
this process automatically.

As information technology including network systems has developed substantially,
information security has taken an important role in the functioning of those systems.
Security is a critical requirement in the software industry. In general, security refers
to the con�dentiality, integrity, availability and non-repudiation of a system and its
data [1]. Nowadays, information security has become crucial for organizations to enable
successful operation of di�erent mission critical applications. It is even more important
in security and safety critical functions, such as those ful�lled by systems on the board
of an aircraft.

On-board computer systems on the aircraft appear to be sensitive because of the demand
on high e�ciency and predictability [2]. Each security vulnerability may cause not only
�nancial losses to the airline and aircraft manufacturing companies, but may also be
health- and life-threatening for passengers and cabin crew.

Risk assessment or risk analysis is the process of identifying the security risks to a
system and determining their probability of occurrence, their impact, and the safeguards
that would mitigate that impact. Risk assessment is one step in the process of risk
management. The main problem in risk assessment is how to assess all risks in a
system/organization so that by using the output of risk assessment, these organizations
could de�ne appropriate measures for reducing or eliminating those risks [3].

Proper techniques in risk assessment are signi�cant for taking appropriate counter-
measures against various security threats to the organizational assets. Prior to taking
countermeasures against security threats a risk analysis has to be done, so that security
framework arrangement is systematic and reasonable. Important goals of the security
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analysis are to:

• List possible threats - an expert has to decide, what threats can be exploited in
the system.

• Estimate the potentiality of threats - an expert has to specify a numerical value
that represents, how likely each threat is to happen. These numerical values will
then be used in order to decide, which countermeasures have to be taken.

• Evaluate the impact on the organization in case of successful exploitation of
corresponding threats.

After that, concrete security measures have to be proposed. Using the output of the risk
assessment, organizations can de�ne appropriate measures for reducing or eliminating
those risks.

Risk analysis may vary according to the requirements of organizations [4]. The changing
nature of threats and vulnerabilities make the understanding of risk, its assessment and
management complicated. Hence, a tool, that conducts some steps of the risk assessment
automatically, would simplify the work�ow for the security team.

2.1 Methodologies

The highly diverse nature of network-based computer systems requires di�erent meth-
ods of analyzing security risks. Risk assessment involves risk identi�cation, risk analysis,
and risk prioritization. A risk can be de�ned by the relationship of risk probability and
risk impact. Usually, the impact of risk incidents refers to the loss caused by risk inci-
dents, and the loss can be measured by the value of assets [1]. Currently there is no
standard for risk assessment [3]. There are many methods that have been developed
by many organizations for risk analysis. Some of those are presented in this section in
order to provide an idea of their structure.

2.1.1 MEHARI

MEHARI (Method for Harmonized Analysis of Risk) is a free, open source information
risk analysis assessment and risk management method, developed, maintained and
distributed by CLUSIF – Club de la Sécurité de l’Information Français [5]. According to
CLUSIF, MEHARI is a way to manage information security for any type of organization
through the provision of a methodological framework, tools, modular components and
knowledge bases. The methodology consists of four modules:

• Stake and asset analysis – classi�cation

• Security service audit
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• Identi�cation of critical risks

• Risk situation analysis

In the �rst stage stakes in managing security in the analyzed system are found out. It
means that security experts identify possible malfunctions of the system, classify them
by likelihood and impact, and try to estimate the value of these malfunctions.

During the second stage the quality of security services is evaluated. Three major
aspects of security services are taken into account:

• E�ciency – a measure of ability of security services to e�ectively ensure the
required function faced with competent users or unusual circumstances.

• Robustness – an ability of a security service to resist an action that is intended to
bypass this service, or to restrict its e�ectiveness.

• Permanency – a guarantee that a particular security service will ensure the proper
functioning of the system over time.

In the third stage those risks, which are critical for the functionality of a system, have
to be identi�ed. MEHARI provides two approaches of identifying critical risk situations.
The �rst approach is direct and it uses the malfunction value scale. Each type of the
malfunction, identi�ed during the �rst stage, is mapped to threat scenarios that have
been identi�ed by �nding possible causes of the malfunction. According to MEHARI,
malfunction values, such as threat potentiality and impact, have to be provided by the
expert, who uses this methodology to carry out risk analysis. All of the scenarios with a
high level of consequences (levels 3 or 4) should be considered as critical and examined
in further detail. The second approach comprises systematic threat identi�cation using
the knowledge base and automated procedures, which are provided by MEHARI. The
two approaches are complementary and should be run concurrently.

The goal of the fourth stage is to evaluate two characteristic parameters of risk being
run by the organization, supposing that the scenario occurs. These parameters are:

• The potentiality of the risk – a qualitative representation of the probability that
a certain risk occurs, expressed with a number from 0 (not considered due to
unfeasibility) to 4 (very likely).

• The impact of the risk on the organization – a representation of seriousness of
the direct and indirect consequences, if a certain risk occurs.

In the end of risk analysis the expert has to examine the obtained results and decide
whether the system is secure enough, i.e. the potentiality values of threat scenarios are
satisfactory for the normal functioning of the analyzed system. If the values are not
acceptable, the expert has to propose security countermeasures, review and update the
results of the risk analysis once the proposed countermeasures are implemented.
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The output of the risk analysis using MEHARI is represented in the tabular form, where
all possible threat scenarios are enumerated and the values of threat likelihood/impact
are provided. A fragment of such an output is provided in �gure 2.1.

Figure 2.1: MEHARI output table

The output table contains values regarding all aspects of threat scenario execution,
including values of introduced security measures, which decrease the overall seriousness
of the attacks. In the last column the expert has to specify, whether the risk of the
corresponding threat is acceptable or not. If not, additional security measures have to
be proposed, and after that the results of risk assessment have to be revised.

2.1.2 OCTAVE

OCTAVE is a methodology for identifying and evaluating information security risks. It
is intended to help an organization to:

• Develop qualitative risk evaluation criteria that describe the organization’s oper-
ational risk tolerances

• Identify assets that are important to the mission of the organization

• Identify vulnerabilities and threats to those assets

• Determine and evaluate the potential consequences to the organization if threats
are realized

The conceptual framework that formed the basis of the original OCTAVE approach was
published by the Software Engineering Institute (SEI) at Carnegie Mellon University in
1999 [6]. The OCTAVE methodology consists of eight steps, the relationships between
these steps are illustrated in �gure 2.2.

During the �rst step a set of risk measurement criteria has to be de�ned. Risk measure-
ment criteria are a set of user-de�ned qualitative measures against which the e�ects of a
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Figure 2.2: OCTAVE work�ow

realized risk can be evaluated. The criteria must contain all types of risks, against which
threats are going to be evaluated. For example: reputation among sta�, reputation
among customers, reputation in the community. Possible values for measuring impact
of threats against aforementioned criteria must be also provided. An example for this is
shown in �gure 2.3.

Figure 2.3: OCTAVE step 1

Step 2 stands for the development of information asset pro�le. During this step the
experts have to de�ne assets of the system and describe their features, qualities, char-
acteristics and value. The pro�le for each asset is captured on a single worksheet
that forms the basis for the identi�cation of threats and risks in subsequent steps. An
example of asset de�nition is shown in �gure 2.4.

During the third step information asset containers have to be identi�ed. Containers
describe the places where information assets are stored, transported, and processed.
Information assets reside not only in containers within an organization’s boundaries but
they also often reside in containers that are not in the direct control of the organization.
Any risks to the containers in which the information asset lives are inherited by the
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Figure 2.4: OCTAVE step 2

information asset. An example of asset container de�nition is shown in �gure 2.5.

Figure 2.5: OCTAVE step 3

Step 4 begins the risk identi�cation process by brainstorming about possible conditions
or situations that can threaten an organization’s information asset and storing them in
the tabular form. These scenarios are referred to as areas of concern and may represent
threats and their corresponding undesirable outcomes. An example of identifying areas
of concern is shown in �gure 2.6.

Figure 2.6: OCTAVE step 4

In step 5 possible threat scenarios are identi�ed and stored in the tabular form. Threat
scenarios can arise both from the information from previous steps, as well as experts
can de�ne additional independent threat scenarios based on their knowledge.

In Step 6 the consequences to an organization if a threat is realized are captured, com-
pleting the risk picture. A threat can have multiple potential impacts on an organization.
The activities involved in this step ensure that the entire impact of executed threat
scenarios is covered. An example of identifying threat impact is shown in �gure 2.7.

In Step 7 of the assessment, a simple quantitative measure of the extent, to which the
organization is impacted by a threat is estimated. This relative risk score is derived
by considering the extent to which the consequence of a risk impacts the organization
against the relative importance of the various impact areas. Figure 2.8 gives an example
of risk score calculation.

In Step 8 organizations determine which of the risks they have identi�ed require miti-
gation and develop a mitigation strategy for those risks. This is accomplished by �rst
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Figure 2.7: OCTAVE step 6

Figure 2.8: OCTAVE step 7

prioritizing risks based on their relative risk score. Once risks have been prioritized,
mitigation strategies are developed [6].

Generally, the OCTAVE methodology does not contain any formal requirements for
storing and displaying all the information collected and produced during all eight steps.
Still, there are examples for doing it in the methodology documentation.

2.1.3 Risk assessment methodologies - summary

There are many other risk assessment methodologies, which are freely available in the
Internet. For example: Magerit [7], NIST 800-30 [8] and Microsoft Security Risk Manage-
ment Guide [9]. There are also multiple proprietary methods that have been developed
by various organizations internally for risk analysis speci�cally for the needs of those
organizations. An example of such a proprietary risk assessment methodology is an
"Aircraft Information Security Risk Assessment" methodology [10] designed internally
at Airbus Group Innovations. Many of open-source risk assessment methodologies have
similar structure. In practice, methods to assess risks are often composed of the four
following steps: threat identi�cation, vulnerability identi�cation, risk determination
and control recommendation. These four steps of risk assessment are based on practical
experiences in security assessment [3].

This section gave an idea of how risk assessment methodologies are structured. Risk
assessment methodologies do not help security experts �nd potential threats in analyzed
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systems, but rather provide a guideline, how to process and evaluate them. Finding
threats in the system is left for security experts. Due to the similar nature of many risk
assessment methodologies and to the limited content capacity of this thesis no further
risk assessment methodologies will be examined. Instead, the idea of automating risk
analysis process by using modeling approach will be introduced in next sections.

2.2 Modeling approach

Due to increasing complexity of computer systems the potentiality of security issues is
growing, making the reliability a more di�cult goal to achieve. Therefore it becomes
more and more di�cult to predict potential security risks in such systems. This leads to
increasing costs spent on the security risk assessment, as well as to higher probability of
a mistake made by security experts during the analysis process. Therefore, in order to
have a chance to decrease the amount of work for security experts and at the same time
to introduce a reliable mechanism to the risk analysis, an opportunity of automating
steps of risk analysis work�ow must be investigated.

The automation of security risk analysis process can be achieved by means of threat
modeling. Threat modeling is an engineering technique that can be used to help identify
threats, attacks, vulnerabilities, and countermeasures that could a�ect an application or
system. A threat model is a machine-readable abstraction of the analyzed system that
is processed by a computer program in order to identify di�erent kinds of weaknesses
of this system. Often it is considered as a representation of the software or device
components in a system, the data �ows between them and the trust boundaries in
the system. With threat-modeling potential design vulnerabilities can be discovered
algorithmically by analyzing the system’s security properties and identifying potential
threats to the assets in the system.

Unlike testing techniques, such as penetration testing or fuzzing, threat modeling can
be performed before a product or service has been implemented; this helps ensure that
a product or service is as secure as possible by design. Various aspects can be in the
center of the modeling process [11]:

• Assets to be protected

• Attacker’s view

• Software architecture of the system

The framework and the way of modeling threats may look di�erently. Currently, there
are multiple methodological approaches published in the scienti�c literature.

At the present time there is no standard for threat modeling. Hence, various ways
exist, how threat modeling can be addressed and implemented. Some of them are
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attacker-centric, which means that the process of threat modeling starts with an attacker,
evaluating his goals and how he might act within the context of the system. Other threat
modeling techniques are software-centric, meaning that the goal of the analysis, which
is based on the design of a system, is to step through the model, looking for types of
attacks against each element of the model. Additionally, there are also asset-centric
threat modeling techniques, which involve building a model based on the assets residing
in the system. Putting it together, nowadays there are many di�erent methodological
approaches to threat modeling described in the scienti�c literature.

The mentioned threat modeling techniques are orthogonal, meaning that using them
produces di�erent results. It is up to the expert, which threat modeling technique
to choose in order to carry out a better risk analysis. Multiple techniques can be
complemented with each other and applied to the system within one risk assessment
process simultaneously. To give an overview about the available tools for carrying out
threat modeling, some of them are going to be introduced in the next section.

2.3 Tools

Threat modeling can be conducted without the usage of any software tools or particular
frameworks, but due to its broad extent and growing complexity of analyzed systems, a
guided process with speci�ed steps and structured resulting reports may be bene�cial
for most users [15]. Currently there are some tools for threat modeling available on
the market. Threat modeling tools simplify the risk assessment process for the experts,
making it less error-prone and easier in cases, when the manual risk analysis is unfea-
sible or di�cult to conduct (e. g. for large systems). To give an idea of the concept of
those tools, some of them will be introduced in the next section.

2.3.1 Practical Threat Analysis

Eldan Software Systems Ltd. o�ers a calculative threat analysis and threat modeling
methodology, which is implemented in PTA (Practical Threat Analysis) tool. The main
idea of this tool is computing threat risks based on the tabular values that have to be
provided for the system properties by the user. PTA is a standalone desktop application.
Threat modeling with this tool starts with �lling in the information about the analyzed
system through the desktop user interface, providing data about system assets, their
�nancial value, possible vulnerabilities and mitigation plans. With PTA the user is able
to maintain a growing database of threats, create documentation for security reviews
and produce justi�ed recommendations taking into account the importance of various
threats and the cost of the implementation of the corresponding countermeasures [12].
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After all necessary data is provided PTA automatically recalculates threats and counter-
measures priorities and provides decision makers with updated action item lists that
re�ect the changes in threat realities. The �nal report about the security status of the
system looks as shown in the �gure 2.9.

Figure 2.9: PTA user interface

It is worth mentioning that PTA is fully reliant on the user-de�ned knowledge and is
mainly aimed to calculate the value of assets, which are at risk due to existing threats.
Both the list of threats and proposed mitigations have to be provided by the user in the
tabular format. The only capability of the tool is to calculate the �nancial impact of
threat scenarios provided by the user. The tool does not identify threats automatically,
forcing the user to do it completely manually, and therefore it is not powerful for large-
scale systems. The tool does not help to reduce the probability of human errors in case
of overlooking potential threats.

2.3.2 Trike

Trike is an open source threat modeling methodology and tool. It contains a uni�ed con-
ceptual framework for security auditing from a risk management perspective through
the generation of threat models [13]. The tool is represented by several spreadsheets
and it uses a risk based approach with distinct implementation, threat and risk models.
Threat modeling with this tool starts with �lling in the information about the analyzed
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Table 2.1: Trike spreadsheet containing system properties
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Admin Component
Process

The administrator
of the system with
unrestricted privi-
leges

TRUE TRUE TRUE TRUE FALSE TRUE

Authorized
user

External
Interactor

A user that has
an authorized re-
stricted access to
the system

TRUE TRUE TRUE FALSE TRUE

Guest External
Interactor

An external user
with minimum
privileges

TRUE TRUE FALSE TRUE

application in the prede�ned spreadsheet framework. The main idea of the concept
implemented in Trike is the reliable automatic threat detection based on the tabular
representation of a system model. The threat modeling process in Trike is built as
follows:

• First, the user has to de�ne all the information about the analyzed system. This
includes actors, data model, enumeration of intended actions, use cases, used
protocols etc.

• Then, based on this information automatic scripts perform the analysis and pro-
duce a list of possible threats, which later has to be analyzed by security experts.

Table 2.1 shows a part of the tabular re�ection of the user-de�ned information in Trike.

In this table the de�nition of the actors is shown. The �elds for storing the information
are either text �elds (like Name, Type and Description in this example) or dropdown
�elds (like the rest of the �elds that have two prede�ned possible options – true or false).
This information has to be �lled by the user. Irrelevant �elds are left empty.

After that Trike generates a list potential threats using its hard-coded knowledge base.
As Trike is an open source tool, the logic of threat identi�cation may be changed, but it
requires an expertise both in security and Trike framework.

An important feature of Trike is combining intended and unintended behaviour of
the users, meaning that the user can do malicious actions only as a part of the attack
and continue the attack with the normal behaviour of the analyzed system. Threat
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information is hard-coded into the knowledge base of Trike and is presented to the
security expert right after the model is built. In other words, there is no de�nition of
the knowledge base required.

Trike is heavily reliant on automation. A crucial part of a threat model within the Trike
framework is the security requirements that have to be de�ned in the beginning of
threat modeling process. In order to produce a threat model of full value, both technical
properties of the system and security objectives have to be described in detail because
this information is used in every following step of the analysis.

Comparing Trike to PTA, it is worth mentioning that Trike is more powerful due to
its automation. Trike generates possible threats in a separate spreadsheet based on
the provided properties of the system and the built-in threat generation logic (which
may be enhanced by the user). However, the approach implemented in Trike does not
consider the structure of the analyzed system. Hence, it is not applicable for complex
hardware/software systems with multiple components, but rather for single software
applications.

2.3.3 Microsoft Threat Analysis and Modeling Tool

Microsoft Threat Analysis and Modeling Tool is an instrument for identifying and
understanding threats to the business processes, which are inherited by the software
application. It is aimed to create and form security strategy, which can be accomplished
before implementing the system. Threat modeling process within this tool starts with
�lling in the information about the analyzed application through the desktop user inter-
face. The tool allows to prioritize business security requirements, giving an opportunity
to understand and de�ne a security strategy from a defensive perspective [12].

In order to create a threat model the user has to consolidate already known information
about the analyzed system, such as:

• Roles

• Components

• Data

Coupling this information allows the user to de�ne the framework of the analyzed
application. Once this is complete, Microsoft Threat Analysis and Modeling Tool au-
tomatically analyzes the information and identi�es contextualized threats and coun-
termeasures based on a library of known attacks. This library is an extensible and
customizable collection of attack patterns that can be contextualized to the applica-
tion. It also provides step-by-step instructions for mitigating found threats, so that
the security team has a concrete speci�cation of countermeasures. Using up-to-date
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attack library enables the user to proactively ensure that the system is built securely
and remains so.

After threats have been modeled, the tool o�ers the ability to quantify the level of risks
associated with each threat in order to prioritize them and the related countermeasures.
The user interface of the latest version (2.1) of Microsoft Threat Analysis and Modeling
Tool looks as shown in the �gure 2.10.

Figure 2.10: MS Threat Analysis and Modeling Tool UI

On the left-hand side of the user interface there is a tree of application properties that
have to be �lled by the user. There is also a list of threats and attack scenarios that is
produced automatically by the tool, but at the same time it can be extended with the
user-de�ned entities.

Microsoft Threat Analysis and Modeling Tool provides several perspectives for modeling
the data: visualizations, analytics, reports. The tool allows the user to create living
threat models and to produce feature-rich and actionable output. A comprehensive
threat model helps model the security design, so that potential vulnerabilities can be
exposed before investing time and resources in an unsecure design.

The main limitation of this tool is that it is mainly designed for single web applications.
The approach implemented in Microsoft Threat Analysis and Modeling Tool is similar to
one used in Trike, because it requires information about the analyzed application and its
knowledge base of threats is extensible. Still, the tool is not designed for �nding threats
in complex systems. It is impossible to provide the tool with information about complex
hardware/software structure of a compound systems like the aircraft cabin core system,
and hence the tool does not consider it for �nding potential threats. The tool is rather
not adaptable for complex hardware/software systems with multiple components and
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various interactions between them.

2.3.4 Microsoft Threat Modeling Tool 2016

Microsoft Threat Modeling Tool 2016 is a program that helps in �nding threats during
the design phase of the project. Threat modeling process within Microsoft Threat
Modeling Tool 2016 starts with a data �ow diagram. From the diagram, potential
threats are identi�ed. Unlike Trike and Microsoft Threat Analysis and Modeling Tool,
this tool takes the possibly complex system structure into account and detects threats
automatically based on the user-provided knowledge base. The user has to specify the
component types, which can be a subject of threat exploitations, and their properties;
then, the tool automatically searches all components/interactions in the model that
correspond to the description of user-de�ned threats, and reports the ones that were
found.

The tool applies a particular threat modeling approach called STRIDE per interaction.
STRIDE is an acronym for the threat types of Spoo�ng, Tampering, Repudiation, In-
formation disclosure, Denial of service and Elevation of privilege [17]. The idea of
STRIDE approach is looking at every interaction (edge) in the data �ow diagram and
searching possible threats, which were previously de�ned in the knowledge base, for
this interaction. While looking up in the knowledge base, the tool checks if there are
any threats that are applicable to the current interaction based on its properties.

After all potential threats are listed, for each of them mitigations can be proposed. In
some cases the mitigation may require some changes in the system design, making the
user to modify the model and to repeat the whole analysis process again.

When the mitigations have been implemented, the product or service is validated against
the threat model to ensure that the mitigations work and that design functionality and
performance are su�cient. If the design has serious security issues, revisiting the design
and the threat model may be appropriate. Summarizing previous tool description, the
capabilities of the Microsoft Threat Modeling Tool 2016 are the following:

• Creating data �ow diagrams (DFDs) for products or services

• Analyzing data �ow diagrams to automatically generate a set of potential threats

• Suggesting potential mitigations to design vulnerabilities

• Producing reports on the identi�ed and mitigated threats

The following example is aimed to deepen the understanding of how the Microsoft
Threat Modeling Tool works. A simple system with three components is going to be
modeled. These components are: browser client, web server and SQL database. The
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model of this system built within Microsoft Threat Modeling Tool framework looks as
shown in �gure 2.11.

Figure 2.11: Graph-based model

The client interacts with the web server over HTTP, whereas the web server com-
municates with the database over a general data �ow. Both interactions are bidirec-
tional.When the model is built, the analysis view must be switched on. The analysis
view provides the information about security threats that can be potentially exploited
on the communication links of the system. These threats are expressed in the tabular
format, see table 2.2.

Table 2.2: Threats identi�ed by MS Threat Modeling Tool 2016

ID State Title Category Description Interaction Priority

0
Not
Started

Spoo�ng
of Des-
tination
Data
Store

Spoo�ng

SQL Database may be
spoofed by an attacker
and this may lead to data
being written to the at-
tacker’s target instead of
SQL Database. Consider
using a standard authen-
tication mechanism to
identify the destination
data store.

Generic
Data Flow

High
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1
Not
Started

Weak
Access
Control
for a Re-
source

Information
Disclosure

Improper data protec-
tion of SQL Database
can allow an attacker
to read information not
intended for disclosure.
Review authorization
settings.

Generic
Data Flow

High

2
Not
Started

Cross
Site
Script-
ing

Tampering

The web server ’Web
Server’ could be a sub-
ject to a cross-site script-
ing attack because it
does not sanitize un-
trusted input.

HTTP High

3
Not
Started

Elevation
Using
Imper-
son-
ation

Elevation
of Privi-
lege

Browser Client may be
able to impersonate the
context of Web Server in
order to gain additional
privilege.

HTTP High

Then, the existing threat list should be examined and the mitigations have to be proposed.
If mitigation measures require changes in the system model, then the model should be
modi�ed and the model has to be revised regarding threats one more time.

2.4 Threat modeling approaches

Based on the present risk assessment methodologies and existing implemented tools for
threat modeling the following fact becomes clear: risk assessment methodologies are
more advanced and adjustable for particular arbitrarily complex systems than existing
threat modeling tools. However, these methodologies lack automation.

Existing threat modeling tools may be applied mainly to analyzing software applications
rather than to risk assessment of compound systems with many di�erent components,
such as aircraft cabin mockup. The only instrument, which is closest to automatic
analysis of complex systems, is the Microsoft Threat Modeling Tool 2016. Using only
Microsoft Threat Modeling Tool is not su�cient for modeling threats in complex systems
because the tool is only capable to detect threats, where two system components and
one communication link between them are involved. Threats of this type will be further
referred as single-link threats. Unfortunately, MS Threat Modeling Tool implements only
the single-link threat modeling approach, which is indeed important but not su�cient
for analyzing large composite systems. In complex systems also threats involving
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multiple components are possible. These threats will be further referred as end-to-end
threats or threat scenarios, meaning that the attacker has access to some component at
the one end of the attack and tries to access the asset that is located on the other end
of the attack. As long as the output of the existing risk analysis provided by Airbus
Group is a collection of threat scenarios, which are considered as end-to-end attacks,
these two terms will be further considered as identical. The access point of the attack
may not necessarily be directly connected to the component where the asset resides -
an attack may involve using functions of other system components in between, as well
as exploiting threats on them. Nevertheless, Microsoft Threat Modeling Tool 2016 was
chosen as the basis for the further development of concept of the future tool that is
going to automate risk assessment process of complex systems.

The other approach that is yet to be implemented and which is aimed to cover this gap
is threat modeling with end-to-end threat scenarios. Both of these approaches are going
to be described next.

2.4.1 Risk assessment with single-link threats

The �rst approach in modeling security threats is to search for potential threats on
individual communication links within the system model. Single-link threat modeling
starts from the design of the system, and attempts to step through a model of the system,
looking for types of attacks against each interaction in the data �ow diagram. This
method assumes a presence of a system model, which is represented by a data �ow
diagram.

To enable the automatic execution of this approach, it is also necessary to provide a
knowledge base that contains an enumeration of possible threats. As long as threats
are identi�ed on the communication links, those threats in the knowledge base are
described by the properties of system components and characteristics of the data �ow
between those components. In other words, knowledge base speci�es the properties of
the interaction links, where a corresponding threat can occur.

Having a system model represented by a data �ow diagram and the knowledge base
containing all possible threats, the actual list of potential threats in the particular system
is issued. This process is done automatically by a tool that implements this concept.
An example of a tool that is capable to run through this work�ow is Microsoft Threat
Modeling Tool 2016.

Although the approach of analyzing risks by identifying single-link threats in the system
may be helpful for the threat modeling process, it is still not su�cient for some cases.
An example of a threat modeling approach, where �nding single-link threats is not
su�cient, is security risk assessment of the cabin mockup at Airbus Group. Particularly,
more complicated attack scenarios have to be identi�ed during the analysis than separate
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potential threats on the communication links.

2.4.2 Risk assessment with end-to-end threat scenarios

The second threat modeling approach, which can be actually described as automation of
a risk assessment methodology, such as MEHARI, is modeling end-to-end threats. With
this approach, in order to identify attack scenarios, the target of evaluation is analyzed
with respect to its objectives and main functionalities. This includes:

• Phases of use

• List of people having access

• Interfaces (internal or external)

• Data �ow

• Components (hardware and software)

• Integrated COTS (commercial o�-the-shelf) components

There are two general ways to assess risks in an analysis – qualitatively and quantita-
tively. The latter requires assigning meaningful numerical values to the factors which
are used to calculate the risk. Quantitative risk analysis uses discrete ranges (e.g., high,
medium, low) in order to characterize the risk. MEHARI assesses risks by the use of
threat scenarios. A threat scenario consists of four items:

• Asset – an asset represents information, a system component or its functionality,
which has a signi�cant value to its owner or dependent components. An asset can
therefore become the target of an attack. A risk analysis elaborates the security
risks an asset is exposed to.

• Consequence – a consequence is the loss of the information security property
of an asset if a potential attack is executed successfully. In this scope this could
be loss of availability (e.g., denial of service), loss of integrity (e.g., misuse or
corruption), and loss of con�dentiality (e.g., disclosure).

• Cause – the cause is what leads to the risk, for example malicious use of applica-
tions, �ooding or execution of malicious code.

• Origin – the origin describes where the attack is launched from, for example an
attack via the wireless communication means.

The output of the end-to-end risk analysis is a table that contains all potential threat
scenarios. As long as there are no solutions currently available for automatic threat
modeling with end-to-end threat scenarios, the key point of this thesis is to develop a
concept of the tool that is going to address this goal.
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Chapter 3

Related work

This chapter gives an overview of the scienti�c publications that were studied during
the current Master’s Thesis. The content of all related papers is brie�y described and
for each paper a short explanation of how they re�ect the topic of the current work is
provided.

In their publication Comparison of Risk Analysis Methods: Mehari, Magerit, NIST800-30
and Microsoft’s Security Management Guide [3] authors review and compare four risk
analysis methods: Mehari, Magerit, NIST800-30 and Microsoft’s Security Management
Guide. All four methods are compared on two main criteria – steps that are used to
conduct risk assessment and contents of the methods. Chosen risk assessment methods
were examined in detail, and in conclusion it turned out that they mostly follow a
similar pattern. All of the methods follow the �rst three of the general steps of risk anal-
ysis: threat identi�cation, vulnerability identi�cation, and risk determination. Mehari,
Magerit and Microsoft Security Management Guide do not include control recommen-
dation. Authors also reveal that all described methods provide a detailed guide for
risk assessment, but only Mehari, Magerit and Microsoft Security Management Guide
provide supplementary documents for helping risk assessment.

Investigation of this paper helped to explain the phenomenon of risk assessment and
why organizations need it, give an overview of existing threat analysis methodologies
and understand the state of the art in this area. The paper references multiple other
documents and publications that describe mentioned methodologies in more detail.

The authors Malik, Javed and Mahmud reviewed in detail multiple threat modeling
and analysis approaches in their publication Threat Modeling in Pervasive Computing
Paradigm [12]. The paper examines in detail the threat modeling and analysis ap-
proaches being developed at Microsoft and other methods used for threat modeling. The
following tools, approaches and resources are described in this publication: Microsoft
Threat Analysis and Modeling v2.1, Practical Threat Analysis (PTA), Microsoft Threat
Modeling Tool, Threat Model Framework and Methodology for Personal Networks,
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Common Vulnerability Scoring System (CVSS). Based on the reviewed methodologies
and tools a new threat modeling approach involving the description of security domains
is proposed.

The tools reviewed in this paper gave material for the research of the existing tools that
solve threat modeling problems. The topic of the publication is directly related to the
subject of this Master’s Thesis because it explains the idea of multiple existing practical
approaches, and the aim of the current Master’s Thesis is to develop a concept of the
automated analysis of the end-to-end security threats.

In the paper Secure Operation, Control, and Maintenance of Future E-Enabled Airplanes
[14] IEEE members Sampigethaya, Poovendran and Bushnell are presenting a com-
prehensive survey of security of the e-enabled airplane. Security of applications like
electronic distribution of loadable software and data, as well as future directions such
as wireless health monitoring, networked control, and airborne ad hoc networks is dis-
cussed. The authors emphasize that current guidance for airplane airworthiness from
aviation regulatory agencies, does not cover emerging security threats to the e-enabled
airplane. Therefore, to ensure a safe, secure, reliable and e�cient air transportation sys-
tem with high capacity, security of the e-enabled airplane must be addressed. This paper
represents an overview of future trends in the engineering of airborne systems with
respect do evolving needs of the passengers and changing nature of security attackers’
pro�le.

As long as a signi�cant part of this paper is dedicated to the security of aircraft systems,
it is strongly related to the topic of this Master’s Thesis. The authors conclude that the
use of wireless and o�-the-shelf technologies introduces vulnerabilities that mandate
careful security considerations due to the potential airplane safety and airline business
concerns. Further, the resulting security needs and mechanisms must be integrated into
the well-de�ned processes related to airplane operation, control, and maintenance.

The publication Threat modeling approaches and tools for securing architectural designs
of an e-banking application [15] written by Möckel and Abdallah elaborates, illustrates
and discusses the threat modeling process and its usefulness to the architectural designs
of an e-banking application. This paper also seeks for a critical re�ection on di�er-
ent approaches and tools, accounting for the complexity and di�culty of the process.
Due to the criticality of operations within an e-banking application threat modeling
is considered as a useful instrument to mitigate potential attacks by taking proactive
measures against them. This paper presents, compares and contrasts several approaches
to threat modeling and illustrates their applications to the identi�cation, analysis and
understanding of threats relevant to the design of an e-banking application. Although
the subject of the publication is securing e-banking applications, it still contains valu-
able information about the necessary background knowledge of threat modeling, an
overview of its foci, concepts and tools.
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In his publication Enumerating All Simple Paths in a Graph [16] by Frank Rubin presents
an algorithm with O(N3) time complexity for enumerating all simple paths in a graph,
where N stands for the number of vertices. The algorithm described in this paper
uses Warshall’s ordering technique and requires N3 matrix operations to produce a
matrix that contains all necessary information about simple paths in the analyzed graph.
This algorithm should be studied in order to produce possible improvements for the
algorithm, which is described in the chapter 5 and is used to �nd out all possible paths
from access points to assets in the system model.

The publication Threat modeling using Formal Methods: A New Approach to Develop
Secure Web Applications [17] by Hussain, Erwin and Dunne made a proposal for threat
modeling based on formal methods. Multiple existing threat modeling approaches are
described: STRIDE (Spoo�ng, Tampering, Repudiation, Information Disclosure, Denial
of Service and Elevation of Privilege), DREAD (Damage potential, Reproducibility,
Exploitability, A�ected uses and Discoverability) and threat modeling using attack trees.
The authors claim that existing threat modeling approaches are based on informal and
semi-formal techniques. Due to the lack of analysis and proof facilities at the design level
of software applications in informal and semi-formal techniques, all the existing threat
modeling approaches are incomplete, inconsistent and vague. In the result authors have
built a formal model using VDM++ using four core components: STRIDE Model, DREAD
Model, Security Mechanisms and Mapping and Integration. Some code fragments of
this model are provided in the publication. However, the complete description is out of
scope of the paper.

Authors Li and He in their paper A Uni�ed Threat Model for Assessing Threat in Web
Applications [4] present a uni�ed threat model for assessing threat in web applications. A
threat tree model is extended with more semantic and context information about threat
to form the new model which is used to analyze and evaluate threat in the software
design stage. Unlike other models, the model proposed in this paper can help analyze
and evaluate threat in web applications from attackers’ perspective in the software
design stage. Authors claim that the developed model and model based assessment
approach for web applications presented in this paper have 3 advantages: (1) More
semantic and context information are provided in this model which can be used to
analyze and evaluate threat precisely; (2) The historical statistics information contained
in this model together with the dynamic evaluating metric can be used to generate
mitigation schemes; (3) The assessing results and mitigation schemes generated in this
model can be used to direct secure coding and testing.

In their paper Security, Internet Connectivity and Aircraft Data Networks [2] authors
Thanthry, Ali and Pendse review the security mechanisms that can be applied in the
aircraft onboard systems to address the concerns of the end users. The scope of this
research is to determine the viability and need of a security mechanism. The research
is also focused on the performance of di�erent security architectures and determining
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their usability in the framework of an aircraft data network. As long as the current
Master’s Thesis is aimed to improve threat modeling technique for Airbus Group, an
overview of aircraft information security issues was helpful to get an overall glance
about the state of the art in this area. This paper contains a comparison of several
security mechanisms that are suitable for aircraft networks.
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Chapter 4

High-level concept

This chapter will show the developed high-level approach to automated end-to-end risk
assessment that was developed during the research. The created approach to solving
threat modeling problem consists of multiple steps. Until now, the security risk analysis
has been done by Airbus Group experts manually. For that, an internally developed
proprietary methodology is used. The basis of this methodology is MEHARI, which
was brie�y described before. However, currently there are no tools for conducting
risk analysis with MEHARI or a comparable methodology automatically. The reviewed
existing threat modeling solutions are not su�cient to maintain the automated threat
analysis for the aircraft cabin core system. The purpose of the approach that is described
in this chapter is to bring automation into the risk analysis process. Speci�cally, this
approach is focused on the modeling of end-to-end threat scenarios because identifying
those is a cornerstone of risk assessment in complex hardware/software systems. The
goal of this chapter is to describe each step of this process in detail and to explain the
motivation behind each one.

4.1 Threat modeling work�ow

The proprietary methodology employed at Airbus Group is based on detection of end-
to-end attack scenarios. Moreover, these attack scenarios are being detected in a graph-
based model, which basically represents a network plan of the system. Among all present
threat modeling tools the manner of modeling systems in Microsoft Threat Modeling
Tool 2016 conforms with modeling technique in the proprietary methodology at most.
System model in the existing risk analysis that uses the aforementioned methodology
is represented by a data�ow diagram, which is similar to the approach implemented
in Microsoft Threat Modeling Tool. Hence, Microsoft Threat Modeling Tool 2016 was
chosen as a starting point of developing an end-to-end risk assessment tool. Still, in spite
of a convenient graph-based modeling technique, Microsoft Threat Modeling Tool 2016
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lacks the capability of modeling end-to-end threat scenarios, which involve multiple
system components and communications within one attack.

To address end-to-end threat modeling the new Risk Analysis Tool is going to be de-
veloped. Automation in the risk analysis can be achieved by modeling the analyzed
system and building the knowledge base, which will be used by the Risk Analysis Tool
to identify possible threats in the model. As long as Airbus Group is also carrying out
threat potentiality and impact assessment, the capability of de�ning rules for poten-
tiality and impact assessment should also be accommodated in the Risk Analysis Tool.
In addition, the changing nature of technologies and security environment requires
the extensibility of tools, which are being developed, so that editing and extending the
knowledge base is also possible. In this chapter a high-level concept of the prospective
tool will be stated. The high-level concept consists of multiple interdependent steps
that together form a work�ow of the whole threat modeling process. For each phase of
the presented work�ow the description and corresponding reasons for introducing this
step are provided.

4.2 Security risk analysis work�ow

The new risk analysis tool concept is built from a set of programs, which are used in a
multistep pipeline, where data produced in each step will be used in the following steps.
From the user’s point of view the �ow could be perceived as a procedure consisting of
three steps:

1. Knowledge base de�nition

2. Modeling

3. Threat identi�cation.

Considering the low-level point of view, the work�ow has more steps, which describe
more detailed data transformations during the risk assessment. The extensive work�ow
scheme including both high-level and low-level viewpoints is shown in the �gure 4.1.

This work�ow represents a data �ow diagram, which depicts the transformations of the
user-provided information. Ellipses in this diagram stand for data, rectangles - for tools,
arrows - for data �ow between tools that process it. On each step new information is
added either by requesting information or as a result of processing it with tools. The
�nal output is the list of end-to-end threats (threat scenarios) that are presented in the
tabular form, like it is done in the existing risk analysis provided by Airbus Group. A
three-phase risk assessment work�ow contains eight speci�c steps, which will be now
explained in detail.
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Figure 4.1: End-to-end threat modeling work�ow

4.2.1 Knowledge Base de�nition

The purpose of the �rst phase called “Knowledge Base de�nition” is to accumulate all
available information about the components and communication links that the analyzed
system contains of. Additionally, the knowledge base has to store the information about
potential threats that could be exploited on single interactions between two components.
All this information has to be provided by security experts, who are responsible for the
outcome of the risk assessment. During the �rst phase “Knowledge Base de�nition”
the information about system components and potential threats has to be saved in the
appropriate format that is suitable for Microsoft Threat Modeling Tool 2016.

Collected knowledge base by design is divided into two parts: data stored in Microsoft
Threat Modeling Tool knowledge base and data stored in the knowledge base of the
new end-to-end threat modeling tool. Microsoft Threat Modeling Tool knowledge base
has to contain data about system component types and possible single-link threats
because this information is necessary to use the tool for identifying single-link threats.
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In order to use identi�ed single-link threats for de�ning end-to-end threat scenarios the
knowledge base of the new end-to-end threat modeling tool has to contain data about
threat scenarios. The formal meaning of a threat scenario is the collection of single-link
threats along one attack path. The new end-to-end tool provides an opportunity to
combine single-link threats, which are detected by Microsoft Tool, into threat scenarios.
For that reason a term "threat set" is introduced in the knowledge base of the new tool.
A threat set stands for one malicious activity within an attack and contains one or
several single-link threat identi�ers (which come from the Microsoft Tool) that form a
speci�c malicious activity. Then, the user can combine threat sets in order to de�ne a
threat scenario. Within one threat scenario some threat sets can be a precondition for
executing others, and therefore new end-to-end tool is designed to provide its users an
opportunity to de�ne arbitrary relations between threat sets. All this information has
to be stored in the knowledge base of the new end-to-end threat modeling tool. Speci�c
format of both parts of the knowledge base as well as related examples are provided in
chapter 5.

As seen in the picture, the �rst phase of the work�ow consists of three elements:

• General knowledge base

• Form-based knowledge representation

• Knowledge base in Microsoft Threat Modeling Tool 2016 format

First of all, the knowledge base should be collected. This includes de�nition of analyzed
system’s single elements, potential threats, threat categories and threat conditions. This
step is indicated in the �rst element.

The second element depicts the transfer of the obtained knowledge base to the appropri-
ate format either by using a graphical user interface (see �gure 4.2), which is available
in the Microsoft Threat Modeling Tool since the version 2016, or by saving this data
manually in the XML format.

With the graphical user interface the components and their properties can be de�ned.
All provided data is then stored in the XML format in order to be parsed by the tool
during the modeling process.

Third element represents a ready-to-use knowledge base, which is stored in a single
XML �le. The knowledge base contains information about system components that
can be combined to build up a model, data �ow link types that aimed to connect the
components in a model, single-link threat types that are to be detected by the tool and
threat categories in order to group threat types.
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Figure 4.2: De�ning the knowledge base using MS Threat Modeling Tool UI

4.2.2 Modeling

During the second phase of the work�ow the model itself is constructed and potential
single-link threats are detected. The main output of the phase 2 is a list of possible
threats that can be exploited on any single communication link in the system. This
phase is schematically divided into two steps:

• System model

• MS Threat Modeling Tool

The fourth element in the picture stands for the modeling process. Here the task of the
security expert is to create a data�ow diagram from the previously de�ned components,
so that this model matches the structure of the analyzed system most closely. This
should be done using the capabilities of the Microsoft Threat Modeling Tool 2016. The
graphical user interface for building a model looks as shown in the �gure 4.3.

As seen from the picture, there is a menu with all component and data �ow types that
were taken from the third step of the work�ow. In order to build a model the user
has to drag and drop necessary components on the canvas and connect those with
corresponding data �ow edges.
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Figure 4.3: Modeling a system with MS Threat Modeling Tool

4.2.3 Threat identi�cation

The main goal of the third phase of the work�ow is to identify end-to-end threat
scenarios. Before the beginning of the phase “Threat Identi�cation” it is assumed that
the analyzed system is already modeled in the Microsoft Threat Modeling Tool 2016.
The �nal phase consists of three items:

• Single-link threat identi�cation

• Processing of single-link threats with additional tool that will be described in the
next chapter

• Final report

The item number six in the diagram depicts the list of potential threats that is detected
automatically by Microsoft Threat Modeling Tool 2016. This list contains only threats
that can be exploited involving individual communication links. Complex end-to-end
attacks, which involve exploitation of multiple threats and combining them with the
usage of regular system functions, are not yet considered in this list.

The seventh item in the diagram denotes the functioning of the new risk analysis tool.
The concept of this tool was developed during the research and it is going to be described
in the next chapter. This tool is aimed to cover the de�ciency of automatized solutions
that are capable to identify end-to-end threats. As it was mentioned in the previous
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chapter, there are currently no tools on the market that are designed to detect end-to-end
security attack scenarios based on the data �ow diagram.

The �nal item in the diagram, which is marked with number 8, depicts the �nal report.
By design his report has to be generated in the form of a table, where each row stands
for a threat scenario. Table 4.1 gives an idea of how this report is currently done at
Airbus Group [18].



34
Chapter4.

H
igh-levelconcept

Table 4.1: A fragment of the existing end-to-end threat analysis
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Potentiality Rationale

DEVS.C1

Disclosure

of Cabin IP

Device (same

domain)

Eaves-

dropping

Attack

from

cor-

rupted

Cabin IP

Device

An attacker could have corrupted a Cabin IP Device

as a starting point for his attack. With this malicious

device within the aircraft the attacker is able to eaves-

drop tra�c and gather information about services of

other Cabin IP Devices in the same domain. At a later

point in time the attacker would extract the retrieved

information.

3 3 3 3 4 3

(3
)L

ik
el

y

To successfully execute the attack an attacker needs to have restrictive knowl-

edge and a short preparation time. The attacker’s expertise needs to be pro�-

cient and he needs specialized equipment (e.g. specialized connectors). Since

some parts of the cabin are not supervised (e.g. lavatories) an attacker has

long access during a �ight to place the device. In order to collect long-term

information the attacker needs to enter that very same aircraft. An attacker

has a very low chance of being identi�ed, because the attack is completely

passive.

DEVS.C2

Disclosure

of Cabin IP

Device (same

domain)

Malicious

use of

admini-

stration

func-

tions

Attack

from

cor-

rupted

Cabin IP

Device

An attacker could have corrupted a Cabin IP Device as

a starting point for his attack. With this malicious de-

vice within the aircraft the attacker is able to gain read

access on another device. This allows him to gather

information on services and processes on the victim

Cabin IP Device with automatized script. At a later

point in time the attacker would extract the retrieved

information.

2 3 2 3 3 3

(2
)U

nl
ik

el
y

To successfully execute the attack an attacker needs to have sensitive knowl-

edge of the system (e.g. administration password) and a moderate prepara-

tion time. The attacker’s expertise needs to be pro�cient and he needs special-

ized equipment (e.g. specialized connectors). Since some parts of the cabin

are not supervised (e.g. lavatories) an attacker has long access during a �ight

to place the device. In order to collect long-term information the attacker

needs to enter that very same aircraft in another �ight. An attacker has a

low chance of being identi�ed, because no data or functions are tampered

during the attack.
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DEVS.C3

Disclosure

of Cabin IP

Device (same

domain)

Eaves-

dropping

Attack

from

cor-

rupted

AP

An attacker could have corrupted a Cabin AP as a

starting point for his attack. With this corrupted AP

in place, the attacker is able to eavesdrop tra�c and

gather information about services of other Cabin IP

Devices in the same domain. If the attacker is on the

aircraft he is able to eavesdrop tra�c in real-time.

3 3 3 3 4 2

(3
)L

ik
el

y

The potentiality rationale is similar to DEVS.C1 except that the window of

opportunity is much smaller, because the replaced WiFi APs are not as ac-

cessible as IP Devices in the lavatory. This assumes that WiFi APs are rather

hard to be replaced (e.g. behind lining). An attacker has a very low chance

of being identi�ed, because the attack is passive.

DEVS.C3

Disclosure

of Cabin IP

Device (same

domain)

Eaves-

dropping

Attack

from

cor-

rupted

AP

An attacker could have corrupted a Cabin AP as a

starting point for his attack. With this corrupted AP

in place, the attacker is able to eavesdrop tra�c and

gather information about services of other Cabin IP

Devices in the same domain. If the attacker is on the

aircraft he is able to eavesdrop tra�c in real-time.

3 3 3 3 4 2

(3
)L

ik
el

y

The potentiality rationale is similar to DEVS.C1 except that the window of

opportunity is much smaller, because the replaced WiFi APs are not as ac-

cessible as IP Devices in the lavatory. This assumes that WiFi APs are rather

hard to be replaced (e.g. behind lining). An attacker has a very low chance

of being identi�ed, because the attack is passive.
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This table represents a list of end-to-end threat scenarios, which may involve both
exploitation of potential threats and the utilization of normal system functioning. It
contains overall 13 columns:

• ID – a unique identi�er of the threat scenario

• Threat Condition – short description of the type of the current threat scenario

• Cause – starting point of the current attack

• Origin – a precondition for executing current threat scenario

• Scenario description – a detailed speci�cation of the current scenario, which may
include the description of other threat exploitations and normal function usage

• Elapsed Time, Expertise, Knowledge of Target, Equipment, Feeling of Impunity,
Window of Opportunity and Intrinsic Potentiality – numerical properties of cur-
rent threat scenario that have to be �lled by the security expert manually

• Potentiality Rationale – explanation of the choice of numerical values in previous
7 �elds

The generation of this report is the main task of the new tool that is marked number
7 in the diagram. Of course, the output of the future end-to-end threat modeling is
not going to exactly match the report provided in the table because the analysis made
at Airbus Group involves a lot of expert knowledge and individual approach to each
threat scenario. Still, during the research this report was analyzed and the concept of
automation of this approach was developed. A detailed description of this concept and
is provided in the next chapter. It includes input description, logic of the tool and output
description.

Before creating a concept of the tool that is going to automatize the generation of
the end-to-end report two important problems remained open. In order to produce a
reliable solution for automated end-to-end threat modeling, following questions had to
be answered �rst:

1. Does the existing end-to-end report cover all potential system component/func-
tion exploitations?

2. Are there any repeating patterns in the existing end-to-end threat scenarios that
could be applied in the new end-to-end threat modeling tool?

To solve these two problems, it was decided to make an independent analysis of potential
exploitations of unsecure cabin mockup components/functions in order to �nd the
uncovered threats in the present report (if any) and detect reoccurring rules (if any)
that could be perhaps used in the new end-to-end threat modeling tool. This step was
named threat mapping.
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4.3 Threat mapping

This section describes the process of threat mapping and how it helped to develop a
concept of the new tool that is aimed to perform end-to-end threat scenario generation.
The main idea was to �nd out, which single-link threats are involved into threat sce-
narios in the end-to-end report. The goal of this analysis was to give an overall view of
what kinds of threats are engaged into threat scenarios and to �nd drawbacks in the
present end-to-end report, as well as to help create the approach of automatic scenario
generation that is going to mitigate existent disadvantages in the present end-to-end
threat scenario report. In other words, the purpose of threat mapping is to help create
a concept of the tool that will produce threat scenarios automatically. The execution
of threat mapping consists of several simple steps: collect a list of possible single-link
threats in the system, extract single-link threats from the present risk analysis, map
threats from both lists with each other to see, which drawbacks the present risk analysis
has.

First of all, it is worth mentioning that the existing end-to-end threat analysis is a
description of attack scenarios that may involve both exploitation of unsecure sys-
tem components or functions and the normal usage of system operations. During the
research one or multiple threat exploitations were detected in each threat scenario.
The cabin mockup model used in the existing risk analysis represents a data �ow di-
agram; likewise it can be modeled with Microsoft Threat Modeling Tool. It was also
observed that threats in the manually produced threat analysis correspond to single-link
threats, which Microsoft Threat Modeling Tool 2016 is able to detect automatically, if
the appropriate knowledge base is provided. This similarity arises from the nature
of threat exploitations described in threat scenarios. Speci�cally, each threat repre-
sents a compromise of either a single system component (e. g. passenger service unit,
cabin management server etc.) or a single communication link (such as wireless link
between digital cabin logbook access point and line switch). Hence, it was inferred that
these compromises comply with single-link threats in the Microsoft Threat Modeling
Tool notation. To see the whole list of single-link threats that occur in the risk analy-
sis of the cabin mockup, each threat scenario was inspected and all involved threats
were extracted into a standalone list. An example of single-link threat extraction from
end-to-end threat scenarios is provided in the table 4.2.
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Table 4.2: Single-link threat extraction from end-to-end threat scenarios

ID
Threat
Condition

Cause Origin Scenario Description Potentiality Rationale

DEVH.C1

Disclosure of

Cabin IP Device

(higher domain)

Eaves-

dropping

Attack from

corrupted

Cabin IP

Device

An attacker could have corrupted a Cabin IP Device as a starting

point for his attack. With this malicious device within the aircraft

the attacker is able to eavesdrop tra�c and gather information about

services of other Cabin IP Devices in a higher domain. At a later

point in time the attacker would extract the retrieved information.

To successfully execute the attack an attacker needs to have sensitive knowledge and a long preparation

time. The attacker’s expertise needs to be on expert level (for breaking the domain segregation function

or obtaining the HMAC keys) and he needs specialized equipment (e.g. specialized connectors). Since

some parts of the cabin are not supervised (e.g. lavatories) an attacker has long access during a �ight to

place the device. An attacker has a very low chance of being identi�ed, because the attack is completely

passive.

DEVH.C2

Disclosure of

Cabin IP Device

(higher domain)

Malicious

use of ad-

ministration

functions

Attack from

corrupted

Cabin IP

Device

An attacker could have corrupted a Cabin IP Device as a starting

point for his attack. With this malicious device within the aircraft

the attacker is able to gain read access on another device. This allows

him to gather information on services and processes on the victim

Cabin IP Device with automatized script. At a later point in time the

attacker would extract the retrieved information.

To successfully execute the attack an attacker needs to have sensitive knowledge of the system (e.g. ad-

ministration password) and a long preparation time. The attacker’s expertise needs to be on expert level

(for breaking the domain segregation or obtaining the HMAC keys) and he needs specialized equipment

(e.g. specialized connectors). Since some parts of the cabin are not supervised (e.g. lavatories) an at-

tacker has long access during a �ight to place the device. In order to collect long-term information the

attacker needs to enter that very same aircraft in another �ight. An attacker has a low chance of being

identi�ed, because no data or functions are tampered during the attack.

DEVH.I1

Corruption of

Cabin IP Device

(higher domain)

Injection of

malicious

tra�c

Attack from

corrupted

Cabin IP

Device

An attacker could have corrupted a Cabin IP Device as a starting

point for his attack. With this malicious device within the aircraft

the attacker is able to inject tra�c and manipulate other Cabin IP

Devices in a higher domain. Once the attack is started (the device is

placed) there is no way in adjusting the attack.

The attack needs a long preparation and sensitive knowledge about the target in order to prepare at-

tack scripts. An attacker has a low chance of being identi�ed since even though data or functions are

tampered, no real-time interaction is required.
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This table contains speci�cations of three end-to-end threat scenarios. Single-link
threats that are exploited during the execution of a threat are marked green within the
description or potentiality rationale of the corresponding scenario. In this way all threat
scenarios were examined and likewise all relevant single-link threats were extracted
from each of them into a standalone list.

In order to identify the drawbacks of the existing end-to-end threat analysis, an indepen-
dent threat analysis of the aircraft cabin mockup was made. Therefore, it was decided to
collect a set of potential threats that are feasible in the aircraft cabin mockup from freely
available sources and to compare this list with a standalone list of threats extracted
from the actual cabin mockup analysis. Comparison of the existing end-to-end report
with the report from Microsoft Threat Modeling Tool containing single-link threats was
considered as a suitable step to create a concept of end-to-end risk analysis automation.
The independent single-link threat analysis of the aircraft cabin mockup was aimed to
identify a set of threats that are not present in the existing end-to-end report. For the
independent analysis mainly two sources of possible threats were used:

• CAPEC – Common Attack Pattern Enumeration and Classi�cation [19]

• List of wireless network attack patterns [20]

The �rst source is a publicly available catalog of common attack patterns, mainly con-
sisting of general purpose security threats and web oriented threats. The CAPEC
enumeration does not cover the set of attacks on wireless communication. Hence, the
second source was used to discover possible wireless threats. Both lists were carefully
checked through with the assistance of Airbus Group experts and threats, which were
considered irrelevant for the cabin core system, were removed from the list. Only those
threats remained, which were considered feasible in the aircraft cabin mockup and
saved in the knowledge base of Microsoft Threat Modeling Tool for further detection
of these threats in the model. The remaining threats were assigned to corresponding
components of the cabin mockup model. All these threats were saved into the knowl-
edge base of Microsoft Threat Modeling Tool and a model of the aircraft cabin mockup
was built in order to receive an automatically generated list of threats. Automatically
detected threats were mapped to those from the standalone list of threats that were
previously extracted from the present cabin mockup risk analysis. An extract from the
threat mapping table looks as shown in the table 4.3.
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Table 4.3: Threat mapping table

Cause Scenario Description Potentiality Rationale Listing of involved threats

Flooding

An attacker could �ood the LS interfaces.

Depending on the scheduling policy of the

switches enforcing domain segregation, a

switch could fall into pass all tra�c policy or

in drop all tra�c policy when it is overloaded.

An attacker needs a very short time of preparation to understand the system and

prepare attacks. Layman skills and public knowledge of the target is su�cient for

the attack. Specialized equipment is needed (e.g. connectors). An attacker has a

low chance of being identi�ed since even though �ooding is a conspicuous attack,

no real-time interaction is required.

TCP Flood, ICMP Flood, UDP Flood, CAM table over�ow attack, DHCP starvation

attack

Eavesdropping

An attacker could have corrupted a Cabin AP

before being imported into the A/C. With this

malicious device within the aircraft the at-

tacker is able to eavesdrop tra�c and gather

information about services of other Cabin IP

Devices in a higher domain. If the attacker is

on the aircraft he is able to eavesdrop tra�c

in real-time.

To successfully execute the attack an attacker needs to have sensitive knowledge

and a long preparation time. The attacker’s expertise needs to be on expert level

(for breaking the domain segregation function or obtaining the HMAC keys) and

he needs specialized equipment (e.g. specialized connectors). The window of

opportunity is small, because the replaced WiFi APs are not accessible in the lava-

tory. This assumes that WiFi APs are rather hard to be replaced (e.g. behind

lining). An attacker has a very low chance of being identi�ed, because the attack

is completely passive.

Malware-Directed Internal Reconnaissance, Targeted Malware, Malicious Soft-

ware Update, Malicious Logic Insertion via Counterfeit Hardware, Malicious

Logic Insertion into Product Memory, Intent Intercept, Intent Spoof, Leverage Exe-

cutable Code in Non-Executable Files, ASIC With Malicious Functionality, Rogue

access points, MAC spoo�ng, Evil twin AP, 802.1X Identity Theft, 802.1X Pass-

word Guessing, 802.1X EAP Downgrade, Eavesdropping (Wireless)
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Injection of malicios tra�c

An attacker could have corrupted a Cabin AP

before being imported into the A/C.With this

malicious device within the aircraft the at-

tacker is able to inject tra�c and manipulate

services of other Cabin IP Devices in a higher

domain. If the attacker is on the aircraft he is

able to inject tra�c in real-time.

The attack needs a long preparation and sensitive knowledge about the target in

order to prepare attack scripts. The window of opportunity is small, because the

replaced WiFi APs are not accessible in the lavatory. This assumes that WiFi APs

are rather hard to be replaced (e.g. behind lining). An attacker has a moderate

chance of being identi�ed since data or functions are tampered.

Malware-Directed Internal Reconnaissance, Targeted Malware, Malicious Soft-

ware Update, Malicious Logic Insertion via Counterfeit Hardware, Malicious

Logic Insertion into Product Memory, Intent Intercept, Intent Spoof, Leverage Exe-

cutable Code in Non-Executable Files, ASIC With Malicious Functionality, Rogue

access points, MAC spoo�ng, Evil twin AP, 802.1X Identity Theft, 802.1X Pass-

word Guessing, 802.1X EAP Downgrade, Format String Injection, Re�ection Injec-

tion, Command Delimiters, Argument Injection, Manipulating Input to File Sys-

tem Calls, File System Function Injection, Content Based, OS Command Injection,

Cache Poisoning, Functionality Misuse, Man in the Middle Attack, Manipulating

User-Controlled Variables, Manipulating Opaque Client-based Data Tokens, Re-

moving Important Functionality
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This table contains the information about threat scenarios that is relevant to threat
mapping, namely: cause, scenario description and potentiality rationale. Those sections
that were considered as single-link threat exploitations are marked green. The right-
most column contains listings of threats that were gathered from freely available sources
and were considered as coincident with green marked threats from threat scenarios.
That is, single-link threats from the right-most column were mapped to threats extracted
from end-to-end threat scenarios. In some cases the right-most list of single-link threats
did not cover all aspects of malicious activities described in a threat scenario due to the
generality of threats from the present risk analysis. Therefore, it cannot be claimed that
all threats from the present risk analysis are completely covered by single-link threats
from the independent analysis, but all threats that were considered conforming to threat
scenario descriptions have been put to the right-most column. After the mapping had
been done there was a list of single-link threats from the open sources left unmapped.
These unmapped threats identi�ed the shortcoming of the existing end-to-end threat
analysis. In order to create a more reliable risk analysis, these remaining threats have
to be included in the new risk analysis report.

Furthermore, it can be noticed that threat listings in rows 2 and 3 contain a set of
identic single-link threats. This situation occurred with multiple threat scenarios due to
repeating threat speci�cations. An example of such a repeating threat references is “an
attacker could have corrupted cabin wireless access point” from scenario descriptions in
rows 2 and 3. This threat description is rather abstract and therefore it was mapped to
multiple single-link threats from the open sources, meaning that every threat scenario
that takes a corrupted wireless access point into consideration will have the same single-
link threats in the right-most column of the mapping table. Thus, during the threat
mapping repeating patterns in threat scenarios were observed. Therefore, it is assumed
that there is a possibility of applying similar templates in order to produce di�erent
end-to-end threat scenarios in di�erent parts of the system model. The threat overlap
that took place in the threat mapping caused an idea of combining single-link threats
into threat scenarios and identifying them automatically.

At this point, having Microsoft Threat Modeling Tool that can be used to model the
system and to identify single-link threats, the only lacking capability is to combine
identi�ed threats into end-to-end threat scenarios. As long as currently no automated
solution for end-to-end risk assessment exists, the actual end-to-end risk assessment
made by Airbus Group experts was considered as a potential output of such a tool.
Since automated creation of such an end-to-end threat report is the global goal of the
whole research, the detailed low-level concept of this tool will be provided in a separate
chapter.
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Chapter 5

Low-level concept

The main task of the new tool that is being designed here is to �nd end-to-end threats
in the system model. The tool is designed to identify end-to-end threats based on the
following available information:

• System model – a network plan of the analyzed system.

• Asset list – valuable information, system components (HW or SW) or their func-
tionality that have a signi�cant value to the owner or dependent components.

• Access point list - system components that are available for the attacker by design.

• Existing single-link threats in the model – threats identi�ed by Microsoft Threat
Modeling Tool.

• Threat set relations – in order to execute a threat scenario, exploitation of some
threats may be a precondition for others. The structure of threat sets being a
precondition for other threat sets may be arbitrarily complex.

Now each item from the list above is going to be explained in detail. In this document all
steps of the threat modeling concept will be presented based on a single small example
that is aimed to help understand the work�ow.

5.1 System model

An important component of the whole model-based threat assessment is the system
model. It is going to be built with Microsoft Threat Modeling Tool. Further risk analysis
is going to be built upon this model. The model is represented by a network plan that
is depicted by a connected directed graph, where a bidirectional communication link
is modeled with two edges with opposite direction. The nodes in this graph stand
for system components, edges denote communication links between components and
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boundaries indicate domain areas. System model should be built using Microsoft Threat
Modeling Tool, therefore, component types and single-link threat types should be
de�ned in its knowledge base.

Before building a model, all possible components have to be �rst de�ned in the knowl-
edge base by a security expert. As long as the knowledge base will be interpreted by
the Microsoft Threat Modeling Tool, it must stick to a certain format. An XML listing
5.1 fragment shows an example for component speci�cation.

Listing 5.1: De�nition of component types
<ArrayOfElementType >

<ElementType >
<Name> P a s s e n g e r S e r v i c e Un i t < / Name>
<ID>PSU< / ID>
< D e s c r i p t i o n >A r e p r e s e n t a t i o n o f a PSU< / D e s c r i p t i o n >
<Hidden> f a l s e < / Hidden>
< P a r e n t E l e m e n t >GE . P< / Pa r e n t E l em e n t >
< R e p r e s e n t a t i o n > I n h e r i t e d < / R e p r e s e n t a t i o n >
<Image> / Images / ImageDevice7 . png< / Image>
< A t t r i b u t e s / >

< / ElementType >
<ElementType >

<Name> L ine Swi tch < / Name>
<ID>LS< / ID>
< D e s c r i p t i o n >A r e p r e s e n t a t i o n o f a LS< / D e s c r i p t i o n >
<Hidden> f a l s e < / Hidden>
< P a r e n t E l e m e n t >GE . P< / Pa r e n t E l em e n t >
< R e p r e s e n t a t i o n > I n h e r i t e d < / R e p r e s e n t a t i o n >
<Image> / Images / ImageSwitch7 . png< / Image>
< A t t r i b u t e s / >

< / ElementType >
<ElementType >

<Name>Main Cabin Swi tch < / Name>
<ID>MCS< / ID>
< D e s c r i p t i o n >A r e p r e s e n t a t i o n o f a MCS< / D e s c r i p t i o n >
<Hidden> f a l s e < / Hidden>
< P a r e n t E l e m e n t >GE . P< / Pa r e n t E l em e n t >
< R e p r e s e n t a t i o n > I n h e r i t e d < / R e p r e s e n t a t i o n >
<Image> / Images / ImageSwitch7 . png< / Image>
< A t t r i b u t e s / >

< / ElementType >
<ElementType >

<Name>SomeIP< / Name>
<ID>SomeIP< / ID>
< D e s c r i p t i o n >

A r e p r e s e n t a t i o n o f SomeIP communicat ion f low
< / D e s c r i p t i o n >
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<Hidden> f a l s e < / Hidden>
< P a r e n t E l e m e n t >GE . DF< / P ar e n t E l em e n t >
< R e p r e s e n t a t i o n > I n h e r i t e d < / R e p r e s e n t a t i o n >
<Image> / Images / ImageDataFlow7 . png< / Image>
< A t t r i b u t e s / >

< / ElementType >
< / ArrayOfElementType >

There are four system components de�ned in the above knowledge base fragment:
Passenger Service Unit, Line Switch, Main Cabin Switch and SomeIP communication
�ow. All components are stored within a parent XML tag “<ArrayOfElementType>”.
Each component, that is stored within a “<ElementType>” tag, has a name, which is then
shown in the model, and a unique identi�er, which is then used by the tool to distinguish
components from each other. The tag "<ParentElement>" indicates the identi�er of the
group of elements that a corresponding component belongs to. Other �elds (mostly
self-explanatory) are not important at the moment, but necessary to produce a valid
knowledge base.

After system components are de�ned, next step is to build a model. A model can
consist of arbitrary number of components (of the same type as well), whose types
were de�ned previously (see listing 5.1). Microsoft Threat Modeling Tool will generate
unique identi�er for all components of the model, even if they are of the same type.
On the picture below a model of a small prototype system with previously de�ned
components is shown.

Figure 5.1: Prototype system model

This is a complete model of the analyzed system. There are three components in this
model: Passenger Service Unit (PSU), Line Switch (LS) and Main Cabin Switch (MCS).
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These components are connected with each other by wired bidirectional links using
SomeIP protocol. These links are depicted by directed edges in the graph.

5.2 Asset list

The goal of an attacker is to compromise one or multiple assets in the system by ex-
ecuting a threat scenario. An asset can be anything that has a value to the company,
for example, knowledge, software, services, computers etc. Therefore, after creating
a model the user has to specify the asset list. These could be either function or data
assets. Each threat scenario stands for a compromise of an asset. Assets can reside on
nodes (e. g. con�guration �les on a switch), edges (e. g. transmission of important
data through this link) or boundary crosses (e. g. domain segregation). Hence, after the
model has been built, user has to specify assets and their locations within the model.
The knowledge base section that is responsible for holding information about assets is
also stored in XML format. In the XML listing 5.2 example two assets are de�ned.

Listing 5.2: De�nition of assets

< A s s e t L i s t >
< A s s e t >

< I d >LSF1< / I d >
<Name> L ine Swi tch F u n c t i o n < / Name>
<Type> F u n c t i o n < / Type>
< D e s c r i p t i o n >

L ine S w i t c h e s e n f o r c e the domain s e g r e g a t i o n and per form
b a s i c f i r e w a l l a c t i v i t i e s as a mul t i −domain d e v i c e

< / D e s c r i p t i o n >
<Element >Node< / Element >
< E lement Id >807 f63d9 −168 c−435e−8dbd −5257885 c7a51 < / E lement Id >

< / A s s e t >
< A s s e t >

< I d >MCS1< / I d >
<Name>Main Cabin Swi tch Data < / Name>
<Type>Data < / Type>
< D e s c r i p t i o n >

A l l IP t r a f f i c p a s s e s the main c a b i n s w i t c h . Man ipu la ted
s w i t c h i n g d e c i s i o n s can a f f e c t a v a i l a b i l i t y and i n t e g r i t y o f
the IP t r a f f i c p a s s i n g the s w i t c h .

< / D e s c r i p t i o n >
<Element >Edge< / Element >
< E lement Id > a f2ae65d −5aa2 −4c00 −8e64 −97 e 6 a 6 c 8 1 7 6 9 < / E lement Id >

< / A s s e t >
< / A s s e t L i s t >
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The upper XML fragment denotes the asset de�nition, which is stored in the knowledge
base of the new end-to-end tool. It contains two assets, each of which has a unique
identi�er, name, type (function or data), description, a property specifying whether this
asset resides on a node, edge or a boundary crossing, and the identi�er of the element,
on which this asset is located within the model.

5.3 Access point list

An essential part of the model is the list of access points. An access point represents
a system component or interface that is available to the user. All access points are
assumed to be potential starting points of the attack. There are usually multiple groups
of people who can access di�erent parts of the analyzed system during its usage or
maintenance. Theoretically, a security attack can be conducted by any person from any
group of users or maintenance personnel. De�ning user groups helps to model threats
that come from speci�c system users - for example, aircraft passengers. Accordingly,
prior to building a model it is necessary to specify the components of the model that
are accessible to the potential attacker. If there are multiple groups of system users,
such as passengers, cabin crew and maintenance personnel for the aircraft cabin, then
individual models have to be built for each group of users. The knowledge base of the
model must contain information about access points in the XML format. An XML listing
5.3 denotes the de�nition an access point.

Listing 5.3: De�nition of access points

< A c c e s s P o i n t L i s t >
< A c c e s s P o i n t >

< I d >PSU1< / I d >
<Name> P a s s e n g e r S e r v i c e Un i t < / Name>
< D e s c r i p t i o n > P a s s e n g e r s have a d i r e c t a c c e s s t o the PSU i n

f r o n t o f t h e i r s e a t s . < / D e s c r i p t i o n >
<Element >Node< / Element >
< E lement Id >004 f320b −ccc9 −4703−9728−37 a146946296 < / E l ement Id >

< / A c c e s s P o i n t >
< / A c c e s s P o i n t L i s t >

In this XML fragment an access point is introduced. Each access point has its own
unique identi�er, name, description, a property specifying whether this access point
resides on a node or an edge and the identi�er of the model element, on which this
access point is located. The last element identi�er is read from the model that was built
using Microsoft Threat Modeling Tool, which generates these identi�ers automatically.
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5.4 Single-link threats

After system assets and model are de�ned, it is possible to make a single-link threat
analysis using Microsoft Threat Modeling Tool. Single-link threats are the basic entities
of an attack on a system, because by exploiting them an attacker can come up with a
complex end-to-end threat scenario. Single-link threats are identi�ed automatically by
means of user-de�ned knowledge base. This knowledge base consists of several XML
�les, where single-link threats and their properties are de�ned. An XML listing 5.4
gives an example of single-link threat de�nition.

Listing 5.4: Single-link threat de�nition
< ArrayOfThreatType >

<ThreatType >
< I d >SNT< / I d >
< S h o r t T i t l e > S n i f f i n g Network T r a f f i c < / S h o r t T i t l e >
< Category >GI< / Category >
< D e s c r i p t i o n >

Moni tor ing network t r a f f i c between nodes o f a network .
< / D e s c r i p t i o n >
< G e n e r a t i o n F i l t e r s >

< I n c l u d e >
( s o u r c e i s ’MCS ’ and t a r g e t i s ’ LS ’ ) or
( s o u r c e i s ’ LS ’ and t a r g e t i s ’MCS ’ )

< / I n c l u d e >
< Exc lude / >

< / G e n e r a t i o n F i l t e r s >
< / ThreatType >
<ThreatType >

< I d >AS< / I d >
< S h o r t T i t l e > Act ion S p o o f i n g < / S h o r t T i t l e >
< Category >DI< / Category >
< D e s c r i p t i o n > D i s g u i s i n g one a c t i o n f o r a n o t h e r . < / D e s c r i p t i o n >
< G e n e r a t i o n F i l t e r s >

< I n c l u d e >
s o u r c e i s ’ PSU ’

< / I n c l u d e >
< Exc lude / >

< / G e n e r a t i o n F i l t e r s >
< / ThreatType >
<ThreatType >

< I d >AI< / I d >
< S h o r t T i t l e >Argument I n j e c t i o n < / S h o r t T i t l e >
< Category > I < / Category >
< D e s c r i p t i o n >

I n j e c t i n g d a t a or command s y n t a x through non− v a l i d a t e d and
non− f i l t e r e d arguments .
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< / D e s c r i p t i o n >
< G e n e r a t i o n F i l t e r s >

< I n c l u d e >
s o u r c e i s ’ LS ’ and t a r g e t i s ’MCS ’

< / I n c l u d e >
< Exc lude / >

< / G e n e r a t i o n F i l t e r s >
< / ThreatType >
<ThreatType >

< I d >AMEEF< / I d >
< S h o r t T i t l e > Access ing , Modi fy ing or E x e c u t i n g E x e c u t a b l e
F i l e s < / S h o r t T i t l e >
< Category >EA< / Category >
< D e s c r i p t i o n >

E x p l o i t i n g a system c o n f i g u r a t i o n t h a t a l l o w s t o a c c e s s
and an e x e c u t a b l e f i l e .

< / D e s c r i p t i o n >
< G e n e r a t i o n F i l t e r s >

< I n c l u d e >
s o u r c e i s ’ LS ’

< / I n c l u d e >
< Exc lude / >

< / G e n e r a t i o n F i l t e r s >
< / ThreatType >

< / ArrayOfThreatType >

In this XML section the de�nition of four single-link threats is shown. Each threat
de�nition has following information.

• Unique identi�er – distinguishes current threat from the others.

• Short title – will be displayed in the report.

• Category identi�er – denotation of the category that current threat belongs to.

• Generation �lters – an item containing “<Include>” and “<Exclude>” rules. The
expressiveness of these �lters will be described.

Tags “<Include>” and “<Exclude>” contain Boolean expressions that specify the prop-
erties of a single communication link, which Microsoft Threat Modeling Tool uses to
identify potential threats. If “<Include>” rule evaluates to true then “<Exclude>” is
evaluated if it is present. If “<Exclude>” evaluates to false then the corresponding threat
appears in potential threat list, otherwise the corresponding threat is ignored. With
these �lters it is possible to examine the type of source node, target node and edge
between them. For example, "source is ’MCS’" means that the source node of the com-
munication link must be of the type ’MCS’. The same can be done considering target
node and edge: "target is ...", "�ow is ...". Also, it is possible to examine the attributes
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of source node, target node and edge between them. For example, "source.attribute1
is ’Yes’" means that the value of source node attribute "attribute1" must be equal to
’Yes’. The same can be done considering target node and edge: "target.attribute1 is ...",
"�ow.attribute1 is ...". One include/exclude rule can consist of arbitrary number of such
Boolean expressions linked with AND/OR operators.

This description of the knowledge base format is not complete. There are more ways
to adjust the properties of threats. Further information about the MS Threat Modeling
Tool knowledge base format can be found in the Threat Modeling Tool SDK.

5.5 Threat set dependencies

When single-link threats are identi�ed, the next step is to �nd out end-to-end threat
scenarios. In order to enable automatic search for end-to-end threats, security expert
has to de�ne threat sets. Threat sets stand for combinations of single-link threats,
forming a single activity within a threat scenario. Each threat set consists of one or
several single-link threats detected by Microsoft Threat Modeling Tool. All in all, a
threat scenario is a collection of single-link threats that come from Microsoft Threat
Modeling Tool report. The notion of threat sets is introduced for the purpose of reusing
same combinations of single-link threats in multiple threat scenarios. Using all this
information the tool is going to enumerate all paths in the model between access points
and assets, and according to potential single-link threats along each path, detect possible
threat scenarios. A threat scenario appears in the end report, if all single-link threats of
this scenario are present along the path between access point and asset.

De�nition of threat sets is necessary because one end-to-end threat scenario may involve
exploitation of multiple single-link threats. Furthermore, exploitation of some single-
link threats may be a mandatory precondition for exploitation of other threats. Hence,
an expert has to decide, which threats are going to be involved into di�erent activities
of threat scenarios, and what are dependencies between them. An XML listing 5.5 gives
an example, how to combine multiple single-link threats into sets in order to de�ne
activities of threat scenarios.

Listing 5.5: Threat set de�nition
< T h r e a t S e t L i s t >

< T h r e a t S e t >
<Name> C o r r u p t i o n o f c a b i n IP d e v i c e < / Name>
< S i n g l e L i n k T h r e a t s >

< T h r e a t I d >AS< / T h r e a t I d >
< T h r e a t I d >AMEEF< / T h r e a t I d >

< / S i n g l e L i n k T h r e a t s >
< / T h r e a t S e t >
< T h r e a t S e t >
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<Name> Eavesdropp ing t r a f f i c < / Name>
< S i n g l e L i n k T h r e a t s >

< T h r e a t I d >SNT< / T h r e a t I d >
< / S i n g l e L i n k T h r e a t s >

< / T h r e a t S e t >
< T h r e a t S e t >

<Name> T r a f f i c i n j e c t i o n < / Name>
< S i n g l e L i n k T h r e a t s >

< T h r e a t I d >AI< / T h r e a t I d >
< / S i n g l e L i n k T h r e a t s >

< / T h r e a t S e t >
< / T h r e a t S e t L i s t >

The example above shows the de�nition of three threat sets, which stand for activities
within threat scenarios. Each threat set has the following properties:

• Title – a name of the malicious activity within an end-to-end attack.

• Identi�ers of single-link threats (using Microsoft Threat Modeling Tool notation)
that an attacker has to exploit in order to conduct current malicious activity.
There can be arbitrarily many (but at least one) threats speci�ed in this list. In
this example all three threat sets are constructed from the single-link threats
de�ned in the previous example.

Several properties of threat scenarios have to be de�ned separately. In this part of
the knowledge base only the information dedicated exclusively to end-to-end threat
scenarios as separate entities will be stored. An example of threat scenario de�nition is
provided in the XML listing 5.6.

Listing 5.6: Threat scenario de�nition
< T h r e a t S c e n a r i o L i s t >

< T h r e a t S c e n a r i o >
<Name> Eavesdropp ing and i n j e c t i o n o f m a l i c i o u s t r a f f i c < / Name>
<ID>DEVS . C1< / ID>
<Desc> At tac k from a c o r r u p t e d Cabin IP Device < / Desc>

< / T h r e a t S c e n a r i o >
< / T h r e a t S c e n a r i o L i s t >
\ c ap io n { t r o l o }

An XML tag “<ThreatScenarioList>” contains all de�nitions of threat scenarios. In the
current example there is only one threat scenario de�ned. For each threat scenario three
properties have to be provided – name, ID and description.

Then, the expert has to specify dependencies between previously de�ned threat sets
(malicious activities) and thereby de�ne threat scenarios. As long as exploitation of
some threat sets may be a necessary precondition for exploitation of other threat sets
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within an end-to-end attack, dependencies can be re�ected by a directed graph. An
example of how a threat scenario can be de�ned by a directed graph is illustrated in the
�gure 5.2.

Figure 5.2: Threat set dependencies forming a threat scenario

Threat set dependencies are designed to be de�ned in the form of a graph. Threat sets
are represented by elliptical nodes, threat scenarios by rectangular nodes. Edges in
the graph mean that exploitation of threats from the source node is a precondition for
exploitation of threats from the destination node. Respectively, the right-most node in
this graph, where all arrows terminate, is a threat scenario itself because exploitation
of all threat sets is a precondition for conducting this threat scenario. In this particular
example the edge from the left-most node to the top-most node, for instance, means
that in order to exploit threats from the set “Eavesdropping tra�c” an attacker has to
�rst exploit all single-link threats from the set “Corruption of cabin IP device”. The
structure of the graph may be arbitrarily complex, as far as it makes logical sense (no
cycles).

5.6 Algorithm for generating threat scenarios

At the moment when single-link threats are found and threat sets including their depen-
dencies are de�ned, the tool has all necessary information to detect end-to-end threat
scenarios in the model. The algorithm, which is used by the tool, is going to loop over
all access points in the graph-based model, �nding all simple paths from those to the
assets using a modi�ed Depth-First-Search algorithm for enumerating all simple paths
in a graph [21].

In his textbook "The Algorithm Design Manual" Skiena presents the algorithm for
enumerating all simple paths between two nodes by using Depth-First-Search algorithm
and backtracking. There is no explicit formula that counts the number of solutions as a
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function of the number of edges or vertices, because the number of paths depends upon
the structure of the graph.

The idea of the provided algorithm can be described as follows. Let G = (V,E) be a
�nite directed graph without multiple edges or self-loops. V = (1, 2, ..., N) is the list of
vertices of G, and E = (e1, e2, ..., em) is the list of edges of G. The backtracking algorithm
adds potential edge candidates to the partial solution A, invokes itself recursively and
removes them after the recursive function call is �nished. The following C++ code
snippet expresses the implementation of the backtracking function:

Listing 5.7: Implementation of backtracking

void b a c k t r a c k ( in t a [ ] , in t k , d a t a i n p u t ) {
in t c [MAXCANDIDATES ] ; / ∗ c a n d i d a t e s f o r n e x t p o s i t i o n ∗ /
in t n c a n d i d a t e s ; / ∗ n e x t p o s i t i o n c a n d i d a t e c oun t ∗ /
in t i ; / ∗ c o u n t e r ∗ /

i f ( i s _ a _ s o l u t i o n ( a , k , i n p u t ) )
p r o c e s s _ s o l u t i o n ( a , k , i n p u t ) ;

e l se {
k = k + 1 ;
c o n s t r u c t _ c a n d i d a t e s ( a , k , input , c ,& n c a n d i d a t e s ) ;
for ( i = 0 ; i < n c a n d i d a t e s ; i ++) {

a [ k ] = c [ i ] ;
make_move ( a , k , i n p u t ) ;
b a c k t r a c k ( a , k , i n p u t ) ;
unmake_move ( a , k , i n p u t ) ;

}
}

}

In this code snippet a represents an array of edge identi�ers that are present in the
current path, k stands for the number of edges in the current partial solution (or depth
of the recursion), input represents any kind of data structure that holds information
about the graph, source and destination nodes. Backtracking ensures correctness by
enumerating all possibilities. It ensures e�ciency by never visiting a state more than
once.

First, the backtracking algorithm checks if current partial solution is valid for the initial
problem. If so, it outputs the solution by process_solution function. Otherwise, recursion
depth variable k is incremented and possible candidates for the current position in the
partial solution are generated by construct_candidates routine. After that, the algorithm
loops through the array of generated candidates, adds them to the current solution with
make_move routine and makes a recursive call to backtracking function. When the
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recursive call is �nished, the algorithm removes previously added candidate from the
partial solution by using unmake_move routine.

Now it is necessary to explain, what is the partial solution in the case of enumerating
all paths between two nodes. The starting point of any path from s to t is always s.
Thus, s is the only candidate for the �rst position and S 1 = s. The possible candidates
for the second position are the vertices v such that (s, v) is an edge of the graph, for
the ath wanders from vertex to vertex using edges to de�ne the legal steps. In fact, S
k+1 consists of the set of vertices adjacent to a k that have not been used elsewhere
in the partial solution A. Hence, the solution A can be represented as an array of edge
identi�ers, where successive array entries de�ne edges that have a common node. The
�rst entry of the array A stands for the edge that comes out of the source node, and the
last entry de�nes the edge, whose destination is the target node.

The edge candidates are represented by edges that are adjacent to the last node of the
partial solution. The �rst position can be occupied by the edges that are adjacent to
the source node, second position can be occupied by the edges that are adjacent to the
node that is examined on the current backtracking step, and so on. The following code
snippet provides the implementation of the candidate generation logic:

Listing 5.8: Implementation of function for generating candidates

void c o n s t r u c t _ c a n d i d a t e s ( in t a [ ] , in t k , graph g , in t c [ ] ,
in t ∗ n c a n d i d a t e s ) {

in t i ; / ∗ c o u n t e r ∗ /
b o o l i n _ s o l [NMAX] ; / ∗ what i s a l r e a d y i n t h e s o l u t i o n ? ∗ /
edgenode ∗ p ; / ∗ t empo ra ry p o i n t e r ∗ /
in t l a s t ; / ∗ l a s t v e r t e x on c u r r e n t pa th ∗ /
for ( i = 1 ; i <NMAX; i ++) i n _ s o l [ i ] = f a l s e ;
for ( i = 1 ; i <k ; i ++) i n _ s o l [ a [ i ] ] = t r u e ;
i f ( k ==1) { / ∗ a lways s t a r t from v e r t e x 1 ∗ /

c [ 0 ] = 1 ;
∗ n c a n d i d a t e s = 1 ;

} e l se {
∗ n c a n d i d a t e s = 0 ;
l a s t = a [ k − 1 ] ;
p = g . edges [ l a s t ] ;
while ( p != NULL ) {

i f ( ! i n _ s o l [ p−>y ] ) {
c [ ∗ n c a n d i d a t e s ] = p−>y ;
∗ n c a n d i d a t e s = ∗ n c a n d i d a t e s + 1 ;

}
p = p−>next ;

}
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}
}

In order to generate candidate edges for the current position, the following input has to
be provided: an array of integers a, de�ning the current partial solution A, an integer k
that stands for the recursion depth in backtracking, an instance of the data structure that
contains information about the graph, an integer array c that is going to store candidates
and an integer candidates, indicating the number of generated edge candidates during
the current function call. The candidate edges that are generated during one call of
construct_candidates function are the ones that are adjacent to the last node of the
current partial solution. In the next step of backtracking each of them is added to
the partial solution, a recursive call to backtracking function is made, and when it is
�nished, the candidate edge is removed from the partial solution. This logic ensures the
depth-�rst manner of the graph traversal while constructing partial solutions.

In order to demonstrate, how the algorithm works, consider an example graph that is
depicted in �gure 5.3.

Figure 5.3: An example graph

Suppose, node 1 is the source and node 5 is the target. First, the algorithm checks if
the partial solution that has been generated so far is valid for the initial problem. This
check takes place in the beginning of each call to the backtracking function. On the
�rst step the partial solution is empty, so it is not valid for the initial problem. Then,
the algorithm generates candidate edges that are adjacent to the node 1. They are: (1,4),
(1,3) and (1,2). The edge (1,4) is being added to the partial solution and a recursive call to
the backtracking function is made. On the second step, as long the partial solution is not
complete, new candidate edges are generated. In this particular case they are: (4,5) and
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(4,2). The algorithm adds the edge (4,5) to the partial solution and makes a recursive call
again. Now, the partial solution (1,4), (4,5) is complete, so it is being reported and the
backtracking function terminates. Now, the recursion is one step upper, the candidate
edge (4,5) is removed from the partial solution, the second candidate edge (4,2) is added
to it and again, a recursive call to the backtracking function is made. There are two
candidate edges that have the node 2 as their source: edges (2,1) and (2,5). The edge
(2,1) cannot be added to the partial solution, because it already contains an edge that
is adjacent to the node 1. Hence, the edge (2,5) is added to the partial solution and the
following recursion call detects that it is complete. So, the solution (1,4), (4,2), (2,5) is
reported. The algorithm then continues to work in the same manner till all solutions
are reported.

Examining di�erent candidate edges on each step ensures that each solution is gen-
erated only once. Furthermore, the depth-�rst fashion of the graph traversal gives
an opportunity not to store all valid solutions found so far, but rather to report them
immediately. The complete algorithm description can be found in [21].

Then, having all possible paths from access points to assets, the algorithm will look for
single-link threats along each path and group them into threat sets, which were de�ned
previously. After that, the algorithm will search for relevant threat set dependency
schemes, which correspond to the threat sets identi�ed on the path before. All threat
scenarios, whose dependency schemes match the present threat sets, will be added
to the end report. To give an idea how this algorithm is going to work, assume the
algorithm is going to work on a system model, whose structure was de�ned previously
in this document:

Figure 5.4: Prototype system model

As mentioned in the above XML fragments, the access point in this system is the Pas-
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senger Sevice Unit and the asset is represented by the Main Cabin Switch. Pseudocode
for generating threat scenarios can be expressed as

Listing 5.9: Pseudocode for generating threat scenarios

1 G e n e r a t e T h r e a t S c e n a r i o s ( t h r e a t S e t K B , scenar ioKB , graph ) :
2 t h r e a t S c e n a r i o L i s t : = { }
3 p a t h s : = B a c k t r a c k ( graph )
4 for p i n p a t h s :
5 t h r e a t S e t s : = F i n d T h r e a t S e t s ( p , t h r e a t S e t K B )
6 t h r e a t S c e n a r i o s : = F i n d S c e n a r i o s B y T h r e a t S e t s (
7 t h r e a t S e t s , s cenar ioKB )
8 t h r e a t S c e n a r i o L i s t <− t h r e a t S c e n a r i o s
9 return t h r e a t S c e n a r i o L i s t
10
11 F i n d T h r e a t S e t s ( path , t h r e a t S e t K B ) :
12 t h r e a t S e t s : = { }
13 for t h r e a t S e t i n t h r e a t S e t K B :
14 i s T h r e a t S e t S u i t a b l e : = t r u e
15 for t h r e a t i n t h r e a t S e t :
16 i f ! p a t h C o n t a i n s T h r e a t ( path , t h r e a t ) :
17 i s T h r e a t S e t S u i t a b l e : = f a l s e
18 break
19 i f i s T h r e a t S u i t a b l e :
20 t h r e a t S e t s <− t h r e a t S e t
21 return t h r e a t S e t s
22
23 F i n d S c e n a r i o s B y T h r e a t S e t s ( t h r e a t S e t L i s t , s cenar ioKB ) :
24 r e s u l t S c e n a r i o L i s t : = { }
25 t h r e a t S c e n a r i o s : = scenar ioKB
26 for t h r e a t S c e n a r i o i n t h r e a t S c e n a r i o s :
27 for t h r e a t S e t i n t h r e a t S e t L i s t :
28 for s c e n a r i o T h r e a t S e t i n t h r e a t S c e n a r i o . t h r e a t S e t s :
29 i f s c e n a r i o T h r e a t S e t == t h r e a t S e t :
30 s c e n a r i o T h r e a t S e t . marked : = t r u e
31 break
32
33 for t h r e a t S c e n a r i o i n t h r e a t S c e n a r i o s :
34 i s S c e n a r i o S u i t a b l e : = t r u e
35 for s c e n a r i o T h r e a t S e t i n t h r e a t S c e n a r i o . t h r e a t S e t s :
36 i f ! s c e n a r i o T h r e a t S e t . marked :
37 i s S c e n a r i o S u i t a b l e : = f a l s e
38 break
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39 i f i s S c e n a r i o S u i t a b l e :
40 r e s u l t S c e n a r i o L i s t <− t h r e a t S c e n a r i o
41 return r e s u l t S c e n a r i o L i s t

The algorithm consists of three functions: GenerateThreatScenarios, FindThreatSets
and FindScenariosByThreatSets. The entry point of the algorithm is the function Gener-
ateThreatScenarios that receives the graph structure and the knowledge base containing
information about threat sets (see listing 5.5) and threat scenarios (see listing 5.6 and
�gure 5.2) as input. The execution logic of all these functions is now going to be
described.

GenerateThreatScenarios. At the beginning an empty list of threat scenarios is initialized
(line 2). Then, the program searches for all simple paths in the graph from access
points to assets using Depth-First-Search/backtracking algorithm (line 3). In the current
example there is only one access point – Passenger Service Unit. After that the program
loops through the list of paths (line 4) and identi�es which single-link threats are
possible along this path and whether they form combinations that correspond to threat
sets de�ned previously in the knowledge base (line 5). This is done using the function
FindThreatSets that is going to be described later. The extracted threat sets are stored in
the list threatSets. In the current example all four single-link threats from the knowledge
base are to be identi�ed on the second path. Those are: Sni�ng Network Tra�c
(interaction between LS and MCS), Action Spoo�ng (outgoing link from PSU), Argument
Injection (link between LS and MCS) and Accessing/Modifying/Executing Executable
Files (outgoing link from LS). All these threats are present on the second path, because
it contains all types of interactions that are required by those threats. Respectively,
the algorithm identi�es that those threats can be combined to threat sets. Threat set
“Corruption of cabin IP device” requires two single-link threats to be ful�lled, whereas
“Eavesdropping tra�c” and “Tra�c injection” require only one single-link threat each.
All single-link threats, which are necessary for these three threat sets are present along
the current attack path. On the next step, when all potential threat sets are identi�ed,
the algorithm looks up into the knowledge base again to �nd out if those threat sets
are enough to match a threat scenario (lines 6 and 7). This is done using function
FindScenariosByThreatSets that is going to be described later. If the found threat sets
match some threat scenarios in the knowledge base, then they are added to the �nal list
of threat scenarios (line 8), which is returned as an output of the algorithm in the end.
In the current case three identi�ed threat sets comprise a threat scenario denoted on
the �gure 2. Hence, this threat scenario is added to the end report.

FindThreatSets. This function has a goal to identify single-link threats along given path
and to extract those threats from the knowledge base, which can be formed from the
found single-link threats. Two parameters are received as input: a simple path in the
graph from an access point to an asset and threat set knowledge base. In the beginning
an empty list threatSets that is going to contain relevant threat sets is created (line
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12). Then the function loops through all threat sets de�ned in the knowledge base to
retrieve only the relevant ones for the current attack path (line 13). This is done via
another for-loop over single-link threats within the current threat set (line 15). On each
iteration the algorithm checks, whether a current single-link threat is possible along
the attack path (line 16), and if not, then the whole threat set is �ltered out (lines 17 and
18). Otherwise, if all single-link threats are present on the current attack path, then the
current threat is added to the resulting list (lines 19 and 20). In the end the list threatSets
with all relevant threat sets along the given path is returned (line 21).

FindScenariosByThreatSets. The task of this function is to identify, which threat scenar-
ios from the knowledge base can be executed on the given path in the model, knowing
possible threat sets (malicious activities) that are feasible on this path. For the exe-
cution of this function two parameters have to be speci�ed: a list of threat sets that
were denoted as possible ones on the attack path and the knowledge base containing
information about end-to-end threat scenarios. The starting point of this function is the
initialization of an empty list resultScenarioList that is going to store plausible threat
scenarios (line 24). Then the algorithm copies the knowledge base of threat scenarios to
the list threatScenarios (line 25) and loops through it (line 26) in order to �nd applicable
ones. In a second-level for-loop the algorithm iterates over the provided list of threat
sets (line 27) in order to check if they are present in the current threat scenario. For
this reason a third-level for-loop is needed (line 28), because each threat scenario is a
structure of one or multiple threat sets and dependencies between them. If currently
examined threat set is present in the threat scenario (line 29), then its �ag marked is
set to true (line 30). The idea of this marking is that only those threat scenarios, which
have all threat sets marked, will be added to the �nal report. The logic of avoiding
irrelevant threat scenarios is implemented in the second �rst-level for-loop. The algo-
rithm iterates over the list of all threat scenarios (line 33) and checks if all threat sets
within this scenario are marked. For that a �ag isScenarioSuitable is used (line 34). The
second-level for-loop iterates over threat sets within the current end-to-end scenario
(line 35) and discards the whole scenario if at least one threat set is not marked (lines
36, 37 and 38). Otherwise, current threat scenario is being added to the resulting list
(lines 39 and 40). Finally, the list containing all relevant end-to-end threat scenarios is
returned (line 41).

5.7 Algorithm complexity

In this section the time complexity of the threat scenario generation algorithm will be
examined. The time complexity of this algorithm can be expressed as max(O(NNABC),
O(NNADEF)), where N is the number of vertices in the model graph, A is the number of
paths from access points to assets in the graph, B is the number of threat sets de�ned in
the knowledge base, C is the number of threats in those sets, D is the number of threat



60 Chapter 5. Low-level concept

scenarios de�ned in the knowledge base, E is the average number of threat sets along
attack paths and F is the average number of threat sets in end-to-end scenarios. The
O(NN) complexity arises from the modi�ed Depth-First-Search algorithm for enumerat-
ing all paths from the source node to the target node in the graph-based system model.
The runtime of the algorithm is exponential due to the number of simple paths between
two nodes in a graph in the general case. If a graph has a clique structure, then the
amount of simple paths between any two nodes is exponential. Although exponential
complexity is not practicable in the general case, the runtime stays still feasible for
actual applications because graph-based representations of modern hardware/software
systems do not tend to have dense structures. For instance, enumerating paths between
two nodes in the model of the cabin core system, which is developed by Airbus Group,
takes 3 milliseconds. O(ABC) stands for the invocation of the function FindThreatSets
from GenerateThreatScenarios (O(A) is the number of iterations of the for-loop in the
main function GenerateThreatScenarios and O(BC) is the number of iterations of two
nested for-loops in the function FindThreatSets). Similarly, O(ADEF) stands for the
running time of the function FindScenariosByThreatSets that is being invoked O(A)
times from the main function GenerateThreatScenarios and runs in O(DEF) time due to
three-level nested for-loop itself.

As seen from the complexity estimation, the real execution time of the algorithm, which
detects threat scenarios in the model, is strongly dependent on the input provided from
the user. If the user provides a knowledge base, where O(BC) > O(DEF), i.e. number
of threat sets times the number of single-link threats inside threat sets is larger than
the number of threat scenarios times the number of threat sets along the attack path
times the number of threat sets in one end-to-end scenario, then the execution time of
detecting threat sets along the attack paths (ful�lled by the function FindThreatSets)
is going to take the most signi�cant part of the algorithm’s runtime. In the opposite
case the execution time of �nding threat scenarios by threat sets in the knowledge base
(done by function FindScenariosByThreatSets) becomes more important for the overall
computing time.

5.8 Outputs

In this section the outputs of the designed tool will be presented. As mentioned before,
a report containing feasible threat scenarios has to be provided in the tabular form. A
fragment of such a report is provided in the following table. This small report contains
information about the identi�ed threat scenario based on the model and knowledge
base of the example system de�ned previously in this chapter.

Threat Con-
dition Cause Origin Scenario Description
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Corruption of cabin IP

device

Eavesdropping and

injection of malicious

tra�c

Attack from a

corrupted Cabin IP

Device

First, the attacker has to exploit "Action Spoo�ng" and "Access-

ing, Modifying or Executing Executable Files" in order to con-

duct the activity "Corruption of cabin IP device". After success-

fully executing "Corruption of cabin IP device" the attacker has

to exploit "Sni�ng Network Tra�c" in order to conduct the ac-

tivity "Eavesdropping tra�c" and "Argument Injection" in order

to conduct the activity "Threat Injection". After successfully

executing "Eavesdropping tra�c" and "Threat Injection" the at-

tacker can execute "Eavesdropping and injection of malicious

tra�c" threat scenario.

Table 5.1: Automatically generated report

This table contains a single threat scenario description. The report is designed to be
similar to one produced manually during the risk analysis at Airbus Group using a
proprietary methodology based on MEHARI. There are four columns in the tabular
report.

• Threat Condition – the value for this �eld is taken from the structure of the
corresponding threat scenario, speci�cally this value stands for the name of the
left-most threat set in the dependency scheme. The reason for putting the name
of exactly this threat set to the report is because it indicates the starting point of
an end-to-end attack, i.e. there are no preconditions for executing this malicious
activity.

• Cause – this �eld implies the name of the threat scenario.

• Origin – the values of this �eld is de�ned by the value of the threat scenario
description.

• Scenario description – this �eld stands for the brief description of the attack steps.
The value is going to be produced automatically by parsing the graph structure
of the current threat scenario and converting it to the string form.

The aforementioned threat scenario report does not contain numerical assessments of
di�erent aspects regarding end-to-end threat scenarios. This part is left to be �lled
entirely by the security expert, because the tool is not designed to make any numerical
evaluations. Also, the security expert is free to edit the values of all table cells to make
the report more informative, speci�c and human-readable.
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5.9 Summary

This chapter described a concept of the new threat modeling tool that is going to
automate end-to-end threat analysis. The new tool is going to be a part of the multistep
threat modeling work�ow that was presented in the previous chapter. The operation
principle of the tool was described step by step, showing a prototype example of how it
would look like on a small example system. The time complexity of the end-to-end threat
detection algorithm was estimated as well, and it was concluded that it highly depends
on the input provided by the user. A deeper analysis of feasibility of the algorithm
regarding its time and space complexity will be provided in the Evaluation chapter.
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Chapter 6

Evaluation

In this chapter theoretical and practical work that was accomplished during this Master
Thesis are evaluated. The evaluation comprises the analysis of the existing risk as-
sessment that was manually produced by Airbus Group experts and the improvements
achieved by developing an automated end-to-end threat modeling approach. This chap-
ter also examines the feasibility of the developed end-to-end threat scenario detection
algorithm that was described in the Low-level Concept chapter. Finally, the developed
concept of the end-to-end threat modeling tool is critically judged.

6.1 Threat mapping

The �rst step to assess the existing risk analysis and to come up with a concept of
automated end-to-end threat detection was to carry out threat mapping. This process
was described in the chapter that was dedicated to high-level concept of the automated
end-to-end threat modeling. To accomplish threat mapping �rst an independent single-
link threat analysis was made. For this a large list of potential threats that are feasible
in the cabin system was collected from open sources. This list contained overall 209
threats, which were considered as single-link threats and assigned to the components
of the cabin mockup. To be able to compare the outputs of the existing risk assessment
provided by Airbus Group and the results of the independent threat analysis it was
decided to extract single-link threats from end-to-end threat scenarios. The idea was
go through each end-to-end threat scenarios and to �nd out, which single-link threats
are exploited during them.

In the end of the threat mapping each single-link threat that was extracted from threat
scenarios was matched to ones from the list of independent analysis. It is worth men-
tioning that the mapping covered all single-ling threats that were extracted from threat
scenarios, i.e. threat scenario list did not contain any single-link threats that were
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not taken into consideration during the independent threat analysis. However, the
matching of single-link threats was not perfect. This happened due to the fact that
threat scenarios contained usually general single-link references. For example, a threat
scenario description contained the following expression: “An attacker could �ood the
LS interfaces.” In this threat scenario, �ooding the interfaces of a line switch was con-
sidered as a single-link threat and it was mapped to the following threats from the open
sources: TCP Flood, ICMP Flood, UDP Flood, CAM table over�ow attack, DHCP starva-
tion attack. This example illustrates that the single-link threat extracted from a threat
scenario is more general and spans a wider range of malicious actions than ones from
the independent threat analysis. Similar situation occurred with threats extracted from
the most threat scenarios. This circumstance led to the idea that single-link threats from
the independent risk analysis were too speci�c in contrast to those from the existing
risk assessment. This was the �rst major di�erence that was identi�ed between the
present risk assessment and the separately held analysis. Assuming that in the future
risk assessment is going to be done using a set of tools that implement the concept
described in the chapters 3 and 4, one can de�ne less speci�c single-link threats in the
knowledge base in order to mitigate the di�erence that was revealed after the threat
mapping stage. Alternatively, the experts may accept the concrete nature of threats, but
in this case the �nal report containing a list of end-to-end threats is going to be larger.

In the end of threat mapping all single-link threats extracted from the existing risk analy-
sis were matched to one or multiple threats from the independent analysis. Additionally,
some threats from the independent threat analysis were left unmapped. This was the
second major di�erence between the existing threat analysis and the independent one.
The list of unmapped threats indicated the de�ciency in the existing end-to-end threat
analysis. Therefore, an important improvement of the automatic threat identi�cation
over the manual risk assessment is the absence of the human factor during the report
generation. When using the tool chain for automated threat identi�cation, if the expert
decides to enlarge the number of potential threats, then he has to add them to the
knowledge base. In contrast, if the expert decides to add potential threats to the existing
manually produced risk assessment, then he has to examine system components, where
newly added threats are possible, go through each threat scenario in order to check if
new threats a�ect the existing scenarios, and de�ne new threat scenarios that arise due
to new threats. All operations have to be done manually. The framework of automated
threat identi�cation facilitates the easier extension of the threat knowledge base. The
list of unmapped threats from the independent threat analysis can be integrated into
the automatically produced risk assessment easier than into the manual one.

The complete table of the threat mapping can be found in the attachment. Basically,
it consists of a table with threat scenarios and lists of single-link threats, which were
mapped to those scenarios.
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6.2 Advantages and disadvantages of the automated concept

An important disadvantage of the automated end-to-end threat modeling approach is
the human-readability. The developed concept o�ers the generation of the report using
only prede�ned sentence structures, whereas during the manual report each threat
scenario can be reviewed individually and formulated in detail. For this reason the
developed concept does not strictly specify, whether the output of the threat analysis
is mutable or immutable. The opportunity to update the information within threat
scenarios has to be left for the expert, if necessary. Additionally, the implementation
of the aforementioned concept has to provide an opportunity for the user to �ll in
the properties that are responsible for the potentiality and impact of threat scenarios.
For this purpose, a corresponding user interface should be provided for �lling in the
numerical and textual values. The concept of the automated threat identi�cation does
not cover the potentiality and impact evaluation. These values have to be provided by
the user.

The last important di�erence between the approach of the developed concept and the
one used during the manual analysis is work�ow automation. Through the automatic
processing of threat searching the human factor is avoided during the threat identi�ca-
tion stage. This could be useful for large systems that are too complex to be grasped
by the expert at once. While doing a manual threat analysis in a system containing
many components and interactions, there is a probability of missing threats. Conversely,
the developed concept of automated threat analysis includes an exhaustive search for
threats and threat scenarios in the graph model, i.e. missing threats due to human factor
is evicted.

6.3 Limitations of the end-to-end tool

The crucial part of the developed tool chain concept is the new tool that is aimed to
automate threat scenario detection (component number 7 in the �gure 4.1). This tool is
yet to be implemented, and therefore it is marked with a dashed border in the �gure
4.1). The low-level design description of this tool is provided in chapter 5. The current
design of this tool has several limitations.

Firstly, the developed tool concept does not consider the order of single-link threats
along the attack path. The current concept provides a possibility to de�ne threat sets
(that consist of one or multiple single-link threats) and combine them into threat scenar-
ios. After that the tool �nds all possible attack paths between access points and assets,
detects all potential single-link threat along each path, and checks if these single-link
threats can be combined into valid threat sets. Then, if valid threat sets are detected
along the path, the tool checks if these threat sets can be combined into valid threat
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scenarios according to the provided knowledge base. At the moment the tool does not
consider the order and the location of single-link threat exploitations. For example, an
attacker has to exploit a single-link threat, say a bu�er-over�ow attack, exactly on the
access point and before the another attack, say injection of malicious code. At the same
time, end-to-end threat detection logic discovers a potential bu�er-over�ow attack in
the end of the path, which can only be exploited after the injection of malicious code,
which was detected on the previous part of the attack path. In this case a threat is still
going to be generated, because the design does not currently consider the order and
the location of single-link threat exploitations. Therefore, current end-to-end threat
detection logic can lead to false positives.

Another problem of the developed concept of the end-to-end threat modeling tool is
ignoring system con�gurations. What the tool is currently aimed to do, is �nding
out whether all single-link threats within corresponding threat scenarios are present
along the attack path. However, in some cases this logic may also lead to irrelevant
threat scenarios. To give an example of such a situation, a simple system with three
components can be considered. The example system consists of a browser client, which
has a communication link to a switch that is connected to the database server. A possible
threat in this framework is the elevation of privilege by sending malicious queries from
the client to the database. This attack is considered as a standalone threat scenario
and therefore it will be generated by the end-to-end threat modeling tool, although
the switch could be con�gured in such a way that it �lters out all illegitimate queries.
Hence, false positives may occur in the end report.

6.4 Algorithm complexity and feasibility

The crucial part of the developed concept for automated threat analysis is the algorithm
of generating feasible threat scenarios using the model of the analyzed system and the
knowledge base provided by the user. In this section the feasibility of running this
algorithm on modern computers is going to be analyzed.

As mentioned in the previous chapter, the time complexity of the described algorithm
is max(O(NNABC), O(NNADEF)), where N is the number of vertices in the model graph,
A is the number of paths from access points to assets in the graph, B is the number of
threat sets de�ned in the knowledge base, C is the number of threats in those sets, D is
the number of threat scenarios de�ned in the knowledge base, E is the number of threat
sets along the attack path and F is the number of threat sets in one end-to-end scenario.
The uncertainty of the algorithm arises from the dependence of the runtime on user
input. Although the runtime of threat scenario generation algorithm seems impractical
at a glance, it is still feasible for systems like the on-board cabin core system due to
the moderate size of the graph-based model. Additionally, there are parallelization



6.4. Algorithm complexity and feasibility 67

opportunities for the described algorithm.

The Depth-First-Search/backtracking algorithm for enumerating all routes between two
nodes in order to �nd possible attack paths can also be run in parallel. Speci�cally, in
the main backtracking function (see 5.7) there is a for-loop that iterates over generated
candidates, which are added them to the partial solution, then the recursive call to
the backtracking function takes place, and when it is �nished, the previously added
candidate is removed from the partial solution. Since after adding the candidate to the
partial solution the algorithm does not depend on the logic, when another candidate is
added, the execution of the iterations of this for-loop can be done in parallel.

Furthermore, there are other execution parallelization opportunities in the threat sce-
nario generation logic (see listing 5.9). The pseudocode of the function FindThreatSets
can be expressed as:

11 F i n d T h r e a t S e t s ( path , t h r e a t S e t K B ) :
12 t h r e a t S e t s : = { }
13 for t h r e a t S e t i n t h r e a t S e t K B :
14 i s T h r e a t S e t S u i t a b l e : = t r u e
15 for t h r e a t i n t h r e a t S e t :
16 i f ! p a t h C o n t a i n s T h r e a t ( path , t h r e a t ) :
17 i s T h r e a t S e t S u i t a b l e : = f a l s e
18 break
19 i f i s T h r e a t S u i t a b l e :
20 t h r e a t S e t s <− t h r e a t S e t
21 return t h r e a t S e t s

And it is being invoked from the following for-loop:

4 for p i n p a t h s :
5 t h r e a t S e t s : = F i n d T h r e a t S e t s ( p , t h r e a t S e t K B )
6 t h r e a t S c e n a r i o s : = F i n d S c e n a r i o s B y T h r e a t S e t s ( t h r e a t S e t s ,
7 t h r e a t S c e n a r i o K B )
8 t h r e a t S c e n a r i o L i s t <− t h r e a t S c e n a r i o s

As can be seen from the pseudocode, the inner-most for-loop (line 15) can be run in
parallel because all threats are examined separately and the iterations do not depend
on each other. However, the algorithm will have to run all iterations in the worst case
of parallel execution because the iteration that is going to break the loop (line 18) may
�nish its execution last. Hence, one can run this loop in parallel but cannot rely on
pruning. The next-level for-loop (line 13) can also be run in parallel because its iterations
do not depend on each other’s results. Within an iteration one threat set is extracted
from the knowledge base and examined in the inner-most for loop. Due to the fact that
the only writing is in the line 20 and it does not a�ect other loop iterations, the for-loop
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in the line 13 can be parallelized. The loop in the line 4 can be also run in parallel for
same reasons.

To sum up the evaluation of the algorithm, although it has a potentially high complexity
there are still a variety of opportunities to execute it in parallel. Still, in the case of
the sequential execution of the algorithm the runtime stays reasonable when modeling
most of the systems. The uncertainty of the algorithm’s complexity originates from its
strong dependency on the user’s input.

6.5 Concept evaluation

The main outcome of the whole research is the concept of the tool chain for modeling
end-to-end threat scenarios and automatically detecting them. Currently neither open-
source nor commercial solutions for end-to-end threat modeling exist on the market. In
this section the advantaged and disadvantages of the created concept will be discussed.

The �rst aspect that has to be emphasized is the safety of threat searching. Compar-
ing it to the manual threat searching method, the algorithm described in the concept
guarantees an exhaustive examination of the graph model, avoiding the possibility of
overlooking existent threats. In the case of manual threat identi�cation, the probability
of a mistake is higher. Therefore, an implementation of this concept would be suitable
for a wider range of security experts, including those who do not have a very deep
knowledge about the analyzed system and are more likely to make errors while search-
ing for threats manually. The developed concept provides a more universal solution for
threat modeling.

The second useful feature of using the developed concept in the process of risk assess-
ment is its automation. By getting rid of several routine steps that would otherwise
have to be done manually by experts automated threat detection saves time and hence
adds �exibility and reduces costs required for risk analysis.

The developed approach has also some drawbacks. The �rst of them is the large size
of the knowledge base that the user has to provide prior to modeling the system. Each
entity in the knowledge base, such as system components, data �ow types, threat types,
assets and access points, has to be described in XML format. Filling in a knowledge base
is a time consuming operation. However, once it is �lled, the user can build a model of
any structure and obtain the report containing threats automatically. The knowledge
base can also be dynamically adjusted and complemented. The concept presumes that
the tool will deliver the actual report taking latest changes in the knowledge base into
consideration without the need to rebuild the model.

Another drawback of the developed design of automated end-to-end threat modeling
is the simple structure of the �nal output. In comparison with the manually accom-
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plished threat analysis, where the author can put all his knowledge and expertise into
the description of each threat scenario, the automated approach is only able to parse
the knowledge base and the raw data from there. For this reason it is assumed the
implementation of the concept will provide the output with editable �elds to give an
opportunity to the user to provide a more meaningful and detailed information about
threat scenarios.

The present state of the art in the �eld of automating end-to-end threat modeling does
not allow estimate the success of the developed approach and the advance in the research
area. The developed approach is rather a starting point for further investigations of the
problem. In order to ascertain or refute the capability of the developed concept to solve
concrete problems successfully it is necessary to:

• Implement the tool described in chapter 5 and build up the whole chain of pro-
grams that is aimed to address end-to-end threat modeling

• Test the developed tools by applying them to threat modeling in di�erent systems
and checking the obtained results

As long as until now no practical tools for end-to-end threat modeling existed, the
developed concept can be considered as an improvement in the area of risk assessment
solutions. Despite the drawbacks of the developed concept, it can nevertheless be
considered as a starting point for future tools for end-to-end threat analysis. Further
researches and enhancements of this concept should improve the existing state and
bring the end-to-end threat modeling to the next level.
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Chapter 7

Conclusion

Previous chapters expressed the need for risk assessment automation and proposed
a concept of a tool chain that is aimed to satisfy this demand. To achieve this, threat
modeling was adopted as a technique that is aimed to introduce automation opportunity
into risk assessment process. In order to discover the best possible threat modeling
application for risk assessment, a comprehensive research of the scienti�c literature
and existing solutions for threat modeling was made. Investigation of threat modeling
solutions demonstrated the missing capabilities of existing tools. Hence, it was decided
to build a new concept of automated threat modeling that would be suitable for assessing
risks in aircraft cabin systems.

The developed concept depicts the usage of an existing threat modeling solution together
with a new tool, which is yet to be implemented. An important part of the developed
tool chain is the usage of Microsoft Threat Modeling Tool 2016, which is suitable for
modeling aircraft cabin systems. The main advantage of the Microsoft Threat Modeling
Tool 2016 is the way, how system models are designed – data �ow diagrams. This
approach is similar to the one used during manual risk assessment of the cabin core
system done by Airbus Group experts. However, neither Microsoft Threat Modeling
Tool nor other existing threat modeling solutions are able to cover an important aspect
of risk assessment – modeling end-to-end threats. An important feature of the cabin
core system is the presence of multiple hardware and software components, multiple
access points for potential attackers and multiple assets that must be protected. Such
a framework facilitates the possibility for an attacker to exploit vulnerabilities in the
system and combine them with normal system functions. By doing this an attacker
can gain access to system components that are not directly available for the attacker
by system design. These kinds of security attacks are considered as end-to-end attacks,
which cannot be modeled with existing threat modeling solutions. The main task of the
developed tool chain is to model end-to-end threats in order to raise the awareness of
end-to-end attack threats for security experts during the risk assessment process.
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The new tool is aimed to cover missing capabilities and ensure automated threat model-
ing that would be suitable for airborne systems. An independent threat analysis with
the assistance of Microsoft Threat Modeling Tool was made in order to de�ne the re-
quirements for the new tool and to �nd out the missing features of the manual risk
analysis. The list of threats involved into the independent threat analysis were mapped
to ones extracted from threat scenarios of the existing manual risk analysis. This step
is called “Threat mapping”. Threat mapping helped to specify the functionality of the
new tool. The independent threat analysis and threat mapping pointed out two major
drawbacks of the manual risk analysis: a list of threats that were not covered in the
existing threat analysis and the generality of present threats. Based on this information,
a concept of the tool chain for automated threat analysis was proposed. Both threat
mapping and low-level concept of the new tool are described in detail. The developed
concept is aimed to address both disadvantages of the existing manual risk analysis and
to enable automated threat scenario generation. Finally, the accomplished work and
the proposed threat modeling concept were critically evaluated.

7.1 Future work

As long as the main outcome of this Master Thesis is the concept of the tool chain for
end-to-end threat modeling, future work is to improve and implement it. In order to
check the relevance of the output produced by the described tool chain it is necessary
to implement the end-to-end threat modeling tool and to build up the framework that
includes all the parts of the developed concept into one standalone system. Currently,
the proposed concept represents the usage of Microsoft Threat Modeling Tool together
with the newly designed end-to-end threat modeling tool. For the sake of good user
experience, both solutions should be integrated into one system.

As described in the Evaluation chapter, there are limitations in the concept of the end-to-
end threat modeling tool – the presence of false positives and disregard of the single-link
threat order. Presumably, proposing solutions for both problems and implementing
them will lead to better results of the whole tool chain. Currently the output of the
pure implementation of the developed concept is going to contain unfeasible threat
scenarios in some cases. By solving these open problems the output of the tool chain is
going to become more relevant to real end-to-end threats. Speci�cally, addressing these
problems is going to avoid inappropriate threat scenarios if the order of single-link
threat exploitations is not practicable or system components are con�gured in such a
way that exploited threats can be neglected.

For enumerating all simple paths in the data �ow diagram the design of the new end-
to-end threat modeling tool currently proposes the usage of the modi�ed breadth-�rst-
search algorithm. A further step of the concept improvement could be the investigation
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of more e�cient algorithms for path enumeration. For example, in his paper [16] Frank
Rubin proposes an algorithm, which is based on matrix operations. The paper claims to
enumerate all simple paths between source and destination nodes using O(N3) matrix
operations. Additionally, if this algorithm appears to be useful in the current framework,
the opportunity of its execution parallelization has to be explored.

Finally, in order to be convinced that the developed concept is a useful solution for
automated risk assessment, it is necessary to apply it on multiple systems. Using
the developed tool chain for modeling di�erent system structures will show if it is
applicable for these systems. The modeled systems should be diverse, so that all possible
disadvantages of the developed framework are identi�ed, if any. After that, in the case
if the application of the developed framework detects its weaknesses, new solutions for
mitigating those weaknesses should be proposed and implemented.



74 Chapter 7. Conclusion



75

Bibliography

[1] R. Shirey, “Rfc 4949 - internet security glossary,” Tech. Rep., 2007.

[2] R. P. N. Thanthry, M. S. Ali, Security, Internet Connectivity and Aircraft Data Net-
works. IEEE, may 2006.

[3] K. S. Amril Syalim, Yoshiaki Hori, Comparison of Risk Analysis Methods: Mehari,
Magerit, NIST800-30 and Microsoft’s Security Management Guide. IEEE, mar 2009.

[4] K. H. S. o. C. Xiaohong Li, A Uni�ed Threat Model for Assessing Threat in Web
Applications. IEEE, 2008.

[5] G. M. J.-L. R. N. V. Dominique Buc, Jean-Philippe Jouas, Mehari Risk Analysis Guide.
Club de la Sécurité de l’Information Français, 2004.

[6] L. R. Y. W. R. W. Richard A. Caralli, James F. Stevens, Introducing OCTAVE Allegro:
Improving the Information Security Risk Assessment Process. Software Engineering
Institute at Carnegie Mellon University, 2007.

[7] Magerit - version 2 - Methodology for Information Systems Risk Analysis and Man-
agement. Ministerio de Administraciones Publicas, jun 2006.

[8] A. F. Gary Stoneburner, Alice Goguen, Risk Management Guide for Information
Technology Systems, NIST Special Publication 800-30. National Institute of Stan-
dards and Technology, 2002.

[9] The Security Risk Management Guide. Microsoft, 2006.

[10] P. A. Xavier Depin, Risk Management Methodology for Aircraft Security. Airbus
Group Innovations, oct 2008.

[11] Three Approaches to Threat Modeling. http://myappsecurity.com/approaches-to-
threat-modeling/, 2012.

[12] U. M. Nazir A Malik, Muhammad Younus Javed, Threat Modeling in Pervasive
Computing Paradigm. IEEE, nov 2008.

[13] M. E. Paul Saitta, Brenda Larcom, Trike v.1 Methodology Document, jul 2005.



76 Bibliography

[14] L. B. Krishna Sampigethaya, Radha Poovendran, Secure Operation, Control, and
Maintenance of Future E-Enabled Airplanes. IEEE, dec 2008.

[15] A. E. A. Caroline Möckel, Threat Modeling Approaches and Tools for Securing Archi-
tectural Designs of an E-Banking Application. IEEE, aug 2010.

[16] F. Rubin, Enumerating All Simple Paths in a Graph. IEEE, aug 1978.

[17] D. P. D. Sha�q Hussain, Dr. Harry Erwin, Threat modeling using Formal Methods:
A New Approach to Develop Secure Web Applications. IEEE, sep 2011.

[18] M. M. Dr. Oliver Hanka, Nils Tobeck, System Description and Risk Analysis of the
Critical Cabin Infrastructure. Airbus Group Innovations, jul 2015.

[19] CAPEC - Common Attack Pattern Enumeration and Classi�cation.
https://capec.mitre.org, 2015.

[20] L. Phifer, A list of wireless network attacks.
http://searchsecurity.techtarget.com/feature/A-list-of-wireless-network-attacks,
2009.

[21] S. S. Skiena, The Algorithm Design Manual. Springer, 2008.


	Introduction
	Goals
	Outline

	Background
	Methodologies
	MEHARI
	OCTAVE
	Risk assessment methodologies - summary

	Modeling approach
	Tools
	Practical Threat Analysis
	Trike
	Microsoft Threat Analysis and Modeling Tool
	Microsoft Threat Modeling Tool 2016

	Threat modeling approaches
	Risk assessment with single-link threats
	Risk assessment with end-to-end threat scenarios


	Related work
	High-level concept
	Threat modeling workflow
	Security risk analysis workflow
	Knowledge Base definition
	Modeling
	Threat identification

	Threat mapping

	Low-level concept
	System model
	Asset list
	Access point list
	Single-link threats
	Threat set dependencies
	Algorithm for generating threat scenarios
	Algorithm complexity
	Outputs
	Summary

	Evaluation
	Threat mapping
	Advantages and disadvantages of the automated concept
	Limitations of the end-to-end tool
	Algorithm complexity and feasibility
	Concept evaluation

	Conclusion
	Future work

	Bibliography

