
Technische Universität München
Department of Informatics

Bachelor’s Thesis in Informatics

Authenticated Scalable Port-Knocking

Daniel Sel

Technische Universität München
Department of Informatics

Bachelor’s Thesis in Informatics

Authenticated Scalable Port-Knocking

Authenti�ziertes Skalierbares Port-Knocking

Author Daniel Sel
Supervisor Prof. Dr.-Ing. Georg Carle
Advisor Sree Harsha Totakura, M. Sc.

Dr. Heiko Niedermayer
Date March 15, 2016

Informatik VIII
Chair for Network Architectures and Services

I con�rm that this thesis is my own work and I have documented all sources and material
used.

Garching b. München, March 15, 2016

Signature

Abstract

Most attacks on public Internet services and their providers’ infrastructure are not
aimed at a speci�c target, but rather send huge amounts of packets on large IP ranges in
order to �nd vulnerable computers to be exploited by the hypothetical attacker. These
types of attacks typically start with port scans to determine the active hosts and the
services running on them. One technique to counter such attacks to prevent the port
scans from providing usable information to the attacker has been known for a while
now and is called port-knocking. However, this security mechanism has not seen high
adoption in today’s industry.

This thesis is aimed at providing a speci�cation for a secure and scalable solution for
hiding services in a cloud environment using port-knocking. The speci�cation describes
a concept based on X.509 certi�cates with Elliptic Curve Cryptography (ECC) to enable
decentralized authorization of clients via port-knocking. The presented approach also
allows for deployment of this concept with minimal overhead on the server or provider
side while eliminating any required con�guration or visible complexity for the end
user. Furthermore, the design is based on the requirement to keep the impact on the
communication of protected applications to a minimum and therefore relies on a single
UDP packet, which is small enough not to be a�ected by fragmentation.

sKnock, a python-based prototypic implementation of the described speci�cation is also
encompassed in the thesis to evaluate performance and reliability of this approach. The
implementation runs completely in user-space on the server as well as on the client side
and does not require elevated privileges of any kind from the end user. The prototype is
targeted at the Linux platform with OpenSSL as cryptographic module and iptables as
�rewall on the server side. However, the implementation was developed with platform
independence in mind to make its’ extension by adding modules for other platforms
simple.

The incorporated experiments indicate that the included implementation is already fast
and reliable enough for a large-scale deployment. By extending the base functionality
provided in this prototype, this solution can be adapted to numerous port-knocking
scenarios with low deployment and management overhead in scalable environments.

All facts considered, the most important characteristic as well as the major design
goal of the presented speci�cation and sKnock is to provide a concept for scalable
port-knocking mechanisms and therefore lay the foundations for increasing industry
adoption of port-knocking.

Zusammenfassung

Die meisten Angri�e auf ö�entliche Internetdienstleistungen und die Infrastruktur
der verantwortlichen Provider haben kein vorde�niertes Ziel. Stattdessen sendet ein
Angreifer große Mengen von Datenpaketen an eine großere Anzahl von IP Adressen,
um ein potentielles Opfer auszumachen. Typischerweise beginnt er dazu mit einem Port
Scan. Dieser ermöglicht die Erkennung von aktiven Hosts und veri�ziert zudem welche
Dienste auf dem potentiellen Ziel ausgeführt werden.

Das Hauptziel dieser Arbeit ist das bereitstellen einer Spezi�kation für sicheres und
skalierbares, authenti�ziertes Port-Knocking. Die Spezi�kation beschreibt ein Konzept
basierend auf X.509 Zeriti�katen unter Nutzung von Elliptischer Kurven-Kryptogra�e
(ECC), um die dezentrale Autorisierung von Clients durch Port-Knocking zu ermögli-
chen. Der präsentierte Ansatz ermöglicht desweiteren die umsetzung dieses Konzeptes
mit minimalem Overhead auf der Provider-Seite, während die gesamte Komplexität vor
den Endbenutzern verborgen bleibt. Desweiteren basiert das Design auf der Vorrausset-
zung, die Auswirkungen auf die Kommunikation der zu schützenden Applikationen so
gering wie möglich zu halten und benötigt deshalb nur ein einziges UDP paket, welches
klein genung ist um nicht von Fragementierung betro�en zu sein.

sKnock, eine auf Python basierende, prototypische Implementierung der beschriebenen
Spezi�kation ist ebenfalls im Umfang der Arbeit enthalten. Der Zweck hiervon ist die
Einschätzung der Performance und Zuverlässigkeit unseres Konzeptes. Das Programm
läuft vollständig im User-Space (sowohl auf dem Server als auch auf dem Client) und
erfordert keine erhöhten Berechtigungen jeglicher Art vom Endbenutzer. Die Zielum-
gebung dieser Implementierung ist die Linux Platform mit OpenSSL als kryptogra-
phischem Modul und Iptables als as Server-Firewall. Nichtsdestotrotz wurde bei der
Umsetzung hoher Wert auf Platformunabhängigkeit gelegt, was die Erweiterung auf
andere Umgebungen durch das Hinzufügen von Platform-spezi�schen Modulen sehr
einfach gestaltet.

Die in der Arbeit enthaltenen Experimente verdeutlichen, dass die Implementierung
bereits schnell und zuverlässig genug für eine großangelegte Auslieferung ist. Durch
die Erweiterung der Basis Funktionalitäten, die in diesem Prototyp bereits enthalten
sind, kann die Implementierung derart angepasst werden, dass sie unterschiedliche Port-
Knocking Szenarien mit einem geringen Aufwand für Auslieferung und Management
auch im großen Rahmen ermöglicht.

Dementsprechend bieten die hier präsentierte Spezi�kation und sKnock ein Konzept
für skalierbare Port-Knocking Mechanismen und legen damit den Grundstein für eine
zunehmende Akzeptanz dieser Technologie in der Industrie.

I

Contents

1 Introduction 1
1.1 Goals of the thesis . 1
1.2 Outline . 1
1.3 Motivation . 2

1.3.1 Security in modern Network Design 2
1.3.2 Port-Knocking . 3
1.3.3 Related Implementations . 4
1.3.4 Summary . 7

2 Background 9
2.1 Security . 9

2.1.1 Encryption . 9
2.1.2 Integrity . 11
2.1.3 RSA vs. ECC, ECDSA, ECDH & ECIES 11
2.1.4 Other security features . 16

2.2 Performance . 17
2.2.1 TCP vs. UDP . 17
2.2.2 Packet size . 18
2.2.3 Processing incoming packets 18

2.3 Deployment Complexity . 20

3 Implementation 23
3.1 Requirements & Speci�cation . 23

3.1.1 Network Communication . 23
3.1.2 User Authorization . 24
3.1.3 Security Suite . 25
3.1.4 Packet Design . 27

3.2 Architecture . 28
3.2.1 General considerations . 28
3.2.2 Server . 31
3.2.3 Client . 37
3.2.4 Common Modules . 39

II Contents

3.3 Limitations . 40
3.3.1 Network Address Translation (NAT) 40
3.3.2 Tracking of Established Connections 41
3.3.3 Chosen Implementation Language 41
3.3.4 Multi-platform support . 42
3.3.5 UDP . 42

4 Evaluation 43
4.1 Per-Module Performance Analysis . 43

4.1.1 Test environment . 43
4.1.2 Firewall . 44
4.1.3 Packet Processing . 47
4.1.4 Cryptographic Engine . 49

4.2 Firewall Filtering . 51
4.3 Connection Overhead . 54
4.4 Reliability Under Packet Loss . 56

5 Conclusion 63
5.1 Future Work . 63
5.2 Summary . 65

Appendix 69

A Measurement Results 69
A.1 Per-Module Performance . 69
A.2 Firewall Filtering . 74
A.3 Reliability Under Packet Loss . 75

B Pro�ling Results 81

C Log Files 85

Bibliography 91

III

List of Figures

3.1 Example of a port-knocking request packet 27
3.2 Important Components of the Implementation 29
3.3 Packet Processing Algorithm . 33
3.4 Overview of Port-knocking sequence 38

4.1 IPv4 time vs. open ports . 45
4.2 IPv4 size of rule-set vs. operation execution time 46
4.3 IPv4 size of rule-set vs. operation execution time 47
4.4 iptables processing delay in relation to number of active rules 53
4.5 Normalized iptables processing delay in relation to number of active rules 54
4.6 Latency overhead caused by sKnock (UDP) 56
4.7 Test setup for packet loss evaluation . 58
4.8 Num. attempts in relation to packet loss for TCP/REJECT 59
4.9 Num. attempts in relation to packet loss for UDP/REJECT 60
4.10 Average time needed to establish a connection (for successful attempts)

using TCP and a REJECT policy . 61

A.1 IPv4 size of rule-set vs. operation execution time 69
A.2 IPv4 size of rule-set vs. operation execution time 70
A.3 IPv6 time vs. open ports . 71
A.4 IPv6 size of rule-set vs. operation execution time 72
A.5 IPv6 size of rule-set vs. operation execution time 73
A.6 Standard deviation for measurements concerning the �rewall �ltering

performance . 74
A.7 Average time needed to establish a connection (for successful attempts)

using UDP and a REJECT policy . 75
A.8 Num. attempts in relation to packet loss for TCP/DROP 76
A.9 Average time needed to establish a connection (for successful attempts)

using TCP and a DROP policy . 77
A.10 Num. attempts in relation to packet loss for UDP/DROP 78
A.11 Average time needed to establish a connection (for successful attempts)

using UDP and a DROP policy . 79

V

List of Tables

1.1 Comparison of well-known port-knocking implementations 7

2.1 Comparison of security strengths of symmetric cryptography, RSA, and
ECC. Adapted from Certicom Corp et al. [1] 15

2.2 Signature sizes for RSA & ECDSA [2] 16

3.1 Explanation of relevant Port-knocking packet �elds 28
3.2 Port-knocking server con�guration settings with default values 32

4.1 Measurement results for the connection overhead test 57

5.1 Comparison of sKnock to other well-known port-knocking implemen-
tations . 66

1

Chapter 1

Introduction

1.1 Goals of the thesis

The major goal of this thesis is to provide a secure and scalable solution for hiding
services in a cloud environment using port-knocking. In order to achieve this, the thesis
aims to explore a variety of possibilities in implementing such a security layer and
especially focuses on keeping the overhead for daily operations as low as possible. The
scope of this thesis is to create a minimum working prototype to prove the viability
of the port-knocking concept in general and evaluate its’ strengths and weaknesses
against realistic requirements for such a software component. This work should lay
the foundation for following future research on the topic of converting the theoretical
concept of port-knocking into a full-featured viable security solution for real world
service providers and customers from other segments.

1.2 Outline

In Chapter 1 this work introduces the topic of port-knocking and explains the moti-
vation of developing such a security layer. Following the introduction, the necessary
scienti�c background information is provided in Chapter 2. All details regarding the
implementation developed in the process of this thesis, sKnock, will be presented in
Chapter 3. The evaluation of this implementation together with implications for the
concept in general can be found in 4 which is followed by concluding this work with
an outlook on further improvements and a comparison to related work in the �nal
Chapter 5.

2 Chapter 1. Introduction

1.3 Motivation

1.3.1 Security in modern Network Design

Historically, computer networks were never conceptualized with security in mind.
When people started interconnecting computers in the 1980’s, they wanted their ma-
chines to be able to communicate with each other as easily and reliably as possible [3]
— implementing security features would not only have slowed down this process, but
would also have made it considerably more complex. A few decades later, however,
after connecting billions of devices across every continent using an unbelievably large
and complex global network — the Internet — security became a major consideration
in network design [4]. Consider the architecture of cloud services today: the service
providers have datacenters in di�erent locations and use them to host nodes running
essential computations for their service. To address the demands of a global audience,
the providers may then choose to have several edge-nodes, residing at even more loca-
tions. These edge-nodes take care of user authentication and some preliminary caching,
thereby relieving the compute nodes for important tasks [5].

However, securing the services o�ered by these cloud providers has been shown to
be a great challenge [6]. Even giant IT-corporations with decades of experience in
networking like Google, Amazon, etc. struggle to keep up with evermore new types of
attacks threatening the very base of their business operations: their computer services
and con�dential data [7].

Since network communication is based on an architecture of multiple decoupled layers
de�ned in the ISO-Standard “Open Systems Interconnection Model” (OSI) [8], it only
makes sense to employ specialized security components, which individually cover
each of the networking layers. This strategy enables security architects to introduce
redundancy in network security components in order to reduce the risks of the weakest
link, which is critical to every network.

Generally, public services have the security-related disadvantage that everyone can com-
municate with them. Security infrastructure on the networking layer, such as �rewalls
or intrusion prevention systems (IPS) [9], are only able to protect servers from network
based attacks, for example, a Distributed Denial of Service attack (DDoS) [10]. However,
every user behaving in a non-suspicious way from a network tra�c perspective is able
to initiate a communication with every public application, even when they have no
legitimate interest in using the application. In most cases this cannot be prevented
by aforementioned (hardware) �rewalls, as the information available to them is not
su�cient for e�ectively restricting access to legitimate users in a session-independent
way [9]. As most modern services available to the public employ encryption as part
of their security concept [11], most of the time the only data available to the network
security infrastructure is metadata like IP addresses, ports, packet size, etc. Processing

1.3. Motivation 3

this information clearly does not allow for a reasonable restriction of user access, since
IP addresses, for example, can change very frequently for the same user and do not pro-
vide a reliable way of identifying authorized users. This exposure of services to almost
unrestricted access on the network layer imposes signi�cant security implications, since
all higher-level security mechanisms have to be implemented by the application itself
and a weakness at the application layer can be exploited by everyone on the Internet.

1.3.2 Port-Knocking

One possible and particularly interesting solution to �ll the gap between network layer
and application layer security in addition to providing an authorization mechanism at
a much earlier stage is Port-Knocking. It stems from an authentication concept that
was invented thousands of years ago, where members of certain secret communities
were using special knock sequences when knocking on each others doors to prove their
identity as part of the community. In the world of networking, the house is the server,
the person outside the door is the client and the door is the �rewall. The most basic
implementation of the port-knocking concept would be a client sending packets to a
number of closed ports on the server in a prede�ned sequence after which the server
�rewall opens the port for the actual application, granting the client access [12].

This concept provides an additional security layer to hide the services running on the
server, which makes it harder for an attacker to exploit any application-level vulner-
abilities without being successfully authorized through the port-knocking protocol.
By concealing the running applications in this way, a cloud provider could not only
minimize the risk of an attacker breaching their system using a Zero-Day Exploit [13]
or unpatched vulnerability, but also signi�cantly reduce the amount of random port-
scans followed by attacks on well-known services. Even if all the running services are
perfectly secure at a given time (meaning there are no known security holes), mini-
mizing the attack surface on edge-servers using a strong authentication mechanism
beneath the application layer may signi�cantly reduce unnecessary load generated by
above-mentioned random undirected attacks.

Of course the concept of knock sequences described above would not ful�ll the require-
ments of any serious service provider on the Internet, since it is neither secure, nor
scalable or granular in granting application-speci�c privileges. Generally speaking, all
of the available products relying on this classic scheme of port-knocking are practically
unusable for cloud service providers in terms of performance and security. Just by being
forced to send multiple packets before being able to start the relevant application-level
communication the overhead, and thereby delay, introduced in the communication
is severe and de�nitely noticeable for the end-user. Taking into account the chance
of packets getting lost, the probability of an even worse delay by retransmission of
one or more packets scales proportionally with the number of knock-packets in the

4 Chapter 1. Introduction

sequence. Furthermore, the use of a single packet or a static sequence of packets does
not represent much additional security as the only required secret, the sequence, is
easily discoverable by sni�ng the network tra�c. Using a dynamic sequence derived
from a secret for port-knocking would improve security, however, a solution based on
a packet volume high enough to provide useful security would not be able to scale up
to modern expectations of performance.

Therefore from this point on, this thesis focuses solely on a speci�c variant of port-
knocking implementations, called Single Packet Authorization [14] or Hybrid Port-
Knocking [15]. This variant relies on strong cryptography to reduce the required com-
munication to a single packet while also enhancing security.

1.3.3 Related Implementations

To assess the current state and usage of this kind of additional security, the following
implementations were researched and judged for real-world applications by relevant
criteria such as security, performance, overhead and scalability. Out of hundreds of
di�erent interpretations of the port-knocking concept, �ve were chosen because of either
their popularity or particular interesting characteristics in regard to any of our criteria:
knockdaemon [16], SilentKnock [17], fwknop [18], knockknock [19], and Knock [20].

1. knockdaemon This is the prototype provided by Martin Krzywinski, when he pub-
lished his article about the port-knocking concept [12]. It has been updated several
times until December 2004 enabling features such as encryption of knock-packets us-
ing a shared secret and con�gurable encryption modules, commands to be executed
depending on the target port, sni�ng of network tra�c to listen for knocks, etc.

The prototype runs in user-space and its initial version was restricted to reading knocks
from the �rewall log. It is highly con�gurable, which allows for completely insecure
operation up to a secure environment. As it follows the classical concept, it requires
multiple packets to be sent to multiple closed ports which knockdaemon uses to autho-
rize clients. The con�guration allows for the packets to be encrypted, but only using a
shared secret between server and all clients. The prototype also allows for incorporation
of the client IP address in the knock packets [16].

Since every new connection requires multiple packets to be sent beforehand, it causes
signi�cant overhead and therefore a delay for the end-user. Encryption only works via
a single shared secret for all users, which means that any user can become a liability
for the whole security. Additionaly, the prototype was written in Perl, an interpreted
language known for low performance, and is therefore unable to run at a high speed.
Finally, it requires a knock-sequence to be pre-shared per-user on the server-side in

1.3. Motivation 5

order to identify the port-knocking requests and therefore provides no scalability for
adding new users.

2. SilentKnock This approach by authors Eugene Y. Vasserman, Nicholas Hopper, John
Laxson, and James Tyra is intended as proveably undetectable and high-performing
implementation for realizing port-knocking without the necessity of changing the
protected applications.

It works by using kernel-hooks via the net�lter and libIPQ API to intercept each TCP-
SYN packet that is sent from the client machine to generate a MAC over the TCP Header.
This hash is then encoded into the TCP initial sequence numbers of the SYN packet as
steganographic information using a system by Murdoch and Lewis’ [17] before letting it
continue with the sending process. On the server side, the sknockd service intercepts the
TCP-SYN packets for all con�gured ports and veri�es the encoded MAC before passing
the packets on to the TCP/IP stack. Other types of packets are not intercepted. The
generation of the MAC checksums relies on shared secrets, which can also be unique
per client. According to the published paper, the only supported target environment is
Linux with a 2.6 kernel version [17].

The nature of this implementation allows to deliver excellent performance concerning
the processing of incoming requests. However, it only supports TCP and a�ects every
program running on the client side, even the ones that have no relation to port-knocking.
Although it supports client-speci�c shared secrets, it also su�ers from the scalability
problem as there is no way of obtaining that secret on the server-side without pre-
populating the con�guration with every clients’ key.

3. fwknop Developed by Michael Rash from CipherDyne Security1, fwknop is an
extensive port-knocking framework supporting numerous features including symmetric
and asymmetric encryption, server- and client-side NAT, processing knock requests by
sni�ng network tra�c or reading a pcap dump, execution of remote shell commands, OS
�ngerprinting, and even TOR integration. The server is targeted at UNIX environments
and supports iptables and �rewalld under Linux, pf on OpenBSD, and ipfw on BSD and
MacOS. These platforms are also supported by the client, which additionally is also
compatible with Windows, Android and iOS as operating system [18].

This implementation is mature compared to other implementations and contains a large
feature-set while being a prime example for supporting multiple platforms. As fwknop
is written in C, it should be able to perform at a high level compared to most other
port-knocking implementations. However, although it is one of the few port-knocking
solutions to support asymmetric encryption, it still requires the RSA key of every user
to be present on the server and therefore also su�ers from greatly limited scalability.

1http://cipherdyne.org/

6 Chapter 1. Introduction

4. knockknock Being annoyed with other peoples’ interpretation of the port-knocking
concept that led to, in his opinion, overly complex and bulky services instead of, for
example, “us[ing] cryptography to simplify the initial port knocking concept, rather than
making it more complex”, Moxie Marlinspike wrote a lightweight implementation of a
simple version of the port-knocking concept in Python. He uses the TCP SYN and ACK
�elds as well as the �elds for window scaling and sequence numbers in the TCP Header
to encode an encrypted and authenticated port-knocking request. In order to receive the
requests the implementation relies on the �rewall log and since the encryption is based
on AES with shared keys, the server requires per-client con�guration �les containing
these shared secrets [19].

Obviously, knockknock also has the same limit for scalability as the previously described
implementations. Additionally its’ performance is limited by using Python as program-
ming language and relying solely on a log �le for processing incoming requests. Finally,
it has the serious disadvantage of requiring root privileges on the client-side in order to
be able to manipulate the TCP Header �elds of the sent requests.

5. Knock Another work in the area of port-knocking is the software Knock, an imple-
mentation of the TCP Stealth concept targeted at the Linux platform. TCP Stealth was
developed in the scope of Julian Kirchs’ Master’s Thesis at the Chair for Network Archi-
tectures and Services at the Informatics Faculty of the Technical University of Munich.
Generally also applying the idea of authenticating TCP packets on the kernel-level, this
approach has the unique characteristic of not only authenticating the �rst SYN packet
or the TCP Handshake, but being able to protect the entire communication by also
authenticating the client and �rst bytes of the TCP payload for subsequent packets.

However, this also means that Knock is a�ected by a similar overhead situation as
SilentKnock, because it processes every TCP packet leaving the client and every TCP
packet reaching the server. Apart from that, it also requires a kernel-patch and linking
networking-enabled applications against a library called libknockify in order to deploy
this solution. As well as the other implementations described above, Knock relies on
a symmetric algorithm with shared secrets to provide authenticated messages and is
therefore a�ected by the same scalability limitations.

Comparison To compare the approaches described above, they were judged in terms
of how high the expected processing performance would be in a real-world deployment
(Performance), how much overhead the implementation requires in terms of commu-
nication overhead (Overhead), the expected resiliency against relevant and probable
security threats, and �nally in terms of the increase in deployment as well as manage-
ment complexity and overhead caused by employing the given port-knocking concept
(Scalability). In each category the compared implementations receive a rating between

1.3. Motivation 7

++ and – to provide a basis for the later analysis of the implementation presented in
Chapter 3.

As shown in Table 1.1, there are port-knocking implementations with good charac-
teristics especially in regard to performance and security. However, providing these
properties while maintaining a low overhead is not trivial. Following the evaluation
of the listed designs, it is clearly visible that additionally realizing the port-knocking
concept in a scalable way is a hard challenge and is therefore not considered in the
examined implementations.

Implementation Performance Overhead Security Scalability
knockdaemon o -- - --
SilentKnock ++ o o --

fwknop ++ ++ ++ --
knockknock + ++ ++ --

Knock ++ - ++ --

Table 1.1: Comparison of well-known port-knocking implementations

All of the evaluated implementations rely on some kind of client-speci�c data being
present on the server. This requirement provides an easy way to realize strong cryp-
tography and therefore simpli�es the implementation of a high security level, but
eliminates the possibility of scaling port-knocking to a cloud-sized environment. Since
cloud providers often employ edge servers to handle the immediate client connections,
deploying one of the described implementations would require a synchronization of
this client-speci�c data and therefore impose an immense management overhead from
an administration point-of-view.

We believe this lack of scalable implementations to be one of the key reasons for the
low adaption of port-knocking as part of real-world security concepts in the industry.

1.3.4 Summary

As shown by a few of the aforementioned implementations the compromise between se-
curity and acceptable overhead in terms of introduced latency and deployment overhead
is a hard challenge.

For port-knocking to be usable in a production environment it needs to considerably
improve the overall security of the system without a noticeable impact on the user-
experience and without severe disruption of the existing cloud provider infrastructure.
This requires a zero-con�guration deployment for the client, which should become part
of the application in the form of a library so the use of port-knocking is completely trans-
parent to the user. Additionally, a distributed veri�cation system to authenticate clients
without having to synchronize client-speci�c data over all edge-servers is necessary.

8 Chapter 1. Introduction

Extensive research suggests that no such implementation is di�used in industry or
academia. The following thesis will present an approach to unite the aforementioned
requirements in an implementation usable in a real-world industry deployment.

9

Chapter 2

Background

The following Chapter presents the most important criteria for a production viable imple-
mentation of the port-knocking concept along with di�erent approaches to ful�ll these
requirements using industry-proven algorithms and technologies. Each approaches will
then be compared against others in respect to delivering the expected results regarding
the given criteria. Additionally, every approach will be judged by the in�uence exerted
on other parts of the architecture regarding aspects such as implicated restrictions or
imposed performance degradations.

2.1 Security

The security considerations of the port-knocking layer are among the hardest challenges
of choosing a speci�cation for the targeted cloud-sized scale environment. Since an
increase in security has a direct e�ect on performance and complexity, one has to
consider thoroughly which technologies are worth their trade-o� regarding their impact
on latency, bandwidth, and processing power. It is thus important to make a thoughtful
decision which of the many available concepts and technologies could and should be
used while developing a solution for this new layer of network security.

2.1.1 Encryption

Data con�dentiality is often desired in secure systems. This also applies to port-
knocking, since an adversary sni�ng on the network should not be able to read the
clients’ identity from the port-knocking protocol. When it comes to keeping prying
eyes away from con�dential data, it is almost guaranteed that the discussion converges
towards a solution using encryption, which has two generally accepted concepts: Sym-
metric or Asymmetric Encryption [21].

10 Chapter 2. Background

Symmetric Encryption For symmetric encryption, the involved parties need to establish
a shared secret �rst, since by de�nition both need to have the same key to encrypt or
decrypt the data [22]. This approach is widely used, including hardware support for
algorithms like “Advanced Encryption Standard” (AES) [23] and therefore very simple,
secure, and cheap in terms of processing power and bandwidth requirements. This
requires the secret to be shared with the clients, which comes at the cost of deploying
and managing these shared secrets across servers. We describe this approach in detail
in Section 2.3.

Asymmetric Encryption Choosing not to accept the downsides of an architecture
based on distributing shared secrets across servers leaves us with an approach based
on asymmetric cryptography [22]. This scheme includes two di�erent keys based
on the same generation scheme: A public key for encryption and a private key for
decryption. Using this way of providing con�dentiality for the transmitted request
provides the possibility of handling user authentication and/or authorization at the
edge-servers without the need of deploying any client-speci�c con�guration on these
servers by basing this process on cryptographic veri�cation measures such as X.509
certi�cates [24].

Typical algorithms that are widely believed to be secure, and on which this so called
public-key cryptography is based on in modern environments are RSA (Rivest, Shamir,
Adleman) [25] and ECC (“Elliptic Curve Cryptography”) [26]. Following the path of
asymmetric security entails two major challenges that need to be solved in order to
reasonably apply this type of cryptography. Foremost, public-key techniques are unable
to securely encrypt message sizes larger than the chosen key-size of the key-pair [27].
Furthermore, they also require secure transportation of the recipient’s public key to the
sender of the message via either another communication channel or in a secure way
along with the message, which inevitably increases either deployment complexity or
the total packet size and therefore latency.

Hybrid Encryption (Asymmetric & Symmetric) In light of these obstacles, the general
consensus on how to make the use of asymmetric cryptography viable for transmission
of messages with lengths exceeding the key-size is by combining it with symmetric
encryption [27]. This technique works by exploiting the capabilities of public-key
mechanisms to enable both parties to agree on a secret and then using a “Key-Derivation
Function” (KDF) to generate an encryption key for use with a symmetric encryption
algorithm like AES [27]. This procedure is known as Key-Exchange and can be done out
of the box using the RSA cryptosystem. ECC however needs to be extended with the
well-known and proveably secure “Di�e-Hellmann” (DH) [28] algorithm to be able to
guarantee a secure key agreement based on elliptic curves.

The combination of both methods of encryption requires a small additional overhead

2.1. Security 11

in message size compared to using only symmetric or asymmetric cryptography. It
also has the advantage of providing relatively high performance without impacting the
�exibility of the intended authorization mechanism [21].

2.1.2 Integrity

Ensuring that no other party except the server and client components involved in the
port-knocking communication can successfully decrypt and interpret the request is an
important step on the way to a secure solution. However, achieving this goal requires
the implementation of a few additional security principles. A critical property of every
secure system, which encryption alone cannot guarantee, is the integrity of the request
data. Attack scenarios exist, in which an attacker can defeat a security mechanism
without ever having access to the clear-text of the communication by tampering with
predictable ciphertext. Vulnerabilities of this type can typically be mitigated by au-
thenticating the message using a cryptographic hash function or by cryptographically
signing the message, which causes any change to the message to inevitably invalidate
the hash or signature [29].

The most commonly used technologies are “Hash-based Message Authentication Code”
(HMAC) [30] and digital signatures using either RSA [25] or ECDSA (“Elliptic Curve
Digital Signature Algorithm”) [26] which is a variant of the well-known DSA algorithm,
enhanced with the strong security capabilities of elliptic curves. Choosing signatures
over message authentication codes has the bene�t of additionally including a way to
verify the authenticity of the message by guaranteeing the sender’s identity, but comes
at the cost of a larger message size, and, as mentioned in Section 2.1.1, the overhead of
transporting the sender’s public key to the receiver.

2.1.3 RSA vs. ECC, ECDSA, ECDH & ECIES

In the preceding sections, RSA & ECC were mentioned as industry-standard cryptosys-
tems for asymmetric encryption, as well as for signing and veri�cation of messages.
While both of them can be used to achieve the same goals, the low-level technical
implementations are based on completely di�erent computations: While RSA relies on
the mathematical assumption that the multiplication of large prime numbers is much
faster and easier than reversing the process using factorization [25], ECC relies on
the assumption that point addition on elliptic curves over �nite �elds is easy and fast
but reversing it, known as the elliptic curve discrete logarithm problem (ECDLP), is
hard [26].

RSA According to the speci�cation of the RSA cryptosystem, the creation of a key
pair consisting of the private key d and the public key e with a key-size of n bits follows

12 Chapter 2. Background

the equation:
∀m : (me)d mod n =m

RSA: Encryption & Decryption The encryption therefore works by applying a de�ned
secure padding function onto the clear-text message M and converting it into an Integer
m. Using the public key of the receiver e and the formula

c ≡me mod n

the sender can then obtain the ciphertext c , which is sent to the recipient for decryption.

For the decryption the recipient employs his private key d and the equation

cd ≡ (me)d ≡m mod n

to derive the original padded and converted cleartextm from the received ciphertext c ,
from which he is then able to reconstruct the original message M under the assumption
that sender and recipient are using the same padding function [25].

Since plain RSA is susceptible to several types of context-based attacks including the
chosen-ciphertext attack, which is very popular in the IT-Security community, it should
always be used in combination with a secure padding-scheme such as the “Optimal
Asymmetric Encryption Padding” (OAEP) to provide semantic security under IND-CPA
(“Ciphertext Indistinguishability Under Chosen Plaintext Attack”) [31].

RSA: Signatures RSA directly speci�es algorithms for generating and verifying cryp-
tographic signatures. For this procedure, the sender needs to hash the message M using
a secure cryptographic hash function h(x) and append the signature calculated using
the formula

s = h(M)d

(where d corresponds to the sender’s private key) to the original message. Assuming
once again that both parties use the same hash function, the recipient can then verify
the transmitted signature using the sender’s public key e by checking if it satis�es the
equation [25]:

h(M) ≡ se

ECC Unlike RSA, ECC itself does not specify procedures for neither signature genera-
tion nor key exchange. Instead it de�nes a mathematical framework for cryptographic
functions by de�ning the point addition operation. Given that both input points are on
the curve, the result of point addition will be another point on the same curve. Com-
bining this operation with a speci�ed elliptic curve and a corresponding base point (G)

2.1. Security 13

on the curve — both chosen for their cryptographically valuable mathematical proper-
ties — creates a cryptosystem allowing for all necessary operations to fully implement
asymmetric cryptography.

This yields the formula:
Q = dG

where the public key Q is a point on the curve obtained by adding the base point to
itself d times. d is an integer of the given key-size representing the private key [26].

ECC, ECDH, ECIES: Key Exchange & Encryption For asymmetric encryption using
elliptic curves, the concept needs to be extended with a technique to establish a secret
with another party. This needs to be done while only knowing the other party’s public
key. Once a secret is established, it is possible to derive a symmetric encryption key from
it, which in turn can be used with AES, for instance. To calculate a secret only known to
the involved parties, both need to obtain the public key of their counterpart via a reliable
but not necessarily con�dential channel, for example using certi�cates. Assuming both
are using the same elliptic curve as the basis for their calculations, multiplying their
own private key with the public key of the counterpart would give both parties the
same point on the curve. If now both participants interpret the x-coordinate of the
calculated point as the secret, they have successfully completed a key-exchange using
the Di�e-Hellman algorithm based on elliptic curves — called ECDH [32].

A small example to illustrate: Given the counterparts A with private key dA, public key
QA, and B with private key dB , public key QB both parties can calculate the secret:

(xs ,ys) = dAQB

(xs ,ys) = dBQA

This calculation is correct based on:

dAQB = dAdBG = dBdAG = dBQA

with G being the base point of the same elliptic curve for A and B. In case identi�cation
of only one party is required, this hybrid encryption technique can be extended by using
an ephemeral key-pair which is intended for short-term use and newly generated at
the beginning of the encryption process. Using this variation of the ECDH algorithm
called ECDHE (“Elliptic Curve Di�e-Hellman Ephemeral”), the whole cryptosystem
gains the property of being IND-CCA (“Indistinguishability Under Chosen Cipher-
text Attack”) and IND-CCA2 (“Indistinguishability Under Adaptive Chosen Ciphertext
Attack”) [33] secure and is standardized under the name “Elliptic Curve Integrated
Encryption Scheme” (ECIES) [34]. The identi�cation of the party using the ephemeral
key pair for encryption can be done using a certi�cate-based mechanism contained

14 Chapter 2. Background

in the encrypted message which implies a communication overhead for the bene�t of
increased security.

ECC, ECDSA: Signatures The process of generating and verifying signatures using
ECDSA, an implementation of the DSA (“Digital Signature Algorithm”) [35] algorithm
using the mathematic properties of elliptic curves, is more complex than its RSA-based
counterpart. In the following example, we re-use the two parties from above with their
respective private and public keys. This time, however, A is signing a message and B is
verifying the signature. In addition to the parameters already given, A needs the bitsize
Ln of the integer order n of the basepoint G, which equals the key-size in bits. Having
prepared all necessary inputs, the generation of an ECDSA signature is explained by
the following scheme [26]:

1. Calculate a secure cryptographic hash over the messagem: e = HASH (m)

2. Take only the Ln most signi�cant bits of e , save them as integer in z

3. Choose a random integer k from [1,n − 1]

4. Calculate (xk ,yk) = kG

5. Calculate r = xk mod n

6. Calculate s = k−1 (z + rdA) mod n

7. The signature consists of the tuple (s, r) and can now be appended to the message

While executing this scheme, it is very important to ensure that k is a truly random
value generated by a cryptographically secure random number generator. Using the
same k for two di�erent messages known to an attacker allows for simple calculation of
the private key, thereby compromising the entire security system based on this key. This
exact mistake has been made by Sony Computer Entertainment and led to the recovery
of the private key used to sign Playstation 3 console games, rendering the entire security
ine�ective and enabling uncontrollable piracy opportunities [36, 37]. Another way of
preventing this kind of exposure is by implementing deterministic signatures. This
approach removes the risk of insu�cient entropy by deriving k from a combination of
the message m and the private key d , ensuring that di�erent messages will never be
signed using the same secret integer k [37].s Another important algorithmic peculiarity
is that neither r nor s are allowed to equal 0. If this rule is broken, the calculation has to
start over from choosing a new random integer k and recalculating r and s until both
of them di�er from 0 [26].

Assuming once again that A and B are using the same curve, basepoint, and hash
algorithm and B obtained the public key QA from A in a secure and reliable way, B can
verify the signature generated by A using the following scheme [26]:

2.1. Security 15

Bits of Security Symmetric algorithms RSA key-size
[bits]

ECC key-size
[bits]

80 2TDEA 1024 160

112 3TDEA 2048 224

128 AES-128 3072 256

192 AES-192 7680 384

256 AES-256 15360 512

Table 2.1: Comparison of security strengths of symmetric cryptography, RSA, and ECC.
Adapted from Certicom Corp et al. [1]

1. Calculate a secure cryptographic hash over the messagem: e = HASH (m)

2. Take only the Ln most signi�cant bits of e and save them as integer in z

3. Calculate w = s−1 mod n

4. Calculate u1 = zw mod n

5. Calculate u2 = rw mod n

6. Calculate (xk ,yk) = u1G + u2QA

7. Verify if r ≡ xk mod n

To make this process reliable and secure, there are obviously many necessary checks,
such as Verify if r and s are in the valid interval [1,n − 1], etc. These details, together
with the mathematic proof of the correctness of the ECDSA signing and veri�cation
algorithms, have been omitted at this point, since they fall out of this thesis’ scope due
to their extent and mathematical complexity.

Comparison Consequently, both cryptosystems have advantages in di�erent types
of operations. For Instance, to achieve a security level of 128 bits, the required ECC
key-size would be 256 bits, while RSA would require a key with a length of 3072 bits
length. A comparison of widely used key-sizes and their security level for RSA and ECC
is shown in Table 2.1.

Since signatures for RSA as well as ECC based cryptography are dependent on the
private key size, the required minimum signature size for the same security level for
both, RSA and ECDSA signatures, di�ers by orders of magnitude. The expected signature
size for a security level of n bits equals — depending on the chosen saving format —

16 Chapter 2. Background

RSAkey-size
[bits]

RSA signature size
[bytes]

ECC key-size
[bits]

ECDSA signature size
[bytes]

1024 128 160 40

2048 256 224 58

3072 384 256 64

7680 960 384 96

15360 1920 512 128

Table 2.2: Signature sizes for RSA & ECDSA [2]

at least n
8 for RSA and 2n

8 for ECDSA [2]. This fact results in the signature sizes for
comparable security levels as seen in Table 2.2.

Of course, the reduced space requirements of the ECC based algorithms come at a cost:
Computational complexity and thus performance. While ECC can outperform RSA
in terms of key generation speed and for very large key sizes even in terms of time
required for the signing operation, the veri�cation of signatures takes at least 20 times
longer for ECDSA based signatures. [38]

2.1.4 Other security features

Apart from focusing on the cryptographic principles found in almost every security-
related implementation, one should take care not to forget about some very simple and
often quite e�ective generic vulnerabilities such as replay attacks [39] or hijacking the
connection. To prevent a “Man in the Middle” [40] from hijacking the open port by, for
instance, changing the source IP address in the port-knocking packet, it is of critical
importance to include the client’s address in the payload, which cannot be modi�ed by
an attacker in an undetectable way since it is encrypted and authenticated using strong
cryptography. In order to prevent unauthorized parties from recording and replaying
a legitimate port-knocking packet it is recommended to rely on one of the proven
countermeasures widely known in the IT-Security community, for example including
a timestamp in the authenticated payload [41], using OTPs (One-Time Password) [42],
etc.

Finally, depending on the architecture and exact implementation of the port-knocking
layer, one should keep in mind that the port-knocking service itself could become a
security liability. If the code responsible for handling the knock requests is directly
accessible from remote machines and/or runs with elevated privileges, hardening this

2.2. Performance 17

critical piece of software and maintaining its secure state is of utmost importance. A
compromised best-case implementation should not be able to interfere with the overall
system security in a way that renders it less secure than it would be without port-
knocking.

2.2 Performance

Apart from security considerations, the next highly important property of the resulting
speci�cation is the impact on performance. As seen in the list of existing implementa-
tions presented above, there is more than one way to transmit and process the knock-
requests, which calls for a comparison of the possible and reasonably implementable
techniques for this scenario.

2.2.1 TCP vs. UDP

The �rst item on the list of performance-relevant decisions to be made is the trans-
port layer protocol to use for the port-knocking protocol. For requests that have
to travel through a multitude of network hardware it is not possible to abuse any
standard-protocol with a speci�c purpose to implement our scenario. This is because
well-developed security infrastructure will notice this illegal use of standardized com-
munication techniques, which will probably result in refused or dropped packets and
therefore loss of reliability [9]. This leaves the two general-use transport protocols:
The “Transmission Control Protocol” (TCP) [43] and the “User Datagram Protocol”
(UDP) [44].

TCP TCP is able to ensure that packets reach their destination by providing mecha-
nisms for packet loss detection and automatic retransmission of lost data, while in the
case of UDP, the higher-level protocol — in this case the port-knocking layer — would
have to implement it itself. While this would generally speak in favor of TCP as the
transmission method of choice, one should not forget that this reliability comes at a
cost: Before any data can be sent, TCP requires an established connection — meaning a
handshake requiring at least 3 packets has to take place �rst [43]. Out of these three
packets only one is able to transport useful data, which implies that the mean loss ratio
is 2

3 . These unnecessary packets increase the establishment delay of every connection
protected via port-knocking. So, depending on the reliability of the underlying network,
UDP can be more e�cient if packets don’t get lost too often, since it does not require
any connection establishment before being able to transmit data [44].

The only way to send a knock-request in a single TCP packet would be to abuse the
SYN packet, which is not supposed to contain any data since it only represents the

18 Chapter 2. Background

initialization of the handshake [43]. Therefore, it would most probably be dropped by
�rewalls between client and server [9], making the whole speci�cation unreliable.

UDP The UDP based implementation however is not a�ected by this speci�c problem
but turns detecting lost packets into a considerable challenge. A possible solution would
be for the server to con�rm received port-knocking requests, which not only creates
a security threat by exposing unnecessary information to a possible attacker, but also
has a negative impact on performance by doubling the time of the communication for
the average case. The other solution would require the client to verify the success of
the port-knocking and in case of failure, retry after a timeout. De�ning an acceptable
threshold for this timeout, however, is not a trivial task since one can never be certain
about the network conditions for every client a�ected by this security measure and
using high timeouts impacts the performance negatively.

2.2.2 Packet size

Besides the choice of the transportation protocol, another highly important metric is the
general size of the request packet. Independently from using TCP or UDP, very large
requests could result in fragmented packages, which would impose new problems for the
overall system performance. Fragmentation, by de�nition, increases the communication
latency because of the fact that multiple packets need to be routed to the recipient.
Additionally, these fragments can arrive in the wrong order and — especially in the case
of UDP — require additional processing to be reassembled correctly [45]. Furthermore,
splitting a request into multiple fragments obviously increases the probability that the
request has to be retransmitted since the loss of one fragment requires resending the
whole packet.

The challenge is to �nd a secure implementation that minimizes the probability of being
a�ected by the fragmentation threshold for every involved network device in the route
since the performance penalty resulting from fragmentation would render the whole
concept too expensive (from a latency based point-of-view) for the additional security
that it provides.

2.2.3 Processing incoming packets

While solving the challenge of ensuring the requests reach their destination in an opti-
mal way, one should also consider how to process the received packets e�ciently. As
seen in Section 1.3.2 of the introduction, there are very diverse techniques for capturing
and processing these requests. Leaving aside strategies that would cause signi�cant de-
ployment or administration overhead in a real-world scenario like, for instance, patching
the kernel on the server-side to �lter out the port-knocks [20], there are three possible

2.2. Performance 19

implementations: Using the Firewall log to dump incoming packets that match a de-
�ned pattern, running a full-featured service on the server, or using a RAW socket [46]
provided by the operating system.

Firewall log Firewalls supporting logging could be con�gured to log refused packets
in their log�les. These log�les could then be monitored for port-knocking protocol
packets by a lightweight daemon on the server without any need for elevated privileges
with the only exception of the thread responsible for opening the ports on the �rewall
after a successful port-knock. In addition this approach also prevents any direct contact
between clients and the port-knocking software, thereby minimizing the probability of
an attacker successfully exploiting a vulnerability of the port-knocking implementation
itself. However, consistently using a �le mostly placed on a hard-drive for frequent write
and read operations will probably a�ect the overall system performance by generating
a considerable amount of unnecessary load on the storage system. Additionally the log
�le might grow uncontrolledly — if not handled in an e�cient and secure way — �lling
up the partition it is located on, which could have security implications of its own.

Dedicated service The approach of running a service dedicated to only handling port-
knocking requests would probably be the most comfortable one from a development
perspective and also the fastest implementation in regards to packet processing speed
since the �ltering of non-relevant packets would be done by the operating system. On
the other side, such an implementation would need to have its own port open at all times
which makes it obvious that there is a port-knocking service running on the server
and therefore creates a new attack surface [47]. While this might not be considered a
signi�cant security risk by many, one should not forget the initial goal of this security
layer: Hiding services running on the server. Giving away the information, that there
are hidden services — which could easily be detected by running a port-scan, the very
technique port-knocking aims to de�ect — could motivate a resourceful attacker to
further pursue this particular server as target instead of moving on to the next possible
victim.

RAW socket While the last viable option — using a RAW socket — is the most complex
to implement and imposes a great challenge when it comes to e�ciently �ltering out the
irrelevant packets, it also enables an enormous �exibility in how exactly the incoming
tra�c gets processed. Provided that this approach is implemented with skill and caution,
it is possible to implement an extremely secure solution while maintaining a high level
of performance without interfering with the operating system or kernel itself. Acquiring
a raw socket requires elevated privileges, which can however be dropped immediately
after initialization. This leaves only the port-opening thread running with elevated
privileges, which would be necessary in every implementation anyway [48].

20 Chapter 2. Background

2.3 Deployment Complexity

Finally, after carefully considering all security and performance relevant properties, it
should not be forgotten that there is an important abstract attribute highly relevant for
success in a real-world industry: The complexity of deploying the product on the server
infrastructure, as well as the complexity of integrating it into existing client software.

As the additional security bene�t resulting from deploying a port-knocking solution
is restricted to hiding services, the associated impact on normal operation for the
customers’ application needs to be kept as small as possible. This is because in a modern
environment, the services additionally protected by this new security layer are mostly
considered secure from a business point-of-view, the expected allocation of resources to
integrate port-knocking into the existing environment will probably be proportionally
low.

Server side The decision a�ecting server side complexity the most is de�nitely how
user identity management is implemented. In general one can assume that there are
two major distinct ways to identify or authorize users: Storing per-client information
on the server [49] or using certi�cates [50].

Depending on the infrastructure of the provider, using customized client pro�les can
make sense if they already synchronize data sets over all relevant edge servers. In this
case, extending the synchronization to include the client con�gurations for the port-
knocking layer would be a very secure, cheap, and high performing solution. However,
this would probably apply to only a few of the possible customers for such a product.
In most cases, a deployment requiring fast and reliable data synchronization between
all edge servers would render the complete security solution inviable.

For these very common environments, the only viable alternative would be an authoriza-
tion technique based on a trust anchor that does not require any further client-speci�c
information. This implementation could be achieved by using, for instance, X.509 certi�-
cates backed by strong cryptography, which would provide a standardized environment
for employing user authorization [51]. Since most service providers already use certi�-
cates for some type of secure communication, they already have the infrastructure in
place for managing X.509 certi�cates, leaving a very minor cost position for extending
their certi�cation authorities to issue certi�cates for the port-knocking security layer.
However as illustrated in Section 2.1.1, the inevitable consequence of this approach is a
considerably higher packet size compared to using symmetric encryption and client pro-
�les. It also su�ers from a synchronization problem: keeping the certi�cate revocation
list up-to-date on every involved node. We argue that this is a minor drawback as the
infrastructure for it is already available as part of the PKI (Public Key Infrastructure) [52].

After careful consideration of the high-level requirements of this speci�cation, a thought-

2.3. Deployment Complexity 21

ful decision about the low-level implementation has to be made: The programming
language. Since many online service providers use hardware-based security appliances
right in front of their edge server, it could be a requirement to deploy the port-knocking
service on these hardware �rewalls. Since these devices mostly run a stripped-down
and hardened operating system with very basic support for only a few programming
languages [53], this possible requirement should be considered before starting develop-
ment.

Client Whichever approach is chosen for the server-side implementation, there are
a few very important considerations for the complete deployment scenario regarding
the client software. If, for example, the resulting client part needs elevated privileges or
manual user con�guration, this could scare away a�ected users from using the provided
service and consequently make the implementation less probable to be adapted by the
industry, resulting in a niche existence for the product.

Assuming the customer has access to the source code of the client software in use — or
is just generally able to induce a change of its implementation — the most favorable
realization of the client side for a port-knocking concept would probably be a library in
one or more widely used programming language(s), which could be easily linked to the
original client software to execute the port-knocking just before the initial application
communication. In the rare case that the service provider has no direct in�uence on the
client software, the client deployment would have to fall back to a separate launcher,
which �rst ensures that the port is accessible by executing the port-knocking sequence
and launches the actual client software once the port has been opened. Another possible
solution for the cases related to legacy-software could be to employ a variant of a proxy
based on a VPN (Virtual Private Network) protected by the port-knocking security
layer.

23

Chapter 3

Implementation

In this Chapter a full speci�cation for a port-knocking solution based on the principles
and technologies introduced in Chapter 2 is proposed. Following the speci�cation, the
architecture for our implementation of this speci�cation, called sKnock, will be described
in detail.

3.1 Requirements & Speci�cation

As previously explained, the goal of this work is to develop a viable concept for port-
knocking as an additional layer of security that scales up to the demands of today’s
large online service providers.

In the following section major requirements of such a concept will be presented along
with the implemented or suggested approach. While these decisions add up to a complete
speci�cation, every aspect of this design will be reviewed according to the requirements
initially stated.

As the most important aspect for making port-knocking a viable security component for
large-scale service providers, all design choices presented in the following sections were
made while considering the ability of deploying this software on millions of devices
without causing excessive management overhead on the provider’s side. Since these
choices imply restrictions on the available processing and security mechanisms, a great
e�ort has been made to create a design that is consistent with most scalable compromises
which still keep a high level of security and performance.

3.1.1 Network Communication

One of the �rst decisions was choosing UDP over TCP as a communication protocol for
port-knocking. The main argument for this choice was the limitation of TCP to only

24 Chapter 3. Implementation

be able to transmit actual data after successfully establishing a connection — which
basically translates to (assuming no packet loss) wasting at least two packets for each
knock request, if the operating system is able to combine the last handshake packet
(client ACK) with useful data, and at least three packets otherwise [54]. With at least
three sequential packets between server and client for every port-knocking request, the
average delay caused by the TCP-based implementation would not be proportional to
the expected security improvements and therefore not economically justi�able. Using
UDP for transmitting the port-knocking requests yields the advantage of being able to
send the port-knocking request immediately in the �rst packet. Nonetheless, this also
implies that the port-knocking client software is responsible for detecting lost packets.
Depending on the con�guration of the server �rewall, the client can detect lost packets
by not receiving any response in case the �rewall is con�gured to send out noti�cations
for rejected communication requests. If the �rewall silently drops packets related to
communication requests targeted at closed ports, the client has no way of di�erentiating
between lost packets and failed authorization attempts and is left with no choice but
to wait for a con�gurable timeout and retry. Since the Internet has been improving the
reliability of its network connections substantially during the last decades [55], we are
optimistic that the cases in which a delay is caused by lost packets will account for only
a small fraction of all port-knocking attempts and that thus, in spite of the less e�cient
packet loss handling, a lower average latency can be achieved by using UDP. Together
with the parametrization of the optimal timeout for retrying port-knocking attempts
this assumption is evaluated in the next Chapter.

3.1.2 User Authorization

For our design, there was no need for implementing a full-featured user identity man-
agement. The relevant user-related design consideration was to solve the challenge to
e�ciently authorize legitimate users while keeping unknown entities from contacting
the protected services.

The approach implemented in this speci�cation is based on X.509 certi�cates to authorize
clients, because this technique requires only one certi�cate of a Certi�cation Authority
(CA) and the most recent Certi�cate Revocation List (CRL) to be stored on the server-
side device responsible for handling the port-knocking. To mitigate the risks implied
by using a trust system based on certi�cate authorities, our design employs certi�cate
pinning, a technique where only certi�cates from one or more given authorities are
accepted for a specialized use-case.

The actual authorization data contained in these client certi�cates is a UTF-8 en-
coded, comma-separated list of allowed port and protocol combinations as, for example,
1.2000,1.3000,0.8000. In this scheme, 1 corresponds to TCP, while 0 represents UDP as
protocol. This authorization string is stored under the OID (Object Identi�er) for the

3.1. Requirements & Speci�cation 25

TUM, 1.3.6.1.4.1.19518 as Other Name in the Subject Alternative Name (SAN) extension
of the certi�cate and represents the only relevant data considered in the authorization
process. The chosen OID was an arbitrary decision and can be freely replaced by any
available OID to suit the needs of the target environment.

This feature gives the service provider the freedom to deploy their application using
user-speci�c or application-wide certi�cates, depending on the requirements of their
environment. Including additional information such as a user ID has no adverse e�ects
on the port-knocking protocol except for increasing the certi�cate size and therefore
requiring a larger overall packet size. Of course one has to keep in mind that signi�-
cantly increasing the packet size leads to a higher probability of exceeding the Maximum
Transmission Unit (MTU) and therefore a higher risk of dropped packets for some clients.
Furthermore this approach imposes no restrictions on the choice of identity manage-
ment systems or certi�cation authorities for the customer, as long as the mentioned
authorization string is correctly encoded in the resulting certi�cates.

3.1.3 Security Suite

All security-relevant properties of this speci�cation were developed with a minimal
impact on packet size and therefore performance — speci�cally latency — in mind. As a
result of the previous decision towards certi�cates, a given prerequisite of the security
concept is the involvement of asymmetric encryption. Following this, we chose elliptic
curve cryptography based on the NIST-P 256 curve for generating the required key-
pairs to use with the described authorization infrastructure. The security level of our
cryptosystem based on these 256 bit long keys is about equivalent to the security of
AES-128 or 3072 bit RSA as shown in Table 2.1.

To secure the actual port-knocking requests, the following scheme of iteratively adding
security measures is applied on the packet consisting of one zero byte followed by the
protocol and port number.

Counter Man-in-the-Middle The request is extended by adding the IP address of the
client network interface from which the port-knock will be sent to mitigate a Man-in-
the-Middle attack by just changing the source address in the IP header of the packet on
the wire and then hijacking the open port. However, this measure greatly impacts the
ability to traverse networks which employ Network Address Translation (NAT), as it is
the case with most private home setups.

Counter replay attack The client appends a timestamp to the clear-text request, which
is checked by the server, allowing it to deviate from the current time by only a small,
con�gurable threshold to prevent replay attacks. Finding the optimal value for the

26 Chapter 3. Implementation

allowed time-delta depends on the security requirements of the environment and the
time-synchronization capabilities expected from the deployment.

Signature & Certi�cate Following the timestamp, the client certi�cate is appended to
the request and the contents of the whole packet up until now including the certi�cate
are signed using the ECDSA algorithm with the private key corresponding to the client
certi�cate to generate a signature. Before appending the signature to the request it is
padded to a deterministic size of 72 bytes1 since ECDSA signatures can vary in length.

Encryption To protect the sensitive information contained in the port-knocking packet,
all previously mentioned contents are padded and encrypted using AES-128. The sym-
metric key required for this process is derived from a secret established using ECDH
with the server’s public key and an ephemeral ECC key-pair which is based on the
same curve and separately generated for each request. The technique used to derive
the symmetric key from the secret is called HKDF (“HMAC-based Extract-and-Expand
Key Derivation Function”) [56]. In order for the server to be able to decrypt the packet,
it is necessary to append the public key of the ephemeral key-pair to the message.

Conclusion By integrating the above mentioned security features we have step-by-step
implemented a cryptosystem secure in regard to IND-CPA, IND-CCA, and IND-CCA2.
This scheme is a variation of the publicly known “Elliptic Curve Integrated Encryption
Scheme” (ECIES) with the major di�erence of using the digital signature (ECDSA) to
authenticate the message instead of a speci�ed message authentication code, since the
certi�cate and signature has to be included for authorization purposes anyway. By
using 256 bit as the key-size for our security model we believe to achieve the optimal
compromise between security level and performance, especially in terms of acceptance
by the industry.

ECC curve recommendation As an improvement in the near future, it is recommended
to replace the NIST-P 256 curve with the newer curve25519 as soon as the X.509 stan-
dard incorporates it and the curve is supported by all major platforms and certi�cation
authorities. This recommendation is based on the fact that since the NSA scandal of
2013, all cryptography-related information and technologies coming from regulatory
bodies of the United States should be treated with caution [57]. Apart from being
developed independently from any governmental in�uence, curve25519 has some ad-
vanced cryptographic properties that make it superior to most other curves in terms
of security and performance. The only reason we chose the NIST recommendation for

1This depends on the key-size of the ECC key-pair. For the curve chosen in our speci�cation (NIST
P-256), the maximum signature size is 72 bytes.

3.1. Requirements & Speci�cation 27

now is that curve25519 is not yet part of the X.509 standard and therefore unsupported
by most certi�cation authorities which renders it practically unusable on commercial
platforms [58].

3.1.4 Packet Design

Si
gn
ed

w
ith

C
lie
nt

C
er
ti�

ca
te

Encrypted
w
ith

A
ES

using
a
sym

-
m
entric

K
ey

derived
from

EC
D
H

IP Header UDP Header Knock Header

0 Protocol Port No. Client IP Timestamp

Client Certi�cate

Client Signature Padding

Ephemeral Public Key

0 20 28 32

32 33 34 36 52 56

56 710

710 782 783

783 816

Figure 3.1: Example of a port-knocking request packet

Combining all solutions and measures necessary to ful�ll the requirements stated above,
there was one last optimization to achieve: Unify everything that has to be sent over
the wire into a packet as small as possible. Since the packet design was generally
optimized to yield the highest possible performance under the given environment, the
second important parameter next to the overall size was the improvement of processing
speed. This consideration led to the decision of including one extra byte of zeros in the
encrypted payload, enabling the server to quickly verify if the decryption was successful.
By implementing this extra check, the packet processing logic on the server can �lter
out most malformed, misdirected or incorrectly encrypted packets signi�cantly more
e�ciently since an invalid packet would most certainly not contain the zero byte at the
correct position.

An example of a port-knocking request packet can be seen in Figure 3.1 including
description and byte sizes. The overall communication infrastructure was developed in
a way to allow for a variable certi�cate size, since the length of an X.509 certi�cate can
vary considerably depending on the usage of extensions and the employed certi�cation
authority. Also, in Table 3.1 an explanation of the relevant �elds for this port-knocking
speci�cation can be found.

28 Chapter 3. Implementation

Field Description
Knock Header Contains a magic number to identify sKnock (1 byte) and the used

version (3 bytes)
Protocol Boolean value for either TCP (1) or UDP (0)
Port Number The requested application port number
Client IP IP address of the client to mitigate Man-in-the-Middle attacks.

Needs to be 16 bytes because of IPv6 support
Timestamp Client time to prevent replay attacks
Client Certi�-
cate

ECDSA certi�cate used by client to sign the request. Contains the
clients’ authorization for port-knocking

Client Signa-
ture

Signature to authenticate the request

Padding Actual length of the signature, since ECDSA signatures are not
deterministic and can be smaller

Ephemeral
Public Key

Public key of the temporary ECDH key-pair generated by the client
to encrypt the request

Table 3.1: Explanation of relevant Port-knocking packet �elds

3.2 Architecture

In the following Section all major modules used in our implementation of the design
speci�ed in the previous section are presented. Every module is explained in detail by
describing its requirements and functionality. At some points general design decisions
are explained and the current state of development is assessed together with the inten-
tions for future extensions at the time the code was written. An overview of high-level
server and clients components can be taken from Figure 3.2.

3.2.1 General considerations

The work done in the scope of this thesis is intended as a proof-of-concept for a scalable
port-knocking implementation that could satisfy the requirements of cloud-scale online
service providers. To obtain a high probability of industry acceptance, every module
described in this Chapter was designed with platform independence in mind. Since a
great variety of devices are connected to the Internet, no security solution that aims to
be deployed on a large scale can ignore any major operating system. While this property
is absolutely crucial for the client side, where a platform-independent implementation
would not require a lot of platform-speci�c code, the topic becomes more complex for
the port-knocking server. As it contains a considerable amount of operating system
dependent code, such as the startup module, the socket, or the certi�cate management,
all of these modules need to be abstracted and implemented multiple times to enable
compatibility across all relevant server systems. Even more challenging is the imple-

3.2. Architecture 29

Client
Connection Module

Security Module

Crypto-
graphic
Engine

Certi�cate
Utility

Client Interface

Port-knocking Server

Main Process

Incoming
Packet
Filter

Security Module

Crypto-
graphic
Engine

Certi�cate
Utility

Request Processor

Firewall Handler

Firewall Service Process

IPC

Firew
all

Figure 3.2: Important Components of the Implementation

mentation of the Firewall module, since it has to be �exible enough to support di�erent
�rewall software on di�erent platforms.

3.2.1.1 Programming language

In order to realize as many of the proposed features and components as possible, sKnock
was written in Python, a programming language renown for its excellent e�ciency in
quickly developing software prototypes. However, for realizing a speci�cation similar to
the presented design, our recommendation would be to use a lower-level programming
language such as C, as this allows deployment on hardware �rewalls, security hardening,
and extensive performance tuning up to the limit of the respective platform among
other things.

3.2.1.2 Platform independence

To achieve the aforementioned goal of platform independence, the Platform module
was created, among others, to provide general, platform-speci�c abstractions for all the
relevant target environments. The goal of this concept is to enable the �nal version
to be agnostic of all the platform-dependent implementation details by decoupling the
high-level logic from the low-level implementation details from a software architecture
point-of-view. This empowers users from every operating system with every imaginable
�rewall software to extend the code presented in this document with their platform
speci�cs and to immediately deploy a port-knocking solution in their environment.

30 Chapter 3. Implementation

However, keeping in mind the time-constraint and scope of this work, the implementa-
tion presented in the following subsections focuses on environments based on the Linux
operating system with OpenSSL as a main cryptographic library and iptables as system
�rewall. Although the low-level encapsulations were only written for the mentioned
environment, the code is designed to allow for easy extension by only implementing
these abstractions for other environments while not having to change the high-level
logic of this port-knocking concept.

3.2.1.3 Firewall: iptables

As mentioned before, our implementation relies on the iptables �rewall software to
open and close the ports for legitimate port-knocking requests. The iptables �rewall is
con�gured using chains and rules. Every rule belongs to exactly one chain and is used to
match packets to certain parameters and execute an action in case of a positive match.
These matching parameters depend on the modules and extensions loaded at startup
of iptables and include, for example, protocol, source and destination port, source and
destination IP address, connection state, packet header �ags, and many more. The
same is also true for the available actions, which can reach from simple operations
such as ACCEPT, REJECT, or DROP up to complex routines such as applying NAT to
incoming packets or manipulating TCP Header �elds. The main di�erence between
these standard actions is, that ACCEPT will, as the name suggests, let the packet pass on
to the application while REJECT will not let the packet through and additionally informs
the sender by issuing a icmp-port-closed to the sender. DROP will behave just as REJECT
with the di�erence, that it silently stops the packet without giving any information back
to the source.

Iptables starts up with a set of default chains: INPUT, OUTPUT, and FORWARD. Modules
and extensions are able to provide additional default chains that are associated with the
respective module only, such as loading the nat module results in the PREROUTING and
POSTROUTING chains being added. Packets traveling through the system are processed
by iptables depending on their origin and destination. For instance, incoming packets
which are destined for the local machine arrive at the INPUT chain. By using the name
of di�erent chains as action parameter, it is possible to create complex rule sets by
conditionally concatenating multiple chains. In case the packet reaches the end of a
chain it returns to the chain it came from; if the chain is a default chain, the default policy
of that chain is applied. The three default policies of a regular iptables deployment are
the simple operations mentioned before: ACCEPT, REJECT, and DROP.

3.2. Architecture 31

3.2.2 Server

The following Subsections explain the core modules of the server architecture, ranging
from the way incoming packets are captured, up to the logic responsible for �nally
opening the ports by modifying the current �rewall rule set.

3.2.2.1 Server Interface

To provide a point of entry with easy access to the high-level functions of the server, we
are using the abstraction methods located in the class ServerInterface. This class com-
pacts the initialization process into a single startup method, which accepts all necessary
and optional inputs as parameters. By using these parameters, it then instantiates all
modules required for operation with respect to the necessary logical order and depen-
dencies. The signal handling in the server interface also provides the possibility to run
the port-knocking server as a background service using, for example, start-stop-daemon
under Linux or the included service framework under Windows.

3.2.2.2 Con�guration

As it is best-practice to provide a headless start for server-side services, a mechanism
to initialize the required parameters from a con�guration �le is necessary. The reading
and parsing of the con�g-�le for the port-knocking service is done in the Con�guration
module, which then holds all the the user-speci�ed settings in a global variable. For
the options not set by the user or in case there is no con�guration �le at all, the im-
plementation provides default values for all required parameters. The loaded settings
object is then distributed by the Server Interface to every instance of classes requiring
con�gurable parameters in their operation.

At the current status, following parameters are con�gurable:

3.2.2.3 Security

The security module located in the Security class encapsulates the certi�cation utility de-
scribed in Subsection 3.2.4.1 and the cryptographic engine described in Subsection 3.2.4.2
to provide high level interfaces for decrypting and verifying legitimate port-knocking
requests. The veri�cation process for incoming requests is implemented using the
following scheme:

1. Call the CryptoEngine to decrypt the message

2. Verify that the �rst byte equals zero

32 Chapter 3. Implementation

Setting Default Value
Minimum Knock-Packet length
[bytes]

800

Time in seconds that the port re-
mains opened

15

Threshold for the timestamp
veri�cation in seconds

7

Receive Bu�er size [bytes] 1600
Signature size [bytes] 72
Certi�cate Revocation List �le
path

certificates/devca.crl

Certi�cate Revocation List URL https://home.in.tum.de/ sel/BA/CA/devca.crl

Certi�cate Revocation List Up-
date Interval in Minutes

30

Server Certi�cate �le path certificates/devserver.pfx

Server Certi�cate pass-phrase portknocking

Firewall Policy reject

Table 3.2: Port-knocking server con�guration settings with default values

3. Verify signature and client certi�cate using the CertUtil

4. Check the timestamp considering the con�gured threshold

5. Extract the authorization string from the certi�cate and verify that the user has
been granted access

Apart from checking incoming port-requests this module is also responsible for con-
stantly updating the Certi�cate Revocation List from a deployment server. For this task,
the security engine schedules the UpdateCRLThread to run repeatedly in a con�gurable
interval.

3.2.2.4 Request Processing

Module: Listener The logic responsible for processing the incoming packets was too
extensive to be contained in a single class, which is why the Listener is one of two
modules in this implementation containing multiple classes and requiring more than
one thread. An overview over the processing logic is given by Figure 3.3.

3.2. Architecture 33

yes

yes

yes

yes

yes

yes

no

no

no

no

no

no

Incoming packet

Valid IPv4 or
IPv6 header?

Valid UDP header?

Valid port-
knocking header?

Decrypt request

Valid request?

Verify certi�cate
and signature

Valid certi�cate
and signature?

Authorized for
requested port?

Open �rewall port
for de�ned duration

Drop packet

Log warning event

Figure 3.3: Packet Processing Algorithm

34 Chapter 3. Implementation

Knock Processor At startup, the KnockProcessor class is responsible for setting up a
raw socket using the python socket interface, which intercepts all incoming packets. To
maximize throughput, only packets with a size larger than the minimum expected length
for a valid knock requests are passed on to their own New Packet Thread for further
�ltering. This approach provides the possibility to implement a high-performance
packet-�lter without requiring the port-knocking service to be bound to a speci�c port.

New Packet Thread The logic to e�ciently separate possible port-knocking requests
from usual server tra�c is implemented in the NewPacketThread class. After a sizable
amount of irrelevant packets has been �ltered out just by matching their size, the packets
that are big enough to potentially contain a port-knocking request are processed using
the following scheme:

1. Skip the Ethernet Header

2. Process the IP Header

• Determine if the packet is an IP packet at all

• Check the protocol �eld to verify it’s an UDP packet

• Determine the IP version of the packet

• In case of IPv4: Extract the IP header length

3. Skip the UDP Header

4. Check if the packet contains the magic number in the port-knocking header (�rst
4 bytes of the payload)

5. Verify that the Knock-Version (last 3 bytes of the port-knocking header) is com-
patible with the current version

If the packet survives this procedure it is considered a port-knocking request with
very high probability and is therefore relayed to the Process Request module, which is
designated for further processing.

Process Request Thread Each of the threads assigned with the processing of a possible
request has to decrypt and verify the received packet using the security engine �rst.
Assuming this operation completed successfully, the logic in the ProcessRequestThread
class is responsible for verifying that the client IP address contained in the port-knocking
request matches the source IP address from the packet header. In case of a mismatch, a
Man-in-the-Middle attack is assumed and the packet is dropped while writing a warning
message to the con�gured logging environment. However, if the request is considered
valid, the module veri�es if the requested port has either already been opened or is
in the process thereof, and spawns a thread to do so if necessary. This precaution is

3.2. Architecture 35

implemented by storing a hash over the combination of port, IP version, protocol and
client IP from each valid request in a list owned by the KnockProcessor instance. This list
is checked for every request before kicking o� the port-opening logic and the hash is
only removed from the list by the port-closing logic after the port has been successfully
closed.

3.2.2.5 Firewall Operations

Module: Firewall The module responsible for handling the �rewall operations to actu-
ally open and close the requested ports is the most complex part of the implementation,
requiring a separate process and multiple distinct threads to ful�ll all requirements re-
garding security and performance. Although every line of code in this implementation
was written with platform independence in mind, time constraints led to a focus on
Linux server environments with iptables as main �rewall software. While this code
can easily be extended for other �rewalls on other operating systems, the following
description focuses on the implemented solution.

Port Opening Thread This thread is intended to be spawned by the thread responsible
for processing a request in case of successful veri�cation of the port-knocking request’s
legitimacy. Upon execution, the logic implemented in the PortOpenThread class appends
the previously mentioned hash over the combination of the requested port parameters to
the list of running port-related tasks stored in the KnockProcessor instance. It then tries
to open the corresponding port by sending the respective request for a port-opening
task to the high-level �rewall interface and handles possible exceptions arising during
this process. After successfully opening the port, it spawns the thread responsible for
closing the same port after a period of time.

Port Closing Thread Spawned by the thread described in the paragraph above, the
logic contained in the PortCloseThread class starts by sleeping a con�gured period of
time. After the waiting time is up, it tries to close the port opened by aforementioned
logic via the same �rewall interface. Upon successful completion of the port-closing
operation, the thread removes the hash belonging to the current port parameters from
the running tasks list in the Knock Processor before terminating itself.

Firewall The high-level interface for executing �rewall-related tasks is implemented
in the Firewall class. It provides methods for initialization and safe tear-down of the
complete Firewall module, while abstracting the complexity necessary for opening and

36 Chapter 3. Implementation

closing the �rewall ports in an atomic2 and thread-safe3 way.

At startup, the Firewall module spawns the process responsible for executing the actual
commands leading to �rewall operations together with the communication pipes re-
quired for sending tasks to this process. Furthermore, the current active rule-set of the
�rewall is backed up and an emergency rule is inserted to enable remote access in case
of an unexpected service failure (for debugging purposes).

During normal operation, the interface provides methods for asynchronously opening
and closing ports on the current �rewall. These methods are engineered to guarantee
that the �rewall always resides in a consistent state while the requested tasks are
executed sequentially although the incoming requests are being received in parallel.

At shutdown of the port-knocking service, this module ensures to reverse all actions
performed during the operational time by restoring the �rewall rules to the previously
backed-up state.

Linux Service Wrapper This wrapper located in the LinuxServiceWrapper �le con-
tains the logic for listening and processing the commands sent over the pipe from the
main process. The aforementioned �rewall process uses the methods contained in this
wrapper to decode the requested tasks and execute them using a helper class for the
respective �rewall. By decoupling the �rewall operations into a separate process, the
risk for an attacker gaining elevated privileges through a possible vulnerability in the
port-knocking implementation is signi�cantly reduced, since only these tasks can be
executed by the �rewall process.

Other platforms The way multithreading, multiprocessing, access control, resource
distribution, etc. works di�ers substantially between the available platforms. Due to
this fact, the encapsulation of the processing logic for the �rewall operations has to
be developed separately for each platform since leveraging python’s multiprocessing
library only allows for the abstraction of basic inter-process communication and process
management.

Safe inter-process communication Every requested task is assigned a task ID consist-
ing of 32 characters before being sent to the �rewall process through the interface in
the Firewall class. The process encapsulating the �rewall service then answers with the
task ID on the reverse communication pipe on successful completion of a command. By
ensuring that the task ID returned by the �rewall process matches the one sent with the
last command, the interface can verify that the tasks were executed in the right order

2Every operation is either executed completely and consistently or not executed at all.
3Multiple parallel threads are not able to interfere with each other when executing �rewall commands,

so the state of open ports is always consistent.

3.2. Architecture 37

without interference of other processes. Additionally, the method executeTask, respon-
sible for assigning the task ID’s and the only way to communicate with the �rewall
process, uses a decorator called synchronized, which — inspired by the Java equivalent
— was developed to ensure thread-safety of certain methods.

IPTables Helper A collection of helper methods located in the �le IPTablesHelper pro-
vides an encapsulation of the low-level commands necessary to recon�gure the iptables
�rewall. It is based on the python-iptables (iptc) python library by Vilmos Nebehaj,
which provides basic iptables bindings to enable direct access to the binary via python
code [59]. Using these bindings, the methods provide high-level abstractions to execute
the commands necessary to: back-up or restore the currently active iptables rule-set,
open a TCP or UDP port for a speci�c client IP address, and to remove an open port
from the rule-set, which is equivalent to closing it. Additionally it allows for injection
of an emergency access exception rule to allow administrators SSH access to the server
in case of a malfunction in the port-knocking service.

The restriction of server access to ports opened by the port-knocking daemon works by
redirecting all incoming tra�c from the INPUT chain to the new knock chain, which is
created by this service on startup using a method from the IPTablesHelper class. Every
allowed port equals an iptables rule granting the authorized client access for as long as
it is present in the chain. Furthermore, these helper methods provide the abstraction
for the IP version in use by relaying the requested commands to either the iptables or
the ip6tables binary.

3.2.3 Client

This section revolves around the implementation of the port-knocking request gener-
ation as well as the handling of errors and the important possibility of including the
port-knocking client as library for other client software. A high-level abstraction of the
client-server-interaction is shown in Figure 3.4.

3.2.3.1 Client Interface

Similar to the aforementioned server interface there is a class, called ClientInterface,
on the client side responsible to provide high-level abstractions for the initialization
and core functionality of the client library. This interface signi�cantly simpli�es the
deployment process by providing an easy way to implement the port-knocking protocol
using just two method calls4. Furthermore, it also serves as the connection point for a
wrapper that allows access to the functionality of the client from code written in C.

4One for initialization; One for the actual port-knocking

38 Chapter 3. Implementation

Port-knocking Request(Port, Proto., IP, Time, Cert.)

icmp-reject

verify()

return

Application Data

opt

opt

:Client :Server

Figure 3.4: Overview of Port-knocking sequence

3.2.3.2 Connection Provider

Apart from the initialization process, most of the high-level logic is implemented in the
Connection class. Before crafting the port-knocking request, the connection provider
tries to determine the preferred interface and IP version for the route to the target server.
It then uses the resulting IP address together with the other required parameters such
as port number, protocol, or timestamp to assemble the clear-text knock request. This
data is then signed and encrypted by the security engine returning the secure request
to the connection module, which adds the Knock-Header containing the magic number
and version of the protocol. Finally the complete knock packet is sent to the server
and a veri�cation logic is kicked o� in case the requested port is a TCP port and the
verify �ag was set upon initialization. This veri�cation process works by trying to
establish a connection with the service running behind the requested port and in case
of failure retrying the port-knocking process while respecting a con�gurable timeout

3.2. Architecture 39

and a speci�ed number of retries.

Additionally, this interface provides error handling and useful messages to the user, but
depending on the environment and the current con�guration, it is possible that the
only information that the client can infer from the situation is that the port-knocking
had failed. In this case, there is no way to inform the user of the exact reason for the
failure, meaning that the compromise between performance, informativeness to the
user and security is a decision that has to be made by the service provider based on
their environment and is fully con�gurable through the port-knocking parameters and
the general �rewall con�guration.

3.2.3.3 Security

Just like the server, the client also employs the CryptoEngine and CertUtil modules to
build up its’ security system. This security module contained in the similarly named
class provides a high level abstraction for securing the sensitive data in the port knocking
request. The process generally follows the following scheme:

1. Prepend a Zero-Byte at the beginning of the request to improve decryption and
veri�cation performance

2. Calculate a timestamp and append it to the clear-text port-knocking data

3. Encode it as binary data

4. Append the client certi�cate and sign the whole request (including the certi�cate)

5. Encrypt the signed request using an ephemeral key and append the public key to
the encrypted request

3.2.4 Common Modules

As referenced before, there are obviously de�nitions, constants, utility functions, and
modules which are required for both server and client. The implementation of these
modules can be found in a separate common package.

3.2.4.1 Certi�cate Utility

Implemented in the CertUtil class, this module is responsible for every operation in-
volving certi�cates. At startup it loads the required operation certi�cates as well as
the signing certi�cate of the Certi�cation Authority (CA) responsible for issuing the
port-knocking certi�cates. Using certi�cate pinning the validation of all certi�cates
interacting with this module is performed against only this speci�c CA certi�cate as

40 Chapter 3. Implementation

opposed to a multitude of di�erent trust providers, e�ectively establishing a single trust
anchor for the port-knocking service. In normal operation the core functions of the
certi�cate utility include validating certi�cates, checking their revocation status, and
generating and verifying signatures using these certi�cates.

The ability of executing these tasks without abysmal performance metrics comes from
the use of the native OpenSSL library by basing most of the code responsible for loading,
decoding, and encoding of certi�cates on the pyOpenSSL wrapper library, an open-
source project started by Jean-Paul Calderone [60].

3.2.4.2 Cryptographic Engine

As the name suggests, the cryptographic engine in the class CryptoEngine is a complex
module exploiting the API of the M2Crypto python library [61] to implement the
cryptographic functionality required for secure communications between client and
server. This module provides a high-level abstraction for encrypting and decrypting
the port-knocking request by establishing a secret, deriving a symmetric key from it
and using it to perform the requested operation on the given data.

Since, in our implementation, ephemeral key-pairs for each encrypted message are
used to provide a higher level of security, this process involved the generation of these
keys for encryption as well as the extraction of the public key from the message for
decryption. This ephemeral key is then used together with the servers key-pair to
establish the secret using ECDH. Then a 128-bit AES key is derived from the secret
using HKDF as key derivation function to encrypt or decrypt the request including its
respective authentication data. The whole scheme is a variant of the ECIES cryptosystem,
which is proven to be secure against adaptive chosen chiphertext attacks as discussed
in Section 2.1.3 in Chapter 2.

3.3 Limitations

As the scope of this work was focused on a prototype to demonstrate the viability
of a scalable port-knocking concept, there are a few limitations encountered during
the development process that need to be solved for a feature-complete version of this
implementation.

3.3.1 Network Address Translation (NAT)

A consequence of the security measures employed against Man-in-the-Middle attacks
described in Section 3.1.3 is the restrictions it imposes on the ability to traverse NAT-ed
networks. Since NAT requires the rewriting of the source IP address in the IP header

3.3. Limitations 41

of every packet, the server will de�nitely recognize a client behind a NAT setup as
malicious attacker and therefore refuse to accept the request. Keeping this in mind,
there is practically no other way to e�ectively counter Man-in-the-Middle attacks in
this scenario since the client IP address is the only data the �rewall has available to
identify the authorized client for subsequent requests.

The adoption of IPV6, which provides signi�cantly more addressing space than IPv4,
is constantly increasing and will most probably completely replace IPv4 at some point.
Since one of the major design goals of IPv6 is to provide every device with its’ own
public IP address, the need for NAT will certainly decrease in the future. However, at
the time of this work IPv4 still remains the dominant IP version used in the Internet and
therefore a workaround for this limitation is de�nitely required to enable reasonable
use of this port-knocking implementation.

3.3.2 Tracking of Established Connections

One signi�cant limitation of the current state of our implementation is the way packets
are handled after a successful port-knocking. With the current design, UDP based
applications will be cut o� after the con�gured duration after successful port-knocking.
So either this duration needs to be extremely large to allow uninterrupted access to
these applications or the application would have to repeat the port-knocking process as
soon as the port is closed again.

The �rst option is not an acceptable state, since this approach creates a possible security
issue while not ensuring that every possible application will �nish before the port
closes again. For example a video-on-demand streaming service could be used by binge-
watching users for numerous hours non-stop, which in turn would be an unacceptable
duration for a default timeout setting.

The second option causes an unnecessary high overhead on the overall communication
since the client has already provided the required authorization information for using
the application and should not be bothered renewing the authorization for the same
session over and over again. Even worse, since as of now there is no logic for actually
renewing an open port, the client has to wait for the port to be closed before a new
request would be accepted.

This restriction obviously requires a reliable solution before the presented implementa-
tion can be used in a productive environment.

3.3.3 Chosen Implementation Language

Python is an excellent language for quick prototype development, however, this ca-
pability comes at a cost: performance. With the interpreter architecture, ine�cient

42 Chapter 3. Implementation

cryptographic libraries and limitations concerning multi-threaded execution because
of the Global Interpreter Lock (GIL), the achievable processing power is signi�cantly
inferior compared to low-level languages such as C or Rust [62].

The impact of the reduced processing capabilities of the chosen programming language
is clearly visible, especially in computational expensive operations such as encryption,
decryption, veri�cation of certi�cates or signatures, and cryptographic operations in
general. Additionally, the fact that there is no condensed cryptographic library available
for python that contains all necessary operations for this work reduced the achievable
performance even further. This not only forced the use of multiple libraries using
di�erent internal representations of the same data objects, but we also had to hack some
own implementations to achieve compatibility between the representations.

3.3.4 Multi-platform support

Although the implementation was designed with special attention to keeping as much
code as possible platform independent, due to time constraints and the scope of this
work, the developed prototype supports only one speci�c environment. It depends on
OpenSSL being available as a cryptographic module as well as iptables for managing the
�rewall and requires to be run on the Linux Operating System. Since major design goals
are scalability and ease of use, the lacking of multi-platform support is an unacceptable
restriction.

However, all the logic necessary to employ the port-knocking protocol is completely
decoupled from the modules encapsulating the platform-speci�c dependencies and
operations. This means, that even at the current state this implementation is easily
extendable to other software components as well as operating systems just by providing
the required wrappers for the desired platform speci�cs.

3.3.5 UDP

One of the greatest strengths of this concept could also be a great weakness depending
on the use-case one is considering. If a deployment scenario involves protecting services
hosted at third-party infrastructure providers, where the con�guration of their security
infrastructure is out of reach, the use of UDP as a protocol could become an issue.
As some cloud providers block UDP communication at their hardware �rewalls, it is
possible that this implementation could not be used to protect services running there.
However, in order to support the huge variety of the applications deployed by their
customers, large cloud providers have very relaxed and �exible �rewall con�gurations
as default setup, so this limitation should only apply in very few scenarios.

43

Chapter 4

Evaluation

The following Chapter is dedicated to test the implementation described in Chapter 3
based on the initial requirements and expectations. The data generated by these tests
is then used to assess how well the requirements have been ful�lled. Additionally, the
real-world viability of this implementation is evaluated and suggestions for possible
improvements are made.

4.1 Per-Module Performance Analysis

The �rst analysis consists of benchmarking every module with a considerable impact
on processing performance independently. In the following Sections, the test environ-
ment and test cases for each of these components will be explained. For every test
case the collected results will be presented with an evaluation of their e�ect on the
implementation and possible implications for the port-knocking concept in general.

4.1.1 Test environment

System All of the module-speci�c benchmarks were performed on a DELL OptiPlex
9020M machine equipped with a quad-core Intel(R) Core(TM) i5-4590T CPU @ 2.00GHz
and 16GB of memory. The operating system running on the machine was Ubuntu Linux
12.04.5 LTS with all recent updates installed before any tests were executed. Therefore,
the crptography provider used in the evaluation process was OpenSSL version 1.0.1 while
the �rewall software was iptables v1.4.12.

Measurements Whenever possible all time-critical measurements were performed
using the timeit Python library, which is designed to use the most precise timing func-
tionality available at the given platform. In some cases, however, speci�c restrictions of

44 Chapter 4. Evaluation

this library required us to fall back to the time module, provided by the standard Python
environment, to create our own timing mechanism.

4.1.2 Firewall

As mentioned in Chapter 3, this work focuses on the iptables �rewall software running
under Linux as operating system to provide a proof-of-concept. Consequently, the
handling of iptables operations in our software is one of the core modules in�uencing
overall performance and therefore deserves to be analyzed in detail.

Test Case To measure the capability for opening and closing ports using the iptables
�rewall, a suitable benchmark was written to explore the limits for reasonable addition
and removal of packet-�ltering rules to and from the iptables chains. The following test
measures the time necessary to open all available ports for a single client, meaning all
possible combinations of ports 0 up to 65535 for TCP and UDP as well as IPv4 and IPv6.
Additionally, the performance for closing the open ports afterwards is also considered
in this test. All of the ports are opened for a single random source IP address since
during the test runs it became clear that using di�erent IP addresses vs. the same IP
address for each rule has no impact on performance as long as only the last rule actually
matches to the request. A typical iptables rule for a port-knocking client contains the
protocol, destination port, and source IP address as parameters and an incoming request
has to match all of these parameters for the rule to apply.

Results Crunching the data resulting from adding in total 131072 rules (65536 TCP
ports, 65536 UDP ports) for an IPv4 client to our “knock” iptables chain, clearly shows
signi�cantly decreasing performance proportional to the size of the iptables rule-set as
shown in Figure 4.1.

Looking at this relation it becomes clear that the time required to execute a single
iptables operations increases with the number of rules already present. After running a
second analysis and processing the resulting data, it is clearly visible how the number of
active rules in�uences the execution time for following operations as seen in Figure 4.2.

As expected, the behavior for closing the ports is consistent to the relation described
above. As in the initial state of the port-closing measurement we have 131072 active
IPv4 port-knocking rules, the time taken for executing the port-closing operations,
which e�ectively remove the rules added before, decreases while the size of the current
rule-set diminishes as shown by Figure 4.3.

At this point it is worth mentioning that the average execution time for closing a port
is lower than for opening a port, which among other reasons could be due to memory
deallocation being faster than memory allocation.

4.1. Per-Module Performance Analysis 45

0 1000 2000 3000 4000 5000 6000 7000 8000 9000

Time [s]

0

2

4

6

8

10

12

14
N

um
be

r
of

 o
pe

n
po

rt
s

#104

Open ports

Figure 4.1: Time for opening 131072 ports (65536 TCP + 65536 UDP) for an IPv4 client

As the iptables kernel-modules responsible for performing these operations for IPv6
addresses are completely separated from their IPv4 pendants, the total number of active
IPv4 rules does not in�uence the performance of ip6tables, the IPv6 pendant of iptables.
Apart from this observation, the performance-related behavior of ip6tables in this test
scenario is equivalent to the results regarding iptables presented above and can be found
as Figure A.4 and Figure A.5 under Section A in the appendix.

Interpretation The results indicate that the number of active rules has to be limited for
sustained operation. The exact threshold depends on the requirements of the respective
service provider as much as on the hardware available for the machines running the port-
knocking service. Additionally, the limit should be chosen in relation to the processing
demands of the other performance-relevant modules to prevent starvation of these
components by exhaustion of the available CPU and memory resources by the �rewall
handler.

For our test environment, we would recommend a soft limit of about 5000 active rules
per IP version (as iptables and ip6tables do not directly in�uence each other). At this

46 Chapter 4. Evaluation

0 2 4 6 8 10 12

Number of rules in Knock chain #104

0

50

100

150
T

im
e

fo
r

si
ng

le
 p

or
t-

op
en

 o
pe

ra
tio

n
[m

s]
Linear regression

Figure 4.2: Execution time for adding a single rule to an iptables chain in relation to the
number of active rules (IPv4)

Lin. regression taken from Figure A.1

threshold the processing capability of our hardware manifests around 235 port-opening
requests per second with an average of about 4ms per operation. This delay caused by the
�rewall seems acceptable for a viable real-world solution and could be used as a starting
point metric for tuning the performance to the requirements of a speci�c application.
An important fact to note at this point is that this delay occurs only once per connection
until the rule is removed again.

Potential Optimization Obviously, there has to be room for improving this perfor-
mance degradation caused by a high number of active rules. One approach would be
to extend the iptables �rewall with the IPSet module, which is capable of processing
combinations of ports and ip addresses. According to the Linux networking community,
this iptables with the ipset module can outperform a vanilla iptables deployment by
orders of magnitude in terms of processing performance in matching packets to a high
number of IP and port tuples [63]. By eliminating the degrading performance problem
using this extension a much higher limit of concurrent clients can be achieved, which
would obviously boost the scalability properties of the implementation signi�cantly.

4.1. Per-Module Performance Analysis 47

24681012

Number of rules in Knock chain #104

0

20

40

60

80

100

120

140
T

im
e

fo
r

si
ng

le
 p

or
t-

op
en

 o
pe

ra
tio

n
[m

s]
Linear regression

Figure 4.3: Execution time for removing a rule from an iptables chain in relation to the
number of active rules (IPv4)

Lin. regression taken from Figure A.2

Another possibility lies in deploying iptables’ successor, nftables [64]. Since nftables
supports the matching of packets to sets of values such as IP addresses or ports out of
the box, it yields the same potential performance improvement as the IPSet approach
mentioned before. However, the current nftables release is still at an early development
stage, which implies possible weaknesses in terms of reliability and therefore may not
be suitable for most production environments.

4.1.3 Packet Processing

As speci�ed before, our implementation relies on intercepting all packets using a raw
socket to provide the possibility of a fully locked-down �rewall con�guration since
a raw socket receives all Layer 2 network packets reaching the host. However, as a
consequence of this design choice our implementation needs to be able to e�ciently
�lter out all packets irrelevant to the port-knocking service at a high processing speed.
As this property greatly in�uences the achievable overall system performance, its im-
plementation has to be comprehensively evaluated.

48 Chapter 4. Evaluation

Test Cases In order to measure the capability for processing incoming packets, we
decided to create a static test case where pre-generated port-knocking requests and
usual packets including the complete Ethernet frame with IP header and UDP header
are loaded and processed for a speci�ed number of iterations. This test excludes the
in�uence on the processing time of the raw socket itself and does not take into account
the operations performed by the cryptographic engine after the packet was recognized
as port-knocking request. These exclusions do not impose a limitation on the validity of
the results since it can safely be assumed that the processing performance of the Linux
networking stack exceeds our processing capabilities by orders of magnitude and the
cryptographic engine will be tested by its own benchmark in Section 4.1.4.

In our test environment, we decided to run two di�erent measurements: One synthetic
worst-case scenario, which simulates that all incoming packets are valid port-knocking
requests and a realistic scenario with 1% of port-knocking tra�c while the rest of the
packets are irrelevant to our service. Additionally the test data for the second scenario
contains 5% of packets bigger than the con�gured minimum knock request size. Of
these packets the TCP to UDP ratio is set at 5:1 in order to resemble the Internets’ tra�c
patterns as close as possible [65].

This con�guration ensures, that the incoming non-portknocking packets get dropped
at di�erent stages in the �lter logic (as described in Section 3.2.2.4), therefore providing
more realistic and detailed results for evaluation.

For the �rst scenario we decided to cap the test data-set at size of 3 million while the
second test was performed with 5 million simulated incoming packets.

Results The test-run performed to evaluate the worst-case processing power of our im-
plementation yielded a result of roughly 5300 pps (packets per second), which translates
to a processing time of less than 0.19ms per packet for valid port-knocking requests.

Analyzing the performance of our second test case, which is an obviously closer ap-
proximation for real-world operation, yields even higher processing capabilities. With
an average throughput of over 6100 pps our implementation can achieve computation
times of about 0.16ms per packet.

Finally it should be added that during both test cases the Python interpreter completely
exhausted the systems’ memory resources. Since the working set of neither test case
comes even close to the 16GB of available RAM, we have to assume that the high memory
consumption is most probably a result of the thread handling in our implementation.

Interpretation As shown by the raw numbers in the presented test cases, the processing
performance delivered by the �ltering mechanism in our implementation is able to
handle large quantities of tra�c in�ux. Even in the worst-case scenario of the entire

4.1. Per-Module Performance Analysis 49

server communication consisting of valid port-knocking requests, our packet �lter
performed well. Combined with the evaluation of the processing capabilities delivered
by the other critical modules, it is safe to assume that this part of the implementation
will hardly become a bottleneck for most environments.

4.1.4 Cryptographic Engine

From the very beginning we estimated that the cryptographic engine would contain
the most processor-intensive operations. Although AES calculations can be done very
e�ciently in hardware on most modern CPU’s, there is no hardware support for elliptic
curve cryptography aside from very specialized cryptographic devices. To assess the
performance penalty of using bleeding-edge cryptographic techniques in our imple-
mentation, we engineered the tests described in the following paragraphs.

Test Cases To measure the raw processing performance of the crypto-engine for recog-
nized port knocking requests we decided to create two benchmarks — single-threaded
and multi-threaded — based on the same test. The most important metric for assessing
the general performance of our cryptographic module is the throughput achievable
during the full decryption and veri�cation process utilizing the whole spectrum of our
implemented cryptographic operations.

For our environment the test data had to be limited to 300,000 valid port knocking
requests as our implementation starts a new thread for every incoming packet exceeding
the minimum length and too many threads quickly exceed our test setups’ capabilities.
Since the engine has to fully decrypt every request in order to verify its validity, the
di�erence in computational demand between valid and invalid requests is negligible.

Results With our test setup we were able to achieve a throughput of 620 pps for the
single-threaded implementation while running the test using one thread per processing
task resulted in only approximately 260 pps.

The according log �les from the performance test can be found in Listing C.1 for the
single-threaded test and in Listing C.2 for the multi-threaded test under Section C in
the appendix.

This result shows problems in our implementation of the thread-handling for crypto-
graphic operations and again underlines the widely known fact of signi�cant ine�cien-
cies in Pythons’ multi-threading capabilities.

Aside from these performance issues, we discovered that a segmentation fault originat-
ing from the employed OpenSSL wrapper can cause the port-knocking service to reject
a valid signature. This is a known and un�xed bug [66].

50 Chapter 4. Evaluation

Generally, we expect the results of this particular performance test to di�er tremen-
dously depending on the hardware and operating environment it is running on.

Pro�ling In order to determine the reason for the low performance of the crypto-
graphic module, we decided to analyze the time distribution between the subsequent
method calls using Robert Kerns’ line_pro�ler [67].

After few pro�ling runs to �nd the relevant method calls that need more detailed
pro�ling, the last execution of the pro�ler yielded the results shown in Listing B.1 under
the appendix Section B.

The analysis of the pro�ling result clearly shows that most of the execution time is
spent in wrapper methods of the incorporated cryptographic libraries (pyOpenSSL
and m2Crypto) and the library-speci�c methods for converting input data into their
respective internal format.

Interpretation As seen in the results from the pro�ling, it is obvious that the biggest
performance issue of the cryptographic engine is a result of using unoptimized cryp-
tographic libraries. Additionally, a signi�cant amount of processing time is spent on
converting the exact same data between di�erent internal representations of the incor-
porated libraries, which renders the overall implementation unnecessarily ine�cient.

Summarizing the observations made during the test-runs of the cryptographic module, it
seems clear that this is the part of the implementation with most weaknesses in regards
of performance as well as reliability. There is also a non-zero probability of security
issues arising from the combination of multiple un-audited cryptographic libraries and
their interoperability mechanics.

Finally, we conclude that future improvements should focus on enhancing the crypto-
engine �rst.

Potential Optimization Replacing the M2Crypto and the pyOpenSSL should be the �rst
goal in optimizing the crypto performance. However, implementing these operations
in pure Python would most probably result in even worse processing power since
Python’s overhead is too enormous to e�ciently implement low-level mathematical
operations. Our recommendation would be to implement the cryptographic functions
in a separate module using a highly optimizeable low-level programming language such
as C. Not only would this yield the possibility to signi�cantly increase e�ciency but it
also enables proper multi-core processing for the most computation-intensive part in
the port-knocking service.

4.2. Firewall Filtering 51

4.2 Firewall Filtering

As mentioned in Section 4.1.2, the number of active clients has a direct in�uence on
the overall system performance. As for the iptables �rewall, each client connecting to a
service requires a new rule to be added to the knock chain. Apart from increasing the
expected execution time for future iptables operations, the growing knock chain also
impacts the �ltering performance for every incoming packet.

Test Environment Since the metric to be tested in this case requires packets to be sent
over the network, the hardware of our test setup had to be upgraded. In order to provide
reliable and simple measurements, we chose to add a second identical DELL OptiPlex
9020M machine and connect it with the �rst OptiPlex as well as the management
network using a 100 Mbit/s Ethernet switch and CAT5e Ethernet cables.

As opposed to the previous test cases, this scenario required the development of a server
& client in Python to simulate an application protected by port-knocking. Since the
tests required us to time operations involving interactions between server and client,
we decided to use timestamps as messages: the client sends the time measure just before
the packet was sent and the server replies with the time when it received the packet.
Additionally the server needs to contain the ability to call a callback function whenever
a packet is received to enable the calling evaluation framework to record and analyze
the data passed to the test server application.

This approach naturally requires very precise synchronization between the system
clocks of server and client. In our test setup they were installed on two of the afore-
mentioned DELL OptiPlex 9020M machines with the only connection between the
computers being a local ethernet network. Although there was an Network Time Pro-
tocol (NTP)1 server locally available at the local network, it quickly became clear, that
the achievable precision was limited to errors in the millisecond range [68]. Addition-
ally, the NTP implementations available for our test environment (Ubuntu Linux 12.04)
allowed for synchronization only every 16 seconds at the minimum, which generated
an unacceptable clock drift.

In lack of high-precision hardware clocks we decided to use PTP, the Precision Time Pro-
tocol to provide synchronized clocks with an accuracy high enough for sub-millisecond
measurements. This protocol uses time-stamping features of the underlying network
adapter to provide clock synchronization with a precision of less than 1 microsecond
depending on the available hardware [69]. The Intel(R) I217LM ethernet card present
in our test environment allowed us to achive a precision of about 5 microseconds in
average. An excerpt from the PTP log�les showing statistics of the synchronization can
be found in Listing C.5 under Appendix A.

1De-facto standard for time-synchronization in computer networks

52 Chapter 4. Evaluation

Test case The purpose of this test is to measure the impact on tra�c unrelated to our
port-knocking service. This tra�c interacts indirectly with our service especially in two
ways: by going through our raw socket where the unrelated packets are �ltered out and
by traversing the iptables rules before being delivered to their target application. Since
the �ltering capabilities of our packet processing only limits the number of requests the
port-knocking server can handle, the most signi�cant impact on other communication
is the possible performance degradation of the iptables packet �lter.

In order to measure the time taken by the iptables �rewall to process a packet, we
designed a scenario where the test client application keeps sending UDP packets to the
server machine. Every packet contains the timestamp observed at the client just before
the packet was sent to the server. The server then measures the time when the packet
arrived at the socket and calculates the resulting delay. After timing a con�gurable
number of packets, the server proceeds to open another port before measuring incoming
tra�c again. Following this strategy we are able to generate the desired amount of
delay measurements over a given number of rules in the iptables knock chain.

Results This measurement obviously incorporates a signi�cant error because of exter-
nal in�uences on the delay caused by other independent operations such as queues in
kernel or networking stack, network hardware, or even the Ethernet cables used. Since
the processing time of the �rewall makes up only a fraction of the total delay measured,
we had to provide a large dataset containing 100 measurements per data-point.

Additionally, the error of these measurements is ampli�ed by time-synchronization
issues. These arise from the observation that the PTP protocol becomes increasingly
unreliable if the system is under heavy load.

To ensure the production of conclusive data, we decided to measure the increase in
delay over the addition of 220,000 rules to the knock chain by generating data-points
every 1000 added rules. As the number of available ports is historically �xed to 65536,
we used two di�erent source ip addresses combined with rules for TCP and UDP per
port in order to reach over 200,000 rules in the knock chain.

As can be seen in Figure 4.4, the linear increase of the overall packet delay is proportional
to the growth of the number of rules.

In order to see the relative impact of the rule-set size on the �rewall processing time more
clearly, Figure 4.5 shows a linear regression over the raw measurements normalized to
0 ms delay at 0 rules in the port-knocking chain.

The standard deviation of this experiment can be seen in Figure A.6 under Section A.2
of the appendix.

4.2. Firewall Filtering 53

0 0.5 1 1.5 2

Number of Rules in Knock Chain #105

0

50

100

150

200

250
P

ro
ce

ss
in

g
D

el
ay

 [m
s]

Raw Data
Linear Regression

Figure 4.4: Raw measurements for packet delay introduced by growing iptables rule-set

Interpretation Although the variance in the data is relatively high and a large number
of measurements as well as mathematical smoothing of the resulting data were necessary
to make it unambiguous, it is de�nitely clear, that the number of rules present directly
impacts the delay caused by the iptables �rewall.

This side e�ect of the port-knocking security layer was expected from the beginning
and the analysis performed during this test clearly shows that the impact of this par-
ticular metric is almost negligible. In daily operation, most applications run on the
TCP transport protocol, e�ectively meaning that these connections can be tracked and
handled using a single �rewall rule to allow established TCP connections. For all the
other non-trackable communications such as UDP, the processing capabilities of ipta-
bles result in a performance hit of about 2.5 milliseconds for over 220 000 active rules.
We strongly believe that the number of manageable concurrent connections will be
restricted to a much lower limit because of other bottlenecks.

54 Chapter 4. Evaluation

0 0.5 1 1.5 2

Number of Rules in Knock Chain #105

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

E
xp

ec
te

d
P

ro
ce

ss
in

g
D

el
ay

 [m
s]

Linear Regression

Figure 4.5: Normalized Linear regression for packet delay introduced by growing
iptables rule-set

4.3 Connection Overhead

A very important metric for evaluating the overall performance impact of deploying the
speci�ed port-knocking solution is the additional delay caused on the overall application
communication. Since our implementation does not directly in�uence any packets after
establishing the connection, it is obvious that for any communication using a connection
for a long time the impact is negligible. Therefore, the property to be evaluated in this
Section is the overhead caused on the connection establishment.

Test Environment In order to establish the environment for this test, it was necessary
to extend the test server and client from Section 4.2 to allow for port-knocking before
the test application starts its own communication. Additionally, the client needs to take
into account a certain wait period between sending the port-knocking request and the
�rst application packet, since the server needs this time to process the port-knocking
request and open the respective port. Otherwise the subsequent application connection
would just get refused, resulting in an unnecessary high delay and therefore overhead.

4.3. Connection Overhead 55

To determine the optimal waiting time, a calibration script was developed. The strategy
employed by the script logic is to base the wait period for the �rst connection attempts
on a con�gured start value and from there on adjust the wait period until the rate of
failed requests becomes acceptable according to the given parameters.

Test case Since the time required to establish a simple UDP connection di�ers sig-
ni�cantly from the time necessary to complete the whole TCP handshake, this test
case involved two test runs with identical parameters, except for the test application
protocol.

To evaluate the overhead, we employed a simple yet reliable test scenario: running
alternate executions of the test communication described above2 with and without prior
port-knocking. For the client requests omitting the port-knock, we permanently opened
port 60001 on the server via iptables rule. To generate a signi�cant data set allowing
for conclusive results, the test was run continuously over several hours per protocol to
minimize impact of other environment-dependant variables.

As we expect the wait time to be optimized for the target environment in a real-world
deployment, the wait time was calibrated to a reasonable value beforehand.

Results The aforementioned calibration yielded an optimal value of 11 milliseconds
for the wait period allowing for a request failure rate of under 0.2% with an accuracy of
99% as shown by the calibration log in Listing C.6 and the client log in Listing C.7. This
means that for our test setup the probability for the application request to arrive before
the port is opened by the port-knocking service and therefore failing is less than 2 per
1000 requests with this value being wrong by at most 1%. A visualization of the test run
for UDP containing 14,000 measurements for requests with and without port-knocking
enabled can be seen in Figure 4.6.

Using this conservative recommendation as parameter for our overhead simulation, we
were able to achieve an average absolute overhead delay of 16.27 ms for TCP and 16.63
ms for UDP as visible in Table 4.1.

Interpretation The measured 16 ms of average added delay to establish a single connec-
tion to the application server could be seen as signi�cant. Before jumping to conclusions
however, one should consider that this delay is an absolute metric that impacts only
the very �rst request and most users are used to a slightly higher latency for starting
applications and even tolerate unresponsiveness at startup depending on the service.

As this metric is independent of networking variables except for some border-cases
of tra�c congestion, the delay is an absolute value that can be just added as static

2Client sending a timestamp, server responding with his own timestamp

56 Chapter 4. Evaluation

0 2000 4000 6000 8000 10000 12000 14000

Repetition

0

2

4

6

8

10

12

14

16

18
La

te
nc

y
[m

s]

Latency for unprotected request
Latency for request with port-knocking

Figure 4.6: Latency overhead caused by sKnock (UDP)

parameter to any required latency calculation.

Finally, a very important limitation of this test needs to be taken into consideration: the
programming language of this prototype and the heterogeneous implementation of the
cryptographic operations distributed over multiple libraries. A properly implemented
and optimized cryptographic framework in a low-level programming language such
as C would greatly improve the overall system performance and therefore reduce the
delay to a fraction of the value resulting from this test.

4.4 Reliability Under Packet Loss

Another interesting property of every security system is how it a�ects users with un-
reliable Internet connections, since they still make up a large fraction of some target
audiences. To provide an indication of the overall system behavior, a test scenario eval-
uating the impact of our port-knocking implementation on the ability of an application
to establish a connection under packet loss is necessary.

4.4. Reliability Under Packet Loss 57

TCP UDP

Unprotected Request 1.97 ms 0.74 ms

With Port-knocking 18.25 ms 17.37 ms

Port-knocking Overhead 16.27 ms 16.63 ms

Table 4.1: Measurement results for the connection overhead test

Test Environment The setup for this test scenario required major changes to the em-
ployed hardware as well as the test applications. Since there is no reliable way to emulate
packet loss locally at either the server or client machine, a third computer was neces-
sary to connect the two other machines via a connection whose unreliability would be
under our control. In our case this machine was a server containing an Intel(R) Xeon(R)
CPU E3-1265L V2 @ 2.50GHz, 32 GB of Memory, and an Intel 82580 network interface
controller. This system was running Debian 8.3 including all mainline updates released
at the time of writing as operating system. This Linux distribution incorporates the
iproute2 software which provides the ability to manually con�gure a synthetic packet
loss3 using the netem utility.

As for the software changes related to this test scenario, the server as well as the client
were extended to add the ability of simultaneously handling TCP and UDP communica-
tions4 in order to reduce the necessary manual administration and therefore speed up
the test runs.

Since in this test case the client is responsible for collecting and recording the relevant
measurement data, some extensions had to be implemented. The client now also received
the ability to call given callback methods on the event of receiving a response from
the server. Furthermore the measurement capabilities as well as the logging and data
collection mechanisms in the client were improved to satisfy the new requirements.

Test case For this test case the server and client machine were connected via two
ports on the dedicated networking device of the routing machine. These two ports were
bridged together and with the help of aforementioned netem module di�erent packet
loss probabilities between 0% and 90% were con�gured during the test runs.

At each test run the client repeatedly sends port-knocking requests to the server, retry-
ing the port-knocking process for a con�gurable number of attempts after a timeout

3And numerous other network-testing related parameters
4Before this change the protocol was given as parameter to server as well as client and the results were

saved in di�erent �les. This e�ectively required to run every test twice if the metric to be measured was
dependent on the protocol.

58 Chapter 4. Evaluation

Router ClientServer

Packet loss
via netem

Figure 4.7: Test setup for packet loss evaluation

occurred. After all available attempts for a single repetition are used up, it is considered
as failed and the next iteration starts. All test runs are done for test client running on
the TCP protocol �rst and after completion repeated using UDP.

After each run the packet loss probability is increased by 10% up until the reasonable
limit of 90%. Then the whole test is repeated after switching the default �rewall policy
from REJECT to DROP.

Results and Interpretation For this test we chose relatively aggressive parameters in
order to be able to give a recommendation for fast failure compensation. For slower
networks these values should obviously be adjusted accordingly.

Every test was performed with 1000 iterations for TCP as well as UDP, totaling 2000
iterations. The timeout was set to 1 second and a total of 3 attempts per iteration were
allowed before it was considered as failed.

As expected, the reliability of the entire application degrades with increasing packet loss.
It is visible from Figure 4.8 and Figure 4.9 that the measurements show the behavior we
would expect from a simple test application like the one deployed in this test.

Since for TCP we provide a veri�cation function to check if the port was opened correctly,
the port-knocking client can handle the loss of the knock-packet for a TCP application
independent from the application itself. Because our implementation only adds one
single packet before the TCP handshake sequence begins, the impact of a lost port-
knocking request is not visible in the number of failed attempts, since in case the
handshake fails at the �rst attempt, both packets are retransmitted.

For UDP the application obviously has to employ its own mechanism of handling packet
loss since the protocol does not provide it. The only change necessary to this mechanism
is to repeat the port-knocking together with sending the �rst application-related packet.
Following this strategy the same conclusion as for TCP applies: the impact of the port-
knocking packet preceding the �rst application packet is of only minor signi�cance.

Another relevant metric is the average time that was necessary for the iterations that
resulted in a successful connection. As shown in Figure 4.10, the time to complete the

4.4. Reliability Under Packet Loss 59

90%
80%0

70%
60%

500

P
ac

ke
t c

ou
nt

1

Packet loss probability

50%

1000

2 40%

Number of attempts

3 30%
20%Fail

10%
0%

Figure 4.8: Number of attempts for the TCP test application using port-knocking in
relation to the packet loss probability with �rewall policy set to REJECT.
Timeout: 1s; Number of retries per iteration: 3; Number of iterations: 1000

establishment of a connection increases proportionally with the probability of occurring
packet loss.

This measurement can be used as a general reference to determine the connection
parameters according to the requirements of the deployment scenario. Since a high
delay caused by packet loss renders many applications unusable and the resiliency
of port-knocking against packet loss highly depends on the implementation of the
application client, the optimal values depend completely on the targeted environment.

The results of the test runs performed with the Firewall con�gured to use the DROP
policy can be found in the Appendix under Section A.3 and are left out at this point,
because the data is almost identical to the measurements using the REJECT policy.
This was an expected result; our test application does not expect ICMP noti�cations of
reject packets and therefore always behaves as if the Firewall was dropping the requests
silently.

However, even more sophisticated applications would most probably not show a signi�-
cantly di�erent performance in this test scenario, since a lost packet is almost equivalent
to a dropped packet from the clients’ point of view.

60 Chapter 4. Evaluation

90%
80%0

70%
60%

500

P
ac

ke
t c

ou
nt

1

Packet loss probability

50%

1000

2 40%

Number of attempts

3 30%
20%Fail

10%
0%

Figure 4.9: Number of attempts for the UDP test application using port-knocking in
relation to the packet loss probability with �rewall policy set to REJECT.
Timeout: 1s; Number of retries per iteration: 3; Number of iterations: 1000

Recommendation Because of the dynamic and unpredictable nature of unreliable net-
works, our recommendation would be to include a rather aggressive timeout in the
default con�guration but additionally provide a heuristic for determining more e�ec-
tive parameters for unreliable networks. This heuristic should be loosely based on
similar measurements as the ones seen in 4.10 to enable a quick convergence towards
parameters providing reliable connection establishment with a high probability.

4.4. Reliability Under Packet Loss 61

0 10 20 30 40 50 60 70 80 90

Packet loss probability

500

1000

1500

2000

2500

3000

3500

4000

4500

C
on

ne
ct

io
n

tim
e

[m
s]

Raw data
Average connection time for successful attempts (TCP)

Figure 4.10: Average time needed to establish a connection (for successful attempts)
using TCP and a REJECT policy

63

Chapter 5

Conclusion

In the course of this work we have presented an interpretation of the port-knocking
concept with a focus on scalability in order to provide a solution that could signi�cantly
improve the adoption of port-knocking in real-world scenarios. We have described the
strength and weaknesses of this concept and evaluated the performance and limita-
tions of our implementation. In this last Chapter of the thesis, it is time to describe
possible future work that could be done to improve sKnock and �nally compare this
implementation to the related work described in Chapter 1.

5.1 Future Work

First and foremost the limitations described in Section 3.3 should be addressed as the
highest priority of future continued development. If the achievable performance of
this implementation as shown in Chapter 4 is the biggest downside for the chosen
deployment scenario, we recommend that before addressing other limitations the pro-
posed speci�cation be realized in C to lay the ground for a performance optimized
port-knocking solution. In the process of re-implementing the design, one should care-
fully consider the implementation of the cryptographic operations, especially the choice
of respective frameworks.

Another high-priority extension for the current concept should be the possibility of
tracking the state of established connections to allow reasonable normal operation for
UDP based applications (because of the port-closing timeout) and to enhance the security
and performance for applications using TCP protocol. This would require to process
all incoming packets to determine if they belong to an already established connection
protected by the port-knocking security layer. In case of TCP the rule allowing the
handshake to occur can be removed immediately after the sequence completes, as all
subsequent tra�c related to the connection could be permitted by a catch-all rule for

64 Chapter 5. Conclusion

matching packets in related and established state. For UDP the timer responsible for
closing the open port should be reset as long as related UDP packets are arriving at
the socket. This locks down the time-window for the open UDP ports as much as
possible without compromising the ability of the application to communicate as long
as necessary.

Another major limitation of the current prototype is the lack of support for NAT-enabled
environments. Since most home-setups rely on NAT to connect multiple devices to
the Internet over a single connection, leaving out the support for Network Address
Translation is not viable. At the current stage, the determination of the correct public
client IP address has to be done by the application calling the port-knocking client
library. It would de�nitely improve the ease-of-use characteristics to include a logic in
the port-knocking client to determine the public IP address in a reliable way by itself.
Determining the public IP address of the client could be achieved by implementing one
of the proven and widely known algorithms for NAT-traversal such as STUN [70].

In order to prevent a slowdown of the general �rewall operating speed, iptables should
be extended with the IPSet module or replaced by the nftables variant as discussed in
Section 4.1.2 of Chapter 4.

Furthermore, as conclusive from Section 3.2.2.4 starting a new thread for every incoming
packet matching the minimum length is causing an unnecessarily high overhead. The
behavior under load could be easily improved by replacing this part of the architecture
using queues andworker threads to more e�ciently distribute the workload over multiple
threads. Additionally, a logic should be implemented to reduce the maximum number
of worker threads if the server is running under high load in order to free resources for
the actual services.

Moreover, the platform independence of the current state of the implementation is not
su�ciently mature. Although the architecture is designed to simplify the modularization
of platform-speci�c code, as of this writing the prototypic implementation is targeted
only at operating systems based on Linux with iptables as �rewall and OpenSSL as
cryptographic library. The �rst step to improve this state would be to port the client to
all major platforms, since the code complexity is only a fraction of the servers’. As soon
as this task is accomplished one can focus on extending server-side platform support
by adding one software- or platform-speci�c wrapper module at a time.

Finally, one consideration should go to legacy applications, where one could possibly
have no access to their source code (anymore). In order to be able to protect these possi-
bly vulnerable services, a launcher could be written to �rst perform the port-knocking
and then launch the application, so it is decoupled completely from the port-knocking
protocol and thus does not require any modi�cation to sources or con�guration.

5.2. Summary 65

5.2 Summary

In this work we speci�ed a scalable design and developed a prototype implementation
for authenticated port-knocking. It has the potential to be deployed in large-scale
environments at real-world service providers on their own infrastructure or on leased
third-party servers. The speci�cation allows for decentralized authorization of clients
without requiring an actual authentication an a per-user basis. However, there is nothing
to prevent a provider to integrate the port-knocking security mechanism with their
identity management environment to provide authentication before the application
layer. Additionaly, the only communication overhead caused by this design is a single
UDP packet per connection that has to be sent before the �rst application packet. Since
this packet is modeled to be smaller than most MTU’s (Maximum Transmission Unit)
on the Internet, the probability for failing connection attempts or further delay because
of fragmentation is negligible. At this point it should be mentioned, that the port-
knocking request, if timed correctly, can be sent only a few milliseconds before the
initial application packet, depending on the computation time required for the server
to open the respective port. Through experiments we showed this to be about 11 ms
for a modern desktop con�gured as a server running sKnock.

Since all of these characteristics have been achieved using standardized and widely-
known technology such as X.509 certi�cates and UDP, it is highly unlikely that our
solution would be inapplicable to any realistic target environment.

However, running in user-space and employing Elliptic Curve Cryptography as main
concept for the encryption and authentication mechanisms has a noticeable impact on
overall performance. This impact may be mitigated by migrating this implementation to
C or Rust and optimizing the cryptographic operations to �t the respective requirements.

Conclusively, we can say that we designed a scalable solution for authenticated port-
knocking, which is viable for usage in a real-world deployment. Additionally, properties
of this concept have been proved by testing a prototypical implementation of the pre-
sented speci�cation, sKnock, in various experiments.

The �nal rating of sKnock compared to the port-knocking implementations discussed
at the beginning of this thesis can be found in Table 5.1.

66 Chapter 5. Conclusion

Implementation Performance Overhead Security Scalability
knockdaemon o -- - --
SilentKnock ++ o o --

fwknop ++ ++ ++ --
knockknock + ++ ++ --

Knock ++ - ++ --
sKnock – ++ ++ ++

Table 5.1: Comparison of sKnock to other well-known port-knocking implementations

Appendix

67

69

Appendix A

Measurement Results

A.1 Per-Module Performance

0 2 4 6 8 10 12

Number of rules in Knock chain #104

0

20

40

60

80

100

120

140

160

180

200

T
im

e
fo

r
si

ng
le

 p
or

t-
op

en
 o

pe
ra

tio
n

[m
s]

Raw Data
Linear regression

Figure A.1: Execution time for adding a rule to an iptables chain in relation to the
number of active rules (IPv4)

70 Appendix A. Measurement Results

24681012

Number of rules in Knock chain #104

0

20

40

60

80

100

120

140

160
T

im
e

fo
r

si
ng

le
 p

or
t-

op
en

 o
pe

ra
tio

n
[m

s]
Raw Data
Linear regression

Figure A.2: Execution time for removing a rule from an iptables chain in relation to the
number of active rules (IPv4)

A.1. Per-Module Performance 71

0 2000 4000 6000 8000 10000

Time [s]

0

2

4

6

8

10

12

14
N

um
be

r
of

 o
pe

n
po

rt
s

#104

Open ports

Figure A.3: Time for opening 131072 ports (65536 TCP + 65536 UDP) for an IPv6 client

72 Appendix A. Measurement Results

0 2 4 6 8 10 12

Number of rules in Knock chain #104

0

50

100

150
T

im
e

fo
r

si
ng

le
 p

or
t-

op
en

 o
pe

ra
tio

n
[m

s]
Linear regression

Figure A.4: Execution time for adding a rule to an iptables chain in relation to the
number of active rules (IPv6)

A.1. Per-Module Performance 73

24681012

Number of rules in Knock chain #104

0

20

40

60

80

100

120

T
im

e
fo

r
si

ng
le

 p
or

t-
op

en
 o

pe
ra

tio
n

[m
s]

Linear regression

Figure A.5: Execution time for removing a rule from an iptables chain in relation to the
number of active rules (IPv6)

74 Appendix A. Measurement Results

A.2 Firewall Filtering

0 0.5 1 1.5 2

Number of Rules in Knock Chain #105

0

10

20

30

40

50

60

S
ta

nd
ar

d
D

ev
ia

tio
n

Standard Deviation

Figure A.6: Standard deviation for measurements concerning the �rewall �ltering
performance

A.3. Reliability Under Packet Loss 75

A.3 Reliability Under Packet Loss

0 10 20 30 40 50 60 70 80 90

Packet loss probability

500

1000

1500

2000

2500

3000

C
on

ne
ct

io
n

tim
e

[m
s]

Raw data
Average connection time for successful attempts (UDP)

Figure A.7: Average time needed to establish a connection (for successful attempts)
using UDP and a REJECT policy

76 Appendix A. Measurement Results

90%
80%0

70%
60%

500

P
ac

ke
t c

ou
nt

1

Packet loss probability

50%

1000

2 40%

Number of attempts

3 30%
20%Fail

10%
0%

Figure A.8: Number of attempts for the TCP test application using port-knocking in
relation to the packet loss probability with �rewall policy set to REJECT.
Timeout: 1s, number of retries per iteration: 3, number of iterations: 1000

A.3. Reliability Under Packet Loss 77

0 10 20 30 40 50 60 70 80 90

Packet loss probability

500

1000

1500

2000

2500

3000

3500

4000

4500

5000
C

on
ne

ct
io

n
tim

e
[m

s]
Raw data
Average connection time for successful attempts (TCP)

Figure A.9: Average time needed to establish a connection (for successful attempts)
using TCP and a DROP policy

78 Appendix A. Measurement Results

90%
80%0

70%
60%

500

P
ac

ke
t c

ou
nt

1

Packet loss probability

50%

1000

2 40%

Number of attempts

3 30%
20%Fail

10%
0%

Figure A.10: Number of attempts for the UDP test application using port-knocking in
relation to the packet loss probability with �rewall policy set to REJECT.
Timeout: 1s, number of retries per iteration: 3, number of iterations: 1000

A.3. Reliability Under Packet Loss 79

0 10 20 30 40 50 60 70 80 90

Packet loss probability

500

1000

1500

2000

2500

3000
C

on
ne

ct
io

n
tim

e
[m

s]
Raw data
Average connection time for successful attempts (UDP)

Figure A.11: Average time needed to establish a connection (for successful attempts)
using UDP and a DROP policy

81

Appendix B

Pro�ling Results

Listing B.1: Pro�ler log for analysis of cryptographic engine (server side)
2016-03-14 20:41:00,684 - __main__ - INFO - Initializing...
2016-03-14 20:41:00,691 - __main__ - INFO - Computing CryptoEngine performance based on

data set of 300000 packets
2016-03-14 20:49:50,094 - __main__ - INFO - Benchmark finished!
2016-03-14 20:49:50,094 - __main__ - INFO - Result: 529.401249s overall compuation time,

1.764671ms time per packet, approx. 566 pps (packets per second)
Wrote profile results to ap_cryptoengine.py.lprof
Timer unit: 1e-06 s

Total time: 243.478 s
File: /home/daniel/knock/common/modules/CertUtil.py
Function: verifyCertificateAndSignature at line 43

Line # Hits Time Per Hit % Time Line Contents
==
43 @profile
44 def verifyCertificateAndSignature(self,

rawCert, payloadSignature, payload):
45 300000 154453 0.5 0.1 try:
46 300000 11973616 39.9 4.9 cert = crypto.load_certificate(

crypto.FILETYPE_ASN1, rawCert)
47 except:
48 LOG.error("Invalid Certificate

data!")
49 return False
50
51 300000 231349733 771.2 95.0 return self.verifyCertificate(cert)

and self.verifySignature(cert, payloadSignature, payload)

Total time: 121.945 s
File: /home/daniel/knock/common/modules/CertUtil.py
Function: verifyCertificate at line 54

Line # Hits Time Per Hit % Time Line Contents
==
54 @profile
55 def verifyCertificate(self, cert):
56 300000 224460 0.7 0.2 if(self.platform == PlatformUtils.

LINUX):

82 Appendix B. Pro�ling Results

57 300000 2149086 7.2 1.8 CAContext = crypto.
X509StoreContext(self.CA, cert)

58 300000 149754 0.5 0.1 try:
59 300000 113100916 377.0 92.7 CAContext.

verify_certificate()
60 300000 1472158 4.9 1.2 LOG.debug("Certificate OK!"

)
61 300000 3701444 12.3 3.0 if not (self.

revokedCertificateSerials is None or format(cert.get_serial_number(), ’x’).upper()
in self.revokedCertificateSerials):

62 300000 991170 3.3 0.8 LOG.debug("Certificate
Revocation Status OK")

63 300000 156459 0.5 0.1 return True
64 else:
65 LOG.warning("

Certificate with Serial Number: %s is revoked!", cert.get_serial_number())
66 return False
67
68 except:
69 LOG.debug("Certificate

check failed!")
70 return False

Total time: 104.62 s
File: /home/daniel/knock/common/modules/CertUtil.py
Function: verifySignature at line 73

Line # Hits Time Per Hit % Time Line Contents
==
73 @profile
74 def verifySignature(self, cert,

signature, message):
75 300000 215710 0.7 0.2 if(self.platform == PlatformUtils.

LINUX):
76 300000 121024 0.4 0.1 try:
77 300000 102997547 343.3 98.4 crypto.verify(cert,

signature, message, self.hashAlgorithm)
78 300000 1156619 3.9 1.1 LOG.debug("Signature OK!")
79 300000 129464 0.4 0.1 return True
80 except:
81 LOG.debug("Invalid

Signature!")
82 return False

Total time: 219.581 s
File: /home/daniel/knock/common/modules/CryptoEngine.py
Function: decryptWithECIES at line 37

Line # Hits Time Per Hit % Time Line Contents
==
37 @profile
38 def decryptWithECIES(self,

encryptedMessage):
39 300000 1359335 4.5 0.6 LOG.debug("Calculating decryption

key...")
40 300000 292716 1.0 0.1 ephPubKey = encryptedMessage[-91:]
41 300000 339900 1.1 0.2 encryptedMessage = encryptedMessage

[0:-91]
42 300000 193225102 644.1 88.0 ecdhSecret = self.privKey.

compute_dh_key(EC.load_pub_key_bio(BIO.MemoryBuffer(convertDERtoPEM(ephPubKey))))
43 300000 18605125 62.0 8.5 aesKey = self._hkdf(ecdhSecret)

83

44
45 300000 1405815 4.7 0.6 LOG.debug("Decrypting AES encrypted

request...")
46 300000 2721220 9.1 1.2 decrypt = EVP.Cipher(alg=’

aes_128_cbc’, key=aesKey, iv = ’\0’ * 16, padding=1, op=0)
47 300000 828510 2.8 0.4 decryptedMessage = decrypt.update(

encryptedMessage)
48 300000 652110 2.2 0.3 decryptedMessage += decrypt.final()
49
50 300000 151144 0.5 0.1 return decryptedMessage

85

Appendix C

Log Files

Listing C.1: Result log �le for CryptoEngine single-threaded performance test
2016-02-29 16:01:00,726 - __main__ - INFO - Initializing...
2016-02-29 16:01:00,867 - __main__ - INFO - Computing CryptoEngine performance based on

data set of 300000 packets
2016-02-29 16:09:04,584 - __main__ - INFO - Benchmark finished!
2016-02-29 16:09:04,584 - __main__ - INFO - Result: 483.715815s overall compuation time,

1.612386ms time per packet, approx. 620 pps (packets per second)

Listing C.2: Result log �le for CryptoEngine multi-threaded performance test
2016-02-29 10:06:05,577 - __main__ - WARNING - Initializing...
2016-02-29 10:06:05,798 - __main__ - WARNING - Computing CryptoEngine performance based

on data set of 300000 packets
2016-02-29 10:25:08,140 - __main__ - WARNING - Benchmark finished!
2016-02-29 10:25:08,140 - __main__ - WARNING - Result: 1142.341816s overall compuation

time, 3.807806ms time per packet, approx. 262 pps (packets per second)

Listing C.3: Result Log for Packet Processing Benchmark with 1% port-knocking
requests, 5% large random packets, and 94% small random packets

2016-02-29 17:58:15,366 - __main__ - INFO - Initializing...
2016-02-29 17:58:15,366 - __main__ - INFO - Computing PacketProcessor performance based

on data set of 5000000 packets
2016-02-29 18:11:51,894 - __main__ - INFO - Compute Time: 802.669472
2016-02-29 18:11:51,894 - __main__ - INFO - Thread wait time: 13.858088
2016-02-29 18:11:51,894 - __main__ - INFO - Benchmark finished!
2016-02-29 18:11:51,894 - __main__ - INFO - Result: 816.527560s overall compuation time,

0.163306ms time per packet, approx. 6123 pps (packets per second)

Listing C.4: Result Log for Packet Processing Benchmark with 100% port-knocking
requests, 0% large random packets, and 0% small random packets

2016-02-29 15:21:55,821 - __main__ - INFO - Initializing...
2016-02-29 15:21:55,821 - __main__ - INFO - Computing PacketProcessor performance based

on data set of 3000000 packets
2016-02-29 15:31:12,323 - __main__ - INFO - Compute Time: 548.267900
2016-02-29 15:31:12,324 - __main__ - INFO - Thread wait time: 8.234358
2016-02-29 15:31:12,324 - __main__ - INFO - Benchmark finished!

86 Appendix C. Log Files

2016-02-29 15:31:12,324 - __main__ - INFO - Result: 556.502258s overall compuation time,
0.185501ms time per packet, approx. 5390 pps (packets per second)

Listing C.5: Excerpt from Log�le for PTP Time-Synchronization
2016-03-08 23:16:15:284863, slv, 64006afffe521cba/01, 0.000000000, 0.000003369,

0.000000000, 0.000351000, 711
2016-03-08 23:16:16:284753, slv, 64006afffe521cba/01, 0.000000000, 0.000007996,

0.000000000, 0.000354000, 718
2016-03-08 23:16:17:284845, slv, 64006afffe521cba/01, 0.000000000, 0.000007077,

0.000000000, 0.000349000, 725
2016-03-08 23:16:18:284612, slv, 64006afffe521cba/01, 0.000000000, -0.000010842,

0.000000000, 0.000318000, 715
2016-03-08 23:16:19:284846, slv, 64006afffe521cba/01, 0.000000000, -0.000010321,

0.000000000, 0.000350000, 705
2016-03-08 23:16:20:284747, slv, 64006afffe521cba/01, 0.000000000, 0.000006200,

0.000000000, 0.000351000, 711
2016-03-08 23:16:21:284849, slv, 64006afffe521cba/01, 0.000000000, 0.000005638,

0.000000000, 0.000349000, 716
2016-03-08 23:16:22:284730, slv, 64006afffe521cba/01, 0.000000000, 0.000004076,

0.000000000, 0.000348000, 720
2016-03-08 23:16:23:284796, slv, 64006afffe521cba/01, 0.000000000, 0.000002486,

0.000000000, 0.000346000, 722
2016-03-08 23:16:24:284633, slv, 64006afffe521cba/01, 0.000000000, -0.000001603,

0.000000000, 0.000340000, 721
2016-03-08 23:16:25:284858, slv, 64006afffe521cba/01, 0.000000000, 0.000001289,

0.000000000, 0.000352000, 722
2016-03-08 23:16:26:284742, slv, 64006afffe521cba/01, 0.000000000, 0.000005680,

0.000000000, 0.000349000, 727
2016-03-08 23:16:27:284858, slv, 64006afffe521cba/01, 0.000000000, 0.000008091,

0.000000000, 0.000357000, 735
2016-03-08 23:16:28:284740, slv, 64006afffe521cba/01, 0.000000000, 0.000007502,

0.000000000, 0.000348000, 742
2016-03-08 23:16:29:284779, slv, 64006afffe521cba/01, 0.000000000, -0.000031473,

0.000000000, 0.000279000, 711
2016-03-08 23:16:30:284749, slv, 64006afffe521cba/01, 0.000000000, -0.000030949,

0.000000000, 0.000349000, 681
2016-03-08 23:16:31:284859, slv, 64006afffe521cba/01, 0.000000000, 0.000006585,

0.000000000, 0.000354000, 687
2016-03-08 23:16:32:284805, slv, 64006afffe521cba/01, 0.000000000, 0.000039120,

0.000000000, 0.000414000, 726
2016-03-08 23:16:33:284657, slv, 64006afffe521cba/01, 0.000000000, -0.000006882,

0.000000000, 0.000262000, 720
2016-03-08 23:16:34:284744, slv, 64006afffe521cba/01, 0.000000000, -0.000036884,

0.000000000, 0.000354000, 684
2016-03-08 23:16:35:284870, slv, 64006afffe521cba/01, 0.000000000, 0.000009687,

0.000000000, 0.000355000, 693
2016-03-08 23:16:36:284750, slv, 64006afffe521cba/01, 0.000000000, 0.000008758,

0.000000000, 0.000352000, 701
2016-03-08 23:16:37:284787, slv, 64006afffe521cba/01, 0.000000000, -0.000016147,

0.000000000, 0.000305000, 685
2016-03-08 23:16:38:284670, slv, 64006afffe521cba/01, 0.000000000, -0.000015553,

0.000000000, 0.000353000, 670
2016-03-08 23:16:39:284865, slv, 64006afffe521cba/01, 0.000000000, 0.000008933,

0.000000000, 0.000354000, 678
2016-03-08 23:16:40:284753, slv, 64006afffe521cba/01, 0.000000000, 0.000008920,

0.000000000, 0.000353000, 686
2016-03-08 23:16:41:284837, slv, 64006afffe521cba/01, 0.000000000, 0.000008918,

0.000000000, 0.000354000, 694
2016-03-08 23:16:42:284743, slv, 64006afffe521cba/01, 0.000000000, 0.000007916,

0.000000000, 0.000351000, 701

87

2016-03-08 23:16:43:284767, slv, 64006afffe521cba/01, 0.000000000, -0.000033061,
0.000000000, 0.000272000, 668

2016-03-08 23:16:44:284662, slv, 64006afffe521cba/01, 0.000000000, -0.000034538,
0.000000000, 0.000348000, 634

2016-03-08 23:16:45:284872, slv, 64006afffe521cba/01, 0.000000000, 0.000008998,
0.000000000, 0.000359000, 642

2016-03-08 23:16:46:284772, slv, 64006afffe521cba/01, 0.000000000, 0.000015034,
0.000000000, 0.000360000, 657

2016-03-08 23:16:47:284749, slv, 64006afffe521cba/01, 0.000000000, -0.000003922,
0.000000000, 0.000321000, 654

2016-03-08 23:16:48:284676, slv, 64006afffe521cba/01, 0.000000000, -0.000041378,
0.000000000, 0.000285000, 613

2016-03-08 23:16:49:284872, slv, 64006afffe521cba/01, 0.000000000, 0.000013189,
0.000000000, 0.000430000, 626

2016-03-08 23:16:50:284794, slv, 64006afffe521cba/01, 0.000000000, 0.000051256,
0.000000000, 0.000361000, 677

2016-03-08 23:16:51:284876, slv, 64006afffe521cba/01, 0.000000000, 0.000010272,
0.000000000, 0.000348000, 687

2016-03-08 23:16:52:284760, slv, 64006afffe521cba/01, 0.000000000, 0.000009288,
0.000000000, 0.000359000, 696

2016-03-08 23:16:53:284854, slv, 64006afffe521cba/01, 0.000000000, 0.000012745,
0.000000000, 0.000355000, 708

Listing C.6: Log�le from calibration to 12ms wait time
2016-03-06 04:46:56,850 - __main__ - INFO - Calibrating wait time...
2016-03-06 04:46:56,850 - __main__ - DEBUG - Iteration 1, Run 1
2016-03-06 04:46:58,067 - __main__ - DEBUG - Iteration 1, Run 2
2016-03-06 04:46:59,287 - __main__ - DEBUG - Iteration 1, Run 3
2016-03-06 04:47:00,507 - __main__ - DEBUG - Iteration 1, Run 4
2016-03-06 04:47:01,727 - __main__ - DEBUG - Iteration 1, Run 5
2016-03-06 04:47:02,946 - __main__ - DEBUG - Iteration 1, Run 6
2016-03-06 04:47:04,167 - __main__ - DEBUG - Iteration 1, Run 7
2016-03-06 04:47:05,387 - __main__ - DEBUG - Iteration 1, Run 8
2016-03-06 04:47:06,606 - __main__ - DEBUG - Iteration 1, Run 9
2016-03-06 04:47:07,827 - __main__ - DEBUG - Iteration 1, Run 10
2016-03-06 04:47:09,047 - __main__ - DEBUG - Iteration 1, Run 11
2016-03-06 04:47:10,266 - __main__ - DEBUG - Iteration 1, Run 12
2016-03-06 04:47:11,487 - __main__ - DEBUG - Iteration 1, Run 13
2016-03-06 04:47:13,506 - __main__ - INFO - Request timed out.
2016-03-06 04:47:13,506 - __main__ - DEBUG - Iteration 1, Run 14
2016-03-06 04:47:14,726 - __main__ - DEBUG - Iteration 1, Run 15
2016-03-06 04:47:15,946 - __main__ - DEBUG - Iteration 1, Run 16
2016-03-06 04:47:17,166 - __main__ - DEBUG - Iteration 1, Run 17
2016-03-06 04:47:18,386 - __main__ - DEBUG - Iteration 1, Run 18
2016-03-06 04:47:19,606 - __main__ - DEBUG - Iteration 1, Run 19
2016-03-06 04:47:20,826 - __main__ - DEBUG - Iteration 1, Run 20
2016-03-06 04:47:22,046 - __main__ - DEBUG - Iteration 1, Run 21
2016-03-06 04:47:23,266 - __main__ - DEBUG - Iteration 1, Run 22
2016-03-06 04:47:24,486 - __main__ - DEBUG - Iteration 1, Run 23
2016-03-06 04:47:25,706 - __main__ - DEBUG - Iteration 1, Run 24
2016-03-06 04:47:26,926 - __main__ - DEBUG - Iteration 1, Run 25
2016-03-06 04:47:28,146 - __main__ - DEBUG - Iteration 1, Run 26
2016-03-06 04:47:29,366 - __main__ - DEBUG - Iteration 1, Run 27
2016-03-06 04:47:30,586 - __main__ - DEBUG - Iteration 1, Run 28
2016-03-06 04:47:31,806 - __main__ - DEBUG - Iteration 1, Run 29
2016-03-06 04:47:33,026 - __main__ - DEBUG - Iteration 1, Run 30
2016-03-06 04:47:34,246 - __main__ - DEBUG - Iteration 1, Run 31
2016-03-06 04:47:35,466 - __main__ - DEBUG - Iteration 1, Run 32
2016-03-06 04:47:36,686 - __main__ - DEBUG - Iteration 1, Run 33
2016-03-06 04:47:37,906 - __main__ - DEBUG - Iteration 1, Run 34

88 Appendix C. Log Files

2016-03-06 04:47:39,126 - __main__ - DEBUG - Iteration 1, Run 35
2016-03-06 04:47:40,346 - __main__ - DEBUG - Iteration 1, Run 36
2016-03-06 04:47:41,566 - __main__ - DEBUG - Iteration 1, Run 37
2016-03-06 04:47:42,786 - __main__ - DEBUG - Iteration 1, Run 38
2016-03-06 04:47:44,006 - __main__ - DEBUG - Iteration 1, Run 39
2016-03-06 04:47:45,226 - __main__ - DEBUG - Iteration 1, Run 40
2016-03-06 04:47:46,446 - __main__ - DEBUG - Iteration 1, Run 41
2016-03-06 04:47:47,666 - __main__ - DEBUG - Iteration 1, Run 42
2016-03-06 04:47:48,886 - __main__ - DEBUG - Iteration 1, Run 43
2016-03-06 04:47:50,106 - __main__ - DEBUG - Iteration 1, Run 44
2016-03-06 04:47:51,326 - __main__ - DEBUG - Iteration 1, Run 45
2016-03-06 04:47:52,546 - __main__ - DEBUG - Iteration 1, Run 46
2016-03-06 04:47:53,766 - __main__ - DEBUG - Iteration 1, Run 47
2016-03-06 04:47:54,986 - __main__ - DEBUG - Iteration 1, Run 48
2016-03-06 04:47:56,206 - __main__ - DEBUG - Iteration 1, Run 49
2016-03-06 04:47:57,426 - __main__ - DEBUG - Iteration 1, Run 50
2016-03-06 04:47:58,646 - __main__ - DEBUG - Iteration 1, Run 51
2016-03-06 04:47:59,866 - __main__ - DEBUG - Iteration 1, Run 52
2016-03-06 04:48:01,086 - __main__ - DEBUG - Iteration 1, Run 53
2016-03-06 04:48:02,306 - __main__ - DEBUG - Iteration 1, Run 54
2016-03-06 04:48:03,526 - __main__ - DEBUG - Iteration 1, Run 55
2016-03-06 04:48:04,746 - __main__ - DEBUG - Iteration 1, Run 56
2016-03-06 04:48:05,967 - __main__ - DEBUG - Iteration 1, Run 57
2016-03-06 04:48:07,187 - __main__ - DEBUG - Iteration 1, Run 58
2016-03-06 04:48:08,406 - __main__ - DEBUG - Iteration 1, Run 59
2016-03-06 04:48:09,626 - __main__ - DEBUG - Iteration 1, Run 60
2016-03-06 04:48:10,846 - __main__ - DEBUG - Iteration 1, Run 61
2016-03-06 04:48:12,066 - __main__ - DEBUG - Iteration 1, Run 62
2016-03-06 04:48:13,286 - __main__ - DEBUG - Iteration 1, Run 63
2016-03-06 04:48:14,506 - __main__ - DEBUG - Iteration 1, Run 64
2016-03-06 04:48:15,726 - __main__ - DEBUG - Iteration 1, Run 65
2016-03-06 04:48:16,946 - __main__ - DEBUG - Iteration 1, Run 66
2016-03-06 04:48:18,166 - __main__ - DEBUG - Iteration 1, Run 67
2016-03-06 04:48:19,386 - __main__ - DEBUG - Iteration 1, Run 68
2016-03-06 04:48:20,606 - __main__ - DEBUG - Iteration 1, Run 69
2016-03-06 04:48:21,826 - __main__ - DEBUG - Iteration 1, Run 70
2016-03-06 04:48:23,046 - __main__ - DEBUG - Iteration 1, Run 71
2016-03-06 04:48:24,266 - __main__ - DEBUG - Iteration 1, Run 72
2016-03-06 04:48:25,486 - __main__ - DEBUG - Iteration 1, Run 73
2016-03-06 04:48:26,706 - __main__ - DEBUG - Iteration 1, Run 74
2016-03-06 04:48:27,926 - __main__ - DEBUG - Iteration 1, Run 75
2016-03-06 04:48:29,146 - __main__ - DEBUG - Iteration 1, Run 76
2016-03-06 04:48:30,366 - __main__ - DEBUG - Iteration 1, Run 77
2016-03-06 04:48:31,586 - __main__ - DEBUG - Iteration 1, Run 78
2016-03-06 04:48:32,806 - __main__ - DEBUG - Iteration 1, Run 79
2016-03-06 04:48:34,026 - __main__ - DEBUG - Iteration 1, Run 80
2016-03-06 04:48:35,246 - __main__ - DEBUG - Iteration 1, Run 81
2016-03-06 04:48:36,466 - __main__ - DEBUG - Iteration 1, Run 82
2016-03-06 04:48:37,686 - __main__ - DEBUG - Iteration 1, Run 83
2016-03-06 04:48:38,906 - __main__ - DEBUG - Iteration 1, Run 84
2016-03-06 04:48:40,126 - __main__ - DEBUG - Iteration 1, Run 85
2016-03-06 04:48:41,346 - __main__ - DEBUG - Iteration 1, Run 86
2016-03-06 04:48:42,566 - __main__ - DEBUG - Iteration 1, Run 87
2016-03-06 04:48:43,786 - __main__ - DEBUG - Iteration 1, Run 88
2016-03-06 04:48:45,006 - __main__ - DEBUG - Iteration 1, Run 89
2016-03-06 04:48:46,226 - __main__ - DEBUG - Iteration 1, Run 90
2016-03-06 04:48:47,446 - __main__ - DEBUG - Iteration 1, Run 91
2016-03-06 04:48:49,466 - __main__ - INFO - Request timed out.
2016-03-06 04:48:49,466 - __main__ - DEBUG - Iteration 1, Run 92
2016-03-06 04:48:50,686 - __main__ - DEBUG - Iteration 1, Run 93
2016-03-06 04:48:51,906 - __main__ - DEBUG - Iteration 1, Run 94

89

2016-03-06 04:48:53,126 - __main__ - DEBUG - Iteration 1, Run 95
2016-03-06 04:48:54,346 - __main__ - DEBUG - Iteration 1, Run 96
2016-03-06 04:48:55,566 - __main__ - DEBUG - Iteration 1, Run 97
2016-03-06 04:48:56,786 - __main__ - DEBUG - Iteration 1, Run 98
2016-03-06 04:48:58,006 - __main__ - DEBUG - Iteration 1, Run 99
2016-03-06 04:48:59,226 - __main__ - DEBUG - Iteration 1, Run 100
2016-03-06 04:49:00,446 - __main__ - DEBUG - Calibration - number of failures: 2
2016-03-06 04:49:00,446 - __main__ - DEBUG - Calibration - SMALLER & < 0.1

Listing C.7: Client Log�le from Overhead Measurement for UDP at 12ms wait time
2016-03-06 05:24:58,242 - __main__ - INFO - Request timed out.
2016-03-06 06:35:42,966 - __main__ - INFO - Request timed out.
2016-03-06 06:43:34,596 - __main__ - INFO - Request timed out.
2016-03-06 07:11:05,351 - __main__ - INFO - Request timed out.
2016-03-06 07:22:52,817 - __main__ - INFO - Request timed out.
2016-03-06 08:17:54,280 - __main__ - INFO - Request timed out.
2016-03-06 08:29:41,730 - __main__ - INFO - Request timed out.
2016-03-06 08:49:20,841 - __main__ - INFO - Request timed out.
2016-03-06 09:08:59,934 - __main__ - INFO - Request timed out.
2016-03-06 09:54:51,175 - __main__ - INFO - Request timed out.
2016-03-06 10:17:46,796 - __main__ - INFO - Request timed out.
2016-03-06 11:27:12,983 - __main__ - INFO - Request timed out.
2016-03-06 13:48:42,499 - __main__ - INFO - Request timed out.
2016-03-06 14:00:29,958 - __main__ - INFO - Request timed out.
2016-03-06 15:26:57,949 - __main__ - INFO - Request timed out.
2016-03-06 15:50:32,874 - __main__ - INFO - Request timed out.
2016-03-06 16:18:03,621 - __main__ - INFO - Request timed out.
2016-03-06 16:25:55,254 - __main__ - INFO - Request timed out.
2016-03-06 16:45:34,338 - __main__ - INFO - Request timed out.
2016-03-06 16:47:53,086 - __main__ - DEBUG - Signal 2 received
2016-03-06 16:47:53,086 - __main__ - INFO - Stopping client...
2016-03-06 16:47:53,086 - __main__ - INFO - Total number of sent port-knocking requests:

14129
2016-03-06 16:47:53,086 - __main__ - INFO - Total number of failed port-knocking

requests: 19

91

Bibliography

[1] M. Gri�ths-Harvey, B. Neill, K. Smith, T. Rosati, W. Davis, A. Walters, R. Tsang,
D. Brown, and S. Vanstone, “Authenticated radio frequency identi�cation and key
distribution system therefor,” Mar. 13 2008, wO Patent App. PCT/CA2007/001,567.
[Online]. Available: http://www.google.com/patents/WO2008028291A1?cl=en

[2] T. Oder, T. Pöppelmann, and T. Güneysu, “Beyond ecdsa and rsa: Lattice-based
digital signatures on constrained devices,” in Proceedings of the 51st Annual Design
Automation Conference. ACM, 2014, pp. 1–6.

[3] B. Daya, “Network security: History, importance, and future,” University of Florida
Department of Electrical and Computer Engineering, 2013.

[4] D. Bandyopadhyay and J. Sen, “Internet of things: Applications and challenges in
technology and standardization,” Wireless Personal Communications, vol. 58, no. 1,
pp. 49–69, 2011.

[5] G. Pallis, “Cloud computing: the new frontier of internet computing,” IEEE Internet
Computing, vol. 14, no. 5, p. 70, 2010.

[6] A. Behl, “Emerging security challenges in cloud computing: An insight to cloud
security challenges and their mitigation,” in Information and Communication Tech-
nologies (WICT), 2011 World Congress on. IEEE, 2011, pp. 217–222.

[7] Z. Whittaker. (2015) Amazon force-resets some account passwords, citing
password leak. (Retrieved: 02/06/2016). [Online]. Available: http://www.zdnet.
com/article/amazon-is-resetting-account-passwords-for-some-accounts/

[8] H. Zimmermann, “Osi reference model–the iso model of architecture for open
systems interconnection,” Communications, IEEE Transactions on, vol. 28, no. 4, pp.
425–432, 1980.

[9] P. Lindstrom and R. Director, “Intrusion prevention systems (ips): Next generation
�rewalls,” Spire Security, 2004.

http://www.google.com/patents/WO2008028291A1?cl=en
http://www.zdnet.com/article/amazon-is-resetting-account-passwords-for-some-accounts/
http://www.zdnet.com/article/amazon-is-resetting-account-passwords-for-some-accounts/

92 Bibliography

[10] J. Mirkovic and P. Reiher, “A taxonomy of ddos attack and ddos defense mecha-
nisms,” ACM SIGCOMM Computer Communication Review, vol. 34, no. 2, pp. 39–53,
2004.

[11] D. Gollmann, “Computer security,” Wiley Interdisciplinary Reviews: Computational
Statistics, vol. 2, no. 5, pp. 544–554, 2010.

[12] M. Krzywinski, “Port knocking from the inside out,” SysAdmin Magazine, vol. 12,
no. 6, pp. 12–17, 2003.

[13] A. Kumar, “Zero day exploit,” Available at SSRN 2378317, 2014.

[14] M. Rash, “Single packet authorization with fwknop,” login: The USENIX Magazine,
vol. 31, no. 1, pp. 63–69, 2006.

[15] H. Al-Bahadili and A. H. Hadi, “Network security using hybrid port knocking,”
IJCSNS, vol. 10, no. 8, p. 8, 2010.

[16] M. Krzywinski. (2003, Jul.) Portknocking (by martin krzywinski) - documentation.
(Retrieved: 03/11/2016). [Online]. Available: http://www.portknocking.org/view/
documentation

[17] E. Y. Vasserman, N. Hopper, J. Laxson, and J. Tyra, “Silentknock: practical, provably
undetectable authentication,” in Computer Security–ESORICS 2007. Springer, 2007,
pp. 122–138.

[18] M. Rash. (2016, Jan.) A comprehensive guide to strong service concealment with
fwknop. (Retrieved: 03/11/2016). [Online]. Available: http://www.cipherdyne.org/
fwknop/docs/fwknop-tutorial.html

[19] M. Marlinspike. Software » knockknock.

[20] J. Kirsch, “Improved kernel-based port-knocking in linux,” Master’s Thesis (TUM),
2014.

[21] W. Mao, Modern cryptography: theory and practice. Prentice Hall Professional
Technical Reference, 2003.

[22] G. J. Simmons, “Symmetric and asymmetric encryption,” ACM Computing Surveys
(CSUR), vol. 11, no. 4, pp. 305–330, 1979.

[23] F. P. Miller, A. F. Vandome, and J. McBrewster, “Advanced encryption standard,”
2009.

[24] S. Chokhani, W. Ford, R. Sabett, C. Merrill, and S. Wu, “Internet x. 509 public key
infrastructure certi�cate policy and certi�cation practices framework,” Tech. Rep.,
2003.

http://www.portknocking.org/view/documentation
http://www.portknocking.org/view/documentation
http://www.cipherdyne.org/fwknop/docs/fwknop-tutorial.html
http://www.cipherdyne.org/fwknop/docs/fwknop-tutorial.html

Bibliography 93

[25] R. Rivest, A. Shamir, and L. Adleman, “Cryptographic communications
system and method,” Sep. 20 1983, uS Patent 4,405,829. [Online]. Available:
https://www.google.com/patents/US4405829

[26] D. Johnson, A. Menezes, and S. Vanstone, “The elliptic curve digital signature
algorithm (ecdsa),” International Journal of Information Security, vol. 1, no. 1, pp.
36–63, 2001.

[27] E. Fujisaki and T. Okamoto, “Secure integration of asymmetric and symmetric
encryption schemes,” in Crypto, vol. 99, no. 32. Springer, 1999, pp. 537–554.

[28] E. Rescorla, “Di�e-hellman key agreement method,” 1999.

[29] M. Bellare and C. Namprempre, “Authenticated encryption: Relations among no-
tions and analysis of the generic composition paradigm,” in Advances in Cryptol-
ogy—ASIACRYPT 2000. Springer, 2000, pp. 531–545.

[30] H. Krawczyk, R. Canetti, and M. Bellare, “Hmac: Keyed-hashing for message
authentication,” 1997.

[31] E. Fujisaki, T. Okamoto, D. Pointcheval, and J. Stern, “Rsa-oaep is secure under the
rsa assumption,” in Advances in Cryptology—CRYPTO 2001. Springer, 2001, pp.
260–274.

[32] L. Law, A. Menezes, M. Qu, J. Solinas, and S. Vanstone, “An e�cient protocol for
authenticated key agreement,” Designs, Codes and Cryptography, vol. 28, no. 2, pp.
119–134, 2003.

[33] S. Kim, J. H. Cheon, M. Joye, S. Lim, M. Mambo, D. Won, and Y. Zheng, “Strong
adaptive chosen-ciphertext attacks with memory dump (or: The importance of the
order of decryption and validation),” in Cryptography and Coding. Springer, 2001,
pp. 114–127.

[34] N. P. Smart, “The exact security of ecies in the generic group model,” in Cryptog-
raphy and Coding. Springer, 2001, pp. 73–84.

[35] D. Kravitz, “Digital signature algorithm,” Jul. 27 1993, uS Patent 5,231,668. [Online].
Available: https://www.google.com/patents/US5231668

[36] E. DeBusschere and M. McCambridge, “Modern game console exploitation,” 2012.

[37] D. J. Bernstein, N. Duif, T. Lange, P. Schwabe, and B.-Y. Yang, “High-speed high-
security signatures,” in Cryptographic Hardware and Embedded Systems–CHES 2011.
Springer, 2011, pp. 124–142.

[38] N. Jansma and B. Arrendondo, “Performance comparison of elliptic curve and rsa
digital signatures,” nicj.net/�les, 2004.

https://www.google.com/patents/US4405829
https://www.google.com/patents/US5231668

94 Bibliography

[39] P. Syverson, “A taxonomy of replay attacks [cryptographic protocols],” inComputer
Security Foundations Workshop VII, 1994. CSFW 7. Proceedings. IEEE, 1994, pp.
187–191.

[40] Y. Desmedt, “Man-in-the-middle attack,” in Encyclopedia of Cryptography and
Security. Springer, 2011, pp. 759–759.

[41] D. E. Denning and G. M. Sacco, “Timestamps in key distribution protocols,” Com-
munications of the ACM, vol. 24, no. 8, pp. 533–536, 1981.

[42] N. Haller, C. Metz, P. Nesser, and M. Straw, “A one-time password system,” Tech.
Rep., 1998.

[43] J. Postel, “Transmission control protocol,” 1981.

[44] J. Postel, “Udp: User datagram protocol,” 1980.

[45] C. Basso, J. L. Calvignac, M. C. Heddes, J. F. Logan, and F. J. Verplanken, “Data
structures for e�cient processing of ip fragmentation and reassembly,” Aug. 30
2005, uS Patent 6,937,606.

[46] A. C. Bavier, M. Bowman, B. N. Chun, D. E. Culler, S. Karlin, S. Muir, L. L. Peter-
son, T. Roscoe, T. Spalink, and M. Wawrzoniak, “Operating systems support for
planetary-scale network services.” in NSDI, vol. 4, 2004, pp. 19–19.

[47] S. Subashini and V. Kavitha, “A survey on security issues in service delivery models
of cloud computing,” Journal of network and computer applications, vol. 34, no. 1,
pp. 1–11, 2011.

[48] D. Brumley and D. Song, “Privtrans: Automatically partitioning programs for
privilege separation,” in USENIX Security Symposium, 2004, pp. 57–72.

[49] T.-F. Fuh, S. H. Fan, and D. Qu, “Local authentication of a client at a network
device,” Oct. 8 2002, uS Patent 6,463,474.

[50] D. W. Chadwick, A. Otenko, and E. Ball, “Role-based access control with x. 509
attribute certi�cates,” Internet Computing, IEEE, vol. 7, no. 2, pp. 62–69, 2003.

[51] A. B. Butt, P. B. Hillyard, and J. Su, “Certi�cate-based authentication system for
heterogeneous environments,” Jun. 22 2004, uS Patent 6,754,829.

[52] R. Housley, W. Polk, W. Ford, and D. Solo, “Internet x. 509 public key infrastructure
certi�cate and certi�cate revocation list (crl) pro�le,” 2002.

[53] D. M. Nessett and W. P. Sherer, “Multilayer �rewall system,” Oct. 19 1999, uS Patent
5,968,176.

[54] G. Huston, “Tcp performance,” The Internet Protocol Journal, vol. 3, no. 2, pp. 2–24,
2000.

Bibliography 95

[55] R. L. Cottrell, T. Barbosa, B. White, J. Abdullah, U. UMalaysia, T. White, R. Con-
nection et al., “Worldwide internet performance measurements using lightweight
measurement platforms,” SLAC National Accelerator Laboratory (SLAC), Tech.
Rep., 2016.

[56] H. Krawczyk, “Cryptographic extraction and key derivation: The hkdf scheme,” in
Advances in Cryptology–CRYPTO 2010. Springer, 2010, pp. 631–648.

[57] S. Landau, “Highlights from making sense of snowden, part ii: What’s signi�cant
in the nsa revelations,” Security & Privacy, IEEE, vol. 12, no. 1, pp. 62–64, 2014.

[58] S. Josefsson, “Using Curve25519 and Curve448 in PKIX,” Working Draft, IETF
Secretariat, Internet-Draft draft-josefsson-pkix-newcurves-01, Oct. 2015.

[59] T. pyOpenSSL developers. (2016, Jan.) pyopenssl’s documentation. (Retrieved:
02/21/2016). [Online]. Available: https://python-iptables.readthedocs.org/en/
latest/intro.html

[60] T. pyOpenSSL developers. (2016, Feb.) pyopenssl’s documentation. (Retrieved:
02/16/2016). [Online]. Available: https://pyopenssl.readthedocs.org/en/latest/
index.html

[61] H. Toivonen. (2009, Aug.) M2crypto’s documentation. (Retrieved: 02/16/2016).
[Online]. Available: http://www.heikkitoivonen.net/m2crypto/api/

[62] S. Masini and P. Bientinesi, “High-performance parallel computations using python
as high-level language,” in Euro-Par 2010 Parallel Processing Workshops. Springer,
2010, pp. 541–548.

[63] K. RMKI and S. EK, “Net�lter performance testing.”

[64] S. Suehring, Linux Firewalls: Enhancing Security with Nftables and Beyond.
Addison-Wesley Professional, 2015.

[65] M. Zhang, M. Dusi, W. John, and C. Chen, “Analysis of udp tra�c usage on internet
backbone links,” in Applications and the Internet, 2009. SAINT’09. Ninth Annual
International Symposium on. IEEE, 2009, pp. 280–281.

[66] G. U. tiran. (2015, May) Segfault in x509 object from verify callback #273. (Retrieved:
03/11/2016). [Online]. Available: https://github.com/pyca/pyopenssl/issues/273

[67] R. Kern. (2015, Dec.) Github repository: line_pro�ler. (Retrieved: 03/14/2016).
[Online]. Available: https://github.com/rkern/line_pro�ler

[68] D. L. Mills, “Internet time synchronization: the network time protocol,” Communi-
cations, IEEE Transactions on, vol. 39, no. 10, pp. 1482–1493, 1991.

[69] H. Weibel, “High precision clock synchronization according to ieee 1588 imple-
mentation and performance issues,” Proc. Embedded World 2005, 2005.

https://python-iptables.readthedocs.org/en/latest/intro.html
https://python-iptables.readthedocs.org/en/latest/intro.html
https://pyopenssl.readthedocs.org/en/latest/index.html
https://pyopenssl.readthedocs.org/en/latest/index.html
http://www.heikkitoivonen.net/m2crypto/api/
https://github.com/pyca/pyopenssl/issues/273
https://github.com/rkern/line_profiler

96 Bibliography

[70] J. Rosenberg, R. Mahy, C. Huitema, and J. Weinberger, “Stun-simple traversal of
udp through network address translators,” 2003.

	Introduction
	Goals of the thesis
	Outline
	Motivation
	Security in modern Network Design
	Port-Knocking
	Related Implementations
	Summary

	Background
	Security
	Encryption
	Integrity
	RSA vs. ECC, ECDSA, ECDH & ECIES
	Other security features

	Performance
	TCP vs. UDP
	Packet size
	Processing incoming packets

	Deployment Complexity

	Implementation
	Requirements & Specification
	Network Communication
	User Authorization
	Security Suite
	Packet Design

	Architecture
	General considerations
	Server
	Client
	Common Modules

	Limitations
	Network Address Translation (NAT)
	Tracking of Established Connections
	Chosen Implementation Language
	Multi-platform support
	UDP

	Evaluation
	Per-Module Performance Analysis
	Test environment
	Firewall
	Packet Processing
	Cryptographic Engine

	Firewall Filtering
	Connection Overhead
	Reliability Under Packet Loss

	Conclusion
	Future Work
	Summary

	Appendix
	Measurement Results
	Per-Module Performance
	Firewall Filtering
	Reliability Under Packet Loss

	Profiling Results
	Log Files
	Bibliography

