
Technische Universität München
Department of Informatics

Master’s Thesis in Informatics

Flexible and Robust Orchestration of
Secure Multi-Party Computation for

Privacy-Preserving Services in
Dynamic Environments

Stefan Smarzly

Technische Universität München
Department of Informatics

Master’s Thesis in Informatics

Flexible and Robust Orchestration of
Secure Multi-Party Computation for

Privacy-Preserving Services in
Dynamic Environments

Flexible und robuste Orchestrierung von
Secure Multi-Party Computation für

privatheitsschützende Dienste in
dynamischen Umgebungen

Author Stefan Smarzly
Supervisor Prof. Dr.-Ing. Georg Carle
Advisor Marcel von Maltitz, M. Sc., Dr. Holger Kinkelin
Submission Date March 15, 2017

Informatik VIII
Chair of Network Architectures and Services

I con�rm that this thesis is my own work and I have documented all sources and material
used.

Garching b. München, March 15, 2017

Signature

Abstract

In recent years, sensor devices became ubiquitous in almost all areas of life. Whereas
sensors are installed in public infrastructures and commercial buildings, an increasing
number of applications turn mobile phones into sensors, taking advantage of their
manifold sensing capabilities, to collect a huge amount of data about their environment.
This makes people a living part of Smart Environments, that in turn enables services for
the well-being of individuals, e�cient resource management or safety, to name a few.

In practice, much more data tends to be collected on centralized systems than usually is
needed to realize stated services. This results in an inherent risk for individuals’ privacy
if personally identi�able information is not protected thoroughly or used adequately.

In this thesis, we identify Secure Multi-Party Computation (SMC) to be a suitable
technology for enforcing individuals’ privacy and control over data. Even though
real-world applications exist, practical applicability of current SMC frameworks is too
complex due to high administrative e�orts and their inability to cope with the �exible
and dynamic nature of things. At last, this leads to bad acceptance. To solve these
issues, we design and implement a �exible orchestration framework that strives for
general applicability of SMC in practice while preserving privacy. Our performance
evaluation shows that the impact of our orchestration framework is minimal and that
overall results are promising from a dependent service’s perspective.

Zusammenfassung

In den letzten Jahren haben Sensoren in fast allen Bereichen des Lebens Einzug gefunden.
Während Sensoren einerseits in ö�entlichen Einrichtungen und kommerziell genutzten
Gebäuden präsent sind, benutzen andererseits immer mehr Anwendungen Smartphones
als Sensoren und machen sich deren vielfältige Wahrnehmungsfähigkeiten zu Nutze,
um große Mengen an Daten über ihre Umwelt zu erfassen. Auf diese Weise werden
Menschen zu einem lebendigen Teil eines intelligenten Umfelds, was im Umkehrschluss
Dienste ermöglicht, die sich zum Beispiel um das Wohlergehen der Individuen kümmern,
Ressourcen e�zient verwalten oder Sicherheit gewährleisten.

In der Praxis werden weit mehr Daten in zentralen Systemen gesammelt als eigentlich
für die Erbringung genannter Dienste notwendig wäre. Dies hat ungeahnte Risiken
für die Privatsphäre der Individuen zur Folge, falls Persönlichkeit identi�zierenden
Merkmale nicht umfassend geschützt oder angemessen verarbeitet werden.

In dieser Masterarbeit identi�zieren wir Secure Multi-Party Computation (SMC) als eine
adäquate Technologie, um für Individuen Privatsphäre und Kontrolle über ihre Daten
zu garantieren. Obwohl Anwendungen dieser Technologie im Alltag bereits existieren,
ist deren praktische Umsetzung mit verfügbaren SMC Frameworks zu komplex, da der
administrative Aufwand hoch ist und die Frameworks unfähig sind, den �exiblen und
dynamischen Anforderungen standzuhalten. Zuletzt ergibt sich damit die schlechte
Akzeptanz der Technologie. Um den Problemen Herr zu werden, konzipieren und im-
plementieren wir in diesem Rahmen ein �exibles Orchestrierungs-Framework, das nach
genereller Anwendbarkeit von SMC unter Wahrung von Privatsphäre strebt. Die Perfor-
mance Evaluierungen zeigen, dass der Ein�uss unseres Orchestrierungs-Frameworks
minimal ist und die allumfassenden Ergebnisse aus der Perspektive eines darauf auf-
bauenden Dienstes vielversprechend erscheinen.

I

Contents

Acronyms 1

1 Introduction 3
1.1 Objectives . 4
1.2 Research Questions . 5
1.3 Outline . 5

2 Background 7
2.1 Privacy Preservation . 7

2.1.1 Failures and Risks in Common Practice 8
2.1.2 Privacy Protection Goals . 9

2.2 Secure Multi-Party Computation . 9
2.2.1 De�nition and Categorization 9
2.2.2 Major Technologies . 11
2.2.3 Shamir’s Secret Sharing . 12
2.2.4 BGW Protocol . 14
2.2.5 Adversary Model . 16

2.3 Choosing Fresco . 18

3 Analysis 21
3.1 Use-cases . 21

3.1.1 UC.1: Smart Environments and Presence-aware HVAC 22
3.1.2 UC.2: MeasrDroid . 24

3.2 Problem Statement . 26
3.3 Abstraction . 27

3.3.1 Architectural Commonalities 28
3.3.2 Generalization Model . 30

3.4 Secure Multi-Party Computation as Building Block 31
3.4.1 Model Compatibility and Deployment 31
3.4.2 Prerequisites for Decentralized SMC Approach 32
3.4.3 Solved Privacy Issues . 33
3.4.4 SMC as a Service: Problems and Challenges 34

II Contents

3.5 Requirements . 38
3.5.1 Privacy . 38
3.5.2 Security . 39
3.5.3 Deployment and Applicability 39

4 Design 41
4.1 Organization and Entities . 41

4.1.1 Hybrid Approach: Decentralization and Virtual Centrality . . . 41
4.1.2 System: Gateway, Peers and Service Clients 42
4.1.3 Scope Limitation by Locality and Composite Pattern 45

4.2 Core Components of Self-Managed Networks 46
4.2.1 Discovery . 46
4.2.2 Pairing . 48

4.3 Robust Communication Approach . 50
4.3.1 Continuous Peer-side Connectivity and Recovery 50
4.3.2 Gateway-side Monitoring and Handling 51

4.4 Task Orchestration . 52
4.4.1 Conceptual Overview and Data Flow 52
4.4.2 Generic Task Description . 55
4.4.3 Turning Tasks into Multi-Phase Jobs 57
4.4.4 Executing Jobs . 62

5 Implementation 65
5.1 System Architecture . 65
5.2 FlexSMC Implementation . 68

5.2.1 Design Facts . 68
5.2.2 Architecture and Components 69
5.2.3 Task Orchestration . 72

5.3 Communication and Messages . 78
5.3.1 Used Techniques and Rationale 79
5.3.2 Command and Control: Messaging between Gateway and Peer 80
5.3.3 Inner-Host Communications . 82

6 Performance Evaluation 85
6.1 Experimental Setup . 85

6.1.1 Network Organization and Roles 85
6.1.2 Hardware and OS Details . 86

6.2 Methodology . 87
6.2.1 Primary Parameter . 87
6.2.2 Black-box Measurements . 87
6.2.3 Metrics . 88

6.3 Platform Performance . 89

Contents III

6.3.1 Test Parametrization . 89
6.3.2 FlexSMC Layer . 90
6.3.3 Fresco Layer . 94

6.4 SMC Performance . 98
6.4.1 Test Details . 98
6.4.2 Results . 99

7 Requirements Assessment 105
7.1 Privacy . 105
7.2 Security . 106
7.3 Deployment and Applicability . 107

8 Related Work 109

9 Conclusion and Future Work 113

A Evaluation Details 115
A.1 Phase-wise Round-trip Times for multiple Messages 115
A.2 Table Statistics . 116

A.2.1 Single Message to FlexSMC Layer 116
A.2.2 Multiple Messages to FlexSMC and Fresco Layer 116

Bibliography 119

V

List of Figures

2.1 Shamir’s secret sharing scheme . 14

3.1 Transforming generalizations from TTP to SMC 28
3.2 Generalization model . 30

4.1 Architectural overview . 43
4.2 Pairing sequence �ow . 49
4.3 Continuous peer-side integration into network 50
4.4 Components for robust task orchestration 53
4.5 Default sequence of phases and possible deviations 61

5.1 System overview . 66
5.2 Layered node architecture . 70
5.3 Simpli�ed process of job execution . 73
5.4 Error status . 82

6.1 Network organization. 86
6.2 Test metric. 88
6.3 FlexSMC request-response time. 91
6.4 Maximum request-response time for 10 consecutive messages including

initial preparation. 93
6.5 Distribution of RTTs individually per message for 10 consecutive messages. 93
6.6 Distribution of RTTs for local communication in comparison. 96
6.7 Phase-wise median request-response delay for secure sum tasks 100
6.8 Measurement of single sum computation in an end-to-end perspective 103

A.1 Individual RTT per message for 10 consecutive messages. 115

VII

List of Tables

2.1 Privacy Protection Goals . 10
2.2 General attacker model for SMC . 17
2.3 Comparison of SMC frameworks . 18

4.1 Gateway properties retrievable via discovery 47
4.2 Task description . 56

6.1 Statistics for secure sum tasks grouped by phase and peers 100
6.2 Statistics for total request-response time of secure sum task 103

A.1 Statistics for a single message to FlexSMC layer 116
A.2 Statistics for sum-based analysis of 10 messages to FlexSMC and Fresco

layer . 116
A.3 Statistics for phase-wise analysis of 10 messages to FlexSMC and Fresco

layer . 117

1

Acronyms

BGW Ben-Or, Goldwasser and Wigderson.

HbC Honest-but-Curious.

HTTP/2 Hypertext Transfer Protocol Version 2.

HVAC heating, ventilation and air conditioning.

ICMP Internet Control Message Protocol.

IoT Internet of Things.

LSS Linear Secret Sharing.

PKI public key infrastructure.

RPC remote procedure call.

RTT round-trip time.

SMC Secure Multi-Party Computation.

SSS Shamir’s Secret Sharing.

TOFU trust on �rst use.

TTP trusted third party.

3

Chapter 1

Introduction

Within commercially used buildings, an increasing amount of sensors measure in-depth
aspects of their physical environment. These are properties such as temperature, lighting
conditions, air quality or presence of occupants. Based upon the collected sensor data,
a Smart Building can provide a variety of services for the well-being of the occupants,
resource management in an e�cient way, and safety [1]. Not restricting our view to
building equipped with sensors, most mobile devices are powerful sources of data as well,
being carried around by many humans all day long while perceiving their environment
with integrated sensors. A typical use-case could be that temperature readings, provided
by each o�ce or devices at a certain location, enable a central heating system to adapt
its output to the needs. Energy savings can be even optimized by taking into account
the number of occupants and the distribution of people in a building. In another use-
case, aggregated presence data stating the frequency of spaces being occupied, could
be visualized on public displays, e.g. to inform people when it is appropriate to visit a
cafeteria.

Typically, all kinds of sensor data tend to be collected on centralized systems that are
servers in the basement or online cloud solutions [2]. We believe that this central-
ism implies an inherent risk of sensitive data being disclosed or used inappropriately.
Even more, by collecting all kind of data in raw form intentionally and unintentionally,
processing and analysis is not bound to a certain purpose. Thereby, apart from the
intended services, data gathering poses the risk of personal identi�able information
being extracted without consent or control by the data origin. Individual insights even
increase with knowledge about organization and structure within or across buildings
and their environments. For example, monitoring the time of absence of employees or
correlating their path when moving around, threatens their privacy. It might provide
(false) indications to a person’s health, productivity or habits. In fact, surveys among
European citizen clearly show that the majority fears the collection of private informa-
tion being used for other purposes as stated [3] [4]. Beside the personal threat, abusing

4 Chapter 1. Introduction

data is often forbidden by law, e.g. the European data protection law [5, Sec. 2].

Many service do not act upon data of individuals, but on derived information. Hence,
collecting individuals’ data is often only a pure excuse for services to function, but
related to the technical realization of information collection in reality. One promising
�eld to target the fundamental issue of privacy-preservation for individuals is Secure
Multi-Party Computation (SMC). SMC encompasses diverse approaches and protocols
to jointly compute a function without revealing any party’s data. As the approaches
are quite diverse, they are suited di�erently for given premises and requirements. In
our case, we focus on more generic SMC protocols and frameworks that support an
arbitrary construction of arithmetic operations running on more than two parties. These
properties create a good base to cover a wide range of services for Smart Environments,
but are not restricted to them.

Fundamental work has been done in the past creating SMC frameworks and optimizing
their protocols to render them e�ciently and hence, making them considerable for
real-world applications (see chapter 8). Consequently, SMC technologies are not a
deal breaker in terms of protocol performance anymore. However, a huge downside
to SMC-based applications is their lack of all-embracing structures that target ease of
deployment and usability for long living services outside of well-controlled or static
environments [6]. In this thesis, we aim for a widely generic approach to tackle these
shortcomings on the one hand, and improve individuals’ privacy on the other hand.

1.1 Objectives

The goal of this Master’s Thesis is to elaborate shortcomings of SMC frameworks in
their practical applicability, while always keeping an eye on privacy considerations and
improvements. Based on these �ndings, we design and create an orthogonal frame-
work to operate distributed SMC nodes in an autonomous way. Being orchestrated
automatically on behalf of a simple query interface, the system aims for facilitating
deployment and rendering it suitable for Smart Environments and beyond that through
minimizing administrative e�orts in the long term. Noticeably, our framework enhances
the capabilities of existing SMC frameworks in a decoupled way, with the general aim
to reuse existing technologies and to value its exchangeability as much as possible. A
�nal evaluation analyzes the performance of the orchestration and SMC layer, using
Fresco [7] as exemplary SMC provider, separately.

1.2. Research Questions 5

1.2 Research Questions

As follows, we de�ne a set of research questions that will provide guidance by tackling
relevant aspects to achieve the overall goal of this thesis.

1. How to protect raw data when collaboratively computing derived information?

2. Which issues and challenges arise from choosing Secure Multi-Party Computation
as basis for privacy preserving services?

3. How to practically realize a �exible and robust aggregation infrastructure with
Secure Multi-Party Computation at its core?

4. How is the performance impact of the provided orchestration framework on SMC-
based computations? How is the overall performance of such a realized system
from a service client’s perspective?

1.3 Outline

The rest of this thesis is organized as follows:

Chapter 2 provides background information about privacy considerations and goals
for preserving individuals’ privacy, Secure Multi-Party Computation and the em-
ployed framework, being an exemplary representative for secure computations in
this thesis.

Chapter 3 presents an in-depth analysis of typical use-cases, their privacy issues, and
how to generalize them into a simple model in order to verify whether SMC can be
applied practically. Then, we depict shortcomings in its practical deployment and
with respect to privacy, �nally being summarized in a list of requirements needed
for a practical, privacy preserving architecture.

Chapter 4 describes the system design for operating and orchestrating distributed
sensor nodes in a mostly automated way, in order to involve them easily for privacy
preserving services.

Chapter 5 illustrates the implementation from an architectural perspective, albeit
presenting all important components to realize the proposed design in practice.

Chapter 6 describes a performance evaluation conducted on behalf of real hardware,
while highlighting the impact for di�erent components of the architectural imple-
mentation and of SMC.

Chapter 7 conducts a brief requirements assessment, providing an overview about
how we ful�ll stated requirements of the analysis part.

6 Chapter 1. Introduction

Chapter 8 presents related work to this thesis, whose shown de�cits in the practical
deployment of SMC are a contributor to the reason for this work.

Chapter 9 summarizes our contributions and results. In addition to that, it depicts
possible topics for future work.

7

Chapter 2

Background

Targeting privacy-preserving architectures, we �rst need to lay out some groundwork
on this topic. First, we depict why privacy considerations should be valued more compre-
hensively by pinpointing recent failures in practice. This is followed by a systematization
of privacy that enumerates fundamental protection goals. It serves as a guideline for our
architecture further on. Thereafter, we introduce Secure Multi-Party Computation as it
is a fundamental contributor to enforce privacy aspects from a technological perspective.
Speci�cally, we highlight the protocols and attacker model that are relevant for the
architecture and re�ect the employed framework’s properties. Rationales for choosing
the speci�c framework are given last.

2.1 Privacy Preservation

Privacy is a core value of human being and democratic society as acknowledged by
the European Convention on Human Rights [8]. It is a highly valuable asset that every
individual should be entitled to have control over.

As the term privacy is overly broad and interpreted di�erently with regard to covered
aspects and appropriate implementations, it is impossible for individuals to estimate
how a service provider handles someone’s sensitive data behind the scenes or which
precautionary measures exist. For most users, it is even unclear what a provider should
guarantee in order to preserve its client’s privacy. It becomes even worse as implications
of lax or neglected policies are realized by citizens, but also politicians, in the earliest
when it is too late.

We want to brie�y systematize privacy in the scope of Smart Environments with a more
technical perspective, and enumerate which principles a framework needs to be based
upon for a privacy-preserving foundation. Beforehand, we identify problems and lawful
neglects in common practices that pose risks to individuals.

8 Chapter 2. Background

2.1.1 Failures and Risks in Common Practice

Since privacy aspects are commonly subject to some regulations in law, cloud providers
and also manufacturers of interconnected devices with cloud integration have usually
some kind of privacy section on their websites. Beside stating conformance to local
law regulations, the focus is often on data security when talking about privacy. For
example, some companies emphasize in their privacy section that data is safe by means
of secure communication paths with state-of-the-art encryption or by protecting private
data on their servers via encryption [9]. Others preclude that privacy is preserved by
keeping all data on servers in the same country [10]. While data security is an important
contributor to privacy, there are many other components as discussed later that are
excluded in their privacy statements. Hence, this places an incomplete impression about
privacy.

But also with regard to respective data protection laws, operators ful�ll requirements
only partially. For instance, there is the directive 95/46/EC on the protection of in-
dividuals in the European Union (EU) that has been active for a long time [11]. The
directive aims to regulate how data containing personally identi�able information (PII)
should be processed. Therefore, it states multiple principles to improve privacy for
the citizens. Among them, there are principles such as purpose, consent and security.
Recent disclosures demonstrate that some providers transmitted excessive PII which
obviously are not necessary for providing their services, nor did it happen with consent
of their users [12]. Otherwise, international companies with o�ces in the EU, have
poor security practices for storing con�dential data. Also personal data is kept longer
than needed and stated to its users, as recent breaches show [13] [14]. Consequently,
the current legal framework 95/46/EC is picked up as a set of recommendations, but
fails in practice due to a broad range of recent technological challenges [15], and the
divergence in how member states enforced the rules [4].

The core issue with many providers is their centralized approach in the market of Inter-
net of Things (IoT) with Smart Buildings being a part of it: edge devices are responsible
solely for data acquisition or actuating, and send their information (e.g. sensor mea-
surements), to a cloud platform managed by the provider. This is also the place where
all application logic resides. [2] While this strategy is comfortable and lucrative for a
cloud provider, it poses manifold risks to an end-user. The ubiquitous collection of raw
data along all edge devices enables the provider or (illegal) third-parties to analyze data
beyond the purpose as intentionally stated. From a technical perspective, centrality
greatly facilitates pro�ling and tracking of individuals. In addition to that, a breach
disposes sensitive personal data related to many people compared to a few ones if a
distributed approach was used. Furthermore, missing transparency and the lack of
control over its own data places the user in a weak position. The detailed accumulation
of data is therefore a valid concern by the majority of European citizens [4].

2.2. Secure Multi-Party Computation 9

Finally, an end-user must trust its providers that state-keeping is done with privacy and
security in mind, and only just as much data as justi�able by the services he consented
to.

2.1.2 Privacy Protection Goals

To design a privacy-preserving architecture, it is helpful to devise a set of guidelines for
orientation so that failures and risks mentioned in section 2.1.1 can be avoided at the
earliest stage. The idea is to establish the paradigm Privacy by Design. Work by [16], [17]
and technical aspects in [5] provide a solid foundation we consolidate for our purpose.

Rost et al. describe fundamental concepts and six goals with respect to data privacy and
security in their work [16]. As it is the de-facto work in this area and some of its concepts
are adopted by the new European General Data Protection Regulation (GDPR) [5], we
use it as a basis for our conceptualization of privacy. Beside the classic concepts of
information security, namely Con�dentiality, Integrity and Accountability, it introduces
the three privacy-relevant goals Unlinkability, Transparency and Intervenability. These
are described as part of table 2.1.

In addition to that, Data Minimization de�nes a further goal that originates from the
GDPR [17]. We consider minimization separately as it contributes a signi�cant improve-
ment to privacy by itself, even if other goals are not realized. It is fundamental for the
guideline "Privacy by Default" both recommended by GDPR and Rost.

Table 2.1 states and summarizes all relevant privacy protection goals we identi�ed based
on works aforementioned.

2.2 Secure Multi-Party Computation

Secure Multi-Party Computation (SMC) embodies a group of technologies and protocols
with the same goal: jointly compute functions on private input data, providing correct
results for all parties (output correctness), but without revealing any party’s data (input
privacy). For illustration, literature often refers to the Millionaires’ Problem originally
proposed by Yao [18]. Basically, two millionaires want to �nd out the richer one of both.
This shall be done computationally without the need for a trusted third party. At the
same time, it must avoid revealing any extra information about the other’s wealth.

2.2.1 De�nition and Categorization

To formalize this goal, let us introduce a de�nition for SMC to be used further on. Perry
et al. [19] come up with an universal de�nition that covers our focus quite well:

10 Chapter 2. Background

Table 2.1: Seven abstract privacy protection goals for privacy preservation based on [16]
and elaborated by [5].

Protection Goal Description

Con�dentiality are well-known key concepts of information security. They
focus on data security.Integrity

Availability

Related • Entity protection
• Trust relationship
• Communication Security

Data Minimiza-
tion

requires to minimize collecting and processing privacy-relevant
data in general. The aim is to maintain zero or as little informa-
tion as possible to realize the stated functionality, but not more
than that.

Unlinkability ensures that it is infeasible to utilize privacy-relevant data for
any other purpose than stated and acknowledged by the in-
volved individual.

Related • Data minimization
• Purpose binding

Transparency enables individuals to have insight how and where personal
data is processed at any time. It is required to argue whether
data collection, processing and use legitimates the purpose of
the respective operation.

Related • Prerequisite to intervenability
• Openness

Intervenability ensures that an individual has control over operations that pro-
cess private data related to this person. So, any current or future
data processing may allow a particular individual to opt-out
whose privacy-relevant data is part of the operation.

Related • Controllability

2.2. Secure Multi-Party Computation 11

A protocol for Secure Multiparty Computation of a class C of functionali-
ties allows any number n ≥ 2 of players, each holding a private input xi ,
to compute an agreed-upon, possibly randomized, functionality of those
inputs f (x1, ...,xn) = (y1, ...,yn), where f is any member of the class C of
functionalities. [19]

Stepping into this de�nition, the de�ned class C of functionalities plays an important
role for the di�erentiation of di�erent secure computation approaches. Basically, there
are two intersecting classes, in which common approaches can be categorized:

• Speci�c functionality — implements a speci�c computation that is restricted to a
particular use-case. It is not Turing complete.

• Generic functionality — supports an universal model of computation. It is Turing
complete.

For the former, a typical implementation is the computation of a secure sum. This means
that multiple parties shall compute the sum of their inputs minimizing the risk that any
input is disclosed. Exemplary protocols are k-Secure Sum Protocol [20] and its successor
Modi�ed ck-Secure Sum Protocol [21]. It basically breaks down to the partitioning of each
party’s data into k segments. For each round i , the parties accumulate their respective
segment ki in a ring-like manner. Therefore, a party adds its segment for the current
round to the intermediate result received from its predecessor. This is passed to its
successor. Each new round starts with the result determined before. In the end, the
last party in round k , which is also the one that started the computation, disseminates
the �nal result. To enhance privacy, the modi�ed protocol enforces the permutation of
the parties’ position so that a single party never gets the same neighbors on the ring
topology for all rounds. Still, privacy is a major issue with this approach, as all but one
parties have to trust the outcome the last party announces (potentially on an individual
basis).

In contrast to that, generic functionality is not restricted to additive calculations. It
enables any type of computation due to its Turing-completeness. For instance, in
addition to that we have seen before, this sort of SMC supports secure multiplications.
This, in turn, renders possible secure comparisons. Thus, the combination of these
primitives results in a huge amount of possibilities. Given that this thesis aims for great
�exibility, we focus on this sort of SMC only.

2.2.2 Major Technologies

Research concentrates on some major technologies that support our requirements for
generic functionality and n ≥ 2 players. The following list gives a brief overview about
relevant techniques and their representatives:

12 Chapter 2. Background

• Linear Secret Sharing
Linear Secret Sharing (LSS) describes a partitioning scheme that divides a secret
into multiple shares. These shares are usually disseminated to all parties. While
the combination of a minimal number of shares allows the reconstruction of the
secret, any incomplete set does not disclose any information. Arithmetic operations
such as addition and multiplication, are the basis for secure computations. Due
to its linearity, these operations inherit reactive computation properties. This
means that computations may depend on previous undisclosed outputs so that
only the �nal output is opened [22]. A practical example for LSS is Shamir’s Secret
Sharing [23]. Based on this building block, Ben-Or, Goldwasser and Wigderson
(BGW) [24] propose a secure computation protocol with general functionality.

• Garbled Circuits
Garbled Circuits (GC) was proposed by A. Yao in [18,25]. Despite it mainly targets
secure two-party computation using boolean operations, GC is worth mentioning
as it laid out groundwork for SMC in general. Put simply. the boolean circuit
comprises the function to evaluate and is uniquely encrypted. By cooperation
between the two parties, they can jointly evaluate the circuit without revealing
secrets to any party. However, as it is restricted to boolean operations, we do not
consider it any further in this work.

• Homomorphic Encryption
Homomorphic Encryption (HE) describes an encryption scheme that enables a
party to apply arithmetic operations on ciphertext of encrypted values without
prior decryption or knowledge about the key. On decryption by the sender party
that is in obsession of the key, the applied operations are also visible in the
cleartext value. Mostly, it is used in scenarios whereby a sender party wants
to outsource computations to a powerful receiver party, without revealing any
secrets. However, the commonly employed two-party setup renders it unattractive
for distributed environments with multiple parties we target in this thesis.

In the context of this work, we employ a variant of the BGW protocol. It is easily
comprehensible and there is good support in research and practical implementations.
Thus, it is interesting for our employed SMC layer. Section 2.2.3 and 2.2.4 will handle its
fundamentals from a technical perspective. For other major alternatives not regarded
here in detail, Archer et al. give further insights and also consider performance in [22].

2.2.3 Shamir’s Secret Sharing

The basic idea of Secret Sharing is to distribute a secret among several parties (sharing).
Then, the reconstruction is only successful if a required number of parties collaborate to
combine their shares revealing the original secret [23] [26]. A prominent example for
Secret Sharing, and more speci�cally for LSS, is the polynomial-based sharing scheme

2.2. Secure Multi-Party Computation 13

introduced by Shamir [23]. Shamir’s Secret Sharing (SSS) is the building block for
multiple SMC protocols, such as for the Ben-Or, Goldwasser and Wigderson (BGW)
protocol we refer to later on in section 2.2.4.

Shamir proposes a (t + 1,n)-threshold scheme. Given the precondition that there are
n parties, a secret s is divided into n shares and distributed among the parties 1 in a way
so that the following properties hold:

• The collaboration and so the knowledge of t + 1 shares makes it easy to e�ciently
compute the original secret s .

• t or fewer shares reveal nothing about the secret s .

This means that the threshold scheme tolerates t or less adversaries without compro-
mising privacy.

To understand how this basically works, it is necessary to regard the technical con-
struction of Shamir’s approach. In a nutshell, it builds on polynomial interpolation in
the 2-dimensional plane and utilizes the fact that k = t + 1 points (x1,y1), . . . , (xk ,yk)
uniquely de�ne a polynomial of degree t . In detail, let Fp be a �nite �eld for some
prime number p with the requirement that p > n. To share a secret s ∈ Fp , let q(x) be
a randomly chosen polynomial of degree t as follows:

q(x) = a0 + a1x + a2x
2 + · · · + atx t (2.1)

a0 = s (2.2)

The coe�cients a1, ...,at for eq. (2.1) are chosen uniformly at random from Fp , while
the secret s de�nes the �rst coe�cient in eq. (2.2). Each party Pi receives an unique
share [s]Pi that is deducted by evaluating q(x) at distinct points as denoted below:

∀i ∈ {1, . . . ,n} : [s]Pi = q(i) (2.3)

For reconstruction, we know that a set of k = t+1 points (1,q(1)), . . . , (k,q(k)) exactly
describes the polynomial q(x) of degree t . Having such a set, q(x) can be e�ciently
reconstructed via polynomial interpolation (e.g. Lagrange). The original secret is given
then by s = q(0). [27, sec. 3]

For illustration, we consider some decimal secret s = 2.4 to share via an arbitrarily
chosen polynomial of degree t = 3 as depicted in �g. 2.1. To stay within the �nite integer
space, consider the values to be represented with �xed-point arithmetic internally, e.g.
2.4 ∗ 100 = 240. The set of points {(1,q(1)), (2,q(2)), (3,q(3)), (4,q(4))} de�ne exactly
the blue polynomial q(x). Now, let us say there is a passive adversary that manages to

1Of course, it is possible and of practical use to have less parties than shares. Given that, a party with j
shares needs less collaborators (t + 1 − j) to reconstruct the secret. Though there are useful applications to
give more power to certain entities, for this work, each party needs to be involved to guarantee fairness in
a distributed environment.

14 Chapter 2. Background

s q(1) q(2) q(3) q(4)
0

1

2

3

4

5

6

7

Secret s
q(x)
qr (x)

Figure 2.1: Shamir’s secret sharing scheme: a secret s is shared by choosing a completely
random polynomial q(x) of degree 3 such that s = q(0). The four blue markers are s-wise
independent shares uniquely de�ning the blue polynomial q(x) for secret s . Let n = 4
and given a (n − 1,n)-threshold scheme, the single missing share q(3) makes all green
polynomials qr (x) equal likely, resulting in potential reconstructions for s of the same
useless magnitude (blue area at y = s).

observe three of them. As for example, these are the points evaluated at q(1),q(2),q(4).
However, one share is missing, i.e. q(3). If the adversary tries brute-forcing shares
iteratively for x = 3, he ends up with qr (3) possibilities, where r ∈ [0,p − 1]. On the
solution side, this results in a range of potential secrets of the same order. Figure 2.1
demonstrates this fact: each sample not equal to the correct share q(3), contributes to a
bijective result in the solution space (blue area along y = s) that renders it useless to use
techniques such as brute-force. Taken together, any subset of t or less shares does not
reveal anything from an information-theoretic perspective as the likelihood of every
possible polynomial qr (x) derived from t shares, is the same [27, sec. 3].

2.2.4 BGW Protocol

Ben-Or, Goldwasser and Wigderson (BGW) were one of the �rst to introduce a SMC
protocol supporting generic functionality. Internally, BGW makes signi�cant use of

2.2. Secure Multi-Party Computation 15

Shamir’s Secret Sharing (SSS). This is, in particular, for sharing a secret and reconstruct-
ing it at the end. Given the linearity of SSS, the BGW protocol categorizes into the LSS
scheme. Thus, its operations rely on arithmetic calculations.

Ben-or et al. divide the protocol into three stages:

1. Input stage — each party closes its secret by splitting it into shares and sends one
to each participant.

2. Computation stage — speci�es how to commonly simulate a prede�ned arithmetic
circuit, consisting of multiple additions and multiplications.

3. Final (or output) stage — one or each party gathers the �nal share from all other
parties to resolve the result.

2.2.4.1 Input Stage

Based on the fact that all n parties P1, . . . , Pn evaluate a certain function or circuit2,
each Pi usually provides an input to be part of the computation. For secretly sharing
an input, this stage uses the SSS scheme to generate n independent secret shares as
previously described in section 2.2.3. These shares are distributed among all parties.
As each party inputs a value, a single party receives up to n − 1 shares from the other
parties for many circuits, e.g. to calculate the sum of all inputs.

2.2.4.2 Computation Stage

The computation stage evaluates the circuit that is known by all parties. Supported
primitives are arithmetic additions and multiplications that can be placed in arbitrary
order. To connect them, the output of two primitive functions (also referred to as Gates
in the context of circuits) is wired to the input of the succeeding primitive, building an
acyclic graph. Noticeably, the values keep secret between gates. No operation requires
any secrets to be revealed in intermediate steps (Reactive Computation). Let secret shares
a ∈ [s]Pi and b ∈ [s]Pj be an input for a regarded successor gate and let qi (x) and qj (x)
be the respective underlying polynomials for party Pi and Pj , the following describes
the construction of possible operations:

Addition
Since SSS is linear and the underlying polynomials are of the same degree, the addition
is straight forward and does not require any communication between the parties. It is
basically enough to add the shares together, i.e. a + b. This works as the polynomials
qi (x) and qj (x) encode the secrets and this means that qs (x) = qi (x) + qj (x) encode
a + b. [24]

2Conditional chaining of multiple arithmetic operations

16 Chapter 2. Background

Multiplication
While scalar multiplication works for the same reason and properties as addition, the
multiplication of two secret shares a ∗ b requires some extra steps and synchronization.

Let qi (x) and qj (x) be the underlying polynomials of degree t for the shares a and b,
respectively, multiplying them results in qs (x) = qi (x) ∗ qj (x) where the degree of
the resulting polynomial raises to 2t . The problem is that 2t < n must always hold
(remember n is number of parties participating in the computation). Otherwise, if there
are more shares than participants, the reconstruction would fail as a party’s n shares
are not enough points to �x the polynomial qs (x) to open the result, i.e. calculating
s = qs (0). It gets even more severe for multiple multiplications. To resolve this issue,
the degree reduction step reduces the degree of the polynomial, i.e. 2t → t . For the same
reason as mention above, the reduction only works if t < n

2 holds.

Another issue: qs (x) is not random anymore after the multiplication. Based on this
fact, there is the randomization step reestablishing privacy aspects. In a nutshell, it
generates a new polynomial of degree 2t before reducing collaboratively the degree.
This guarantees that the coe�cients are independent. [27, sec. 4]

Altogether, the parties need to synchronize actively for each multiplication gate.

2.2.4.3 Final Stage

After the circuit evaluation, every party still holds secret values. This is Pi ’s retained
share that is combined with other parties’ shares during the computation stage. The
�nal secret value needs to be revealed now. Thus, the �nal stage, or sometimes called
output stage, requires each party Pi to send its remaining share to either all other parties
P \ Pi or to a certain group of parties that reconstruct the result (see section 2.2.3).

In case of present errors during reconstruction, the result can still be revealed correctly to
some degree. This is possible due to properties of Shamir’s Secret Sharing. The sharing
scheme implicitly provide an error correction code. More precisely, the constructed
shares 〈q(1), . . . ,q(n)〉 represent a Reed-Solomon code word. Used for decoding, the
correction of t errors is possible if t < n

3 holds. [27, sec. 5]

2.2.5 Adversary Model

The primary goal of SMC is the preservation of participants’ privacy and computations’
correctness in presence of adversarial activity. As there is no solution to cover all
possible types of attacks, the security of SMC protocols is classi�ed according to di�erent
adversary settings. Table 2.2 describes the most relevant types for di�erentiation.

Referring to BGW (section 2.2.4), there are some important constraints to guarantee

2.2. Secure Multi-Party Computation 17

Table 2.2: General attacker model for SMC (based on [19]).

Adversary Type Description

Honest-but-
Curious (HbC)

The HbC attacker (passive attacker) follows the SMC protocol,
but tries to mine as many information as possible to reveal se-
crets from one or several participants. It clearly targets the
parties’ privacy.

Static For the static case, the assumption is that the curious parties
are �xed before the protocol starts. The roles will not change
during execution.

Adaptive Though the number of simultaneously curious parties stays the
same for the adaptive case, the a�ected nodes can vary through-
out the protocol execution.

Malicious A malicious attacker (also called byzantine or active attacker)
deviates from the protocol arbitrarily and manipulates messages
with the goal to break the computation’s correctness or to violate
privacy.

Static A static malicious adversary operates from a �xed set of nodes
being the same throughout the protocol.

Adaptive The adaptive variant is the strongest form of attack as the par-
ties’ behavior might vary during the protocol execution. This
includes rational attacks that show a certain behavior only if
probability is low being uncovered (covert).

both privacy and correctness side-by-side. This applies di�erently depending on the
regarded adversary model [24]:

• Honest-but-Curious adversary:

t <
n

2 (2.4)

• Malicious adversary:

t <
n

3 (2.5)

Remember that t is the threshold of tolerated adversaries and equals the polynomial
degree for Shamir’s Secret Sharing. n is the number of participants which provide a
share. For the HbC case from eq. (2.4), the attacker does not actively tamper with the
transmitted data. Therefore, correctness is guaranteed implicitly. To preserve privacy,
SSS is used in BGW. Its degree reduction step for the multiplication of shares only works
if eq. (2.4) is satis�ed. Static and active adversaries are equal in this scenario. In the
presence of a static malicious adversary that incorporates wrong results during the

18 Chapter 2. Background

Table 2.3: Brief comparison of SMC frameworks that support arithmetic computations.
The symbol w refers to partial support.

Framework FRESCO SEPIA VIFF FairplayMP SHAREMIND

Open-source 3 3 3 w1 7

Provided tests run
out of the box

3 3 3 7 3

Support > 3 parties 3 3 3 ?2 w3

Active development 3 7 7 7 3

1 No source code for compiler blob 2 Claim to work, but no testing possible due to fatal errors 3 Claim
to have protocols therefore, but do not focus development in this direction

protocol execution, Cramer et al. show a full prove in [28, sec. 10.5] that eq. (2.5) needs
to be ful�lled for resistance from an information-theoretic view. Basically, it is possible
to recover from erroneous shares when applying techniques such as error correction
codes that utilize implicit properties of SSS. This solves the problem for reconstructing
a secret. However, an attacker could still share some degree-t ′ polynomials that are not
compatible to t of the honest parties. Asharov et al. demonstrate with Veri�able Secret
Sharing that correct behavior can be enforced as long as eq. (2.5) still holds. [27, sec. 5]

2.3 Choosing Fresco

Having discussed SMC from a protocol-oriented perspective, it is reasonable to decide
upon an existing SMC framework implementation rather than creating a new niche.
Remember that the overall goal of this thesis is to improve applicability of SMC. Hence,
we aim for reusing existing frameworks and technologies as much as possible.

Concretely, we identi�ed �ve major frameworks which should satisfy the requirement
for arithmetic computations we focus on in the scope of this thesis. That is FRESCO [7],
SEPIA [29], VIFF [30], FairplayMP [31] and SHAREMIND [32]. By a number of consid-
erations presented in the comparative analysis of table 2.3, only the SMC framework
Fresco remains that ful�lls all stated requirements. Noticeably, chosen criteria assess
the project’s active and open-source development. We believe that these are important
factors towards the acceptance of a regarded framework. At the same time, it means
that a framework is tested more intensively with respect to applicability, functionality
and performance. In fact, there are a recent real-world application [33], comparative
benchmarks [34] and considerations [22], conducted on behalf of Fresco, that con�rm
the arguments given. The open development also contributes to security and privacy is-
sues implementation-wise, as code is reviewed by more interested developers as it might
be possible for a closed-source (commercial) project. Taking together, these factors set

2.3. Choosing Fresco 19

our decision for Fresco as a SMC provider for the implementation of this work.

In the following, we provide a short introduction to the chosen SMC framework. Fresco
[7] is a comprehensive Java framework for Secure Multi-Party Computations that brings
a rich set of protocols and all necessary groundwork to realize SMC-based applications
without the need for in-depth knowledge about cryptography. The framework is mainly
developed by the Alexandra Institute in Denmark, but attracts increasing attention from
developers according to the amount of recently created issues and code contributions
on the project’s home.

Fresco’s run-time features extensive modularization and abstraction that leads to high
�exibility and re-usability on application developer’s side. More speci�cally, a SMC
application is constructed from a combination of high-level (and optionally low-level)
secure functionalities, which are available as part of the run-time environment. The
resulting application can dynamically adopt to current circumstances present right
before protocol execution. For instance, this is the amount of participants. The well-
thought abstraction also comes into play as written applications can be evaluated with
di�erent SMC protocols and network con�gurations dynamically rather than being
tightly bound to a speci�c con�guration supplied at the point when the run-time is
started. This fact makes it comfortable to work with in the context of this thesis.

Please note that we implicitly mean Fresco version 0.1 as of October 2016 when referring
to it throughout the thesis.

21

Chapter 3

Analysis

In the following sections, we analyze two exemplary use-cases and use them as basis
for extracting common �aws of data-processing architectures nowadays in terms of
mechanism to preserve individuals’ privacy. We derive a generalization by pointing out
technical commonalities with respect to what they need to realize the stated function-
ality. It helps to assess Secure Multi-Party Computation (SMC) as an alternative core
technology to enforce privacy aspects. At the same time, we show present shortcomings
and a proposal how to encounter its issues with applicability in practice, particularly
applying to dynamic environments. Finally, a list of requirements summarizes afore-
mentioned aspects to realize a privacy-preserving architecture for processing personally
identi�able information on top of SMC.

3.1 Use-cases

First, we introduce two use-cases that illustrate typical technical realizations of archi-
tectures that process personally identi�able information by means of entities that can
perceive their environment. Remarkably, the use-cases re�ect common practice rather
than showing a perfect solution. Speci�cally, they highlight privacy-related �aws that
potentially leak sensitive information.

For keeping references short throughout the thesis, the �rst use-case is abbreviated as
UC.1, and the second one as UC.2.

22 Chapter 3. Analysis

3.1.1 UC.1: Smart Environments and Presence-aware HVAC

Goal

Central goal of this use-case is to collect and process measurements from sensing devices
in charge of a selected area in a building, and to make them available to central building
systems being an operational requirement. In particular, an heating, ventilation and air
conditioning (HVAC) system requests average temperature and sum of occupied rooms
for a certain section in a building from an entity that provides data in aggregated form.

Context: Intelligent Buildings

The context is a Smart Environment, such as an intelligent building chosen for this
use-case. We envision a modern commercial building with multiple �oors split into
segregated sections that in turn comprise a variety of o�ces, meeting rooms, kitchens
and toilets. Most tenants are companies that rent either one or several �oors, or certain
sections.

For building automation, each room is equipped with stationary and mobile computing
devices with either sensing capabilities, e.g. measuring temperature, humidity, etc.,
or actuation functionality, e.g. controlling the blinds of a room. An extensive net-
work interconnects all automation-related devices by (wireless) LAN, but may restrict
communication �ow between individual �oors.

Scenario, Actors and Information Processing

Sensing devices are small connected computers that individually generate data points
from perceiving the environment for their responsible room(s) in a periodic or event-
driven manner. For instance, measurements include temperature, humidity, lighting
conditions and increasingly, presence of occupants. Interactions with occupants are
mostly passive (by their in�uence on the environment), but rarely active (e.g. pressing
buttons).

A variety of central building systems take care of the well-being of occupants, e�cient
resource management and safety within the building [1]. This is accomplished by means
of actuators installed in various rooms. To make these systems work e�ciently and
not blindly, they depend on data that depicts perceptions in the building covering their
speci�c needs. Also, instead of requiring a detailed representation (i.e. raw data), these
systems request the data in a processed form, e.g. an average value.

A management entity bridges the gap between individual sensing devices and the need
for aggregated measurements that comprise a certain category of data for selected

3.1. Use-cases 23

sections in the building. It communicates with sensors from this section via the net-
work, fetches periodically all kind of interesting measurements, aggregates them by
category, and makes it available to depending services via an interface. The type of
post-processing can be arbitrary due to the access to raw data.

Speci�c Example: Presence-aware HVAC

Energy savings shall be increased by means of a central HVAC system. Normally, HVAC
adapts heating power based on temperature measurements from the o�ces and a time
schedule to lower global power during nights. Given the building is divided in several
heating sections (like a section comprising multiple rooms), a system could consider the
respective number of present occupants for this area to optimize heat dissemination and
output power. The information is fetched from a management and storage unit located
in the basement that sums occupancy and temperature measurements on request for
a desired section in the building. For the needed data, sensors’ raw data are pulled
regularly by the management and storage unit that collects them centrally.

Precondition: Device Anonymity

Sensing devices may not access raw measurements from neighboring or any other
reachable device in the network.

Similar, the management entity may not disclose data other than in aggregated form. It
may never grant access to raw data regardless of whether an entity requests it in terms
of selecting an individual room instead of a whole section. Consequently, the exact
origin of the measurements must remain anonymous.

Privacy Considerations

Maintaining device anonymity by means of aggregation is a suitable measure to improve
privacy. So, aggregated results intended for a central building system, cannot be linked
easily to their originating room. Like this, measures preserve an employee from being
tracked and analyzed by a malicious service.

However, it does not cover the fact that technical aspects of a management entity
or its operators can be a threat by themselves. By default, it receives and records a
variety of personally identi�able information that are linked to a speci�c room’s sensing
device, and so referring to individuals. This is coupled with a global view since building
automation might implement a single central entity for the generated data of the whole
building. So, both intentional, being a lucrative goal for an attacker, and unintentional

24 Chapter 3. Analysis

disposal of a stream of room-speci�c sensor information poses a high risk to all a�ected
individuals and organizations.

3.1.2 UC.2: MeasrDroid

Goal

Central goal of this use-case is the computation of average velocity and distance from a
set of mobile clients. The results enable participants to compare themselves instantly
with the rest.

Context: MeasrDroid Project

MeasrDroid is a research project at the chair for Network Architectures and Services
at Technische Universität München, developed by Dr. Johann Schlamp and several
students [35]. Its aim is a large scale measurement framework that targets the ubiquity
of mobile devices with the operating system Android and their extensive capabilities.
Utilizing the power of crowd sourcing, a mobile application transforms practically
every mobile device into a distributed measurement node that contributes extensive
information about network properties and environmental perceptions for research.

More speci�cally, installed Android clients periodically conduct manifold measurements
and upload the gathered data as encrypted blob to a web server.
On the one hand, collected data contains environmental sensor readings from the client’s
hardware, but also details about the employed hardware itself. In particular, these are
hardware model and manufacturer, battery status, readings of acceleration, gravity and
light sensors, and current device’s location with details about the utilized provider (GPS
or network) and accuracy, to mention a few examples.
On the other hand, collected data enumerates various aspects about cellular and wireless
networks it uses for communication. This dates back to the original purpose of the
research project to map the Internet topology from as many di�erent entry points as
possible from a geographic and network-wise perspective. A few representative data
points in the data set are cellular network operator’s name, type of phone and data
network, signal strength and a list of neighboring networks in reach.

Uploaded data is decrypted and evaluated on an isolated server which is in possession
of the respective private key. Commonly interesting statistical results are published to
a website or provided via the mobile application itself. All conducted research always
places a high emphasis on not publishing any sensitive information that could possibly
identify an individual.

3.1. Use-cases 25

Scenario, Actors and Information Processing

Mobile clients use an integrated GPS module to keep track of the current device’s location.
Assuming that the owner carries his or her device most of the time close to the body,
the location history should re�ect precisely travels of the same. The device keeps track
of several last locations in local memory.

In contrast to a default MeasrDroid setup, we modify the client application so that it
processes subsequent location tuples i from recorded data to calculate the geographically
traveled distance Di and velocity Vi of the person locally on the device. It behaves as
a new data provider and replaces raw GPS locations in the recorded time series. The
latter are not necessary anymore for this use-case.

As aforementioned, the goal is to compare oneself to others with respect to average
distance and velocity among several participants, all recorded data entries since the
last synchronization are pushed to the project’s UploadDroid web servers periodically. If
network connectivity is unavailable, upload is deferred until it is established again.

The data server fetches all new records from UploadDroid and decrypts it. It calculates
the average distance and velocity among all participants’ data sets for the last x days.
Technically, it is realized by a running average over Di and Vi records choosing i to
range over the given time span. Results are published regularly on UploadDroid so the
mobile clients can fetch the average values to generate a comparative analysis for its
owner.

Privacy Considerations

First privacy-preserving measures are aforementioned modi�cations that each device
reports a time series of distance and velocity records instead of enumerating exact GPS
locations. While this approach makes it harder for a malicious MeasrDroid back-end to
track the exact location of a user, a quite precise estimation is still possible. Research
in the �eld of mobile robotics and indoor localization demonstrates approaches to
reconstruct movements based on a few di�erent sensors, for instance the work by Li
et al. [36]. Even the naive approach to combine the relative distances with direction
information a digital compass (or a gyroscope) provides, enables an attacker to gain
a rough trace. Combined with a few known �xed points (e.g. locations of wi� access
points) quickly leads to a precise track.

Thus, if all recent and historic data accumulates in a centralized infrastructure, i.e. the
back-end in this project, it is easy to gain deep insights in participating persons’ life,
correlate with each others or an external party, and predict future actions to eventually
take control over someone’s life.

26 Chapter 3. Analysis

3.2 Problem Statement

Re�ecting the use-cases, both mention unsolved privacy considerations that can be
traced back to the same core issue. Namely, there is always a centralized architecture that
collects individual data in a central storage. Due to the strategy that all business logics
reside in this central infrastructure, stored data comprises the following properties:

• Sensor data with high resolution

• Data from multiple origins largely linking to identi�able individuals

• Data origin part of recorded meta-data

• High amount of available data (high frequency of submissions)

Consequently, there is a huge amount of sensitive data that resides in a central place,
out of direct control for their data origins. From a perspective of the a�ected individuals,
this requires strong trust in infrastructural components, their operators, and ultimately
the organizations behind it. To be even more explicit, this storage approach equals a
trusted third party (TTP), e�ectively. Irrespective of using it indirectly or with consent,
an individual implicitly articulates trust in uncountable technical and non-technical
aspects that go far beyond an individual’s ability to judge. Some of the essential ones
are as follows:

• Trust in this component and its infrastructure with respect to

– Purpose binding — components will not be programmed to misuse data or
to replicate data to a di�erent place.

– Con�dentiality and integrity — components itself and all communications
are protected and secured by state-of-the-art technology. This is a matter of
special importance if components or sensible communications are exposed
to the Internet.

– Authenticity — measures are taken to recognize and stop adversaries that
try to replace or shadow central components pretending to be the original
one.

• Trust in the honesty of

– Administrators — do not abuse their role to access, redistribute or misuse
the data.

– Operating organizations with access rights — do not use the data for any other
purpose than stated and required for operation.

In an ideal world, a centralized storage is often the most e�cient solution with respect
to costs, performance, scalability and maintenance. However, a TTP in the central

3.3. Abstraction 27

position, liable for the most sensitive and �ne-grained information, poses the risk
that con�dentiality of data is not guaranteed anymore if one of aforementioned trust
relationships breaks.

Consequently, it becomes clear that a TTP approach lacks con�dentiality. Judging the
current solution according to the data protection goals we de�ned in section 2.1.2, and
which are fundamental strategies for realizing a privacy-preserving architecture in this
thesis, more �aws become visible.

Data minimization and unlinkability goals are not ful�lled as well. By collecting and
storing all possible measurements from individuals and keeping note of the origin (meta-
data), it is clearly visible that data could be used for further analysis beyond the stated
purpose, e.g. tracking and tracing as mentioned in UC.2. Obviously, the vast amount
of available sensor recordings is also not required to power a depending service with
necessary statistical information, e.g. HVAC system requiring only averaged values and
counts as for UC.1. Thus, data minimization does not apply here.

Same holds for Intervenability. Although being supported partly by the MeasrDroid
project as the user can request to delete all stored data, continuous measurements within
the scope of Smart Environments are di�cult to control. In all cases, it seems infeasible
to opt out for certain investigations by an individual, as he or she does not know what
happens to a particular set or category of data. This directly links to transparency that
is hardly provided in general with respect to the technical realization. So, a user again
needs to trust that certain measurements stop, for instance. Therefore, it is impossible
for an individual to take control even if the possibility was given.

In a nutshell, a centralized infrastructure with a single entity holding a vast amount
of personally identifying data, is a bad idea with respect to individuals’ privacy. In
particular, the concept Privacy byDesign as required by the upcoming EU Data Protection
Regulation (see section 2.1.2), is not supported as the data protection goals describing
fundamental strategies to achieve this, are not satis�ed. Choosing a di�erent technology
is unavoidable to be compatible with future norms and regulations, but most importantly,
to protect the well-being of humans with respect to privacy.

3.3 Abstraction

Although the introduced use-cases seem to di�er widely at a �rst glance with respect
to their scenario, they have similarities in their centralized architectures and relations
between entities how data �ows and where it is processed. This knowledge helps us
further on to assess how a di�erent technology is applicable to replace the centralized
architecture which has obviously �aws to guarantee trust for the end-user.

First, we identify commonalities from an architectural perspective. Further on, they

28 Chapter 3. Analysis

(a) Central entity is a TTP. It receives sensitive data
(red data paths) from data-generating producer de-
vices and aggregates it for consumer devices de-
pending on it.

(b) SMC based aggregation replaces need for TTP.
Each data provider is owner of its sensitive data. It
is never released in raw form.

Figure 3.1: Derived generalizations based on the use-cases. It also shows how to trans-
form the realization of aggregation from a TTP (left side) to SMC (right side). Blue nodes
are devices that generate data, for instance, by perception or knowledge. Σ symbol an-
notates entities responsible for aggregation. Green nodes visualize consumer devices
or services which rely on di�erent types of aggregated data as depicted by individual
shapes.

are used to derive an abstract model that generalizes relationships and responsibilities
without relying on details of the use-cases.

3.3.1 Architectural Commonalities

The use-cases discussed in section 3.1 can be summarized by means of architectural
(functional and non-functional) aspects that they have in common. Figure 3.1a depicts
an architectural overview that demonstrates all integral parts to support both of them.
Based on that, we specify relevant commonalities in the following listing, while also
pinpointing their respective implementations with regard to the use-cases.

When naming central entity, it means a piece of hardware or infrastructure that plays
a critical role for realizing the stated application. It is the fundamental part of the
business logic. Regarding the use-cases, it is equivalent to a management entity for a
Smart Environment or the back-end infrastructure for the MeasrDroid project.

1. Numeric values
All operations base on numeric values or tuples of the same. In case of non-
numeric input, e.g. string of mobile operator, there is often a simple way to
adequately map it to a number representation, e.g. enumerating, hashing.

Use-case references: both use-cases generate data by perceiving their environment
by means of a variety of sensors. Each sensor usually relies on numerics for
e�cient processing.

3.3. Abstraction 29

2. Producer devices as raw data provider
A set of devices generates data by perceiving their environment either periodically
or on demand. They follow an active or passive synchronization approach. Either,
devices actively push recorded data to a server, or, they wait for an incoming
request to return it. The selection which and how many records to provide, is
static or dynamic.

Use-case references: for both use-cases, sensor readings are turned in raw data.
UC.2 actively connects to its back-end periodically to upload all records since
the last synchronization. While this direction is necessary due to restrictions
imposed by mobile Internet providers, a passive approach works as well in a
local environment (e.g. wireless LAN). UC.1 supports both active and passive
synchronization.

3. Central entity receives raw data
A central entity receives or fetches newly generated raw data from producer
devices. It keeps record of a given amount of historical data points from individual
devices. Stored entries allow to di�erentiate di�erent producers.

Use-case references: for UC.1, the management entity fetches raw recordings
from sensing devices on a room basis. Similar, mobile devices upload recent
measurements to the back-end for UC.2.

4. Central entity provides only aggregated data to consumer devices
The central entity hosts an API that consumer devices or services use to query for
aggregated data of a certain category and time span, assuming prior authoriza-
tion. Only aggregated data is returned to requesting consumer devices, though
administrators or operators may access all producer devices’ raw data directly
from storage.

Use-case references: management entity of the Smart Environment (UC.1) cal-
culates the average of temperatures and the sum of occupants for all managed
rooms. HVAC may only request this aggregated value. The MeasrDroid back-end
(UC.2) calculates average distance and velocity. Consumer devices are the same
as participants in this case. Still, devices may only request averaged values.

5. Any edge device cannot access input from others
Both producer and consumer (≡ edge) devices do not have access to raw mea-
surements of neighboring or any other edge devices that are reachable through a
common network. Only an authorized central entity may gather this information.
This is a measure to improve node anonymity.

Use-case references: both use-cases realize this measure by means of encryption
and authentication.

Noticeably, the points describe a centralized architecture that is quite common in

30 Chapter 3. Analysis

P0

P1

Pn

...

Producer

A

Aggregator

C0

Cm

...

Consumer

v0

v1

vn

f (v0, v1, . . . , vn)

д(v0, v1, . . . , vn)

Entity Pi ≡ Cj in some cases

Figure 3.2: Architectural commonalities compressed to a simple generic model.
v0, v1, . . . , vn are raw input values provided by individual producer devices. f ,д are
(di�erent) functions applying a chain of one or several arbitrary aggregation primitives
on the input. Producer and consumer can be the same entity.

automation-related solutions. Therefore, the elaborated commonalities may apply to
manifold use-cases which are not covered in this thesis, as well. This means that the
intention is to mark integral aspects for orientation, but does not impose strict restric-
tions.

3.3.2 Generalization Model

Based on analyzing architectural commonalities, we identify three relevant groups of
entities whose responsibilities can be further condensed to simple tasks. Considering
the simpli�ed model as given by �g. 3.2, the integral entities can be categorized as
follows:

Pi Producer entities
Each producer runs on a dedicated device and generates raw data as input. Pro-
ducer Pi provides vi to the aggregation entity A for a given computation round.
vi is a vector with one or several numeric values. Length and type of supplied
data must be consistent within a round.

A Aggregation entity
The input tuple (v0, v1, . . . , vn) is processed by a commonly known aggregation
function, i.e. f (v0, v1, . . . , vn) or д(v0, v1, . . . , vn) in the �gure.

Such a function can be an arbitrary combination of aggregation primitives, such
as

3.4. Secure Multi-Party Computation as Building Block 31

– Sum

– Multiplication

– Count

– Minimum / Maximum

– ...

In all cases, it must include at least one aggregation primitive that does not
expose evidence about a single data origin. There is a preset of possible variants
of aggregation functions, previously agreed upon by aggregation and consumer
entities. Thus, functions are public. Based on what consumers demand, f and д
might represent di�erent functions of the preset.

Cj Consumer entities
A consumer chooses from a prede�ned set of aggregation functions that satis�es
its requirement, i.e. selecting f or д, or any other function A supports.

Our model assumes that provided data from a set of producers is identical in type, e.g. all
values represent temperature readings. This is not a restriction in general, but simpli�es
the scope of a single computation round. Further rounds might expand aggregations to
other type of input. Still, the type must keep the same within a round so that aggregation
makes sense. In addition, as denoted by �g. 3.2, a certain producer and consumer can
be the same entity, so ∃i, j ∈ N : Pi ≡ Cj may hold in some cases. For example, this is
the case when a data origin needs feedback about related entities for the purpose of
comparison or optimization (see UC.2).

3.4 Secure Multi-Party Computation as Building Block

SMC is a promising technology that �ts well to our overall goal for privacy-preserving
services. In section 3.4.1 and 3.4.2, we analyze how SMC can be deployed while support-
ing the generalization model derived from the use-cases’ architecture. It solves several
privacy issues as identi�ed in section 3.4.3. However, the use of SMC raises several new
problems, and emerging challenges arising from the lack of a centralized architecture.
These issues and a proposal to tackle them are discussed in section 3.4.4.

3.4.1 Model Compatibility and Deployment

With respect to the derived generalization model described in section 3.3.2, SMC can be a
perfect candidate to replace the centralized architecture in a multitude of ways. Solutions
based on Linear Secret Sharing have support for arithmetic operations. Combined
with their reactive computation properties (see section 2.2.2), it allows to construct

32 Chapter 3. Analysis

arbitrary circuits based on addition and multiplication gates without revealing secrets
in intermediate steps. This allows to simulate any aggregation function composed of
several operations. Hence, in the concrete case of using the BGW protocol, it ful�lls
technical requirements of the model and is a suitable alternative.

Still, there is an open question about how SMC is deployed in the concrete case, as it
in�uences further analysis. In practice, we encounter two relevant constellations:

• Simulated TTP — the central aggregation entity A is simply replaced by a ded-
icated set of privacy peers that is usually smaller than the number of producer
peers (mostly 3 nodes). The privacy peers perform aggregations with SMC and
publish the result separately. Producer peers input their sensitive values by split-
ting them into shares that are distributed among the privacy peers. For example,
deployments with 3 dedicated privacy peers are presented in [29] [37] [6].

• Decentralized computation — each producer device Pi provides an aggregation
entity by itself as demonstrated in �g. 3.1b. So, each Pi is basically a dedicated
privacy peer participating in SMC computations. There is no TTP with respect
to aggregations. They even receive results as part of SMC. Practically, a similar
deployment targeting more than 3 privacy peers is part of [38].

We choose to replace the TTP aggregation with a decentralized approach as it seems to
maximize privacy with respect to the focused data protection goals. Its transformation
is depicted in �g. 3.1. Suspected implications are part of the following analysis.

3.4.2 Prerequisites for Decentralized SMC Approach

As depicted in �g. 3.1b, the decentralized approach, we focus on, turns each producer, i.e.
device with perceiving capabilities, into a privacy peer. This requires a few prerequisites
for each single peer:

• Sensor node with computation resources (i.e. equipped similar to mobile devices
nowadays)

• Local storage for persisting measurements

• Ability to communicate with all other local peers

A signi�cant change arising from decentralization is the need for an individual local
storage. As a sensor only publishes information in form of its contribution to the
aggregation outcome, it needs to keep track of raw measurements by itself. In addition,
the network available for communication must allow the direct exchange between peers
to make SMC work e�ciently.

3.4. Secure Multi-Party Computation as Building Block 33

3.4.3 Solved Privacy Issues

Required trust in infrastructure and its operating organizations was a huge concern for
a centralized architecture as discussed in section 3.2. Given a decentralized data storage
and aggregations being computed by SMC circuits, we analyze changed expectations
for privacy in this section.

3.4.3.1 Con�dentiality

Given the decentralized storage, the stored data belongs to the respective sensor. Mea-
surements are only provided in form of aggregated values via SMC. The device and its
concerned individuals do not have to trust any third party receiving their data in raw
form. In particular, this originates mainly from two facts:

First, an administrator would need to withdraw data from several tens or hundreds of
devices separately. If the e�ort was not high enough, further measures could report ad-
ministrative access to the rooms’ occupants to make them suspicious about the unusual
actions. This would be not possible for a TTP as it is usually out of sight or control for
anyone beside administration.

Secondly, an active participation in a SMC session has a fundamental advantage from
a device’s perspective compared to a simulated TTP as it is used quite commonly. In
the latter case, the producer nodes provide a share for each privacy party. As the
privacy peers are not under control of the data origins, they could collaborate to easily
reconstruct the raw input from each producer without anyone to notice. In stark contrast
to that, a participating peer divides a secret into multiple shares, but always keeps one
back. The last share is combined with other shares as part of the aggregation. Hence,
the raw input cannot be derived from an information-theoretic perspective for additions
(see reconstruction of Shamir’s Secret Sharing in section 2.2.3) or as long as the attacker
model holds in the general case (see section 2.2.5).

In total, a decentralized SMC node strongly contributes to con�dentiality of individual’s
data by means of its physical and logical separation, and most importantly, its active
contribution in a SMC session.

3.4.3.2 Data Minimization

As it is in its own interest for privacy, a device reduces the collection of measurements
to a required minimum. Other nodes’ raw data is not present due to the use of SMC. In
addition to that, local storage might restrict the amount of data a device collects, and
hence the ability to create detailed pro�les about a single individual. This makes it less

34 Chapter 3. Analysis

attractive as an attacker goal than a centralized storage with perceptions originating
from multiple sources over a long time period.

3.4.3.3 Unlinkability

Providing data only as part of enforced aggregation via SMC, the entropy of results is
much lower than mining raw data. This renders it applicable for a speci�c purpose,
but should reduce its usefulness for other purposes tremendously. In addition to that,
aggregation functions and their technical realization details are previously known to
all parties. On this basis, it is possible to argue whether an aggregation functionality is
necessary to ful�ll the stated task. Admittedly, the purpose of the operation might not
be clear despite using SMC.

Similar, the composition of aggregation results cannot be backtracked. No individual
party can be accused to be responsible for a certain outcome. Thus, relations between
sensors’ measurements are hidden, i.e. tracking an individual along several spatially
distributed sensors is not gainful.

3.4.4 SMC as a Service: Problems and Challenges

Taking away responsibility from a central entity and moving signi�cant portions to
edge devices improves not only privacy aspects as aforementioned. The utilization
of SMC massively complicates deployment and practical applicability that lowers its
acceptance. General problems coming along with the application of SMC, are illustrated
in section 3.4.4.1.

If we add the fact that deployments base upon the decentralized computation paradigm,
things become even more complicated. To overcome these problem, we propose a list
of properties an overall architecture must ful�ll to render SMC a �exible foundation
for applications compatible to the generalization model. As it targets dynamic environ-
ments, e.g. mobile clients that spontaneously collaborate in varying constellations, it
should cover a wide range of applications which aim for combining applicability and
privacy preservation in practice. This is presented in section 3.4.4.3.

3.4.4.1 Applicability Problems in Practice

With applying SMC in real systems, the bene�t of improved privacy for individuals or
organizations is huge. According to Bogdanov et al. who are responsible for renominated
research around SMC, existing implementations are also not the bottleneck. What
actually restricts applicability is its deployment and the need for a well-de�ned and
stable environment. [6]

3.4. Secure Multi-Party Computation as Building Block 35

Expanding this perspective to the broad requirements of the generalization model, we
concentrate present issues in three points:

• Complicated deployment
Common implementations require administrators to pinpoint various settings
beforehand to prepare a single computation. Among these, it requires to specify
network locations and IDs for all privacy peers with respect to each other, de�ne
the concrete input set and con�gure the functions to apply to the data. Await-
ing that all nodes are ready, the computations is triggered mostly manually as
interfacing software is rare. Then, the output has to be collected from the privacy
peers.
For further computation rounds that require a slight change to any of the afore-
mentioned parameters, the whole procedure starts over again. Due to the static
wiring, it needs a lot of hand work and experienced operators.

• Well-controlled environments
Both SMC implementations and applications that running on the privacy peers,
expect a perfect environment with respect to availability and guaranteed partici-
pation of other peers. This means: if a single privacy peer drops out, everything
fails and keeps broken until manual intervention by an operator. A change in the
list of privacy peers even requires a complete manual recon�guration of various
components.

• In�exibility
Most deployment of SMC in real-life applications are tailored uniquely to its
requirements and its environment. In particular, the task is always exactly the
same and cannot be adapted without redeployment, e.g. to replace an averaging
function with a standard deviation needs an developer to rewrite the SMC appli-
cation. Even supporting infrastructure is often tightly coupled with the concrete
use-case. Therefore, the resulting construction is very speci�c and most compo-
nents are wired statically. This renders the architecture basically useless for any
other use-case.

3.4.4.2 New Considerations for Dynamic Environments

In contrast to research papers which adopt SMC as core technology, we do not consider
a well-controlled environment with static privacy peers. The decentralized computation
approach foresees the nodes to be distributed and self-contained to maximize privacy.
In addition to that, we consider a dynamic environment that partly comes along with
the ubiquity of mobile or portable devices being employed as a replacement for former
hard-wired entities.

Concomitant e�ects render it necessary to rethink architectural decisions:

36 Chapter 3. Analysis

• Peers are moving. A certain network and a trusted gateway becomes unavailable
from time to time. It may become available again eventually. Additionally, a
peer needs to adopt gateways of di�erent networks as well, and switch between
known one depending on their availability in di�erent localities.

For instance, a peer is a mobile device carried by the owner. Daily, the owner
moves between its working place and home. Both places feature a wireless access
point which acts as a SMC gateway, respectively. Due to di�erent gateways and
localities, the peer must adopt automatically to the new situation.

• Topology or addresses changes in a network. Endpoint addresses are never stable in
a dynamic network environment. This also applies to the gateway as it is handled
the same as any other device in a network.

For instance, a peer or gateway uses stateless auto-con�guration for its IPv6 link.
Given the entity is attached to a common network via a wireless link, it might
happen that it shortly looses connectivity. On reconnect, the entity might adopt a
new network address as a IPv6 privacy extension1 rotates the interface identi�er
part of the address.

• Entities become unavailable sporadically. A peer might be detached from the
network by its owner as the host device might serve other purposes as well.
Moreover, wireless links can cause short interruptions.

For an example of the �rst case, assume that a portable computer is part of a SMC
network. Most of the time, it is connected to a wired network at its owner’s desk.
Since it is used for presentations and team meetings, it is disconnected from the
network from time to time. However, it is reattached later on.

Consequently, in a dynamic environment, entities cannot be assumed to be static or
highly available anymore. Applied to a decentralized SMC computation, it is never
guaranteed that a set of peers stays on-line for a long time period. Instead, participation
can change quite abruptly and unexpectedly, hence, resulting in �uctuation of available
peers. Current implementations expect that a previously de�ned set of privacy peers is
always available. The high likelihood in this case that some peers become unresponsive,
makes it fail in the long term. Similar, new suitable peers are not considered to be
included due to manual con�guration beforehand.

3.4.4.3 Proposal

A static approach su�ers not only from issues mentioned before, but also does simply
not work in a reliable and e�cient manner for dynamic scenarios. We need a more
�exible approach that makes SMC applicable easily in dynamic environments to raise

1RFC4941: Privacy Extensions for Stateless Address Autocon�guration in IPv6

https://tools.ietf.org/html/rfc4941

3.4. Secure Multi-Party Computation as Building Block 37

acceptance in general. The di�culty is to mimic a centralized infrastructure, e.g. cloud
service, to the outside, but to control a spontaneous set of distributed peers in the inside,
and eventually to bene�t from this approach without exploding costs in operation. The
following tries to pinpoint necessary properties for an distributed architecture so that
SMC can be adopted as a service in practice:

• Virtual central entity (gateway)
Clients relying on aggregation results provided by the sensor network, assume
a well-known endpoint which provides a standard interface. It must hide the
fact that a decentralized SMC computation does the job behind the scenes. The
responsible entity must be highly available and easy to �nd. It basically acts as a
gateway that mediates between client requests and speci�cs of a decentralized
SMC network.

• Simple deployment and operation
Operating a network of privacy peers usually requires expert knowledge to deploy
and operate it as elaborated in section 3.4.4.1. This becomes even more compli-
cated since all sensors are privacy peers in our case. Hence, most required steps
should be done automatically, such as forming a SMC ring in a local network.
Further, complexity of initial con�guration should be comparable to a centralized
service. The aspect of simplicity should also hold when replacing hardware.

• Adaptive and robust
The dynamic nature in the stated use-cases makes it necessary that the SMC
network adapts to changes in participation by individual sensors. Compared to a
simulated TTP, this is important, because every sensor is a potential privacy peer.
Thus, the sudden lack of a previously active sensor has to be tolerated. Similar,
the network has to respect contributions of new sensors instantly. This attracts
further importance if sensors’ participation is timely and spatially limited, so
resulting in sporadic contributions, e.g. a set of mobile devices acting as sensors.

• Fast response times
A request from a client must be answered within an acceptable amount of time,
i.e. a few seconds to be comparable with common cloud services. The perceived
performance is crucial for the acceptance of SMC to be a replacement of existing
centralized architectures.

• Flexible tasks
SMC peers are not bound to a speci�c task or input. Based on their capabilities,
they support a rich set of aggregations functions that can be applied to available
sources, i.e. sensors in our case. Furthermore, devices’ sensor capabilities can act
as an implicit �lter of which ones take part in a computation given individual
devices might support or lack a desired type of sensor.

38 Chapter 3. Analysis

3.5 Requirements

Based on the analysis, we propose a list of requirements for a privacy-preserving archi-
tecture that is easily and �exibly applicable in practice while still basing upon decen-
tralized SMC as core technology. It is categorized according to privacy (section 3.5.1),
security (section 3.5.2) and deployment and operation (section 3.5.3).

When speaking of an "entity" in this context, it means either a device or the respective
individuals whose data is present on this device, e.g. a sensor recorded a time-series of
room occupancies which relate to people known to be regularly in this room.

3.5.1 Privacy

For ful�lling privacy aspects, we strictly align with data protection goals as introduced
in section 2.1.2.

�R.1� Con�dentiality
An entity’s sensitive data may not be disclosed to any other party than the data
origin.

�R.2� Data Minimization
Data collection has to be reduced as much as possible to realize the stated func-
tionality, but not more than that.

�R.3� Unlinkability
The data recipient shall not be able to trace back the input a single entity con-
tributes to the overall result. The exposed data may not be usable for any other
purpose than stated in a lucrative way.

�R.4� Transparency
Each entity must able to gain technical insight about the operations on sensitive
data and their exact purpose.

�R.5� Intervenability
An entity must be free to opt out or to revoke access at any point of a current or
future computation that processes its data .

�R.1�,�R.2� and�R.3� are already satis�ed by the fact the architecture assumes
distributed nodes with own storage whose results are aggregated by means of a de-
centralized SMC approach (see section 3.4). Transparency and Intervenability need
consideration, though.

3.5. Requirements 39

3.5.2 Security

For establishing trustful relationships between distributed nodes, data security is an
important concern.

�R.6� Mutual Authentication and Encryption
Any communication must be authenticated and encrypted by state-of-the-art
technologies. This requirement inherits data security properties, such as con�-
dentiality and integrity of data with respect to the transport layer.

�R.7� Veri�cation of Identities
All entities must ensure that they establish a connection only to peers whose
identity is known and trusted.

3.5.3 Deployment and Applicability

For acceptance of SMC as a core technology, the deployment and applicability of the
goal architecture should be as easy as using the service from a centralized architecture,
e.g. a cloud provider. Due to decentralization and e�ects of dynamic environments, this
results in the following requirements:

�R.8� Zero-Con�guration
When connecting to a network, sensors shall automatically locate and register at
an entity (gateway) taking responsibility for locality and type of task.

�R.9� Virtual Centrality
A standard service interface is provided by means of an virtually �xed endpoint.
It mimics behavior of a centralized (cloud) architecture, but may be hosted on
any entity. It should be easy to locate it.

�R.10� Fast Responses
Request-response times should be within acceptable norms so it is useful for
a depending service. Perceived performance must be adequate to typical web
services.

�R.11� On-demand Sessions
Computations are not run continuously, but might be triggered on demand by an
authorized entity.

�R.12� Adaptiveness
Nodes leaving or joining a network must be taken into account dynamically for
future sessions. For long-running sessions, participants have to be informed to
�x the session.

40 Chapter 3. Analysis

�R.13� Robustness
If nodes become unresponsive or drop out during any operation, the network must
recover and retry without user intervention. The system should take necessary
measures to avoid manual administration or monitoring. Also a node itself should
recover from errors, restart internal failed components and react appropriately if
network parameters change that require action.

�R.14� Self-Sustainable
Single nodes or any part of the composed system do not rely on services that
require an outgoing connection to third party providers. This holds both for
initial con�gurations and continuous operation.

41

Chapter 4

Design

In the previous chapter, we have identi�ed SMC as a suitable technology to enforce
fundamental aspects of privacy for individuals. To come up for de�cits of current SMC
frameworks in terms of applicability in practice and to even enlarge privacy aspects,
section 3.5 lists several requirements an architecture must ful�ll to resolve these issues.

In the following, we present a system design with the goal to make SMC easily usable and
practically applicable, particularly with respect to dynamic environments and arising
challenges. To achieve this, we strive to support all previously stated requirements.

We start of with a high-level view on the architecture and its fundamentals. Then, we
move down to highlight speci�c components that contribute di�erently to satisfy the
overall goal for robustness and �exibility.

4.1 Organization and Entities

This section presents design decisions and illustrates fundamental entities and their
relationships from a high-level view which are essential to understand the overall system
design. Moreover, it clari�es the scope of the design.

4.1.1 Hybrid Approach: Decentralization and Virtual Centrality

The analysis shows that a centralized infrastructure greatly simpli�es design decisions
and consequently reduces costs, but is an underestimated source of possible privacy
violations. Its central storage makes it a lucrative target for both internal and external
attackers, e.g. a curious boss spying on its employees, and thieves intending to steal
expensive equipment during o�-times of a company, respectively. Likewise, external
attackers can steal the data itself in order to sell it.

42 Chapter 4. Design

On the other side, decentralization is a fundamental contributor to enforce privacy
because of two major aspects: �rst, individuals’ data tend to land on sensor devices
associated with a certain locality that is visited by the same people. Resulting physical
data distribution makes it di�cult to collect data from all places, especially since physical
access might be a prerequisite if devices o�er no networked-faced possibility for data
access. Secondly, by providing only insensitive data by means of a decentralized SMC
network processing personally identi�able information, it contributes to con�dentiality
�R.1� and unlinkability�R.3� for individuals’ data, and provides means to minimize
local recordings e�ectively�R.2�.

We propose a two-tier approach, bringing together the bene�ts of a decentralized ar-
chitecture with small connected computing devices for each locality, and concepts of
centralization for e�cient management and simpli�ed integration with existing services.
Arising maintenance e�orts from the decentralized nature, are tackled as well.

In particular, our approach adopts following functionality from both strategies:

• Decentralization — decentralized, device-owned storage and secure multi-party
computations for maximized privacy guarantees, and self-management (con�gu-
ration, adaption and monitoring) for applicability.

• Virtual Centrality — single generic endpoint for service requests (comparable to a
cloud provider’s endpoint), hiding complexity and fragility of the SMC network
behind, and taking on the role as a leader for adaptive and robust orchestration.

4.1.2 System: Gateway, Peers and Service Clients

For the design, we divide our regarded system into multiple entities representing diver-
gent responsibilities and tasks.

Figure 4.1 depicts a top-level view on the structure in an exemplary smart o�ce use-
case. It shows individual computing devices per each room that form an interconnected
system for providing their measurements (perceiving their local environment) on behalf
of SMC. This type of node is called peer. As there are multiple of them usually associated
with a gateway, we refer to them as a collective named peers. The system is managed
by a selected node which acts as a gateway to bridge outside and inside world. Outside
world means external parties that need processed data from a locality to operate their
services. They are called service clients in this context.

Although the illustration gives the impression of a dedicated gateway entity, there is
actually no pre-determined node installed solely for this task. Rather, any node can
potentially take this role, even in parallel to its role as a regular peer.

To provide deeper insights about speci�c tasks and relationships of mentioned roles, the
entities gateway, peer and service client are described in more detail as follows. Please

4.1. Organization and Entities 43

Service Clients Gateway SMC Peers

S
W

 S
ta

ck

SMC Resource

FlexSMC

Figure 4.1: A complete architectural overview showing all relevant entities in an o�ce
showcase. The gateway (gray node among the SMC peers) uni�es both aspects of a
regular peer and leadership in this �gure. Regular peers (blue nodes) build a computation
network associated with this gateway. The green shapes on the left visualize di�erent
kind of clients with interests in di�erent aggregation results.

note that we limit our design to a single locality for the sake of simplicity. It is called
domain in this context and ensures that only a limited amount of nearby peers are
attached simultaneously to the same gateway. More details on the motivation for that
are given in section 4.1.3.

4.1.2.1 Gateway GW

Each domain has usually a single gateway GW that takes leadership and represents a
central meeting point. On the one side, it manages and orchestrates a dynamic set of
peers which employ SMC to process their local sensor input according to the request
of a service client. In particular, it takes care of failing peers, monitors and handles
problems during computations, and integrates recently joined peers. On the other side,
it provides a public facing interface with whom client services get in touch to submit a
task in order to receive processed sensor data for selected subsections the gateway is
responsible for.

A gateway must not be a dedicated device that is solely placed and installed for this
purpose by an administrator. E�ectively, it can be any available computing device,
optimally operative most of the time, that runs an additional piece of software. It is
locatable in the network in order to reveal its public interface to depending service
clients and to o�er its available leadership to close peers for auto-con�guration.

Use-case analogy: in UC.1, one of the sensing devices takes over the role as a gateway
responsible for its installed locality. At the same time, it acts as a regular sensor to not

44 Chapter 4. Design

loose perceiving capabilities, i.e. a peer joining its own network.
Regarding UC.2, the gateway role could be taken by a router to whom multiple mobile
clients are connected regularly.

4.1.2.2 Peer P

A domain consists of several powerful sensors that are called peers in this work. In
contrast to "dump" sensors of centralized solutions, peers are the smart work force in
this system. They feature su�cient computational power and can communicate with
each other beside their sensing and potentially acting capabilities.

A peer automatically joins a nearby gateway, that matches with its capabilities, in
the network it is currently attached to. Like this, it gets part of a spontaneous peer
network to contribute its recorded sensor measurements on behalf of secure computa-
tions. Though the gateway coordinates which tasks are executed at what time, a peer is
free to refuse any request, eventually after some pre-computations with its suggested
collaborators.

When loosing the connection to the previous gateway, it tries reattaching or looks for
another appropriate and trusted gateway in oder to maintain an robust integration with
an available domain.

Speci�cally, a peer accomplishes the following tasks:

• Automatically registers with a nearby gateway and remembers it

• Perceives its environment and keeps some historical records

• Shares processed measurements via secure computations on demand

• Controls and monitors requested computations

• Intervenes action and noti�es owner on abnormalities

Use-case analogy: in UC.1, a sensing devices is basically a peer contributing its percep-
tions, albeit having enough computational power to participate in SMC sessions.
Regarding UC.2, any mobile client resembles a peer. Given a potent hardware platform,
it is a good foundation for secure computations required as part of a peer.

4.1.2.3 Service Client

A service client is a stationary or mobile consumer entity which is interested on pro-
cessed data sourcing from the peers of a speci�c domain. To gather respective data, it
locates the responsible gateway in the network and issues an ad hoc query on its public
interface.

4.1. Organization and Entities 45

Service requests could also be issued by peers themselves as they might conduct a
comparison with their neighboring devices for the purpose of optimization. In this case,
service client and peer are the same device.

Use-case analogy: for UC.1, a HVAC system acts as a client to request current room
occupancy and average temperature for a certain section in the building to control heat
dissemination.
Regarding UC.2, mobile clients retrieve averaged velocities and distances themselves to
compare to the rest.

4.1.3 Scope Limitation by Locality and Composite Pattern

We need to make some assumptions to not overly complicate system design with regard
to properties incurred by basing upon SMC.

A large system is represented by multiple locally separated gateways that cover adjacent
sections of moderate size. Locality here is interpreted in terms of small network latency
and geographical proximity. Such a section is also called domain in this context. Within
a section, all devices can freely communicate with each other. Peers attach to a gateway
of a nearby section based on their current position that is derived from their associated
network resource or by means of other location providers. Moreover, a peer actively
serves a single gateway only at a time.
For illustration, imagine a corporate building as described in UC.1. Each �oor of the
building is represented by a di�erent gateway in form of a wireless router. All smart-
phones located on a certain �oor join the network of the respective gateway.

The reason for splitting responsibilities by locality leads back to scalability properties
of SMC: networks are usually organized the way that nearby devices connected to the
same network, have short paths to each other. This results in low network latency
and high bandwidth availability for a certain location. Secure computations require all
peers of a domain to communicate with each other, meaning quadratic communication
complexity. They scale well as long as latencies are low and network bandwidth is not
exhausted [29]. We aim to guarantee this requirement by restricting the scope to secure
computations in a particular local network.

A problem that arises from this approach, is the e�cient fusion of multiple domains.
For instance, a service client, such as a central heating system, may want to retrieve
temperature readings from a larger area, constituted by several independent domains.
An e�cient solution to this problem is proposed in [52] and seized practically in [38].
Basically, it suggests a hierarchical organization of gateways and peers in a tree-like
structure, also referred to as composite pattern in this context. More speci�cally, gate-
ways simulate a peer role to a higher-level gateway that in turn aggregates their results
by means of SMC, recursively. Then, the root gateway presents the result to the request-

46 Chapter 4. Design

ing service client. Remarkably, this approach enables parallelization for independent
branches on each level of the tree.

However, being beyond the scope of this thesis, the approach is neither part of the
design nor its implementation. In the rest of this thesis, we limit our scope to a single
domain. Though, it is a suitable topic for future work and demonstrates that it is possible
to scale our system e�ciently for large scenarios.

4.2 Core Components of Self-Managed Networks

Our design does not presume a statically con�gured and centralized architecture around
well-known endpoints. The lack of infrastructure for centralism and the fact that entities
can be mobile with regard to dynamic environments, make it necessary for employed
entities to organize themselves.

In this section, we discuss core components which found the base layer for self-organization
and are the prerequisite for forming reliable and secure integrations between peers and
gateways.

4.2.1 Discovery

Given a peer connects to a new network, it needs to locate a gateway that is compatible
to its requirements in terms of locality and support for its sensors. Due to the dynamic
nature of the participants and their environment, it is also not guaranteed that a remem-
bered network address stays valid all the time. It relates to the fact that there are no
�xed endpoints as it is for a centralized architecture. Therefore, a peer needs to �nd a
suitable gateway in a dynamic fashion.

For this, discovery is a fundamental mechanism to enable zero-con�guration�R.8�
and like this, facilitate the deployment and operation of a SMC network as �nal goal.
Due to the requirement for a self-sustainable architecture �R.14�, a decentralized
approach provides the foundation for the discovery mechanism, e.g. using DNS-based
Service Discovery [39].

4.2.1.1 Gateway Casting its Properties

Each gateway announces regularly its existence in the local network so peers take notice
of them. The other way round, a peer can issue a query to retrieve a list of all available
gateways if it recently joined a network and so, missed some announcements.

Table 4.1 enumerates the descriptive properties which accompany each announcement
message.

4.2. Core Components of Self-Managed Networks 47

Table 4.1: Gateway and its properties retrievable via local discovery.

Property Example value Description

ID gw-58c1ef..abaf1c

.flexsmc.local

An unique identi�er for a whole building
or larger scope within a certain area.

API Number 0001 Minimum API level support.

Role primary_gateway Tells which gateway to prefer if there are
multiple ones for close localities.

Location R.08.03.123 Known position of the gateway. Within a
building, a room number is provided. Oth-
erwise, a GPS position could be used.

Supported Sensor
Types

temperature,

humidity,

occupancy

The set of sensor types a gateway takes
responsibility for and is competent.

IP Address 2001:db8::2:42 The address a peer can reach a gateway’s
interface in the local network.

Port 50051 The respective port number.

Signed Hash b86d04..d64bda Secure hash over previous properties
signed by gateway’s public key.

The properties ID and Signed Hash have special relevance in terms of authenticity
(contributors to �R.6� and �R.7�). Hence, we brie�y elaborate on them. The ID
uniquely identi�es a gateway globally in a network. As an example, the ID must be
unique for the whole network backbone of an intelligent building. So, a service client
such as a HVAC system may only reach one instance for a given ID. For being able
to verify the authenticity of the retrieved result, the ID contains the �ngerprint of the
gateway’s certi�cate. This in turn is used to prove whether �ngerprint matches the
presented certi�cate during pairing (see section 4.2.2). If true, it further allows to utilize
the Signed Hash property to verify the integrity of all properties before �nishing the
pairing.

4.2.1.2 Matching Capabilities on Peer Side

In a network, there might be multiple gateways that respond to a peer’s query. Moreover,
not every gateway is suitable for a peer. It is the peer’s duty to select a suitable gateway
according to the following strategies with respect to the received properties:

• Location should be close to the peer’s location itself. Closeness is calculated by
means of distance metrics or heuristics, e.g. a room number indicating the same
section of a building is preferable over two distinct sections.

48 Chapter 4. Design

• Supported Sensor Types should form an non-empty intersection with the device’s
own capabilities of perception.

• If a gateway is already known to a peer, i.e. a gateway ID is known and trusted
since a successful pairing, it is a preferable candidate to join its network if the
other two properties are still ful�lled.

4.2.2 Pairing

While the discovery process identi�es a suitable gateway, a peer usually does not know
this gateway given it is new to a network. Hence, the peer needs to establish a trust
relationship to this gateway.

As we do not presume a hierarchical public key infrastructure (PKI) which would re-
quire administrative competence we aim to exclude�R.14�, all entities including any
gateway generate self-signed certi�cates if no other means are available. The task of
pairing is the commissioning of those certi�cates on both parties that are used for mu-
tual veri�cation of identities�R.7� and authenticated and encrypted communication
�R.6� later on. The outcome, i.e. mutual authentication material, is stored locally on
both peer and gateway. Speci�cally for the gateway, this information is also linked in
the gateway’s directory component (as described in section 4.4.1) as it is responsible to
manage the communication channels to the peer.

The process of pairing involves a series of interactions between a gateway and a peer
in order to mutually exchange and verify their certi�cates by an out of bound method.
Figure 4.2 illustrates the �ow of necessary actions that are elaborated below:

1. The regarded peer locates a gateway that matches its capabilities. As there are
no known and trusted gateways in the current network, it initiates a pairing.

2. The peer starts a TLS session with the gateway. The peer’s certi�cate Pcer t is
exchanged as part of a TLS client authentication. The gateway’s certi�cateGWcer t

is always sent to the peer as part of a server’s role in the protocol. Both assume that
there is no MitM attack and authenticity is provided. Hence, all communication
from now is secured and authenticated (based on the previous assumption). Any
of the following message exchanges is part of the same session.

3. The peer sends a certi�cate commissioning request to the selected gateway. It
contains the peer identity. Further checks verify that the announced identity is
the same as encoded in Pcer t . The gateway refuses the request if the identity is
already reserved. Otherwise, the entity temporarily accepts it and its associated
Pcer t .

4. The next step requires the only manual user intervention to verify that exchanged
certi�cates are actually the same on both entities. For instance, an administrator

4.2. Core Components of Self-Managed Networks 49

commissioning request with peer identity
availability of identity

verify + accept GWcer t

pending

verify + accept Pcer t
identity accepted

verify + reject Pcer t
identity refused

request pairing status

TLS handshake, exchange GWcer t , Pcer t

Gateway:GW Peer:P

[accept]

[denied]

alt
[pending]

wait loop
[while pending]

Figure 4.2: Pairing: sequence �ow for a process of certi�cate commissioning on gateway
and peer. All communication is part of an unauthenticated TLS session which is proved
afterwards to be free of any MitM attack.

could note the certi�cates’ �ngerprint displayed on each device, and compare
them with each other, i.e. providing an out-of-band veri�cation. Only if this
check is successful, he �rst accepts GWcer t on the peer device, then Pcer t on the
gateway. At the same time, matching �ngerprints mean that all previous and
future communication should be safe within the same TLS session. So, the original
assumption now holds.

5. When GWcer t is accepted on the peer, it regularly queries the gateway about
the status of pairing. It may take some time until the request is reviewed by
the person in charge of the gateway. On success, the peer and gateway persist
GWcer t and Pcer t , respectively, for future communication. On failure, an exception
handling routine should be invoked, which e.g., could connect to another gateway
if discovery revealed suitable alternatives nearby.

50 Chapter 4. Design

4.3 Robust Communication Approach

A robust communication network is an important prerequisite for reliable orchestration
of a number of peers, given that devices are part of dynamic environments. Due to the
lack of a centralized infrastructure, the aforementioned components were introduced
as building blocks for realizing self-managed networks, but need to be put now into a
broader context to accomplish a reliable communication network.

This section proposes an approach how to continuously keep peers and suitable gate-
ways connected albeit dynamic changes. In the following, we di�erentiate between
responsibilities of peers in section 4.3.1 and a gateway in section 4.3.2, respectively, to
accomplish this goal.

4.3.1 Continuous Peer-side Connectivity and Recovery

It is a peer’s task to keep a stable and continuous connection to a compatible gateway in
order to take part in computations and eventually also bene�t from that. Accompanied
with a dynamic environment, there are multiple eventualities and uncertainties as
pinpointed in section 3.4.4.2. A peer needs to overcome them.

The �nite state machine in �g. 4.3 depicts a robust approach that applies core aspects of
self-managed networks and combines them to achieve robustness and quick recovery
for changing circumstances (needed for �R.12�, �R.13�). In particular, it handles

Discovery

Pairing

Connecting

Start
Operation

Monitoring

unknown GW
success

trusted GW

multiple connection failures

success done monitor operation

connection failure

Figure 4.3: Continuous peer-side integration into a network.

the following cases:

4.3.1.1 Attaching to available and compatible Gateway

If a peer enters a network, it starts Discovery (section 4.2.1) to �nd all available gateways.
This renders a list of gateways and their capabilities. If it was already associated with
a gateway in the past (so it trusts the device), it prefers connecting to this device
in the case that capabilities, i.e. location, supported sensor types, etc., still match its

4.3. Robust Communication Approach 51

requirements. Otherwise, it selects the best-�tting gateway with respect to its advertised
capabilities and starts Pairing process (section 4.2.2). Once successfully paired, it enters
the Connecting state.

From there, the peer establishes a communication channel to the gateway and enters
Operation mode. This means it is ready now to receive commands and process SMC
matters. Implicitly, a monitoring component is started to continuously observe the
healthiness of the communication channel.

4.3.1.2 Handling Failures

If the monitoring component detects a problem with communication, the peer �rst
tries to reestablish the existing communication channel a few times. Therefore, it
assumes that gateway’s network address is still the same. This strategy covers minor
unreliabilities in the network, such as failures on the transport layer.

In case of an unrecoverable failure, i.e. the gateway is not reachable anymore, it falls
back to Discovery for the following reasons:

• Locate the gateway previously connected to, if peer is still within the same net-
work, but network address changed.

• Look for another suitable gateway if the �rst point does not work out.

• Determine the gateway responsible for a di�erent network the peer recently
connected to, for instance, if it moved.

If discovery reveals the previous or another suitable gateway, the peer invokes afore-
mentioned steps to attach to it as described in section 4.3.1.1.

4.3.2 Gateway-side Monitoring and Handling

While a peer does the heavy-lifting regarding a robust communication to a gateway, the
latter contributes its share for stable operation. After all, the gateway needs to know
exactly which peers are currently available and whose communication channels are
established successfully in order to involve them in SMC operations. Collecting and
maintaining this information is part of the gateway’s directory component, as described
in section 4.4.1.

The employment of two mechanism on gateway side allows evidence if peers become
unreliable:

• Periodic heartbeats — a peer is advised to regularly send a simple ping message to
the gateway that it is still alive. If there is no message for too long, it is safe to
mark the peer for revocation later on.

52 Chapter 4. Design

As a side note, the ping message may carry an additional payload, containing
recent peer-related information that needs regular updates, e.g. the current port
number at which other peers may contact this peer.

• Monitoring of communication channels — analyzing response patterns of a certain
peer provide insight if something is wrong, potentially related to communication.
If all communication channels stall to this peer, i.e. no replies are received after
several requests, or are broken, the gateway must cleanly tear down all channels.

If one of the mechanism gives clear evidence about issues with current means of commu-
nication, the gateway resets and tears down all remaining channels and frees resources.
On the one hand, this approach signals the respective peer that it needs to reconnect,
given any channel is still functional. On the other hand, any potential con�icts for
future attempts to attach to the gateway are �xed as resources and queued commands
are �ushed.

4.4 Task Orchestration

Having laid the groundwork for forming spontaneous peer networks attached to a
suitable gateway in the previous sections, these constructs shall be the basis to realize
privacy-preserving services on behalf of SMC. In this context, the gateway is of funda-
mental importance to get together the out-side world, i.e. service clients interested in
gathering processed data, and the internal sensor network represented by a �uctuating
number of peers.

This section focuses on responsibilities and contributions of a gateway to achieve an
robust orchestration of tasks from an end-to-end perspective, while illustrating at the
same time how peers integrate with the gateway to safely provide their SMC resources.

4.4.1 Conceptual Overview and Data Flow

Before highlighting speci�c aspects of task orchestration, it is bene�cial to get a top-
down view on fundamental components and how they are related to each other �rst,
which make up for large parts of a gateway’s functionality.

Figure 4.4 illustrates all relevant components and is the basis for all explanations. The
data �ow starts with an incoming request (top left corner of the �gure) stating a task
for the acquisition of processed data, as usually invoked a service client. This kicks o�
a series of actions while data blazes a trail through related components. The �ow and
details about these components are presented in chronological order in the following
breakdown.

4.4. Task Orchestration 53

Figure 4.4: Components for robust task orchestration.

4.4.1.1 Task Description

A task is a generic description for service clients’ demands for retrieving processed data
from a speci�c location represented by a computation network. It acts as an entry point
for task orchestration.

Details are elaborated in section 4.4.2.

4.4.1.2 Public Interface

The public interface provides a standard public-facing way for service clients to retrieve
information without knowledge about internals (�R.9�). Due to the fact that any node
can potentially take the role of a gateway, the interface of an interesting gateway is
locatable by means of discovery mechanism as discussed in section 4.2.1.

More speci�cally, the interface component handles incoming requests containing task
descriptions for execution. To do so, it hands the task over to the orchestration compo-
nent and waits for a result. A client decides to retrieve the result either in a synchronous
fashion, i.e. blocking for it, or to be noti�ed asynchronously by the interfacing compo-
nent.

Moreover, it veri�es the validity and integrity of a task and whether the originating

54 Chapter 4. Design

service client is authorized to issue this request by analyzing the respective �elds of the
task description (see section 4.4.2).

4.4.1.3 Directory

The directory component maintains a detailed view about a gateway’s associated peers.
It is the central data collection point for encompassing the dynamic aspects within a
gateway’s controlled part of a network. To the most part, it keeps track of the following
information for each peer:

• Availability

• Associated sets (e.g. a peer belongs to an speci�c o�ce)

• Supported sensor types

• Endpoint description (i.e. IP addresses, port)

• Endpoint authentication (i.e. an authentication ID and at least one valid certi�cate
being provided by each peer during pairing)

This data stems from a variety of sources in the architecture. First, the certi�cate
commissioning during pairing (section 4.2.2) informs the directory about peer-speci�c
authentication material to provide a basis for secure and authenticated communication.
Furthermore, the mechanism of regular heartbeats (section 4.3.2) conducted by a peer,
contributes two pieces of information to the directory: it learns the current endpoint
address of a peer by deriving it from the incoming ping message. In addition to that, the
heartbeat message may contain an additional data �eld, specifying the port number at
which the respective peer expects other peers to direct their requests for communication
when forming an SMC network. During a computation, learned endpoint addresses and
ports are presented to the participants so they know how to reach out to each others.
Secondly, the heartbeat is a strong indicator about the availability of a peer.
Last but not least, the directory needs to be aware about the skills and properties of a
peer. In particular, these are associated sets and its supported sensors. While the former
one is con�gured manually after the pairing by an administrator or alternatively links
to a default set if unspeci�ed, supported sensors are reported by the peer on interaction
with the gateway. Therefore, the directory exposes a separate registration interface.
When attaching to a gateway, peers get in touch with the interface to inform about
available sensors they want to contribute to the network.

Beside the above state-keeping, another sub-task of the directory is the management
of communication channels to all registered and available peers. While establishment
of these channels is driven by the peers themselves (as described in section 4.3.1), they
need to be hold and monitored. Like this, the orchestration component can simply
request needed communication channels for an upcoming computation session from

4.4. Task Orchestration 55

the directory. This takes management work from other components that interface with
peers.

4.4.1.4 Orchestration

When receiving a veri�ed task from the public interface component, it needs to be
executed on behalf of a dynamic set of peers collaborating via SMC. In order to largely
meet applicability goals as stated in section 3.5.3, with an emphasis on robustness and
�exibility, the orchestration component divides the process into three interlocked sub-
processes. As illustrated in �g. 4.4, the basic �ow is characterized by three consecutive
steps:

(i) Job Building
A job is a SMC-speci�c sequence of instructions, called phases. It is formed by
combining current states about the peers from the directory and demands of the
provided task description.
Section 4.4.3 elaborates on this step in detail.

(ii) Job execution
The augmented job is executed in a synchronized manner. The instructions
for each phase are transmitted to the peers and all results are collected before
proceeding with the next phase.
Section 4.4.4 elaborates on this step in detail.

(iii) Postprocessing
While executing the job, incoming results of any phase are streamed directly to
the postprocessing component. Its task is simple: it veri�es consent among all
peers’ responses. Inconsistent peers are logged and reported to the directory com-
ponent. Behavioral analysis opens up possibilities to identify and ban suspicious
or misbehaving peers. However, this is beyond the thesis’s scope.

An all-embracing unit, named Operation & Monitoring unit in �g. 4.4, waits for the
�nal results and returns it to the interface component, given everything goes smooth.
In case of any problems with peers’ collaboration or their communication link, this
unit controls the resumption of a halted job while dropping erroneous peers as default
strategy. If a job’s progress makes any repair impractical, e.g. if a SMC session was
already running for some time, the job is started from scratch. Section 4.4.4.3 describes
error handling in more detail.

4.4.2 Generic Task Description

A generic task description is an abstract instruction format that establishes interoper-
ability between service clients and peers. It provides service clients with a simple, but

56 Chapter 4. Design

Table 4.2: Shows all �elds of a task description. It enables a service client to interface
with a peer network in an abstracted way.

Field Example values Description

Set "offices",

"toilets",

"meeting rooms"

Speci�es a group of peers whose participation
is desired. If not set, it assumes all peers of a
network.

Purpose "HVAC", "personal

comparison"

Service client must state the reason for data
acquisition.

Data
Source

temperature,

occupancy_count

Selects a speci�c type of data if multiple
sources, e.g. sensor types, are supported.

Preselector now, last_xMins,

last_xHours

Controls the amount of historical raw data to
process on each peer.

Aggregator sum, average,

std_deviation

Speci�es the aggregation method for the secure
computation. It is an identi�er representing an
speci�c aggregation entity (see section 3.3.2).

Ticket
Signature

084c79..839cc0 Signature by gateway that signs all previous
�elds from here.

Timestamp 1487868900 States the time point when the request is is-
sued.

Query
Signature

859f0b..c047cd Signature by service client that signs all previ-
ous �elds from here.

powerful tool to describe their need for certain information that can be extracted from
a set of data providers, i.e. peers in our case.

Table 4.2 depicts the structure of a task description. A task’s generality covers a broad
range of use-cases outreaching the state ones in the scope of this thesis by implementing
central aspects of the generalization model as de�ned in section 3.3.2. In particular, the
�elds Set, Data Source, Preselector provide a generic way to specify the input to
the computation, hence, de�ning a set of Producers and which data they contribute to
the computations. The �eld Aggregator relates to the entity of the same name in the
model, so specifying the method applied during secure computations. The resulting
generality is an important contributor to the goal that external service clients do not
require any speci�c insights or knowledge about SMC or the peers.

The purpose of the remaining �elds, i.e. Purpose, Ticket Signature, Timestamp,

Query Signature, is manifold, but concentrates in two coherent objectives in the scope
of this thesis: as a task is accessible for all peers during a computation, it provides a foun-
dation for transparency (�R.4�). This is the prerequisite for intervenability (�R.5�),
i.e. a peer knows the higher-level goal and origin of the request to decide whether the

4.4. Task Orchestration 57

computation is appropriate to be executed. Further, it is a proof for authorization and
integrity of a task issued by a service client.

4.4.3 Turning Tasks into Multi-Phase Jobs

A generic task establishes a common layer for interoperability between service client’s
demands and peers realizing it, but does not solve properties of SMC being in�exible
and prone to fail in dynamic environments.

Therefore, this section presents the concept and rational of the multi-phase job which
is built upon both the information of a task description and current knowledge about
the dynamic environment.

4.4.3.1 Components

A job comprises two major components:

• Meta-data — list of applicable peers with their con�guration. This is depicted in
section 4.4.3.2.

• SMC instructions — sequence of specialized instructions, called phases, to control
the SMC operation in a �exible and robust manner. This is elaborated starting
from section 4.4.3.3.

4.4.3.2 Adaption to Peer Variations in Dynamic Environments

To accommodate to changing circumstances in dynamic environments, a job needs to
integrate instantaneous states about all peers associated with a gateway. At any time, it
is possible that previously active peers become unresponsive and therefore, the same
set of peers would not work anymore for further computation sessions.

The required information is acquired from the directory component. As elaborated in
section 4.4.1.3, it provides, for instance, current information about a peer’s availability,
its associated sets and supported sensor types.

Using this information, a gateway decides on which peers to include for a task’s intended
computation. It proceeds as follows in ascending order:

1. Translate set
Map Set identi�er of a task to a list of potential peers. As set mappings are con-
�gured manually during pairing, it is comparable to a static dictionary containing
several peers that have associated with the speci�c set in the past.

58 Chapter 4. Design

2. Match capabilities
Ignore peers that lack any of the capabilities stated in the task, e.g. supported
sensor types of a peer does not support a task’s required Data Source.

3. Select available peers
Select only the peers which are currently available and recently acknowledged
their willingness to the directory. This is the most important information to
adapt a task to the current situation. Concretely, it concerns the requirement for
adaptiveness�R.12�.

The result is a list of participating peers that should be ready to process the task. It is
provided as meta-data in the job.

4.4.3.3 Task Segmentation into SMC Phases

With the help of aforementioned meta-data, the orchestration component knows by
now which peers are planned for the next secure computation session. For e�cient
execution on a SMC network, it is bene�cial to segment the task into multiple sub-tasks.

Therefore, a computation session is formed by a combination of di�erently-purposed
phases (that are chained as described later on in section 4.4.3.4):

P Prepare phase
This phase provides the peers with two major pieces of information: �rst, it
disseminates the original task description to all peers. Secondly, it enumerates
all peers that are intended to collaborate in the secure computation. As this
information is forwarded to all related peers, the gateway provides a transparent
view on the intended operation (�R.4�). In particular, the phase depicts the
following information:

• Original task description (as elaborated in section 4.4.2)

• List of participants with

– Temporary peer ID — de�nes a peer’s individual rank within a set of
peers. It provides the peers with a common context to uniquely ad-
dress each other without the need to defer it from IP address and port
combinations.

– Endpoint description — speci�es the IP address and port combination.
An interface will be available at this endpoint during a SMC session in
order to establish an interconnected network.

– Authentication ID (optional) — relates to a peer’s �xed identity that
is used during the process of authentication with the gateway. As it
also identi�es a peer’s certi�cate, a peer may use it to randomly verify

4.4. Task Orchestration 59

the authenticity of its collaborative parties, given it has access to the
respective certi�cates by any trusted means, e.g. a pre-con�gured set
of certi�cates of trusted peers.

Under normal circumstances, the authentication ID will not change and
uniquely identi�es a peer, in contrast to other non-permanent attributes,
e.g. an IP address.

On peer side, this information lays out a peer’s foundation for decision making.
Either, a peer starts preparatory work based on the received information. This
includes allocating a stream of input data that takes values from the selected
Data Source and �lters it according to the Preselector setting. Furthermore, it
initializes SMC components and pre-processes data for the secure computation if
required.

Otherwise, the command’s transparency gives a peer the chance to analyze the
same information to decide in an early stage whether to refuse collaboration
temporarily or even in the long term (�R.5�). So, a peer may deny a request
due to a suspiciousness that it might reveal private data, e.g. if participation is
very low or most of the participants are sitting on the same host device. This can
become a threat with respect to the supported attacker model as discussed for the
employed BGW protocol in section 2.2.5. Or, it may limit requests for a certain
combination of data input and employed SMC aggregation to an upper bound per
minute to save resources.

Although peers dropping out for a session occasionally, the early stage of han-
dling allows the gateway to repeat an adapted phase for recon�guration, without
having to start from scratch. As a result, established communication channels
and allocated resources on remaining peers’ side can be reused. It increases
performance and robustness (�R.10�,�R.13�).

L Link phase
This phase instructs all peers previously enumerated in the Prepare phase, to
interconnect with each other, being a prerequisite for the upcoming secure com-
putations as part of SMC. Like this, sessions can be started on-demand involving
a dynamic set of peers (�R.11�). Hence, it does not require particular peers
to maintain a permanent network, causing a constant high usage of peers’ re-
sources and additional network load. The peers report the results of individual
connections to the gateway, including any peer-speci�c problems occurred during
connection establishment.

In particular, each peer tries connecting to the peers’ endpoints known since the
Prepare phase. If interconnecting works �awlessly, all related peers immediately
signal a positive outcome to the gateway, which, in turn, continues with the next
phase. If peers fail to establish a connection to one or more other parties until a

60 Chapter 4. Design

given timeout, they inform their gateway about the problem. Knowing the speci�c
origin of fault, the respective peer IDs are appended to the error report. On broad
consensus, the gateway may decide to exclude the faulty peers and supply the
remaining peers with a new list of parties as part of an adapted Prepare phase.
As a result, the gateway quickly recovers the computation network to continue
operation (�R.13�).

S Session phase
This phase triggers a secure computation on all linked peers based on the com-
mon task. Speci�cally, it signals the peers to simultaneously start running the
functions that are associated with the Aggregator �eld of the task de�ned during
the Prepare phase. Having �nished computations, each peer is in possession of
identical results if it actively collaborated. Results are reported individually by
each peer to the gateway. Given received values are consistent (veri�ed as part
of the postprocessing in �g. 4.4), orchestration component provides them to the
task’s originator.

For �exibility and e�ciency reasons, multiple computations can be run in a row
by repeatedly rolling out the Session phase. This is interesting for long running
services which continuously needs fresh input from peers of a certain location
in short intervals, i.e. as many requests so that it is more e�cient to keep up the
current SMC network.

Beside the kick-o� announcement, the Session phase introduces additional pa-
rameters to optimize the operation of secure computations based on expectations
about the amount of data to process, knowledge about the peers from the direc-
tory and historical experience gathered during orchestration. For instance, there
is the parameter parallelBatchOps that sets the degree of parallelism to process
data inputs in batches. An orchestration component may increase parallelized
operations if past requests took quite long although peers are running on potent
hosts. If resulting execution times decrease, it may remember this adaption in
future. As parameters are quite speci�c for the employed SMC solution, these
�elds are optional and not deepened in this context.

To summarize this part, three phases, namely Prepare, Link and Session phase, are
introduced to segment a generic task (from a service request) into SMC-speci�c instruc-
tions. This scheme and arising possibilities contribute strongly to achieve robustness
(�R.13�) though supporting intervenability (�R.5�), performance (�R.10�) and
on-demand sessions (�R.11�) in the overall orchestration.

4.4. Task Orchestration 61

Figure 4.5: Default sequence of phases and possible deviations. P , L and S denote
the Prepare, Link and Session phase, respectively. Thick arrows illustrate the default
sequence of phases if the setup works as expected and only demands for a single
computation per session. Thin arrows depict adaption to usual �ow in order to either
recover from unexpected changes in the set of properly operating peers, or to extend
number of computations per session.

4.4.3.4 Sequence of Phases

As introduced in the beginning, a job comprises a certain sequence of aforementioned
phases in order to realize a task on behalf of SMC. It can be imagined as a bu�er holding
multiple phases for instructing the controlled peers, which are invoked one-by-one
by decision of the gateway. The �nite state machine in �g. 4.5 illustrates all possible
sequences of phases a gateway might roll out and which peers would accept, based on
the task’s requirements and the current dynamic situation. It simulates allowed phase
transitions for a single computation session. Once reaching the end state, the current
computation session �nishes and denies any further usage as resources are freed.

As depicted in �g. 4.5, the roll-out of phases is directed under normal circumstances
as follows: �rst, a Prepare phase applies the con�guration to all related peers. Then,
the Link phase instructs them to interconnect to each others, being a precondition
for SMC operation. When done, one or several Session phases trigger speci�ed secure
computations, each. This means that there might be multiple consecutive Session phases,
triggering the same secure computations on top of the current peers’ input. Results are
transmitted individually by each peer to the gateway before the current phase ends.

Possible deviations from normal operational �ow are needed to handle unexpected
circumstances arising from the nature of dynamic environments:

• Repetition of Prepare phase — intends to recon�gure peers dynamically. It is
necessary if peers drop out or refuse the current task.

• Transition from L → P — has the same goal to invoke a recon�guration of all
collaborative peers, since some hosts are not reachable from each other.

Origins of both special cases are explained in more detail in the respective phase de-
scriptions of section 4.4.3.3.

62 Chapter 4. Design

4.4.4 Executing Jobs

A job encompasses all essential information and instructions for orchestration the task
it is based upon. For its realization, the job execution component follows a step-wise
approach with the ability to handle errors, as described as follows.

4.4.4.1 Preparation

Before a new job can be executed on behalf of the peers being elected for secure com-
putations (as enumerated in the job’s meta-data), some preliminary work has to be
done.

First, the orchestration component retrieves a bi-directional communication channel
for each selected peer from the directory component. As peers are �ltered in terms
of availability, i.e. being reachable and having resources for a new SMC session, no
extensive checks are needed at this step. These channels are used as command, control
and reply channels for the instructions further on. Moreover, they are bu�ered, i.e.
not blocking, to behave like a mailbox system. This allows entities to proceed with
computational-intensive operations �rst and check mailboxes if input is needed.

In addition to that, an unique session ID is generated for a new job. By attaching this
session identi�er to each message directed to the peer network, peers are able to support
multiple tasks at the same time.

In case of a resumed job, i.e. a job that is stopped due to an error, then recon�gured
and queued again for execution, aforementioned preparation work is skipped as com-
munication channels and session ID are already allocated. However, if the adapted job
excludes peers which were previously considered, respective channels are teared down
in this step.

4.4.4.2 Phase-based Synchronous Execution

Since preparation is �nished, job execution starts. A job’s phases are processed according
to following consecutive steps:

1. The next phase from a job’s bu�ered series of phases is fetched. A phase contains
all the instructions intended to be sent to all related peers.

2. The current phase’s instructions are wrapped into an envelope, personalizing the
message for a speci�c peer. In particular, these �elds are:

• Session ID — relates to current computations the instructions are intended
for. It is needed to support multiple SMC sessions in parallel on peer side.

4.4. Task Orchestration 63

• Peer ID — de�nes a peer’s rank within the set of participants where all of
them are identi�ed by temporary peer IDs for the current session.

3. The individualized messages are transmitted to the respective peers asynchronously
via the previously established communication channels.

4. On peer side, incoming instructions open a new session or link to an existing
one based on the supplied session ID. The instructions are executed on behalf of
the supported SMC resource if they do not violate allowed phase transitions as
illustrated in section 4.4.3.4. Replies are sent back using the same communication
channels as instructions arrived from.

5. The orchestration component waits for all peers to process sent instructions.
Any incoming replies are streamed directly to the postprocessing component for
consensus checks and aggregation (see item (iii) in section 4.4.1.4).

Noticeably, the job execution component waits until all peers of a phase �nish
and reply before proceeding. As a result, it acts similar to a synchronization
barrier in a phase-wise manner. The rationale behind this behavior relates to
the expectations of SMC. It requires all peers to be in the same state in terms
of preparations and done secure computations in order to proceed with further
operations. Otherwise, the peer network gets out of sync and dependencies on
expected inputs are not ful�lled, hence causing a deadlock.

6. Given that all peers’ replies show a successful execution, this process starts from
step 1 again until all phases are executed on behalf of the peers.

Unexpected situations that interfere with any of these steps, are tackled in the error
handling, as described in section 4.4.4.3.

4.4.4.3 Error Handling

There are cases in which job execution must deviate from aforementioned steps. In
particular, it is triggered by one of the following scenarios:

• Communication channel fails for speci�c peers

• Peers do not reply within a given time frame

• Peers refuse participation for a given session. Either, this is due to the unavail-
ability of resources, or the peer’s reasoning decides to opt out, e.g. to minder the
risk for disclosing sensitive data

In all these cases, a job pauses execution at the currently handled phase. Control is
handed over to the Operation & Monitoring unit who is responsible for the overall
procedure of task orchestration (cf. �g. 4.4). It tries �xing the issue di�erently according

64 Chapter 4. Design

to the progress which phases have been accomplished so far. Following the possible
phase state and transitions from section 4.4.3.4, an error might occur either during a
Prepare, Link or Session phase.

Given the case that peers become unavailable or deny collaboration during the �rst two
phases, it is quite easy to roll them out. The Operation & Monitoring unit creates a new
job based on current states of the directory, compares new and paused job in terms of
participation, and drops those peers from the paused job missing in the new one. In
both cases, it needs to resume from the Prepare phase to transfer the corrected list of
participants to all peers. Already allocated resources on peer side can be preserved in
large parts. The modi�ed, but paused job is resumed by queuing it in the job execution
component again.

If a problem occurs during a Session phase, it is more serious. In a �rst attempt, the
Operation & Monitoring tries to repeat this phase. If the outcome is still erroneous, a
new independent session is spawned which adopts the current task description. Then,
it is put to execution. The present job is teared down instead to free acquired resources.

In summary, the step of error handling is a fundamental part to put together the bene�ts
of task segmentation into phases to achieve robustness (�R.13�) in the overall system.

65

Chapter 5

Implementation

Having laid out the design for our orchestration framework in the previous chapter,
the following sections present the concrete architecture of the implementation and
highlight speci�c details that are essential to achieve the overall goal for robustness and
�exibility.

For realization, we attach great importance to a strict separation of responsibilities. The
result is a high degree of modularization that enables to easily exchange or modify
certain components without a�ecting the system as a whole. This makes the prototype
interesting for future work. Moreover, we adopt technologies and frameworks that are
known to work well in dynamic environments.

The heart of the implementation is the orchestration component FlexSMC. By moving
the SMC logic into an independent service, it is highly reusable for any SMC framework
other than Fresco as well.

5.1 System Architecture

Due to the distributed nature of our design, a system consists of several instances
of an application and means of communication between them. Concretely, �g. 5.1
illustrates all constituent parts, with gray boxes visualizing self-contained applications
which mainly interact via messages being passed to each other. Noticeably, beside the
obvious communication links in between gateway and peer constellations, inner-host
responsibilities have been split as well.

In total, we di�erentiate three major system components. This is FlexSMC, Flex Connector
and interactions powered by Protocol Bu�er messages.

66 Chapter 5. Implementation

Figure 5.1: System overview involving all relevant parties. Gray boxes visualize parts
that we have contributed on behalf of this thesis. Fresco is the SMC framework which
is integrated as a reference to provide secure computations.

FlexSMC

Language: Go
Project source: https://github.com/grandcat/flexsmc

FlexSMC is the core contribution of this thesis implementation-wise. It is the key to
bring together self-con�guration, forming secure and authenticated networks, and
robust task orchestration on behalf of locally attached SMC providers. Based on the run-
time con�guration, a FlexSMC instance inherits the role of either a gateway or a peer.
Nevertheless, divergent roles can be operated on the same host without interference.

Section 5.2 elaborates on its implementation in more detail.

For realization, it is based upon two other important projects which were developed in
the scope of this work as well:

• Zeroconf
Language: Go

Project source: https://github.com/grandcat/zeroconf

Zeroconf is a minimalistic, but robust implementation of zero-con�guration net-
working aspects. In particular, it focuses on service discovery in local networks
by implementing essential aspects of both RFC 6762 (Multicast DNS) [40] and
RFC 6763 (DNS-Based Service Discovery) [39].

Although there are great implementations for Linux, e.g. Avahi [41], the integra-
tion with the Go language is widely unsupported and seems to over-complicate
development with inaugurated dependencies.

A self-contained, but incomplete implementation for zero-con�guration exists
in the Go community. Zeroconf adapts several parts from it, but rewrites large

https://github.com/grandcat/flexsmc
https://github.com/grandcat/zeroconf

5.1. System Architecture 67

fragments to �x its �aws in robustness, reliability and maintenance. Thereafter,
it is comparably to a new implementation. Noticeably, we reference the original
project in source code’s license �le.

• srpc
Language: Go

Project source: https://github.com/grandcat/srpc

srpc is a tiny layer around Google’s remote procedure call framework gRPC [42],
which is an easy-to-use and robust communication layer on top of language-
agnostic protocol bu�er messages [43]. The srpc project exposes the same func-
tionality as gRPC, though transparently integrating a modularized architecture for
more �exible authentication methods, including a mechanism to commission TLS
certi�cates on the �y. Moreover, it integrates the project Zeroconf for resolving
services.

More details about the composition of srpc’s implementation are given in sec-
tion 5.2.2.1.

Flex Connector (SMC provider)

Language: Java
Project source: https://github.com/grandcat/flexsmc-fresco

Flex Connector is tightly coupled with the FlexSMC project. Its task is to provide Secure
Multi-Party Computation as a controllable resource, without having to deal explicitly
with its speci�cs. It is also called SMC provider in this context.

More speci�cally, it is a stand-alone application compiled to a single Java Archive (.jar)
that employs and controls the SMC framework Fresco [7] under the hood to provide
secure computations. It manages opened sessions, and does some basic validation and
reasoning about a requested task which, in turn, might be refused conditionally in order
to preserve privacy. For input to the computations, Flex Connector is intended to be
integrated with its host’s perceiving capabilities as data source for requested secure
computations, e.g. takes sensor readings such as CPU’s temperature and uses it for
collaboratively calculating the average. Currently, inputs mainly consist of �xed values
for reproducibility, though respective interfaces are available for extensions. Similar,
validation and reasoning about a task is quite basic as it follows a strict rule set instead
of dynamically learning from bad requests.

Communication between FlexSMC and this connector is provided by means of protocol
bu�er messages exchanged via a local gRPC interface. Details on that are illustrated in
section 5.3.3.

https://github.com/grandcat/srpc
https://github.com/grandcat/flexsmc-fresco

68 Chapter 5. Implementation

Communication via Protocol Bu�er Messages

Language: language-agnostic
Project source: https://github.com/grandcat/flexsmc/tree/master/proto

For stable means of communication between either two FlexSMC instances, or a FlexSMC
and a Flex Connector instance, we specify a global set of platform-independent mes-
sage de�nitions. Therefore, we utilize the protocol bu�er scheme [43]. It comes with
a compiler to generate language-speci�c message (de-)serialization code, i.e. turning
the abstract speci�cation into Java and Go code in our case. It resembles an important
component in this design to guarantee smooth interoperability on the one side, and
to preserve compatibility to older instances on the other side, since de�nitions might
evolve with time.

Section 5.3 elaborates more precisely on employed message de�nitions and remote
procedure call (RPC)-based communication.

5.2 FlexSMC Implementation

FlexSMC is the heart of this work’s implementation. Written in the Go programming
language, its goal is to make SMC practically usable in distributed and dynamic envi-
ronments. This section provides deep insights about the architectural design and its
components �rst. Thereafter, important aspects for the realization of task orchestration
are illustrated with an end-to-end perspective, involving both tasks of gateway and
peer, as it is a building block for enabling privacy-preserving services on top of SMC.

5.2.1 Design Facts

To make FlexSMC a sustainable solution in demanding environments and reusable for
ongoing work, special emphasis during development is paid to the following aspects:

• Modularity and Flexibility
FlexSMC consists of a variety of separated modules which interact with each other
using clearly de�ned interfaces. The result is a strong separation of components
as elaborated in section 5.2.2. Instead of being tied to a particular use-case, all
fundamental structures are further designed to be dynamic, easily extensible and
exchangeable to make the implementation highly �exible.

• Stand-alone
The application and almost all of its dependencies, including discovery and net-
working, are compiled into a statically linked binary. As the Go compiler allows
to easily cross-compile for other targets such as ARM (e.g. for Raspberry Pi),
the deployment of the software is very easy. Moreover, the overhead of such an

https://github.com/grandcat/flexsmc/tree/master/proto

5.2. FlexSMC Implementation 69

application is signi�cantly lower. The only loose dependency is the SMC provider,
attached by message passing.

• Concurrency
Inner architecture is built with concurrency in mind. Decoupled parts run asyn-
chronously on behalf of lightweight Go routines that communicate by passing
messages via Go channels. Moreover, task orchestration is designed to enable
parallelism using a worker pool.

• Loose coupling
A characteristic feature of this architecture is a loose coupling to its sole depen-
dency, namely the SMC provider. Instead, its integration is realized by message
passing and a well-de�ned interface. This renders it possible to restart the SMC
framework on failures, use di�erent programming languages, and exchange the
SMC provider on the �y, without having to restart or redeploy FlexSMC.

5.2.2 Architecture and Components

FlexSMC’s �exibility and manifoldness tribute to a relatively large code base, considering
that this is a prototype implementation. To keep complexity low during development,
we attached importance to modularization and abstraction. The result is a manageable
amount of modules, from which a large fraction is easily exchangeable.

Figure 5.2 depicts an overview about the building blocks of FlexSMC. The implementa-
tion can be divided into three major functional blocks. As elaborated with more details
as follows, this is the common base layer called srpc, and functional responsibilities for
both gateway and peer, respectively.

5.2.2.1 srpc: Common Base Layer

For shared functionality in terms of secure communication, authentication and discovery
integration, FlexSMC settles on top of the srpc framework that is also contributed as
part of this thesis. It features four fundamental components as follows.

Discovery employs multicast messages in the local network to provide a decentralized
service directory. It is provided by Zeroconf that is based on multicast DNS (mDNS)
and DNS Service Discovery (DNS-SD). Endpoints of dialed instances, identi�ed
by their service name, are resolved automatically on behalf of these techniques.
It further watches for updates about an endpoint’s address to which currently a
connection is established. On change of the destination’s IP, new connections
deploy the updated IP.

Implementation: zeroconf, srpc/registry/*

70 Chapter 5. Implementation

TLS Client
Auth

Pairing

RPCs (gRPC)

Discovery (mDNS
DNS-SD)

FlexSMC

sr
pc

Orchestration

D
ir
ec
to
ry

Ta
sk

E2
E

R
ES

T
In
te
rf
ac
e

Gateway

Resilient Integration

C
on

ti
nu

ou
s

C
on

ne
ct
iv
it
y

H
ea

lt
h
R
ep

or
te
r

SM
C

R
es
ou

rc
e

C
on

tr
ol
le
r

Peer

Figure 5.2: Layered node architecture of FlexSMC. The blue bottom layer depicts the
shared core layer named srpc. The top layer parts show responsible components for
gateway and peer, respectively. The indicated REST interface is not part of this thesis
and open for future work.

Remote Procedure Calls (RPCs) are the basis for all communications via network
and local sockets. RPC calls connect FlexSMC instances via networked channels on
remote side, and establishes a communication link between FlexSMC and a SMC
provider via local sockets on host site.

Implementation-wise, gRPC [42] provides the base layer for remote procedure
calls, but is enveloped by a thin layer to modularize integration of authentication
and pairing abilities. Messages are speci�ed, serialized and de-serialized using
protocol bu�ers.

Implementation: srpc

Authentication (TLS Client Auth) employs client-side authentication to enable mu-
tual identi�cation and veri�cation of learned identities. Therefore, it manages a
system-independent directory with X.509 certi�cates of trusted peers. Each cer-
ti�cate is associated with a role to allow several certi�cates per peer in parallel,
e.g. primary, backup and revoked certi�cates. Authentication module persists all
certi�cates in local storage, and are restored on startup.

Implementation: srpc/authentication/*

5.2. FlexSMC Implementation 71

Pairing realizes the dynamic commissioning of self-signed X.509 certi�cates between
a gateway and a peer following the principle of trust on �rst use (TOFU), but expects
an out-of-band veri�cation by a person to ensure that packets have not been altered
by a third party. Pairing utilizes the fact that the TLS protocol implicitly exchanges
certi�cates in both directions if client authentication is employed. When accepted
on both sides, certi�cates are stored in respective local stores on behalf of the
authentication component. This is elaborated more precisely in section 4.2.2.

Implementation: srpc/pairing/*

5.2.2.2 Gateway: Orchestration

The following components realize a gateway’s functionalities with high emphasis on
the realization of its orchestration capabilities.

Directory maintains a map of registered peers, their properties (associated sets, sup-
ported sensor types, etc.), their states about availability, and manages bidirectional
communication channels to these peers.

Implementation: flexsmc/directory/*

Task End-to-End Orchestration is manifold: the orchestration transforms a generic
task to a SMC-speci�c job within a modular preprocessing pipeline, incorporating
the current situation from the directory component. Valid jobs are enqueued for
execution. A free worker routine self-assigns a queued job, opens communication
channels to the respective peers, and consecutively sends job’s instructions (se-
quence of phases as described in section 4.4.3.4) to them. Replies are handled by
an aggregator, responsible for postprocessing. Any unexpected errors hold the cur-
rent job. A simple, autonomous error handling is done by the parent orchestration
component.

Implementation: flexsmc/orchestration/*

REST Interface opens an RESTful API to third parties in the network in order to sub-
mit requests for data acquisition. Although having implementing a native request
interface in Go, it is not connected to a server instance for o�ering it as a REST
endpoint. Hence, an RESTful API is open for future work.

5.2.2.3 Peer: Resilient Integration

The following components realize a peer’s functionalities with high emphasis on the
realization of its robust network and SMC integration.

72 Chapter 5. Implementation

Continuous Connectivity maintains robust communication channels to a gateway
and restarts depending components, i.e. the SMC Resource Controller and Health
Reporter, if they fail due to an connectivity issue. Moreover, it actively locates
a gateway via discovery mechanism if previously resolved IP endpoint fails to
respond.

Implementation-wise, the service name of the gateway must be supplied currently
as con�guration parameter to tell auto-con�guration which gateway to choose.

Implementation: flexsmc/node/peer.go, flexsmc/node/modules/modules.go

Health Reporter implements a connection-alive check whether the associated gate-
way is still available on the one hand. In addition, it regularly tells the gateway
being connected to, that this peer is alive and connection is healthy. If something
breaks, the parent component, i.e. Continuous Connectivity, is noti�ed.

Implementation: flexsmc/node/modules/health.go

SMC Resource Controller is two-fold: �rst, it manages and monitors connections
and running SMC sessions to a local SMC provider. Secondly, it spawns command
and control (C&C) channels to the gateway for separate SMC sessions and bridges
them to available SMC resources. When a SMC provider signals the tear-down of a
SMC resource, e.g. that is a �nished or an aborted session, it noti�es the gateway,
cleans occupied resources and spawns a new channel for a future SMC session if
resources are available.

Implementation: flexsmc/node/modules/smcadvisor.go, flexsmc/smc/*

5.2.3 Task Orchestration

In order to make task orchestration work, a multitude of components on both gateway
and peer side are involved. In this section, we guide through all relevant parts of the
whole process by regarding a task’s execution from the start all the way down to the
SMC provider and back. In particular, the focus will be on technical aspects of job
execution that is introduced as an abstract design in section 4.4.4. In contrast to the
design elaboration, this section also highlights respective functions on the peer side.

Figure 5.3 illustrates an overview of the components we will concentrate on. As it is
quite complex as a single piece, it is broken down into multiple parts as follows.

5.2.3.1 Directory with Peer Information

Task orchestration requires some essential control structures which are provided by the
directory component. Therefore, we start with this part �rst.

5.2. FlexSMC Implementation 73

Figure 5.3: Simpli�ed process of job execution, showing both gateway’s and peer’s main
functions. Green circles denote a repeating process. Thin solid edges←→ illustrate
data �ows between components within a FlexSMC instance, while thick ones ⇐⇒
show network or socket connections. Dashed edgescd depict either function calls or
highlight relationships, depending on the context.

When a peer registers with a gateway the �rst time, the Registry, being the responsible
element of the directory, creates a new entry and holds it in a map. That is the structure
PeerInfo which consolidates both mostly static and dynamic properties of this partic-
ular peer. For instance, static �elds are properties such as capabilities, authentication
identi�er and version of a peer.

In this context, the dynamic �elds of PeerInfo are of interest. Most importantly, there
are:

• Addr — maintains the current information about a peer’s endpoint. Beside its
reachable IP address, this includes a port number available for future SMC opera-
tions.

• lastPing and stateNotifier — provides means to monitor a peer’s recent activ-
ity. While the �rst records the elapsed time since the last heartbeat message, the

74 Chapter 5. Implementation

Listing 5.1: Chat structure for bidirectional and asynchronous communication between
two Go routines.

1 type smcChat struct {

2 // Reference to the concerned peer.

3 peer *PeerInfo

4 // TX channel to send instructions to a particular peer.

5 to chan *pbJob.SMCCmd

6 // RX channel to listen for feedback from the same peer.

7 from chan *pbJob.CmdResult

8 // [..]

9 }

latter keeps track of available and active command and control channels to this
speci�c peer.

• requestedSessions — is a bu�er holding outstanding communication requests
in form of chat objects (as visualized by C1 and C2 in �g. 5.3). The job execution
component in a gateway creates these objects when intending to communicate
with this particular peer.

Noticeably, the bu�er requestedSessions is the central tool to steer communication
to the respective peer. As elaborated later on, this element is queried by a peer’s RPC
call for waiting sessions. Given job execution involves the peer related to this particular
PeerInfo structure, it enqueues a shared chat object used for interactions, as elaborated
next.

5.2.3.2 Chats for Asynchronous Communication

In this implementation, the key to communication with multiple peers in an asyn-
chronous manner from a gateway perspective are chat objects, provided by the structure
smcChat in code. In �g. 5.3, chats are depicted in yellow color on gateway side (bottom
half).

Listing 5.1 shows the structure of smcChat. Most importantly, it contains two bu�ered
channels that are essential to asynchronism. TX is directed towards a peer and supports
forwarding enqueued commands to the referenced peer. Let us assume that multiple
chats are opened. Then, job execution component can load next instructions to all
involved peers without having to wait for an explicit reply at this stage. For each
peer, a dedicated Go routine cares about the direct communication with the peer on
behalf of the running command and control channel, initiated by the peer with an RPC
call. Similar for the receive channel RX, each peer’s responsible Go routine enqueues
an incoming result independently (with respect to any other linked peers). Then, job
execution can collect all results from those peers who answered after a while. This

5.2. FlexSMC Implementation 75

makes it more robust to failing connections, job execution would wait for and potentially
loose messages of the remaining peers otherwise.

Not loosing sync among multiple peer’s progress, the bu�er’s capacity is limited to one
element in the prototype implementation. This comes from the fact that each rolled-out
phase requires all peers to be in sync before proceeding.

5.2.3.3 Integration and Processing from Peer Side

In order to orchestrate any tasks, peers must be on-line and be attached to the gateway
via command and control channels. Given this precondition is ful�lled, instructions are
passed towards a SMC provider available on a peer. That is illustrated as part of this
subsection.

The process starts from the Continuous Connectivity component on a peer, as earlier
introduced in section 5.2.2.3. It �nds suitable gateways, establishes a reliable gRPC
connection and probes them with heartbeat messages. On success, the following steps
are invoked consecutively as enumerated below. Note that numbering relates to edges’
label in the right side of �g. 5.3 starting from the peer.

0. First, Continuous Connectivity component spawns an instance of SMCAdvisor.
The latter is responsible for spinning up command and control channels to the
gateway and bridging communication to the SMC provider.

1. Before being part of a computation, the SMCAdvisor acquires a local SMC session
from the SMC manager (FrescoConnect struct). The latter regulates the amount
of parallel sessions and establishes an RPC connection to FlexConnector via a
socket. Only when a session is available, it proceeds.

2. Next, SMCAdvisor calls the RPC function AwaitSMCRound() on remote side to
establish a bidirectional command and control channel (gRPC stream).

3. On gateway side, gRPC spawns a dedicated Go routine to handle the running
stream. By querying the directory, it fetches the respective peer’s information
(PeerInfo object) in order to wait for the job execution to issue a communication
request in form of a chat object.

A peer’s attachment to the gateway pauses here if the gateway has no intend to talk
to the peer. Let us assume that job execution queued a chat object for the regarded
peer (e.g. chat C1 in �g. 5.3) and interacts with this peer using the chat’s bu�ers, the
following steps are repeated as long as the chat is not teared down, i.e. more phases are
to come:

4. Once a chat is available for this particular peer, the respective Go routine continues
execution. In a loop, it �rst reads enqueued commands for transmission and sends

76 Chapter 5. Implementation

them down the stream to the peer. Then, it waits for a reply with a result message
from the peer and writes it to the receive bu�er of the chat. If connection breaks,
the same bu�er is used to notify job execution with a special message.

5. Commands meant for the peer, are sent via the established command and control
channel. The message encodes a SMCCmd structure. It is described in section 5.3.2.

6. On peer side, the received command is directly passed to the running SMC session
by calling the function NextCmd(...). As it is a blocking function call, the reply
is handled in item 8.

7. The session (instance of frescoSession) handles communication with the SMC
provider. Basically, it just passes the commands down to the Flex Connector via
synchronized RPC calls and receives the reply.

8. The reply is handed back to SMCAdvisor.

9. Before passing the received reply from the local session to the gateway via the
stream, SMCAdvisor checks the message itself. If it indicates that the SMC provider
intends to stop the current session, the advisor will cut the stream after having
sent the result message CmdRes. The message format is described in section 5.3.2.

As noted above, steps 4 to 9 are repeated until any party decides to tear down the current
computation session, including this command and control channel. To allow future
sessions, the SMCAdvisor takes care keeping always at least one open command and
control channel to the gateway, so e�ectively starting over from item 1.

5.2.3.4 Job Execution on Gateway Side

Realizing design decisions from section 4.4.1.4, we will concentrate on job execution
from an implementation-speci�c perspective in this subsection. It is the missing piece
of task orchestration from a gateway’s view. With respect to �g. 5.3, this subsection
highlights the bottom left part.

Assuming a task description is submitted by a service client, and parent orchestration
component has transformed the task into a more concrete SMC-speci�c instruction set
as described in section 4.4.3, job execution is next to complete the overall process.

A key element to job execution is the job structure itself, holding all important instruc-
tions and the current state of execution. The following depicts important �elds of a job

structure (in orchestration/worker/job.go):

• instructions — holds the information generated by translating a generic task
into concrete SMC-speci�c steps, while involving a speci�c set of peers. In par-
ticular, it contains:

5.2. FlexSMC Implementation 77

1. Tasks — is a list of SMC phases to execute in provided order on behalf of
the participants listed next.

2. Participants — list of participating peers’ PeerInfo.

• chats — is a map of chat objects, providing means of communication with all
participants listed in the instruction. Chats are allocated on demand in the early
phase of job execution.

• progress — keeps track of currently rolled out SMC phase. That is necessary for
resumption when a job is paused due to present errors or communication losses.
Default is 0, i.e. no progress made.

A job is inserted into a shared queue. According to the Multiple-Producer-Multiple-
Consumer paradigm, a worker routine from a pool of workers fetches a job instance
from this queue and is exclusively responsible for its execution.

Prior to start communicating with the peers related to this task, the worker must �rst
establish chats to them: for all participants listed in the job’s instruction, the worker
requests a bidirectional chat. This causes the chat object to be enqueued in the respective
peer’s requestedSessions queue (as described before in section 5.2.3.1). At the same
time, the worker keeps references to all chats in the job’s chats �eld.

Given established chats, the main loop rolls out each phase as follows:

1. Fetch next phase
Based on the current progress of this job, its subsequent phase is fetched from the
instructions stored in the task. Basically, a phase equals a speci�c SMC command
that needs to be rolled out on relevant peers.

2. Send commands
Prior to sending the fetched phase to all participants the job got chat objects
for, the phase is enveloped in a container that holds information speci�c for
the destination’s peer, such as its role among all other peers and the current
session’s ID. This is the message structure SMCCmd as described in more detail in
section 5.3.2.

Having built the outgoing messages, they are enqueued in the respective chats’
transmission bu�er. From here on, the Go routines, waiting since peers calling the
RPC function AwaitSMCRound() for the command and control channel, take over
to deliver the message asynchronously. Replies are stored in the chat’s reception
bu�er.

3. Collect results
The phases are meant to be conducted synchronously on a set of peers to satisfy
requirements originated by the deployment of SMC. This means that it is not
bene�cial in the most cases if a peer was one or several phases ahead of the

78 Chapter 5. Implementation

rest. Consequently, all peers need to stay in sync in spite of asynchronously
communicating with them. As replies from the peers are bu�ered in the chat
objects, the job’s worker routine collects incoming results and waits until all peers
complete prior to continue as part of the function queryTargetsSync(...). Given
a phase is complete, the replies are forwarded to the postprocessing component
(see section 4.4.1).

In case that some peers do not reply until a given timeout or refuse collaboration
by replying with an error, the job is paused at this stage and reported to the
all-embracing orchestration component to resolve the issue. If everything runs
smooth, progress is incremented in order to fetch the next phase in the next
cycle of this loop. Hence, it starts from item 1 again until all phases are completed,
thus the computation session is �nished.

As mentioned, an error pauses the job and control is handed back to the orchestration
component in order to handle the error, as described in section 4.4.4.3. In this state,
the chats are kept alive to accelerate the resumption of a repaired job. Analogous to a
new job, a recycled job is added to the job queue and executed by a free worker routine.
Due to its progress �eld, execution is resumed from the correct state. Noticeably, if
recovery needs to start over from an earlier phase for proper resumption, the progress
is altered before queuing the job again.

In all cases, the continued chats accelerate overall execution due to two facts: on the one
hand, command and control channels to FlexSMC peers and ongoing channels reaching
to the SMC providers are still sound. On the other hand, and more importantly, the
SMC provider is still tied to the current session, meaning, that needed resources are still
allocated within the used SMC framework.

If a computation session is �nished, all established chats are teared down. This causes
all depending resources to be freed. More speci�cally, the current command and control
channel is also shut down, as a new one is spawned immediately by the peer for a future
computation session.

5.3 Communication and Messages

In this section, we present the means of communication that enable reliable interactions
between decentralized FlexSMC instances on the one side, and also describe the links
between FlexSMC and Flex Connector on the other side.

5.3. Communication and Messages 79

5.3.1 Used Techniques and Rationale

For any communication, that outreaches an application’s border, we adopt well-established
techniques for de�ning protocols, message serialization and de-serialization, transmis-
sion and reception, and securing resulting message exchange.

Protocol Bu�er and gRPC

Instead of using platform-dependent and application-speci�c serialization, we de�ne
the structure of our messages in an Interface De�nition Language. In particular, we
adopt the Protocol Bu�er scheme [43]. It comes with a set of compilers and tools to
generate all (de-)serialization code for a variety of languages, including our needed ones.
That are Go and Java. Although the compiled message interchange is a binary format,
it preserves interoperability between di�erent versions. This is of practical importance
as applications in a distributed environment may have been deployed over time.

Message serialization does not make up for communication alone. To provide inter-
faces on both FlexSMC and Flex Connector, gRPC [42] comes handy and continues
the concept of generic de�nitions for RPC endpoints. It seamlessly integrates with the
aforementioned protocol bu�ers and is a good match for our server-client interfacing,
therefore. Not least, that it brings the necessary server and client code for both Go
and Java. Taken together, it is a robust foundation for communication in a distributed
environment.

Secure Channels with TLS and Mutual Authentication

With respect to cryptography, communication between FlexSMC instances is secured
by means of the Transport Layer Security (TLS) protocol. Each peer maintains a host-
independent set of certi�cates of those peers who gain trust through a pairing process
(see section 4.2.2 and section 5.2.2.1). This allows two nodes, in our case a gateway and a
peer, to mutually authenticate each other, leveraging the protocol’s capability for client
authentication. Instead of integrating cryptographic primitives in a custom protocol,
TLS provides the advantage that there is a lot of research about its security guarantees,
hence, recent versions are a reliable choice.

Implementation-wise, the communication between FlexSMC instances enforces at least
TLS version 1.2. Like this, we mitigate several attack vectors that arise in previous
versions as summarized in [44].

80 Chapter 5. Implementation

5.3.2 Command and Control: Messaging between Gateway and Peer

Command and Control Streams

FlexSMC peers are the system’s providers for SMC support. In oder to make the resource
available, a peer keeps at least one bidirectional gRPC stream to its gateway, that is
used as a command and control channel for a computation session. Moreover, an open
stream means that a SMC resource is waiting and ready.

Depending on the performance of a peer’s host, it may o�er multiple SMC sessions in
parallel. On implementation side, it spawns the same number of streams to the gateway
as parallelism allows to. While it sounds like a heavy approach in terms of having many
open network connections, it actually leverages speci�c properties of gRPC: parallel
streams to the same destination share the same connection for transport by multiplexing
the data streams logically. Concretely, Hypertext Transfer Protocol Version 2 (HTTP/2)
is the underlying transport protocol which realizes this feature by means of a framing
layer. [45]

Message De�nitions

For starting and controlling a SMC session, a gateway sends SMCCmd messages to a
speci�c peer via the established stream. Each peer replies to an incoming command
with one CmdResult message. The stream is kept alive until either gateway or peer
closes it. A peer signalizes a clean shutdown by replying with a SUCCESS_DONE status.

Listing 5.2 depicts the command structure for instructing peers in Protocol Bu�er
notation. Basically, it is divided in two logical sections.

The �elds sessionID and smcPeerID de�ne the peer’s context. When sending a com-
mand to the peer, these are the �elds, a gateway alters individually with respect to
its intended peer destination and session. While the session ID is the same for all
targeted peers, the identi�er is usually changed for independent sessions, while the
task’s instructions might still be the same, e.g. when a service client requests the same
task consecutively within a short amount of time. More importantly, smcPeerID are
individual IDs that are assigned uniquely to each peer. The assignments are randomized
with respect to di�erent computation sessions. Within a SMC session, these IDs are
needed by the peers to know their rang among the others. Due to a bug in Fresco, the
identi�ers must be a consecutive series of numbers [46]. This is of a special concern
due to the employed recon�guration if peers fail. Consequently, a failing peer means a
hole in the sequence. On recon�guration, it is taken into account by assigning new IDs
to all peers.

The other section of the command holds the actual SMC instructions. Therefore, each

5.3. Communication and Messages 81

Listing 5.2: SMC command.
1 message SMCCmd {

2 // Peer context

3 string sessionID = 1;

4 int32 smcPeerID = 2;

5 // Payload packet

6 oneof payload {

7 PreparePhase prepare = 3;

8 LinkingPhase link = 5;

9 SessionPhase session = 4;

10 DebugPhase debug = 9;

11 }

12 }

Listing 5.3: Simpli�ed command result.
1 message CmdResult {

2 enum Status {

3 // Class: success and info

4 SUCCESS = 0;

5 SUCCESS_DONE = 1;

6 // Class: recoverable errors (33 - 63)

7 ERR_CLASS_NORM = 32;

8 UNKNOWN_CMD = 33;

9 DENIED = 34;

10 // Class: irreversible errors (65 - 127)

11 ERR_CLASS_FAULT = 64;

12 ABORTED = 65;

13 // Class: communication errors (129 - 255)

14 ERR_CLASS_COMM = 128;

15 STREAM_ERR = 129;

16 // Combined error classes

17 SEVERE_ERROR_CLASSES = 192; // 64 + 128

18 ALL_ERROR_CLASSES = 224; // 32 + 64 + 128

19 }

20 Status status = 1;

21 string msg = 2;

22 SMCResult result = 3;

23 }

command holds exactly one single phase that describes the SMC-speci�c task. This part
is not altered by the gateway and is exactly the same for all involved peers. Hence, it
simulates a broadcast. Most �elds of the respective phases are already elaborated in
section 4.4.3.3. In addition to that, we introduce a DebugPhase. Its purpose is mainly
to gather statistics about the performance of the implementation. Basically, it carries a
ping message and key-value pairs to evaluate di�erent parts of a FlexSMC peer and the
attached Flex Connector. By default, those debug phases are ignored completely, unless
explicitly enabled by a run-time argument.

Listing 5.3 depicts the reply structure that constitutes a peer’s reply to a foregoing
command. Most prominently, it contains an extensive Status �eld, reporting about the
success or failure of a command. Its most signi�cant bits categorize the type of error
into three classes, namely communication, hard (faults) and soft errors. The remaining
bits de�ne error details. Figure 5.4 gives concrete examples for illustration.

The reason for the categorization into error classes comes into play for the job execution
on gateway side. Given, any peer raises an error, the task orchestration component may
specify which one to handle. If the occurred error matches the handled error classes,
job execution pauses the current progress and hands control back to the orchestration
logic. There, it �xes the problem, i.e. by dropping erroneous peers in the prototype, and
signalizes job execution to resume the current task. If an error class is not stated to be
handled, the job execution module will tear-down the faulty session and , hence, the

82 Chapter 5. Implementation

Com
m. E

rr

Hard
Err

So
ft Err

01234567

X X︸ ︷︷ ︸
Error Desc.

Com
m. E

rr

Hard
Err

So
ft Err

01234567

X X︸ ︷︷ ︸
Error Desc.

Figure 5.4: Two exemplary error status. Concretely, left byte �eld shows a recoverable
error, indicating its refusal to a task. Right byte �eld represents a (non-recoverable)
fault, indicating an aborted task on peer side.

Listing 5.4: Flex Connector’s RPC interface for FlexSMC.
1 service SMC {

2 rpc ResetAll (FilterArgs) returns (job.CmdResult) {}

3 rpc Init (SessionCtx) returns (job.CmdResult) {}

4 rpc NextCmd (job.SMCCmd) returns (job.CmdResult) {}

5 rpc TearDown (SessionCtx) returns (job.CmdResult) {}

6 }

Listing 5.5: Session context.
1 message SessionCtx {

2 string sessionID = 1;

3 }

requested task fails.

The result �eld of CmdResult carries the �nal result that is calculated on behalf of SMC.
It is a simple value storage for �oating-point numbers as we currently only support
numeric results.

5.3.3 Inner-Host Communications

Due to the split of responsibilities within a host, in particular employing FlexSMC
for task orchestration and communication, and Flex Connector for integrating SMC
functionality, there are two independent applications that need a common mean of
communication. By reusing largely the same message de�nitions as introduced for
interactions between remote FlexSMC instances (see section 5.3.2), it aims for reducing
system’s complexity and maintenance e�ort to keep communication in sync.

Flex Connector runs a gRPC server to which a FlexSMC peer can attach as client via a
local Unix socket. It exposes the RPC interface as depicted in listing 5.4.

Interaction takes place mainly on behalf of three RPC methods, namely Init, NextCmd
and TearDown. For any new computation session, a FlexSMC peer �rst calls the Init

method in order to allocate the session on Flex Connector side. It is a required step as
the latter component must keep state about all active sessions.

On success, a peer simply bridges each phase that comes from the gateway, to the Flex
Connector using the NextCmd method. As the SMCCmd message structure is reused, no
conversion is necessary and further simpli�es FlexSMC’s responsibility. Same applies

5.3. Communication and Messages 83

to the reply sent by the connector. It is important to stress that the session ID used for
initiation, is remembered on FlexSMC side, as it is always passed along as meta-data
with each call to NextCmd method. Implementation-wise, the content of the meta-data
is shown in listing 5.5. On the other side, the Flex Connector only trusts the passed
meta-data for session association. Like this, a gateway cannot hijack other sessions by
changing sessionID �eld in the command structure.

When a computation session is done, the CmdResultmessage from the SMC provider sets
its status �eld to SUCCESS_DONE. Then, a peer calls the TearDown method to conjointly
signalize resource freeing and �nishing any un�nished tasks on both sides, before �nally
forwarding the reply to the gateway. Noticeably, a peer also invokes a teardown if the
connection to the gateway permanently breaks for the current session.

85

Chapter 6

Performance Evaluation

Based on the implementation of our orchestration framework, this chapter evaluates
performance aspects on a setup built up of real hardware and a typical network infras-
tructure found in commercial buildings.

Due to the complexity of the overall architecture, we mostly perform black-box mea-
surements beside some special investigations we introduce for deeper insights. In
order to not mix results up originating from di�erent components, we �rst evaluate
the performance impact of the orchestration layer FlexSMC. Thereafter, we present
measurements from a service client’s perspective that also involve simple secure com-
putations, as it would be in a real-world application. The used SMC provider is Fresco
in all measurements.

6.1 Experimental Setup

This section describes the setup we used for all tests. The idea for the test setup is to
have a similar network topology as it can be found in small o�ces or within departments
of larger organizations, so particularly applying to Smart Environments as discussed in
UC.1. For the majority, this is a simple switched environment with departments living
within divergent subnets and virtual LAN environments. Though, a router may forward
layer 3 packets if the target is another department. [47]

The following subsections elaborate our setup in detail.

6.1.1 Network Organization and Roles

There are two computing isles R and S equipped with six identical computers (called
nodes or peers) each. For evaluation, each node is identi�ed by a sequential integer.
Nodes from isle R receive an ID from [1, 6] and nodes from isle S an ID from [7, 12].

86 Chapter 6. Performance Evaluation

SwitchSwitch

Isle R Isle S

VLAN Switch

Figure 6.1: Network organization. Six computers are connected to the central switch
(colored green) via an individual switch per isle (colored ocher). All tra�c needs to pass
the router at the top when communicating with the neighboring isle. The dark colored
node acts as a dedicated FlexSMC gateway and orchestrates the other 11 nodes.

Figure 6.1 depicts an architectural overview for orientation. Regarding one isle, all
assigned nodes are connected to an unmanaged switch via 1 Gbit links. This switch
is wired to a managed switch. In the �gure, this is the central green part. The central
switching unit splits packets to and from both isles into disjunct virtual LANs. This
means that the isles are isolated logically and cannot reach each other by default. It is
necessary that a computer with routing capabilities bridges this gap and forwards IP
tra�c between those virtual LANs. Same as for the other links, a single 1 Gbit link
transports the tagged tra�c to the router in both directions.

To give a rough impression with respect to packet transmission time, consider an IP
packet that targets a node of the neighboring isle. In total, it needs to pass one router
and meets a switch four times for a single direction. So, we expect latency and jitter to
be way higher than within a single switched isle without outbound communication.

The dark-colored node in �g. 6.1 acts as a FlexSMC gateway. It is chosen arbitrarily as
the same circumstances hold for every of the 12 usable nodes. Noticeably, its only task
is the management and orchestration of the other nodes for the tests. It does not run
any SMC instance by its own to improve measurement accuracy. Though, it is a typical
use-case we support in FlexSMC.

6.1.2 Hardware and OS Details

For the purpose of evaluation, we employ a homogeneous test setup. On the one hand,
it simulates the fact that hardware is often chosen to be equipped similar in large
o�ces to facilitate administration. On the other hand and more importantly, artifacts
in measurements that arise from a small set of computers, are unlikely to relate to the
hardware itself. Like this, we can omit this consideration.

6.2. Methodology 87

Thus, all computers that are part of the SMC network, are identical in construction
during the tests. They feature the following speci�cation:

• Intel(R) Xeon(R) CPU E3-1265L V2 @ 2.50GHz

• 8 Cores, with 8192 KB cache size

• 16GB main memory

• Debian GNU/Linux 8.5 Jessie (64 bit), non graphical version

• Linux kernel 3.16.0-4

These nodes are mostly idle beside the computations running in the scope of our tests.
Likewise, their respective Ethernet links are not limited and can be utilized up to their
maximum supported bandwidth of 1 Gbit/s. The main uncertainty is the router node
that forwards IP tra�c between both isles. It is not under our control and the load
is unknown. Normally, it should be quite low during our test period. Still, it might
skew our results slightly in an unpredictable manner. Same applies to some background
processes (e.g. NTP, DHCP client) that run by default on the machines. Though, under
normal circumstances, they are negligible within the scope of these tests.

6.2 Methodology

6.2.1 Primary Parameter

One major goal of FlexSMC is the �exibility to orchestrate the same task to a varying
number of nodes automatically. Therefore, the primary parameter in this work’s tests is
the amount of participants for a certain task or computation that is changed dynamically
without any reset or manual recon�guration. Linked to our discussed use-cases, it is
interesting to explore how the system behaves and whether overall responsiveness still
satis�es the needs of real environments. In particular also due to the fact that scalability
is a concern for SMC in general.

The parameter is always increased by two, so adding two new peers with each change of
con�guration. Thus, the resulting con�gurations for this parameter are {3, 5, 7, 9, 11}#peers .

6.2.2 Black-box Measurements

If not stated otherwise, we measure the results at publicly accessible endpoints (GW
interface) to achieve the same results as a regular client would obtain when issuing
tasks to the system. We will call it request-response or end-to-end latency. This means
that FlexSMC or certain parts of it are treated as black-box with respect to response
time testing. Consequently, we do not distinguish explicitly between di�erent peers

88 Chapter 6. Performance Evaluation

Figure 6.2: Test metric for the complete communication path. T always denotes the
time for a bi-directional communication �ow. Dotted edgescd visualize local com-
munication on a host. Solid edges between FlexSMC instances⇐⇒ depict any routed
and switched network.

involved in a computation. Rather, the behavior as an anonymous group of peers is
regarded. A fundamental characteristic of black-box testing is its behavior comparable
to a synchronization barrier. This means that the slowest peer per phase de�nes the
global performance. The reason is simple: SMC requires every peer to contribute in
all aspects of the computation so that every participant has the same impact. If one
is slower than the rest, others cannot proceed. In all cases, the last round requires
synchronization so all peers are able to deduct the �nal result of the operation.

Depending on the outcome of speci�c black-box tests throughout this chapter, it might
reveal interesting facts that make us delve deeper into the architecture in order to locate
the origin. In that case, we give explicit notice.

6.2.3 Metrics

In order to discuss the results of the evaluation, we introduce several time-based metrics.
Figure 6.2 depicts all components and communication paths of a FlexSMC network and
de�nes the interesting temporal segments. One can see that we do not examine each core
segment individually which would be possible alongside each part of communication and
processing unit. Rather, we focus on composites of them. As discussed before, a black-
box perspective provides good indications about the performance of the implementation.
By regarding di�erent composites of core segments, we get suitable measures for both
FlexSMC’s basic functionality and behavior as a production system, also considering
properties of the employed network (section 6.1.1). On the other hand, employing
measurements for all possible core segments one could possibly partition the whole
path, is hard to accomplish and does not guarantee more meaningful insights. It would

6.3. Platform Performance 89

be even misleading as it would hide speci�c facets only visible during the interplay of
multiple areas.

All in all, we concentrate on the following set of metrics in this evaluation:

• Tl ocal ,f r esCon — is the request-response time for local communication between
a FlexSMC instance and a connector bundling a Fresco instance on the same host.

• Tf l ex — measures the time from issuing a task at the FlexSMC gateway until
receiving and processing the response of all peers. In case the gateway sends
special ping messages, peers answer the request directly without passing it any
further.

• Tf l ex ,f r esCon — same as Tf lex , with the di�erence that all packets are handled
by passing them to the Flex connector via RPCs over local socket communication.

• Tt ot al — is the total request-response time for a use-case based task. So, Ttotal =
Tf lex,f r esCon + Tf r esco , where Tf r esco is the time Fresco needs for completely
processing a SMC task. This includes all phases, such as preparation, linking
nodes, and performing the actual calculations.

6.3 Platform Performance

Before proceeding with system tests covering the overall performance (section 6.4), it
is essential to get an impression about how the platform architecture performs itself.
Most importantly, the expectation is that the orchestration framework makes up for
a minor part only compared to the SMC counterpart. Thus, it shall support SMC in
terms of �exibility, robustness and transparency, but shall not decrease its operational
performance. This is subject to evaluation in the next sections.

6.3.1 Test Parametrization

For testing, subsets of FlexSMC’s platform can be activated di�erently by adding special
attributes to the task submitted to gateway’s orchestration component. This allows
to di�erentiate e�ects of internal and external in�uences. Note that we still employ
black-box testing, but the "box" can be in�uenced.

In particular, the following two parameters are adjustable:

EP.S Stage of message handling
Incoming commands from the gateway can be handled in di�erent stages on peer
side.

90 Chapter 6. Performance Evaluation

EP.S1 A peer handles the message directly before invoking a SMC backend. Thus,
it never reaches the backend. This is similar to a simultaneous ping to all
participating peers and described by Tf lex .

EP.S2 FlexSMC peers operate as usual. They initiate a session to their Flex Con-
nector counterpart on demand via gRPC socket connections. Then, the
connector replies to the message without actively invoking Fresco. In par-
ticular, Tf lex,f r esCon is the corresponding metric.

E�ect: design decisions of the architecture and its induced overhead can be as-
sessed with more detail. Generally speaking, it allows to di�erentiate architectural
overhead in the measurements.

EP.M Number of messages in a row
While a session is established among all peers, the gateway can exchange multiple
messages with its peers. This is covered by eitherTf lex orTf lex,f r esCon depending
on EP.S.

EP.M1 Gateway sends a single request over the established channel.

EP.M10 Gateway sends 10 consecutive requests over the established channel.

E�ect: network latency becomes the dominating factor given multiple messages
are exchanged1. Thus, costs for establishing and tearing-down the communication
channel loose signi�cance.

For the practical evaluation, we automatically triggered more than 1000 requests for
every combination of participating number of peers, EP.S and EP.M. All requests were
issued sequentially.

6.3.2 FlexSMC Layer

In the �rst test, we examine the responsiveness up to the FlexSMC layer. This is Tf lex .
More precisely, beside varying the number of nodes within {3, 5, 7, 9, 11} peers, messages
are handled already in the �rst stage (EP.S1). Further, we split the test by means of
requesting a single message versus ten messages in a row. This allows to deduct the
system overhead in the �rst place and separate it from network aspects in the second
place.

6.3.2.1 Single Message Exchange

First, a task is constructed that instructs the gateway to send a single request to all
participating peers (EP.M1). It then waits until receiving a reply from all. This maximum

1We assume that CPUs are not exhausted. Noticeably, regular checks con�rmed it.

6.3. Platform Performance 91

3 5 7 9 11
Number of peers

500000

750000

1000000

1250000

1500000

1750000

2000000
M
ax
im

um
re
qu

es
t-r

es
po

ns
e
de
la
y
[n
s]

Figure 6.3: FlexSMC request-response time for a single ping message. The used parame-
ters are (EP.S1) and (EP.M1). Appendix A.2.1 enumerates the underlying statistics.

delay contributes a data point to the raw measurement dataset. Figure 6.3 depicts
the maximum request-response delay for this scenario. Precise statistics are listed in
appendix A.2.1.

One can see that it takes on average between 0.71ms and 0.74ms until the response
arrives for 3 and 5 peers, respectively. In comparison, the RTT for an Internet Control
Message Protocol (ICMP) packet is around 0.17ms on average for the same path, but
with respect to a single peer. The experienced jitter is almost the same when consulting
the standard deviation as a measure for the RTT of our request-response communica-
tion e�ort and the ICMP packet exchange. Obviously, the delay is almost three times
higher for our implementation. In the �rst place, it seems that e�orts to parallelize
communication do not fully work out yet with respect to these numbers. This will
clarify later on.

At this point, recall that network topology and node placement is organized in a way,
that one gateway and up to 5 participants (IDs are from [1, 6]) operate on the same
isle as shown in section 6.1.1. Thus, packets pass a single switch only on the way
to any target with respect to a single direction. Now, breaking through this barrier,
we expect a considerable increase in RTTs. What we get to see is that the median
delay median(TM1

f lex (n)) reaches 1.414ms given n = 11, so all nodes are participating.

The ratio
median(TM1

f lex (11))
median(TM1

f lex (5))
≈ 1.96 shows that the median delay almost doubles when

migrating from one fully employed isle with 5 peers to all 11 peers on both isles taken
together. This result falls behind our expectations. As we see later on in EP.M10, the

92 Chapter 6. Performance Evaluation

origin of this observation is narrowed down to an ine�ciency in initial arrangement
of the connections. Nevertheless, the high jitter for the test con�guration with 9 peers
is exceptional and unexpected. As jitter regresses and sharpens with even more peers,
it is to be assumed that the router’s network load peaked during this part of the test.
Thus, it should be abstracted away for further analysis.

All in all, the prototype’s results are already considered to be very suitable, considering
the use-cases and that SMC will make up the most dominant part regarding the relative
time shares (see section 6.4).

6.3.2.2 Multi Message Exchange

To obtain a deeper understanding on which parts are likely to cause the e�ects observed
for the single message case, the idea is to increase the usage of an established commu-
nication channel (EP.M10). The assumption is that costs are high in FlexSMC to initially
establish an end-to-end communication channel to each peer.

First, we discussTM10
f lex by the results up to the FlexSMC stage (EP.S1) depicted in �g. 6.4.

With 3 and 5 peers, it takes around 4.3ms on median until a request with 10 messages
is done. This means the slowest peer responded by then. Moving on to all peers,
median request-response time increases by 1, 062ms . In order to compare it with the

single-message case, the multi-message ratio
median(TM10

f lex (11))
median(TM10

f lex (5))
≈ 1.25 reveals useful

information: it is now magnitudes lower than before. The direct conclusion is that using
an established communication channel more intensively exposes less costs in term of
RTTs for individual messages. Explained the other way round, connection management
accounts for a denotative share in Tf lex .

While the total delay for multiple messages recorded as a whole, gives rough indica-
tions, a view on RTTs of individual message exchanges (per established communication
channel) reveals more detailed insights which help to understand the origin of described
di�erences. Note that we look now into the black-box. Analyzing �g. 6.5a for EP.S1
(FlexSMC stage only) shows prominent peaks centered around 380µs and 450µs for 5
and 11 peers, respectively. If additionally taking statistics from appendix A.2.2.2 into
account, the trend looks quite linear with a slight increase of RTTs in the order of
a few 1

100ms given an increasing number of peers. But, more importantly, there is a
second local maximum centered around 0.58ms and 0.67ms representing approximately
at least one tenth of all RTTs. Correlation with raw recordings clearly show that this
accumulation originates from the �rst one in the sequence of request-response mes-
sages. Interestingly, the third local accumulation at 1ms apparently relates to the last
message in the same sequence. In contrast to the �rst, it appears in a non-deterministic
manner, but is more likely for high number of peers. While the latter is presumingly a
synthesis of multiple e�ects (e.g. connection tear-down, gRPC runtime, garbage collec-

6.3. Platform Performance 93

3.0 5.0 7.0 9.0 11.0
Number of peers

2

3

4

5

6

7

8

9

10

11

12
To

ta
lm

ax
im

um
re
qu

es
t-r

es
po

ns
e
tim

e
[m

s]

info
FlexSMC
Fresco

Figure 6.4: Total maximum request-response time for 10 consecutive ping messages over
a channel including initial preparation and follow-up delays. The labels FlexSMC and
Fresco correspond to stages of message handling EP.S1 (TM10

f lex) and EP.S2 (TM10
f lex,f r esCon),

respectively. Appendix A.2.2.1 enumerates the underlying statistics.

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1
(a) FlexSMC RTT [ms]

0

100

200

300

400

500

600

Fr
eq
ue
nc
y

#Peers
5
11
Q90(5)
Q90(11)

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4
(b) Fresco RTT [ms]

0

50

100

150

200

250

300

350

400

450

Fr
eq
ue
nc
y

#Peers
5
11
Q90(5)
Q90(11)

Figure 6.5: Distribution of RTTs individually per message for 10 consecutive ping
messages over the established communication channel. The sub-�gures FlexSMC and
Fresco correspond to stages of message handling EP.S1 (TM10

f lex) and EP.S2 (TM10
f lex,f r esCon),

respectively. Appendix A.2.2.2 enumerates complementary statistics.

94 Chapter 6. Performance Evaluation

tion, etc.), the �rst clearly indicates some ine�ciencies in the initial establishment of a
communication �ow.

One informal remarks: the horizontal shift in time between both #peers con�gurations
arises in large parts from the fact that the maximum latency is higher when gateway’s
communication has to cross isles’ border.

6.3.2.3 Retrospective: Implementation

Looking into the implementation, FlexSMC uses a new gRPC stream for each session.
Therefore, each peer maintains always at least one standby stream to the gateway that
is spawned asynchronously and independently from a new task. Due to gRPC multi-
plexing all streams over HTTP/2 via a single connection [45], there should be no evident
overhead connection-wise. However, without looking into speci�cs of gRPC’s imple-
mentation, the supporting structures and agreements of a stream may be established
�rst as soon as the �rst packet is queued for transmission. This would explain why a
session with a single request and response has the observed extra delay compared to
the case when multiple messages are sent. Consequently, these e�ects presumably exist
due to how FlexSMC uses gRPC streams for this special test scenario.

6.3.2.4 Conclusion

When initiating a FlexSMC session for sending a single request to 11 peers, median delay
is median(TM1

f lex (n)) < 1.42ms until all responses arrived. As the result did not meet
expectations and the origin of the cause was unclear, another test with 10 consecutive
messages over the same channel was conducted. It revealed some ine�ciencies that
arose from connection establishment and also occasionally its tear-down. Though,
for more extensive use of an open channel, the median delay for individual messages
dropped to < 0.44ms while all peers were active. Like this, performance is clearly better
than previously anticipated in direct comparison to the single message case. Last but
not least due to the fact that applications like SMC need multiple synchronized rounds
of communication. Therefore, it represents most of the multi message case.

6.3.3 Fresco Layer

Due to the architecture, the SMC component is decoupled from the FlexSMC part. It
does its job within a separate process. There, the Java process runs an additional gRPC
server which handles requests coming from a local socket connection. For this test case,
we investigate responsiveness same as the previous test case in section 6.3.2.2, but this
time involving the Fresco layer, too. Therefore, the primary test metric is the delay
Tf r esco,f r esCon . This is discussed in section 6.3.3.1. For deeper investigation, we brie�y

6.3. Platform Performance 95

analyze local communication timings Tlocal,f r esCon for all nodes as of section 6.3.3.2
and followings.

6.3.3.1 Request-Response Delay Tf r esco,f r esCon for Multi Message Exchange

The goal of this speci�c test scenario is to discuss the overhead induced by separation of
orchestration and SMC components into separate processes. This is measured in terms
of overall request-response delay spanning the gateway’s instruction until all peers’
�nal replies arrived. For each round, 10 consecutive messages are sent via the same
communication channel (EP.M10) that ends at the peers’ SMC connector. Figure 6.4
depicts the result on the right for message being handled by the Flex Connector (EP.S2).
Noticeably, we omit the single message scenario now as it is not relevant for our SMC
use-case.

It is easy to see that for increasing participation, the distribution of end-to-end de-
lays follows the same pattern as for tests conducting the �rst stage EP.S1. First, the
jitter increases signi�cantly when communication crosses the isles’ border from 5→ 7
#peers , as the quartiles dilate. The observation is the same as for EP.S1, though the
jitter is constantly higher now and more steady in range of [0.7, 0.9]ms . It is due to the
fact that measurements consider two communication paths instead of one with both
being subject to jitter independently. Additionally, both are regarded over a complete
round that accumulates the individual timings. Second, there is a constant o�set of
about [3, 4]ms in RTT depending on the number of participants. For discussion, we
also consider RTTs for individual messages as depicted in �g. 6.5. The most signi�cant
local maximum clearly shows that the peak of messages is handled within a delay of
approx. 0.8ms and 1ms in total for a con�guration with 5 and 11 peers, respectively.
So, in theory, local communication accounts for an additional median RTT of maximal
median(TM10

f lex,f r esCon(11) − T
M10
f lex (11)) < 0.4ms . However, the second local maximum

indicates that opening the initial communication channel su�ers from an even rein-
forced delay compared to the former test case’s delay. Although this is of no noticeable
consequence for rounds with multiple exchanged messages as for SMC, it is worth
investigating the origin precisely in the following section.

6.3.3.2 Local Communication Tlocal,f r esCon in Detail

In theory, Tlocal,f r esCon = Tf lex,f r esCon −Tf lex gives good inference of RTTs for local
communication if the system behaves well. As previously seen, initial establishment
of communication channels in an end-to-end perspective for EP.S2 seems to induce
almost two times the delay as for EP.S1. This is unexpected as the assumption is that
local communication should take a minimal share in overall request-response times. In
order to gain evidence about the origin, �g. 6.6 depicts the distribution of Tlocal,f r esCon

96 Chapter 6. Performance Evaluation

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
(a) Delay for single message [ms]

0

50

100

150

200

250
Fr
eq
ue
nc
y

0.0 0.2 0.4 0.6 0.8
(b) Delay for 10 consecutive messages [ms]

0

500

1000

1500

2000

2500

3000

Fr
eq
ue
nc
y

Peer ID
2
3
4
5
6
7
8
9
10
11
12

Figure 6.6: Distribution of RTTs for local communication Tlocal,f r esCon in comparison.
Both �gures show the delay per individual message. Peers with smaller IDs are part of
more computations and appear more often in the measurements accordingly. The left
and right sub-�gure show RTTs for a single message EP.M1 (TM1

local,f r esCon) and multiple
consecutive messages EP.M10 (TM10

local,f r esCon), respectively. The �rst message per round
always includes delays caused by establishing the socket connection.

measured on all 11 peers locally and individually. It is important to note that only
relative frequency rather than absolute values are relevant: the test was operated in
multiple steps with two more peers added each time. Thus, peers with smaller IDs
(i.e. 2, 3) did participate more often than ones within the higher ID range (i.e. 11, 12).
In addition, these delays appear independently from the one in Tf lex seen before as
interactions happen only within the same host in this case.

To begin with, the horizontal shift between single (a) and multi message case (b) indi-
cates that costs for initiating connections shows up again for communication channels
within the borders of a local host. This is due to the fact that the delay for a single
message exchange TM1

local,f r esCon through a new channel is magnitudes of time longer
on average than exchanging 10 messages through the same channel TM10

local,f r esCon . In
general, the additional delay holds for every �rst message exchanged through a new
channel as correlation with raw data shows. Combining multiple facts, TM1

local,f r esCon
that is fully a�ected by the additional costs for a channel’s establishment, is the missing
part to bridge the gap between the likewise a�ected parts in EP.S1 (TM10

f lex) and EP.S2
(TM10
f lex,f r esCon) depicted in �g. 6.5. More explicitly, this means their local maxima on a

histogram plot. Given f max(x) denotes the global maximum (dominant peak) in the fre-
quency distribution of x by its values binned into multiple bands. And, given f max2(x)
is the closest local maximum beside the global maximum f max(x). Let #peers = 11 be

6.3. Platform Performance 97

the peer con�guration. Then, the above statement is practically con�rmed by:

f max2(TM10
f lex) + f max(TM1

local,f r esCon) u f max2(TM10
f lex,f r esCon)

u 0.7ms + 0.7ms = 1.4ms (6.1)

Noticeably, the delay 1.4ms of eq. (6.1) is the typical request-response latency for our
speci�c test case EP.S2 with 11 participants.

As RTT for communication through open channels TM10
local,f r esCon is magnitudes lower

(peak around 0.2ms) than for the single message case, it needs some clearing up from a
technical point of view in section 6.3.3.3.

6.3.3.3 Retrospective: Robustness vs. Performance for Local Communication

From implementation side, there are multiple facts which contribute to the overall delay.
On the one hand, the gRPC implementation itself plays a minor role. At the time of
writing, benchmarks show that the reference implementation for Java responds slower
to unary requests than the same does written in Go language. Though, the di�erence is
only in the range of normally some 10µs up to 200µs in rare occasions. [48]

On the other hand, an implementation detail in the SMC controller within FlexSMC
is most likely to be responsible for the major share of the initial delay. To open a
communication channel to Flex Connector in the Java process that also encapsulates
SMC logic, a new local socket connection is initiated. As each new session opens a
dedicated channel, supporting structures have to be created in gRPC during every �rst
call. Thus. sessions consisting only of a single message exchange, su�er the most as
overhead cannot amortize among several messages utilizing an open channel. This
means that performance degrades if the majority of sessions only employs a single
message exchange, e.g. similar to our simple ping test. Since a session usually consists
of at least three messages, it should be an acceptable trade-o�.

More importantly, the current way improves robustness and enables simpli�ed deploy-
ment: the Java process can be replaced at any time without the need to reload FlexSMC.
Instead, each session tries connecting to the SMC backend independently. This provides
a quick recover. Like this, small changes can be deployed quickly without interrupting
the system as a whole. The same applies if the Java process fails for some reason and is
restarted automatically. Admittedly, multiplexing over a shared pool of local connec-
tions would be an alternative. Nevertheless, its introduced complexity for bookkeeping
and alive-checks could easily exceed its performance bene�t.

98 Chapter 6. Performance Evaluation

6.3.3.4 Conclusion

This section discussed the performance for all orchestrating components with respect
to end-to-end delay. Beside FlexSMC, this also covers connector logic on Fresco side
and all intermediate communication paths. For requests with 10 consecutive message
exchanges to 5 and 11 peers, the majority of last replies arrives below 8ms and 10ms ,
respectively. Individual measurements on a per-message basis approve that even 90%
of the requests are answered within 1.4ms with all peers participating. Though results
are good, local communication was responsible for more delay than anticipated. In-
depth analysis localizes this unexpected delay to arise from initially establishing a local
communication channel for each session. This could be improved at the expenses of
higher complexity and eventually decreased robustness. Altogether, architectural delays
are still a fraction compared to our SMC use-case. Therefore, it is a good �t.

6.4 SMC Performance

After having examined the platform performance covering all orchestration compo-
nents, we enlarge benchmarks to conduct secure multi-party computations which are
representative for our use-cases. The goal is to analyze how the system performs for a
typical task under real conditions.

6.4.1 Test Details

The scope for these tests embraces a real-world perspective measuring the total request-
response latency Ttotal starting from the point in time when a task is submitted to the
orchestration layer. By embedding additional measurement points per phase, we keep
track of how a phase contributes to Ttotal . As we see later on, it is useful to interpret
the black-box result correctly with respect to unexpected behavior by the underlying
SMC framework.

Since it is easy to generalize a lot of use-cases in such a way that interactive computations
are reduced to a simple sum of multiple inputs, the task is chosen to be the same for
all tests. More speci�cally, the following are the parts a SMC framework needs to take
care of:

1. Each peer retrieves data from a local source. It is aggregated to a single decimal.

2. The peers collaborate to calculate the secure sum of each peer’s input.

3. Each peer receives the result as part of the secure computation.

Fresco is the supporting SMC framework we used for all tests. For every combination
of participating peers, we automatically triggered more than 1000 requests. All of them

6.4. SMC Performance 99

were issued sequentially.

6.4.2 Results

As part of the design, a generic task is translated to a job that is associated with the
current session. A job comprises multiple phases with peer-speci�c instructions being
exchanged in a synchronized fashion. So, a phase only completes if all peers respond
to gateway’s request correspondingly. Although FlexSMC implements aforementioned
structure to ful�ll requirements for a high degree of �exibility and robustness, the
mechanism to synchronize operations between phases provides a foundation to remotely
evaluate performance of SMC aspects.

For each job, the following phases are carried into execution in ascending order:

1. Prepare Phase — tells a peer about task details. It also informs each peer about
all other peers participating in the same task.

2. Link Phase — instructs a peer to connect its Fresco instance with the other peers’
one. Like this, the initial delay for interconnecting peers is separated from the
actual computations.

3. Session Phase — starts the secure computation over the established channels.
When it �nishes, each peer reports its result individually to the gateway.

Figure 6.7 shows the measured latency for each phase. We discuss the results individually.
Finally, �g. 6.8 depicts a real-world or client perspective encompassing all aspects of
the system.

6.4.2.1 Prepare Phase

The �rst phase has informal character for the peers and their SMC units. While it is
necessary for planning, it does not rely on any part of SMC. Though, the other way
round holds. Beside adding some constant delay for some Java instructions, its main
latency sources fromTf lex,f r esCon . This means it should be similar to the test case EP.S2
discussed in section 6.3.3. This is an assumption we want to prove brie�y.

Results depict that the median delay is in the range of [1.4, 1.6]ms for up to 11 peers.
With increasing participants, the result slowly rises. Remember that this is the �rst
message exchange on the complete communication path. This means it su�ers from
initial delays to establish the structures. Considering eq. (6.1) that represents the RTT
for initial message exchange with the Flex connector on SMC side, it states a value
of f max2(TM10

f lex,f r esCon) ≈ 1.4ms . So, the result for the prepare phase is quite close to
the reference value. This indicates that it behaves similar beside a low o�set delay for
operations in the JVM.

100 Chapter 6. Performance Evaluation

3 5 7 9 11
Number of peers

1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012

M
ed
ia
n
re
sp
on

se
tim

e
[m

s]
phase
Link
Prepare
Session

Figure 6.7: Median request-response delays for computing the secure sum. Di�erently
colored bars identify the respective phases’ duration. Note that plotting starts from
≈ 1s as the most expensive part is the link phase with its inter-connection of SMC peers
operated by Fresco.

Table 6.1: Complementary statistics for conducting secure sum tasks, grouped by phase
and number of peers. The conducted sequence of phases di�ers from the shown order.
The median of above graphic is represented by the label 50%. Further note that it states
the relative time per phase rather the absolute one. Unit: milliseconds [ms]

min max mean std 25% 50% 75% 90%
phase peers

Link 3 1001.0 1503.0 1120.2 213.0 1001.2 1001.3 1001.6 1501.2
5 1001.1 1504.0 1022.8 101.1 1001.3 1001.4 1001.5 1001.6
7 1001.3 1501.8 1006.7 49.744 1001.6 1001.7 1001.8 1002.0
9 1001.4 1503.3 1007.0 49.782 1001.8 1001.9 1002.1 1002.2
11 1001.6 1503.4 1011.3 66.869 1002.0 1002.1 1002.3 1003.0

Prepare 3 1.114 3.207 1.433 0.133 1.362 1.422 1.491 1.556
5 1.250 3.320 1.528 0.188 1.441 1.497 1.563 1.641
7 1.308 3.213 1.551 0.176 1.469 1.520 1.587 1.667
9 1.315 3.267 1.608 0.236 1.505 1.562 1.629 1.723
11 1.382 3.364 1.663 0.225 1.552 1.611 1.693 1.840

Session 3 2.676 4.875 3.056 0.244 2.944 3.027 3.113 3.183
5 3.587 7.615 4.066 0.435 3.876 3.973 4.079 4.217
7 4.612 11.147 5.493 0.607 5.192 5.364 5.568 5.998
9 6.058 12.431 7.104 0.617 6.731 6.974 7.264 7.893
11 6.889 17.375 8.565 0.807 8.147 8.396 8.780 9.319

6.4. SMC Performance 101

6.4.2.2 Link Phase

To render Fresco ready for work, it needs to connect all participating peers with each
other via bi-directional communication channels. Therefore, it bases upon the library
SCAPI [49] that manages the tunnels. As an established communication layer is funda-
mental prior to doing any secure computations and its necessity for recreation when
topology changes, it is interesting to measure timings separately from the actual com-
putations.

Evaluation shows that the link phase is the most dominant one. It takes approx.
[1001, 1002]ms at a median delay for our peer con�gurations. Noticeably, it scales
considerably better than these huge values might anticipate. The minimal delay of 1s
indicates that a timer in SCAPI waits at least for this duration before checking whether
connections are ready. The standard deviation shows another interesting property of
the network layer: being quite large for a single isle con�guration (3 and 5 partici-
pants), it decreases drastically with even more peers. Correlation with raw data shows
that link times are discrete values (1s and 1.5s) with jitter in the range of a few mil-
liseconds. Generally speaking, fewer peers are more likely to take 1.5s instead of 1s
until interconnection is successful. This contradictory behavior would need some addi-
tional investigation if the system was considered for on-demand tasks with real-time
requirements.

6.4.2.3 Session Phase

The session phase is �nally the place where secure computations take place. It measures
the time to calculate the secure sum of distinct inputs per peer based on the BGW
protocol described in section 2.2.4, plus the time for re-sharing the secrets so that each
peer can deviate the �nal result individually prior reporting it to the gateway.

Due to the nature of SMC, each peer interacts with all other peers. This implies an
O(n2) communication complexity. For a secure sum, there are two such rounds of
synchronization: �rst, a peer deducts n shares from its local input and distributes them
among all peers, while expecting the same from the others. Second, local processing on
each peer generates a new share that is announced to all.

Given this knowledge, it is surprising that results imply a linear scale with increasing
number of participants. Several facts explain this behavior. First of all, there are only
two communication rounds. As the computation makes use of sums only, a lot of work
is done locally. Due to the lack of a multiplication, there are no dedicated rounds for
re-sharing their secrets derived from a new polynomial. Thus, the volume of exchanged
messages is quite low. In addition to that, message input and output happens in parallel.
So, incoming messages are queued until being processed asynchronously. Outgoing
messages are bu�ered until transmission kicks in (non-blocking). Another advantage is

102 Chapter 6. Performance Evaluation

the locality of the nodes. In particular, RTTs between any two peers are below one or
two milliseconds. This is of special interest as large RTTs have an even bigger impact
on the overall performance since O(n2) communication complexity stills holds from
an information-theoretic perspective. To summarize these facts, SMC performs well
for applications with fast and minimized inter-communication. Then, it is possible to
reduce quadratic costs.

Our test setup even shows an average request-response time below 9ms for the maximum
peer con�guration. This satis�es our requirements for instant feedback and renders it
suitable for most general use-cases. For soft real-time applications, the low standard
deviation becomes interesting. It clearly shows that jitter is no issue throughout the
computations.

6.4.2.4 Total Request-Response Latency

The previous phase-wise evaluations give detailed insights what parts of SMC take
which amount of time. The missing piece is an all-embracing perspective onto the
whole application combining all parts of this thesis. Thus, the aim of this section
is a brief investigation of the total request-response time for the known secure sum
task. Di�erently to taking phase-wise results together, these measurements additionally
consider local processing times for the orchestration components. Or more generally, it
provides a real-world view from a client using the system as a service.

Figure 6.8 depicts the results for Ttotal of requests issued at the gateway. As expected,
the main contributions from link and session phase dominate the o�set and relative
alignment of the plot’s boxes, respectively. Similar, the standard deviation is strongly
ruled by the link phase’s one. This is not surprising due to the link phase’s leader
position in terms of absolute numbers. Same as aforesaid, the tests conducted with 3
and 5 peers, are a�ected the most from SCAPI’s non-determinism in terms of latency
bouncing between discrete steps of ≈ 500ms . Other #peers con�gurations cause the
jitter to behave normally. We identi�ed two direct implications. First, there is a high
chance that a request takesTtotal (#peers < 6) ≈ 1.5s to complete for a scenario with low
participation. Given this speci�c behavior shows up alike in other environments as well,
there might be privacy implication as a client gets to know if few peers are participating
for a speci�c task. Second, high jitter makes it di�cult to cope with requirements of
real-time systems as planning becomes unstable.

Beside that, the overall response latency increases linearly with more peers. As de-
scribed for the session phase (see section 6.4.2.3), O(n2) communication complexity will
gain signi�cance with more complex tasks. This is a present limitation of many SMC
frameworks and more speci�cally related to the employed BGW protocol. It is up to
research to make it more e�cient for complex scenarios. Nevertheless, the numbers are
promising and should be adequate for most services as most computations should be

6.4. SMC Performance 103

3 5 7 9 11
Number of peers

1000
1002
1004
1006
1008
1010
1012
1014
1016
1018
1020
1022
1024

To
ta
lr
eq
ue
st
-r
es
po

ns
e
de
la
y
[m

s]

Figure 6.8: Computation of a single secure sum per round with di�erent number of
participants. The result represents an end-to-end perspective on the system measuring
the elapsed time for starting a request, traversing all phases, its network round-trips,
the preparation and execution on Fresco side, and returning the result back to the client.

Table 6.2: Complementary statistics for total request-response time of secure sum task.
Unit: milliseconds [ms]

min max mean std 25% 50% 75% 90%
peers

3 1005.3 1508.2 1124.9 213.0 1005.8 1005.9 1007.6 1505.9
5 1006.5 1510.0 1028.6 101.1 1006.9 1007.1 1007.3 1008.5
7 1007.9 1509.6 1014.0 49.749 1008.6 1008.8 1009.2 1010.1
9 1009.5 1513.2 1015.9 49.792 1010.4 1010.7 1011.3 1012.0
11 1011.0 1514.4 1021.8 66.877 1012.1 1012.5 1013.1 1013.9

quite simple, i.e. peers usually need only a small amount of rounds for synchronizing
with each other.

In direct comparison with individual phases taking together per peer con�guration,
Ttotal stays largely the same. As expected, the orchestration layers by FlexSMC account
for negligible delays which are of no consequence. Thus, the architectural design
�ts well to the requirements of SMC applications without compromising operational
performance.

104 Chapter 6. Performance Evaluation

6.4.2.5 Conclusion

For a real-world perspective, FlexSMC was set to full operation integrating Fresco
as a SMC provider. On the one hand, end-to-end measurements conducted from a
client showed that median request latency ranged from 1005.9ms to 1012.5ms for an
increasing number of peers. In spite of quadratic communication complexity from an
information-theoretic perspective, it increased linearly due to minimized and paral-
lelized communication e�ort of our simple task. A phase-wise investigation showed
that the majority of time is spent in the link phase responsible to interconnect Fresco
peers. Within Fresco, it is provided by a library called SCAPI. It was responsible that
connect times bounced between 1s and 1.5s as discrete steps. Unexpectedly, fewer
#peers su�ered more often from higher delays, i.e. 1.5s , while more participants mostly
had a shorter connection time, i.e. 1s . Based on the environment, this might poten-
tially disclose additional information to an attacker. Consequently, it might be useful
to replace Fresco’s SCAPI network backend with a hardened implementation in future
work.

105

Chapter 7

Requirements Assessment

In the analysis in section 3.5, we derive a set of requirements for a privacy-preserving
architecture on the basis of SMC, in order to render it applicable for dynamic environ-
ments. Or roughly speaking, making it an attractive choice in practice without the need
for expert knowledge in the domain of SMC.

This chapter presents a brief overview about how and where we tackle the stated
requirements in the design, implementation and practical evaluation of this thesis.

7.1 Privacy

This section states the answer how this thesis ful�lls privacy requirements as possessed
in section 3.5.1.

�R.1� -�R.3� Con�dentiality, Data Minimization, Unlinkability
These privacy requirements are established by using an appropriate SMC protocol,
executed on behalf of distributed computation nodes who generate the data and
are their solely owners (see section 4.1.1). More speci�cally, using SMC enforces
data to be shared in a prede�ned and purpose-bound way. This means that raw
data, owned by the distributed nodes, is not revealed in clear-text (Con�dentiality).
We only slice partial information from the raw data which is currently needed
to ful�ll a de�ned task, and this slice should be insu�cient to reuse it for other
purposes (Data Minimization, Unlinkability). For instance, calculating a secure
sum prevents the receiver of the result to derive a standard deviation from that.

Remarkably, these requirements hold as long as the attacker model is not violated
(see section 2.2.5 for BGW protocol’s guarantees as used in our realization).

�R.4� Transparency
The post-processing of raw data is known to the data owners (peers) by letting

106 Chapter 7. Requirements Assessment

themselves take part in the computation (see section 4.1.2.2) on the one hand. On
the other hand, we use a generic task de�nition which states the exact purpose
and kind of computations in a signed document (see section 4.4.2). Moreover, a
peer receives an even more speci�c sequence of descriptive phases which contains
a list of participants and their unique IDs (see section 4.4.3.3). This provides the
peers with additional information for autonomous decision making.

�R.5� Intervenability
Given a rich foundation for reasoning about the task and circumstances from
the above Transparency requirement, an intelligent peer takes full responsibility
about its data and can autonomously decide whether to take part in any computa-
tions. The prerequisite therefore is given by the separation of a task into multiple
SMC-speci�c instructions (see section 4.4.3) in order to preserve robustness. The
separation prevents a computation session to turn completely useless, given a
peer should opt out in an early stage (cf. section 4.4.3.4 and 4.4.4.3).

In our concrete prototype implementation of the SMC provider, a peer exercises
his right for Intervenability if overall amount of collaborators is below 3, for
instance. Hence, a disposal of raw input is likely with respect to the violated
attacker model.

Some general remarks:
In our design, we introduce a gateway role that inherits a (virtually) central position and
maintains a directory of available peers (cf. section 4.1.2.1 and 4.4). One might argue
that a gateway’s centrality imposes a major concern with respect to peer’s privacy. In
fact, it is not a privacy problem: in the former architecture as described by the use-cases
in section 3.1, sensible data is collected centrally. This is not the case anymore. Instead,
only technical data for robust and secure orchestration of the computations is stored
centrally (cf. section 4.4.1.3). Furthermore, most of the information comes solely from
the peers. Hence, they have full control, which information to disclose to the gateway.
The remaining meta data, e.g. the IP address of a peer and whether it is on-line, is also
known to every other peer during a secure computation.

7.2 Security

This section states the answer how this thesis tackles security requirements as possessed
in section 3.5.2.

�R.6� Mutual Authentication and Encryption
Gateway and peer exchange self-signed X.509 certi�cates during initial pairing
(see section 4.2.2). Trust is established by means of the trust-on-�rst-use paradigm
and a manual out-of-band veri�cation. Based on this, communication is encrypted

7.3. Deployment and Applicability 107

and mutually authenticated using TLS with client authentication (cf. section 5.3.1).

A current drawback regarding the SMC provider’s implementation is the missing
encryption and authentication between peers during a secure computation session.
So, malicious (active) adversaries could be outsiders, hence, not taking part in
the computations, but still be able to tamper with the protocol. Noticeably, a
gateway could detect irregularities as an attacker might not be able to in�uence
all decentralized peers at the same time.

Anyways, securing intercommunication is important to be tackled in future work.

�R.7� Veri�cation of Identities
As aforementioned, client authentication in TLS allows to mutually verify identi-
ties when a peer connects to a gateway. Still, the missing veri�cation between
intercommunicating peers is an open issue in the current SMC provider’s imple-
mentation.

7.3 Deployment and Applicability

This section states the answer how this thesis realizes deployment and applicability
requirements as possessed in section 3.5.3.

�R.8� Zero-Con�guration
This requirement is realized by an automated local discovery mechanism as de-
scribed in section 4.2.1. Implementation-wise, a fundamental contributor is the
zeroconf component, that was developed separately as part of this thesis (see
section 5.1)

�R.9� Virtual Centrality
The gateway is the responsible point of virtual centrality that hides complexity
originating from applying SMC and decentralized peers in a dynamic environment,
behind a simple interface (see section 4.4.1.2). Prerequisite for the interface’s
usability without specialized knowledge about SMC is the generic task description
(see section 4.4.2).

�R.10� Fast Responses
As demonstrated in the practical performance evaluation in chapter 6, the re-
sponse times of the orchestration layer is signi�cantly below 1 or 2 ms most of
the time (cf. section 6.3). Combined with the consumed time our utilized SMC
provider takes for linking all peers and doing secure computations each time on
demand, a single, isolated request-response adds up to a maximum of 1014ms on
the majority (90%) for a secure addition involving 11 peers (cf. section 6.4).

108 Chapter 7. Requirements Assessment

�R.11� On-demand Sessions
An incoming request from a service client invokes a gateway’s orchestration
component. This triggers a series of actions to identify a set of peers and to
interconnect them on demand, by instructing the peers with a special Link phase,
as described as part of section 4.4.3.3.

�R.12� Adaptiveness
A gateway’s directory component continuously keeps track of all its attached
peers (see section 4.4.1.3 and 5.2.3.1). Before a task is executed on behalf of a set
of peers during task orchestration, available and suitable peers are identi�ed as
illustrated in section 4.4.3.2. In a nutshell, the process of preparing a task considers
the current circumstances in the environment by requesting the directory �rst.

�R.13� Robustness
Being a fundamental requirement of this thesis, robustness is targeted by various
aspects of the architectural design, that act together to achieve the goal. From
a peer’s perspective, an essential contributor towards robustness is its resilient
integration with an available gateway (see section 4.3.1). On gateway side, a
cooperation of task orchestration (see section 4.4) and the directory’s monitoring
component (see section 4.3.2) contribute signi�cantly to the overall robustness.
More speci�cally, the separation of a task into multiple small phases that con-
stitute a specialized SMC job (cf. section 4.4.3), the fault-tolerant job execution
(cf. section 4.4.4) and especially its practical realization in terms of reliability and
decoupling (see section 5.2.3) are the key to success.

�R.14� Self-Sustainable
No part of either design nor implementation relies on any external service. Self-
con�guration makes solely use of special capabilities in local area networks, e.g.
multicast messages. Beside that, the main implementation FlexSMC compiles to
a self-contained binary, runnable on most platforms without any further depen-
dencies thanks to the Go compiler. The concrete SMC provider we contribute on
basis of the SMC framework Fresco [7], is packed to a single Java archive (see
section 5.1). Hence, this part requires a current Java runtime installed on the host.
This is the case anyway most of the time.

109

Chapter 8

Related Work

In recent research, Secure Multi-Party Computation has been chosen increasingly as
building block in real-world applications when coping with computations on sensible
data while preserving privacy of the data origin. In fact, high computational and com-
munication overhead were ancient issues that extinguished interest in SMC outside of
research. By now, fundamental work has been done to optimize computation primitives,
protocols and leverage parallelization in order to make SMC a (mostly) considerable
choice in practice. In the following, we �rst name some representative work in this
domain before pinpointing common de�cits that might render it still impractical to be
run continuously, without extensive maintenance or under the in�uence of dynamic
environments, as discussed as part of this thesis.

The �rst well-known deployment of SMC in a large setup was a Danish sugar beet double
auction in 2008, which provided a secure auction platform for farmers to trade their
production outcome, and for buyers to give bids, resulting in an optimal assignment
without exposing unmatched participant’s inputs. In their related work [50], Bogetoft
et al. describe their architecture to consist of three �xed servers, dedicated to execute
the auction-speci�c secure computations on demand. In a previous step, participating
farmers use an applet to specify their o�er, that in turn gets derived shares to be
encrypted with the public keys of the computation servers before uploading the data
to a centralized collector. In the computation step, three actors decrypt and load the
inputs meant for their respective computation server they are in charge, from the central
database, and �nally kick o� the secure computations. Clearly visible, the cons of this
approach are that it involves many manual steps and administration requires speci�c
knowledge about the system.

In the work [29], Burkhart et al. present the novel library SEPIA, that arose from the
intend to evaluate practicability of SMC for multi-domain network security analysis.
Beside a full set of primitive functions to lay out a base layer for arbitrary secure compu-
tations, the authors provide e�cient SMC protocols for comparison and vector addition

110 Chapter 8. Related Work

operations, but also more specialized protocols for event correlation and computation
of network statistics. In an evaluation in a local and a wide area network with up to 9
distributed computation nodes, their implementation demonstrates promising perfor-
mance results. Though, SEPIA and their deployment lacks automatism: for evaluation,
actors generated input �les from tra�c captures and provided them manually to the
respective nodes. Moreover, in terms of communication security, they assume that
certi�cates have been deployed securely beforehand. Similar, privacy peers need to be
supplied manually with their mutual network locations. For more nodes to be added on
demand, the needed administrative e�ort is not practical. With regard to failing compu-
tation nodes, they mention an interesting side note though: by leveraging redundancy
properties of Shamir’s Secret Sharing during reconstruction, some failed peers could
be mitigated without e�ecting the overall result. Being a very interesting approach to
tackle this problem at a lower level than we do, it is not implemented, unfortunately.

While centering around a di�erent use-case, the work in [37] practically uses the SEPIA
framework to realize a secure trading system ofCO2 allowances in the aerospace sector.
Their way of deploying SMC is not unique to this solution, but similarly applied from
time to time in other solutions as well. So, while not going into detail in general, this
particular deployment is brie�y regarded. There are several SMC input clients which
apply secret sharing to split the participant’s row data into multiple shares. These shares
are then distributed among the computation nodes. In this case, these are three hosts
installed in a separate network, presumingly administered by a single person named
Cloud System Admin in the paper. This arises two concerns: �rst, an evil administrator
could combine the submitted shares to reconstruct the inputs. Secondly, the SMC clients
loose ownership over their data. As they do not participate actively in the computations,
the collective of SMC computation nodes acts as some kind of virtual or simulated
TTP. Further, the SMC clients, being interested in the overall outcome, must trust the
computation network to reply the result truthfully.

An extensive real-world deployment of SMC is demonstrated in the work [6] by Bog-
danov et al. The overall aim is the practical usage of SMC for the members of an Estonian
consortium in the information and telecommunication sector to jointly and securely
analyze their �nancial data regularly. Faster results are useful for the members for better
decision making regarding their businesses. Speci�cally, the proposed deployment is
interesting in this context: it is based on SHAREMIND [32] and employs three distributed
hosts for secure computations called data miners, hosted by independent companies.
To collect the necessary data, each host runs an additional web server. Using the hosted
web page, the consortium members manually provide their raw data in a web form. A
locally executed JavaScript library then handles secret sharing the input and submits
shares securely to all three data miners individually. When the consortium agrees, the
servers employ secure computations on behalf of the submitted data and generate a
report. Although it seems to be a working real-world example and maintenance e�ort

111

is reduced to hosting a web page for the end user, the authors admit that the current
e�ort for maintaining the servers by individual parties was undesirable in the long run.
While the companies are still o�ering their hardware, a single administrator controls all
three miners and kicks o� computations manually. Similar to the aforementioned work,
this approach arises some concerns: the administrator could manipulate the miners to
collude in order to reconstruct the inputs, and, eventually, to disclose it. Further, the
need for this separate administrator raises questions how to simplify deployment and
to automate the miners’ control and execution. Last but not least, to keep in mind that
similar to aforementioned work, ownership is lost as soon as shares are transferred to
the miners.

Taking together aforementioned works, all approaches realize complete systems with
the aim to be practically applicable for real-world applications. While they contribute
great optimizations such as improving SMC protocols, and leveraging concurrency
in modern computers and networks, they face common de�cits in terms of practical
deployment (being potentially set up by unexperienced people), robustness for dynamic
environments (e.g. failing or unreachable nodes), �exibility and ease of maintenance
for a long living service. In addition, due to input entities omitting active collaboration,
the possibilities of SMC computations are often reduced to a virtual or simulated TTP.
Hence, input parties basically loose ownership and transparency over their data in favor
of having a simpler initial deployment.

As noted, the previous works often assume also that input is provided manually in sep-
arate steps, whereas our work centers around automatism. We make computationally
equipped and mutually networked peers to participate in secure computations, while au-
tomatically providing input on their own by means of environmental perception. Rather
than having deployments with simulated TTP, our work insists on decentralization in
terms of data storage and computations.

While there is some research such as the work [51] by M. Ambrosin et al., that considers
the same IoT scenario with smart nodes, relying on cooperation (via consensus-based
information fusion), that even works in dynamic environments, we have not found a
comprehensive solution that focuses on bringing everything together for improving
general applicability while having privacy and easy deployment in mind as well.

Remember that our framework does not provide any SMC functionality for most of
its privacy guarantees by its own, but relies on a SMC provider, such as one of the
frameworks above, to augment its capabilities. Generally speaking, our contribution
is to resolve the mentioned shortcomings and hence, improve general applicability of
privacy preserving services on behalf of SMC, without creating a new niche framework.

113

Chapter 9

Conclusion and Future Work

In this Master’s Thesis, we contribute FlexSMC, a �exible and robust solution for Secure
Multi-Party Computation (SMC) frameworks to raise their friendliness towards applica-
bility in practice, or more loosely speaking, to escape the need for laboratory conditions.
As performance of SMC is not a prominent bottleneck [6] in recent frameworks and
utilized protocols anymore, applicability in this context concentrates on providing ease
of deployment, adaptiveness for needs of dynamic environments, robustness towards
o�ering long living services, and ease of use without expert knowledge. Beside privacy
contributions from applying secure computations in a decentralized setting, we further
lay out the groundwork for enabling transparency and intervenability. When used, it
gives intelligent sensors more insight about a task and circumstances to autonomously
take decisions about its behavior (e.g. shall a node collaborate in a certain computation
knowing most of the participants live on the same host, indicating a possible Sybil
attack?) with the �nal goal to preserve data owner’s privacy.

To achieve this, we �rst analyze two use-cases’ realizations and their improper regard-
ing of privacy aspects. That is the foundation to investigate how SMC can be applied
and what problems arise in practice. Finally, this leads to several requirements an ar-
chitecture shall ful�ll to support privacy, security and applicability. From there, we
design and implement a modularized and decoupled solution that has no dependency
besides an existing SMC framework, and is easy to adopt from a service client’s perspec-
tive. Performance evaluations show that the overhead of the introduced orchestration
layer is minimal compared to the runtime of the SMC framework. While the overall
performance results, i.e. inclusive SMC, are promising in our simple test cases, more
extensive testing is desirable to elaborate potential ine�ciencies and integration issues
of FlexSMC with its speci�c SMC provider.

Despite our far-reaching accomplishments and promising results in the scope of this
thesis, there are still plenty of possibilities for improvement and enhancements to ex-
pand applicability of FlexSMC-based solutions in real-world applications. We attach

114 Chapter 9. Conclusion and Future Work

an incomplete list of issues and possible enhancements to cope with assumed limita-
tions and known gaps, worth investigated in future works proceeding upon this thesis.
Remember that following proposals are ideas that would need further comprehensive
analysis in terms of privacy implications before considering their deployment:

Replication of Certi�cates Currently, the gateway node is in obsession of all peers’
certi�cates for mutual authentication and encryption which it collected during pair-
ings. Though, the peers usually have only the certi�cates of their known gateways.
By replicating all certi�cates on all nodes, every peer could potentially take over the
role of a gateway. Running a consensus protocol beforehand should allow to �nd a
trusted gateway alternative. This removes the present need that a peer explicitly
must trust a new gateway �rst. Moreover, this could tackle the present weakness
of a single gateway gaining too much responsibility.

Scalability The current design assumes a limitation in scope by locality, so e�ec-
tively limiting the number of possible active peers. Bigger areas are equipped with
multiple separated gateways that are responsible for nearby devices, but are cur-
rently regarded as isolated units implementation-wise. As suggested in the design,
a hierarchical structure that applies the composite pattern [52] [38], looks like an
adequate solution to unite gateways if a request was targeting all peers of a building,
for instance. The composite pattern means in this context that most gateways act
like peers towards a parent gateway in order to parallelize computations from the
leaf peers over to intermediate gateways/peers up to a root gateway.

REST Integration Unlike requested in the analysis and design, the currently imple-
mented orchestration is exposed by an internal Go interface only, but does not
provide any outside facing API yet. A well-designed REST API is a missing building
block urged to be added.

Fall-back for mDNS For zero-con�guration in terms of network discovery, FlexSMC
includes the Zeroconf package that employs multicast tra�c to announce services.
Despite being a great choice regarding self-sustainability and maintenance e�ort, it
might not work in some scenarios with routed tra�c or extensive �rewall setups.
FlexSMC might include an alternative for service discovery. For instance, this could
be some bootstrapping mechanism based on a known device and its address.

115

Appendix A

Evaluation Details

A.1 Phase-wise Round-trip Times for multiple Messages

3 5 7 9 11
Number of peers

200000

400000

600000

800000

1000000

1200000

1400000

1600000

1800000

2000000

2200000

Ph
as
e-
w
ise

m
ax
im

um
re
qu

es
t-r

es
po

ns
e
tim

e
[n
s]

info
FlexSMC
Fresco

Figure A.1: Individual RTT per message for 10 consecutive ping messages over the estab-
lished communication channel. The labels FlexSMC and Fresco relate to di�erent stages
of message handling (EP.S). Appendix A.2.2.2 enumerates the underlying statistics.

116 Appendix A. Evaluation Details

A.2 Table Statistics

A.2.1 Single Message to FlexSMC Layer

min max mean std 25% 50% 75%
peers

3 0.488 1.690 0.707 0.094 0.654 0.698 0.742
5 0.549 1.664 0.743 0.107 0.687 0.723 0.772
7 0.622 1.962 0.894 0.197 0.764 0.822 0.998
9 0.639 2.023 1.175 0.312 0.814 1.323 1.391
11 0.736 2.041 1.324 0.273 1.338 1.414 1.463

Table A.1: Statistics for a single ping message to FlexSMC layer. Unit: milliseconds [ms]

A.2.2 Multiple Messages to FlexSMC and Fresco Layer

A.2.2.1 Summed Round-trip Times including Preparation and Follow-up

min max mean std 25% 50% 75% 90%
info peers

FlexSMC 3 3.817 5.153 4.328 0.174 4.222 4.324 4.411 4.525
5 3.887 8.233 4.355 0.248 4.248 4.326 4.425 4.541
7 4.283 6.290 4.796 0.276 4.602 4.728 4.946 5.142
9 4.415 6.597 5.026 0.393 4.723 4.882 5.332 5.504
11 4.701 6.900 5.369 0.444 4.976 5.388 5.624 5.994

Fresco 3 5.953 14.268 7.182 0.734 6.877 7.112 7.340 7.595
5 6.533 14.206 7.428 0.746 7.129 7.336 7.545 7.854
7 6.791 15.188 8.301 0.867 7.826 8.185 8.618 9.011
9 7.419 15.507 9.012 0.890 8.599 8.921 9.247 9.632
11 8.002 15.536 9.294 0.771 8.898 9.162 9.543 10.004

Table A.2: Statistics for summed analysis of 10 consecutive messages to FlexSMC and
Fresco layer. The latter also includes the former in terms of delay. Unit: milliseconds
[ms]

A.2. Table Statistics 117

A.2.2.2 Phase-wise Round-trip Times

min max mean std 25% 50% 75% 90%
info peers

FlexSMC 3 0.286 1.051 0.404 0.070 0.364 0.389 0.419 0.479
5 0.280 1.056 0.403 0.075 0.360 0.385 0.414 0.515
7 0.324 1.505 0.447 0.102 0.389 0.416 0.456 0.595
9 0.336 1.923 0.466 0.140 0.399 0.422 0.453 0.637
11 0.354 1.827 0.499 0.175 0.418 0.438 0.470 0.700

Fresco 3 0.414 2.138 0.682 0.243 0.546 0.608 0.692 1.122
5 0.418 2.004 0.704 0.253 0.561 0.630 0.714 1.190
7 0.463 2.152 0.790 0.255 0.636 0.714 0.813 1.268
9 0.511 2.156 0.856 0.287 0.681 0.749 0.850 1.367
11 0.506 2.186 0.879 0.307 0.692 0.756 0.856 1.407

Table A.3: Statistics for phase-wise analysis of 10 consecutive messages to FlexSMC and
Fresco layer. The latter also includes the former in terms of delay. Unit: milliseconds
[ms]

119

Bibliography

[1] J. K. W. Wong, H. Li, and S. W. Wang, “Intelligent building research: A review,”
Automation in Construction, vol. 14, no. 1, pp. 143–159, 2005.

[2] R. Roman, J. Zhou, and J. Lopez, “On the features and challenges of security and
privacy in distributed internet of things,” Computer Networks, vol. 57, no. 10, pp.
2266–2279, 2013.

[3] TNS Opinion & Social, “Special Eurobarometer 359 - Attitudes on Data Protection
and Electronic Identity in the European Union,” Tech. Rep., 2011. [Online].
Available: http://ec.europa.eu/public_opinion/archives/ebs/ebs_359_en.pdf

[4] TNS Opinion & Social, “Special Eurobarometer 431 - Data Protection,” Tech. Rep.,
2015. [Online]. Available: http://ec.europa.eu/public_opinion/archives/ebs/ebs_
431_en.pdf

[5] G. Danezis, J. Domingo-Ferrer, M. Hansen, J.-H. Hoepman, D. L. Metayer,
R. Tirtea, and S. Schi�ner, “Privacy and Data Protection by Design - from policy
to engineering,” European Union Agency for Network and Information Security
(ENISA), Tech. Rep., 2015. [Online]. Available: http://arxiv.org/abs/1501.03726

[6] D. Bogdanov, R. Talviste, and J. Willemson, “Deploying Secure Multi-Party Com-
putation for Financial Data Analysis,” in Financial Cryptography and Data Security:
16th International Conference, FC 2012, Kralendijk, Bonaire, Februray 27-March 2,
2012, Revised Selected Papers, A. D. Keromytis, Ed. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2012, pp. 57–64.

[7] Alexandra Institute (Security Lab), “FRESCO: a FRamework for E�cient
Secure COmputation,” 2016, Accessed on 2016/11/21. [Online]. Available:
https://github.com/aicis/fresco

[8] European Court of Human Rights, “Treaty No.005 - Convention for the Protection
of Human Rights and Fundamental Freedoms,” Rome, 1950, Accessed on
2017/02/03. [Online]. Available: http://www.coe.int/en/web/conventions/full-list/
-/conventions/rms/0900001680063765

http://ec.europa.eu/public_opinion/archives/ebs/ebs_359_en.pdf
http://ec.europa.eu/public_opinion/archives/ebs/ebs_431_en.pdf
http://ec.europa.eu/public_opinion/archives/ebs/ebs_431_en.pdf
http://arxiv.org/abs/1501.03726
https://github.com/aicis/fresco
http://www.coe.int/en/web/conventions/full-list/-/conventions/rms/0900001680063765
http://www.coe.int/en/web/conventions/full-list/-/conventions/rms/0900001680063765

120 Bibliography

[9] Nest Labs, “Frequently asked questions about privacy.” 2017, Accessed on
2017/01/31. [Online]. Available: https://nest.com/privacy-faq/

[10] Telekom Deutschland GmbH, “10 Gründe, warum sich Magenta SmartHome
lohnt,” 2017, Accessed on 2017/01/31. [Online]. Available: https://www.smarthome.
de/stories/10-gruende-warum-sich-magenta-smarthome-lohnt

[11] European Parliament and European Commission, “Directive 1995/46/EC on pro-
tection of individuals with regard to the processing of personal data on the free
movement of such data,” pp. 31–39, 1995.

[12] J. B. Ullrich, “CVE-2015-1600 - Netatmo Weather Station Cleartext Password Leak,”
2015, Accessed on 2017/02/01. [Online]. Available: http://seclists.org/bugtraq/
2015/Feb/108

[13] B. Krebs, “Yahoo: One Billion More Accounts Hacked,” 2016, Accessed
on 2017/02/01. [Online]. Available: https://krebsonsecurity.com/2016/12/
yahoo-one-billion-more-accounts-hacked/

[14] L. Tung, “Dropbox bug kept users’ deleted �les on its servers for six years,”
2017, Accessed on 2017/02/01. [Online]. Available: http://www.zdnet.com/article/
dropbox-bug-kept-users-deleted-�les-on-its-servers-for-six-years/

[15] D. Kor�, “Comparative Study on Di�erent Approaches to new Privacy
Challenges, in particular in the light of Technological Developments, Working
Paper N° 2, Data protection laws in the EU: The di�culties in meeting
the challenges posed by global social and technical developments,” 2010.
[Online]. Available: http://ec.europa.eu/justice/data-protection/document/studies/
�les/new_privacy_challenges/�nal_report_working_paper_2_en.pdf

[16] M. Rost and K. Bock, “Privacy by Design und die Neuen Schutzziele: Grundsätze,
Ziele und Anforderungen,” Datenschutz und Datensicherheit (DuD), vol. 35, no. 1,
pp. 30–35, 2011.

[17] European Commission, “Proposal for a Regulation of the European Parliament
and of the Council on the protection of individuals with regard to the processing
of personal data and on the free movement of such data (General Data Protection
Regulation),” vol. 0011, pp. 1–119, 2012. [Online]. Available: http://ec.europa.eu/
justice/data-protection/document/review2012/com_2012_11_en.pdf

[18] A. C. Yao, “Protocols for secure computations,” 23rd Annual Symposium on Foun-
dations of Computer Science (SFCS), pp. 1–5, 1982.

[19] J. Perry, D. Gupta, J. Feigenbaum, and R. N. Wright, “Systematizing Secure Compu-
tation for Research and Decision Support,” Security and Cryptography for Networks
- 9th International Conference (SCN), pp. 380–397, 2014.

https://nest.com/privacy-faq/
https://www.smarthome.de/stories/10-gruende-warum-sich-magenta-smarthome-lohnt
https://www.smarthome.de/stories/10-gruende-warum-sich-magenta-smarthome-lohnt
http://seclists.org/bugtraq/2015/Feb/108
http://seclists.org/bugtraq/2015/Feb/108
https://krebsonsecurity.com/2016/12/yahoo-one-billion-more-accounts-hacked/
https://krebsonsecurity.com/2016/12/yahoo-one-billion-more-accounts-hacked/
http://www.zdnet.com/article/dropbox-bug-kept-users-deleted-files-on-its-servers-for-six-years/
http://www.zdnet.com/article/dropbox-bug-kept-users-deleted-files-on-its-servers-for-six-years/
http://ec.europa.eu/justice/data-protection/document/studies/files/new_privacy_challenges/final_report_working_paper_2_en.pdf
http://ec.europa.eu/justice/data-protection/document/studies/files/new_privacy_challenges/final_report_working_paper_2_en.pdf
http://ec.europa.eu/justice/data-protection/document/review2012/com_2012_11_en.pdf
http://ec.europa.eu/justice/data-protection/document/review2012/com_2012_11_en.pdf

Bibliography 121

[20] R. Sheikh, B. Kumar, and D. K. Mishra, “Privacy-Preserving k-Secure Sum Protocol,”
International Journal of Computer Science and Information Security (IJCSIS), vol. 6,
no. 2, p. 5, 2009.

[21] R. Sheikh, B. Kumar, and D. K. Mishra, “A Modi�ed ck-Secure Sum Protocol for
Multi-Party Computation,” Journal of Computing, vol. 2, no. 2, pp. 62–66, 2010.

[22] D. W. Archer, D. Bogdanov, B. Pinkas, and P. Pullonen, “Maturity and Performance
of Programmable Secure Computation,” IEEE Security Privacy, vol. 14, no. 5, pp.
48–56, 2016.

[23] A. Shamir, “How To Share a Secret,” Communications of the ACM (CACM), vol. 22,
no. 1, pp. 612–613, 1979.

[24] M. Ben-Or, S. Goldwasser, and A. Wigderson, “Completeness Theorems for Non-
Cryptographic Fault Tolerant Distributed Computation,” Proceedings of the 20th
Annual ACM Symposium on the Theory of Computing (STOC), pp. 1–10, 1988.

[25] A. C. Yao, “How to generate and exchange secrets,” in 27th Annual Symposium on
Foundations of Computer Science (SFCS), 1986, pp. 162–167.

[26] G. R. Blakley, “Safeguarding cryptographic keys,” International Workshop on Man-
aging Requirements Knowledge, p. 313, 1979.

[27] G. Asharov and Y. Lindell, “A Full Proof of the BGW Protocol for Perfectly-Secure
Multiparty Computation,” Cryptology and Information Security Series, vol. 10, no.
189, pp. 120–167, 2013.

[28] R. Cramer, I. B. Damgård, and J. B. Nielsen, Secure Multiparty Computation and
Secret Sharing. New York, USA: Cambridge University Press, 2015.

[29] M. Burkhart, M. Strasser, D. Many, and X. Dimitropoulos, “SEPIA: Privacy-
preserving Aggregation of Multi-domain Network Events and Statistics,” Proceed-
ings of the 19th USENIX Conference on Security, p. 15, 2010.

[30] VIFF Development Team, “VIFF, the Virtual Ideal Functionality Framework,”
Accessed on 2017/03/13. [Online]. Available: http://vi�.dk

[31] A. Ben-David, N. Nisan, and B. Pinkas, “FairplayMP: A System for Secure Multi-
Party Computation,” Proceedings of the 15th ACM conference on Computer and
communications security, pp. 257–266, 2008.

[32] D. Bogdanov, S. Laur, and J. Willemson, “Sharemind: A framework for fast privacy-
preserving computations,” in Proceedings of the 13th European Symposium on Re-
search in Computer Security: Computer Security, ser. ESORICS ’08. Berlin, Heidel-
berg: Springer-Verlag, 2008, pp. 192–206.

http://viff.dk

122 Bibliography

[33] I. Damgård, K. Damgård, K. Nielsen, P. S. Nordholt, and T. Toft, “Con�dential
Benchmarking based on Multiparty Computation,” Cryptology ePrint Archive, 2015.

[34] B. Pinkas, F. Kerschbaum, F. Hahn, T. Schneider, M. Zohner, and
R. Rebane, “PRACTICE: D11.2 An Evaluation of Current Protocols
based on Identi�ed Model,” BIU, Tech. Rep., 2015. [Online]. Avail-
able: https://practice-project.eu/downloads/publications/Deliverables-Y2/D11.
2-Evaluation-Protocols-Identi�ed-Model-PU-M24.pdf

[35] J. Schlamp and G. Carle, “measrdroid,” 2014, Accessed on 2017/02/05. [Online].
Available: http://www.droid.net.in.tum.de/

[36] F. Li, C. Zhao, G. Ding, J. Gong, C. Liu, and F. Zhao, “A reliable and accurate indoor
localization method using phone inertial sensors,” ACM Conference on Ubiquitous
Computing (UbiComp), pp. 421–430, 2012.

[37] M. Zanin, T. T. Delibasi, J. C. Triana, V. Mirchandani, E. Álvarez Pereira, A. Enrich,
D. Perez, C. Paşaoğlu, M. Fidanoglu, E. Koyuncu, G. Guner, I. Ozkol, and G. Inalhan,
“Towards a secure trading of aviation CO2 allowance,” Journal of Air Transport
Management, no. February, pp. 1–9, 2016.

[38] G. Zyskind, O. Nathan, and A. Pentland, “Enigma: Decentralized Computation
Platform with Guaranteed Privacy,” CoRR, vol. abs/1506.03471, 2015. [Online].
Available: https://arxiv.org/abs/1506.03471

[39] S. Cheshire and M. Krochmal, “DNS-Based Service Discovery,” Internet
Engineering Task Force (IETF), RFC 6763, February 2013. [Online]. Available:
https://tools.ietf.org/html/rfc6763

[40] S. Cheshire and M. Krochmal, “Multicast DNS,” Internet Engineering Task Force
(IETF), RFC 6762, February 2013. [Online]. Available: https://tools.ietf.org/html/
rfc6762

[41] L. Poettering and T. Lloyd, “Avahi Service Discovery Suite,” Accessed on
2017/03/04. [Online]. Available: https://github.com/lathiat/avahi

[42] Google, “gRPC - a high performance, open-source universal RPC framework,”
Accessed on 2017/02/22. [Online]. Available: http://www.grpc.io

[43] Google, “Protocol Bu�ers,” Accessed on 2017/03/04. [Online]. Available:
https://developers.google.com/protocol-bu�ers/

[44] Y. She�er, R. Holz, and P. Saint-Andre, “Summarizing Known Attacks on Transport
Layer Security (TLS) and Datagram TLS (DTLS),” Internet Engineering Task Force
(IETF), Technische Universität München, RFC 7457, February 2015. [Online].
Available: https://www.rfc-editor.org/info/rfc7457

https://practice-project.eu/downloads/publications/Deliverables-Y2/D11.2-Evaluation-Protocols-Identified-Model-PU-M24.pdf
https://practice-project.eu/downloads/publications/Deliverables-Y2/D11.2-Evaluation-Protocols-Identified-Model-PU-M24.pdf
http://www.droid.net.in.tum.de/
https://arxiv.org/abs/1506.03471
https://tools.ietf.org/html/rfc6763
https://tools.ietf.org/html/rfc6762
https://tools.ietf.org/html/rfc6762
https://github.com/lathiat/avahi
http://www.grpc.io
https://developers.google.com/protocol-buffers/
https://www.rfc-editor.org/info/rfc7457

Bibliography 123

[45] V. Pai, “gRPC Design and Implementation,” 2016, Accessed on 2017/01/20. [Online].
Available: http://platformlab.stanford.edu/SeminarTalks/gRPC.pdf

[46] K. Damgård, “Fresco: BGW suite - consecutive IDs,” 2015, Accessed on 2017/03/05.
[Online]. Available: https://github.com/aicis/fresco/issues/2

[47] D. Oxenhandler, “Designing a Secure Local Area Network,” 2003, Accessed on
2017/01/14. [Online]. Available: https://www.sans.org/reading-room/whitepapers/
bestprac/designing-secure-local-area-network-853

[48] Google, “Perfkit - gRPC Performance Multi-language,” 2017, Accessed on
2017/01/25. [Online]. Available: https://performance-dot-grpc-testing.appspot.
com/explore?dashboard=5652536396611584

[49] Y. Ejgenberg, M. Farbstein, M. Levy, and Y. Lindell, “SCAPI : The Secure
Computation Application Programming Interface,” IACR Cryptology ePrint Archive,
no. 629, 2013. [Online]. Available: http://eprint.iacr.org/2012/629.pdf

[50] P. Bogetoft, D. L. Christensen, I. Damgård, M. Geisler, T. Jakobsen, M. Krøigaard,
J. D. Nielsen, J. B. Nielsen, K. Nielsen, J. Pagter, M. Schwartzbach, and T. Toft,
“Secure multiparty computation goes live,” Lecture Notes in Computer Science (in-
cluding subseries Lecture Notes in Arti�cial Intelligence and Lecture Notes in Bioin-
formatics), vol. 5628 LNCS, pp. 325–343, 2009.

[51] M. Ambrosin, P. Braca, M. Conti, and R. Lazzaretti, “ODIN: Obfuscation-based
privacy preserving consensus algorithm for Decentralized Information fusion in
smart device Networks,” CoRR, vol. abs/1610.0, October 2016. [Online]. Available:
https://arxiv.org/abs/1610.06694

[52] G. Cohen, I. B. Damgård, Y. Ishai, J. Kölker, P. B. Miltersen, R. Raz, and R. D. Roth-
blum, “E�cient multiparty protocols via log-depth threshold formulae (Extended
abstract),” Lecture Notes in Computer Science (including subseries Lecture Notes in
Arti�cial Intelligence and Lecture Notes in Bioinformatics), vol. 8043 LNCS, no. 2,
pp. 185–202, 2013.

http://platformlab.stanford.edu/Seminar Talks/gRPC.pdf
https://github.com/aicis/fresco/issues/2
https://www.sans.org/reading-room/whitepapers/bestprac/designing-secure-local-area-network-853
https://www.sans.org/reading-room/whitepapers/bestprac/designing-secure-local-area-network-853
https://performance-dot-grpc-testing.appspot.com/explore?dashboard=5652536396611584
https://performance-dot-grpc-testing.appspot.com/explore?dashboard=5652536396611584
http://eprint.iacr.org/2012/629.pdf
https://arxiv.org/abs/1610.06694

	Acronyms
	Introduction
	Objectives
	Research Questions
	Outline

	Background
	Privacy Preservation
	Failures and Risks in Common Practice
	Privacy Protection Goals

	Secure Multi-Party Computation
	Definition and Categorization
	Major Technologies
	Shamir's Secret Sharing
	BGW Protocol
	Adversary Model

	Choosing Fresco

	Analysis
	Use-cases
	UC.1: Smart Environments and Presence-aware HVAC
	UC.2: MeasrDroid

	Problem Statement
	Abstraction
	Architectural Commonalities
	Generalization Model

	Secure Multi-Party Computation as Building Block
	Model Compatibility and Deployment
	Prerequisites for Decentralized SMC Approach
	Solved Privacy Issues
	SMC as a Service: Problems and Challenges

	Requirements
	Privacy
	Security
	Deployment and Applicability

	Design
	Organization and Entities
	Hybrid Approach: Decentralization and Virtual Centrality
	System: Gateway, Peers and Service Clients
	Scope Limitation by Locality and Composite Pattern

	Core Components of Self-Managed Networks
	Discovery
	Pairing

	Robust Communication Approach
	Continuous Peer-side Connectivity and Recovery
	Gateway-side Monitoring and Handling

	Task Orchestration
	Conceptual Overview and Data Flow
	Generic Task Description
	Turning Tasks into Multi-Phase Jobs
	Executing Jobs

	Implementation
	System Architecture
	FlexSMC Implementation
	Design Facts
	Architecture and Components
	Task Orchestration

	Communication and Messages
	Used Techniques and Rationale
	Command and Control: Messaging between Gateway and Peer
	Inner-Host Communications

	Performance Evaluation
	Experimental Setup
	Network Organization and Roles
	Hardware and OS Details

	Methodology
	Primary Parameter
	Black-box Measurements
	Metrics

	Platform Performance
	Test Parametrization
	FlexSMC Layer
	Fresco Layer

	SMC Performance
	Test Details
	Results

	Requirements Assessment
	Privacy
	Security
	Deployment and Applicability

	Related Work
	Conclusion and Future Work
	Evaluation Details
	Phase-wise Round-trip Times for multiple Messages
	Table Statistics
	Single Message to FlexSMC Layer
	Multiple Messages to FlexSMC and Fresco Layer

	Bibliography

