
Technische Universität München
Department of Informatics

Bachelor’s Thesis in Informatics

A modular framework for a
collaborative solution for

privacy-preserving network
communication

Christian Brosche

Technische Universität München
Department of Informatics

Bachelor’s Thesis in Informatics

A modular framework for a collaborative solution for
privacy-preserving network communication

Ein modulares Framework zur gemeinschaftlichen Lösung
privatsphäre-erhaltender Netzwerkkommunikation

Author Christian Brosche
Supervisor Prof. Dr.-Ing. Georg Carle
Advisor Dr. Holger Kinkelin

Marcel von Maltitz, M.Sc.
Date August 12, 2015

Informatik VIII
Chair for Network Architectures and Services

I con�rm that this thesis is my own work and I have documented all sources and material
used.

Garching b. München, August 12, 2015

Signature

Abstract

In recent years, more and more information has come to light that shows that private
citizens are routinely targeted by government surveillance. This surveillance happens
in the form of internet tra�c inspection. Information that government agencies can
gain from this includes website accesses and internet communication – both written
and spoken.

There are already multiple approaches that try to help internet users protect themselves
from this kind of surveillance. However, even though some of them work well in
their restricted use case, there currently is no solution that o�ers the ability to protect
arbitrary tra�c. There is also no established solution that provides privacy for real time
tra�c such as voice over IP.

As a result, there is a need for an approach that helps protect internet users from
surveillance, isn’t as restricted in regard to protocols and is usable with real time tra�c.
This paper presents design, implementation and evaluation of the network underlay for
a system that provides these features. This system is called PrivacyBox. It allows users
to transfer both UDP and TCP tra�c privately. Other parts of the system are developed
in separate theses.

The concept uses a decentralized approach and works for networks of friends/contacts
that want to exchange information. It uses layered encryption as well as successive
relaying through multiple hops in order to hide information compromising privacy
from possible observers. The developed framework intercepts all tra�c and thus is able
to decide which tra�c is supposed to be transferred privately in a transparent way.

Zusammenfassung

Im Laufe der letzten Jahre wurde durch eine Reihe von Verö�entlichungen bekannt,
dass auch normale Bürger routinemäßig von Regierungen überwacht werden. Diese
Überwachung �ndet hauptsächlich in Form von Inspektion des Internet-Verkehrs statt.
Behörden können daraus unter anderem Informationen zu Webseitenzugri�en und
sowohl geschriebener als auch gesprochener Kommunikation erhalten.

Aktuell gibt es bereits einige Ansätze, die den Internetnutzern helfen wollen, sich vor
solcher Überwachung zu schützen. Obwohl diese Ansätze zum Teil guten Schutz für
den von ihnen gewählten Anwendungsfall liefern gibt es zur Zeit noch keine Lösung,
die beliebigen Internetverkehr schützen kann. Darüber hinaus gibt es auch noch keine
etablierte Lösung, die Echtzeittra�c wie z.B. Voice-over-IP schützen kann.

Deshalb ist ein Ansatz nötig, der Internetnutzern dabei hilft, sich vor Überwachung
zu schützen, der weniger Einschränkungen in Bezug auf kompatible Protokolle mit
sich bringt und der auch Echtzeittra�c schützen kann. Die vorliegende Arbeit stellt
Design, Implementierung und Evaluation der Netzwerk-Komponente eines Systems vor,
welches diese Eigenschaften besitzt. Dieses System heißt PrivacyBox. Es ermöglicht die
Übertragung von TCP und UDP tra�c auf eine Art und Weise, die Privatheit garantiert.
Weitere Komponenten dieses Systems werden in seperaten Arbeiten entwickelt.

Das hier vorgestellte Konzept verwendet einen dezentralen Ansatz und bietet Netzwer-
ken von Freunden bzw. Kontakten die Möglichkeit, auf private Art und Weise Daten
auszutauschen. Es verwendet mehrere Verschlüsselungsschichten und sukzessives Um-
leiten über mehrere Stationen, um private Informationen vor möglichen Beobachtern zu
verstecken. Das entwickelte Framework inspiziert jeglichen Internetverkehr. Deswegen
kann es ohne nötige Interaktion mit dem Nutzer entscheiden, welcher Tra�c normal
und welcher tra�c mit Privatheits-Eigenschaften übertragen werden soll.

I

Contents

1 Introduction 1
1.1 Problem statement . 2
1.2 Goals of the thesis . 3
1.3 Research questions . 3
1.4 Outline . 4

2 Background 5
2.1 Routing . 5
2.2 Network Security . 6
2.3 Privacy . 7
2.4 Basic technologies . 9

2.4.1 Public Key Infrastructure . 9
2.4.2 OpenVPN . 9
2.4.3 TLS/DTLS . 10
2.4.4 libnet�lter_queue . 11
2.4.5 Twisted . 11

3 Related work 13
3.1 Bitmessage . 14
3.2 Anonymous Proxies . 15
3.3 Tor . 16
3.4 VPNs . 18
3.5 Summary . 18

4 Analysis 19
4.1 Scenario . 19
4.2 Attacker model . 20

4.2.1 Passive attacks . 20
4.2.2 Active attacks . 21

4.3 Requirements . 21
4.3.1 Functional requirements . 21

4.3.1.1 Tra�c interception 21

II Contents

4.3.1.2 Tra�c di�erentiation 21
4.3.1.3 Application layer protocol extension 22
4.3.1.4 Providing Privacy . 22
4.3.1.5 Addressability . 22

4.3.2 Non-functional requirements 22
4.3.2.1 Performance . 23
4.3.2.2 Modularity . 23
4.3.2.3 Extensibility . 23

4.4 Solution processes . 23
4.4.1 Intercepting tra�c . 24
4.4.2 Di�erentiating tra�c . 24
4.4.3 Providing privacy . 25
4.4.4 Addressing users . 26

5 Design 27
5.1 Overview . 27
5.2 System design . 29

5.2.1 Tra�c interception module . 30
5.2.2 Tra�c inspection module . 31
5.2.3 Application layer protocol modules 31
5.2.4 Tunnel establishment module 31
5.2.5 Peer information module . 33
5.2.6 Server module . 33

5.3 Security . 34

6 Implementation 37
6.1 Tra�c interception . 37
6.2 Tra�c inspection . 38
6.3 Application layer protocol modules . 38

6.3.1 Abstract overview . 38
6.3.2 Exemplary module: HTTP . 39

6.4 Tra�c relaying . 40
6.4.1 Management module . 40
6.4.2 Tunnel module functionality . 40

6.5 Server module . 41

7 Evaluation 43
7.1 Performance . 43

7.1.1 Latency . 43
7.1.1.1 Tunnel length . 43
7.1.1.2 Simultaneous connections 48

7.1.2 Packet sizes . 48

Contents III

7.2 Security and privacy . 50
7.2.1 Passive attacks . 50

7.2.1.1 Passive local attacker 50
7.2.1.2 Passive global attacker 51

7.2.2 Active attacks . 52
7.3 Summary . 54

8 Conclusion and Outlook 55

Bibliography 57

IV Contents

V

List of Figures

1.1 NSA slide mentioning PRISM and Upstream 2

2.1 IPv4 header . 6

4.1 Abstract overview for the scenario . 20
4.2 Bamboo-like tunnel . 25
4.3 Telescope-like tunnel . 26

5.1 Scenario with module interaction . 27
5.2 Overview over an exemplary setup . 28
5.3 PrivacyBox modules . 30
5.4 Tunnel management module . 32
5.5 Client tunnel establishment . 35

7.1 E�ects of delay . 44
7.2 Intracontinental one-way delay for TCP tra�c 45
7.3 Intercontinental one-way delay for TCP tra�c 46
7.4 Intercontinental one-way delay for UDP tra�c 46
7.5 Intracontinental one-way delay for UDP tra�c 47
7.6 One-way delay for simultaneous connections 48
7.7 Packet sizes . 49
7.8 Overhead . 50

VI List of Figures

VII

List of Tables

3.1 Overview for presented services . 18

7.1 Overview for presented services – revisited 54

VIII List of Tables

1

Chapter 1

Introduction

Ever since the public disclosure of secret NSA documents by Edward Snowden there
has been an increased awareness of privacy in the Internet. Many journalists and media
organizations started covering the leaks and tried to discern the extent to which the US
agency was spying on ordinary people.

One system that received a lot of attention is PRISM. It allows the US agencies to receive
information from private companies such as Google, Yahoo and Facebook. This is
something that internet users can easily understand and be angry about: By using
Google’s mail service you shouldn’t automatically provide all your emails to the NSA,
too.

What is at least equally alarming is another program that was mentioned on these
slides, but wasn’t covered as extensively: It is called Upstream and it is tasked with the
“collection of communcations on �ber cables and infrastructure as data �ows past.” (cf.
Figure 1.1) [1].

This program is proof of the NSA’s capability of intercepting all tra�c going into and
out of the country, inspecting and possibly storing it [2]. The intercepting capabilities
of the NSA are not limited to domestic tra�c though, as they collaborate with foreign
government agencies in order to get access to certain tra�c intercepted by these agen-
cies, too. One example of such a foreign agency is the german BND. The extent to which
the BND provided the NSA with access to tra�c is currently investigated by an NSA
investigation committee (NSA Untersuchungsausschuss) [3] appointed by the German
Bundestag.

When faced with the fact that the internet tra�c of ordinary internet users is routinely
intercepted, analyzed and possibly stored the question arises of how users can try to
retain their privacy while using the internet.

2 Chapter 1. Introduction

Figure 1.1: NSA slide mentioning PRISM and Upstream

1.1 Problem statement

There are already a few (partial) solutions for this problem. Using encryption when
transferring data over the internet is a basic one. HTTPS is one example for this. Usually,
the decision if encryption is used or not does not lie in the hands of the users though. An
internet service has to provide this option. Additionally, this only protects the content
that is being transferred through the internet. Metadata such as IP address and time is
still available in the clear. The NSA still knows who accesses which content, when and
from where.

What is needed is a way to both hide the content and the metadata. There are already
various approaches that try to do this. But none of the currently available ones provide
a comprehensive solution enabling a user to gain privacy for all of his or her internet
tra�c. Tor [4], the most prominent current approach only solves this problem for
TCP-based protocols such as HTTP.

One major use case that is lacking in a privacy providing solution is voice over IP (VoIP)
communication. Even though more and more telecommunications companies strive to
switch over to VoIP completely (cf. [5]), as of yet there is no reliable way to establish a
VoIP call during which both content and metadata stay hidden.

1.2. Goals of the thesis 3

1.2 Goals of the thesis

This thesis will present the core for a Tor-like network overlay through which TCP-
and UDP-based application layer protocols can be tunnelled. It focuses on tunnel estab-
lishment and is called PrivacyBox. An HTTP-module that allows accessing a webserver
through the network overlay will be developed as a proof of concept. Additional mod-
ules for application layer protocols [6] and a solution for address resolution as well as
authenticating the overlay network participants [7] are developed in seperate theses.

1.3 Research questions

The most basic question one has to ask is: How can a privacy providing peer-to-peer
network underlay be built? From this, several follow-up questions arise:

• To what extent do existing technologies solve the problem?
Some existing technologies have goals similar to the ones set for the system
introduced in this thesis. These technologies will be examined for their advantages
and disadvantages.

• What exactly does the network need to provide?
In order to reach the goals, it has to be clear what attackers the system faces and
what functionality it needs to provide.

• What can the architecture look like?
The architecture of the system should be designed in a way that best supports its
goals. It will be described accordingly.

• How can the tra�c be intercepted?
The system needs to be able to intercept all tra�c coming from a device that
wants to use the privacy network.

• How can the system di�erentiate between normal and privacy-tra�c?
As the system intercepts both tra�c that is bound for the privacy network and
normal internet tra�c, there needs to be a way that allows distinguishing the
two.

• How can the tunnels be established?
Tunnels are the privacy providing connections between multiple PrivacyBoxes.
How they can be built in order to provide the properties essential for this system
is a central question.

• How does address resolution work? (cf. [7])
Users of the system need to be able to connect to other users. For this it is
necessary to resolve the addresses of other participants.

4 Chapter 1. Introduction

• How can participants be identi�ed and authenticated? (cf. [7])
Users that want to exchange information need to be able to identify and authen-
ticate each other in order to be cartain that the exchange is happening with the
right contact.

1.4 Outline

Chapter 2 will provide some basic background information that is necessary in order
to understand the rest of the thesis. Chapter 3 discusses related work and introduces
concepts such as VPN (section 3.4) or Proxies (section 3.2), but also tools like Bitmessage
(section 3.1) and Tor (section 3.3). Chapter 4 presents a thorough investigation of
what is needed in order for the presented system to work. Chapter 5 introduces the
system design based on the information of the previous chapter. Chapter 6 explains
the concrete implementation of the system following this design. In order to be able to
make a statement about the extent to which the introduced system succeeds, Chapter 7
presents the results of an evaluation of the system both in regard to performance
(section 7.1) and privacy/security (section 7.2). The �nal chapter 8 concludes the thesis,
summarizes its insights and provides a perspective for further work.

5

Chapter 2

Background

This chapter will provide an introduction to some basic topics related to this thesis. This
will help understanding the later chapters.

The chapter starts with explaining the way data is transferred in the internet and also
highlights certain special cases in this area. After that, there will be a section that gives
an overview of some ways in which the data that �ows through the internet can be
provided with certain security properties. The last part of this chapter then provides a
description of some ways that can reduce an internet user’s online privacy.

2.1 Routing

Letters and parcels which are sent through the mail service need unique identi�ers
for their sender and recipient in order to be delivered to the correct address. In the
same way, source and destination of packets sent through the internet also need to be
uniquely identi�able. The two main protocols that are currently responsible for this
task are the Internet Protocol [8] (IPv4) and the Internet Protocol, Version 6 [9] (IPv6).
Both protocols use globally unique identi�ers in order to ensure that packets are sent to
the right destination. Figure 2.1 shows the content of an IPv4 header. It contains more
information than just the IP addresses, but for the purposes of this thesis, it is enough
to focus on them.

An IP address is a number that is assigned to a device. Most IP addresses are assigned
by internet service providers. IP addresses can be dynamic, but in order to be globally
routable, they have to be globally unique at all times. Given an IP address, a device that
wants to send data to another device can assemble the IP header and send the packet on
its way. During its travel, the packet is relayed by routers until it reaches its destination.
Every router inspects the destination IP address in the IP header and decides on the

6 Chapter 2. Background

next hop based on it. In case of transmission problems, routers inform the sender of the
packet by sending a message back to the source address listed in the IP header.

This setup implies that every router between sender and recipient knows who - or more
speci�cally which IP - is exchanging data with whom. Beyond that, routers are not
restricted to only accessing the data in the IP header. For various reasons it might make
sense for an ISP or other actors to try and get more information out of the tra�c by
inspecting other headers or even the payload. This is called Deep Packet Inspection.

0 7 8 15 16 23 24 31

Version IHL DSCP ECN Total Length

Identi�cation Flags Fragment O�set

Time To Live Protocol Header Checksum

Source IP Address

Destination IP Address

Options

Figure 2.1: IPv4 header

2.2 Network Security

The modern internet is a dangerous place. News about corporations being hacked are
commonplace and information can leak in an abundance of ways. Some threats that
have to be faced are (cf. [10]):

• Spoo�ng: An entity claims to be another entity.

• Eavesdropping: An entity accesses information not intended for it to read.

• Loss or modi�cation of information: Data is altered or destroyed.

• Forgery of information: An entity creates information in the name of another
entity.

• Denial of service: An entity tries to reduce the availability of a system.

The approaches brought together under the term Network Security try to counteract
these threats. In order to do this, they try to achieve several security goals (cf. [10]:

2.3. Privacy 7

• Con�dentiality: Only the intended recipient should be able to read transmitted
data.

• Integrity: It should be possible to detect modi�cation of data.

• Authenticity: It should be possible to verify the origin of transmitted data.

• Availability: Services should be accessible at all times.

Con�dentiality, Integrity and Authenticity can be achieved by employing cryptographic
techniques, while guaranteeing availability is almost impossible. If the data sent from
one entity to another through the internet is not supposed to be readable for anyone in
between, it can be encrypted in transit. For Integrity, cryptographic hash functions can
be used. Integrity and Authenticity are mostly provided at the same time, either by using
Message Authentication Codes or by using digital signatures over hashes. Availability
depends more on e�cient implementations and measures that try to recognize attacks
like denial of service.

2.3 Privacy

Privacy is something many people inherently value. Be it an entry in a diary, a letter
to a far away lover or the balance of a bank account - there are a lot of things where
privacy can matter.

According to a survey done by Statista in Germany in 2011 [11], 61% of internet users
take special care about internet privacy while 33% at least view it as important. Two stud-
ies done by Pew Research in 2015 come to similar conclusions and �nd that “Americans
feel privacy is important in their daily lives” [12].

Nowadays, a big amount of once assumed to be private interaction happens on the
internet. We chat, post and talk with each other through a medium that makes it
possible to record each and every of these interactions.

Comparing the amount of information that can easily be gathered about one single indi-
vidual in pre-internet and current times shifts the weight heavily towards the present. In-
ternet tra�c provides an abundance of information, can be easily recorded and searched
and theoretically be stored for an unlimited amount of time. According to leaked NSA
slides [13], a system called XKEYSCORE stores all collected content for 3-5 days and all
collected metadata for up to 30 days. This “gives analysts unique access to terabytes
of content and meta-data” [13]. The amount of time all content and metadata can be
stored increases with advances in data storage technology. An internet user has almost
no way of knowing if his or her tra�c is being recorded and is very limited in trying to
avoid it.

8 Chapter 2. Background

There are two kinds of data that can leak private information and they can be compro-
mised in two di�erent ways. The two kinds of data are packet headers - the metadata -
on the one hand and the information that is contained in the application layer data on
the other.

Application layer data can provide in�nite possibilities for compromising privacy. As
anything can be the content of an application layer packet, any kind of information
could be contained in one. An example for this is HTTP tra�c. By using cookies and
other technologies, a user can be tracked during visits to di�erent websites without
noticing. This allows online advertising companies to target the ads the user sees in a
more precise way and thus be able charge more money for ad impressions. How much
private data application layer data leaks is completely dependent on the protocol and
its use though. No website is forced to employ these techniques and gather this data.
Application layer data does not inherently contain private information. Its content also
varies very strongly, which makes it a lot harder to automatically make meaning of it.

In contrast to that, the data contained in headers is needed for the internet to function.
In many cases it can also be used to compromise privacy. A prominent example for that
is the IP address that is contained in an IP header. As already mentioned, it needs to be
globally unique at the time it is used. This leads to the ability to unambiguously address
computers on the internet which is very desirable. A side e�ect of this is that everyone
that monitors the tra�c knows exactly when which IP address exchanged information
with which other IP address. If the entity, monitoring the tra�c, can also connect the IP
addresses to persons or websites, for example, this already reveals a lot of information.

The two ways in which both application layer data and metadata can be compromised
are during transit and at the end hosts. Generally both kinds of data can be accessed in
both ways.

Preventing these attempts naturally requires di�erent courses of action. First of all,
application layer data can be encrypted in transit. Assuming that current encryption
technology can not be broken by even the most powerful attacker, this makes it un-
readable for anyone but the sender and the recipient. In order to additionally keep
private data from leaking to the recipient, a user can �rst of all be careful not to put it in
there. He or she can also employ various techniques to try and remove data that could
possibly uniquely identify him or her. One example for this in a web context would
be deactivating �ash and/or javascript, another example would be the use of certain
browser plugins.

Preventing metadata from being accessible and sent through the internet is not possible.
If the source IP address of a packet is not the one that is currently owned by the machine
sending the packet, no answer will ever arrive. In this case the approach is to try and
make the information that tells an observer that one entity exchanged data with another
entity less meaningful. One example for this is to undergo steps that prevent the observer

2.4. Basic technologies 9

from being sure if the observed recipient was really the recipient of the content of the
message and the observed sender was really the inital sender of the message.

2.4 Basic technologies

The following chapter presents various approaches that try to improve internet user’s
privacy. Before that, this section introduces concepts and terminology developed in
previous work that this thesis builds upon.

2.4.1 Public Key Infrastructure

The system developed in this thesis builds upon X.509 [14] certi�cates for encryption
and authentication. However, certi�cates aren’t issued centrally in the same way as
for example the certi�cates issued by certi�cate authorities that are mostly used for
HTTPS-servers. Instead, every user operates his or her own private certi�cate authority
using tools like OpenSSL [15].

This certi�cate authority is used in order to issue certi�cates for all devices in the local
network that need to be authenticated by other users. This may just be client devices
like PCs or smartphones, but could also be something like a local webserver. By issuing
a certi�cate for these devices, they can be authenticated as being run by the same user
that operates the issuing certi�cate authority.

This alone does not help anyone authenticating any device yet. For this to work, a
trust exchange is needed. This means that two friends or acquaintances can conduct
a procedure during which they authenticate each other and exchange certi�cates for
their certi�cate authorities (cf. [16]).

These certi�cates then act as something similar to root certi�cates. If a service or client
run by one contact wants to authentify itself to the other contact, the second one can
just check the provided certi�cate against the certi�cates of all his contacts. If the
provided certi�cate is valid and was issued by a certi�cate authority run by one of the
contact’s, the authentication can be accomplished.

Of course, this system entails the fact that only contacts that know each other can
authentify each other. In a system that is supposed to provide privacy to its users, this
is a desirable property.

2.4.2 OpenVPN

OpenVPN is a software that allows the creation of virtual private networks. It is open
source and can be used for both connecting single clients and whole networks [17].

10 Chapter 2. Background

OpenVPN makes it possible to exchange data with a remote device or network as if the
remote device or network were directly connected to the local device using OpenVPN.

It creates a virtual TUN interface in case of an IP tunnel (a routed tunnel) or a TAP
interface in case of an ethernet tunnel (a bridged tunnel) [18]. These interfaces look
like regular network interfaces to the operating system, but push the received packets
into userspace. The OpenVPN software running in userspace then opens these devices
like a �le and thus is able to read from and write to them. Additionally, it creates a UDP
(or possibly TCP) connection to a remote OpenVPN device. Packets entering the TUN
(or TAP) device will then be sent over the UDP (or TCP) connection, received at the
other end and �nally written to the TUN (or TAP) interface there. This creates a setting
in which both machines seem to be directly connected or connected to the same local
network, even though the tra�c is sent through the open internet.

OpenVPN doesn’t only provide the ability to create these seemingly local network con-
nections, but it also equips the tra�c that is sent through the internet with encryption
and authentication. This works by either using pre-shared static keys or TLS. For TLS,
OpenVPN relies on the OpenSSL library. Even though OpenVPN is mostly used over
UDP it doesn’t use DTLS but creates a reliable UDP connection for the TLS connection.

2.4.3 TLS/DTLS

TLS [19] and DTLS [20] are cryptographic protocols that provide encryption, authen-
tication and integrity to TCP and UDP connections respectively. TLS is the successor
of SSL, which was �rst introduced by Netscape in 1995 [21]. The current version of
TLS is 1.2. DTLS was developed in 2004 [22] in order to provide UDP with the security
features that TLS o�ers. Its current version is DTLS 1.2.

TLS and DTLS provide their features by building on various cryptographic concepts.
These include X.509 certi�cates, symmetric and asymmetric cryptography and message
authentication codes.

The DTLS handshake and protocol are conceptually very similar to TLS, but employ var-
ious additional techniques in order to overcome problems resulting from the unreliable
nature of UDP.

A wide variety of cryptographic algorithms is supported. Which algorithms are used
depends on which are supported by the devices doing the handshake and are agreed upon
during it. The handshake might vary in certain aspects depending on the algorithms
used and the extent of authentication required (none, one-sided or two-sided). This is
re�ected by the chosen ciphersuite. While developing and testing the prototype, the
ciphersuite, TLS_RSA_WITH_AES_256_CBC_SHA256 was used.

The name of the ciphersuite includes the various algorithms used. RSA is used for

2.4. Basic technologies 11

asymmetric encryption, AES-256 in cipher block chaining mode is used for symmetric
encryption and SHA-256 is used for the MAC, which provides integrity and authentica-
tion.

X.509 certi�cates include various information about the party that they are issued for.
Most importantly they include a public key of their owner as well as a signature by a
trusted third party, in this case called a certi�cate authority (CA).

When starting a session that is secured by TLS or DTLS, a handshake takes place. During
this handshake, various parameters as well as the certi�cates get exchanged. Then, both
parties create various cryptographic keys. These keys are then used to encrypt the
following data packets and to verify their integrity and authenticity.

For the implementation of secure connections between PrivacyBoxes, the default python
ssl module is used in order to bring TLS to TCP connections. As there is no standard
python module that supports DTLS, the PyDTLS package [23] is used for securing UDP
connections.

2.4.4 libnet�lter_queue

libnet�lter_queue is a library providing user space access to network packets queried
by the linux kernel [24]. It allows inspecting and reacting to the queried packets with a
userspace program.

This works by creating iptables rules that queue the desired packets. The userspace
program can then receive all packets forwarded by the kernel to the queue by opening
a socket on it.

The userspace program can decide what to do with the packet. Options include dropping
or accepting the possibly modi�ed packet.

In order to use libnet�lter_queue with python, the nfqueue-bindings [25] package is
used. It provides bindings to the libnet�lter_queue library for python and perl. For
processing a packet, a callback function is passed to the queue. It is called for every
packet and receives the content of the packet as a parameter.

2.4.5 Twisted

Twisted [26] is an event-driven networking framework for python. It provides high-
level abstractions for easy and fast development of e�cient networking applications,
but also allows lower level interaction with network sockets.

The central element of the twisted framework is the reactor. This reactor follows

12 Chapter 2. Background

the reactor design pattern [27] which allows it to handle concurrent connections syn-
chronously.

In addition to the reactor, twisted uses two other central concepts: factories and proto-
cols. Factories are a design pattern used in object oriented programming. A factory is
itself an object, which is used to create other objects.

The twisted way of writing a networking application is the following: A protocol de-
scribes how a server or client is supposed to react to incoming packets or established
connections. The protocol might inspect the content of the packet and react depending
on it, or it might always react in a prede�ned way independent of the content. A fac-
tory [28] has a reference to one speci�c protocol. If necessary, the factory creates an
object of that protocol, for example when a new incoming connection is established on
a server. But before this can happen, the factory needs to be subscribed to the reactor.
In order to do this, an instance of the factory is created and subscribed to the reactor
through one of various methods, depending on the type of connection.

If there are multiple connections simultaneously, the factory just creates new protocol
objects for every connection and the reactor handles the correct processing of the
packets.

Because of its event-driven nature, twisted relies heavily on callbacks. In fact, for an
application to properly work with twisted, the whole application needs to be developed
in an event-driven way. The reason for this is that the inital call that starts the reactor
is of a blocking nature. This means, that after the reactor has been started, only code
that somehow subscribes to it and is called from it via a callback, is executed.

In the case of the PrivacyBox, this included the fact that the net�lter_queue had to be
subscribed to the reactor via a socket.

13

Chapter 3

Related work

There are already various approaches that try to preserve privacy on the metadata-
level, even though the architecture of the internet makes this a di�cult task. Their
common goal is hiding or obscuring the fact that an entity is accessing a certain service
or connecting to a certain other entity. In some cases, they also provide additional
encryption whereas in others, the data is left unchanged.

An attacker, who is interested in the data found in packet headers, wants to know who
accessed which service at what time. In general, there are two ways to try and prevent
the possibility of making reliable conclusions regarding this information based on the
packet metadata:

• Proxying: The user sends encrypted data to a third party which relays it to the
target service and back. Depending on the kind of third party, this can make it
hard for the observer to deduce which user connects to which service.

• Multicasting/Broadcasting: All data is encrypted and sent to a group of/all users
within a privacy providing system.

With proxying, the observer can know that a user sent something, but not as easily
know to whom; the observer can also know that a service received something, but not
as easily know from whom. Both of these conclusions can be made harder or even
prohibited by using additional techniques.

With Multicasting/Broadcasting, an observer can know that a user sent something but
not who received the content. Or to be more precise: the observer sees that multiple/all
other users received something, but he or she can’t be sure who was the intended
recipient. This is generally combined with cryptographic techniques, which also makes
sure that only the intended recipient is able to make sense of the received data.

In the following, various existing approaches to provide privacy for (parts of) a user’s
internet tra�c will be presented. An approach relying on Multicasting/Broadcasting

14 Chapter 3. Related work

will make a start, followed by approaches relying on proxying.

3.1 Bitmessage

Bitmessage [29] is a messaging system that provides privacy to all messages exchanged
with it. It does so by using the Broadcast technique.

The goal of Bitmessage is to provide “a communications protocol and accompanying
software that encrypts messages, masks the sender and receiver of messages from others,
and guarantees that the sender of a message cannot be spoofed, without relying on
trust and without burdening the user with the details of key management.” [29]. The
paper states email, PGP/GPG, the X.509 system and Tor as technologies that it wants to
improve upon.

The stated problems with these technologies are that they are either insecure (email),
di�cult (PGP/GPG) or vulnerable (Tor, because it uses X.509). In general the argument
is that one cannot anonymously send secure mail-like messages by using these existing
and widely used technologies. Even in a setting of using PGP/GPG for encryption and
Tor for anonymity, the connection to the mailserver is secured through HTTPS/TLS,
which relies on the X.509 system. The X.509 system is considered not trustworthy by
the paper’s author. As reason he states the big number of root certi�cates that are
inherently trusted by browsers and operating systems. Speci�cally the fact, that the
compromise of one of the Certi�cate Authorities owning such a root certi�cate would
possibly compromise the whole system.

Bitmessage provides an approach that tries to solve these problems. Bitmessage’s focus
is on providing anonymity to its users.

Bitmessage uses public key cryptography for encryption. A user can create one (or
multiple) identities. Each identity will have its own public-private-key pair. The identity
will be represented in the network by a hash from the public key. This hash also
acts as the Bitmessage-address. As a result, identities cannot be spoofed. They also
remain anonymous as long as no connection between hash and real identity is made.
Authentication is possible by comparing hashes, in a manner similar to PGP/GPG.

The Bitmessage client is connected to between eight and 50 other clients at any time. As
every client in the Bitmessage network gets every message, the connected clients send
each other all messages that they receive and that the other party doesn’t already have.
This way the network is �ooded with the messages until every peer is in posession of
it. There are four kinds of objects that can be sent through the Bitmessage network:
public key requests, public keys, person-to-person messages and broadcast messages.

Knowing the ID of a user, his or her public key can be queried. A message is sent by
encrypting it with this public key and sending it into the network. Every peer, including

3.2. Anonymous Proxies 15

the intended recipient, receives the message. Every peer will also try to decrypt the
message, but only the intended recipient will be successful.

As a result of every Bitmessage user receiving every message that is sent, the scalability
of the system has to be considered. In order to cope with these issues, Bitmessage
uses streams: Once a certain threshold is reached, the network is split up into multiple
streams. Messages are then only sent to every peer inside the stream of the recipient.
This sets an upper bound for the amount of possible recipients of a message and thus
may hinder privacy. The scalability issues would also be ampli�ed considerably by VoIP
tra�c, as every user in a stream would need to receive and try to decrypt all telephony
tra�c sent in the stream.

Bitmessage is still in its beta phase and thus not ready for use in a scenario where
privacy or anonymity are of paramount importance. Examples for weaknesses are:

• The use of a traditional public-key encryption scheme without perfect forward
secrecy. Particularly important in this case, as everyone receives every message
without having to be able to intercept it in the �rst place. If a private key is
compromised, an attacker can decrypt all previously received messages addressed
to this private key.

• No link layer encryption. This leads to observers being able to see that a parti-
cipant sent a certain kind of object. If no such object was previously seen sent
to the participant for relaying, the observer can be certain that the participant
is the originator. Depending on the type of object this may lead to a privacy
compromise.

Bitmessage shows an interesting approach to providing privacy in the internet. Given
the existing weaknesses and a considerable slowdown in development, it may have to
be considered more as a proof of concept than a real usable approach.

In the context of this paper the Bitmessage approach does not provide the properties
needed to ful�ll the goals. The main reason is that Bitmessage is not suited for real-time
tra�c. The amount of time it takes for a message to reach its destination can vary
greatly. Additionally a proof of work has to be calculated when sending a message
which further lengthens the process. Bitmessage also does not support privacy for
arbitrary kinds of tra�c.

3.2 Anonymous Proxies

One tool to achieve a basic level of privacy are Anonymous Proxies. In general, they
work in the following way: A user connects to the proxy, sends the data to the proxy
and the proxy then relays it to the intended recipient. A response is sent to the proxy,
which in turn relays it to the origin of the �rst connection. This prevents the operator

16 Chapter 3. Related work

of the target service from �guring out who is accessing the service. If the connection
from the initiator to the anonymous proxy is encrypted, it also prevents an observer
from easily �guring out which service the initiator is accessing. The reason for this
is that it is assumed that the anonymous proxy is relaying a lot of tra�c for a lot of
di�erent initiators and that this makes it hard to connect the encrypted tra�c from the
initiator to the relayed tra�c from anonymous proxy to destination.

The big problem with anonymous proxies is that the user has to put a lot of trust into
the provider of the proxy. At the proxy, all tra�c is visible. If the proxy is somehow
compromised, this puts the user in an even worse spot than without an anonymous
proxy, because potentially all tra�c is now sent through the proxy and conveniently
accessible for the attacker. Beyond that, an attacker might be able to correlate connec-
tions from a user to a proxy with connections from the proxy to the endhost even if
the proxy is simultaneously used by many di�erend users. Other problems are that
these proxies mostly only work for selected tra�c and that each application has to be
con�gured and con�gurable to work with them.

3.3 Tor

A concept that builds upon the idea of anonymous proxies and is currently the most
popular of the privacy tools available [30] is Tor [4]. Fundamentally, it uses multiple
anonymous proxies connected in series. It uses this setup combined with a number
of other techniques in order to achieve various privacy features. In the following, the
central techniques and their purpose will be explained.

Tor introduces an overlay network that allows clients that connect to it both to access
websites and TCP-based services (as well as DNS) in the traditional internet as well
as those that are hosted inside the Tor overlay network. When accessing a website or
a service in the traditional internet through Tor, a user can be fairly certain that the
fact of this access is not easily visible for anyone observing his or her tra�c. A service
that is hosted inside the Tor network also achieves an amount of privacy for itself, as
it is made hard to �nd out the original IP address of the service. But how does it work
exactly?

Tor builds upon multiple building blocks that interact in a way that achieves certain
privacy features. These building blocks are:

• Onion Proxies: Run on the user’s device.

• Onion Routers: Are responsible for relaying data.

• Hidden Services: Provide services inside the Tor network.

All Onion Routers (OR) in the Tor network are connected to each other. Some of the

3.3. Tor 17

ORs also act as directory servers from which information about available ORs can be
requested. An Onion Proxy (OP) can connect to an OR and request that a circuit is
started. This means that the OP and the OR start a cryptographic exchange that results
in both sides being in posession of a key that is used to encrypt all further tra�c. Once
this is done, the OP can request the circuit to be expanded by telling the OR to start
a new exchange with a second OR. In order to do this Tor introduces its own packets,
called cells. This enables ORs to distinguish the purposes of received packets. If the OR
wants to extend the circuit, a corresponding cell is sent. After the second exchange - in
which the �rst OR acts purely as a relay for encrypted tra�c - is done, the OP has agreed
on two di�erent keys, one for each OR. The circuit can be extended further analogously.

Tor uses a minimum of three relay nodes. Once a long enough circuit has been estab-
lished, data can be sent through it. The data is thus encrypted multiple times, once for
every relay node. There are also multiple cells added, because every relay node needs
to know what to do with the received packet. If a user accesses the traditional internet
via Tor through three relay nodes, the �rst relay node receives some data, decrypts it,
sees that the packet is supposed to be relayed and relays it to the next hop. This is done
at every following relay node. In the end, the real tra�c is sent from the last relay node
to the intended recipient - for example a web server. Only the last relay node can see
the application layer data.

This way, the operator of the website or internet service only sees the connection
originating from the last relay node and does not know anything about the real sender.
An observer also has a hard time following the tra�c �ow, because a relay node has
connections to multiple other relay nodes. If the observer sees tra�c entering the Tor
network from a target, he or she generally can not be sure to which second and third
hop this tra�c is relayed and thus not follow the tra�c to its destination.

When accessing a hidden service, an additional concept comes into play: rendezvous
points. Rendezvous points are ORs that are advertised by the hidden service through
Tor itself. The hidden service has standing circuits to all its current rendezvous points.
An OP that wants to access a Hidden Service can �nd out which rendezvous points are
available and build a circuit to one of them. This way neither the Hidden Service nor
the OP know with whom they are exchanging data.

Tor improves upon many of the problems anonymous proxies bring with them. The
service is distributed and there is no single entity having access to all relayed tra�c.
Correlation is also made considerably harder because the tra�c would need to be
correlated at multiple hops. Tor still only works for selected tra�c though and needs
applications to support certain protocols in order to use it.

18 Chapter 3. Related work

Service Type of tra�c Real-time Third party has access
Bitmessage Only Bitmessage No No
Proxies Limited Yes Yes
VPN All Yes Yes
Tor Only TCP No No

Table 3.1: Overview for presented services

3.4 VPNs

VPN providers like Hide My Ass [31] and similar services try to provide a solution that
is conceptually similar to anonymous proxies. The user still connects to a server which
relays all data that it receives to the originally intended destination. Here, encrypting
tra�c to the VPN servers is the default. Most importantly though, VPN software can
create a virtual network device which allows sending all tra�c leaving a user’s device
through the proxy without the need to con�gure anything in client applications.

The tra�c is still visible at the server on which the VPN service is running. In this
regard, VPNs have the same problem as anonymous proxies: A compromise of the VPN
server leads to easily accessible user tra�c. As with an anonymous proxy, using a VPN
also still might allow an attacker to correlate connections.

3.5 Summary

The presented solutions all have their use cases in connection to that their advantages
and disadvantages when it comes to certain requirements.

Bitmessage provides privacy through broadcasting or multicasting. But the provided
privacy is limited by the stream sizes. Beyond that, it has issues regarding its use of
encryption. It is also not usable for real time communication.

Proxies and VPN services take a simple relaying approach. This might achieve some
basic privacy when faced with weak attackers, but it can not be considered a real
solution: Both approaches entail the fact that a third party has access to all tra�c
sent and received. This entails the necessity of trusting the third party in multiple
ways: Trust it to not inspect the tra�c itself, trust it to not let itself be forced to reveal
information and trust it to not be compromised by an attacker.

Tor expands on the relaying approach by using multiple proxies strung together. It is
well established and considered a sturdy solution. It is restricted by the fact that it only
supports TCP tra�c and that it doesn’t work reliably for real time tra�c.

Table 3.1 shows the central aspects for each service.

19

Chapter 4

Analysis

The following chapter will start by describing a scenario that showcases the usage of the
proposed system. Building upon that, the possible attackers that need to be considered
are presented. The rest of the chapter then focuses on the requirements that the system
needs to ful�ll in order to meet its goals. The chapter is concluded with an examination
of various ways of meeting these requirements.

4.1 Scenario

The following description uses terminology common in cryptographic literature. Alice
and Bob represent arbitrary end users.

User Alice wants to exchange data with user Bob. Alice and Bob know each other.

They have previously exchanged cryptographic certi�cates issued by their privately
operated certi�cate authorities. This is based on the requirement that every user runs
his or her own certi�cate authority. The exact process of this certi�cate exchange can
happen in a variety of ways (cf. [16]).

Additionally, Alice and Bob (and every other user of the system) are registered in a
distributed hash table (DHT). A user can resolve the current IP address of a contact
by querying the DHT for H(pubkey) (this is currently developed in a seperate thesis,
cf. [7]).

The tra�c exchange between Alice and Bob can for example be in the form of accessing
a website, engaging in voice over IP communication or sharing access to a �leserver. In
some cases, their roles are equivalent (e.g. VoIP), in others both of them have di�erent
roles (e.g. accessing a webserver). Alice and Bob want their exchange to be private. They
also want to be able to use any of their devices for the exchange. While communicating

20 Chapter 4. Analysis

Private channel

Browser Webserver

VoIP App VoIP App

Alice's domain Bob's domain

Figure 4.1: Abstract overview for the scenario

privately using the presented service, Alice and Bob also want to still be able to use the
internet for unrelated activities in its conventional way.

Figure 4.1 shows an abstract overview of this setup. Some parts of the system shown
in this �gure are left blank - these are the parts that are going to be developed in this
thesis. Questions that arise when confronted with this setup include: How can the
VoIP- or Browser-tra�c be intercepted? How can it be inspected? How can the system
deduce that a connection is supposed to be made privately? How can users even address
each other? And �nally: How can the connection be equipped with privacy providing
properties?

4.2 Attacker model

Alice and Bob want to exchange data privately, but privacy is not an absolute term.
Building on the information from the earlier chapter about privacy, it is �rst necessary
to de�ne what kinds of privacy compromises the proposed system might have to face.
How well the system fares with the di�erent kinds of attackers will be described in
chapter 7.

4.2.1 Passive attacks

In a passive attack, the attacker tries to compromise privacy without actively interfering
with the data. A passive attacker tries to gather information by inspecting timings,
packet sizes and other characteristics internet tra�c can have. The attacker can also
gain knowledge by inspecting information located in unencrypted packet headers. The
power and vision of a passive attacker can vary widely. On the one end of the spectrum
the attacker may only have access to tra�c at one speci�c location. This might happen
if there is a compromise of a local network. In this case, the attacker might be able to

4.3. Requirements 21

intercept tra�c by using techniques such as ARP spoo�ng. On the other end is the
global observer, which is an attacker that is assumed to be able to inspect huge amounts
of internet tra�c simultaneously. A global observer has the ability to intercept tra�c
at various internet junctions.

4.2.2 Active attacks

An active attacker does not only inspect tra�c, but also tries to break into the system.
An active attacker may for example alter data in transit, introduce additional tra�c
into the system or replay tra�c that was sent through the system. Same as for the
passive attacker, the active attacker’s power may vary widely. It is generally assumed
that standard encryption technologies can not be broken even by the most powerful
active attacker if used correctly. An active attacker might for example try to exploit
�aws in the software by sending specially crafted packets. He or she might also try
to gain information by introducing additional packets or altering valid ones and then
observing the behavior of the system.

4.3 Requirements

The described scenario leads to certain requirements that need to be met. These can be
split into functional and non-functional requirements.

4.3.1 Functional requirements

The following requirements need to be met in order to provide the basic functionality.

4.3.1.1 Tra�c interception

The system needs to be able to intercept all tra�c coming from a client. This is important
because Alice and Bob should not be inherently prevented from using the service in any
arbitrary setting. This does not mean that any arbitrary setting is supported from the
start. Additionally, this makes it possible to be sure that no tra�c, that should be routed
through the privacy network, can accidentally leave the device in the clear. If all tra�c
is routed through the privacy providing device, all tra�c can be dealt with adequately.

4.3.1.2 Tra�c di�erentiation

Furthermore, the system needs to be able to inspect the intercepted tra�c and react to it
appropriately. It needs to be able to distinguish normal internet tra�c from tra�c that

22 Chapter 4. Analysis

should be provided with privacy properties. For normal tra�c, Alice and Bob should be
able to transparently continue using the conventional internet. For privacy tra�c the
system needs to distinguish between di�erent application layer protocols and react to
the supported protocols with the required functionality.

4.3.1.3 Application layer protocol extension

The system works by intercepting tra�c and di�erentiating it based on the supported
application layer protocols. Because of that, there needs to be a way to provide func-
tionality that is tailored to a speci�c application layer protocol. This means providing a
simple way of integrating support for new application layer protocols into the system.

4.3.1.4 Providing Privacy

Most importantly, a way that provides privacy to the tra�c that is sent through the
proposed system needs to be in place. This means that when Alice and Bob decide
to engage in a private data exchange, this exchange should be equipped with certain
privacy properties as described in the corresponding chapter. The process of starting a
private data exchange should be as transparent as possible so that Alice and Bob are
disturbed in their exchange as little as possible. Some kind of distinguishing property
needs to be in place that indicates to the system that a data exchange is supposed to be
done through the privacy network and that allows participants in the privacy network
to easily start utilizing its features.

4.3.1.5 Addressability

As Bob needs to be able to provide services to other users like Alice, there needs to be a
way in which Alice can reach Bob through the privacy network.

4.3.2 Non-functional requirements

These requirements may not be absolutely needed for the privacy network to function,
but they are needed for it to function properly. This means guaranteeing a certain
performance, being able to handle all kinds of tra�c through modularity and being
able to adjust to additional requirements that might come up in the future through
extensibility.

4.4. Solution processes 23

4.3.2.1 Performance

The system developed in this thesis is supposed to be able to handle all kinds of tra�c.
One major use case is voice over IP tra�c, which relies on low latencies. According to
a recommendation by the International Telecommunication Union [32] one-way delays
below 150ms are completely transparent to the user, while one-way delays of up to
280ms still satisfy users. These delays should not be exceeded.

4.3.2.2 Modularity

The di�erent parts that constitute the system should be separated from each other as
much as possible. The interaction between the parts should only happen through a
small number of interfaces. This is desirable because it makes it possible to exchange
parts of the system without impacting the rest of it.

4.3.2.3 Extensibility

It should also be possible to add additional features later on without needing to make
changes to the system as a whole or even only parts of it.

Technological extensibility The system should be designed in a way that does not
inherently prevent certain kinds of tra�c to be compatible with it.

Privacy related extensibility Some promising features, like cover tra�c, will not be
implemented as a part of this thesis. The system should be able to handle the addition
of such features, for example by providing generic interfaces.

4.4 Solution processes

The following section will present various possible approaches in regard to the di�erent
requirements. These approaches will be evaluated based on their usability for the
proposed system.

24 Chapter 4. Analysis

4.4.1 Intercepting tra�c

There are various ways to go about intercepting tra�c.

One way would be to develop custom applications that provide services like VoIP or web
browsing via a user interface. These applications could be part of the system and thus
be easily connected to its privacy providing part. No real interception would be needed,
as these applications could just pass on their data to other parts of the system. This
approach has several drawbacks: The whole system would rely on the assumption that
custom applications are developed for all use cases. This is a lot of work and restricts the
ways in which the system can be used considerably. Additionally, users would need to
use a seperate set of applications if they want to gain privacy for their communications.
This introduces a usability barrier.

Another possibility would be using a proxy. Applications could connect to the proxy
and send tra�c to it. The proxy could then go about equipping this tra�c with privacy
providing properties. This setup would require applications to support this kind of
proxy. They would need to be con�gured to use this proxy. Furthermore, one would
rely on the application properly implementing the proxying functionality. Leaking of
information that was supposed to be transferred privately could not be prohibited.

In order to circumvent the stated problems, the most reliable solution would be to try
to intercept all tra�c coming from a device. This would not necessitate any support
by applications and would provide the possibility of preventing any leaking of private
information.

4.4.2 Di�erentiating tra�c

Depending on the way the tra�c is intercepted, two di�erent ways of di�erentiating
tra�c might be necessary: In order to decide if a packet is supposed to be transferred
privately or not and in order to decide which application a packet belongs to.

This is no problem when using dedicated applications. All tra�c coming from them
should be transferred privately and they can communicate with the system in order to
make packets assignable.

With a proxy, users connect their applications to it when they want to use the privacy
services. Because of this, it can also be assumed that all incoming tra�c is supposed to
be transferred privately. In this case, it would only be necessary to di�erentiate di�erent
application layer protocols and react accordingly to each of them.

When intercepting all tra�c coming from a device, it is necessary to both di�erentiate
normal internet tra�c from tra�c that is supposed to be transferred privately and to
di�erentiate di�erent application layer protocols.

4.4. Solution processes 25

Figure 4.2: Bamboo-like tunnel

4.4.3 Providing privacy

As shown in chapter three, there are two generally di�erent ways that can be used to
gain privacy for tra�c: Proxying and Multicasting/Broadcasting.

Broadcasting runs into issues when confronted with the requirements imposed by our
system: Supporting VoIP is a central goal. This would mean that all VoIP tra�c is
sent to all participants at any time. Depending on the size of the network and the
computing power (= hardware) assigned to the privacy providing system by individual
users, participants could be easily overwhelmed by this amount of tra�c. Additionally,
all tra�c would need to be encrypted, leading to all participants needing to try to
decrypt every single VoIP packet sent through the network.

Dividing the network into separate sections, as Bitmessage proposes, might partly
mitigate this problem. This puts an upper bound on the privacy provided by all other
participants that might possibly be the intended recipient. Furthermore, as the system
proposed in this thesis is supposed to run on devices freely chosen by the user, it would
also be hard to �nd an upper bound for network segment sizes that allows all users to
process all packets.

In regard to proxying, chapter 3 already introduced, that an approach using chained
proxies is promising. In this case, the questions of how proxies are informed about the
next hop and how the encryption is built, remain.

One approach would be to inform each proxy about the next proxy it is supposed to
connect to. The proxies can then establish secure connections with each other until
there are secure connections all the way through to the target host. Through all these
connections, both endpoints could establish another secure connection in order to avoid
relaying proxies to be able to understand the content. This results in a bamboo-like
tunnel structure as can be seen in �gure 4.2.

In this setup, each relaying proxy would need to decrypt the tra�c once, and encrypt it
once again before sending it to the next hop. Sender and receiver would additionally
need to encrypt and decrypt once more respectively.

The problem with this approach lies in the question how the intermediary proxies
are informed about the proxy they are supposed to connect to. Informing each proxy
seperately completely undermines the privacy providing properties, as an observer

26 Chapter 4. Analysis

Figure 4.3: Telescope-like tunnel

could easily �gure out which proxies are going to be used.

Letting the proxies relay that information to each other in an unencrypted way through
already established secure connections on the other hand would lead to relaying proxies
knowing about other relaying proxies that are being used.

The best option therefore is to encrypt this information at the sender for every relaying
proxy and then let the information be passed down the tunnel. This would lead to
secure connections being established between all involved proxies as well as some kind
of cryptographic exchange between the sender and every relaying proxy.

In order to cut down on this overhead, an improvement to this approach would be to di-
rectly establish nested secure connections between the sender and every relaying proxy.
This results in a telescope-like tunnel structure (c.f. [4]) as can be seen in �gure 4.3.

Here, every relaying proxy only needs to decrypt once and then simply relay the re-
maining data. Here, the sender has the bulk of the workload by having to encrypt the
data multiple times, once for every hop.

This has the desirable side e�ect of reducing the amount of cryptographic operations
a relaying proxy has to do after a secure connection has been established to only
decrypting once.

4.4.4 Addressing users

In order to be able to establish a private connection to another user, certain information
is necessary. At the very least, the IP address is needed. Because the connections that
are established in this system need to be secure, cryptographic material like public keys
is another important thing to know.

A system, that provides these features and allows addressing other users in a way,
that does not compromise privacy, is developed in a seperate thesis [7]. A detailed
description of this system can be found there.

27

Chapter 5

Design

In order to provide a service that matches the needs and ful�lls the requirements outlined
in the previous chapter, a framework was designed. This framework is called PrivacyBox
and can run on a designated device or even on the client.

5.1 Overview

Chapter four established the basic requirements that need to be met. In order to ful�ll
them, several components need to be developed. This includes a way to intercept all
tra�c leaving a device, the ability to di�erentiate tra�c in regard to privacy require-
ments as well as the application layer protocol that it belongs to. Furthermore, there
needs to be functionality allowing the establishment of secure connections between
users as well as a way of addressing these users. Last but not least, there needs to be a
part that provides the relaying functionality. Figure 5.1 is a further developed version
of �gure 4.1. It now shows how the di�erent modules interact.

Private channel

Browser Webserver

VoIP App VoIP App

OpenVPN
registered

OpenVPN registered

Alice's domain Bob's domain

intercept

inspect

manipulate

establish

relay

Figure 5.1: Scenario with module interaction

28 Chapter 5. Design

Client

PriviacyBox 1

Private Service
(e.g.webserver)

PrivacyBox5

PrivacyBox2 PrivacyBox4

PrivacyBox3

DHT

1

2

3

4

5

9 9

9
6

10 10 10

10

7

8

9

10

Figure 5.2: Overview over an exemplary setup

As an introduction to the design of this system, an overview over an exemplary setup
will be described. While �gure 5.1 provides a view of the various modules of the
PrivacyBox-Framework, �gure 5.2 focuses on how a tunnel is established.

The pictured Privacy-Network has various participants. There are �ve devices that run
the PrivacyBox-Framework and thus participate in the Privacy-Network: PrivacyBoxes
1 through 5. Additionally, there are two devices connected to PrivacyBox 1 and Privacy-
Box 5 respectively. They are either clients accessing the PrivacyBox network through
their corresponding PrivacyBox or a service providing for example a web server to
the PrivacyNetwork. Clients and services may be running the PrivacyBox-Framework
themselves or - as in this case - may be connected to a designated PrivacyBox. This con-
nection may be established via WiFi, OpenVPN or any other way that allows relaying
all tra�c a client sends and receives through the PrivacyBox. All PrivacyBoxes in this
example are located in small networks behind a router. One example for a setup like
this is when a user runs his or her PrivacyBox in a home network.

Additionally, the PrivacyBoxes use a distributed hash table that stores the information
needed in order to establish connections (cf. [7]). The diagram shows a situation where
a client connected to PrivacyBox 1 wants to access a service connected to PrivacyBox 5.
In order to show the interaction of the di�erent participants, an exemplary use case is
provided. The locations of the numbers in Figure 5.2 correspond to the places where
the events in the following enumeration occur:

1. A user connects to the PrivacyBox-Framework running on PrivacyBox 1. All
tra�c from this moment on is relayed through the framework.

5.2. System design 29

2. As all tra�c is now relayed through the PrivacyBox-Framework, it is able to
inspect the tra�c and determine its destination.

3. The user opens a browser and enters the address of a website that one of his or
her contacts is running inside the privacy network. The address ends with the
TLD .privacy.

4. A DNS request is sent by the users device. This request is intercepted by the
PrivacyBox.

5. The PrivacyBox determines that the request is targeting a .privacy TLD. It accesses
the DHT and requests the contact’s address corresponding to the domain name.

6. It then creates and sends a DNS reply providing this address. It also creates a
session, remembering that HTTP tra�c directed at this address should be sent
through the privacy network.

7. As soon as the client receives the reply, an HTTP request is sent to the previously
received address.

8. PrivacyBox 1 intercepts this HTTP request. It queries the DHT again, this time
requesting information about three random relaying PrivacyBoxes.

9. Once PrivacyBox 1 has gathered this information, it can start establishing a tunnel
through the received relaying PrivacyBoxes.

10. When the tunnel is established, the HTTP request is sent through it, �nally being
relayed by PrivacyBox 5 to the private service. The response is sent through the
same tunnel, only in the other direction. All further HTTP requests to that service
are directly sent through the tunnel.

5.2 System design

In general, the framework is designed to be as transparent to the user as possible. In order
to achieve this, the framework intercepts all tra�c received from a client connected
to or running a PrivacyBox. To di�erentiate standard tra�c from tra�c that needs
to be relayed through the Privacy-network, the TLD .privacy is used. Tra�c that is
recognized as such needs to be dealt with in an appropriate way.

The functionality of the PrivacyBox-Framework is split up into di�erent modules. Each
module has one central task. The modules that are part of the current design are:

• Tra�c interception module

• Tra�c inspection module

• Application layer protocol module(s)

30 Chapter 5. Design

Servermodule

Tunnel establishmentmodule

Application layer protocol modules

Peer informationmodule

Traffic inspectionmodule

Traffic interceptionmodule

Communicates with
local network

Communicates with the
lnternet

Figure 5.3: PrivacyBox modules

• Tunnel establishment module

• Peer information module

• Server module

These modules represent what is needed to achieve a basic functionality. Their basic
interaction can be seen in Figure 5.3. It will be explained in the following sections.

In order to completely ful�ll all of the goals, additional modules are needed. This will
be elaborated in chapter 7.

In the following, an overview over each of these modules will be given.

5.2.1 Tra�c interception module

The tra�c interception module needs to be able to receive all network tra�c that leaves
a device. This is important in order to prevent the possibility of tra�c leaking and thus
potentially conveying privacy-related information to an observer.

If the PrivacyBox-Framework is running on the device that wants to use it itself, the
tra�c can easily be intercepted there. If the PrivacyBox-Framework runs on a device
di�erent from the client device used to access the privacy network, additional measures

5.2. System design 31

need to be taken in order to redirect all tra�c. For the prototype, OpenVPN was used
to connect a remote client to the PrivacyBox-Framework.

5.2.2 Tra�c inspection module

The tra�c inspection module has the task of loading the available application layer
modules and passing the packets on to them.

An application layer protocol module provides functionality speci�cally taylored to
provide the ability to create private connections for one particular application layer
protocol.

For both UDP and TCP tra�c, each available application layer protocol module is called
until either a protocol module takes responsibility for the packet processing or none
of the protocols matches. If no matching protocol is found, there is no way to provide
privacy to the packet and it is simply forwarded as is. If an application layer protocol
module takes responsibility, further processing is delegated to it.

5.2.3 Application layer protocol modules

The task of an application layer protocol module is to detect application layer tra�c
it is responsible for, check if this tra�c should be routed through the privacy network
and – if so – initiate the necessary steps.

As a di�erent application layer protocol module has to be provided for every applica-
tion layer protocol, there can not be one universal design. Apart from the previously
mentioned tasks, an application layer protocol module can also implement functionality
for tunnel-events such as the establishment or shutdown of a tunnel it initiated.

An exemplary application layer protocol module, that is connected to the goal of pro-
viding privacy to low latency tra�c, is the VoIP-module. It is currently developed in a
seperate thesis (cf. [6]).

5.2.4 Tunnel establishment module

The tunnel establishment module is responsible for building the tunnels through the
privacy network. It consists of two parts: a management module and a tunnel module.
The management module manages the tunnels. By using the tunnel module, it can
create various nested tunnels. Figure 5.4 shows the part of the tunnel establishment
that happens on the initiating PrivacyBox.

32 Chapter 5. Design

Local PrivacyBox

Management module Tunnel module 1 Tunnel module 2 Tunnel module 3

Management module started by
application layer module.

[1] Start

[2] Start tunnel module

[3]

Tunnel module 1 establishes a
secure connection to
PrivacyBox 1.

[4] Tunnel module started

[5] Start tunnel module

[6] connect

[7]

Tunnel module 1 simply relays
everything that is received
to PrivacyBox 1.

Through it a secure
connection to PrivacyBox 2
is established.

[8]
relay 'connection
established'

[9] Tunnel module started

[10] Start tunnel module

[11] connect

[12] relay 'connect'

[13]

Everything is relayed twice
now, reaching the target
PrivacyBox.

A secure connection to
the target PrivacyBox is
now established.

[14]
relay 'connection
established'

[15]
relay 'connection
established'

[16] Tunnel module started

[17] Tunnel established

Management module notifies
application layer module:
'tunnel_established'

Figure 5.4: Tunnel management module

5.2. System design 33

5.2.5 Peer information module

This module is the interface to the DHT. It allows requesting the contact information of
a known PrivacyBox as well as querying for random PrivacyBox addresses that can be
used as intermediary relay nodes.

The functionality that is needed for all this to work properly, is developed in a seperate
thesis [7]. A detailed description of how this part works can be found there.

5.2.6 Server module

Finally, the server module is there to provide the relaying functionality. It is largely
independent of the rest of the system.

This module simply listens for TCP and UDP connections on a designated privacy-port.
If installed in a home network or similar setting, port forwarding needs to be con�gured
on the router in order for packets to reach the PrivacyBox. If a packet is received, the
server module waits for connection instructions from the initiating host. It ful�lls these
instructions and from then on simply relays everything it receives from both directions.

The server module is responsible both for relaying data to other PrivacyBoxes as well
as relaying data to hosts in the local network. If the connection instructions request a
connection to a remote PrivacyBox, it serves this request by establishing the connection
and then acting as described in the follwing chapter. If a host in the local network is
supposed to be accessed, the procedure is slightly di�erent.

Services in the local network, that are supposed to be accessible through the privacy
network, need to inform the PrivacyBox-Framework about their existence. This means
mapping a port on the PrivacyBox to the IP address of the host on which the service is
running.

A user who wants to access a service run by one of his or her contacts needs to know
about the existence of the service as well as the port on which it is running. A request
that is supposed to ask for a connection to a local service requests a connection to the
same PrivacyBox that received the connection request but for a connection to the port
on which the service subscribed.

For example, if a user wants to provide a website inside the privacy network, he or she
might run it on a device in the local network with IP address 192.168.10.10. In order
for the server to be accessible, the PrivacyBox-Framework running on another device
in the local network would need to be informed about this webserver, by entering the
mapping port 80 -> 192.168.10.10 in a con�guration �le. If the PrivacyBox then receives
a connection request to port 80 of its own IP address (basically requesting to establish a

34 Chapter 5. Design

connection to itself), it understands that this request is directed at a local service. It can
then look up the mapping and establish a connection to the local service.

This results in a situation where there can’t be multiple private services running on
di�erent devices and using the same port in the local network. The reason for this is,
that the port, a request is directed to, is mapped to one IP:port combination.

5.3 Security

Tra�c sent through the privacy network needs to be con�dential. This is something
inherently expected from a privacy providing system. It is also of prime importance,
because packets are relayed through the PrivacyBoxes of other unknown users. At
every step, the information that can be gained from a packet needs to be as constrained
as possible.

How con�dentiality is achieved and encryption applied is also crucial, because even
encrypted tra�c might provide information to a passively observing attacker. This
would be the case if packets were only encrypted once end-to-end and then simply
relayed by the intermediate relays. In this case, the observer might be able to observe
the same encrypted payload at di�erent stages of the tunnel and thus circumvent the
privacy provided by relaying entirely.

If packets are encrypted multiple times, an attacker might be able to deduce information
about the connection by inspecting the change of packet sizes at every hop. As every
PrivacyBox removes one layer of encryption in this case, the packet gets smaller and
smaller by a set amount of bytes. This problem can be prevented by introducing a
padding scheme in order to achieve constant packet length. Such a scheme is not yet
part of the presented system though and would need to be developed in another thesis.

Section 5.2.4 already explained how the tunnels are established. The PrivacyBox-
Framework currently works with TCP and UDP tra�c. TLS and DTLS are used to
provide a secure connection to these protoclols. In order to avoid the possibility of
correlating tra�c at di�erent stages of the tunnel, encryption is applied in the following
way:

1. The local PrivacyBox (PB0) establishes a TLS/DTLS connection to the �rst hop
(PB1).

2. PB0 con�dentially tells PB1 about the second hop (PB2) through that connection.

3. PB1 subsequently establishes a connection to PB2 (in case of TCP/TLS) and pre-
pares to relay everything received from PB0 to PB2.

4. PB0 then establishes another secure connection with PB2 through the secure
connection with PB1.

5.3. Security 35

Local PrivacyBox

Tunnel module 2 Tunnel module 1 PrivacyBox1 PrivacyBox2

[1] Establish secure connection

[2] Listen on local port X

[3] Establish secure connection

Secure connection

[4] Relay conn. established

[5] Relay conn. establshed

[6] Connection established

Secure connection

[7] Connection established

[8] Connection established

[9] Listen on local port Y

[10] Incoming traffic

Secure connection

Now traffic can be sent to port Y and relayed securely to PB2.

[11] Relaying traffic

Secure connection

[12] Relaying traffic

[13] Relaying traffic

Figure 5.5: Client tunnel establishment

5. This process is repeated until a secure connection between PB0 and the intended
target PrivacyBox is established.

The resulting connection is encrypted end-to-end and enclosed by multiple layers of
encryption. As each intermediate privacy box applies a decryption function on the
packet, the payload di�ers at each step of the tunnel. Figure 5.5 shows this process. In
this case, only one relaying PrivacyBox is shown for reasons of simplicity.

36 Chapter 5. Design

37

Chapter 6

Implementation

The implemented framework builds on the existing technologies presented in chap-
ter 2 and uses them in order to reach its goals. This chapter will elaborate on the
implementation details of the di�erent framework modules.

The architecture of the PrivacyBox-Framework was described in the previous chapter.
In the following, the di�erent modules and their functionality are explained in detail.
The implementation was done in Python.

6.1 Tra�c interception

The tra�c interception module enters speci�c rules into the �rewall that allow modules
further down the line to inspect and modify packets. If the PrivacyBox-Framework is
running on the samme device that is connecting to the privacy network, these rules
forward all tra�c leaving the device into userspace by using libnet�lter_queue. If it is
running on a designated device on the other hand, these rules forward all tra�c being
forwarded by the device into userspace.

The rules for forwarding all tra�c being forwarded (i.e. belonging to a remote PrivacyBox-
setting) look like this:

iptables -A FORWARD -j NFQUEUE -p udp

iptables -A FORWARD -j NFQUEUE -p tcp

In order to be able to inspect the packets added to the queue, the interception module
also opens the socket in userspace. Additionally, it sets the method that should be called
for every packet received by this socket. This socket is handled by the reactor.

Finally, as the interception module is the most basic of the modules, it also handles
certain setup and shutdown tasks. It starts the reactor once the iptables rules are applied

38 Chapter 6. Implementation

and the socket added to the reactor. It also stops the reactor and removes the iptables
rules if the PrivacyBox-Framework is shut down.

6.2 Tra�c inspection

The tra�c inspection module is instantiated by the tra�c interception module. During
instantiation, it loads all modules listed in a con�guration �le. This allows additional
protocols to be easily supported without necessitating changes in parts of the frame-
work.

In order to be loaded, the application layer protocol modules need to follow a certain
naming scheme: This entails providing a module name in the con�g (e.g. dns) and
consequently naming the class by prepending module_ to the name added to the con�g
(e.g. module_dns.py)

As soon as the reactor is started by the tra�c interception module, all packets leaving
or being relayed by the device on which the PrivacyBox is running are forwarded to
the tra�c inspection module. As currently only UDP and TCP protocols are supported,
the inspection module checks for these transport layer protocols and passes the packets
to the corresponding protocol modules if appropriate.

As the tra�c inspection module is the central packet processing point before delegating
to speci�c application layer protocol modules, it has the ability to act as an intermediary
for di�erent application layer protocol modules if needed. For this, it also provides a
notify method that can be called by application layer protocol modules and can transfer
messages between them.

6.3 Application layer protocol modules

As already mentioned in the design chapter, application layer protocol tra�c is not
intercepted by one speci�c module. Instead, one speci�c application layer protocol
module is needed for every application layer protocol.

6.3.1 Abstract overview

Every application layer protocol module has to implement three methods:

• process(self,pkt,payload): Called by the inspection module. Decides what to
do with the payload, depending on the content of the packet.

• tunnel_established(self,pkt,payload,last_port): Called by the tunnel-modules
once a tunnel is established. Implementation depending on the application layer

6.3. Application layer protocol modules 39

protocol module. Most likely needs to add iptables rules that forward tra�c
through the created tunnel. Also needs to decide, what to do with the �rst inter-
cepted packet.

• tunnel_closed(self,last_port): Called by the tunnel-modules once a tunnel is
closed. Implementation dependent on the application layer protocol module. Most
likely needs to remove iptables rules.

These three methods allow the modules to initiate tunnel establishment (which is one
of their most likely tasks) and react accordingly if the state of the tunnel changes.

6.3.2 Exemplary module: HTTP

An exemplary module, that was developed for this thesis, is the HTTP-module. This
module actually consists of two modules: A DNS module and an HTTP module.

The DNS-module is a UDP module and is called for UDP tra�c by the inspect module.
Its �rst task is to check if the UDP payload is indeed a DNS packet. This is done by
looking at the destination port. If the port is 53, the packet will be further processed. If
not, the UDP module simply returns and the packet will be accepted unmodi�ed.

Once a packet is recognized as a DNS request, the DNS module inspects the content
of the request. The relevant part of the DNS request here is the name of the queried
domain. As the top level domain .privacy is used to signify that tra�c is supposed to be
sent through the privacy network, the module checks if the queried domain ends with
this TLD. If this isn’t the case, it just returns and the packet is relayed normally. If a
DNS request is recognized as directed at a .privacy domain, the DNS module creates a
DNS reply.

For this, it queries the peer information module (which is described in its own thesis [7])
for the IP address of the destination PrivacyBox. As this module was not yet �nished at
the time the work on this implementation was done, a dummy peer information module
was created that returned certain IP addresses. With this information the DNS module
can create the DNS response containing the resolved IP address and send it to the client.
The DNS module also uses the noti�cation functionality of the intercept module in order
to tell the HTTP module, that all HTTP requests sent to the just resolved IP address
need to be tunnelled.

As soon as the DNS response is received by the user’s device, an HTTP request is sent.
This is intercepted by the HTTP module based on the information received from the
DNS module. The HTTP module then queries the peer module for a number of random
intermediary PrivacyBoxes.

It then starts the module responsible for tunnel establishment and passes the queried
IPs as well as the tunnel_established and tunnel_closed functions to it.

40 Chapter 6. Implementation

The tunnel_established function is called by the tunnel establishment module once the
tunnel is done. It gets passed the local port on which the just created tunnel is listening
as well as the packet that initiated the tunnel. It also creates an iptables rule that
redirects all TCP tra�c directed at port 80 of the resolved target IP address to the local
port on which the tunnel is listening. Thus all tra�c directed at the target privacy box
will now be sent through this tunnel.

6.4 Tra�c relaying

The �nal module that needs to be presented is the module responsible for establishing
the tunnels. It consists of two parts: a management module and a tunnel module.

6.4.1 Management module

The management module starts the tunnel modules, whose task it is to establish the
tunnels. As previously mentioned, the management module is called when an applica-
tion layer protocol module needs to establish a tunnel. It is passed the IP addresses of
the PrivacyBoxes that are used for relaying, as well as the IP address of the target Priva-
cyBox. Additionally, it gets passed the tunnel_established and tunnel_closed functions
of the application layer protocol module.

It uses this information to start the tunnel modules in the right order and eventually no-
tify the application layer protocol module that a tunnel has been established. Figure 5.4
shows the processes of the tunnel establishment that are linked to the management
module.

6.4.2 Tunnel module functionality

The tunnel modules themselves handle the basic connection establishment (in case of
TCP), the establishment of a secure connection (TLS/DTLS) and �nally the relaying.

Each tunnel module �rst connects to another PrivacyBox that is supposed to act as a
relay and then tells this PrivacyBox about the next hop. In order to be able to do this,
each tunnel module is passed two IP addresses by the management module: The �rst IP
address is the address of the PrivacyBox it is supposed to directly connect to. The second
IP address is the address of the PrivacyBox to which the tra�c is supposed to be relayed.
The tunnel module uses the �rst IP address to connect to the �rst PrivacyBox. Before
relaying information is sent, a secure connection is established. In case of TCP tra�c,
TLS is used and in case of UDP tra�c DTLS is used. Once the establishment of the
secure connection is done, the PrivacyBox is noti�ed about the next hop in the tunnel.

6.5. Server module 41

For this, a SOCKS-like protocol is used. This protocol essentially tells the PrivacyBox
about the IP address of the next hop.

Once this procedure is �nished, the tunnel module starts a local server. This server
listens on a random local port. The tunnel module then calls the management module’s
tunnel_established function, thus conveying both the port and the fact that the tunnel
has been established.

This description holds true for the �rst tunnel module instance that establishes the
tunnel to the �rst PrivacyBox. The procedure is slightly di�erent for the following tunnel
module instances. The di�erence here is that they do not �rst establish a connection
to the remote PrivacyBox. Instead, they connect to the local port of the previously
created tunnel module instance. As all tra�c that is sent to that port is relayed to the
remote PrivacyBox next in line, this seems to the newly created tunnel module as if a
connection to this PrivacyBox was established.

This sequence is used in order to gain multiple layers of encryption. The �rst layer
of encryption is provided by the secure connection between Tunnel module 1 and
PrivacyBox 1. The second layer is provided by the secure connection between Tunnel
module 2 and PrivacyBox 2 and is established through the �rst secure connection. This
process can be repeated as often as needed.

Because of this, no PrivacyBox can read meaningful information that it doesn’t need.
Above all, a relaying PrivacyBox can only read the contents of the SOCKS-like protocol
that it itself needs. Thus, no relaying PrivacyBox knows more about the tunnel than
the previous and the next hop.

6.5 Server module

The last part of the PrivacyBox-Framework is the server module. As every PrivacyBox
acts as an entry point into the privacy network for connected clients but also as a relay
node for other PrivacyBoxes, it needs to be reachable by other PrivacyBoxes.

The server module registers two servers, one for TCP/TLS connections and one for
UDP/DTLS connections. Both listen on the same port. This port is the same for every
PrivacyBox.

When another PrivacyBox connects, a TLS or DTLS handshake is initiated �rst. After
that, a SOCKS-like message is sent by the other PrivacyBox. Using the information
contained in this message (particularly the IP address of the next hop), the server initiates
a connection to the next hop (for TCP) or saves this information until additional data
is received (in case of UDP). Once this is done, the server simply relays everything in
both directions.

42 Chapter 6. Implementation

Establishing a connection to a local service is not much di�erent from the described
procedure. The di�erence is, that the SOCKS-like message requests a connection to the
same PrivacyBox that receives it. This tells the PrivacyBox, that a connection to a local
service is supposed to be established. The PrivacyBox then looks up the IP address of
the service in a con�guration �le. It uses this information to establish a connection to
the local service (or save the information until additional data is received in the case of
UDP), just like it would do when connecting to another PrivacyBox.

43

Chapter 7

Evaluation

In order to make a clear statement regarding how well the proposed system is able to
ful�ll the requirements laid upon it, evaluation of certain metrics is needed.

This evaluation will focus on two di�erent aspects: The performance of the system on
the one hand and the extent to which security and privacy properties are provided on
the other.

7.1 Performance

The performance of the system is of prime importance. A central goal of this system is
providing a low-latency anonymity network that makes anonymous and private voice
over IP communication possible. Because of this, the latency of the system needs to be
evaluated. Additionally, the overhead regarding packet sizes introduced by the layered
encryption will be examined. The system should be able to run in a private setting
where download but especially upload speed might be highly limited. A large overhead
might limit relaying capabilities.

7.1.1 Latency

According to the International Telecommunication Union [32], a one-way delay of up
to 280ms satis�es users. This can be seen in �gure 7.1. Therefore, this number will be
taken as the upper bound for acceptable one-way delay.

7.1.1.1 Tunnel length

In order to understand the delays present in the proposed system, measurements were
made in a local setting using the prototype implementation (unless noted otherwise):

44 Chapter 7. Evaluation

Figure 7.1: E�ects of delay

A Raspberry Pi 1 Model B [33] was used to host multiple instances of PrivacyBox servers.
Additionally, a custom echo-server was hosted on the Raspberry Pi in order to allow
measurements. The PrivacyBox-Framework was also installed on a personal computer
that directly connected to the fake privacy-network represented by the Raspberry Pi.

As all relaying PrivacyBox instances were running on the same device, the di�erentiation
between them was made based on ports. There were one to six instances running at a
time.

In order to infer conclusions about a real world setting from this setup, some preliminary
considerations have to be taken into account:

• Measurements were made only once a connection had been established.

• Round-trip latencies between the client PC and the Raspberry Pi as well as be-
tween the various PrivacyBox-Instances running on the RaspberryPi were lower
than 1 ms. This is a negligible amount and will be ignored in the following
calculations.

• Real world round-trip latencies vary greatly depending on the distance between
hosts. Based on measurements by Verizon [34], an average intracontinental
(inside one continent) round-trip latency of 38ms and an average intercontinental
(between di�erent continents) round-trip latency of 90ms will be assumed.

7.1. Performance 45

Figure 7.2: Intracontinental one-way delay for TCP tra�c

• These latencies need to be added to the measured latencies. For this one has to
calculate the one-way delay for intra- and intercontinental delays by deviding
the round-trip delays by two. This one way delay then has to be added to the
measured latencies in the following way: (one way delay * (Number of hops + 1)).

Measurements were made for both TCP and UDP tra�c. The results for TCP can be
seen in Figure 7.2 and Figure 7.3. The results for UDP can be seen in Figure 7.4 and
Figure 7.5.

Comparing the �gures for TCP and UDP, the most surprising detail seems to be that
TCP is much faster than UDP (e.g. one Hop TCP RTT: 24ms; one Hop UDP RTT: 53ms).
The reason for this can be attributed tto two factors:

1. Implementation: The twisted framework natively supports TLS connections, but
doesn’t support DTLS. Because of this, DTLS had to be implemented in a non-
standard way for the prototype. This meant lower level network programming
independently of the rest of the framework. As this part of the framework isn’t
as optimized as the rest of it, the slow processing speed can be attributed to it.

2. Local setting: The measurements were taken in a local setting, where all partici-
pants were connected via ethernet in a small local network. In this setting, the
disadvantages of TCP for real time communication do not come in to play. There
is virtually no packet loss, no congestion etc. Because of this, advantages of UDP
compared to TCP can not be observed.

Apart from this, the numbers show that the amount of delay, introduced solely by

46 Chapter 7. Evaluation

Figure 7.3: Intercontinental one-way delay for TCP tra�c

Figure 7.4: Intercontinental one-way delay for UDP tra�c

7.1. Performance 47

Figure 7.5: Intracontinental one-way delay for UDP tra�c

processing tra�c through six hops, introduces a one way delay of 37ms for TCP. This
is roughly 6ms per hop. Compared to the time required for the tra�c to travel from
hop to hop, this is a very small delay. A completely intracontinental tunnel (19ms one
way transport delay per hop) would satisfy users even when using as many as six relay
nodes. A completely intercontinental tunnel (45ms one way transport delay per hop)
could go as high as four relay nodes and still satisfy users.

The numbers look somewhat less promising for UDP. A maximum of three relay nodes
is satisfying for users both for intra- and intercontinental tunnels. As mentioned, this
mostly traces back to implementation issues.

Of course, these numbers might be distorted due to the local setting. There is practically
no packet loss, no network congestion and no packets arriving out of order. This
means that the numbers for TCP might be worse in a real world setting, especially
for intercontinental connections. As UDP doesn’t get slowed down because of these
incidences, UDP numbers should more or less stay the same. Of course, transferring
packets through a congested network will always be slower than in the local setting
used for these measurements. Tests with a connection to a remote intracontinental
server did not show drops in latency. This can be interpreted as evidence for the stability
of intracontinental connections.

48 Chapter 7. Evaluation

Figure 7.6: One-way delay for simultaneous connections

7.1.1.2 Simultaneous connections

Apart from the number of hops, the number of simultaneous connections, that need to be
relayed by a PrivacyBox, can also have an e�ect on latencies. This is in�uenced strongly
by the hardware on which the PrivacyBox-Framework is running. In order to observe
this, up to six simultaneous connections were made both to a RaspberriPi running in
the local network and to a lower grade virtual server hosted in Berlin. Figure 7.6 shows
the results. The RaspberryPi gets overwhelmed pretty fast, having more than 45ms
one-way delay per connection for six simultaneous connections. The virtual server on
the other hand can handle six simultaneous connections without a problem, providing
no real perceivable increase in delay.

7.1.2 Packet sizes

Another property of the proposed system, that is relevant for evaluating its usability,
is the increase of packet sizes. As a completely decentralized approach is being taken,
users may need to be able to support the amount of up- and download tra�c imposed
by the PrivacyBox on their home connection.

Figure 7.7 shows the size of an originally 160 byte packet encrypted as often as required
by the hops used for the connection. A packet has to be encrypted (n + 1) times, with n
being the number of hops. If there is only one hop, for example, the payload is encrypted
twice: Once for the relaying PrivacyBox and once for the target PrivacyBox.

7.1. Performance 49

Figure 7.7: Packet sizes

As can be seen in the �gure, the overhead is roughly the same for UDP and TCP, with
UDP having slightly smaller packet sizes. The values increase by exactly 64 bytes
per hop. This is no surprise, as the same encryption algorithm is used at each hop.
This overhead is the result of a TLS header, a MAC and padding. As a result, it is not
dependent on packet size.

For a PrivacyBox that is relaying packets, the worst case regarding packet sizes is to
be the �rst hop in a tunnel. In this case, the privacy box has to process the encrypted
packets for all following PrivacyBoxes. One 160 byte packet is sent 50 times per second
for VoIP communication (cf. [35]). These 160 bytes would be received as 618 bytes by
the relaying privacy box in the six-hop testcase and sent to the next hop with a size of
554 bytes. This leads to a constant downstream of 30.9 kB/s and a constant upstream of
27.7 kB/s for one connection. Figure 7.8 shows the calculated throughput for up to 50
relayed TCP connections.

This can be considered an upper bound because of the amount of hops (six) and the
amount of connections (50). According to Akamai’s State of the Internet report [36]
from the �rst quarter of 2015, the global average connection speed currently is 625
kilebyte per second. This would allow around 20 simultaneous connections. In order
to allow users in countries with less well developed internet infrastructure to take part
in the privacy network, the development of an additional module, allowing to impose
limitations on the amount of relayed tra�c, would be desirable.

50 Chapter 7. Evaluation

Figure 7.8: Overhead

7.2 Security and privacy

Beyond the performance related properties evaluated in the previous section, the extent
to which privacy providing properties are ensured by the proposed system needs to be
examined. This amounts to the question how the system fares when faced with both
active and passive attackers.

7.2.1 Passive attacks

Passive attackers try to gain information without interfering with the tra�c. They
can be divided into those that are observing only one participant and those that are
observing the whole network.

7.2.1.1 Passive local attacker

A passive attacker, observing one participant in the privacy network, can determine
that the participant is using the privacy network. This is due to the fact that one speci�c
port is used for privacy network tra�c.

As far as the current design goes and to the extent of what is implemented in the
prototype, a passive attacker might be able to deduce if the participant is initiating a
tunnel establishment or if the participant is just acting as a relay. This depends on the

7.2. Security and privacy 51

fact whether there are already multiple connections going through the PrivacyBox or
not. If there are no connections, then an incoming connection followed shortly by an
outgoing connection can be attributed to the participant acting as a relay. On the other
hand, an outgoing connection without prior incoming connection can be understood as
a connection establishment initiated by the participant.

This possibility will be removed by an additional module that was not part of this thesis:
the cover tra�c module. If every PrivacyBox opens and closes random tunnels through
the Privacy network regularly, a passive observer can not as easily draw conclusions.
On the one hand every PrivacyBox now always has multiple concurrent connections.
Connecting incoming to outgoing streams as well as identifying initiated tunnels is thus
made considerably harder. On the other hand, an observer now doesn’t even know if a
connection is used to transfer meaningful data.

In the current state of the PrivacyBox-Framework, this passive attacker might be able
to deduce the position in a tunnel that a PrivacyBox holds. This is the case if the attacker
is aware of the type of content (and thus possibly packet sizes) that is sent through the
tunnel. In this case, the size of the encrypted payload might reveal information about
the PrivacyBoxe’s position in the tunnel (cf. section 7.1.2). In order to avoid this, a
padding scheme needs to be introduced. This has the drawback of every PrivacyBox
always processing the largest possible packet size. It is necessarry in order to avoid this
kind of conclusion by a passive attacker nonetheless.

Another item that might be problematic are the DHT requests. If all requests are done
by the initiating PrivacyBox, an attacker observing this PrivacyBox might be able to
gain information from it. Even though these packets are encrypted, an attacker can see
that a PrivacyBox is making the request and therefore deduce that it is the initiating
PrivacyBox. This problem could be made less severe by caching IP addresses for a
reasonable amount of time. In addition, implementing DHT-cover tra�c could help. If
both initiating and relaying PrivacyBoxes always send DHT requests when establishing
a connection to another PrivacyBox, an observer can not know whether the information
is used for the tunnel establishment (in the case of the initiating PrivacyBox) or simply
discarded (in the case of relaying PrivacyBoxes).

This passive attacker can not see any content and can also only know about the relay
nodes directly connected to the observed participant’s PrivacyBox.

7.2.1.2 Passive global attacker

The next attacker to be considered is the much more powerful passive attacker observing
the whole network. In addition to the previously mentioned abilities, this passive
attacker might be able to link initiator and target of a tunnel. This is the case if the
additional actions described in the previous section are not taken. The attacker can use

52 Chapter 7. Evaluation

the techniques already described for every hop that the tra�c goes through and thus
draw comprehensive conclusions. If using cover tra�c and a padding scheme, linking
initiator and target becomes considerably harder. As every participant is simultaneously
a user of and a relay node in the privacy network, even timing correlation attacks are
prevented when using the proposed enhancements. A timing attack might try to connect
a packet entering a privacy network to a packet exiting it by looking at correlations on
both ends. In contrast to, for example, the Tor [4] network, there is no tra�c entering
or exiting the proposed privacy network. As a result, there is no way to correlate tra�c
entering and exiting the PrivacyNetwork.

An additional problem, when faced with a passive attacker observing the target host of a
tunnelled connection, stems from the use of certi�cates. While there is no authentication
of the relaying PrivacyBoxes, the end-to-end-connection needs to be authenticated. In
order to provide this, the certi�cates used for the TLS/DTLS connection establishment
need to contain information identifying both parties. If transmitted in the clear, a
passive attacker might be able to identify both initiator and target. In order to prevent
a passive attacker from accessing this information, an unauthenticated tunnel could
be established to the target host �rst. Once this is done, another authenticated tunnel
could be established inside the unauthenticated one.

7.2.2 Active attacks

An active attacker might try to compromise the privacy network by running multiple
malicious privacy boxes. In doing this, an active attacker could increase the probability
of a tunnel being built solely through PrivacyBoxes operated by the attacker. This
would compromise the privacy of the users using these tunnels, as the attacker now
knows who is communicating with whom. Depending on the size of the privacy net-
work (i.e. number of participants), this approach might be costly. The more legitimate
PrivacyBoxes are in the network, the less likely it is that a tunnel is built solely through
compromised PrivacyBoxes. Due to the fact that an active attacker mostly targets spe-
ci�c users, this approach is even less promising. In order for the attack to be successful,
not only any tunnel, but tunnels initiated by speci�c users would need to be built solely
through malicious PrivacyBoxes.

As an extension of this attack, the active attacker might manipulate the tunnel establish-
ment. A malicious PrivacyBox could build a tunnel through other malicious Privacy-
Boxes ignoring the received connection requests. As the intermediate hops need to be
anonymous, there is no way for the initiating PrivacyBox to check if the tunnel was re-
ally built through the PrivacyBoxes running at the requested IP addresses. The attacker
could still not force a PrivacyBox to create a tunnel through a malicious PrivacyBox. If
a connection is made through a malicious PrivacyBox on the other hand, the attacker
could redirect the tunnel through other PrivacyBoxes controlled by him or her. The at-

7.2. Security and privacy 53

tacker doesn’t know at which step of the tunnel establishment he or she was introduced.
As a result, he or she would need to guess at which point the connection to the �nal
target PrivacyBox is requested and then stop to tamper with the tunnel establishment
and connect to the real target. Otherwise, the initiating PrivacyBox realizes that the
connection was tampered with, as PrivacyBoxes do authenticate each other end-to-end.

To sum it up: An attacker might be able to redirect a tunnel through attacker-controlled
nodes. Doing this, the attacker has a high risk of being exposed.

In order to make this kind of attack even more impractical, a reputation system could
be introduced. If a PrivacyBox reports PrivacyBoxes complicit in a compromised tunnel
establishment, malicious PrivacyBoxes could be exposed. A problem with this approach
is that all PrivacyBoxes need to be anonymous. This would make it impossible to
globally connect a rating to a PrivacyBox.

Another kind of attack an active attacker could try is a denial of service (DoS) attack.
This means that the attacker sends a lot of tunnel establishment requests to a certain
PrivacyBox. In fact, the attacker tries to send as many requests as it takes to overwhelm
the PrivacyBox so that it can’t act as a PrivacyBox for other network participants
anymore. Depending on the type of device the PrivacyBox-Framework is running on,
this attack might be more or less challenging (cf. section 7.1.1.2). Currently, there is no
system employed to prevent these kinds of attack. Possible solutions would be to limit
the amount of tunneling requests a certain PrivacyBox can send to one PrivacyBox.
Additionally, this behaviour could be included in the rating of the previously proposed
reputation system.

The active attacker can also circumvent the solution to the certi�cate information problem
introduced for the passive attacker. This is due to the fact that an unauthenticated
TLS tunnel establishment can be attacked with a man-in-the-middle attack. For this to
work, the attacker needs to be able to intercept the tra�c. The attacker pretends to be
the target PrivacyBox when communicating with the establishing PrivacyBox and vice
versa. The attacker can then decrypt, read, encrypt and send onwards every piece of
data.

In order to provide a way to at least detect a man-in-the-middle, the following approach
can be taken: After establishing the unauthenticated secure connection and successfully
establishing the authenticated connection through it, both parties could sign the keys
that were used in the unauthenticated connection and exchange the signatures. This
would allow them to verify that they used the correct keys during the unauthenticated
part.

Another way to even avoid this problem might be found in using another channel to
provide authentifying information about the participants.

One option would be to make use of the DHT. It is already the case that a PrivacyBox

54 Chapter 7. Evaluation

providing a service has to store information for every contact that is supposed to be
able to access the service (cf. [7]) in the DHT. How exactly the DHT could be used is
beyond the scope of this thesis.

7.3 Summary

As mentioned at various points during this evaluation, there is still some work left to
do for the proposed system to meet its goals. This is simply due to the fact that these
missing features would have gone beyond the scope of this thesis. However, there is a
clear path to solving most of these issues.

Apart from that, the evaluation has shown that the proposed system is able support TCP
and UDP protocols, to achieve acceptable latencies while using multiple relay nodes
and to hide as much information as possible from other relay nodes and attackers.

Revisiting Table 3.1 from chapter 3, Table 7.3 now also shows the entries for the
PrivacyBox-Framework.

Service Type of tra�c Real-time Third party privy
Bitmessage Only Bitmessage No No
Proxies Limited Yes Yes
VPN All Yes Yes
Tor Only TCP No No
PrivacyBox TCP & UDP Yes No

Table 7.1: Overview for presented services – revisited

55

Chapter 8

Conclusion and Outlook

This thesis showed that there are various currently existing approaches to obtain privacy
on the internet. While these approaches may o�er solutions that work for their speci�c
use cases, none of them provides the ability to have anonymous VoIP communications
and to obtain privacy for all types of application layer tra�c leaving a device.

In order to develop a privacy providing network underlay that o�ers these features, a
thorough analysis of what exactly could be expected of such a service was undertaken.
In the course of this analysis, various attacks were presented that the system needs to
be able to deal with. Building upon that, the requirements were worked out.

Following that, the main part of the work done for this thesis was designing a framework
to ful�ll those requirements and implementing a prototype based on that design. The
framework makes use of various existing technologies in order to achieve the set goals.
It uses TLS/DTLS for encryption, makes use of the libnet�lter_queue-module in order
to intercept tra�c and can be used in collaboration with OpenVPN in order to provide
the possibility of running on a remote device.

The key element of the design is how it provides privacy to user’s tra�c: When a user
wants to connect to another user in the privacy network, the system builds a layered
tunnel to that other user. This includes establishing a secure connection to a random
�rst relay node, then establishing another secure connection to a random second relay
node, but through the previously established connection to the �rst relay node. This can
be repeated multiple times until �nally reaching the target user. Tra�c sent through this
tunnel will be encrypted multiple times and sent through all relay nodes participating
in the tunnel.

The design of the system is divided into several modules, each accomplishing one
particular task. The intercept-module acts as the root of the system. It enters the
iptables-rules into the �rewall and intercepts all packets after that. It does not do
anything with the packets, but passes them along to the inspect-module. The task of

56 Chapter 8. Conclusion and Outlook

the inspect module is to be aware of all application-layer-modules and pass the packets
along to them. Application layer modules �nally decide about how to react to packets
that match their protocol. This mostly means using the tra�c relaying modules in
order to build a tunnel to the target and sending all following tra�c that is part of this
connection through that tunnel. Another part that is mostly independent of the rest
of the system is the server-module. It is responsible for relaying tra�c that is received
from other participants in the privacy network. This module decides whether the tra�c
is supposed to be relayed further, or whether it is targeted at a service residing in the
local network.

The implementation based on this design was then evaluated. The evaluation found
that - apart from issues with the implementation of DTLS tunnels - the design is able to
satisfy the challenge. Latencies were largely within the scope of an acceptable range
and a basic foundation of privacy preserving features are provided.

Due to the fact of the limited scope of this thesis, there is still work left to be done.
In order to thoroughly ful�ll the requirements regarding privacy, additional modules
are needed. This includes modules providing cover tra�c for both privacy tra�c and
DHT packets and the introduction of a rating scheme. Another problem that remains
to be solved is providing a more e�cient implementation of DTLS tunnels. This would
either mean contributing this feature to the twisted open source network library or
implementing a network library that natively supports DTLS. There is currently no
python networking framework supporting DTLS that could be used instead.

Evaluating the system in a real world setting would also be bene�cial and may provide
further insight into possible improvements.

57

Bibliography

[1] M. B. Kaufman. (2013) A Guide to What We Now Know About
the NSA’s Dragnet Searches of Your Communications. [Online].
Available: https://www.aclu.org/blog/guide-what-we-now-know-about-nsas-
dragnet-searches-your-communications

[2] Electronic Frontier Foundation. (2014) Government Documents and Ad-
missions about Domestic Internet Backbone Surveillance. [Online]. Avail-
able: https://www.e� .org/pages/government-documents-and-admissions-about-
domestic-internet-backbone-surveillance

[3] Deutscher Bundestag. (2014) 1. Untersuchungsauss-
chuss (NSA). [Online]. Available: http:
//www.bundestag.de/bundestag/ausschuesse18/ua/1untersuchungsausschuss

[4] R. Dingledine, N. Mathewson, and P. Syverson, “Tor: The Second-Generation
Onion Router,” in Proceedings of the 13th USENIX Security Symposium, August
2004.

[5] U. Mansmann. (2013) Telekom beginnt mit Umstellung
herkömmlicher Telefonanschlüsse auf VoIP. [Online]. Avail-
able: http://www.heise.de/newsticker/meldung/Telekom-beginnt-mit-
Umstellung-herkoemmlicher-Telefonanschluesse-auf-VoIP-1807580.html

[6] B. Schöntag, “Integrating Voice Over IP Into a Privacy Friendly Network,” Bachelor
Thesis, Technische Universität München, 2015.

[7] A. Kammerloher, “Address Resolution and Authentication for a Distributed Com-
munication Underlay,” Bachelor Thesis, Technische Universität München, 2015.

[8] J. Postel, “Internet Protocol,” RFC 791 (INTERNET STANDARD), Internet
Engineering Task Force, Sep. 1981, updated by RFCs 1349, 2474, 6864. [Online].
Available: http://www.ietf .org/rfc/rfc791.txt

[9] S. Deering and R. Hinden, “Internet Protocol, Version 6 (IPv6) Speci�cation,” RFC
2460 (Draft Standard), Internet Engineering Task Force, Dec. 1998, updated by

https://www.aclu.org/blog/guide-what-we-now-know-about-nsas-dragnet-searches-your-communications
https://www.aclu.org/blog/guide-what-we-now-know-about-nsas-dragnet-searches-your-communications
https://www.eff.org/pages/government-documents-and-admissions-about-domestic-internet-backbone-surveillance
https://www.eff.org/pages/government-documents-and-admissions-about-domestic-internet-backbone-surveillance
http://www.bundestag.de/bundestag/ausschuesse18/ua/1untersuchungsausschuss
http://www.bundestag.de/bundestag/ausschuesse18/ua/1untersuchungsausschuss
http://www.heise.de/newsticker/meldung/Telekom-beginnt-mit-Umstellung-herkoemmlicher-Telefonanschluesse-auf-VoIP-1807580.html
http://www.heise.de/newsticker/meldung/Telekom-beginnt-mit-Umstellung-herkoemmlicher-Telefonanschluesse-auf-VoIP-1807580.html
http://www.ietf.org/rfc/rfc791.txt

58 Bibliography

RFCs 5095, 5722, 5871, 6437, 6564, 6935, 6946, 7045, 7112. [Online]. Available:
http://www.ietf .org/rfc/rfc2460.txt

[10] C. Eckert, IT-Sicherheit: Konzepte - Verfahren - Protokolle, 9th ed. De Gruyter, Oct.
2014.

[11] Statista Inc. (2011) Wie wichtig ist für Sie der persön-
liche Schutz Ihrer Privatsphäre im Internet? [Online]. Avail-
able: http://de.statista.com/statistik/daten/studie/205381/umfrage/stellenwert-
des-schutzes-der-privatsphaere-im-internet/

[12] Pew Research Center. (2015) American’s Attitudes About Pri-
vacy, Security and Surveillance. [Online]. Available: http:
//www.pewinternet.org/2015/05/20/americans-attitudes-about-privacy-
security-and-surveillance/

[13] NSA. (2013) 3 XKEYSCORE slides. [Online]. Available: https:
//www.documentcloud.org/documents/894406-nsa-slides-xkeyscore.html

[14] P. Yee, “Updates to the Internet X.509 Public Key Infrastructure Certi�-
cate and Certi�cate Revocation List (CRL) Pro�le,” RFC 6818 (Proposed
Standard), Internet Engineering Task Force, Jan. 2013. [Online]. Available:
http://www.ietf .org/rfc/rfc6818.txt

[15] The OpenSSL Project. (2014) OpenSSL. [Online]. Available: https:
//www.openssl.org/

[16] H. Kinkelin, Autonomous and Robust Components for Security in Network Domains,
ser. Network architectures and services. TUM, Lehrstuhl für Netzarchitekturen
und Netzdienste, Oct. 2013.

[17] OpenVPN Technologies, Inc. (2014) OpenVPN HOWTO. [Online]. Available:
https://openvpn.net/index.php/open-source/documentation/howto.html

[18] J. Yonan. (2003) The User-Space VPN and OpenVPN. [Online]. Available:
https://openvpn.net/papers/BLUG-talk/index.html

[19] T. Dierks and E. Rescorla, “The Transport Layer Security (TLS) Protocol
Version 1.2,” RFC 5246 (Proposed Standard), Internet Engineering Task Force,
Aug. 2008, updated by RFCs 5746, 5878, 6176, 7465, 7507. [Online]. Available:
http://www.ietf .org/rfc/rfc5246.txt

[20] E. Rescorla and N. Modadugu, “Datagram Transport Layer Security Version
1.2,” RFC 6347 (Proposed Standard), Internet Engineering Task Force, Jan. 2012,
updated by RFC 7507. [Online]. Available: http://www.ietf .org/rfc/rfc6347.txt

http://www.ietf.org/rfc/rfc2460.txt
http://de.statista.com/statistik/daten/studie/205381/umfrage/stellenwert-des-schutzes-der-privatsphaere-im-internet/
http://de.statista.com/statistik/daten/studie/205381/umfrage/stellenwert-des-schutzes-der-privatsphaere-im-internet/
http://www.pewinternet.org/2015/05/20/americans-attitudes-about-privacy-security-and-surveillance/
http://www.pewinternet.org/2015/05/20/americans-attitudes-about-privacy-security-and-surveillance/
http://www.pewinternet.org/2015/05/20/americans-attitudes-about-privacy-security-and-surveillance/
https://www.documentcloud.org/documents/894406-nsa-slides-xkeyscore.html
https://www.documentcloud.org/documents/894406-nsa-slides-xkeyscore.html
http://www.ietf.org/rfc/rfc6818.txt
https://www.openssl.org/
https://www.openssl.org/
https://openvpn.net/index.php/open-source/documentation/howto.html
https://openvpn.net/papers/BLUG-talk/index.html
http://www.ietf.org/rfc/rfc5246.txt
http://www.ietf.org/rfc/rfc6347.txt

Bibliography 59

[21] Netscape Communications Corporation. (1997) The SSL Protocol.
[Online]. Available: https://web.archive.org/web/19970614020952/http:
//home.netscape.com/newsref/std/SSL.html

[22] N. Modadugu and E. Rescorla, “The Design and Implementation of Datagram TLS,”
in Proceedings of ISOC NDSS 2004, Feb. 2004.

[23] R. Brown. (2014) Dtls 1.0.1. [Online]. Available: https://pypi.python.org/pypi/Dtls

[24] H. Welte. (2014) The net�lter.org libnet�lter_queue project. [Online]. Available:
http://net�lter.org/projects/libnet�lter_queue/

[25] J.-P. Lang. (2012) nfqueue-bindings. [Online]. Available: https:
//www.wzdftpd.net/redmine/projects/nfqueue-bindings

[26] Twisted Matrix Labs. (2015) What is Twisted? [Online]. Available: https:
//twistedmatrix.com/trac/

[27] D. C. Schmidt, “Pattern languages of program design,” J. O. Coplien and D. C.
Schmidt, Eds. New York, NY, USA: ACM Press/Addison-Wesley Publishing Co.,
1995, ch. Reactor: An Object Behavioral Pattern for Concurrent Event Demulti-
plexing and Event Handler Dispatching, pp. 529–545.

[28] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns: Elements of
Reusable Object-oriented Software. Boston, MA, USA: Addison-Wesley Longman
Publishing Co., Inc., 1995.

[29] J. Warren. (2012, Nov.) Bitmessage: A Peer-to-peer Message Authentication and
Delivery System. [Online]. Available: https://bitmessage.org/bitmessage.pdf

[30] C. Nath, Key Issues for the 2015 Parliament. House of Commons Library, 2015,
ch. The ’Darknet’, http://www.parliament.uk/business/publications/research/key-
issues-parliament-2015/.

[31] Privax Ltd. (2015) How VPN works. [Online]. Available: https:
//www.hidemyass.com/how-vpn-works

[32] ITU-T Recommendation G.114, “One way transmission time. Springer-Verlag, 1996.

[33] Raspberry Pi Foundation. (2012) Raspberry Pi 1 Model B. [Online]. Available:
https://www.raspberrypi.org/products/model-b/

[34] Verizon. (2015) IP Latency Statistics. [Online]. Available: http:
//www.verizonenterprise.com/about/network/latency/

[35] A. Cislak, “Analysis of modeling anonymized voice over ip tra�c,” Guided Research
Project, Technische Universität München, 2015.

https://web.archive.org/web/19970614020952/http://home.netscape.com/newsref/std/SSL.html
https://web.archive.org/web/19970614020952/http://home.netscape.com/newsref/std/SSL.html
https://pypi.python.org/pypi/Dtls
http://netfilter.org/projects/libnetfilter_queue/
https://www.wzdftpd.net/redmine/projects/nfqueue-bindings
https://www.wzdftpd.net/redmine/projects/nfqueue-bindings
https://twistedmatrix.com/trac/
https://twistedmatrix.com/trac/
https://bitmessage.org/bitmessage.pdf
https://www.hidemyass.com/how-vpn-works
https://www.hidemyass.com/how-vpn-works
https://www.raspberrypi.org/products/model-b/
http://www.verizonenterprise.com/about/network/latency/
http://www.verizonenterprise.com/about/network/latency/

60 Bibliography

[36] Akamai Technologies. (2015) The State of the Internet / Q1 2015. [Online]. Available:
http://spanish.akamai.com/enes/dl/soti/q1-2015-soti-fullreport-a4.pdf

http://spanish.akamai.com/enes/dl/soti/q1-2015-soti-fullreport-a4.pdf

	Introduction
	Problem statement
	Goals of the thesis
	Research questions
	Outline

	Background
	Routing
	Network Security
	Privacy
	Basic technologies
	Public Key Infrastructure
	OpenVPN
	TLS/DTLS
	libnetfilter_queue
	Twisted

	Related work
	Bitmessage
	Anonymous Proxies
	Tor
	VPNs
	Summary

	Analysis
	Scenario
	Attacker model
	Passive attacks
	Active attacks

	Requirements
	Functional requirements
	Traffic interception
	Traffic differentiation
	Application layer protocol extension
	Providing Privacy
	Addressability

	Non-functional requirements
	Performance
	Modularity
	Extensibility

	Solution processes
	Intercepting traffic
	Differentiating traffic
	Providing privacy
	Addressing users

	Design
	Overview
	System design
	Traffic interception module
	Traffic inspection module
	Application layer protocol modules
	Tunnel establishment module
	Peer information module
	Server module

	Security

	Implementation
	Traffic interception
	Traffic inspection
	Application layer protocol modules
	Abstract overview
	Exemplary module: HTTP

	Traffic relaying
	Management module
	Tunnel module functionality

	Server module

	Evaluation
	Performance
	Latency
	Tunnel length
	Simultaneous connections

	Packet sizes

	Security and privacy
	Passive attacks
	Passive local attacker
	Passive global attacker

	Active attacks

	Summary

	Conclusion and Outlook
	Bibliography

