
Technische Universität München
Department of Informatics

Master’s Thesis in Informatics

Modelling a Secure IT-Infrastructure
based on BSI IT Baseline Protection

Michael Peter

Technische Universität München
Department of Informatics

Master’s Thesis in Informatics

Modelling a Secure IT-Infrastructure based on BSI IT Baseline
Protection

Modellierung einer sicheren IT-Infrastruktur basierend auf dem
BSI IT Grundschutz Katalog

Author Michael Peter
Supervisor Prof. Dr.-Ing. Georg Carle
Advisor Dr. Andreas Paul & Dipl.-Inf. (Univ.) Martin Uhl & Dipl.-Inf. Stephan-A. Posselt
Date August 15, 2015

Informatik VIII
Chair for Network Architectures and Services

I con�rm that this thesis is my own work and I have documented all sources and material
used.

Garching b. München, August 15, 2015

Signature

Abstract

The goal of this Master’s thesis is to automate chosen content of the BSI Baseline
Protection Catalogues which give guidelines to secure IT systems.

This thesis illustrates that there is a missing of available automatic support tools and that
the catalogues’ content includes a large quantity of error-prone and time-consuming
aspects making it bene�cial to be automated. In this thesis the content of the catalogues
were analysed in order to �nd suitable aspects which are bene�cial to automate.

The focus of this work is on network related Baseline Protection safeguards containing
recommendations what tra�c is allowed in a computer network. In order to automate
the evaluation of the implementation status of the selected safeguards, the required
input is speci�ed and a network topology model is developed and described. This model
is based on directed property multi-graphs including up to four layers of the ISO/OSI
layers, allowing to perform checks regarding the chosen safeguards. For the evaluation
of the implementation status of the selected safeguards algorithms are designed and
illustrated.

Furthermore a modular architecture was designed to read required inputs, build the
network model, and evaluate the de�ned checks.

The thesis is rounded o� with an use case implementation and the conclusion that
BSI Baseline Protection involves aspects which can be automated and are therefore
bene�cial for overall network security.

Zusammenfassung

Das Ziel dieser Master Arbeit ist das Automatisieren von Inhalten der Grundschutz Kata-
loge des BSI. Zweck dieser Kataloge ist das Bereitstellen von Richtlinien zur Absicherung
von IT Systemen.

Diese Arbeit beleuchtet das Fehlen von automatisierten Unterstützungstools sowie den
umfangreichen Inhalt der Kataloge, bestehend aus fehleranfälligen und zeitintensiven
Aspekten. Dieser Umstand macht eine Automatisierung ausgewählter Inhalte nahelie-
gend. Die Kataloge wurden nach zur Automatisierung lohnenswerten und geeigneten
Themen untersucht.

Der Fokus der Arbeit liegt im Bereich von Schutzmaßnahmen bezogen auf das Gebiet
der Computer-Netzwerke. Im speziellen auf Schutzmaßnahmen welche Empfehlungen
hinsichtlich des erlaubten Netzwerkverkehrs beinhalten. Um den Status der Umsetzung
dieser Empfehlungen zu prüfen, werden die dafür benötigten Informationsquellen spe-
zi�ziert. Weiterhin wird ein Netzwerkmodell entwickelt und vorgestellt. Mit diesem
Modell können Evaluierungen von Schutzmaßnahmen die Kenntnisse des Netzwerks
voraussetzen, unterstützt werden. Dieses Netzwerkmodell basiert auf gerichteten, mit
Eigenschaften versehenen Multigraphen und bildet ISO/OSI Schichten eins bis vier ab.
Algorithmen zur Prüfung der Umsetzung der ausgewählten Schutzmaßnahmen werden
entwickelt und vorgestellt.

Außerdem wird eine modulare Architektur entwickelt, welche die benötigten Informa-
tionen liest, das Netzwerkmodell erstellt und die de�nierten Prüfungen evaluiert.

Die Arbeit wird abgerundet mit einer Implementierung eines Anwendungsfalls und
dem Ergebnis, das es Aspekte in den Grundschutz Katalogen gibt, welche automatisiert
werden können und auch nützlich im Bereich der Netzsicherheit sind.

I

Contents

1 Introduction 1
1.1 Research Questions . 2
1.2 Structure . 2

2 BSI Baseline Protection Overview 5
2.1 BSI . 5
2.2 Baseline Protection Catalogues . 5
2.3 Catalogues Structure . 6

3 Related Work 9
3.1 BSI Support Tools . 9

3.1.1 Checklists . 9
3.1.2 Verinice . 10

3.2 Network Modelling and Analysis . 11
3.2.1 Network Analysis Tools . 11
3.2.2 Network Modelling Languages 12

4 Analysis 15
4.1 BSI Safeguards . 15

4.1.1 Safeguards Focus . 15
4.1.2 Selected Safeguards . 16

4.1.2.1 Selection and Implementation of Suitable Filter Rules
(Safeguard S1) . 16

4.1.2.2 Secure Operation of a Firewall (Safeguard S2) 17
4.1.2.3 Change of Preset Passwords (Safeguard S3) 17
4.1.2.4 Secure use of Protocols and Services (Safeguard S4) . 17
4.1.2.5 Con�guration of Access Control Lists on Routers (Safe-

guard S5 . 17
4.1.2.6 Handling of ICMP on the Security Gateway (Safe-

guard S6) . 18
4.2 Software to be Developed . 18

4.2.1 General Requirement (General Requirement G1) 18

II Contents

4.2.2 Build Model . 18
4.2.2.1 Build a Representation of the Network Topology (Model

requirement M1) . 18
4.2.2.2 Model Firewall Filter Rules (Model Requirement M2) 21
4.2.2.3 Model IT Policies (Model Requirement M3) 21

4.2.3 Read the Required Inputs (Input Requirement) 21
4.2.3.1 Network Cables I1 . 21
4.2.3.2 Virtual Machines I2 22
4.2.3.3 Switch I3 . 22
4.2.3.4 Router I4 . 22
4.2.3.5 VPN Gateway I5 . 23
4.2.3.6 Firewall I6 . 23
4.2.3.7 Read IT Requirements I7 23

4.2.4 Perform Checks . 23

5 Design 25
5.1 Purpose . 25
5.2 Architecture Overview . 25
5.3 General Requirement G1 . 26
5.4 Build Model . 27

5.4.1 Build a Representation of the Network Topology (M1) 27
5.4.1.1 In�uences from INDL and NML 27
5.4.1.2 Components of a Network Graph 27
5.4.1.3 Network Layer Modelling Approach 28
5.4.1.4 Physical Layer . 29
5.4.1.5 Virtual Machines . 30
5.4.1.6 Data Layer . 32
5.4.1.7 Network Layer . 32
5.4.1.8 Firewall Model . 34

5.4.2 Algorithms . 36
5.4.2.1 Basic Algorithm for Substituting Network Devices . . 36
5.4.2.2 Physical Layer Algorithm 37
5.4.2.3 Virtual Machines Algorithm 39
5.4.2.4 Data Layer Algorithm 39
5.4.2.5 Network Layer Algorithm 41
5.4.2.6 Firewall Algorithm 43

5.4.3 Model Firewall Filter Rules (M2) 44
5.4.4 Model IT Policies (M3) . 44

5.5 Read the Required Inputs . 45
5.5.1 Physical Layer I1 . 46
5.5.2 Virtual Machines I2 . 46
5.5.3 Data Layer I3 . 47

Contents III

5.5.4 Network Layer I4 . 47
5.5.5 VPN Gateway I5 . 47
5.5.6 Firewall Layer I6 . 47
5.5.7 Read IT Requirements I7 . 48
5.5.8 Additional Input . 48

5.6 Perform Checks . 48
5.6.1 Check Preset Passwords of Network Devices (Check C1) 49
5.6.2 Check if Firewall Logging is Enabled (Check C2) 49
5.6.3 Find Connections Bypassing a Firewall (Check C3) 49
5.6.4 Check the Existence of Filter Rules for All Devices (Check C4) . 50

5.6.4.1 Include all Computers 51
5.6.4.2 Verify Existence of Firewall Filter Rules 51

5.6.5 Check the Whitelist Approach in Filter Rules (Check C5) 51
5.6.6 Find Possible (TCP/UDP) Data Paths and Compare them to the

IT Requirements (Check C6) . 52
5.6.7 Check the Handling of Di�erent ICMP Types (Check C7) 52

5.6.7.1 Internal Network . 52
5.6.7.2 Public Server in a DMZ 54

6 Implementation 57
6.1 JUNG . 57
6.2 Package Overview . 58
6.3 Build Model . 60

6.3.1 Build a Representation of the Network Topology (D1) 60
6.3.1.1 Physical Layer . 60

6.3.2 Model Firewall Filter Rules (D2) 60
6.4 Read the Required Inputs (D4) . 60

6.4.1 Physical Parser I1 . 60
6.4.2 Switch Parser I3 . 61
6.4.3 Firewall Parser I4 I5 I6 . 62

6.5 General Requiremetn (G1) . 62
6.6 Perform Checks . 63

6.6.1 Check Preset Passwords of Network Devices (Check C1) 63
6.6.2 Check if Firewall Logging is Enabled (Check C2) 64
6.6.3 Find Connections Bypassing a Firewall (Check C3) 64
6.6.4 Check the Whitelist Approach in Filter Rules (Check C5) 64

7 Use Case at BörseGo AG 65
7.1 Network Topology Data Gathering . 65

7.1.1 Racktables . 65
7.1.2 Switch . 66
7.1.3 Fortigate Firewall . 68

IV Contents

7.1.3.1 Password . 68
7.1.4 Firewall Functionality . 68

7.1.4.1 Router Functionality 70
7.1.4.2 VPN Functionality . 70
7.1.4.3 Firewall and policy logging 71

7.2 Network Topology Building . 71
7.2.1 Layer 1a . 71
7.2.2 Layer 1b . 71

8 Evaluation and Results 73
8.1 Research Questions . 73
8.2 BSI Safeguards . 74
8.3 Network Model . 76
8.4 Results from the Use Case . 77

8.4.0.1 BSI Safeguards . 77
8.4.0.2 Other Results . 79

8.5 Extensible . 79

9 Conclusion and Outlook 81

Bibliography 83

A Appendix 85
A.1 Checklists from the BSI . 85
A.2 Fortinet Fortigate Policy Structure . 85

V

List of Figures

3.1 One physical connection between two elements in INDL/NML 13

5.1 Components - Overview . 26
5.2 Components of an Example Network 28
5.3 Overview - Network Layer Model . 29
5.4 Layer 1 Example Graph Representation 30
5.5 Virtualisation Model . 31
5.6 Layer 2 Example Graph Representation 33
5.7 Layer 3 Example Graph Representation 34
5.8 Firewall Filter Rules Representation . 35
5.9 Basic Algorithm for Replacing Intermediate Network Objects 37
5.10 Patch Panel resolving Algorithm . 38
5.11 Virtual Machines Algorithm . 40
5.12 Switch Resolving Algorithm . 41
5.13 Routing resolving Algorithm . 42
5.14 Example of getting Routes . 44
5.15 Firewall Filter Rules Algorithm . 46
5.16 Bypassing Firewalls Algorithm . 50
5.17 Possible Errors in Comparing Subsets 53
5.18 ICMP Handling Illustration . 55

6.1 Edge Inheritance Model . 59
6.2 Vertex Inheritance Model . 59
6.3 Physical Connection . 61
6.4 Switch Model . 61
6.5 FirewallObject . 63

7.1 Extract of the connections of a switch 66
7.2 PatchPanel Object in Racktables . 66
7.3 Layer 1 Graph of BörseGo AG . 72
7.4 Layer 1 Graph without Patch Panels . 72

A.1 Content of a Checklist . 85

VI List of Figures

A.2 Policy Structure . 86

VII

List of Tables

4.1 Overview of Safeguards and Required Inputs 19
4.2 Requirements Overview . 24

5.1 Switch Con�g Example . 39
5.2 Internal Computer ICMP Handling according to BSI Baseline Protection 54
5.3 Public Server in a DMZ - ICMP Handling according to BSI Baseline

Protection . 54

6.1 Implementation Status . 58

8.1 Requirements Ful�lled . 74

VIII List of Tables

1

Chapter 1

Introduction

Nowadays, IT plays an important role in every organisation to reach their business
goals but as a consequence it is also an attractive target for attacks as one can see in the
media. In the past many security breaches occurred, ranging from companies, e.g. Sony
loosing sensitive data [1], to authorities as the German Bundestag [2], or the American
OPM [3] where the resulting damage might be even worse. The overall data breach
incidents are constantly in amount rising and a�ecting millions of people [4].

Especially with the rising amount of interconnected devices, network security is an
important aspect of every IT department. The IT landscape of even small to medium
sized companies consists of dozens or hundreds of network devices, which are connected
and con�gured in some way. A typical network consists of intermediate network objects
as switches, routers, �rewalls and end devices as servers, virtual machines, and client
computers leading to a complex topology where each device must be properly con�gured
in order to maximize IT security.

IT security sta� take huge e�ort in securing networks, as this may directly have impact
on business goals, the image of the organization, secrecy and privacy of customers as
well as citizens, or even cause human harm. The German Federal O�ce for Information
Security (BSI) supports the implementation of IT security (including network security)
by providing the Baseline Protection Catalogues. These are guidelines on how to harden
IT-systems including but not limited to computer networks. They describe standard IT
setups, their possible threats and the counter-measures called "safeguards" to protect
IT systems against certain threats.

2 Chapter 1. Introduction

Applying these guidelines’ network related recommendations manually is error-prone
due to the amount of devices which are connected with each other. It is also a complex
task as the set of connections itself is large and because objects are connected with dif-
ferent network objects like routers and switches. In other words, the data paths between
two devices depend on various components and settings, not just the wiring. Addition-
ally, as a result of these issues the procedure of manually applying the recommendations
is time consuming and costly.

1.1 Research Questions

The aim of this Master’s thesis is to design and develop a software tool, helping adminis-
trators in the �eld of network and IT security to evaluate some chosen safeguards from
the Baseline Protection Catalogues and therefore being compliant to the BSI recommen-
dations (limited to those safeguards). The focus lies in an automated way of support by
contrast to the available tools (cp. 3.1). In order to accomplish this task the following
issues must be solved:

Q1 Find suitable safeguards to be automated (4.1.1)
The Baseline Protection Catalogues provide plenty of safeguards which must be
analysed and sorted out.

Q2 Build a model for verifying selected safeguards (4.2.2)
In order to perform checks according to the recommendations of the selected
safeguards, a model of the input data is required.

Q3 Specify the information needed for safeguard checks (4.2.3)
To evaluate the selected safeguards input data must be speci�ed.

Q4 De�ne checks to (partially) cover selected safeguards (4.2.4)
Checks to evaluate the implementation status for selected safeguards which re-
quire the data of Q3.

1.2 Structure

In this work the BSI and the Baseline Protection Catalogues are introduced in chapter 2
as we will work with them. Network information (how devices are connected and what
tra�c is allowed) is the basic information required to evaluate the selected safeguards,
therefore an overview of related work in the �eld of network analysis is given in chapter
3. In chapter 4 the implementation status of the recommendations of the safeguards
to be evaluated as well as the software to be developed are introduced. This chapter
contains the requirements of the software and the di�erent input data needed to evaluate

1.2. Structure 3

the selected safeguards. Chapter 5 describes the design of the software as well as the
key approach of modelling a computer network topology. A possible implementation
is described in chapter 6 where a Java prototype application is introduced. A use case
with data from a company are illustrated in chapter 7. The bene�ts and an evaluation
is described in chapter 8. At the end chapter 9 gives a conclusion of this thesis and an
outlook.

4 Chapter 1. Introduction

5

Chapter 2

BSI Baseline Protection Overview

This chapter introduces the German Federal O�ce for Information Security (BSI) and
describes the IT Baseline Protection Catalogues and its role in this thesis.

2.1 BSI

The Federal O�ce for Information Security abbreviated BSI [5] is the German Federal
agency responsible for computer and communication security for the German gov-
ernment. Furthermore, BSI supports the private sector and citizens of Germany in
questions of IT security by providing advice and guidelines, e.g. the Baseline Protection
Catalogues.

These catalogues describe a methodology, how to guarantee a standard IT security level
through all levels of a company’s IT systems, ranging from technical to organizational
topics. They are illustrated in the following sections.

BSI and Baseline Protection Catalogues are also the basis for a certi�cation according to
the ISO 27001 standard [6]. With this certi�cation companies can show to its customers
a trustworthy proof of implementing an approved security level to its customers.

2.2 Baseline Protection Catalogues

Purpose of the Baseline Protection (see [7]) is to provide an appropriate basic protection
for typical business processes, applications and IT systems. Due to the complexity of
IT security the Baseline Protection recommendations adopt a holistic approach cov-
ering organizational, personnel, infrastructural and technical aspects. To reduce the
complexity of the IT security process and to structure the procedure, the catalogues are

6 Chapter 2. BSI Baseline Protection Overview

organised in a modular design. Security o�cers can pick the necessary components
according to their needs and perform a risk analysis based on their setup.

2.3 Catalogues Structure

The catalogues are structured in three di�erent components:

1. Modules (count: 80)
Each module represents a typical business process or IT system. It describes
the components and gives an overview of the threats to be considered and the
recommended safeguards. Modules itself are divided into 5 categories:

• Common aspects (e.g. archiving, data protection) are dealing with compre-
hensive aspects of IT systems applicable to almost all or a great number of
systems and/or processes

• Infrastructure (e.g. Servers room, electrical cabling) is covering the physical
and electrical aspects of IT systems

• IT-Systems (e.g. general server, laptop) are referring to the individual IT
system in an information composite. IT systems are technical devices which
process data and form a self-contained functional unit.

• Networks (e.g. modem, WLAN) are dealing with the way objects are con-
nected with each other

• Applications (e.g. web servers, active directory) are covering the applications
running on IT systems

An example module is "S 3.101 General server" which describes a general server
in an IT system. Each module is structured in a brief descriptio, a list of threats,
and a safeguard recommendation list.

2. Threats (count: 564)
Threats exploit possible vulnerabilities of a system compromising certain pro-
tective objectives (e.g. con�dentiality, integrity). As di�erent IT systems and
processes have di�erent threats the Baseline Protection Catalogues list a number
of threats which are assigned to applicable modules. Threats are also structured
in 5 categories:

• Basic threats (e.g. �re, data loss) are dealing with threats that may a�ect all
or almost all components of a IT system

• Force majeure (e.g. storm, burning cables)

2.3. Catalogues Structure 7

• Organisational shortcomings (e.g. lack or insu�cient logging, uncontrolled
use of resources)

• Human error (e.g. exposed cables, errors in con�guration and operation)

• Technical failure (e.g. failure of a database, dusty ventilators)

• Deliberate Acts (e.g. theft, Trojan horses) is covering all (active) attacks on
an information system

Basic threats, Force Majeure, Organisational Shortcomings, Human Error, Tech-
nical Failure, Deliberate Acts

3. Safeguards (count: 1244)
Safeguards describe the methods to implement to prevent speci�c threats and are
structured as follows:

• Infrastructure (e.g. locked doors, smoke protection) safeguards to prevent
physical threats of IT systems and buildings

• Organisation (e.g. checking the log �les, planning the use of VPN) safeguards
are covering the planing and organisation of it systems and its components

• Personnel (e.g. training, correct behaviour on the Internet) safeguards are
dealing with the communication and encouragement of employees.

• Hardware and Software (e.g. database encryption, handling of USB stor-
age media) covers safeguards related individual IT components and their
protection

• Communication (e.g. secure use of browsers, use of SSL/TLS) safeguards are
dealing all aspects of secure communication

• Contingency Planning (e.g. tests and emergency drills, provisioning of
redundant lines) safeguards are dealing with redundancy capacities and
backups

In the context of this thesis a closer look is taken on safeguards (see 4.1.1) as it is
the main goal to provide a mechanism which automatically evaluates the state of
the implementation of certain safeguards and therefore modules and threats are
subsidiary.

8 Chapter 2. BSI Baseline Protection Overview

9

Chapter 3

Related Work

3.1 BSI Support Tools

The BSI recommends several tools to support the IT security management process [8]
and companies which o�er support by introducing or performing IT security manage-
ment processes either with services or tools [9]. BSI o�ers also checklists to support
implementation of safeguards [10]. The BSI itself has provided its own software tool
till 2013, which has been discontinued.

Representative for the available software, two tools are presented in the following.

3.1.1 Checklists

This tool provides a list of comma separated (CSV) �les, one for each module of the
Baseline Protection Catalogues.

The �les consists of the following information: The column headers describe the threats
listed in the corresponding module. The �rst column lists the recommended safeguards.
The life cycle the safeguard belongs to is listed in the second column. Following abbre-
viations are used: PD for "Planning and Design", PU for "Purchasing", IM for "Imple-
mentation", OP for "Operation", DI for "Disposal", and CP for "Contingency Planning".
The third column contains the classi�cation level assigned to the safeguard. There are
�ve levels of classi�cation:

• A (entry) is essential for security reasons and must be implemented with high
priority. The implementation of safeguards of level A is required for level B and
C.

• B (secondary) are particularly important for establishing an information security
that can be monitored and required for level C.

10 Chapter 3. Related Work

• C (certi�cate) must be implemented for an ISO 27001 certi�cation based on IT
Baseline Protection.

• Z (additional) safeguards of that level must not necessarily be implemented for
an audit/certi�cate but are recommended for high security environments.

• W (knowledge) are intended to help and understand the implementation of other
safeguards and are not required for an audit/certi�cation.

An "X" in a �eld means that the corresponding safeguard is e�ective in countering the
corresponding threat (see A.1 for an example).

Basically these checklists are giving an overview of the threats and safeguards of mod-
ules and a direction what needs to be implemented for a certain security level. There is
neither automation nor any support �guring out the current status of the safeguards’
implementation.

3.1.2 Verinice

Verinice is a multi-platform, open-source software tool to assure the compliance with
BSI Baseline Protection [11]. Verinice allows to model the infrastructure by drag and
drop (the Baseline Protection Catalogues’ content can be imported) the appropriate
modules (e.g. server) and manually assigning the required safeguard to them. For
example a sta� member in charge needs to achieve a level A security in operation
with the module "S 3.101 General server ". According to the module description, four
safeguards are required to achieve level A of this module: S 2.273, S 4.24, S 4.238, S 4.239
(see [7]). These four safeguards are assigned to the module in Verinice by drag and drop
the corresponding safeguards to the module item. At this point a safeguard is neither
implemented nor validated. With the modeled modules and their safeguards Verinice
allows to generate several kinds of reports which can be delegated to the sta� (e.g.
network administrators) who are responsible for actually implementing the safeguards.

Generally, those tools only provide check lists (some in a more advanced way) to help
those responsible for security management rather than supporting administrators to
implement the recommendations. There is minimal automation in necessary data gath-
ering and in security evaluation. The tools are limited to automatically import the
content of the catalogues and manually model/assign certain issues of IT systems and
generate reports.

The disadvantages of these tools are that they are very time consuming as recommen-
dations, more accurate safeguards, have to be checked manually and with increasing IT
size this procedure gets also very error-prone. In addition, due to the fact that safeguards
are generally not that precise there might be a problem with di�erent interpretations
from the involved persons.

3.2. Network Modelling and Analysis 11

3.2 Network Modelling and Analysis

The focus of this thesis is an automated approach of network modelling and analysis
with respect to the chosen context of the Baseline Protection Catalogues. Therefore, it
is required to model a network topology and its relations.

3.2.1 Network Analysis Tools

There is a number of tools to support network administrators in managing and analysing
networks. MaSSHandra [12] is a 3D network visualization tool which also o�ers the
ability to model networks and connections in di�erent �oors of a building. MaSSHandra
o�ers an auto network discovery and creation of connections.

The Dude is a network monitoring tool which can model networks, monitor services
and alerts in case of errors [13] . The Dude o�ers an auto network discovery and layout.

10Strike Network Diagram o�ers a graphical visualization of networks [14]. 10Strike
Network Diagram o�ers an auto network discovery and layout including links of devices.

Spiceworks is an all-in-one tool for managing the network inventory, monitoring the
network, managing mobile devices and cloud services [15]. Spiceworks o�ers auto
network discovery including layout and links, monitoring network stats, managing
di�erent types of devices (e.g. Windows/Linux/Mac OS X Laptops/Computers and
mobiles), and (software) license management.

The mentioned tools have in common how they gather the network information. They
actively scan the network with di�erent methods and di�erent aggressiveness. Most
tools heavily rely on SNMP and SNMP enabled devices (e.g. switches) but also other
mechanisms such as ping, DNS, ARP or NetBIOS are used. The downside of this ap-
proach is, that network con�gurations might di�er e.g. not allowing ping or SNMP
requests and therefore the completeness of the discovered network is not guaranteed.
Another issue is that those methods doesn’t di�er that much from attacks. Networks
may be con�gured to block those methods and in the worst case network functionality
may be in�uenced by the scans.

The downside of all mentioned tools in this section is the lack of information needed
for a veri�cation of several BSI Baseline Protection safeguards as all of them are not
incorporating con�guration, e.g. �rewall con�guration, routing information. Another
issue is that those tools just model the current state of the network which might lack
important information as machines could be powered down/on or disconnected.

12 Chapter 3. Related Work

3.2.2 Network Modelling Languages

Van der Ham et al. describes the Network Description Language (NDL) for modelling op-
tical networks [16]. NDL is a language developed to describe optical networks allowing
applications to query network capabilities and to answer provisioning questions. After
introducing NDL this paper shows its application in some optical and hybrid research
networks. Hybrid networks o�er heterogeneous services like IP routed traditional
connections as well as dedicated circuits (lightpaths). The work is emphasizing NDL’s
possibility to model the circuit-switched part of hybrid networks as well as management
and provisioning tasks in a network.

Dijkstra et al. is also dealing with hybrid networks using NDL [17]. The paper presents
NDL and illustrates some network topology examples.

A standardized schema to describe networks is de�ned from Łapacz et al., developed
from the Network Mark-up Language Working Group (NML WG), a group of researchers
at the University of Amsterdam [18]. It illustrates the Network Mark-up Language (NML)
which was introduced in the �eld of research on hybrid networks. As NML is an abstract
and generic model it can be applied to other networks, too. NML can describe multi-
layer (e.g. virtualized) and multi-domain (abstract or aggregated) networks as well as its
con�guration and capabilities. Aim of NML is to describe logical connection-oriented
network topologies rather than physical or packet-oriented networks.

Based on NML Ghijsen et al. introduces the Infrastructure Description Language (INDL)
for modelling computer networks which extends the features of NML namely with the
ability to provide an additionally syntax for virtual nodes and to describe capabilities
(CPU, RAM,...) of components [19] [20] . The papers illustrate the use of INDL in some
research projects and the use of extensions to describe energy monitoring.

Figure 3.1 illustrates the model of a sample physical connection between two devices
by using INDL/NML. The picture shows the bidirectional wiring of device "b" and "dc1-
switch01-02". Both devices have an "in" and "out" port. In and out ports of the devices
are connected with two links named "in-out" and "out-in". The entities in the middle
of the picture are the bidirectional parts of the connection. "b_e0a(netapp01-b" and
"37" are the bidirectional ports of the corresponding device. The two links "in-out"
and "out-in" are part of one bidirectional link. "dc1-switch01-02_SS" represents the
"switching service" indicating that the device "dc1-switch01-02" is a network switch.

3.2. Network Modelling and Analysis 13

Figure 3.1: One physical connection between two elements in INDL/NML

14 Chapter 3. Related Work

15

Chapter 4

Analysis

4.1 BSI Safeguards

In order to automate the processes of the Baseline Protection Catalogues it is necessary to
determine safeguards to be automated. This section describes the focus of the safeguards
and the selected safeguards.

4.1.1 Safeguards Focus

The focus on the safeguards is as follows:

• It must be possible to automate checks related to the safeguard’s recommenda-
tions.

• By automating the verifying of the safeguards implementation there should be a
bene�t for the a�ected area because manually checking the safeguards’ recom-
mendations would be error-prone and complex.

• The selected safeguards are time consuming to manually check, especially in
larger environments, hence bene�cial to automate

The area of computer networks ful�l all three mentioned aspects. Networks are o�ering
bene�cial possibilities to automate error-prone, manual tasks with rising complexity in
larger environments. Therefore, there is a bene�t by automating the implementation
status of network related safeguards as it saves time and costs and is less error-prone.
In order to further re�ne the focus not to be covered are topics related to:

• Infrastructural and management-related aspects
All kinds of building and room security such as locking server room doors or
organizational related topics such as employees’ awareness in handling potentially
malicious emails are not covered.

16 Chapter 4. Analysis

• Applications
Application security such as a secure con�guration of a database or mail server
is not covered.

• Communication other than Ethernet-based networks
Only safeguards referring to Ethernet-based communication is covered because
Ethernet networks are in most companies the standard communication. Therefore,
not covered are communication methods such as ISDN and RS-232.

These points are not regarded for the following reasons: On the one hand as men-
tioned, there should be an emphasis on (computer) infrastructural topics not in terms
of building security, room/server rack locking or disaster protection. On the other hand
organizational and management-related aspects are di�cult to automate or could be
broken down to assertions like

”Is there a person responsible for evaluation of log data?”

(see [7] safeguard S 2.64 Checking the log �les).

4.1.2 Selected Safeguards

In the following the selected safeguards based on the former focus points are brie�y
described (full text in [7]):

4.1.2.1 Selection and Implementation of Suitable Filter Rules (Safeguard S1)

This safeguard refers to the packet �lter rules for a security gateway also known as
�rewall. The main recommendations related for this work are as follows (see S 2.76
in [7]):

“As a basic principle, the white list strategy should be applied [..]”

“If there is a need for user-speci�c authentication, it must be clari�ed
which users from the internal network may use which services [...]”

“All computers in the internal network must be taken into considera-
tion.”

“The �lter rules for packet �lters should be summarised in a table, one
axis of which re�ects the destination IP addresses and the other axis of
which re�ects the source IP addresses.”

4.1. BSI Safeguards 17

4.1.2.2 Secure Operation of a Firewall (Safeguard S2)

The safeguard’s main recommendations to be checked (see S 2.78 in [7]) are similar to
the one former presented:

“The rule "everything not expressly permitted is prohibited" must be
implemented”

“It should be checked regularly whether new accesses bypassing the
security gateway have been created.”

4.1.2.3 Change of Preset Passwords (Safeguard S3)

This safeguard recommends that standard/preset passwords of network devices (e.g.
management access of �rewalls) must be changed (see S 4.7 in [7]).

“The default password settings speci�ed by the manufacturer or admin-
istrator should be changed immediately after installation, and if not at that
time, then before the hardware or software is put into operation for the
�rst time.”

4.1.2.4 Secure use of Protocols and Services (Safeguard S4)

This safeguards recommendations can be summed up in implementing proper �lter
rules at the �rewall and therefore check what tra�c is allowed/forbidden (see S 5.39
in [7]).

“Is there an overview of the protocols admitted at the security gateway?”

“Depending on the operational scenario, certain ICMP message types
should be allowed or blocked selectively”

4.1.2.5 Con�guration of Access Control Lists on Routers (Safeguard S5

A similar safeguard to S1 describing the mechanism of ACLs (Access Control Lists) to
control network access and tra�c (see S 5.111 in [7])).

“The ACLs must be de�ned in accordance with the speci�cations of the
security policy.”

“The more restrictive white list approach should be preferred in general
during con�guration [...]”

“[. . .] ACLs must always be con�gured in such a way that rejected
access attempts are logged.”

18 Chapter 4. Analysis

4.1.2.6 Handling of ICMP on the Security Gateway (Safeguard S6)

This safeguard describes the handling of ICMP (Internet Control Message Protocol)
messages at the security gateway (see S 5.120 in [7]). The safeguard distinguishes
between “Computers in the internal network” and “"Public" servers in the DMZ”. The
recommended ICMP handling for both is listed in a table containing the ICMP type, the
direction of the message (incoming/outgoing) and the action (permit/deny), see tables
5.2 and 5.3.

Table 4.1 lists the chosen safeguards and their checks to be performed as well as the
required input information.

4.2 Software to be Developed

For the purpose of automating the evaluation of safeguards according to table 4.1 it is
required to get the needed information and build a model from these data on which the
checks to be evaluated perform.

4.2.1 General Requirement (General Requirement G1)

For further extensions and di�erent inputs the architecture to be developed should
be designed with respect to modularity and extensibility. The architecture shall be
independent from di�erent input formats.

4.2.2 Build Model

To perform operations on the gathered data an appropriate model shall be built from
the di�erent kinds of information formats.

4.2.2.1 Build a Representation of the Network Topology (Model requirement
M1)

In order to perform validation on a network, it is necessary to know the topology
meaning to know how machines are connected with each other and how possible tra�c
paths look like. The model of the network shall be:

1. Machine readable
The aim is to develop software and therefore the model must be understandable
by a computer.

4.2. Software to be Developed 19

Ta
bl

e
4.1

:O
ve

rv
ie

w
of

Sa
fe

gu
ar

ds
an

d
Re

qu
ire

d
In

pu
ts

N
r.

Sa
fe
gu

ar
d

To
be

au
to
m
at
ed

In
pu

ts
ne

ed
ed

S1
S

2.7
6

Se
le

ct
io

n
an

d
im

pl
em

en
ta

tio
n

of
su

ita
bl

e
�l

te
rr

ul
es

-w
hi

te
lis

ta
pp

ro
ac

h
co

m
pl

ia
nc

e
-u

se
rs

pe
ci

�c
tra

�
cs

et
tin

gs
-c

on
sid

er
in

g
al

li
nt

er
na

lc
om

pu
te

rs

-�
re

w
al

lc
on

�g
ur

at
io

n
-n

et
w

or
k

to
po

lo
gy

S2
S

2.7
8

Se
cu

re
op

er
at

io
n

of
a

�r
ew

al
l

-w
hi

te
lis

ta
pp

ro
ac

h
-d

ev
ic

es
ab

le
to

by
pa

ss
th

e
�r

ew
al

l
-n

o
pr

es
et

pa
ss

w
or

d
fo

r
�r

ew
al

la
dm

in
us

er

-�
re

w
al

lc
on

�g
ur

at
io

n
-n

et
w

or
k

to
po

lo
gy

S3
S

4.7
Ch

an
ge

of
pr

es
et

pa
ss

w
or

ds
-n

o
pr

es
et

pa
ss

w
or

d
fo

ra
dm

in
us

er
-c

on
�g

ur
at

io
n

of
in

te
rm

ed
ia

te
ne

tw
or

k
de

vi
ce

s
(e

.g
.s

w
itc

h,
ro

ut
er

,�
re

w
al

l,.
..)

S4
S

5.
39

Se
cu

re
us

e
of

pr
ot

oc
ol

sa
nd

se
r-

vi
ce

s

-h
an

dl
in

g
of

IC
M

P
-T

CP
an

d
UD

P
di

�e
re

nt
ia

tio
n

in
�l

te
rr

ul
es

-�
re

w
al

lc
on

�g
ur

at
io

n
-n

et
w

or
k

to
po

lo
gy

S5
S

5.1
11

Co
n�

gu
ra

tio
n

of
ac

ce
ss

co
nt

ro
l

lis
ts

on
ro

ut
er

s

-w
hi

ch
co

m
pu

te
rh

as
w

ha
t

(n
et

w
or

k
re

la
te

d)
ca

pa
bi

lit
ie

s
-w

hi
te

lis
ta

pp
ro

ac
h

-�
re

w
al

ll
og

gi
ng

of
re

je
ct

ed
tra

�
c

-�
re

w
al

lc
on

�g
ur

at
io

n
-n

et
w

or
k

to
po

lo
gy

S6
S

5.1
20

H
an

dl
in

g
of

IC
M

P
on

th
e

se
cu

-
rit

y
ga

te
w

ay
-

IC
M

P
m

es
sa

ge
s

lim
ite

d/
bl

oc
ke

d
on

th
e

se
cu

rit
y

ga
te

w
ay

-�
re

w
al

lc
on

�g
ur

at
io

n
-n

et
w

or
k

to
po

lo
gy

20 Chapter 4. Analysis

2. Suitable for physical and virtual network objects
The model must handle physical computers as well as virtual machines.

3. Able to model connections between di�erent kinds of network objects
The model must be able to model di�erent layers of the ISO/OSI model, e.g. data
layer or network layer.

4. Able to model objects and connection properties
The model must be able to store information about network devices and connec-
tions, e.g. an IP address of a devices or a VLAN id of a connection.

In chapter 3.2 a closer look was taken at INDL and NML. At �rst glance both look
suitable for this thesis as they o�er:

• Machine readable RDF/XML format

• Application independent exchange format

• A layer model
A layer model is an advantage in terms of safeguards recommendations as some
checks require a di�erentiation of network layers, for example S2. In safeguard S2
one recommendation is that devices are not allowed to communicate with each
other without a �rewall between them. In a layer model it is possible to check
this recommendation through all layers, e.g. if there is a �rewall at the physical
layer or if there is a �rewall at the network layer.

• Virtualization

Nevertheless, INDL and NML do not o�er a bene�t for our needs (performing checks of
the status of the implementation of the recommendations):

• Networks modelled in INDL and MNL have a high amount of entities. For a basic
physical connection between two devices as illustrated in 3.2.2 twelve entities
and 15 edges (relations in OWL) need to be created. For modelling the next
layer at least the same amount of entities and edges are added as INDL/NML
build the layer on top. That is, additionally to the entities of the lower layer,
edges (relations) for the upper layer are created. These relations provide the
connection of both layers as INDL and NML model networks "vertically" (imagine
as a stack of layers). The created layer on top of the previous layer adds another
set of unidirectional and bidirectional entities. The high amount of entities is
justi�ed by modelling in and out bound ports which is not required in the context
of safeguards’ recommendations. For our needs it is not necessary to model
respectively distinguish between out- and in-bound ports.

• Furthermore, both models are designed to be strictly unidirectional (justi�ed in
the origins in the area of optical and hybrid networks) in their use case which is a
drawback for our networks as we will only consider Ethernet-based bidirectional

4.2. Software to be Developed 21

networks. As unidirectionality is a basic principle of the model of INDL and NML
it is an integral part of the model.

• Additionally, INDL and NML model device internal interconnecting ports (e.g.
in switches). To actually use the model in our context an additional abstraction
layer is required which provides functionality to encapsulate those aspects. That
is, the abstraction must provide a function which transforms the unidirectional
approach into a bidirectional approach. Furthermore, the abstraction must provide
a functionality which handles the device internal connections to provide a path
�nding in the network.

• There is no speci�c tool support or wide spread (public) usage. Despite intensively
research no tools or libraries which handle or work with INDL and NML were
found. Although it is a standard the commonness is not high and INDL and
NML itself still appear to be an area of research. Therefore, the bene�t of being
standardized and o�ering an exchange format is no real bene�t for INDL and
NML.

For this reasons and that the focus on this thesis is validating safeguards the approach
is to develop a speci�c network model which ful�ls our needs.

4.2.2.2 Model Firewall Filter Rules (Model Requirement M2)

Firewall �lter rules are required for the network topology model as they can limit data
paths. Additionally, they are used to evaluate checks C4 and C5 (see in the following
section). Therefore, an appropriate model to store and access the �lter rules is required.

4.2.2.3 Model IT Policies (Model Requirement M3)

The IT policies are required to compare the requirements of the company to those
actually implemented in the �rewall �lter rules. Therefore, an appropriate model to
store and access this data is required.

4.2.3 Read the Required Inputs (Input Requirement)

This paragraph describes the di�erent inputs required to perform the checks C1-C7.

4.2.3.1 Network Cables I1

Cables as physical connections between machines must be considered as �rst layer in
the network model to be developed (and in the ISO/OSI model). For this thesis only

22 Chapter 4. Analysis

Ethernet-based connections are considered. The cabling should be documented in an
appropriate way to be parsed by a speci�c parser providing a set of links and devices
from the whole network.

4.2.3.2 Virtual Machines I2

Virtualization plays an important role in IT infrastructure due to the bene�ts (e.g. easy
and fast provisioning, scalability, maximum resource utilization). There are several
companies and technologies o�ering virtualisation solutions (e.g. VMware, KVM, Citrix,
Proxmox, ...). As virtual machines can be treated as a "normal" physical server they
must be taken into consideration, too. To reduce the complexity of modern hypervisors
with respect to (virtual) networking a simpli�ed model which will be suitable for our
needs is developed.

4.2.3.3 Switch I3

To determine possible tra�c paths switches play an important role. Switches can create
network segmentation on layer two of the ISO/OSI model by VLANs. If packages
from one VLAN are not switched to another one (dropped by the switch) there would
be no need to check �rewall �lter rules as they are usually working on layers three
and/or four and will not receive the packages. A switch con�guration must provide the
mapping of (physical) interfaces a device is connected to, to the VLAN id. One interface
can be mapped to several VLAN ids. Several switches o�er link aggregation meaning
that di�erent physical interfaces are bundled which must be taken into consideration.
Additionally, the possibility of stacked switches (meaning several physical devices act
as one switch) must be modelled.

In addition to the information required for modelling the data layer in the network
model, a parser to be developed must read the password of the management interface
of the switch(es).

4.2.3.4 Router I4

After layer one and two another important component is the routing (end-to-end con-
nection) in a network (layer three). Similar to switches on layer two routers may drop
packages and therefore there is no need to evaluate data at the �rewall level. According
to that the routing paths in a network must be available for making statements about
the paths of the network.

In addition to the information required to model the data layer, a parser must read the
password of the management interface of the router(s).

4.2. Software to be Developed 23

4.2.3.5 VPN Gateway I5

VPNs form a virtual network in an existing network. They are used to provide access
for external networks to internal networks, to build a private WAN without the costs of
a real one, and to grant encrypted access to resources based on a user authentication.
To distinguish possible tra�c paths a network topology model should include VPNs
as well. VPN information must be parsed form a con�guration (e.g. the VPN gateway)
with a speci�c parser to create VPN routes in the network model to be developed.

In addition to the information required to model the data layer, a parser must read the
password of the management interface of the VPN gateway(s).

4.2.3.6 Firewall I6

To determine allowed tra�c paths in a network, it is necessary to gather information
from the �rewalls which are responsible for allowing and dropping packages in the
network. In this context the most important information are the de�ned �lter rules of
the security gateway. A rule’s minimal set of information for an IP based �rewall is
Source IP, Destination IP, Source Port, Destination Port, and Action.

Incoming packets are based on their source and destination information compared to
the �lter rule table and the �rst rule which matches all four parameters is applied.

In addition to the information required to model the data layer, a parser must read the
password of the management interface of the �rewall(s) and check if logging of tra�c
activities is enabled.

4.2.3.7 Read IT Requirements I7

The last input needed is the speci�cation of allowed (or in same case forbidden) tra�c
in some kind of rules. BSI Baseline Protection Catalogues do not specify exact (�lter)
rules for networks. Instead they give examples in which way one should de�ne �lter
rules but clearly postulate that there should be such a document (cp. S 2.76 [7]).

Table 4.2 lists the described requirements.

4.2.4 Perform Checks

Based on the network topology model and the recommendations of the safeguards,
several checks shall be performed according to the column to be automated in table 4.1.

24 Chapter 4. Analysis

Table 4.2: Requirements Overview
Requirement Summary
G1 Modular and extensible architecture
M1 Network topology model
M2 Firewall �lter rules model
M3 IT policies model
I1 Physical wiring
I2 Virtual machines
I3 Switch con�guration
I4 Router con�guraion
I5 VPN Con�guration
I6 Firewall Con�guration
I7 IT Policy

• Check Preset Passwords of Network Devices (Check C1 "Passwords") This
check is from safeguards S2 and S3. The aim is to check management passwords
of network devices.

• Check if Firewall Logging is Enabled (Check C2 "Logging")
This check is from from safeguard S5. The aim is to check the logging of dropped/ac-
cepted packages of �rewall �lter rules.

• Find Connections Bypassing a Firewall (Check C3 "Bypassing")
This check is from safeguard S2. The aim is to check data paths allowing commu-
nications between devices without control of at least one �rewall.

• Check the Existence of Filter Rules for All Devices (Check C4 "Filter Rules")
This check is from safeguard S1. The aim is to check the existence of a �lter rule
for every device in the network.

• Check the Whitelist Approach in Filter Rules (Check C5 "Whitelist")
This check is from safeguards S1 and S2. The aim is to check that the �lter rule
table has no deny rule.

• Find Possible (TCP/UDP) Data Paths and Compare them to the IT Requirements
(Check C6 "Policy")
This check is from safeguards S1, S4, and S5. The aim is to check allowed tra�c
in the network and compare them to the IT policies.

• Check the Handling of Di�erent ICMP Types (Check C7 "ICMP")
This check is from safeguards S4 and S6. The aim is to check the handling of
ICMP at the �rewall.

25

Chapter 5

Design

This chapter describes the design of the architecture to be developed as well as the
model of the network topology and the checks in order to evaluate the implementation
status of the selected safeguards.

5.1 Purpose

The architecture to be developed should be able to automate the veri�cation of chosen
BSI Baseline Protection’s safeguards. It should gather the information required for the
speci�ed safeguards and store it in an appropriate data structure. With this data, checks
related to the chosen safeguards should be performed.

5.2 Architecture Overview

Figure 5.1 gives a rough overview of the components and their relationship of the
architecture to be developed. According to the requirements (see 4.2) there are several
major sets of data which are described in section 4.2.3. From those inputs the needed
information is gathered and internal models are built (see 4.2.2). The di�erent checks
(from 4.2.4) are described at the end of this chapter.

The architecture has three major inputs

1. The network data (see section 4.2.2.1)

2. The �rewall con�guration (see section 4.2.3.6)

3. IT policies (see section 4.2.3.7)

The model is generated with theses inputs containing

26 Chapter 5. Design

Figure 5.1: Components - Overview

• A network model from layer one to three with path �nding capabilities

• Firewall �lter rules (including layer four)

• IT policies

The following sections describe the algorithms and the design of the architecture to be
developed according to the requirements (see 4.2).

5.3 General Requirement G1

This architecture is designed to di�erentiate between the data (-sources) and the in-
ternal model. Therefore, it is possible to extend the functionality with other sources
respectively parsers as long as they provide the necessary data for the network topology,
the �rewall �lter rules, the IT policies, and the IPv4 space. The design also separates the
checks making it easy to add other checks as they perform independent of each other.

5.4. Build Model 27

5.4 Build Model

In the following, the di�erent models are described according to 4.2.2.

5.4.1 Build a Representation of the Network Topology (M1)

For the evaluation of several safeguards a sophisticated knowledge of the network
topology is required. This section describes the model and its entities.

5.4.1.1 In�uences from INDL and NML

This section describes the in�uences on the graph model from INDL and NML (see
3.2.2):

• INDL’s generic approach by providing "Deadaptation" and "Adaptation" services
for modelling the transition between di�erent layers is adopted. This is achieved
by building several layers of the actual graph representing the di�erent ISO/OSI
layers.

• Everything in NML is unidirectional. Basically that is the right way especially
when handling (unidirectional) �rewall connection establishments. Therefore,
the concept of unidirectional links was adapted to a directed graph model.

• INDL and NML model ports of devices and their connections by creating entities
for each port and connection. This concept was adopted and simpli�ed but
storing the necessary information (ports, connection, etc.) in the property of the
connection, respectively the edges of the graph.

5.4.1.2 Components of a Network Graph

Figure 5.2 illustrates the components of a network topology as it is to be modelled
(compare the following sections for detailed description of the components). Network
devices such as switches, routers, VPN gateways, and �rewalls determine the possible
paths of tra�c. End devices as computers and virtual machines are tra�c producer and
consumer and the actual devices to be restricted in terms of network access. These com-
ponents cover most standard enterprise networks only varying in their con�guration
and number.

28 Chapter 5. Design

Figure 5.2: Components of an Example Network

5.4.1.3 Network Layer Modelling Approach

In order to perform an evaluation of the selected BSI safeguards a model of the required
Inputs is needed. All connections are unidirectional as a directed graph is basis for the
graph model. This allows di�erentiating between incoming and outgoing tra�c. As
there might be parallel edges the graph model is a (directed) multigraph. The di�erent
layers of a network are modelled as a standalone graph based on the graph of the
underlying layer allowing to easily determine paths. Due to the relation that the set of
edges of layer n+1 is based on the set of edges of layer n one can assume that paths of
layer n are included in layer n+1. Nodes of the graph represent the di�erent network
elements, e.g. a switch or a router.

Each layer substitutes intermediate network device (e.g. switches, router,..) and extends
the graph with edges representing the network topology information of the substituted
device.

The bene�t of this approach is to simplify the algorithms that work on this model.
Algorithms which require searching for a data path between two devices just need to
verify the existence of an edge between those devices.

Figure 5.3 illustrates the di�erent layers of the network model, their inputs, relations
and node types. For edge information see the corresponding section of the detailed
layer description. Each layer depends on the underlying layer and the corresponding
con�guration inputs.

5.4. Build Model 29

Figure 5.3: Overview - Network Layer Model

5.4.1.4 Physical Layer

For the physical layer the connections of (hardware) devices are needed. The graph
consists of the following elements:

1. Nodes (representing network objects) with name and type values
Possible values for types are switch, router, vpn gateway, �rewall, hypervisor, and
end devices

2. (Directed) Edges (representing the connections) with name, nodes, and ports val-
ues
name is a (unique) name of the edge, nodes are the references to the two nodes

30 Chapter 5. Design

which are linked by this edge and ports are the port names of both nodes the link
is attached to.

Figure 5.4 illustrates an example graph of a small network and its objects connected
with cables.

Figure 5.4: Layer 1 Example Graph Representation

5.4.1.5 Virtual Machines

Since all devices consuming and producing network tra�c should be considered, virtual
machines must be modelled in the network topology, too. The problem is where to
locate them in the network graph, as they are not physical hardware but software. At
�rst glance, virtual machines should be part of the corresponding host (in the context
of virtualisation host refers to hardware server). The downside of this approach is that
some hypervisors (e.g. VMware) have mechanism to dynamically spread the location of
virtual machines across di�erent hosts (clusters) in terms of resource usage optimizing
so it is generally impossible to make exact statements where a virtual machine is located.

For this reason only the "snapshot" of the current state is regarded. As modern hyper-
visors implement a virtual switch connecting the VMs and the host’s NICs we model
virtualisation before the data layer. Aim is to extend the network graph with the virtual
network provided by the virtualisation software by creating new nodes for each VM
and virtual switch. Virtual switches can be treated like physical switches in the model
that is, they are substituted in the next layer, too.

For this layer the physical layer and the virtual network con�guration are needed. The
graph consists of the following elements:

5.4. Build Model 31

1. Nodes with name and type values
Possible values for types are router, vpn gateway, �rewall, vm, end devices. There
is no special type for virtual switches as they are considered as physical switches
in the model.

2. (Directed) Edges with name, nodes, and ports values This edge is similar to an
edge of the physical layer.

Figure 5.5: Virtualisation Model

Figure 5.5 illustrates the idea. Starting point is the physical connection of a hypervisor to
another network device (here a hardware switch). The hypervisor’s type is replaced by
"former hypervisor" just connected with its management interfaces indicating that this
node now acts as a regular end device in the model. The virtualisation is modelled by a
newly created node "vSwitch" to which the di�erent virtual machines of the hypervisor
are connected. The (physical) hosts’ interfaces (except management) are "replaced" and
the edges from the hardware switch directly connected with the new vSwitch. This is
possible as the physical interfaces of the host must be transparent for the VLANs of
the virtual machines as otherwise there would be no connection possible. At this point
the model consists of intermediate network devices (e.g. switches, routers,...) and end
devices (VMs amongst others). With this state of the graph it is possible to apply the
next step, the building of the data link layer.

As there are many virtualisation technologies available, the source and format of the
required information di�ers. The following list describes the information in general
that is needed from the virtualisation software for the model:

1. Name and VLAN con�guration of each virtual switch per hypervisor

32 Chapter 5. Design

vSwitches substitute hypervisor nodes and act as intermediate network devices
between the physical network and the virtual machines. Therefore, the VLAN
con�guration of each vSwitch similar to normal switches (see 4.2.3.3) to being able
to model the data link layer of the virtualised machines is needed. Additionally,
the physical interface of the host connected to the vSwitch is needed for the
mapping of the physical wiring to the vSwitch.

2. Name and connections of each virtual machine
To create new nodes for each running virtual machine the information how each
VM is connected to which virtual switch is required.

5.4.1.6 Data Layer

For this layer the physical layer and the switch con�gurations are needed. The graph
consists of the following elements:

1. Nodes with name and type values
Possible values for types are router, vpn gateway, �rewall, and end devices. The
di�erence to the former layer is the missing of nodes of the type switch.

2. (Directed) Edges with name, nodes, ports, and VLAN id values
Additionally, to the layer one graph the edges have the VLAN property which
describes the edge’s VLAN id.

Figure 5.6 illustrates an example graph. The switch device changed to a regular end
device of type "former switch" as it might have a management interface and must be
considered although it is meaningless for the other devices’ communication.

The di�erence to the former graph is, that this graph includes VLAN information,
e.g. Server 2 is now connected with the IP outlet by two links, each of them having a
(di�erent) VLAN property.

5.4.1.7 Network Layer

For this layer the data layer, the routing tables of each router, a VLAN id to subnet
IP mapping, a subnet to devices mapping, and the client subnets as well as the VPN
subnets are needed. The graph consists of the following elements:

1. Nodes with name, type, VLANid, subnet and IP values
Possible types are �rewall, vpn gateway, subnet, and end devices. The di�erence
to the former graph is the missing of node of the type router.

2. (Directed) Edges with name, nodes, ports. VLAN s, IP1, IP2, subnet1, subnet2, and
isVPN values

5.4. Build Model 33

Figure 5.6: Layer 2 Example Graph Representation

Additionally to the values of the edges of layer two, the following new properties
are added:

• IP1 describes the IP of node1

• IP2 describes the IP of node2

• subnet1 describes the subnet of IP1 of node1

• subnet2 describes the subnet of IP2 of node2

• isVPN indicates if this connection is a VPN route

VPN Gateways assign a new IP address to clients from a speci�c set of reserved addresses.
As these addresses for VPN clients may currently not exist in the graph (as nodes) all
regarded routes must be checked for an existent node in the graph. If the node does not
exist, it must be checked if the subnet, which is the routing target is a member of the
de�ned VPN subnet(s) and a new subnet node for the client VPN IP(s) is created. This
approach is similar to the model of the DHCP-based client IP range.

Figure 5.7 illustrates an example graph (for better visualization only the new values of
the edge are shown). The router was substituted by the possible routing paths according
to the router con�guration. In this case only "Server 2" is routed by the router to the
�rewall

As routers might also route DHCP based networks where an exact IP address of a client
is not determinable a new node of type "client subnet" is in this case created.

The former router device changed to a "former router" device as it might have a manage-
ment interface and must be considered although it is meaningless for the other devices’
communication. The di�erence to the former graph is, that this graph includes layer

34 Chapter 5. Design

three (routing) information, e.g. Server 2 is now connected with the Firewall by an edge
with the required layer three information.

The di�erence to the former graph is that this graph contains layer three routing in-
formation, that is one edge represents an end-to-end connection in contrast to the real
connection might consist of several hops.

Figure 5.7: Layer 3 Example Graph Representation

5.4.1.8 Firewall Model

This "layer" is not an ISO/OSI layer but as �lter rules, which are a main focus of the
considered safeguards, are applied on the network and the transport layer (for TCP/IP
�rewalls), they are modelled at this point. The general algorithmic approach is further
continued with the aim of substituting �rewalls (�lter rules) with edges in the graph
representing their information. The basis for modelling �lter rules are the network
layer graph and the �lter rules of the �rewall con�guration as well as the VPN endpoint
con�guration. For each �lter rule with allow action a new edge is created with the
appropriate information. Every allow rule (just matching the source IP) is modelled
to get a set of edges representing all possible tra�c paths. Deny rules are modelled as
limitation of the subsequent allow rules. The graph has the following elements:

1. Nodes with name, type, vlan id, subnet, and ip values
Possible values for types are all types of end devices and subnets (for DHCP and
VPN addresses).

2. (Directed) Edges with name, nodes, ports. VLAN s, subnet1, subnet2, srcip, dstip,
protocol, srcport, dstport values
Basically representing a layer three and four connection. Instead of IP1 and IP2
srcip and dstip is used to express the �rewall a�liation of this edge. The additional
properties are:

5.4. Build Model 35

• protocol for the allowed protocol (TCP or UDP) srcport for the source port
(not to be confused with ports of devices), e.g. 80 for an HTTP request
dstport for the destination port

3. (Directed) Edges with name, nodes, ports. VLAN s, subnet1, subnet2, srcip, dstip,
icmptype
For modelling ICMP handling of the �rewall (same as with �lter rules, an edge
meaning this ICMP type is allowed). Instead of protocol, srcport, and dstport the
additional value icmptype is added to the edge. icmptype contains the type of the
ICMP message, e.g. type 8 for a ping.

4. (Directed) Edges with name, nodes, ports. VLAN s, subnet1, subnet2, srcip, dstip,
protocol, srcport, dstport, and user values
For VPN connections the additional user property is added for storing the infor-
mation which users are allowed.

As allowed tra�c in a VPN is usually limited by a �rewall it must be considered at this
point. Every time an edge connected to a VPN subnet (meaning the edges’ value of
isVPN is true) is regarded, the VPN settings must be considered e.g. the users and the
protocol allowed from this VPN (subnet) IP.

Figure 5.8 illustrates an example graph. In this graph the "former switch" and the
"former router" are allowed to communicate with "Server 2" (for better visualization the
properties of the edges are not shown) and "Server 2" is allowed to communicate with
the node "Internet" with TCP over port 22 in both directions.

The di�erence to the former graph is that this graph contains �rewall �lter rules meaning
that this graph models the allowed tra�c in the network.

Figure 5.8: Firewall Filter Rules Representation

36 Chapter 5. Design

5.4.2 Algorithms

The following section describes the algorithms to build the network model. Section
5.4.2.1 describes the basic algorithm to substitute network devices in order to extend
the graph with their information. Sections 5.4.2.2 5.4.2.3, 5.4.2.4, 5.4.2.5, and 5.4.2.6
describe the algorithms to model the corresponding layer. For better visualization of
the algorithms, the mentioned fact that most devices remain in the graph due to their
management interface is not shown.

5.4.2.1 Basic Algorithm for Substituting Network Devices

For each layer the aim is to substitute intermediate network devices with a number of
edges which represent the replaced devices’ functions. For all three layers a modi�ed
basic algorithm is used. The general approach is as follows:

Listing 5.1: Basic Algorithm

1 f u n c t i o n s u b s t i t u d e N e t O b j (l a y e r −graph , type , c o n f i g ,
f u n c t i o n ())

2 i t e r a t e over a l l nodes o f l a y e r −graph
3 i f node type == type
4 i t e r a t e over a l l o u tg o i n g edges o f the node
5 d e v i c e 1 = connec ted node
6 f u n c t i o n ()
7 done
8 d e l e t e node from graph
9 end

10 done
11
12 f u n c t i o n ()
13 / / v a r i e s f o r each l a y e r depending on the d e v i c e t o be

s u b s t i t u t e d
14 f i n d connec ted o b j e c t n2 based on c o n f i g
15 c r e a t e edge between d e v i c e 1 and d e v i c e 2 with c o n f i g

p r p e r t i e s
16 end

Figure 5.9 and listing 5.1 illustrate the algorithm which is based upon a breadth-�rst
search as all neighbours of a node are regarded. The algorithm iterates over the set of
nodes of the input graph and checks it for the type to be replaced (step 1 and lines 2-3).
If the node is of the type to be replaced over the edges of this node is iterated (step 1
and line 4). For each node connected to the edges the connected remote device based
on the con�guration (step 2-3 and lines 5-6) are relinked with the appropriate values

5.4. Build Model 37

Figure 5.9: Basic Algorithm for Replacing Intermediate Network Objects

of the con�guration (line 7). After all connected devices are processed the object to be
substituted is deleted (step 4 and line 9) or at least transformed to a regular end device.

function() describes the layer speci�c part of the algorithm.

After line four in the algorithm it must be checked if the regarded outgoing edge is
a management interface. If such an interface exists the device remains in the graph
and gets a "former" pre�x in its type description indicating that it does not in�uence
the connections anymore. In this case line nine of the algorithm must be changed to a
deletion of all "old" edges except the management interface. As mentioned this fact is not
illustrated in the following descriptions but must be considered in the implementation.

5.4.2.2 Physical Layer Algorithm

Listing 5.2 illustrates the algorithm. The graph is built by iterating over all network
objects and uniquely adding nodes for each object to the graph and their corresponding
connections. The physical algorithm as basis for the model does not adapt the mentioned
basic algorithm (5.4.2.1). Patch panels which only directly connect network objects
without impact on the network itself must be resolved and deleted from the graph.
Figure 5.10 illustrates the algorithm. By iterating over all nodes of the graph, all edges
of each node of type (step 2) patch panel are relinked to their counterpart (step 3). The

38 Chapter 5. Design

Listing 5.2: Phyiscal Layer Algorithm
1 i t e r a t e over a l l nodes
2 i f node1 not e x i s t i n g
3 c r e a t e node1 with p r o p e r t i e s
4 i f node2 not e x i s t i n g
5 c r e a t e node2 with p r o p e r t i e s
6 c r e a t e new l i n k from node1 t o node2 with p r o p e r t i e s
7 c r e a t e new l i n k from node2 t o node1 with p r o p e r t i e s
8 done

basic algorithm is adapted and described in listing 5.3. In this case the "patch-panel-
con�g" includes the con�guration of the patch panel’s internal wiring to distinguish
the connections of the connected devices.

Figure 5.10: Patch Panel resolving Algorithm

5.4. Build Model 39

Listing 5.3: Patch Panel Resolving Algorithmus
1 f u n c t i o n s u b s t i t u d e N e t O b j (l a y e r −graph =" l a y e r 1 " , type = ’ ’

pa t ch panel ’ ’ , c o n f i g =" patch −panel − c o n f i g (s) " , l a y e r 1 −
f u n c t i o n ())

2
3 l a y e r 1 − f u n c t i o n ()
4 f i n d connec ted o b j e c t n2 based on pa tch p a n e l w i r i n g
5 c r e a t e edge (s) between both d e v i c e s with the same

p r o p e r t i e s
6 / / pa t ch p a n e l s do not i n f l u e n c e the network i t s e l f
7 end

5.4.2.3 Virtual Machines Algorithm

The Basis for the virtualisation model is the layer one graph and the con�guration of
the virtualisation software (for each host). Figure 5.11 illustrates the algorithm. It is
iterated over each node of the graph, searching for nodes of type hypervisor. For each
hypervisor its virtual network con�guration is mapped into the graph as follows:

• For each vSwitch a new node in the graph is created which is connected to the
physical interface of the hardware switch at the same point as the corresponding
hypervisor’s interface (in the image these are "NIC1" and "IC2") was.

• For each VM a new node is created and connected to the corresponding vSwitch.

The vSwitch information is kept for modelling the next layer, where VLAN information
is processed and the added vSwitch nodes are treated as regular switches.

5.4.2.4 Data Layer Algorithm

Basis for the VLAN model is the previous generated graph which models the actual
wiring and virtual machines and the con�gurations of the switches in the network. As
there are usually multiple switches in a network, the di�erent switch data sets need to
be stored for each switch.

Table 5.1: Switch Con�g Example
Interfaces VLAN
0/1 1,2
0/10 3,4
0/20 1,2,3,4

A simple example for the required data looks like table 5.1. Additionally, in this example
a device "A" is connected to the switch interface "0/1" and a device "B" is connected to

40 Chapter 5. Design

Figure 5.11: Virtual Machines Algorithm

the switch interface "0/10", a device "C" is connected to the switch interface "0/20". The
algorithm will create for devices "A" and "B" each four edges connected to device "C".
The edges A→ B with VLAN 1 and 2 and the edges B → C with VLAN 3 and 4 (in both
directions).

Figure 5.12 illustrates the algorithm, an adopted basic algorithm, which is also described
in listing 5.4. By iterating over all nodes of the graph, all edges of each node of type
switch (step 1 are relinked to their counterpart (step 3 and line 6) based on the switches

5.4. Build Model 41

Listing 5.4: Switch Resolving Algorithm
1 f u n c t i o n s u b s t i t u d e N e t O b j (l a y e r −graph =" l a y e r 1 " , type = ’ ’

swi tch ’ ’ , c o n f i g =" swi tch − c o n f i g (s) " , l a y e r 2 − f u n c t i o n ())
2
3 l a y e r 2 − f u n c t i o n ()
4 f i n d connec ted o b j e c t n2 based on c o n f i g
5 f o r each VLAN i d between t h e s e tow d e v i c e s
6 c r e a t e edge between both d e v i c e s with VLAN ID
7 done
8 end

VLAN con�guration (step 2 and lines 4-5). In this case the "switch-con�g" includes the
con�guration of the switch (see 5.1). For each VLAN id of the two regarded devices
which are con�gured in the switch a new edge with the VLAN id property is created.

The result is a graph representing layer two in the network model.

Figure 5.12: Switch Resolving Algorithm

5.4.2.5 Network Layer Algorithm

After layers one and two the next step upwards in the ISO/OSI model is inter-subnet
connection on layer three (network layer). Aim is as like with switches to resolve
routing tables and add edges to the graph to substitute routers. There are two kinds of
routing tables, �rstly the dynamic routes (the source IP is also checked) and secondly the
static routes. The di�erence between them is that static routes are manually maintained

42 Chapter 5. Design

and the latter dynamically built by special router protocols (e.g. OSFS or RIP) which
allow routers to build and exchange their routing information. At �rst a router would
normally check the dynamic routes entries for the received package and if there is no
matching entry the static routes are applied. As we will not model a path of a speci�c
package but the possible paths of all packages all entries of the routing tables are applied
as illustrated in �gure 5.13. In this �gure the properties of an example link are described.
Therefore, there is among others, a routing table entry which routed the IP (10.20.40.100)
of "Server1" to the IP of the �rewall (10.20.50.10).

Figure 5.13: Routing resolving Algorithm

Listing 5.5 describes the algorithm which is based on the basic algorithm. By iterating

5.4. Build Model 43

over all nodes of the graph, all edges of each node of type router are relinked to their
counterpart (step 2 and line 11) based on the routing tables of the router (see �gure
5.14 for an example how routing tables are applied). For each route which matches the
regarded device a new edge with the IP properties is created. DHCP and VPN IPs are
modelled with a node of type subnet (lines 5-10). At last the router is transformed to a
regular end device or removed from the graph.

Listing 5.5: Router Resolving Algorithm

1 f u n c t i o n s u b s t i t u d e N e t O b j (l a y e r −graph =" l a y e r 2 " , type = ’ ’
r o u t e r ’ ’ , c o n f i g =" r o u t e r − c o n f i g (s) " , l a y e r 3 − f u n c t i o n ())

2
3 l a y e r 3 − f u n c t i o n ()
4 f o r each matching r o u t i n g e n t r y f o r IP o f d e v i c e 1
5 i f r o u t e t a r g e t i s a VPN IP and VPN IP s u b n e t node

does not e x i s t
6 c r e a t e VPN IP s u b n e t node
7 end
8 i f r o u t e t a r g e t i s a DHCP IP and DHCP IP s u b n e t node

does not e x i s t
9 c r e a t e DHCP IP s u b n e t node

10 end
11 c r e a t e edge from d e v i c e 1 t o t a r g e t o f r o u t i n g t a b l e

with IP p r o p e r t i e s (+ VPN v a l u e i f a p p l i c a b l e)
12 done
13 end

The assigning of routes is illustrated in 5.14 where the red link’s source IP can be found
in the dynamic routes whereas the green link’s does not match a dynamic source IP,
therefore all static routes are applied.

5.4.2.6 Firewall Algorithm

As mentioned, a minimal policy consists of a 5-tuple. To match a �lter rule a packet’s
source and destination data must match the entries of a rule. In order to process the
�lter rules a data structure with the necessary information with respect to the �rewalls
con�guration syntax is built.

As there is only a �xed source IP (the node) a new edge for every possible value according
to the �lter rules of the remaining three �elds is created. Before the actual rules are
modelled in the graph a preliminary step handling deny rules is necessary. In this step
all allow rules are limited with all deny rules appearing in the rule table before. In
the resulting graph the end devices are directly connected with each other with no

44 Chapter 5. Design

Figure 5.14: Example of getting Routes

intermediate network devices (at least with none acting as such). The algorithm is
illustrated in �gure 5.15 and listing 5.6. After deny rules are observed and processed in
the �rst section of the listing the algorithm is similar to the former algorithms.

By iterating over all nodes of the graph, all edges of each node of type �rewall (step 1)
are relinked to their counterpart (step 2 and lines 15-25) based on the �lter rule table
of the �rewall. For each �lter rule matching the regarded device’s IP address a new
edge depending on the type (regular, ICMP, or VPN) is created. At last the �rewall is
transformed to a regular end device or removed from the graph.

5.4.3 Model Firewall Filter Rules (M2)

Firewall �lter rules can be modelled as �ve tuple as mentioned in 4.2.3.6. The ordering
of them must be preserved form the parser and in the stored representation. For VPN
connections additionally the accepted user of the corresponding rule must be stored.

5.4.4 Model IT Policies (M3)

For verifying the implemented �lter rules it is necessary to have the companies IT
policies regarding network access control. As these lists are quiet similar to the actual

5.5. Read the Required Inputs 45

Listing 5.6: Firewall Algorithm
1 / / p r o c e s s deny r u l e s a p p e a r i n g b e f o r e app ly r u l e s
2 i t e r a t e over a l l f i l t e r r u l e s
3 i f f i l t e r r u l e a c t i o n = deny
4 save r u l e i n an o r d e r e d l i s t
5 e l s e i f f i l t e r r u l e a c t i o n = a l l o w
6 i t e r a t e over saved deny r u l e s
7 e l i m i n a t e deny from a l l o w
8 save a l l o w r u l e i n an o r d e r e d l i s t
9 done

10 end
11 done
12
13 f u n c t i o n s u b s t i t u d e N e t O b j (l a y e r −graph =" l a y e r 3 " , type = ’ ’

f i r e w a l l ’ ’ , c o n f i g =" f i r e w a l l − c o n f i g (s) " , layerFW−
f u n c t i o n ())

14
15 layerFW− f u n c t i o n ()
16 f o r each matching a l l o w r u l e f o r IP o f d e v i c e 1
17 i f ICMP r u l e
18 c r e a t e ICMP edge from d e v i c e 1 t o d e s t i n a t i o n o f r u l e
19 e l s e i f VPN r o u t e
20 c r e a t e edge from d e v i c e 1 t o d e s t i n a t i o n o f r u l e with

p r o p e r t i e s (p r o t o c o l + p o r t + u s e r)
21 e l s e
22 c r e a t e edge from d e v i c e 1 t o d e s t i n a t i o n o f r u l e with

p r o p e r t i e s (p r o t o c o l + p o r t)
23 end
24 done
25 end

�rewall rules they are modelled as tuple consisting of Source IP/Port, Destination IP/Port,
protocol, and Action.

5.5 Read the Required Inputs

In the following, the input data is described according to 4.2.3. For each of the required
inputs a parser needs to be developed which will build the data structures from the
inputs.

46 Chapter 5. Design

Figure 5.15: Firewall Filter Rules Algorithm

5.5.1 Physical Layer I1

For the physical layer some kind of parsable network documentation is required with
the following information:

• Device names

• Device types

• Device interfaces

• Device connections

Additionally, if not available in other documentation, the list of IP addresses in use is
required. A parser reads the mentioned information and stores them in a "physical-data"
data structure.

5.5.2 Virtual Machines I2

Depending on the virtualisation technology a parser must read the network con�gura-
tion of each host and stores the following information in a "vm-data" data structure:

5.5. Read the Required Inputs 47

• Name and VLAN con�guration of each virtual switch per hypervisor

• Name and connections of each virtual machine

5.5.3 Data Layer I3

For the data layer the con�guration of all switches is required. A parser must read the
con�guration and stores the following information in a "data-link" data structure:

• Interface (-numbers)

• VLANs on this interface

• Management interface password

Special features of a switch such as LACP (Link Aggregation Control Protocol) must
be handled to be able to assign VLAN ids to the physical interfaces and not to bundled
ones.

5.5.4 Network Layer I4

For the network layer the con�guration of all routers must be read by a parser and the
following information stored in a "network-data" data structure:

• static routing tables

• dynamic routing tables

• Management interface password

5.5.5 VPN Gateway I5

For the network layer the con�guration of the VPN gateway must be read by a parser
and the following information stored in a "vpn-data" data-structure:

• User(group)s

• IPs reserved for clients

• Routing tables from outgoing tra�c if not acting like a bridge if clients getting
local IPs

5.5.6 Firewall Layer I6

For the �rewall layer the con�guration of all �rewalls must be read by a parser and the
following information stored in a "�rewall-data" data structure:

48 Chapter 5. Design

• Filter rules table

• Logging information (per �lter rule and globally)

• Management interface password

5.5.7 Read IT Requirements I7

Check C6 requires the IT policies of the company which must be read by a parser and
the following information stored in a "policies-data" data structure:

• srcip

• dstip

• srcport

• dstport

• protocol

• optional user

• optional service (e.g. ssh, ftp, ...)

• allowed or denied

5.5.8 Additional Input

Additionally, some information must be provided manually in a settings �le:

• Paths to the �rewall con�guration �le(s)

• Paths to the switch con�guration �le(s)

• The DHCP client subnet address(es)

• The VPN subnetworks

• The DMZ subnetworks

5.6 Perform Checks

This section describes the di�erent checks to be performed (see 4.1). The checks should
be implemented in modules to easily extend the architecture with additionally checks.

5.6. Perform Checks 49

5.6.1 Check Preset Passwords of Network Devices (Check C1)

Baseline Protection Catalogues demands to change the preset passwords of devices
(S 4.7 Change of preset passwords [7]). To verify this, the considered devices must
be checked for their passwords. As passwords are usually not saved as plain text the
following two ways are possible:

• Knowing the hashing/encryption algorithm
In this case one can easily compare the value of the password with the preset
password of the considered system by generating the hash with the appropriate
algorithms. If the standard password is set an error is reported.

• Not knowing the algorithm
If it is possible to reset a (testing) devices (multiple times to guarantee the same
result) one can look up the preset password hash. This password hash can be
compared to other devices’ password hash. If it is the same hash, chances are
high that there is still the preset password in use.

One must keep in mind that for both cases encrypting and hashing may be based on
some (unknown) encryption key or hashing salt. Depending on how this is implemented
the resulting value may be only valid for the machine at a certain state. This safeguard is
applicable to all (managed) devices which provides access to some kind of management
interface (e.g. switch, �rewalls,..).

5.6.2 Check if Firewall Logging is Enabled (Check C2)

According to the BSI, �rewalls should write logs in general and also policy speci�c
log information (S 2.78 Secure operation of a �rewall [7]). The con�guration of the
considered �rewalls must be checked for enabled logging for both, general and policy
speci�c logs. As the �rewall parser provides the logging con�guration this check only
evaluates if the logging value of each policy is enabled and additionally if the global
logging is activated. In case of a lack of logging a report is generated showing where
the logging is missing.

5.6.3 Find Connections Bypassing a Firewall (Check C3)

With the complete network topology and all relevant devices are included in the graph
(see 5.6.4.1) this algorithm checks if devices are able to communicate bypassing the �re-
walls (�gure 5.16 illustrates the algorithm). It is iterated over all nodes of the underlying
graph model. For each node the possible outgoing tra�c paths are evaluated (step 1).
If a single connection is possible to another device not being of the type �rewall this

50 Chapter 5. Design

would break the safeguards recommendation (step 2). In this case the corresponding
devices and their connection is saved for an error report

As this method is layer independent all modelled layers ranging from layer one to three
can be the input of these checks. The revealed noncompliance would be as follows:

• Physical Layer
Devices directly connected through an Ethernet cable without �rewall

• Data Layer
Devices connected on the same broadcast domain without a �rewall

• Network Layer
Devices of di�erent subnetworks connected without a �rewall

Figure 5.16: Bypassing Firewalls Algorithm

5.6.4 Check the Existence of Filter Rules for All Devices (Check C4)

This statement is part of the safeguard S1. For this thesis, computers are de�ned as
machines in a network consuming or producing data tra�c, including e.g. virtual
machines and IP outlets. Furthermore, machines are not regarded as one object but with
a sophisticated view on their NICs. In an enterprise environment it is not uncommon
that devices have with multiple interfaces and IP addresses. To check this statement
three kinds of information is needed:

1. The network topology (see section 5.4)

5.6. Perform Checks 51

2. IPv4 addresses in use, named IP list

3. Firewall rule table (compare 4.2.3.6)

5.6.4.1 Include all Computers

Two check if the graph includes all relevant network objects two checks are needed:

1. Verify that all IP addresses of the IP list are included in the graph (listing 5.7)

2. Verify that all IP addresses of the graph’s nodes are in the IP list (listing 5.8)

With those checks errors in the graph respectively in the IP list are revealed. This is
important as safeguard S1 demands that all internal computers must be considered.

Listing 5.7: Verify IPs of the Graph are de�ned

1 i t e r a t e over a l l nodes
2 i t e r a t e over node ’ s IP a d d r e s s e s
3 i f IP i s not i n IP l i s t
4 r e p o r t e r r o r
5 end
6 done
7 done

Listing 5.8: Verify IPs in IP list are in the graph

1 i t e r a t e over I P s from IP l i s t
2 i f IP not i n the graph
3 r e p o r t e r r o r
4 end
5 done

5.6.4.2 Verify Existence of Firewall Filter Rules

After it is certain to consider all internal computers in the model, the next step is to
verify that all of them are matched by at least one "allow" �lter rule. For this check it is
convenient to compare the source IP �eld of the �lter rule with the IPs of the network
devices. For each �lter rule matching this way, the according action is saved. The action
of the saved rules is checked as there should be no deny rule (whitelisting).

5.6.5 Check the Whitelist Approach in Filter Rules (Check C5)

Whitelist approach is mentioned several times (S1 and S2) and can be veri�ed by check-
ing each policy’s action value of all �rewalls. It should be set to allow (or the corre-

52 Chapter 5. Design

Listing 5.9: Verify Existence of Firewall Filter Rules
1 i t e r a t e over a l l nodes
2 i t e r a t e over a l l I P s from node
3 i f f i l t e r r u l e t a b l e c o n t a i n s matching s r c i p f i e l d
4 i f f i l t e r r u l e a c t i o n == a l l o w
5 r u l e found
6 end
7 i f f i l t e r r u l e a c t i o n == deny
8 r e p o r t e r r o r i n w h i t e l i s t approach
9 end

10 e l s e / / i n c a s e t h e r e i s no deny a l l r u l e
11 r e p o r t e r r o r i n m i s s i n g f i l t e r r u l e
12 end
13 done
14 done

sponding value depending on the �rewall vendor) otherwise there is a deny rule which
is not compliant to the whitelist approach. If there is a deny action, the corresponding
rule is saved and written to the result as warning of this check.

5.6.6 Find Possible (TCP/UDP) Data Paths and Compare them to the IT
Requirements (Check C6)

For this check the �rewall layer and the IT policies are required. Aim is to compare
the enforced data tra�c rules by the �rewall rule tables to the requirements of the IT
policies. The algorithm is illustrated in listing 5.10. Two steps are required to check
whether one set of rules is a strict subset (illustrated in �gure 5.17) which would be an
error as both sets must be equivalent.

5.6.7 Check the Handling of Di�erent ICMP Types (Check C7)

Safeguard S 5.120 ([7]) contains recommendations for the handling of ICMP messages
in a network. It distinguishes between internal computers and public servers in a DMZ.

5.6.7.1 Internal Network

To check the internal ICMP handling the following information is required:

• Firewall layer graph

• The recommendations from the safeguard (which will be hard coded)

5.6. Perform Checks 53

Figure 5.17: Possible Errors in Comparing Subsets

Listing 5.10: Find Data Paths and Compare them to IT Requirements
1 i t e r a t e over nodes o f f i r e w a l l l a y e r
2 i t e r a t e over o u tg o i n g edges o f node
3 g e t v a l u e s o f edge (depending on edge type) :
4 <− s r c i p
5 <− d s t i p
6 <− s r c p o r t
7 <− d s t p o r t
8 <− p r o t o c o l
9 <− icmp

10 <− u s e r s
11 save v a l u e s i n < v a l u e s >
12 i f edge v a l u e s a r e not matching IT any p o l i c y e n t r y
13 r e p o r t e r r o r / / F i l t e r r u l e i s m i s s i n g i n IT p o l i c y
14 end
15 done
16 done
17
18 i t e r a t e over IT p o l i c i e s
19 i f p o l i c y i s not i n v a l u e s
20 r e p o r t e r r o r / / IT p o l i c y i s m i s s i n g i n f i l t e r r u l e s
21 end
22 done

By iterating over the graph, each node’s outgoing and incoming edges are checked if
their protocol is of the type ICMP and their connected object is an internal computer.
With respect to the edges’ direction, the ICMP type is compared to the allowed one’s
in the safeguard. They must match exactly for both directions as only allowed tra�c

54 Chapter 5. Design

Table 5.2: Internal Computer ICMP Handling according to BSI Baseline Protection
ICMP Incoming Outgoing
Type 8 deny allow
Type 0 allow deny
Type 3 allow allow
Type 11 allow allow

Table 5.3: Public Server in a DMZ - ICMP Handling according to BSI Baseline Protection
ICMP Incoming Outgoing
Type 8 allow allow
Type 0 allow deny
Type 3 allow allow
Type 4 allow deny
Type 11 allow allow

is modelled and the rest is denied. Table 5.2 shows the recommendations. ICMP types
which should be blocked for both directions are not shown (as mentioned only allowed
types must exactly match). In case of noncompliance a report is generated.

5.6.7.2 Public Server in a DMZ

To check the public server (DMZ) ICMP handling the following information is required:

• Firewall layer graph

• DMZ Subnet information

• The recommendations from the safeguard (which will be hard coded)

By iterating over the graph each node which has at least one IP of the speci�ed DMZ
subnet(s) are regarded. All ICMP edges of that nodes where the connected node is not
part of the internal network (e.g. node Internet) are compared to the recommendations
(for both directions) with the same methodology as internal computers (regarding the
number of allow edges). In case of noncompliance a report is generated.

Table 5.3 shows the recommendations where ICMP types which should be blocked for
both directions are not shown (as mentioned only allowed types must exactly match).

Figure 5.18 illustrates this based on a simple example. For full compliance each pair
of connected nodes must have the exact amount of illustrated edges as they represent
the allowed ICMP messages. Each ICMP type which is not modelled as edge with the
properties of the ICMP type in the graph is blocked.

5.6. Perform Checks 55

Figure 5.18: ICMP Handling Illustration

56 Chapter 5. Design

57

Chapter 6

Implementation

The developed software is a pure Java application with certain libraries included as
follows:

• JDBC MySQL connector [21]
The standard Java MySQL interface for querying MySQL databases for query-
ing network information from the documentation. This is required to read the
physical network information (see 5.5.1).

• JUNG Graph library [22]
A Java graph library (see 6.1) for building the network topology which implements
the section 5.4.1.3.

• Json library [23]
A Java JSON parser to handle the tool’s settings �le in JSON format to implement
the extensible approach of section 5.3.

It was coded with Oracle JDK 1.8 (but with no features of this recent version used) and
Eclipse Luna 4.4.0.

Table 6.1 shows the implemented requirements. A "X" indicates that this requirement
is fully implemented, an empty cell indicates that this requirement is missing in the
implementation.

6.1 JUNG

This section describes the usage of the Java library JUNG [22] to model a (computer)
network. Some concepts of INDL/NML are slightly adopted. The basic idea behind JUNG
is the possibility to create own (Java) classes for nodes and edges and their methods with
full featured Java inheritance due to JUNG’s generic design. That is, a node ”BasicNode”
can provide common attributes and methods and some specialized nodes ”NodeA” and

58 Chapter 6. Implementation

Table 6.1: Implementation Status
Requirement Implementation Status
D1 Layer 1 implemented
D2 Implemented
D3
D4 Implemented except I2
R1 Implemented
C1 Implemented
C2 Implemented
C3 Implemented
C4
C5 Implemented
C6
C7

”NodeB” may implement new data but also inherit from ”BasicNode”. The same will
apply to edges.

The advantages of JUNG are as follows:

• Extremely customizable for our needs by allowing to de�ne own node and edge
classes with needed properties

• Built-in graph algorithms and methods

• �ltering options e.g. weighted edges

• Several di�erent types of graphs

The network model is implemented with JUNG and own classes for vertices and edges
which inherit from each other. Figure 6.1 illustrated the inheritance model of the classes.
For each layer of the network model a speci�c edge class exists. Layer three and �rewall
layer edges have several constructors according to the possible di�erent values of an
edge (see 5.4.1.8) respectively the isVPN property. Figure 6.2 illustrates the inheritance
of vertices. For layers one to three a vertex is modelled. Vertices of the �rewall layer
have the same attributes as Layer3Vertex.

6.2 Package Overview

The modularity approach is pursued by separating the di�erent functionalities in several
packages and classes. The following list shows the packages structure of the software
tool.

6.2. Package Overview 59

Figure 6.1: Edge Inheritance Model

Figure 6.2: Vertex Inheritance Model

• de.tum.peter.main
Main entry point for the software

• de.tum.peter.racktables
Package for parsing and storing network information

• de.tum.peter.fw
Provides classes for parsing and storing �rewall con�guration information

• de.tum.peter.sw
De�nes classes for parsing and storing switch con�guration data

• de.tum.peter.network
Classes for building the network model with JUNG

• de.tum.peter.reqs
Parsing of IT policies

• de.tum.peter.check
Includes all classes to check the selected BSI safeguards implementation status

• de.tum.peter. auxiliary
Includes the settings parser and an auxiliary class

60 Chapter 6. Implementation

6.3 Build Model

6.3.1 Build a Representation of the Network Topology (D1)

This section describes the implementation of the network topology model.

6.3.1.1 Physical Layer

The �rst graph building function which simply builds a DirectedSparseMultigraph (al-
lowing directed and parallel edges) from all physical Ethernet connections.. Layer1Edges
(for each direction) and Vertex objects are instantiated. Both vertices are added to the
graph with JUNG’s method addVertex(V vertex) as well as both links are added to
the graph with the provided addEdge(E e, V v1, V v2, EdgeType edgeType) and
EdgeType.DIRECTED

Based on the former graph layer1a all PatchPanels are going to be substituted. As one
cannot modify a graph on which is being iterated, at �rst a clone of Layer1a is created
(JUNG does not implement a clone method itself). At the end of this method the new
connections are added to the graph (checking that no new nodes are being created) and
all PatchPanels are removed (automatically removes the edges).

6.3.2 Model Firewall Filter Rules (D2)

The �rewall �lter rules are part of the FirewallObject (see 6.4.3).

6.4 Read the Required Inputs (D4)

6.4.1 Physical Parser I1

PhysicalParser provides a parser to get the necessary information needed to build the
physical network topology. With these information a PhysicalObject is built consisting
of PhysicalConnectionObjects (illustrated in 6.3). One PhysicalConnectionObject

consists of the following information:

• the names of both devices linked to each other

• the types of both devices

• the port numbers of both devices

6.4. Read the Required Inputs (D4) 61

Figure 6.3: Physical Connection

6.4.2 Switch Parser I3

SwitchParser provides a parser which reads the con�g �le line by line and �lls the
necessary information of a SwitchObject With information for each switch (respec-
tively each switches con�guration �le) a SwitchObject is build and managed as �gure
6.4 illustrates. For each switch (-con�g) one SwitchObject is built with the necessary

Figure 6.4: Switch Model

62 Chapter 6. Implementation

information to map its interfaces to its speci�c VLAN id(s). Each SwitchObject is saved
in a Switches object as a value of a LinkedList to provide a data structure containing
all switches.

6.4.3 Firewall Parser I4 I5 I6

The �rewall parser reads router, VPN gateway and �rewall information. FirewallParser
provides a parser which reads the con�g �le line by line and generates temporary �les
containing the needed sections of the �rewall con�guration. This simpli�es parsing
because it reduces the complexity of the data to be parsed as the �les consist only of
one section each. After that the generated �les are read in and �ltered for the needed
information with Java regular expression Patterns and the temporary �le is deleted. The
result is a FirewallObject.

The parser also reads the line set status of the sections config log syslogd and
log memory. According to this line a boolean variable in FirewallObject is set to
indicate whether global logging is activated. Furthermore, the parser reads each �lter
rule’s logging status by reading set logtraffic and set log-unmatched-traffic in
the config firewall policy section of the con�g. Accordingly, the parser sets each
policies’ boolean value in the FirewallObject

In addition the parser reads the password information of the con�guration �le and
stores it in the FirewallObject.

The required information form the �rewall(s) con�guration �le is parsed into one
FirewallObject for each �rewall as shown in �gure 6.5. Such an object itself consists
of certain objects representing the di�erent kinds of inputs sections described in 4.2.3.6.
The object Firewalls contains all FirewallObjects in a LinkedList.

The �rewall parser also parses the routing information and the VPN gateway settings.

6.5 General Requiremetn (G1)

This software was designed to be extensible respectively extended with other inputs
(e.g. �rewall or switch models). Therefore, one must just provide new parsers for each
input type to �ll the corresponding model objects (PhysicalObject , SwitchObject,
FirewallObject).

In Settings.json di�erent paths for the needed input �les which will be parsed by
Settings.java and returned to the classes needing those input �les are con�gured.
Settings.json contains the following settings:

• The paths to the �rewall(s) con�guration �les

6.6. Perform Checks 63

Figure 6.5: FirewallObject

• The paths to the switch(es) con�guration �les

• The (DHCP) client subnetworks

• The VPN subnetworks

• The DMZ subnetworks

6.6 Perform Checks

In this section the implemented checks are described.

6.6.1 Check Preset Passwords of Network Devices (Check C1)

Required input: FirewallObject

This check iterates over each Firewallobject (representing a �rewall con�guration)
and checks the value of the userPWs. In case of an error a warning is printed.

64 Chapter 6. Implementation

6.6.2 Check if Firewall Logging is Enabled (Check C2)

Required input: FirewallObject

This check iterates over each FirewallObject (representing a �rewall con�guration)
and checks the value of the global logging. Additionally, the check iterates over all �lter
rules of each FirewallObject and checks both logging values.

6.6.3 Find Connections Bypassing a Firewall (Check C3)

Required input: layer one graph

This check evaluates paths between devices. The aim is to �nd connections between
devices without a �rewall between them. The check iterates over the graph and checks
for each found node its outgoing edges with layer.getOpposite(node, edge). If the
opposite of an node is not a �rewall a warning is printed.

6.6.4 Check the Whitelist Approach in Filter Rules (Check C5)

Required input: FirewallObject

This check iterates over each �lter rule of the FirewallObject and checks the getAction()
for not allowed values (e.g. “deny”). In case of an error a warning is printed.

65

Chapter 7

Use Case at BörseGo AG

As being BörseGo AG, a German company located in Munich o�ering �nancial charts
and analysis platforms, partner for this thesis, the inputs needed are based on the
systems in action at the company which are as follows:

1. Racktables [24] (network documentation tool)

2. Fortinet Fortigate 620B and FGT80C (�rewalls, routers and VPN gateways)

3. Force10 S25-01-GE-24T, 3Com 4500G 48-port and 3Com 5500G-EI 48-port (switches)

7.1 Network Topology Data Gathering

This section describes the di�erent inputs to model the network.

7.1.1 Racktables

At the company, Racktables ([24]) is (only) used to document the network wiring.
Racktables allows to de�ne locations, racks and objects and assigning links to them
through a web interface. Figure 7.1 illustrates some connections of a switch. One can
see on the left side the interfaces provided by the switch, their labels and types and on
the right side the connected remote object and its port. There is also the possibility to
manage the IP space in Racktables what is done and also parsed. Figure 7.2 illustrates a
patch panel and the relationship between Portx and Cablex. Racktables stores the data
in a MySQL database. Three major sets of information are queried:

• all objects (servers, switches, routers,...)

• all links between those objects represented by the set of edges in a graph

• the complete IPv4 address list in use

66 Chapter 7. Use Case at BörseGo AG

Figure 7.1: Extract of the connections of a switch

Figure 7.2: PatchPanel Object in Racktables

7.1.2 Switch

There are several switches in use but their con�guration can be broken down to the
two manufacturers: force10 and 3com.
Aim is to gather VLAN con�guration of the network and therefore parse the interfaces
of the switches and getting the VLAN ids of the connections. An example for a force10
con�guration entry is illustrated in 7.1

Listing 7.1: force10 Switch Snippet

1 i n t e r f a c e Vlan 50
2 d e s c r i p t i o n p r i v a t e _ a c c e s s
3 no i p a d d r e s s
4 t agged Port −channe l 3−4 ,10 −21 ,31−34
5 untagged G i g a b i t E t h e r n e t 2/19 −20
6 untagged Port −channe l 35−38
7 no shutdown

7.1. Network Topology Data Gathering 67

interface Vlan 50 is describing VLAN id 50 and (un)tagged (Ten)GigabitEthernet the inter-
faces of that VLAN additionally to the Port-channels which aggregate several interfaces.
An example of an entry for Port-Channels is illustrated in 7.2.

Listing 7.2: force10 Portchannel Snippet

1 i n t e r f a c e Port −channe l 10
2 d e s c r i p t i o n esx01
3 no i p a d d r e s s
4 s w i t c h p o r t
5 channel −member G i g a b i t E t h e r n e t 1 / 1 9
6 channel −member G i g a b i t E t h e r n e t 3 / 1 9
7 s f l o w e n a b l e
8 no shutdown

According to this, the channel-members of that Port-Channel are in VLAN 50, too. (All
Port-Channels have to be resolved to their member interfaces to get exact information
about which interfaces are part of a VLAN id).

The con�guration �le for 3com switches is simpler, e.g one relevant block looks like the
listing 7.3 illustrates. For each interface (here 1/0/39) there is an entry port access VLAN
2020 telling the VLAN id (here 2020).

Listing 7.3: 3com Switch Snippet

1 i n t e r f a c e G i g a b i t E t h e r n e t 1 / 0 / 3 9
2 p o r t a c c e s s VLAN 2020
3 b r o a d c a s t − s u p p r e s s i o n pps 3000
4 undo jumboframe e n a b l e
5 s t p d i s a b l e
6 s t p edged−p o r t e n a b l e
7 undo ndp e n a b l e
8 undo ntdp e n a b l e

SwitchParser provides a parser for reading switch (VLAN) data. Due to the fact that
switches of two manufacturers are in action, the parser must distinguish between those
with a simple switch statement For force10 switches the parser needs to read Port-
Channel information (bundled physical interfaces) to resolve the VLAN to actual port
numbers. 3com con�g �les can be parsed straight forward with simple entry match-
ing/parsing with one minor exception. There are two possible occurrences meaning
the same thing. access VLAN and hybrid VLAN. That is just an internal convention
when modifying one entry through the web interface. Getting the actual content is
implemented by regular expressions.

68 Chapter 7. Use Case at BörseGo AG

7.1.3 Fortigate Firewall

In the company Fortigate �rewalls act as �rewall, router and VPN gateway. Therefore,
the parser must gather router information, VPN information, and the �lter rules.

7.1.3.1 Password

In case of Fortigate �rewalls the default password is the empty (none) password. In
order to check this, a testing device was reset and the Log-in was successful without
a password. To automate this process the con�guration �le needs to be checked for
the line password ENC in the con�g system admin section. This line is not present if
the standard password is unchanged. As the mechanism how the �rewall stores the
password is not public no further statements cannot be made.

7.1.4 Firewall Functionality

The �rewalls �lter rules are described in the following. (Appendix A.2 gives an illustrated
overview).
Filter Rules (FortiOS v4.00 M3 Patch 18) are structured as follows:

• Interfaces
Interfaces distinguishes between ”srcintf” and ”dstintf”. The interface of the policy
is translated in the interface section of the �rewall. An example of an interface is:

1 e d i t " i n t e r n a l 1 "
2 s e t vdom " r o o t "
3 s e t i p 1 0 . 0 . 0 . 1 2 5 5 . 2 5 5 . 2 5 5 . 0
4 s e t a l l o w a c c e s s p ing h t t p s s sh
5 s e t type p h y s i c a l
6 s e t d e s c r i p t i o n " Admin P o r t − Access t o a l l

networks "
7 s e t a l i a s " admin p o r t "
8 nex t
9

• Addresses
Addresses also distinguishes between ”srcaddr” and ”dstaddr” and is translated
from either the ”addresses”-, ”AdrGroups”- or ”Vips”-section of the con�g. An
example for an address is:

1 e d i t " i n f r a 0 4 "
2 s e t s u b n e t 1 0 . 2 0 . 3 0 . 2 2 2 5 5 . 2 5 5 . 2 5 5 . 2 5 5
3 nex t

7.1. Network Topology Data Gathering 69

4

• Services
"Services" is the generic term for either a built-in or custom service or a group
of services determining the protocol or ICMP and its type. The built-in services
cannot be found in the con�guration �le but are listed in the web interface. An
example of a service is

1 e d i t " 8 0 8 0 "
2 s e t p r o t o c o l TCP /UDP/ SCTP
3 s e t tcp −p o r t r a n g e 8080
4 nex t
5

describing a TCP service at port 8080 with the name ”8080”.

• IPPool
Used to change the destination IP of an IP package (e.g. internal IP replaced with
external IP) and the destination IP remains (also called source NAT).

• con�g �rewall vip
Used to change the destination IP of an IP package (e.g external IP replaced with
internal IP) and the source IP remains (also called destination NAT).

• con�g �rewall addrgrp
Groups of addresses that will be used in the �lter rules

• con�g user group
User groups

• Action
What is done with the packet (”accept” or ”ssl-vpn” for identity based rules). This
entry would be missing in case of an deny rule as the standard action is deny.

• IdentBased
This (optional) setting is set when the policy applies to user based rules through
a VPN connection. Rules with this settings are further split up into ”user group”
(the groups allowed), ”vpn ssl web portal” and ”widget” determining the allowed
services/applications.

For Fortigate Firewalls, whitelisting is the default approach and implemented by an
implicit deny all rule which will be applied to packages not matching any former rules
[25]. This behaviour is not customizable by the user. However if some administrator
want to enforce a blacklisting strategy the rule table would contain the deny rules at
�rst ending with allow all rules so that packages at least will be matched by them and

70 Chapter 7. Use Case at BörseGo AG

the �rewalls implicit deny rule would be never applied. Fortigate �rewalls enforce a
whitelisting per default settings.

7.1.4.1 Router Functionality

Fortigate Firewalls also act as router in the network. This information can be found in
the following two sections of the con�guration �le:

• con�g router static
Contains the static routing table. An example entry is illustrated in listing 7.4.
Here packages arriving at the interface "o�cebgo-dcbgo" are routed to the desti-
nation, independent of their source ip.

Listing 7.4: (Static Routes Example)

1 e d i t 16
2 s e t d e v i c e " o f f i c e b g o −dcbgo "
3 s e t d s t 1 0 . 2 0 . 3 5 . 6 4 2 5 5 . 2 5 5 . 2 5 5 . 1 9 2
4 nex t
5

• con�g router policy
Contains the dynamic routing table. An example entry is illustrated in listing 7.5.
Packages arriving at the interface "jfd_access" and only if they are matching the
source ip ("scr") are routed to the destination ip ("dst") on interface "o�cebgo-
dcbgo".

Listing 7.5: (Dynamic Routes Example)

1 e d i t 2
2 s e t input −d e v i c e " j f d _ a c c e s s "
3 s e t s r c 1 0 . 2 0 . 8 0 . 0 2 5 5 . 2 5 5 . 2 5 5 . 0
4 s e t d s t 1 9 2 . 1 6 8 . 1 . 0 2 5 5 . 2 5 5 . 2 5 5 . 0
5 s e t output −d e v i c e " o f f i c e b g o −dcbgo "
6 nex t
7

7.1.4.2 VPN Functionality

The parser reads the �rewalls VPN information which is stored in config user group

for groups (based on LDAP groups) and config vpn ssl web portal for allowing
con�gured services.

7.2. Network Topology Building 71

7.1.4.3 Firewall and policy logging

According to BSI �rewalls should write logs in general and also policy speci�c log
information (S 2.78 Secure operation of a �rewall [7]). For the �rst one, Fortigate has
two options which should be enabled.

1.

1 c o n f i g l o g memory s e t t i n g
2 s e t s t a t u s e n a b l e
3 end
4

2.

1 c o n f i g l o g s y s l o g d s e t t i n g
2 s e t s t a t u s e n a b l e
3 end
4

Both will be checked automatically by parsing those lines and check them for existence
and for enable. The second point can be checked by parsing set logtra�c for logging
allowed tra�c and set log-unmatched-tra�c for dropped (denied) tra�c per policy entry.

7.2 Network Topology Building

The following sections describe how to model step by step an (IP) network with JUNG
graph library.

7.2.1 Layer 1a

The physical layer is pretty straight forward. By iterating over all connections from
Racktables the necessary information is provided. A hashmap of vertices guarantees
that nodes are created uniquely. Two edge objects for each connection (as being a
directed graph) are created and added to the graph. The resulting graph is illustrated in
7.3

7.2.2 Layer 1b

Layer 1b is also related to the physical layer and the di�erence to the former graph

72 Chapter 7. Use Case at BörseGo AG

Figure 7.3: Layer 1 Graph of BörseGo AG

is that all patch panels are removed as they are transparent for the above layer. To
accomplish that it must be iterated over a clone of the former graphs vertices being
checking for nodes of type PatchPanel. For each node found that way all edges of that
node must be replaced by a direct connection between the two network devices the
panel elongates. Obviously the last step is to remove all PatchPanel nodes from the
graph. Figure 7.4 shows the graph without patch panels.

Figure 7.4: Layer 1 Graph without Patch Panels

73

Chapter 8

Evaluation and Results

In this chapter the results of the thesis are described.

8.1 Research Questions

In section 1.1 four research questions were introduced and were answered in the course
of this work:

Q1 Find suitable safeguards to be automated
In section 4.1.1 several safeguards are described which o�er a bene�t in automat-
ing their evaluation.

Q2 Build a model of the required data for safeguard checks
The model to evaluate the implementation recommendations the following re-
quirements need to be ful�led:

M1 A network topology model should be developed (see section 4.2.2.1)

M2 A model for the �lter rules of �rewalls (see section 4.2.2.2)

M3 A model for IT policies (see section 4.2.2.3

Q3 Specify needed information for verifying selected safeguards
To build the network topology model di�erent inputs are required as follows:

I1 Network Cables (see section 4.2.3.1)

I2 Virtual Machines (see section 4.2.3.2)

I3 Switch con�guration (see section 4.2.3.3)

I4 Router con�guration (see section 4.2.3.4)

I5 VPN con�guration (see 4.2.3.5)

74 Chapter 8. Evaluation and Results

I6 Firewall con�guration (see 4.2.3.6)

I7 IT Requirements (see 4.2.3.7)

Q4 De�ne checks to (partially) cover selected safeguards
Section 4.2.4 illustrates the checks that are required in order to verify the imple-
mentation status of the selected safeguards. In section 5.6 algorithms to for each
check to evaluate the implementation of the safeguard’s recommendations are
described.

Table

Table 8.1: Requirements Ful�lled
Requirement Status ful�led with
G1 ful�led 5.3
M1 ful�led 5.4.1
M2 ful�led 5.4.3
M3 ful�led 5.4.4
I1 ful�led 5.5.1
I2 ful�led 5.5.2
I3 ful�led 5.5.3
I4 ful�led 5.5.4
I5 ful�led 5.5.5
I6 ful�led 5.5.6
I7 ful�led 5.5.7

In the following sections the results of this thesis are described.

8.2 BSI Safeguards

In this thesis Baseline Protection safeguards were analyzed with respect to their pos-
sibility of automating their the implementation status of the recommendations. The
evaluation of the recommendations of the selected safeguards would be error-prone
and complex (see 4.1.1). This work describes an approach of automatically evaluating
the status of selected safeguards (see 5.6) which di�ers from the available support tools
(see 3.1).

This thesis shows a method of automatically verifying the main recommendations of six
safeguards which are complex to be veri�ed manually. The bene�ts of an automatically
approach of these safeguards in contrast to the available tools are as follows:

1. An automatic approach is less error-prone

2. Saves time and costs

8.2. BSI Safeguards 75

3. Supports the preparation of an audit

4. Regularly checks are possible

5. Represent the actual network con�guration

The following list describes the degree of automation of the implementation status of
each selected safeguard:

• Selection and Implementation of Suitable Filter Rules (see 4.1.2.1)
The following recommendations of this safeguard could be automated:

– Whitelist approach with C5 "Whitelist"

– User speci�c tra�c setting with C6 "Policy"

– Considering all internal computers with C4 "�lter rules"

The following recommendations (see [7]) could not be automated:

– The reason and the initiator of the �lter rules must be documented

– Rules at the application level gateway must be treated similar to the �rewall
�lter rules

• Secure Operation of a Firewall (see 4.1.2.2)
The following recommendations of this safeguard could be automated:

– Whitelist approach with C5 "Whitelist"

– �nd devices that bypass the �rewall with C3 "Bypassing"

– No preset passwords in security gateways with C1 "Passwords"

The following recommendations (see [7]) could not be automated:

– Application level gateway related

– Device con�guration which are part of the security gateway

– Secure software of the components of the security gateway

– Integrity tests of the software of the security gateway

– Crashing, backup and restoring of components of the security gateway

• Change of Preset Passwords (see 4.1.2.3)
The following recommendations of this safeguard could be automated:

– Change preset passwords with C1 "Passwords"

The following recommendations (see [7]) could not be automated:

76 Chapter 8. Evaluation and Results

– Depending on the the device and its method how to store the password it is
not always possible to check the password.

• Secure use of Protocols and Services (see 4.1.2.4)
The following recommendations of this safeguard could be automated:

– ICMP handling with C7 "ICMP"

– Find data paths for di�erent protocols and ports with C6 "Policy"

– An overview overview of protocols admitted at the security gateway with
the parsing of the �rewall con�guration I6

The following recommendations (see [7]) could not be automated:

– The con�guration recommendations for di�erent services such as ftp or ssh

– The use of secure routing protocols

• Con�guration of Access Control Lists on Routers (see 4.1.2.5)
The following recommendations of this safeguard could be automated:

– The �rewall �lter rules should be compliant with the IT requirements with
with C6 "Policy"

– Whitelist approach with C5 "Whitelist"

– Logging of rules must be enabled with C2 "Logging"

The recommendations could be fully automatically veri�ed.

• Handling of ICMP on the Security Gateway (see 4.1.2.6)
The following recommendations of this safeguard could be automated:

– Handling of ICMP messages of computers in the internal network an of
public servers in the DMZ with C7 "ICMP"

The following recommendations could not be automated:

– Is the handling of ICMP messages documented

The focus of this thesis was a small selection of safeguards and provides a groundwork
for further work which may extend this approach with additional checks to evaluate
additional recommendations.

8.3 Network Model

In the course of this work a network model as basis input for the evaluation of the
selected safeguards was developed. The model, which is based on directed graphs

8.4. Results from the Use Case 77

allows to represent a Ethernet-based enterprise network and its data paths up to the
�rewall (layer four). The developed model has the following bene�ts:

• The model allows simple path checks as all possible connections between end
devices are modelled as a pair of nodes and one edge. Therefore, in order to query
a connection between "A" and "B" it is only necessary to check if there is an edge
between those nodes. There is no need for graph traversing.

• The model’s approach is straight forward in basically always using the same
algorithm to build the di�erent layers. Accordingly, the approach of substituting
intermediate network elements with new edges in the graph is the basic idea of
the network model.

• The network model can be used in another context whether for other safeguards or
for other use cases, e.g. kind of a documentation of the network for administrators.

• The network model is kept simple and for its implementation only a directed
property multi graph is required. This allows simple extensions and debugging
in the course of further work.

• Graphs are a wide spread model and there are several tools to visualize graphs.
This model, as being based on a graph, can be easily visualized for administrators
to have an overview of the network.

8.4 Results from the Use Case

In the following sections the results of the implemented checks are illustrated.

8.4.0.1 BSI Safeguards

• Check C1 "Passwords"
Listing 8.1 illustrates the output of the check. The Fortigate �rewall con�guration
�le only has this entry if the standard password is changed.

Listing 8.1: C1 Output (fake)

1 =============== Passwords ================
2 admin ; AKAfsarFgLHJAd36 / J + wfasf3GASF3gdgSas =
3 backup−ro ;AGDAD/ Sfas0X9xgCqyQXIpCtafsGEGAddQasfa=
4

• Check C2 "Logging"
Listing 8.2 illustrated the output of this check. Accordingly to the con�gura-

78 Chapter 8. Evaluation and Results

tion �le global logging is enabled but the policy speci�c tra�c (both logging of
accepted and denied) packages is not activated (for all �lter rules).

Listing 8.2: C2 Output

1 =============== Log Memory ===========
2 t r u e
3
4 =============== S y s l o g ================
5 t r u e
6
7 . . .
8 CheckFWLogs : Warning ! l o g T r a f f i c o f p o l i c y 106 not

a c t i v a t e d
9 CheckFWLogs : Warning ! u n m a t c h e d T r a f f i c o f p o l i c y 106

not a c t i v a t e d
10 . . .
11

• Check C3 "Bypassing" "
Listing 8.3 illustrates the output of check C3. 240 unidirectional connections
respectively 120 bidirectional connections were revealed. Devices part of these
connections are directly connected on the regarded layer one.

Listing 8.3: C2 Output

1 Warning : dc1−swi tch04 −00 i s d i r e c t l y connec ted t o
d c e s x 0 1

2 Warning : dc1−swi tch04 −00 i s d i r e c t l y connec ted t o
proxmox04

3
4

• Check C5 "Whitelist" "
Listing 8.4 illustrates the output of this check. Three �lter rules do have an empty
"action" value. For Fortigate �rewalls these policies enforce the default action
which is in this case deny and therefore not compliant to the recommendations.

Listing 8.4: C5 Output

1 C h e c k W h i t e l i s t : Warning ! p o l i c y 236 has " " as a c t i o n
2 C h e c k W h i t e l i s t : Warning ! p o l i c y 237 has " " as a c t i o n
3 C h e c k W h i t e l i s t : Warning ! p o l i c y 302 has " " as a c t i o n
4

8.5. Extensible 79

8.4.0.2 Other Results

Furthermore, in the course of this work a lack in the network documentation was
revealed:

• Missing devices in the documentation

• lack of a uniform naming of devices in the documentation and con�guration �les

8.5 Extensible

The architecture’s design has a clear focus on its extensibility (see section 4.2.1 and
section 5.3. The architecture consists of four major components:

• Parsers which read the required inputs

• Data structures which stores the information from the parsers

• The network model built from the data structures

• Checks operating with the network model and the inputs

By providing additional parsers which �ll the data structures the architecture can be
adapted to custom inputs, e.g. devices from di�erent manufacturers. The model itself
is built only with the internal data structures and independent from the parsers. The
checks are independent form each other and can be easily extended with new ones.

80 Chapter 8. Evaluation and Results

81

Chapter 9

Conclusion and Outlook

In this work the question has been raised whether an automatic support for verifying
the guidelines the BSI Baseline Protection Catalogues recommends is possible. This
thesis answers this question by analyzing the content of the catalogues and presenting
a selection of recommendations whose evaluation is automated.

A closer look at the Baseline Protection Catalogues resulted in six di�erent safeguards
where an automatic approach for verifying the implementation status of the safeguards’
recommendations looked suitable. These safeguards are all in the �eld of computer
networks with a strong focus but not limited to �rewall �lter rules. Seven checks which
can be automated were de�ned covering the main recommendations of the selected
safeguards (see chapter 4).

The software requirements which are needed to evaluate those recommendations are
described as well as their input sources (see section 4.2).

Additionally, a network topology model which allows to model ISO/OSI layer one till
four was developed as some checks require knowledge of the network (see 5.4).

Based on these �ndings an example implementation was coded and four checks in a
use case scenario evaluated (see chapters 6 and 7).

This thesis describes an approach of supporting the implementation of the recommen-
dations of the safeguards. It is illustrated that there is some content being bene�cial
to automate. Besides that a network topology model based on directed property multi-
graphs is developed and introduced.

This work illustrates that on the one hand there is a lack of automatic tool support
(see section 3.1) and on the other hand that there is potential in the Baseline Protection
Catalogues to automate certain aspects. Among others this thesis illustrates how to
verify if devices are able to communicate with each other bypassing a �rewall or how to
check the data paths in a network including ICMP messages. Further results describes

82 Chapter 9. Conclusion and Outlook

the checks for evaluation the whitelist approach and the handling of deny rules (see
section 5.6).

All in all this thesis shows a possibility to support the Baseline Protection implementa-
tion and may be a foundation for further work in the �eld of BSI safeguards recommen-
dation automation and network topology modelling.

Focus of the developed architecture was its modularity (see 5.3). Further work may
include other input resources such as devices from di�erent vendors respectively their
con�guration �les. Additionally, more checks may be added to increase the number of
safeguards recommendations which are supported.

The advantage of BSI Baseline Protection covering a huge area of today’s IT systems is
also a disadvantage. Due to the huge amount of information (see section 2.3) it is a time-
consuming task to even stay on top of things. An approach to handle the information
may be in the area of natural language processing and semantic search. With the help
of this technologies the data of the catalogues can be “parsed” and worked with in a
natural and dynamic way.

The model (and the checks) are only related to network layer four or lower, further
research could be done in the �eld of application security. In this context application
security is not related to secure code but to secure con�guration of applications. In this
context two major issues to automatically check may be focused on.

• Secure Con�guration of (network-related) applications such as web servers, DHCP
Servers, or DNS servers.

• Up-to-date software of services, operating systems and applications.

The algorithms respectively the software was not developed with respect to performance
and works fast on small sized networks. Further work my evaluate the performance
impact with large networks and develop optimization regarding the algorithms and the
memory management.

One limitation of the network model is the lack of the ability of modelling the dynamic
migration of virtual machines between di�erent hosts. Future work may add this feature
to the network model by modelling the dynamics of the migration (e.g assign a virtual
machine to a cluster of hosts) and not only handling them statically (as a snapshot).

The introduced network topology model in 5.4 can be formalized in a further step.
Future work may develop a meta description (similar to the ones introduced in section
3.2.2) for interchangeability and therefore as input for other tools or libraries or an
export function to INDL/NML if those become wide spread.

83

Bibliography

[1] “Sony Hack.” [Online]. Available: http://www.heise.de/thema/Sony_Pictures_Hack

[2] “Bundestag Hack.” [Online]. Available: http://www.heise.de/newsticker/meldung/
Angri�-auf-Datennetz-des-Bundestags-2651339.html

[3] “OPM Hack.” [Online]. Available: http://www.golem.de/news/
nach-hackerangri�-opm-che�n-katherine-archuleta-tritt-zurueck-1507-115175.
html

[4] “Data Breaches.” [Online]. Available: http://www.businessinsider.com/
heres-how-big-the-most-recent-hacking-data-breaches-have-been-2014-10?IR=
T

[5] “BSI: Startseite Bundesamt für Sicherheit in der Informationstechnik.” [Online].
Available: https://www.bsi.bund.de/DE/Home/home_node.html

[6] G. federal o�ce for information security, “Information security audit (IS audit),”
2008.

[7] F. O�ce, “BSI: IT-Grundschutz catalogues - 13th version 2013,” pp. 1–4220.

[8] “BSI Tools.” [Online]. Available: https://www.bsi.bund.de/DE/Themen/
ITGrundschutz/ITGrundschutzKataloge/Hilfsmittel/GrundschutznaheTools/
grundschutznahetools_node.html

[9] “BSI Toolangebote.” [Online]. Available: https://www.bsi.bund.de/DE/Themen/
weitereThemen/GSTOOL/AndereTools/anderetools_node.html

[10] “Checklisten.” [Online]. Available: https://www.bsi.bund.de/DE/Themen/
ITGrundschutz/ITGrundschutzKataloge/Inhalt/_content/hilfmi/checklisten/
checklisten.html

[11] “Verinice.” [Online]. Available: http://www.verinice.org/

[12] “MaSSHandra.” [Online]. Available: https://www.masshandra.com/

[13] “The Dude.” [Online]. Available: http://www.mikrotik.com/thedude

http://www.heise.de/thema/Sony_Pictures_Hack
http://www.heise.de/newsticker/meldung/Angriff-auf-Datennetz-des-Bundestags-2651339.html
http://www.heise.de/newsticker/meldung/Angriff-auf-Datennetz-des-Bundestags-2651339.html
http://www.golem.de/news/nach-hackerangriff-opm-chefin-katherine-archuleta-tritt-zurueck-1507-115175.html
http://www.golem.de/news/nach-hackerangriff-opm-chefin-katherine-archuleta-tritt-zurueck-1507-115175.html
http://www.golem.de/news/nach-hackerangriff-opm-chefin-katherine-archuleta-tritt-zurueck-1507-115175.html
http://www.businessinsider.com/heres-how-big-the-most-recent-hacking-data-breaches-have-been-2014-10?IR=T
http://www.businessinsider.com/heres-how-big-the-most-recent-hacking-data-breaches-have-been-2014-10?IR=T
http://www.businessinsider.com/heres-how-big-the-most-recent-hacking-data-breaches-have-been-2014-10?IR=T
https://www.bsi.bund.de/DE/Home/home_node.html
https://www.bsi.bund.de/DE/Themen/ITGrundschutz/ITGrundschutzKataloge/Hilfsmittel/GrundschutznaheTools/grundschutznahetools_node.html
https://www.bsi.bund.de/DE/Themen/ITGrundschutz/ITGrundschutzKataloge/Hilfsmittel/GrundschutznaheTools/grundschutznahetools_node.html
https://www.bsi.bund.de/DE/Themen/ITGrundschutz/ITGrundschutzKataloge/Hilfsmittel/GrundschutznaheTools/grundschutznahetools_node.html
https://www.bsi.bund.de/DE/Themen/weitereThemen/GSTOOL/AndereTools/anderetools_node.html
https://www.bsi.bund.de/DE/Themen/weitereThemen/GSTOOL/AndereTools/anderetools_node.html
https://www.bsi.bund.de/DE/Themen/ITGrundschutz/ITGrundschutzKataloge/Inhalt/_content/hilfmi/checklisten/checklisten.html
https://www.bsi.bund.de/DE/Themen/ITGrundschutz/ITGrundschutzKataloge/Inhalt/_content/hilfmi/checklisten/checklisten.html
https://www.bsi.bund.de/DE/Themen/ITGrundschutz/ITGrundschutzKataloge/Inhalt/_content/hilfmi/checklisten/checklisten.html
http://www.verinice.org/
https://www.masshandra.com/
http://www.mikrotik.com/thedude

84 Bibliography

[14] “10Strike Network Diagram.” [Online]. Available: https://www.10-strike.com/
network-diagram/

[15] “Spiceworks.” [Online]. Available: http://www.spiceworks.com/de/

[16] J. V. D. Ham, P. Grosso, R. V. D. Pol, A. Toonk, and C. D. Laat, “Using the
Network Description Language in Optical Networks,” 10th IFIP/IEEE International
Symposium on Integrated Network Management, pp. 199–205, 2007. [Online].
Available: http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4258536

[17] F. Dijkstra, J. V. D. Ham, and A. Patil, “Network topology descriptions in hybrid
networks,” Network, pp. 1–14, 2009. [Online]. Available: http://ogf.org/Public_
Comment_Docs/Documents/2010-01/NML-WG-D1-Context-20091012.pdf

[18] R. Łapacz, J. Zurawski, G. Working, D. Gwd, and R. P. R-p, “Network Markup
Language Base Schema version 1,” pp. 1–69, 2012.

[19] M. Ghijsen, J. Van Der Ham, P. Grosso, and C. De Laat, “Towards an infrastructure
description language for modeling computing infrastructures,” Proceedings of the
2012 10th IEEE International Symposium on Parallel and Distributed Processing with
Applications, ISPA 2012, pp. 207–214, 2012.

[20] M. Ghijsen, J. Van Der Ham, P. Grosso, C. Dumitru, H. Zhu, Z. Zhao, and C. De Laat,
“A semantic-web approach for modeling computing infrastructures,” Computers
and Electrical Engineering, vol. 39, pp. 2553–2565, 2013.

[21] “MySQL Connector.” [Online]. Available: http://dev.mysql.com/downloads/
connector/j/

[22] “Jung.” [Online]. Available: http://jung.sourceforge.net/

[23] “Java Json.” [Online]. Available: http://www.json.org/java/

[24] “Racktables.” [Online]. Available: http://racktables.org/

[25] “Fortigate Handbook.” [Online]. Available: http://docs-legacy.fortinet.com/
fos50hlp/50/index.html#page/FortiOS5.0Help/policies.068.04.html

https://www.10-strike.com/network-diagram/
https://www.10-strike.com/network-diagram/
http://www.spiceworks.com/de/
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4258536
http://ogf.org/Public_Comment_Docs/Documents/2010-01/NML-WG-D1-Context-20091012.pdf
http://ogf.org/Public_Comment_Docs/Documents/2010-01/NML-WG-D1-Context-20091012.pdf
http://dev.mysql.com/downloads/connector/j/
http://dev.mysql.com/downloads/connector/j/
http://jung.sourceforge.net/
http://www.json.org/java/
http://racktables.org/
http://docs-legacy.fortinet.com/fos50hlp/50/index.html#page/FortiOS 5.0 Help/policies.068.04.html
http://docs-legacy.fortinet.com/fos50hlp/50/index.html#page/FortiOS 5.0 Help/policies.068.04.html

85

Appendix A

Appendix

A.1 Checklists from the BSI

Figure A.1 illustrates a checklist for the module "B1.3" (business continuity management).
This module has �ve threats ("G x.x") and eleven safeguards "M 6.110 - M 6.120"). Each
of the safeguards counter the corresponding threat (indicated by the "X"). Column
two "Lebenszyklus" describes the life cycle phase and column three "Siegelstufe" the
classi�cation level. The corresponding englisch life cycle phases are as follows: PK is
"Planning and Design", BE is "Purchasing", UM is "Implmentation", BT is"Operation",
AU is "Disposal", and NV is "Contingency Planing ".

Figure A.1: Content of a Checklist

A.2 Fortinet Fortigate Policy Structure

86 Appendix A. Appendix

Figure
A

.2:Policy
Structure

	Introduction
	Research Questions
	Structure

	BSI Baseline Protection Overview
	BSI
	Baseline Protection Catalogues
	Catalogues Structure

	Related Work
	BSI Support Tools
	Checklists
	Verinice

	Network Modelling and Analysis
	Network Analysis Tools
	Network Modelling Languages

	Analysis
	BSI Safeguards
	Safeguards Focus
	Selected Safeguards
	Selection and Implementation of Suitable Filter Rules (Safeguard S1)
	Secure Operation of a Firewall (Safeguard S2)
	Change of Preset Passwords (Safeguard S3)
	Secure use of Protocols and Services (Safeguard S4)
	Configuration of Access Control Lists on Routers (Safeguard S5
	Handling of ICMP on the Security Gateway (Safeguard S6)

	Software to be Developed
	General Requirement (General Requirement G1)
	Build Model
	Build a Representation of the Network Topology (Model requirement M1)
	Model Firewall Filter Rules (Model Requirement M2)
	Model IT Policies (Model Requirement M3)

	Read the Required Inputs (Input Requirement)
	Network Cables I1
	Virtual Machines I2
	Switch I3
	Router I4
	VPN Gateway I5
	Firewall I6
	Read IT Requirements I7

	Perform Checks

	Design
	Purpose
	Architecture Overview
	General Requirement G1
	Build Model
	Build a Representation of the Network Topology (M1)
	Influences from INDL and NML
	Components of a Network Graph
	Network Layer Modelling Approach
	Physical Layer
	Virtual Machines
	Data Layer
	Network Layer
	Firewall Model

	Algorithms
	Basic Algorithm for Substituting Network Devices
	Physical Layer Algorithm
	Virtual Machines Algorithm
	Data Layer Algorithm
	Network Layer Algorithm
	Firewall Algorithm

	Model Firewall Filter Rules (M2)
	Model IT Policies (M3)

	Read the Required Inputs
	Physical Layer I1
	Virtual Machines I2
	Data Layer I3
	Network Layer I4
	VPN Gateway I5
	Firewall Layer I6
	Read IT Requirements I7
	Additional Input

	Perform Checks
	Check Preset Passwords of Network Devices (Check C1)
	Check if Firewall Logging is Enabled (Check C2)
	Find Connections Bypassing a Firewall (Check C3)
	Check the Existence of Filter Rules for All Devices (Check C4)
	Include all Computers
	Verify Existence of Firewall Filter Rules

	Check the Whitelist Approach in Filter Rules (Check C5)
	Find Possible (TCP/UDP) Data Paths and Compare them to the IT Requirements (Check C6)
	Check the Handling of Different ICMP Types (Check C7)
	Internal Network
	Public Server in a DMZ

	Implementation
	JUNG
	Package Overview
	Build Model
	Build a Representation of the Network Topology (D1)
	Physical Layer

	Model Firewall Filter Rules (D2)

	Read the Required Inputs (D4)
	Physical Parser I1
	Switch Parser I3
	Firewall Parser I4 I5 I6

	General Requiremetn (G1)
	Perform Checks
	Check Preset Passwords of Network Devices (Check C1)
	Check if Firewall Logging is Enabled (Check C2)
	Find Connections Bypassing a Firewall (Check C3)
	Check the Whitelist Approach in Filter Rules (Check C5)

	Use Case at BörseGo AG
	Network Topology Data Gathering
	Racktables
	Switch
	Fortigate Firewall
	Password

	Firewall Functionality
	Router Functionality
	VPN Functionality
	Firewall and policy logging

	Network Topology Building
	Layer 1a
	Layer 1b

	Evaluation and Results
	Research Questions
	BSI Safeguards
	Network Model
	Results from the Use Case
	BSI Safeguards
	Other Results

	Extensible

	Conclusion and Outlook
	Bibliography
	Appendix
	Checklists from the BSI
	Fortinet Fortigate Policy Structure

