
Technische Universität München
Department of Informatics

Bachelor’s Thesis in Informatics

Enabling Secure E-Mail Communication
in Multi-Device Environments

Maximilian Meier

Technische Universität München
Department of Informatics

Bachelor’s Thesis in Informatics

Enabling Secure E-Mail Communication in Multi-Device
Environments

Sichere E-Mail Kommunikation und deren Realisierung in
Nutzerumgebungen mit mehreren Endgeräten

Author Maximilian Meier
Supervisor Prof. Dr.-Ing. Georg Carle
Advisor Dr. Matthias Wachs
Date February 15, 2016

Informatik VIII
Chair for Network Architectures and Services

I con�rm that this thesis is my own work and I have documented all sources and material
used.

Garching b. München, February 15, 2016

Signature

Abstract

Email is a very important part in today’s communication and users are used to access
their mails anywhere, anytime, in particular with multiple devices. With this require-
ments, securing email communication with end-to-end-security is challenging since
OpenPGP and S/MIME are designed for a use on one device only. To use these securing
mechanisms on multiple devices, all necessary private, public, and trust information
have to be provided on each system. Therefore a solution for a synchronisation must
be found in order to enable secure communication in multi-device environments.
This thesis analyses and answers the questions about requirements, design, and im-
plementation for a secure and extensible synchronisation mechanism to enable secure
communication on multiple devices. To ful�l that goal, background information is
presented and the core of the problem is analysed. In addition to that, the requirements
are speci�ed and an architecture how such an application can look is set up. Usable
frameworks to reach the design are shown and a potential implementation for the ap-
plication is presented. The outcome is a prototype that answers the research question
and enables the synchronisation. In the end of the thesis the outcome is evaluated and
upcoming problems are explained. The conclusion contains future work and how the
application can �t in the modern communication.

Zusammenfassung

E-Mail ist ein wichtiger Teil der heutigen Kommunikation und Benutzer sind es gewohnt
immer, überall und mit mehreren Geräte auf ihre E-Mails zuzugreifen zu können. Diese
Anforderungen können Ende-zu-Ende-Sicherungsverfahren für E-Mails, wie OpenPGP
oder S/MIME, nicht ermöglichen, da diese Verfahren für eine Verwendung auf nur
einem Gerät gedacht sind. Um diese Verfahren zu verwenden, werden private, ö�entli-
che und vertrauenswürdige Informationen auf den zu verwendeten Geräten benötigt.
Daher muss eine Verfahren der Synchronisation gefunden werden, um sichere E-Mail-
Kommunikation auf mehreren Geräten zu ermöglichen.
Diese Arbeit erstellt die Anforderungen, ein Design und eine Implementierung für
einen sicheren und erweiterbaren Synchronisationsmechanismus, welche sichere E-
Mail-Kommunikation auf mehreren Geräten ermöglicht. Um dieses Ziel zu erreichen
werden notwendige Hintergrundinformationen präsentiert und der Grund für das Pro-
blem analysiert. Zudem werden alle Anforderungen erfasst und in einer Architektur
verarbeitet. Außerdem werden einige Frameworks angeführt und es wird gezeigt wie
diese implementiert werden können, um diese Anwendung zu realisieren. Das Resultat
ist ein Prototyp, welcher die wissenschaftliche Frage beantwortet und eine Synchro-
nisation ermöglicht. Zum Ende hin wird das Resultat ausgewertet und aufgetretene
Probleme werden anschaulich erläutert. Die Schlussfolgerung beinhaltet, wie sich ei-
ne solche Applikation in die moderne Kommunikation einfügen kann und zukünftige
Forschungsarbeiten werden erläutert.

I

Contents

1 Introduction 1
1.1 Goal of the Thesis . 2
1.2 Outline . 2

2 Background 5
2.1 OpenPGP . 5

2.1.1 Implementation . 6
2.1.2 Conclusion . 7

2.2 S/MIME Speci�cation . 7
2.2.1 Key Elements . 8
2.2.2 Implementations . 9
2.2.3 Conclusion . 9

3 Problem Analysis 11
3.1 Appearance . 11

3.1.1 Multiple Devices . 11
3.1.2 Mobile Devices . 11
3.1.3 Sending Mails . 12
3.1.4 Reading Mails . 12
3.1.5 Trust Information . 12

3.2 Approaches . 12
3.3 Conclusion . 13

4 Related Work 15
4.1 State of the Art . 15

4.1.1 Synchronisation of OpenPGP Keys 15
4.1.2 Secure Communication in Closed Systems 16

4.2 Security Tools . 16
4.2.1 KeePass . 16

4.3 Summary . 17

5 Requirements 19

II Contents

5.1 Stakeholder Analysis . 19
5.1.1 End User as Stakeholder . 19
5.1.2 Organisation as Stakeholder . 20

5.2 Use Case Analysis . 20
5.2.1 Use Cases for an End User . 20
5.2.2 Use Cases for an Administrator 21

5.3 Functional Requirements . 21
5.3.1 Synchronisation . 21
5.3.2 Consistency . 21
5.3.3 Automation . 22
5.3.4 Encryption . 22
5.3.5 Con�guration . 22
5.3.6 Backend . 22

5.4 Technical Requirements . 22
5.4.1 Frontend . 22
5.4.2 Backend . 23

5.5 Design Requirements . 23
5.6 Summary . 23

6 Design 25
6.1 System . 25

6.1.1 Description . 25
6.1.2 Functionality . 26

6.2 Backend . 26
6.2.1 Server . 26
6.2.2 Cloud Storage and Peer-to-Peer 27

6.3 Client side . 28
6.3.1 Core Module . 28
6.3.2 Plugin System . 29
6.3.3 Client Side Communication Module 31
6.3.4 Synchronisation Side Communication Modules 33

7 Development Life Cycle 35
7.1 Native Implementations . 35
7.2 Separation between Mobile and Desktop 36
7.3 Hybrid Implementation . 36
7.4 Conclusion . 37
7.5 Creation of a Development Life Circle 37

7.5.1 Suggested Frameworks . 38
7.5.2 Conclusion . 39

8 Implementation 41

Contents III

8.1 Backend . 41
8.2 Client . 42

8.2.1 Desktop Environment . 42
8.2.2 Mobile Environment . 42
8.2.3 Application Environment . 43

9 Evaluation 45
9.1 Multi Platform Support . 45
9.2 Low Maintenance . 46
9.3 Simplicity . 46
9.4 Extensibility . 46
9.5 Conclusion . 46

10 Gained Experiences 49
10.1 EmberJS and PhoneGap . 49
10.2 EmberJS and Electron . 49
10.3 Electron and PhoneGap . 50

11 Conclusion 51
11.1 Future Work . 51

Bibliography 53

IV Contents

V

List of Figures

2.1 Encryption mechanism of OpenPGP . 5
2.2 Veri�cation mechanism of OpenPGP 6
2.3 Encryption mechanism of S/MIME . 8
2.4 Veri�cation mechanism of S/MIME . 8

6.1 Diagram of the system . 25
6.2 Server structure . 27
6.3 Diagram of the application . 28
6.4 Integration of core module . 29

7.1 Diagram of development life cycle . 40

VI List of Figures

VII

List of Tables

7.1 Comparison of implementations . 37

VIII List of Tables

1

Chapter 1

Introduction

For today’s communication, email is a very important element. Emails appear every-
where, while receiving newsletters or information about work or studies. But the
technology is over 40 years old and security was not an intended goal of emails. Secu-
rity mechanisms like transport security, using TLS [1], and end-to-end-security, using
S/MIME [2] or OpenPGP [3], were de�ned much later. But these mechanisms are also
over 20 years old. The way how people communicate changed a lot since then. 20
years ago, most people used mainly one device to communicate. OpenPGP and S/MIME
ful�lled the goal of securing the email communication, because all necessary informa-
tion, like encryption keys where available on the device that was used. An exchange
of these information was not required because just one device was available for com-
munication. The Internet changed dramatically since then. People today have several
di�erent devices, like smartphone, laptops, tablets, or desktop PCs, that are used to
communicate. In todays communication, emails can be received anywhere and anytime
on multiple devices. Users can also write emails whenever they want. This is possible
because received emails are mostly unsecured and the availability on multiple devices
is no problem. For that kind of communication OpenPGP and S/MIME do not match.
Because to access an email that is secured by one of these techniques is dependent on
essential information, like encryption keys, that are required to decrypt or encrypt an
email. But these information are mainly stored on just one local device and are not syn-
chronised across the other devices like the emails are. In order to reach a high adoption
of OpenPGP and S/MIME, they have to �t in the modern way of communication and
must be available on all devices at anytime. An additional problem is that the keys need
a lot of e�ort to have them available several devices. But non-technical users should
not be required to keep track of changes or even exchange the keys them self between
devices. As a result of this, simplicity is very important for any change in today’s
communication. Otherwise a high adoption through out the users is not reachable.

2 Chapter 1. Introduction

1.1 Goal of the Thesis

The goal of this thesis is to establish a design and an implementation for a synchronisa-
tion mechanism that enables secure communication across multiple devices. Such an
approach as two big requirements. These are simplicity of the application and avail-
ability on many platforms. In addition to that, the application has to run without user
interference, with that everybody can use it easily and on all of his devices. To achieve
this goal the following research question must be answered: What are the requirements
and a suitable design to implement a secure and extensible mechanism, that allows
secure email communication, using established End-to-End securing mechanisms like
OpenPGP and S/MIME, on multiple devices? To cover this issue the following questions
have to be answered before:

• Why do information have to be synchronised?

• What information have to be synchronised?

• What are the requirements for such an application?

• What application design can ful�l these requirements?

• How is a suitable multi-platform implementation achievable?

• How can the code be re-usable between di�erent platforms?

1.2 Outline

The thesis is structured as follows: To understand what secure communication is about
this thesis starts in Chapter 2 with background information on OpenPGP and S/MIME.
The encryption procedures for both mechanisms are explained and the important parts
are highlighted that need to be available on all devices. Also the current implementations
are highlighted so that the approach of this thesis can adapt them. In Chapter 3 the
problems are analysed why it is di�cult to use OpenPGP or S/MIME on multiple devices.
In Chapter 4, the state of the art is presented and how current approaches try to solve the
problem of key management. Furthermore, tools are introduced which are used to secure
important information. In Chapter 5 the technical, functional, and design requirements
are de�ned. In Chapter 6, a suited approach for a design is introduced. With Chapter 7,
a suitable implementation is researched and described. With this, knowledge, Chapter
8 highlights the important parts of the implementation of the thesis project. In Chapter
9, this implementation is evaluated how it suits the requirements and the design. In
Chapter 10, issues that occurred during the implementation are described. These issues
will help for other approaches in a multi-device environment. The conclusion contains

1.2. Outline 3

information about the overall state of such an application and a possible topics for the
future.

4 Chapter 1. Introduction

5

Chapter 2

Background

This Chapter gives background information, about the essential parts of securing mech-
anisms like OpenPGP or S/MIME for multi-device environments. With email security
as an important topic, these two technologies enable end-to-end-security for mail. With
this end-to-end security the mail is protected, that just the communication partners
can read the information. The security is created with authenticity, integrity, and con�-
dentiality of the information. But both are over 20 years old and are not adapted to a
multi-device environment.

2.1 OpenPGP

OpenPGP [3] is a speci�cation for securing email communication. The encryption and
decryption of OpenPGP combines asymmetric, symmetric, and hash algorithms in a
hybrid procedure. In the asymmetric part of the encryption, OpenPGP is using a pair of
public and private key to secure information. So each attendant needs both, a private
and a public key. The following �gure shows the hybrid encryption procedure for
OpenPGP. To encrypt an email the public key of the recipient is used. In addition to

Figure 2.1: Encryption mechanism of OpenPGP

that a signature can be added to an encrypted email. This signature is created with the

6 Chapter 2. Background

private key of the sender. A received email can be decrypted with the private key of
the recipient. In order to check the senders integrity, the recipient can use the public
key of the sender to verify him with his signature.

Figure 2.2: Veri�cation mechanism of OpenPGP

2.1.1 Implementation

GPG (=Gnu Privacy Guard)1 is an implementation of the speci�cation RFC 4880 [3] of
OpenPGP. This implementation is available through out the operating systems MacOS,
Windows, and Linux and has di�erent versions which are currently used. Version 1
and version 2 di�er in the way how they are implemented. In GPG V1 everything is
implemented inside and no external library is used. In GPG V2 the implementation uses
external libraries. This implementations are often combined with tools like GPGTools
for MacOS or GPG4Win for Windows. With GPG all information related to OpenPGP
are saved in three �les, a �le for the private keys of a user, a �le for the public keys of a
user and his communication partners, and a �le with the trust database, including all
verifying signatures. It must be noted that in GPG version 2.1 the amount of �les is
reduced to 2 �les, because the private key was moved to the �le of the public keys. The
�le for the private key does still exist for backward compability, but new added keys
are not inserted to private key �le anymore. [4]

2.1.1.1 Key Elements

The key elements of GPG are the private key of the user and public keys of the user and
his communication partners. Till version 2.1 these information are stored in separate
�les. One �le contains all private keys of a user. Every new private key or sub key of
a private key is added to that �le. This �le is named "secring.gpg". The public keys

1https://www.gnupg.org/

2.2. S/MIME Speci�cation 7

of a user and his communication partners are saved in a single �le. This �le is called
"pubring.gpg". Every new generated public key of a user or the sub keys of a public key
are added here. Also the public keys of new communication partners are stored here.
For GPG version 2.1 the �le "secring.gpg" is not used anymore. The information is now
also stored in the �le "pupring.gpg". [4] Even though the �le "secring.gpg" still exists.

2.1.1.2 Trust Database

GPG is based on a web of trust. This means that authenticity of public keys is provided
by the users of the Internet. Every user can sign public keys and is able to verify the
owner of that key. All of this signatures are saved in a �le on the local storage of the
device. This �le is called "trustdb.gpg".

2.1.1.3 Key servers

Key servers are the source of public keys of a user. If a user doesn’t provide his public
key directly, this key can be found with the help of a key server. Those key servers
are not centralised by one authority. These servers are provided by several di�erent
organisations, like universities all around the world. It is important to note that these
servers are just storages for public keys that can be accessed by the public. These servers
do not ful�l the need of synchronisation of GPG information between several devices.

2.1.2 Conclusion

With the implementation of GPG, all information of OpenPGP to enable it in a multi-
device environment are stored in two or three separate �les on the local storage of
the device, "secring.gpg", "pubring.gpg", and "trustdb.gpg". This is depending on the
used version of GPG. To use the same data on a di�erent device, these �les need to
be synchronised in order to enable OpenPGP on an additional device. This �les are
required for a GPG use on a mobile and desktop device.

2.2 S/MIME Speci�cation

S/MIME [2] is a di�erent securing mechanism for emails which is speci�ed in RFC
5751 [2]. It is based on MIME types [2] which are also used by other information,
like pictures or Base64 strings. The encryption is similar to OpenPGP because it also
depends on a hybrid encryption and each communication partner also needs a public
and a private key. Similar to OpenPGP the key pair can be generated by each person
them self or with the help of a central authority. The di�erence is that central authorities

8 Chapter 2. Background

provide the integrity of the public keys, by creating certi�cates for each communication
partner. These certi�cates include information about the owner and the public key
of the owner. As a result the authenticity is not generated with a web of trust but is
provided by the central authorities. These authorities can be public or internal of a
certain organisation. The way how encryption works in S/MIME is similar to OpenPGP

Figure 2.3: Encryption mechanism of S/MIME

because all communication partners have a private and a public key. The public key
of the recipient is again used to encrypt the information of an email. With the private
key of the sender a signature can attached to that encrypted email. The recipient can
access the email with his own private key and can verify the sender with the public key
of the sender. This public key is provided by the certi�cates which are distributed by
the users them self or LDAP distribution services.

Figure 2.4: Veri�cation mechanism of S/MIME

2.2.1 Key Elements

The key element of S/MIME are the certi�cates. The certi�cate is used for the com-
munication with another user. The private key with the certi�cates are stored locally
in a certi�cate store. Several di�erent certi�cate stores exist on one device. To enable
S/MIME communication with automated synchronisation in a multi-device environ-

2.2. S/MIME Speci�cation 9

ments all of these certi�cate stores need to be accessed and the necessary certi�cates
must be selected and synchronised to all other devices.

2.2.2 Implementations

Other than OpenPGP, S/MIME is often implemented directly in the email applications
on the devices, no additional installation is required in order to use S/MIME. The chal-
lenge to use S/MIME on multiple devices is to select all necessary S/MIME certi�cates,
with that every certi�cate store must be searched for potential S/MIME certi�cates of
communication partners.

2.2.3 Conclusion

With S/MIME being an additional speci�cation that secures email communication, a
di�erence can be seen between OpenPGP and S/MIME. But the same problems than
with OpenPGP must be solved. The needed certi�cates must be selected of the di�erent
certi�cate stores and must be transferred to all devices. On these devices they have to
be added to the local certi�cate stores on each device. For the private key the owners
S/MIME certi�cate must be exported and the private key must be attached to it.

10 Chapter 2. Background

11

Chapter 3

Problem Analysis

3.1 Appearance

Securing emails with current mechanisms like OpenPGP [3] and S/MIME [2] works well,
but the functionality is not available across multiple devices. 20 years ago — when these
mechanisms were de�ned — the communication of a person based on the usage of just
one device. But since then the communication has changed in a way that people don’t
use just one device anymore. People use their laptop, smartphone, tablet, or desktop
PCs. On all these devices a user wants to access his complete email communication.
Even though all emails get synchronised the user can just read the unsecured emails on
every device. Emails that are secured by either OpenPGP or S/MIME can not be read as
long as the necessary information, like private and public keys, are not available on the
device they want to use. This problem is caused by the following reasons.

3.1.1 Multiple Devices

With multiple devices the necessary information of OpenPGP and S/MIME have to be
available on each device. Therefore for an encryption or decryption required private
and public keys need to be exchanged between all devices. Also trust information must
be available to provide the required authenticity of the keys.

3.1.2 Mobile Devices

Mobile devices generate additional problems. Applications on this devices run is a
sandbox mode. This causes problems of sharing the same data with di�erent applications.
The �les can be saved on the local storage of the device but other applications can not
access them automatically. They import the �les to the local storage of each application.

12 Chapter 3. Problem Analysis

3.1.3 Sending Mails

To be able to send emails between two communication partners on a device speci�c
information must be available on that device. This information include the public key
of the recipient and the private key of the sender. If the public key is not available an
encryption of information is not possible. If the private key is missing the integrity of the
sender can not be veri�ed. Only if both element are available a secure communication
available on that device.

3.1.4 Reading Mails

The problem for reading mails is similar to the problem of sending a mail. In order to
do that also certain information must be available on the device that is used to read that
email. These information include the private key of the recipient and the public key of
the sender. The private key is necessary so that the mail can be decrypted and read by
the user. The public key is required to verify the sender. If one element is missing the
secure communication is again not available on that device.

3.1.5 Trust Information

A secure communication is based on trust information. For OpenPGP this trust for
a public key is generated with a web of trust. For S/MIME central authorities are
responsible to assign a public key to a user. If these trust information are missing the
authenticity of public keys can not be guaranteed. This results in an additional signing
of the keys. It is important to have all the trust information available on each device
that is used for secure communication. With that the redundant task of verifying the
public key is not necessary.

3.2 Approaches

A possible approach is to exchange the necessary information for OpenPGP and S/MIME
between all devices. With that the communication is available everywhere and �ts in a
multi-device environment. In order to achieve that goal the private and public key of
an user must be extracted form one device where the keys already exist. In addition to
that all public keys of communication partners that are available must be extracted as
well. For GPG also the trust database needs to be exchanged so the authenticity of the
keys is available on all devices. But just to extract all information from the local storage
or the certi�cate stores of a device is very complicated and non technical users are not
able to perform this task. Besides this the user has to be on track about changes. So the
user that wants to have all information on his devices he has to check for every change

3.3. Conclusion 13

manually. Some changes are not recognisable and information can be easily lost when
a �le gets overwritten.

3.3 Conclusion

To enable OpenPGP and S/MIME in a multi-device environment all necessary informa-
tion must be exchanged between all devices. This information include private keys and
public keys of the user, as well as the public keys of all communication partners and
trust information about this keys, like the trust database of GPG. A manually exchange
is not possible, so an application must be created that detects related changes and syn-
chronises them automatically to every device. This ensures simplicity so that every
user, even non technical ones can use this application.

14 Chapter 3. Problem Analysis

15

Chapter 4

Related Work

4.1 State of the Art

Currently di�erent companies try to solve the problem of key management for secure
communication in a multi-device environment. All the companies want to create an easy
synchronisation of secure and public keys to enable this secure communication. They
also pursue the goal that the user does not have to take care about the synchronisation of
their own keys, but it will be handled by the companies. In this chapter these approaches
will be introduced and evaluated.

4.1.1 Synchronisation of OpenPGP Keys

The company Whiteout1 o�ered a web-based secure email service. They took care about
all synchronisation so that the user could access the emails from everywhere. They
provided a approach of a synchronisation of PGP keys. They created a way where an
user can sign up for their service and upload his own keys to their server. So when the
user uses their client all keys where available. The security aspect was guaranteed by a
symmetric AES-256-GCM encryption [5]. This symmetric encryption is protected by a
24 digit random passcode. This passcode is never stored anywhere so it should be written
down by the user. But after the setup on each device a secure email communication is
possible. But the problem here is that a user has to give his keys to another provider.
At least the user is able to work with his already existing PGP keys and does not have
create a new key pair. Even the communication with other users outside of Whiteout is
possible because the email encryption is based on OpenPGP Speci�cation [6]. So every
user of Whiteout can also send mails to their friends without Whiteout. But the user
is still forced to user the email client given from Whiteout to access their keys. So the
user is not independent from the company and in an environment with such sensitive

1https://www.whiteout.io

16 Chapter 4. Related Work

data that is a big problem. Never the less the attempt is pretty good and if it is extended
in the right way it o�ers a good foundation for a new attempt.

4.1.2 Secure Communication in Closed Systems

Other to Whiteout there are some more approaches to enable secure communication
with multiple devices. But those approaches are handled in closed systems with own
implementations of OpenPGP, like Protonmail2. This company provides a service which
allows secure communication out of the box. But with Protonmail it is not possible to
communicate with people who are using OpenPGP with their own mail client. [7] Again
the user is forced to use the applications given by a certain company. The di�erence
between Protonmail and Whiteout is that Protonmail is completely closed. The user is
not able to import his old keys but Protonmail creates new ones for them. Protonmail
does everything for the user so he can start sending secure mails without having to take
care about his keys or anything else. But it is not compatible to other services. This
attempt of key synchronisation is completely focused on simplicity in combination with
high security. But the trade o� between simplicity and restriction with Protonmail is
very hard. So every new user starts completely from scratch and has to create a new
email address and a new key pair.

4.2 Security Tools

In addition to the existing speci�cations like OpenPGP or S/MIME and current ap-
proaches there is another topic which has to be mentioned. This topic contains already
existing security tools. These tools cover di�erent areas of usage. But they target on
one goal: to improve the security of a users information. The tool that is presented
is a password manager. This tool is a good example how data can be gathered on a
local device. And that data is secured by the application so that the content is save
and exchangeable between several computers. These information are important for
the requirements because the synchronisation application will adapt some aspects and
combines them to o�er new functionality.

4.2.1 KeePass

With KeePass3 the user can store his passwords in one secure place. Inside the applica-
tion the user must select one master password. With this password the user can access
the key database that is created by the application. After selecting a master password

2https://www.protonmail.com/
3http://www.keepass.info

4.3. Summary 17

the user can easily add all login data he has to remember and then they are stored in
just one �le which is just accessible with the selected master password. The security
is provided by a symmetric encryption with AES [8]. This shows how it is possible to
create an application where user add very sensitive data which is then protected. It is
also important to see how symmetric encryption on client side can secure information
and protect them from manipulation of others. The problem for KeePass is that it also
does not have a multi-device support. So to use KeePass on multiple devices the user
has to synchronsie the �le by him self.

4.3 Summary

In this chapter di�erent very important information where presented, which are essen-
tial for a usage of OpenPGP [3] or S/MIME [2] with multiple devices. In addition to
that some very interesting attempts could be o�ered which are highly adaptable. But
also the security tool provides a new point of view how a synchronisation application
can work in the end. With all the information gathered in this topic the requirements
for the secure synchronisation tool is much easier to de�ne. Due a �rst preview the
requirements can focus on the important information and the attempts that o�er a good
pattern to build on.

Each of these approaches target the problem of key management directly. But each
company combines it with own communication applications. So the user has to use the
application that are provided by the companies and so they are completely integrated in
their system. But to enable OpenPGP and S/MIME as they already exist in a multi-device
environment another approach must be created. An approach that is not bound to one
communication system like Protonmail. It should be independently usable.

18 Chapter 4. Related Work

19

Chapter 5

Requirements

With the existing problem analysis and the problems of the current approaches, the
requirements of a new approach can be de�ned. The approach in this thesis is an
application with an automated synchronisation mechanisms, that should work along
with the securing mechanisms OpenPGP and S/MIME. To de�ne the requirements,
the stakeholders have to be analysed and use cases must be created in which such an
application can be used. These stakeholders and use cases depend on the environment
in which the application will run later on. For an usage inside an organisation, the
organisation will perform as a stakeholder and use cases for an administrator must be
created. For a single end user this stakeholder and use cases are irrelevant.

5.1 Stakeholder Analysis

As stakeholders the end user and the organisation appears. The end user as a person
that synchronises his data and the organisation that administrates a synchronisation
server.

5.1.1 End User as Stakeholder

An end user wants to synchronise all key material that belongs to him. Wether it is
S/MIME or OpenPGP. The user doesn’t want to get involved in the synchronisation and
doesn’t want to perform many actions with the application, because it should not be
required to have any knowledge. With that even non technical persons can use this
application. For the end user it is essential that all his key material is on the same state
on every of his devices.

20 Chapter 5. Requirements

5.1.2 Organisation as Stakeholder

In an organisation, administrators will be able to monitor the access of the user to
their keys and have control over the users that can use the system. Additionally the
administrator will also have the control over the number of users and the control which
users can access their key material and who doesn’t. The administrator does not care
about the content of the key material. They still belong to the user. The administrator
just wants to restrict the access if a user leaves the organisation. With that the access
to information that belongs to the organisation can be limited or prevented.

5.2 Use Case Analysis

The use case analysis is divided like the stakeholders. Because every persons has other
interests in the system and wants to do other things with it.

5.2.1 Use Cases for an End User

5.2.1.1 Installation

For a user there are several possible motivations for installing the application. The user
installs the application on his �rst device. He does not have any keys in the beginning, so
no keys must be synchronised. The other option is that the user already used OpenPGP
or S/MIME before and has an existing key storage. In that particular case the user wants
to select the key material and the application should take care about uploading his
existing keys to the synchronisation mechanism and that they are accessible for other
devices. After he installed the application for the �rst time on one device the user wants
to install it on another one. So the synchronisation mechanism must detect that there
are already keys available and has to download them to the new device.

5.2.1.2 Synchronisation

Before the synchronisation can happen, the user wants to select the mechanisms, like a
dedicated server or cloud storage, that is used to synchronised the information. After
that the user does not want to be involved in the synchronisation and the application
should handle the rest.

5.3. Functional Requirements 21

5.2.1.3 Con�guration

When the user deletes a device the key material should not be lost or deleted on any
other device. But the user wants to synchronise his additions, deletion, or changes
immediately. In addition to that an user wants to add new securing mechanisms over
the time, so the amount of information that needs to be synchronised increases over
time.

5.2.2 Use Cases for an Administrator

The administrator wants to organise the backend system in an organisation. So the
synchronisation mechanism that will be used by the end user is a dedicated server. The
administrator wants control over the user and the access to the key material. He wants
to add new users oder delete users if necessary. He wants to be able to disable and
enable users on the server. With deletion or deactivation the user will lose all rights
to synchronise their key material. This requirements are important due the special
requirements of an organisation that needs control over the users and wants to host the
server by them own. These requirements are necessary when a new person enters or
leaves the organisation.

5.3 Functional Requirements

5.3.1 Synchronisation

The application must be able to synchronise information. This information need to be
uploaded, downloaded and exchanged with the local �le. The �les must be selected just
once. The application has to save the path to the selected �les. After the selection these
�les have to be synchronised until the user disables or deletes them.

5.3.2 Consistency

Consistency is important because no information must be lost at anytime. So a version
version control is necessary in order to provide this consistency. Every application
must be able to compare his current version with other ones an in case of con�icts the
application must be able to merge several di�erent versions to one new version without
any dataloss.

22 Chapter 5. Requirements

5.3.3 Automation

With automation, less user interference is required to use the synchronisation mecha-
nisms. This means changes must be detected automatically and all task relating to the
synchronisation must be executed.

5.3.4 Encryption

Encryption of the information that is synchronised is essential. The content of these
information, like private keys and trust information, are very sensitive. Before they
can be exchanged between devices or stored in a storage backend, these information
need to be encrypted. As well the information of the �les that have to be encrypted the
connection between two exchange elements, like client and server, must be secured as
well, e.g. with TLS.

5.3.5 Con�guration

In addition to the functionality that is directly connected to the synchronisation the
application must provide more functionality for con�guring the application. A syn-
chronisation mechanisms must be selectable and all di�erent securing mechanisms like
OpenPGP and S/MIME must be selectable as well. This is necessary in order for the
user to enable di�erent mechanisms that he needs and wants to use.

5.3.6 Backend

The backend needs to authenticate a user when he enters the system. This is required
in order to match saved key material to a certain user. In addition to the authentication
the backend has to provide an interface for exchanging the data. This interface must
provide an upload and download functionality, as well as metadata of the information.

5.4 Technical Requirements

5.4.1 Frontend

The technical requirements for the frontend contain the need of an extensible applica-
tion. With such an application it can be ensured that new securing and synchronising
mechanisms can be added easily at any time. This is supported by reusable code and
between each exchangeable element of the application an existing API should exist.
With such a reusable code the maintenance can be reduced as well. In addition to the

5.5. Design Requirements 23

extensibility the application should work with the less user interference. But to enable
that the data integrity must be ensured so no data is lost at any time. As well to the
APIs inside the application the API to communicate with a synchronisation mechanisms
must be exchangeable as well. In order for the application to work correctly the access
to OpenPGP and S/MIME information must be enabled.

5.4.2 Backend

The backend mechanisms needs to be exchangeable, but has to provide a necessary API
which ful�l the functional requirements. As well as the exchangeability the backend is
not allowed to access any information and is just used for storing the �les. Additional
requirements for the administration can emerge later on.

5.5 Design Requirements

The application must run on many platforms, because user have not just di�erent devices,
they also use several di�erent operating systems. In order to enable the usability for as
many people as possible the most common operating systems must be supported. This
includes MacOS, Windows, Linux, Android, and iOS. In addition to the multi-platform
support a simplicity must be provide, so that every kind of user can perform with this
application. To provide this the application needs clear steps and no user knowledge
must be required. For the design an important factor is security. The information that
needs to be exchanged is very sensitive. So every step that these information takes,
needs to be secured in a way that no manipulation is possible at anytime.

5.6 Summary

With all the requirements ful�lled the following feature list is enabled for the synchro-
nisation system:

• Available on multiple operating systems

• Synchronisation of sensitive data for OpenPGP and S/MIME

• Automated Exchange of data

• Extensibility of the application

• Security for the data and the connection

• Consistency of information

• Exchangeable backend

24 Chapter 5. Requirements

25

Chapter 6

Design

6.1 System

6.1.1 Description

The system is divided in two di�erent parts. One part is the application for the client.
This application initialises the synchronisation, is responsible for exchanging the infor-
mation locally for the user, and transfers the information to the backend. The backend is
the second part. This part is responsible for storing the data and distributing it to every
client that wants to access the data. The information that are stored on the backend are
assignable to exactly one user.

Figure 6.1: Diagram of the system

26 Chapter 6. Design

6.1.2 Functionality

The system can exchange information between di�erent devices. This information
include sensitive data for OpenPGP and S/MIME. These data consists of public and
private keys and trust information. The Consistency is guaranteed by the system,
because a version code for each information is created when the information enters
the system. This version code is changed when the information is changed and with
this change the system can compare di�erent versions and distribute the correct one
to every client. The information is secured inside the application with a symmetric
encryption and during the exchange, the connection to the backend storage must be
secured as well.

6.2 Backend

For the system to run di�erent backend mechanisms exist. The di�erence between these
mechanisms is how the data is saved to be accessible for other devices. Each backend is
completely independent from each other.

6.2.1 Server

The server is a dedicated server that is created just for the synchronisation system.
This backend mechanisms is useful for organisations, like TUM, because with an own
implementation the requirements of the organisation can be ful�lled and the system can
be administrated. It provides a de�ned API and with that API it is able to standardise
the communication between the server and the application.

6.2.1.1 Functionality

The server authenticates users by a username and a password. After the authentication
users can access their data and synchronise their information on several devices. In
addition to the user functionality a dedicated server can also ful�l administrative re-
quirements and an administrator can manage the access of the user for the system. The
functionality of the server can be extended with the functionality that the organisation
needs. Only the synchronisation API must be available for the application.

6.2.1.2 Structure and Interfaces

The server is divided in two parts. One part is responsible for the communication
with the application. In this part a REST API is implemented and triggers every other

6.2. Backend 27

functionality of the server. This REST API consists of HTTP requests so the data is
transferred from and to the server with GET, PUT, POST, and DELETE requests. The
other part is the persistent storage. This is represented by a database and server storage
where the �les of the user can be saved. Both of these parts communicate with a interface,
that enables the access to the database and the server storage for the communication
part. Other additions in the structure are also available as long as the required REST
API for the application is provided and the data is exchanged correctly.

Figure 6.2: Server structure

6.2.2 Cloud Storage and Peer-to-Peer

In addition to the dedicated server other backend mechanisms can be used. These
mechanisms target more a single user that uses the application without an organisation.
Cloud storage: Cloud storages, like Dropbox o�er a �le API. That API can be used
by the application and �le can be synchronised with the cloud storage. In order to do
that the user has to authenticate himself with the application. The data can not be
manipulated by the cloud provider, because all information are encrypted on client side
before they are uploaded to any backend storage. The option to administrate di�erent
users is not possible with a cloud storage backend, because no administrator is available.
A persistent storage like a database is also not available. This causes the need that all
information about version codes must be save inside of �les that are also uploaded to
the cloud storage.
The cloud storage enables an easy synchronisation mechanism for everyone with an
account for the certain cloud storage.
Peer-to-peer: Peer-to-peer does not require a backend like a server or cloud storage
does. With peer-to-peer the information get synchronised directly between the devices.
This results in some changes how the application works. The client of the system
contains the functionality of a peer-to-peer exchange.

28 Chapter 6. Design

6.3 Client side

The application runs in two di�erent environments. One is the desktop environment,
where the application has access to the local storage and is not limited to any sandbox.
The other one is the mobile environment, where the application has restricted access to
the local storage. This results in some di�erences in functionality on each platform, as
it is not available in both environments.
In addition to that the application is extensible. Because of that attribute, the application
itself is divided in three modules. One of these three modules is the core module. This
module is responsible for controlling the application. Inside the module the application
manages the other two modules and the main user interface. The other two modules,
one for gathering and exchanging the �les on the local storage and one for connecting
and exchanging the �les with the storage backend, are exchangeable. That means, the
functionality depends on the information that need to be synchronised and how they
are synchronised. Both modules are based on plugins to simplify this exchange.

Figure 6.3: Diagram of the application

6.3.1 Core Module

The core module is the hearth of the application. This is where main the user interface
is created and the main logic is inside. The main functionality of this module is to gather
all data that is provided by the client side communication modules. The client commu-
nication passes the data that they read from the hard drive to the core module. Here
the data gets encrypted and the data get passed to the selected synchronisation module
that the application uses. So the core module is not responsible for any comparison
of the data if it changed but it is responsible for securing the data for the rest of the
synchronisation. The user interface contains pages that the user can interfere with and
the core system is responsible to display the current state of the application, like are all
�les up to date, or what other plugins and modules are installed.

6.3. Client side 29

6.3.1.1 Functionality

The functionality of the core system is completely generic. This module does not care
about the �le that are passed to it, but is responsible that all information is secured. This
module is also has to take care about the availability of all necessary functionality for
all other plugins. So it loads the con�guration �les and prepares all used frameworks,
so that they can be used in every plugin individually. Other than that the rest of
the functionality is handled by other modules which are specialised for that. But the
modules are connected to the core module with an interface that enables the necessary
communication between the core module and the other two.

Figure 6.4: Integration of core module

6.3.1.2 User Interface

The user interface of the application is reduced because a user should not have to
interact a lot with the application it self because it runs mainly automated. But the user
interface should contain pages for showing the user information that he may needs,
like are all keys up to date or a button to update the �les manually. The Core system
also has to display current plugins that are active in the application and a link to get to
the correct user interface of the plugin. The rest of the application is running mainly
without the interference of the user so no user interface is needed there.

6.3.2 Plugin System

The whole application is divided in three modules with contain certain functionality.
Two of these modules are exchangeable and based on plugins. These plugin are spe-
cialised on certain functionality which is responsible for exchanging the �les locally or

30 Chapter 6. Design

exchanging the �le with the backend storage. With this plugin system the functionality
of the application can easily exchange or extended, because existing plugins can be
added or deleted.

6.3.2.1 Local Storage Plugin

Functionality: These plugins are specialised to take information from the local storage
and exchange the information with new ones. Each plugin is responsible for exactly
one information type. These information type de�nes what data has to be synchronised
in order to enable the intended functionality. Right now this types are OpenPGP and
S/MIME. For each information type certain functions are necessary to gather informa-
tion or exchange it with the local storage again. Besides the modi�cation of information,
this plugin is also responsible for enabling the consistency of the information. This is
provided by the decision if information needs to be downloaded or uploaded. In case
of inconsistency these plugins have to solve the merging problems. These problems
can di�er between the information types so this functionality must be implemented
separately for each plugin.
User interface: In addition to the functionality each plugin o�ers a user interface,
because every information type has di�erent dependencies how they can access the
information on the local storage. These dependencies can be set up in the settings
interface of each plugin. These settings include the information source, the current
version of these information and the functionality of manual exchange.
Integration: These local storage plugins are connected to the core module with a �xed
API. This API enables the exchangeability of the plugins. The functionality of this API
includes giving information to the core module or get information of the core module.
Everything that is done with the information is not in charge of the local storage plugins.
The core module is completely responsible for that. The API includes the functionality
of exchanging current version code information too.

6.3.2.2 Backend Storage Plugin

Functionality: The backend storage plugins are responsible for exchanging the infor-
mation with the storage backend that saves the information outside of the local device.
Each di�erent type of backend storage plugins is specialised for on type of storage
backend. Right now this types can be a dedicated server or a cloud storage. For a
peer-to-peer exchange the plugin handles the exchange di�erent. Here is no external
backend storage required, but a direct connection to the other devices.
User interface: The user interface of each backend storage plugin contains settings
for the exchange platform. For a dedicated server this includes the server domain and
for the cloud storage this includes the credentials. No domain for the cloud storage is

6.3. Client side 31

required because every provider needs a own plugin and the requirements for accessing
the cloud API are di�erent.
Integration: The backend storage plugins communicate with a given API with the
core module. For these plugins the content of the information and the used local stor-
age plugin are irrelevant . The determined API include functions, like giving data to
and getting data of the core module. In addition to that the API o�ers the function of
information exchange about the current version code.

6.3.3 Client Side Communication Module

The client side communication module is the part where the local storage is accessed.
To do that it is using the plugin system as mentioned before. Because the application is
about enabling secure email communication, the architecture considers two di�erent
securing mechanisms, OpenPGP and S/MIME. But because it is plugin based other
securing mechanisms can be added as well even when the �rst implementation of the
application is �nished. To be fully integrated these plugins must be working like the
local storage plugins that where de�ned earlier.

6.3.3.1 OpenPGP

The OpenPGP plugin is specialised for the GPG implementation of OpenPGP. This
implementation, as de�ned in Chapter 2, organises the required information in two or
three �les on the local storage. The amount of �le is depended on the version of GPG
that is used.
Functionality: The plugin has the knowledge about where these information are
stored. This knowledge is prede�ned by the standard storage folder for these �les or
the custom settings by the user. With this custom settings the user can select where the
�les are stored if the �le path di�ers from the standard one.
The knowledge about the �le path is necessary because the plugin can use this infor-
mation to observe the necessary GPG �les. With this observation the application is
noti�ed if one of the �le has changed and an update is necessary. With this noti�cation
the plugin sends a request to the core module for the current version code information
of the �les on the storage backend. With this information the application can detect if
other changes are saved on the backend that are not already on the local storage. If the
local version is the newest version, the plugin selects the modi�ed �le and gives it to
the core module to enable the upload.
But if there are new changes on the storage backend, that are not in the local storage,
the existing �les are downloaded from the backend storage and the �les are merged.
This is possible for the public keys but not for the private keys if GPG version less
than 2.1 is used. [4] After a successful merge the new �le can be selected from the local
storage and can be given to the core module to upload it to the backend storage.

32 Chapter 6. Design

User interface: The user interface provides the information about the current �le path
of the GPG �les and the local version code information. In addition to the information,
the user interface enables the functionality to change the �le path of the GPG �les and
to initialise a manual synchronisation process.
Integration: As mentioned in the functionality of the OpenPGP plugin, the plugin is
integrated to the application with a �xed interface to call certain functionality of the
core module. An interface for the information about the current �les and for uploading
and downloading �les must be provided. With this integration it ful�ls the requirements
for a local storage plugin.

6.3.3.2 S/MIME

The S/MIME plugin is specialised on the usage of certi�cates which is required for
S/MIME. That means the plugin is responsible for collecting all necessary certi�cates.
Functionality: For this plugin to work properly, it needs access to certi�cates storages.
In this certi�cate stores all necessary certi�cates are stored. With this access the plugin
can gather these certi�cates and a synchronisation is possible.
To synchronise all S/MIME related certi�cates the stores must be browsed and the
certi�cates must be extracted. When this is done the S/MIME plugin must package
these certi�cates and give this package to the core module to upload the information.
When certi�cates are downloaded because of a change or addition. The S/MIME plugin
receives them from the core module. These new certi�cates need to be inserted to
the right certi�cate store. But before the plugin can upload the package of S/MIME
certi�cates the local version code must be compared to the version code on the backend
storage. When the local version code is newer the plugin passes the information to the
core module. But when a con�ict exists both packages need to be compared and merged
to a new package. This package is then uploaded and the missing certi�cates are added
to the local certi�cate store.
User interface: The user interface o�ers the option to add or exclude certi�cate stores.
With that the application knows what certi�cate stores have to be browsed. In addition
to the list of certi�cate stores, the user interface also shows information about the cur-
rent version and the package of S/MIME certi�cates. The user interface o�ers a manual
synchronisation function too.
Integration: The S/MIME plugin is integrated as every local storage plugin. The plugin
is connected to the core module by requesting information about the current version
code of the backend storage and by passing data to and receiving data of the core module.

6.3. Client side 33

6.3.4 Synchronisation Side Communication Modules

The synchronisation side communication module is the part where the application
connects to a backend storage and exchanges information and data between backend
and client. Because there are several di�erent backend mechanisms, like a dedicated
server, cloud storage, or a P2P connection, this module is using the plugin system,
mentioned before. This module gets data from and gives data to the core module.

6.3.4.1 Server

The server plugin is specialised to work with a dedicated server that was created for
the application. So this server provides a necessary REST API that the application can
connect to.
Functionality: The plugin can authenticate the user with the dedicated server. This is
necessary because the data that the application uploads must be assignable to exactly
one user. When the user is authenticated, the plugin receives data from the core module
and then the plugin connects to the dedicated server and uploads the data. When the
core system requests data, the plugin connects to the dedicated server and downloads
the requested data. In addition to the up and download functionality the server plugin
provides a functionality to get the current version code information of a �le from the
server. Also this is requested by the core module.
User interface: The user interface enables the user to set up the server connection, by
entering the domain or IP-address of the server. This is required so that the application
can connect to the correct server.
Integration: The integration to the whole application happens by the interface of the
core module. The server plugin passes data to or receives data from the core module.
This interface also enables the core module to demand for backend information of the
version code of certain data.

6.3.4.2 Di�erent Synchronisation Plugins

Beside the connection to a dedicated server, which was created for the synchronisation
with the application, the application also o�ers di�erent synchronisation mechanisms.
Because of the di�erence between these mechanisms they are divided in di�erent plug-
ins.
Cloud storage plugin: Cloud storages, like Dropbox, o�er a �le API. After authen-
ticating the user for this API, it can be used to upload and download �le to the cloud
storage. This plugin is integrated to the core module with the same interfaces than
the server plugin. This means that the core module can request information about the
current version code of the data and request a upload and download of �les. Every

34 Chapter 6. Design

request of the core module is handled with the �le API of the cloud storage. For every
information about the current version code the application creates a �le and uploads it.
This is caused by the missing database of the cloud storage. The plugin must provide
the necessary functionality to authenticate a user. For that the user has to enter his
credentials in the user interface for the plugin.
Each cloud storage needs their own implementation because the provided APIs of the
cloud providers are di�erent and di�erent tasks need to be executed.
Peer-to-peer plugin: The plugin for peer-to-peer avoids a backend storage completely.
So the plugin has a di�erent design then the plugins of a server or cloud storage. To
enable peer-to-peer, the application of one device must connect directly to the applica-
tion on another device. With this mechanisms both versions must be compared by one
application. After that comparison the new data must be provided to both devices.

35

Chapter 7

Development Life Cycle

There are a number of possible implementations to ful�l the requirement that the
application will run on as many platforms as possible. But for the implementation also
the maintenance is very important. So when the application is �nished the amount of
time to �x bugs or to extend the application have to be reduced. Either way there are
three possible solution for the implementation that were investigated. One solution is
to implement each client within its own native environment, the next possible solution
is to split the application in a mobile and a desktop application, and the last solution is
to implement the application with a hybrid codebase that runs on every device wether
it is mobile or desktop. The one that was chosen can �t all requirements and is the
easiest to maintain on so many platforms.

7.1 Native Implementations

With separate implementations for each platform a native code environment is created.
With speci�c behaviour of each environment, those behaviours can be used to create
an optimised code. But if the implementation is completely separated between the
platforms it takes a lot of e�ort to create a stable application for each device, because
the design and the requirements must be ful�lled for every platform individually. In
addition to the this e�ort, the maintenance after �nishing the application is very high.
Bugs that a�ect every platform need to be identi�ed and �xed individually as well. This
is very time consuming. Along with the maintenance the extensibility is an important
factor of the application. In order to o�er such an extensibility each platform needs
to extended. That takes a lot of time. The last point that needs to be mentioned is the
man power that is necessary to have separate implementations. For just one person
the implementation will take very long because no consisting codebase can be used
across the implementations and a developer needs a lot of knowledge about each native
language like, C#, Obective-C, or Android-Java just to mention a few.

36 Chapter 7. Development Life Cycle

7.2 Separation between Mobile and Desktop

The way how applications run in a desktop and a mobile environment is di�erent. On
desktop devices an application has complete access on the local storage and so an ob-
servation of �les is possible. On mobile devices an application runs in a sandbox. This
means mobile devices do not share their local storage like in a desktop environment.
The applications can save data to the local storage but it is not automatically accessible
for other applications. Because of that a separation of mobile and desktop can be an
approach.
For the desktop application Java would �t the needs of a multi platform programming
language. But one problem of Java even when the application is done, it is required to
have Java installed on every device that wants to use the application later on. This can
be complicated in organisation where users are restricted to a certain Java version or no
Java installation is available. Even with a restriction of a Java version, the application
has to use the newest version that is available on all devices. This can lead to a Java
version which is several years old.
The mobile application can be implemented in two ways. On way is to have again
separate implementations on the mobile side. But now also two additional implemen-
tations need to be created and this takes again a lot of e�ort. The other approach is
to have a hybrid mobile application. So just one implementation is necessary to �t
iOS and Android. For such an approach PhoneGap1 is an option. With PhoneGap it
is possible to create a web application that runs as a native app with the access to the
device like a native one. With this approach a lot of e�ort can be saved because just
one implementation is necessary to �t in both mobile operating systems.
To summary that approach, several implementations are required to ful�l the goal to
run on multiple platforms. The Design must be implemented in at least two di�erent
ways. Also the maintenance and the extensibility is split.

7.3 Hybrid Implementation

The last option that was investigated was to implement the application on every platform
as a hybrid application that is based on a web application. Similar to the mobile approach
with PhoneGap2 this solution can also �t in the environment of desktop devices. The
framework Electron3 does ful�l the needs for that. So with PhoneGap and Electron it
is possible to have the same web application as a native one on desktop and mobile
devices. With that approach, it is possible to have the same codebase for every device,
so the maintenance e�ort is much lower than for the other ways of implementation.

1http://www.phonegap.com/
2http://www.phonegap.com/
3http://electron.atom.io/

7.4. Conclusion 37

With the usage of an web application other problems appear, because web application
often appear as one. A feeling of a real application is not created when every page
gets loaded individually. In addition to the look and feel of the application there is a
problem of combine the functionality of PhoneGap and Electron. They both o�er similar
functionality but how the functionality is provided is completely di�erent. Electron uses
NodeJS as an additional framework inside to o�er certain functionality, like accessing
the local storage of an user. PhoneGap enables such functionality completely di�erent
by o�ering APIs for those actions. Even when the codebase is similar there are still
di�erences in the code how it has to be executed. A di�erentiation inside the code is
necessary to bring all functionality to every device.
The implementation is also completely di�erent than an implementation with native
languages, so �nding bugs can take more e�ort. But these �xes just need to be applied
once because the whole application shares the new code. The extensibility is also
provided with the help of the same codebase. Each new functionality or mechanisms
needs to be implemented once. Just the di�erence between PhoneGap and Electron
must be considered.

7.4 Conclusion

Multi platform Maintenance Automation Security
Native yes, but multiple implementations yes yes
Separation yes, but two implementations yes yes
Hybrid yes, same codebase yes yes

Table 7.1: Comparison of implementations

Even though all attempts of an implementation can ful�l the requirements, the approach
with the least maintenance e�ort must be selected, in order to be able to create such
an application quickly and maintain it when it is �nished. Because of that, the hybrid
approach is chosen. The other approaches have to many negative sites like the amount
of time that is required for maintenance or the dependence on certain versions of a
programming language, like Java.

7.5 Creation of a Development Life Circle

To ful�l the needs of a native application the existing problems must be solved by the
usage of di�erent frameworks, so that the web application has the right look and feel,
but also enables the required functionality for the di�erent platforms. A good working
development environment is in a hybrid approach very important. Especially when
di�erent frameworks are combined to one project.

38 Chapter 7. Development Life Cycle

7.5.1 Suggested Frameworks

The frameworks that are suggested below ful�l certain needs that the application has
to solve in the hybrid approach. Each of these frameworks target on one problem
and solves it in a way that the end product is an application that o�ers every needed
functionality.

7.5.1.1 Electron

Electron4 is a framework that allows to compile web applications as native desktop
applications. With this one framework the application can run on MacOS, Windows,
and Linux. Electron allows the usage of all common web technologies like HTML5,
CSS3, and Javascript. This is possible because the Chromium browser engine provides
everything that is needed to execute those three technologies. In addition to the normal
web technologies NodeJS can be used as well. So with the help of this framework it is
possible to create applications that can perform every necessary actions directly on the
device, like reading or writing �les, which is not possible with normal Javascript.

7.5.1.2 NodeJS

NodeJS5 is normally used as a language to create Javascript based backend servers. With
the integration of Electron the complete functionality of NodeJS is also available inside
of the application. So the app has a �le path, can access the hard drive, and enables the
usage of the newest Javascript engines which are not available in normals browsers yet.
NodeJS in general also allows the "Node Package Manager"6. This is used to install all
the packages like Electron, PhoneGap, or EmberJS. It enables automatic update when
certain commands are run.

7.5.1.3 PhoneGap

PhoneGap7 can be compared to Electron but it ful�ls the needs of bringing the appli-
cation to mobile devices. Electron is restricted to desktop application, so PhoneGap
has to ful�l the requirements of mobile devices. PhoneGap transforms normal web
applications to native ones, so with that tool the codebase is transformed to an Android
or an iOS application. A positive factor of PhoneGap is that it also grants access to
local device actions, like saving �les. This is for an application that synchronises data
essential.

4https://electron.atom.io/
5https://www.nodejs.org/
6https://www.npmjs.com/
7http://www.phonegap.com/

7.5. Creation of a Development Life Circle 39

7.5.1.4 EmberJS

The tool listed above enhance normal web applications and transforms them to native
applications with rich functionalities. But the problem of a web application is that
it feels like an homepage if the page gets loaded when a button is clicked. For that
problem EmberJS8 is the solution. That framework allows full web applications with is
powered completely by Javascript and enables a one page application. This is possible
because EmberJS renders every page of the application to one website that is loaded in
the beginning. So a feeling of real application is created. EmberJS also takes advantages
of the MVC model. So user interface and logic is completely separated. This is really
comfortable to create or maintain an application. With EmberJS are very clean coding
structure is given from the beginning on and a clean coded application can be created
easily.

7.5.1.5 Grunt

To use all of the di�erent tools a lot of di�erent command line tasks is necessary to run
the application during development or building it to release it. Grunt9 is a framework
that gathers all commands and creates new ones which executes more than just one
task. So the usage of the command line becomes much more cleaner and easier to run
and build the application. In addition to this no necessary commands to start up the
application correctly can be forgotten. It improves the over all work�ow during and
after the development and the maintenance phase.

7.5.1.6 Other Javascript frameworks

Some more frameworks are used inside of the code. ForgeJS10 is another framework. It is
a Javascript implementation of the common encryption standards like RSA, AES, or TLS.
With that framework it is possible to secure all data inside outside of the application.
This encryption framework is widely used and o�ers a rich functionality of encryption
mechanisms.

7.5.2 Conclusion

All frameworks combined result in the development life circle. The user executes Grunt
commands to use every framework. Grunt triggers actions for Electron, PhoneGap,
and EmberJS. Since EmberJS is running inside Electron or PhoneGap these frameworks

8http://www.emberjs.com/
9http://www.gruntjs.com/

10https://www.github.com/digitalbazaar/forge

40 Chapter 7. Development Life Cycle

grant access to di�erent native functionalities. In addition to these native functionalities,
EmberJS is also extended the framework ForgeJS for encryption. EmberJS provides the
content of the application for Electron and PhoneGap. Electron creates the applications
for Windows, Linux, and Max. PhoneGap creates the applications for Android and iOS.

Figure 7.1: Diagram of development life cycle

41

Chapter 8

Implementation

The implementation of the thesis project is completely based on the technologies that
where evaluated in Chapter 7 and the design that was de�ned in Chapter 6. Therefore
the implementation is split in the application and the backend. The implementation of
the backend is represented by a dedicated server, so the approach of cloud storages or
peer-to-peer connections are not implemented yet. The application uses the suggested
frameworks. This means the application is written with EmberJS and is executed by
Electron and PhoneGap.

8.1 Backend

The backend represents a example server. This server provides the necessary API that
was de�ned in Chapter 6. With this API the application is able to transfer data to the
server and receive data from the server. In addition to this the server allows the user to
authenticate.
The server is implemented with a Java Tomcat server and the API is build with the
Spring framework1. The functionality of the server is the minimum that is required in
order to enable the system to run. Any administrative operations, like organising the
users, need to be implemented. As the persistent storage an MySQL database is used
and all incoming �les are save on the local storage of the dedicated server.
The functionality of the server covers uploading and downloading �les, checking the
server for updates and authenticate and create users.

1https://www.spring.io/

42 Chapter 8. Implementation

8.2 Client

For the design in Chapter 6 a separation between the functionality of desktop and mobile
environment is suggested because functionality of these two environments are di�erent
in the way how they can access the local storage of a device and the accessibility of the
data for other applications. In addition to that the separation is necessary because the
suggested frameworks Electron and PhoneGap just support either desktop or mobile
environments. Every necessary command that needs to be executed is managed by
Grunt to it easy for the developer to start the application for a certain platform

8.2.1 Desktop Environment

The desktop environment of the application is enabled by Electron. This framework
provides the environment for the application itself to be executed natively on each device.
Inside the Electron implementation necessary settings are made. But the content that
is shown is generated by the application framework EmberJS. Electron expands the
functionality of EmberJS by providing NodeJS as a functional framework.
The important �les for the Electron framework are inside the Electron folder of the
implementation directory. Inside this folder the most important �le is "main.js". In
this �le the con�gurations are made. These con�gurations include window size, exit
methods, the functionality of the menu bar, and the directory of the content of the
application. For this application the content is inside the "www" folder. The "dist"
folder contains all created native applications for Windows, Linux, and MacOS. The
�le "package.json" is the dependency �le of node package manager. The necessary
dependency include "electron-prebuilt" and "electron-packager". The package "electron-
prebuilt" allows to start the electron app inside a existing Electron framework. The
con�gurations are not the same as they are de�ned in the "main.js" �le. It is used to
test the application easily. The package "electron-packager" is responsible for creating
the native applications for each platform. The di�erent commands that are required for
that are managed by Grunt.

8.2.2 Mobile Environment

The mobile environment of the application is enabled by PhoneGap. This framework
is responsible for creating native applications for the mobile environment. Inside of
PhoneGap the necessary settings for the platforms is de�ned, but the content that the
application shows on the device is created by EmberJS. PhoneGap also expands the
functionality of EmberJS by providing a special API to access native functionalities of
the mobile device.
The important �les for PhoneGap are inside the PhoneGap folder of the implementation

8.2. Client 43

directory. Inside this folder the con�guration is happening in the "con�g.xml" �le. Inside
this �le con�gures each platform that the application is running on. The minimum
Android version and all permissions that the application needs can be de�ned here. the
path to the application is standardised. The application loads the "index.html" in the
"www" folder. The EmberJS application is to big to be loaded during the start. So the
"index.html" is an empty page and it loads the real application after the start is �nished.
This causes no delay during the startup but prevents crashes caused by the loading
time. The content of the application is in the directory "www/app/". The generated
applications are stored in the folder "platforms" and inside this folder each platform has
an own directory.

8.2.3 Application Environment

The implementation of the application is realised by EmberJS and is stored in the folder
"SecureSync". The "Grunt�le.js" is also stored here. That �le is responsible for executing
the commands with Grunt. The actual implementation is placed in the subfolder "app".

8.2.3.1 Con�guration

Several di�erent con�gurations and dependencies are necessary for EmberJS. The �rst
dependencies are store in the "package.json" �le. This �le stores all node package
manager dependencies. This includes several Grunt dependencies, like "grunt" or "grunt-
shell" and Ember-CLI2 dependencies. In addition to the node package manager Ember
also uses Bower3 for dependencies. These dependencies are stored in the "bower.json"
�le. With Bower frameworks, like jQuery4 or Bootstrap5 are imported.
The Con�guration of the application happens in the "ember-cli-build.js". In this �le
frameworks, like ForgeJS and Bootstrap are imported. In the folder "public" another
con�guration �le is placed. Inside this folder exists the �le "node.js". This �le imports
all necessary dependencies of NodeJS into the EmberJS application. With that import
these functions are available globally through out the application. In addition import of
NodeJS, this �le also creates or load the "settings.json" �le. This �le contains important
settings for the application.

8.2.3.2 Core module

The core module is de�ned in Chapter 6 and is the main part of the application. The main
user interface is implemented here. Every folder inside the "app" folder except for the

2https://www.ember-cli.com/
3http://www.bower.io/
4https://www.jquery.com/
5http://www.getbootstrap.com/

44 Chapter 8. Implementation

"app/plugin/" folder belongs to the core module. The encryption of the data is handled by
"app/helpers/encryption-utility.js". In this �le the information are symmetric encrypted.
The di�erent synchronisation mechanisms are handled by "app/helpers/synchronisation-
utility.js". This �le provides the necessary interfaces between the core module and the
local storage plugins. The directory "application" contains the main page with a menu
for the application. The authentication is contained in the directory "authenticated".
Every "route.js" �le is using an authenticated route which is created by the directory
"authenticated". The �le "route.js" inside this directory checks if the user is authenti-
cated. If the user is authenticated the requested page is shown. If not a login form is
shown.
The automation of the application is enabled by the functionality of observing the re-
quired �les for the plugins. These �les which need to be observed are saved to the
"setting.json" �le. And every �le that was added there is observed by the application.
Now when a �le has changed this �le automatically triggers the process of synchroni-
sation.

8.2.3.3 Plugins

Right now the implementation contains two plugins. One local storage plugin, which
is responsible for OpenPGP and a backend storage plugin which connects the appli-
cation to a dedicated server. The OpenPGP plugin is stored in the directory "app/-
plugin/openpgp/". The �le "template.hbs" shows the con�guration page inside the
application. This page contains information about the version code and the �le path of
the GPG �les. In addition to that it contains a button for manual synchronisation. The
�le "controller.js" in this directory is responsible for every action related to OpenPGP.
It contains functions for changing the �le paths of the GPG �les, "secring.gpg", "pub-
ring.gpg", and "trustdb.gpg", and the functions for uploading and downloading the GPG
�les.
The backend storage plugin provides the functionality to communicate with the im-
plemented server. This plugin is stored in the folder "app/plugin/server". The �les
"template.hbs" and "controller.js" are responsible for the correct con�guration of the
server. The domain is entered here and is saved to the settings �le. The �le "server-
synchronisation.js" is responsible for the communication. The functions are called by the
�le "app/helpers/synchronisation-utility.js" and this �le belongs to the core module. The
OpenPGP plugin calls the functions of the �le "app/helpers/synchronisation-utility.js",
which then calls the right synchronisation plugin. In this case the server plugin.

45

Chapter 9

Evaluation

The outcome of the project is an application that takes the key material on one device
and transfers it to another one. In the thesis project it is made possible with a combined
use of the application with a backend server. It works automated and no user interfer-
ence is necessary. The Server implementation is an example of how the communication
API of the application looks like and how other servers can be adapted to �t in this
schema. With this version of implementation the application is still not �nished, but
the evaluation will refer to the current state of the application. Missing features like
S/MIME are not considered. The missing functionality is mentioned in the future work
in the end of this thesis. The following describe how the requirements are ful�lled and
how good these approaches are.

9.1 Multi Platform Support

The �rst challenge for the implementation was the requirement for a multi platform
support. This problem was solved by using the frameworks Electron and PhoneGap.
With these framework a separated application could be created which use the same
code base. Therefore no multiple implementations where necessary. The applications
ful�l the functional requirements:

• Synchronisation

• Consistency

• Automation

• Encryption

• Con�guration

46 Chapter 9. Evaluation

The synchronisation is solved by connecting the application to the backend server. The
consistency is created by adding a version code to the data. This version code gets in-
creased for every change that was made. Automation is available because the �les that
need to be synchronised are observed and when these �les are changed the application
is informed. The encryption is done by the core module of the application. There the
�les get symmetric encrypted with AES-256. The con�guration is available for each
plugin individually.

9.2 Low Maintenance

In addition to the multi platform challenge also the requirements for the maintenance
is solved. The whole application is using the same code base with some necessary
di�erences for the di�erent platforms. These di�erences are caused by Electron and
PhoneGap. Each framework enables native access to the device di�erently. But each
version of the application shares the same code where no native access to the device is
necessary. So �xing issues must be done once in the most cases.

9.3 Simplicity

The necessary simplicity is possible with the automation of the application. The user
does not have to interfere with the application to start a synchronisation. The knowledge
of the standard �le paths of the GPG �les makes it possible that the user does not need
any knowledge about his key material. Furthermore the simplicity is also given with
the same user interface through out the di�erent versions of the application.

9.4 Extensibility

With this implementation the application can synchronise GPG �le with a dedicated
backend server. But the code is already prepared for new ways of synchronisation.
These di�erent mechanisms just have to be added in the way that the server backend
was added. So with this extensibility the application can be used for several additional
synchronisation or securing mechanisms.

9.5 Conclusion

To summarise, the application ful�ls the given requirements. And with the important

9.5. Conclusion 47

factors, multi platform support, low maintenance, simplicity, and extensibility this appli-
cation shows what it is capable of. The application enables secure email communication
in a multi device environment without being restricted to a certain communication tool,
like WhiteOut or Protonmail.

48 Chapter 9. Evaluation

49

Chapter 10

Gained Experiences

During the implementation some critical problems occurred that needed to be solved in
order for the application to run properly on all platforms. They belong to the setup and
how all frameworks are able to work together.

10.1 EmberJS and PhoneGap

One of the �rst problems was the combination of EmberJS and PhoneGap. PhoneGap
is really sensitive during the start of the application, so when the start takes to long
the application crashes. This occurs when the EmberJS application is to big. Because a
web application with EmberJS loads big JavaScript �les in the beginning the app did not
start reliably with PhoneGap. To avoid this problem a empty HTML page was added.
This page includes JavaScript that loads the real page after starting the application on a
mobile device. This simple trick completely avoids the problem of a crash during the
start, that would be caused by a big application.

10.2 EmberJS and Electron

A di�erent problem was between EmberJS and Electron. All functionality that includes
the hard drive is done by libraries of NodeJS. In this particular case that framework is
called FileSystem. In order for the library to be available through out the application
it needs to be imported in a separate JavaScript �le before the rest of the application
is loaded. In this �le every necessary import is happening. After that import the �le it
self gets imported by EmberJS and the functionality is completely available inside of
the application and can be used to read, write, or observe �les.

50 Chapter 10. Gained Experiences

10.3 Electron and PhoneGap

Another problem occurs between PhoneGap and Electron. Both frameworks enable
either the mobile or the desktop application. But the actions that are necessary on
each device is handled completely di�erent. To avoid crashes inside the application a
separation of this calls is necessary. To be able to di�erentiate the versions a check is
made in the beginning of the application and is saved to a global variable. The content
of this variable represents the current platform the application is running. With this
trick it is easily possible to di�erentiate the platforms correctly and to avoid crashes.

51

Chapter 11

Conclusion

The goal of these question was to de�ne the requirements and a suitable design for a
secure and extensible synchronisation mechanism that allow secure email communica-
tion in a multi device environment.
This question was answered through out the thesis. It showed that OpenPGP and
S/MIME are depending on certain information that contain sensitive information, like
private and public keys and trust information. These information must be available on
all devices in order to enable secure communication with OpenPGP and S/MIME. The
thesis showed the necessary requirements for that application and that these require-
ments contain a multi platform support, consistency, security, automation, simplicity.
All these requirements exist so that the application is adapted by the users. These
requirements can be ful�lled by the suggested design. This design consists of a storage
backend and a client application. The client application is extensible with plugins and
is created with a hybrid implementation for the thesis project. Additionally this project
includes a server with a REST API that is required for a communication between the
server and the application. The hybrid approach of the client implementation is realised
with modern technologies and is available on several mobile and desktop operating
systems.

11.1 Future Work

With the current state of the application the functionality of synchronisation is given.
Also the synchronisation of OpenPGP key material is possible. From this point several
more topics can be solved, so that the application gains more functionality and is more
reliable in every situation. With the following topics the application can be extend in
functionality and integration to other systems.
Implementation of a merging mechanism: With the implementation of a merging
mechanism the current problem of merging �les can be solved. With that merging

52 Chapter 11. Conclusion

mechanisms OpenPGP keys could be merged. And for other securing mechanisms a
merging mechanisms would be necessary as well.
Integration of S/MIME: The implementation of S/MIME is missing. The current state
just support OpenPGP as a securing mechanism that can be synchronised. In addition to
that S/MIME should be implemented as well. For a S/MIME implementation the access
to the di�erent certi�cate stores will be the main issue. The goal here would be to �nd
an elegant way to get the information for the S/MIME certi�cate and than synchronise
that to di�erent devices.
Integration of cloud storages and P2P: The integration with other synchronisation
mechanisms should be done, in order for the application to be accessible for even more
users. Like mentioned in the thesis, other synchronisation mechanisms like cloud stor-
ages or P2P are also solution for a synchronisation. In order to do that a proper access
to the could �le API is necessary and for P2P a way to communicate between the appli-
cations must be found.
Integration of TUM secure mail: With the integration to the TUM secure mail the
problems of key exchanges inside this system can be solved. With TUM as an organisa-
tion a backend server is necessary. This theses provides the information for a necessary
REST API that the application can communicate with. The task here would be to imple-
ment the server backend with the required REST API and connect it with the existing
TUM secure mail server.
Integration of mobile applications: With the integration to existing mobile applica-
tions for secure communication, the synchronisation mechanism could also ful�l the
needs for the mobile operating systems, as the requirements are di�erent here. The
sandboxes around the applications do not allow a exchange like it is possible on desktop
devices. Even though the synchronisation application makes the necessary informa-
tion accessible on the device, the integration is required in order to enable the secure
communication.

53

Bibliography

[1] T. Dierks and E. Rescorla, “The Transport Layer Security (TLS) Protocol Version
1.2,” RFC 5246 (Proposed Standard), Internet Engineering Task Force, Aug. 2008,
updated by RFCs 5746, 5878, 6176, 7465, 7507, 7568, 7627, 7685. [Online]. Available:
http://www.ietf.org/rfc/rfc5246.txt

[2] B. Ramsdell and S. Turner, “Secure/Multipurpose Internet Mail Extensions
(S/MIME) Version 3.2 Message Speci�cation,” RFC 5751 (Proposed Standard),
Internet Engineering Task Force, Jan. 2010. [Online]. Available: http://www.ietf.
org/rfc/rfc5751.txt

[3] J. Callas, L. Donnerhacke, H. Finney, D. Shaw, and R. Thayer, “OpenPGP Message
Format,” RFC 4880 (Proposed Standard), Internet Engineering Task Force, Nov.
2007, updated by RFC 5581. [Online]. Available: http://www.ietf.org/rfc/rfc4880.txt

[4] GnuPG, “What’s new in gnupg 2.1,” https://www.gnupg.org/faq/whats-new-in-
2.1.html, Accessed Jan 15, 2016.

[5] T. Hase, “Secure pgp key sync - a proposal,”
https://blog.whiteout.io/2014/07/07/secure-pgp-key-sync-a-proposal/, July
2014. Accessed Nov 3, 2015.

[6] Whiteout, “Technology,” https://whiteout.io/technology.html, Accessed Jan 4, 2016.

[7] Protonmail, “Sending a message using pgp/pgp (gpg/gpg),”
https://protonmail.com/support/knowledge-base/sending-a-message-using-
pgppgp/, Accessed Jan 20, 2015.

[8] KeePass, “Feature lust,” http://www.keepass.info/features.html, Accessed Dec 22,
2015.

http://www.ietf.org/rfc/rfc5246.txt
http://www.ietf.org/rfc/rfc5751.txt
http://www.ietf.org/rfc/rfc5751.txt
http://www.ietf.org/rfc/rfc4880.txt

	Introduction
	Goal of the Thesis
	Outline

	Background
	OpenPGP
	Implementation
	Conclusion

	S/MIME Specification
	Key Elements
	Implementations
	Conclusion

	Problem Analysis
	Appearance
	Multiple Devices
	Mobile Devices
	Sending Mails
	Reading Mails
	Trust Information

	Approaches
	Conclusion

	Related Work
	State of the Art
	Synchronisation of OpenPGP Keys
	Secure Communication in Closed Systems

	Security Tools
	KeePass

	Summary

	Requirements
	Stakeholder Analysis
	End User as Stakeholder
	Organisation as Stakeholder

	Use Case Analysis
	Use Cases for an End User
	Use Cases for an Administrator

	Functional Requirements
	Synchronisation
	Consistency
	Automation
	Encryption
	Configuration
	Backend

	Technical Requirements
	Frontend
	Backend

	Design Requirements
	Summary

	Design
	System
	Description
	Functionality

	Backend
	Server
	Cloud Storage and Peer-to-Peer

	Client side
	Core Module
	Plugin System
	Client Side Communication Module
	Synchronisation Side Communication Modules

	Development Life Cycle
	Native Implementations
	Separation between Mobile and Desktop
	Hybrid Implementation
	Conclusion
	Creation of a Development Life Circle
	Suggested Frameworks
	Conclusion

	Implementation
	Backend
	Client
	Desktop Environment
	Mobile Environment
	Application Environment

	Evaluation
	Multi Platform Support
	Low Maintenance
	Simplicity
	Extensibility
	Conclusion

	Gained Experiences
	EmberJS and PhoneGap
	EmberJS and Electron
	Electron and PhoneGap

	Conclusion
	Future Work

	Bibliography

