
Technische Universität München
Department of Informatics

Master’s Thesis in Informatics

Design and Implementation of a
Management Service for Digital

Certi�cates

Pranav Jagdish

Technische Universität München
Department of Informatics

Master’s Thesis in Informatics

Design and Implementation of a Management Service for Digital
Certi�cates

Design und Implementierung eines Management-Service für
digitale Zerti�kate

Author Pranav Jagdish
Supervisor Prof. Dr.-Ing. Georg Carle
Advisor Matthias Wachs
Date July 14, 2016

Informatik VIII
Chair for Network Architectures and Services

I con�rm that this thesis is my own work and I have documented all sources and material
used.

Garching b. München, July 14, 2016

Signature

Abstract

With the deep penetration of Information systems in today’s world, the need for secure
communication and privacy has also seen a signi�cant rise. Established technologies,
namely X.509 and OpenPGP that can help in this domain, tend to be out of the reach of
the common user and even di�cult to use for expert users. This thesis addresses this
issue by analysing how an e�ective, usable and secure system can be implemented for
organisations, thus furthering the goal of secure communication. The thesis analyses
technologies and systems in use or available today, and analyses the various aspects
that make secure communication di�cult and challenging. Using this analysis, the
thesis presents the design and resultant implementation for a Management Service for
Digital Certi�cates which covers the whole certi�cate lifecycle and supports both the
established technologies i.e. X.509 and OpenPGP. The thesis along with the resultant
system, will provide valuable help to organisations – both big and small – in securing
their communications while simultaneously making it easy and less challenging for a
common user.

Zusammenfassung

Mit der weiten Verbreitung von Informationssystemen in der heutigen Zeit steigt gleich-
zeitig auch die Notwendigkeit der sicheren und die Privatheit der Nutzer schützenden
Kommunikation. Etablierte Technologien wie X.509 und OpenPGP, die auf diesem Ge-
biet helfen können, sind für die Verwendung durch normale Nutzer wenig geeignet und
auch für technisch versierte Nutzer schwierig zu verwenden. Diese Arbeit beschäftigt
sich mit dieser Problematik indem sie analysiert, wie ein e�ektives, verwendbares und
sicheres System für Organisationen realisiert werden kann, das die Sicherheit in der
Kommunikation erhöht. Diese Arbeit analysiert Technologien und Systeme, die heute
in Verwendung oder verfügbar sind und unterschiedliche Aspekte, die Kommunikation
schwieriger und herausfordernder machen. Basierend auf dieser Analyse präsentiert
diese Arbeit das Design und als Ergebnis die Implementierung eines Dienstes zur Verwal-
tung digitaler Zerti�kate, das den gesamten Lebenszyklus digitaler Zerti�kate abdeckt
und die beiden etablierten Technologien X.509 und OpenPGP unterstützt. Diese Ar-
beit bietet zusammen mit dem resultierenden System eine wertvolle Hilfe für sowohl
große und kleine Organisationen, die ihre Kommunikation absichern wollen und dies
gleichzeitig einfach und intuitiv für Nutzer realisieren wollen.

I

Contents

1 Introduction 1
1.1 Goals of the Thesis . 2
1.2 Methodology . 3
1.3 Outline . 3

2 Background 5
2.1 X.509 Certi�cates and Certi�cate Signing Requests (CSR) 5
2.2 Public Key Infrastructure X.509 (PKIX) 8

2.2.1 PKIX Management Functions 9
2.2.2 PKIX Management Protocols 10

2.3 S/MIME . 10
2.3.1 Functions . 11
2.3.2 Certi�cates . 14

2.4 OpenPGP . 14
2.4.1 OpenPGP in Operation . 15
2.4.2 Digital Signatures . 16
2.4.3 Digital Certi�cates . 17

3 Analysis 21
3.1 Problem Analysis . 21
3.2 A General Certi�cate Lifecycle . 22
3.3 A Modi�ed Certi�cate Lifecycle . 25
3.4 The need for a Certi�cate Management System 28

4 Related Work 29
4.1 Enterprise PKI with Windows Server 29
4.2 EJBCA . 30
4.3 OpenCA . 31

5 Requirement Analysis 33
5.1 Stakeholder Analysis . 33
5.2 Use Case Analysis . 34

II Contents

5.3 Functional Requirements . 54
5.4 Technical Requirements . 56

6 System Design 57
6.1 A Reliable Design . 57

6.1.1 System Components . 57
6.2 CMS . 59

6.2.1 CMS Frontend . 59
6.2.2 CMS Backend . 61
6.2.3 Interfacing . 63

6.3 Cryptography and Encryption . 63
6.4 Database Storage . 64
6.5 PKI Infrastructure . 64

7 Implementation 67
7.1 Building Blocks of the Service . 67

7.1.1 Spring Framework . 67
7.1.2 Spring Security . 68
7.1.3 Spring Data JPA . 68
7.1.4 Web Cryptography API . 68
7.1.5 PKI.js . 69
7.1.6 Bouncy Castle . 69

7.2 CMS . 69
7.2.1 CMS Frontend . 70
7.2.2 CMS Backend . 75

7.3 Database . 77
7.4 PKI . 79
7.5 Processing Certi�cates and Requests . 80

7.5.1 Generation of a Certi�cate Signing Request 80
7.5.2 Issuing Certi�cates . 81
7.5.3 Private Key Backup . 82
7.5.4 Signing OpenPGP Keys . 84
7.5.5 Recovering Private Keys . 85

8 Evaluation 87
8.1 User Registration . 87
8.2 Certi�cate Request . 88
8.3 Certi�cate Approval . 88
8.4 Certi�cate Issue . 89
8.5 Certi�cate Enrolment . 89
8.6 Certi�cate Distribution . 89
8.7 Certi�cate Modi�cation . 90

Contents III

8.8 Certi�cate Renewal . 90
8.9 Certi�cate Revocation . 91
8.10 Certi�cate Expiration . 91
8.11 Summary of the results of the evaluation 92

9 Conclusion 93
9.1 Future work . 94

9.1.1 Key Pair veri�cation on the Server-side 94
9.1.2 Backup and Disaster Recovery 95
9.1.3 Recovery Operators . 95

Bibliography 97

IV Contents

V

List of Figures

2.1 Structure of a X.509 Certi�cate . 7
2.2 The PKIX Architecture Model. 9
2.3 The process of digitally signing a message 12
2.4 Verifying the Digital Signature on a recieved message 13
2.5 Encrypting a Message . 13
2.6 Decrypting a Message . 14
2.7 Encryption in OpenPGP . 15
2.8 Decryption in OpenPGP . 16
2.9 Using Digital Signatures in OpenPGP 17
2.10 An example for Web Of Trust . 19

3.1 The modi�ed certi�cate life-cycle. 27

5.1 Use case diagram for the Service Operators, Recovery Operators and
External Users. 35

5.2 Use case diagram for the Support Sta�. 36
5.3 Use case diagram for End User. 37
5.4 Activity Diagram for Service Operators showing their Disaster Recovery

and Backup related work-�ows. 38
5.5 Activity Diagram for Service Operators showing their User Access Man-

agement (UAM) related work-�ows. 40
5.6 Activity Diagram for Service Operators showing their Reporting and

Logging related work-�ows as well as some other actions that they can
take. 41

5.7 Activity Diagram for Support Sta� showing work-�ows related to Ap-
proving Certi�cate Signing Requests and Approving Revocation Requests. 43

5.8 Activity Diagram for Support Sta� updating a user’s information in a
certi�cate that was already issued. 44

5.9 Activity Diagram for Support Sta�’s various work-�ows where they
can query the database for various kinds of information. 45

5.10 Activity Diagram for Recovery Operators. 47
5.11 Activity Diagram for an End User showing work-�ows related to cer-

ti�cate requests where a CSR is generated within the browser itself. . . 48

VI List of Figures

5.12 Activity Diagram For an End User showing work-�ows related to sub-
mitting of requests for revocation or requesting for change in certi�cate
data. 50

5.13 Activity Diagram For an End User showing work-�ows related to sub-
mitting of certi�cate renewal requests and submitting of OpenPGP keys. 51

5.14 Activity Diagram for an End User showing work-�ows related to Up-
loading of a CSR, Backing up of private keys and Recovery of backed-up
keys. 53

5.15 Activity Diagram for External Users. 54

6.1 The component diagram for the certi�cate management service. 58
6.2 The sub-modules of the CMS Frontend. 60
6.3 The sub-modules of the CMS Backend. 62

7.1 An abstract component diagram for the implemented certi�cate man-
agement service. 70

7.2 The packaging of the main classes in the Frontend. 71
7.3 The templates in the frontend are stored under resources. 72
7.4 The packaging of the main classes in the Backend 76
7.5 This is the structure of the packaging for the classes used to implement

the Data Access Layer for the service. 78
7.6 Sequence diagram for the process of generating a CSR and submitting

it along with a secure back-up of the private key. 81
7.7 Sequence diagram depicting the process of a certi�cate being issued by

the CA once a CSR is approved by a Support Sta� user. 82
7.8 Sequence diagram depicting the process of backing-up a key securely

to the service. 83
7.9 Sequence diagram depicting the process of signing of OpenPGP keys

once a key singing request has been approved by a Support Sta� user. . 84
7.10 Sequence diagram depicting the process of recovery of a backed-up key

from the service. 86

VII

List of Tables

2.1 Information Inside a CSR . 6
2.2 Information Inside a OpenPGP Certi�cate 18

3.1 The Reason Codes for Certi�cate Revocation 24

VIII List of Tables

1

Chapter 1

Introduction

Since time immemorial, one of the most important social tasks that humans undertake
- is to communicate. With time, modes of communication have changed. In today’s
world, the optimal method of communication is the E-Mail.

E-Mail, itself, has come a long way since the �rst ARPANET E-mail was sent in 1971
[1]. Its popularity increased massively as the personal computer and Internet started
penetrating the consumer market. Organizations - both big and small - as well as
home users started using the E-Mail as their preferred mode of communication. The
advantages of email - from the speed to just the ease of writing one - over traditional
mail, only helped increase its popularity.

With its rise in popularity, various security problems [2] also came to the fore. As
hackers of all colours began dissecting the email - various loopholes became known.
Soon, hackers started exploiting these loopholes for personal gains. As more and
more organizations started deploying E-Mail services and started moving away from
traditional systems - more and more cases of email related fraud started happening.

Computer researchers as well as the industry began deploying countermeasures to
correct the �aws in E-Mail systems. Many of the �aws were closely associated with the
underlying technologies and protocols of E-Mail. Owing to this, and the continued use
of the same protocols and technologies, E-Mails are still susceptible to a host of security
problems and issues. Even the countermeasures that were released by researchers
or the industry were a source of controversy. For example when PGP was released
in 1991 [3] [4], it was perhaps the �rst complete email security package. However,
controversies soon followed its release. As it was freely available over the Internet, the
US Government had claimed that since foreigners can obtain it, its a violation of laws
concerning the export of munitions. To get around this restriction, later versions of
PGP were produced outside USA.

Many more new technologies and protocols were created to secure E-Mail. Another

2 Chapter 1. Introduction

example is Secure/Multipurpose Internet Mail Extensions or S/MIME. This too gained
popularity with many users. However, like in the case of PGP, the use of S/MIME and
other technologies continued to be limited. Email security, was a complex task for
many a normal users as well as even expert users [5]. As computers and other forms
of electronic devices were becoming a common place around the world, Governments
irrespective of their ideologies or political leanings, started seeing a need to have some
form of control over these communications as they did on other forms of traditional
communication [6] [7] [8]. International crime and terrorism led governments to initiate
clandestine operations of monitoring modern day electronic communication.

In 2013, Edward Snowden, a former Central Intelligence Agency (CIA) employee and a
former contractor for the US Government started leaking classi�ed information from
the United States National Security Agency (NSA) to the press [9]. Amongst this leaks,
were revelations about a surveillance program known as PRISM. The PRISM system
collects the e-mail, voice, text and video chats of foreigners and an unknown number
of US Citizens from Microsoft, Google, Yahoo, Apple and other technology giants [10].

Following this and other related revelations, Secure E-Mail communication, once again
came back in global limelight [11]. However, as before, problems that have persisted
with securing E-Mails still remained. The need for security with usability is utmost,
and yet is hardly ful�lled.

At the moment, secure communication is a rather di�cult task for non-technical users
[11] [12]. For an e�ective secure E-Mail solution, users generally need certi�cates
to progress. A certi�cate itself has a life cycle - enrolment, distribution, validation,
revocation, renewal, destruction and auditing. To understand and to carry out and
manage these tasks, a lot of technical knowledge is required. Hence, there is the need for
an automated certi�cate management service that manages the certi�cates throughout
their life-cycle and in turn provides the users with a friendly and easy to use solution
to secure their E-Mail communications.

1.1 Goals of the Thesis

The goal of the thesis is to analyse how an e�ective, usable and secure system can be
implemented for big organisations so as to further the goal of secure communication.
The thesis elaborates on the design and realization of a management service for digital
certi�cates tailored to the needs of larger organizations and the requirements to enable
secure communication. The thesis will research aspects of a decentralized key man-
agement service which generate, backs-up, synchronizes and recovers keys - all while
adhering to the organizational requirement for key escrow mechanisms and focusing
on the users privacy.

1.2. Methodology 3

1.2 Methodology

A comprehensive approach will be deployed that initiates by trying to look at current
technologies, protocols and solutions available for certi�cate management. State-of-the-
art cryptographic approaches will be looked into so as to integrate them suitably with the
certi�cation service. This will require familiarization with protocols and standards being
used in the real world especially by big organisations. S/MIME (Secure/Multipurpose
Internet Mail Extensions) and OpenPGP (Pretty Good Privacy) are to be the foundation
blocks of the thesis.

This thesis analyses the life cycle of digital certi�cates and evaluates the functional and
organizational requirements and required components to allow large organizations to
issue and manage digital certi�cates. This will not only require to analyse the technical
aspects of certi�cates like their generation, renewal, revocation, etc. but also the man-
agement processes involved in segregating roles and responsibilities so as to protect
the certi�cates from unwanted disclosure.

Based on the analysis of existing technologies, the system will be designed. The design
has to be modular and extensible. This will make it possible to adapt the system to
various environments as witnessed in the industry and allow it to be easily updated
with future requirements. The system will also support the requirement for di�erent
roles in a multi-tenant architecture. It has to also ful�l organizational requirements
that were elaborated upon in the analysis. It has to be ensured that the system thus
designed employs established and state of the art technologies to support organizations
in handling the certi�cate life cycle. Secure processes will also have to be designed to
suitably integrate with the certi�cation process. Once a suitable and exhaustive design
has been laid out, the system can be implemented.

Evaluation of the resulting system can then be done by comparing the system with
similar systems in use today.

1.3 Outline

The thesis is structured as follows: Chapter 2 provides the necessary background in-
formation about certi�cates and other related protocols and technologies. These tech-
nologies are the foundations for the thesis. Chapter 3 analyses the problem the thesis
wishes to solve, further in detail. Chapter 4 discusses the related work to this thesis and
looks at its limitations. Chapter 5 builds upon Chapter 3 and 4 and provides a detailed
analysis of the requirements for a certi�cate management system that will best solve
the problem the thesis is addressing. After the complete analysis of our requirements,
the certi�cate management system is designed in Chapter 6, implemented in Chapter

4 Chapter 1. Introduction

7 and evaluated in Chapter 8. Finally, the thesis concludes in Chapter 9. This chapter
also discusses future research topics related to this thesis.

5

Chapter 2

Background

This chapter discusses various technologies and protocols commonly used to secure
email. Without the knowledge of these protocols and standards, it is di�cult to progress
further. These technologies will be the building blocks for the thesis. In the implemen-
tation phase, these technologies will be used to realise the goals of this thesis and hence
background information about them is much warranted before proceeding ahead.

2.1 X.509 Certi�cates and Certi�cate Signing Requests (CSR)

X.509 is an important standard for Public Key Infrastructure. It is used to manage digital
certi�cates and for public key encryption.

X.509 de�nes a framework to provide authentication services from the X.500 directory
to its users. This directory could be a repository for certi�cates. Each of this certi�cate
contains a public key and is signed by the private key of a trusted certi�cation authority.
X.509 also de�nes alternative protocols for authentication based on the use of public
key certi�cates. X.509 is an important standard because the certi�cate structure and the
authentication protocols that are de�ned in it are nowadays used in various contexts
[13].

The most prominent part of the entire standard from the point of view of this thesis, are
the X.509 Certi�cates used in S/MIME. In fact, when using the term X.509 certi�cate,
it is actually the IETF’s PKIX certi�cate and CRL Pro�le of the X.509 v3 certi�cate
standard which is also commonly called PKIX for Public Key Infrastructure (X.509).
This is de�ned in RFC 5280 [14]. This will be discussed in the next section. These
certi�cates are assumed to be created by some trusted certi�cation authority (CA) and
placed in the directory either by the CA itself or the user. The certi�cation authority
is an entity that issues a certi�cate binding a public key to a particular distinguished

6 Chapter 2. Background

name (the fully quali�ed domain name that the certi�cate is for). X.509 certi�cates have
a hierarchical structure.

The applicant �rst generates a key pair out of which the private key needs to be kept
secret by the applicant. Then the applicant needs to send a Certi�cate Signing Request
to the CA. As the name suggests this is a simple request sent out by an applicant to the
CA so as to apply for a digital certi�cate. This request (the CSR) contains information
about the applicant (like the distinguished name) which has to be signed using the
private key of the applicant. It also has the public key of the applicant. The CSR process
could be (and in most cases is) accompanied by a manual process of checking a user’s
identity. The typical Information inside a CSR can be seen in the table 2.1.

CSR Field Description
Distinguished
Name

This a fully quali�ed domain name that you wish to secure.
For example: www.abc.com or mail.abc.com. This as you
can see also includes the Common Name (www or mail). In
case of securing emails, this is the �eld that can be used to
add the name of the user to whom the certi�cate belongs.

Business name (Or)
Organisation name

Usually this is the legal incorporated name of a company
and should be included as Ltd, Inc or Corp.

Department Name
(Or) Organisational
Unit Name

For example Munich, Berlin, London

Town (Or) City For example Munich, Berlin, London
Province (Or) Re-
gion (Or) State

An example could be Bavaria, Florida, etc.

Country This is the two letter ISO Code for the country where the
organisation or individual is based. For example: Germany
is DE, India is IN, and so on.

Email address The email address where the organization can be contacted.
This same �eld is important when it comes to securing
emails using X.509 certi�cates and is used to add the users
email address that will be used for purposes of secure email
communications.

Table 2.1: Information Inside a CSR

A X.509 certi�cate is a collection of a standard set of �elds containing information about
a user or device. Apart from this it also contains the corresponding public key. The
X.509 standard lays down what information is present in the certi�cate and how it is
encoded. A X.509 certi�cate’s structure can be seen in the �gure 2.1. The �elds are
explained below.

1. Version - Version of the certi�cate format. The newest version for X.509 certi�-
cates is version 3.

2.1. X.509 Certi�cates and Certi�cate Signing Requests (CSR) 7

Figure 2.1: Structure of a X.509 Certi�cate

2. Certi�cate Serial Number - This is a unique Serial number that the CA assigns to
the certi�cate. The CA has a history of all certi�cates and it can trace a certi�cate
that it issued using the serial numbers of the certi�cates. The same applies also
to revoked certi�cates.

3. Certi�cate Algorithm Identi�er - The public key cryptography and message digest
algorithms that were used by the issuing CA while digitally signing the certi�cate.

4. Issuer - The CA that issued the certi�cate.

5. Validity Period - This is certi�cates start and expiry dates. The certi�cate is only
valid for this period of time. Note that certi�cate validity can expire before this

8 Chapter 2. Background

time period in case it’s revoked.

6. Subject - The name of the subject or owner of the certi�cate.

7. Subject Public Key Information - This �eld has the public key and a list of the
public key cryptographic algorithms. These algorithms are for the tasks that
the public key can be used for like digital signing, secret key encryption, and
authentication.

8. Issuer Unique Identi�er - This is an optional information �eld that can help
uniquely identify the issuer of the certi�cate.

9. Subject Unique Identi�er - This is an optional information �eld that can help
uniquely identify the subject of the certi�cate.

10. Extensions - Additional information can be speci�ed for optional use by PKIs.

11. CA’s Digital Signature - This is the digital signature of the CA.

2.2 Public Key Infrastructure X.509 (PKIX)

The Internet Security Glossary in RFC 2822 [15] de�nes a public key infrastructure as
the set of hardware, software, people, policies, and procedures needed to create, manage,
store, distribute, and revoke digital certi�cates based on asymmetric cryptography. PKI
is centre-piece in enabling a secure and convenient way in which public keys can be
acquired e�ciently [13].

The Internet Engineering Task Force or IETF’s Public Key Infrastructure X.509 or PKIX
working group has set up a formal model for PKIs based on the X.509 certi�cates. This
model is shown in the �gure 2.2.

The following are the key elements of a PKIX Model:

1. End Entity – This is a generic term that can be used to denote end users, devices
like servers and routers, or any other entity that can be identi�ed with the subject
�eld of a public key certi�cate. These entities are the ones that use or support the
PKI-related services.

2. Certi�cate Authority (CA) – This is the entity that issues certi�cates. It also has a
certi�cate revocation list or CRL. A CA can have many administrative functions
but in most cases these are delegated to one or more registration authorities. In
brief, the task of the CA is to digitally sign and publish the public key bound to a
given end user. This is done by using the CA’s own private key. Since, the CA’s
key can be validated and trusted, the user’s key can also be trusted.

2.2. Public Key Infrastructure X.509 (PKIX) 9

3. Registration Authority (RA) – This is an optional element of the public key in-
frastructure. It can assume many administrative functions from the CA.

4. CRL issuer – Usually the CA has its own CRL but optionally the CA can delegate
this task to publish Certi�cate Revocation Lists (CRL) to some other entity.

5. Repository – This could be a database or directory service that is used to store
the certi�cates and CRLs so that can be retrieved by end entities.

2.2.1 PKIX Management Functions

PKIX identi�es many management functions that need to be ported to management
protocols. The functions include the following:

1. Registration – By this process an end user makes himself or herself known to the
CA. This could be either a direct process or an indirect process in which case it’s
routed through the RA. Only once the registration is complete will a CA issue a
certi�cate or certi�cates to the user. Registration basically begins the process of
enrolling into a PKI.

2. Initialization – Before a client system can start working properly and securely,
it is important that key materials, which have the appropriate relationship with
keys stored in other places of the infrastructure, have been installed.

Figure 2.2: The PKIX Architecture Model.

10 Chapter 2. Background

3. Certi�cation – In this the CA issues a certi�cate for a user using their public key.
The certi�cate is then returned to the user. Optionally this certi�cate can also be
stored in a repository.

4. Key Pair Recovery – Since, keys can get lost, there should be a way to recover the
said keys. This is a positive functionality from the end users point of view. There
could be various reasons for an end user to lose his or her private keys. This is
where the CA can be of help.

5. Key Pair Update – Certi�cates usually expire after a set term. Hence it is important
that all key pairs can be updated regularly and new certi�cates can be issued
whence the key pairs are updated. Update might also be needed in the case of a
certi�cate being revoked.

6. Revocation request – A certi�cate’s private key might get compromised, in which
case the certi�cate needs to be revoked by the CA. There could be other reasons
for revocation too like change in a person’s name. In this case, this function
provides for allowing an authorized person to inform the CA about revoking a
certain certi�cate.

7. Cross Certi�cation – A cross certi�cate is a certi�cate issued by a CA to another
CA which includes a CA signature key that can be used for issuing certi�cates. By
this function, two CAs can exchange information in creating this cross certi�cate.

2.2.2 PKIX Management Protocols

The PKIX working group has de�ned two alternative management protocols that can
be used between the various entities in a PKIX model. All the management functions
listed in the last section, are supported by these two protocols.

RFC 4210 [16] de�nes the certi�cate management protocols or CMP. CMP is an internet
protocol that is used for obtaining X.509 digital certi�cates in a public key infrastruc-
ture. In CMP, all of the management functions from the previous section are explicitly
identi�ed by speci�c protocol exchanges. CMP is a �exible protocol.

RFC 2797 [17] de�nes the certi�cate management messages over CMS (CMC). Here
CMS refers to cryptographic message syntax (RFC 2630 [18]).

2.3 S/MIME

S/MIME stands for Secure/Multipurpose Internet Mail Extensions. It is a standard
for signing MIME data as well as for public key encryption [19]. RFCs 3369 [20],
3370 [21], 3850 [22] and 3851 [23] are some of the more important RFCs that de�ne

2.3. S/MIME 11

this standard. S/MIME was originally developed by RSA Data Security Inc. However,
now IETF handles the change control of S/MIME. The speci�cation itself is now layered
on IETFs’ Cryptographic Message Syntax. This speci�cation is very identical to the
original PKCS#7 speci�cation that RSA Data Security Inc. had originally developed
S/MIME with. Although, S/MIME is on an IETF standards track, S/MIME functionality
is built into all modern email software. It is one of the most widely accepted ways to
help secure E-Mail along with OpenPGP.

Before S/MIME, system administrators were dependent either on the Simple Mail Trans-
fer Protocol (SMTP) or other proprietary solutions. The SMTP protocol was inherently
insecure, while the proprietary solutions had varying degrees of security to them. Many
a times, security came at a cost to connectivity. S/MIME helped change this situation by
allowing administrators to not compromise either security or connectivity. In this way,
S/MIME helped rede�ne email communication and is probably as important a standard
as SMTP itself in the history of email.

S/MIME can provide a number of functions to further the goal of secure email. It
provides authentication, message integrity, and nonrepudiation of origin of the email,
privacy and data security through encryption.

2.3.1 Functions

By large, S/MIME provides two security services:

1. Digital Signatures

2. Message Encryption

These two services form the basis of email security when it comes to S/MIME. All other
concepts related to email security can be seen through these two services [24].

2.3.1.1 Digital Signatures

Digital signatures can be considered to be the digital version of traditional signatures
that are used for example to sign contracts or bank cheques. Digital Signatures, by
design, provide the same features that traditional signatures provide. These features
namely are – authentication, nonrepudiation, and data integrity. It has to be noted
though that digital signatures are far more secure than their traditional counterparts.
For example, a traditional signature can be counterfeited while its far more di�cult to
do the same with digital signatures.

Authentication is easy using digital signatures. A signature can easily validate an
identity. Just like a clerk at a bank can cross check a signature to verify a person’s

12 Chapter 2. Background

identity, so can a digital signature. The digital signature lets the receiver of a message
know that it was the sender and not someone else who sent the message.

Digital signatures further ensure that an owner of the signature cannot deny owning
the signature. This is what is called nonrepudiation. If a person Bob sends out an email
to another person Tom. Tom knows that this email has been sent by Bob (authenticating
using the signature) and because of the presence of the signature, Bob cannot deny he
did not send the email.

Data Integrity is also a function provided for by digital signatures, with the receiver of
a signed email resting assured that the message was not tampered or altered on transit
from the sender to the receiver. This is because, if the message would be altered in
transit, the signature would get invalidated. Once the receiver knows this, he or she
can know for sure that the message has been tampered with.

Figure 2.3: The process of digitally signing a message

In Figure 2.3, the process of signing a message can be seen. A message is signed using
some unique information of the sender. This unique information can only be provided
by the sender. This "digital signature" is appended to the message before the message is
sent. It has to be noted, that a malicious user might obtain the unique information that
the sender has and could try to impersonate the sender. However, S/MIME can handle
such situations and unauthorized signatures are shown to be invalid.

In Figure 2.4, the process of how a signature is veri�ed on the receivers end is seen.
Upon receiving the message, the message body is separated from the digital signature.
Then the sender’s unique information is retrieved from which he or she would have
originally signed the message. This information is used to create a digital signature
locally. This signature is compared to the signature in the message to complete the
veri�cation of the digital signature.

2.3.1.2 Message Encryption

Digital Signatures do not solve the problem of message disclosure. Even if an email is
signed, its data is transmitted over plaintext. Any person who can get this email or view

2.3. S/MIME 13

Figure 2.4: Verifying the Digital Signature on a recieved message

it while in transit – legally or illegally – can read the contents of the email. Message
Encryption enables two features – con�dentiality and data integrity.

As the message is encrypted, the receiver and the sender both can rest assured about
the con�dentiality of the message being maintained. They can rest assured, that if the
message somehow does fall into the hands of individuals or organisations that should
not possess it, the contents of the message will not be visible to them even then. As
long as the private key of the receiver is safe, the message cannot be viewed by anyone
except the receiver (and of course the sender).

Data Integrity is also enabled by message encryption, as an encrypted message cannot
be tampered with. If tampered with, it will fail to decrypt at the receivers end thus
notifying the receiver that somebody has tampered with the message. This also shields
the data in the message from any kind of man in the middle attacks and eavesdropping.

Figure 2.5: Encrypting a Message

In Figure 2.5, the process of how message is encrypted is shown. The recipients unique
information (public key for example) is used to encrypt the message, and the encrypted
message is then sent to the destination.

14 Chapter 2. Background

Figure 2.6: Decrypting a Message

Figure 2.6, shows how an encrypted message is decrypted on the receivers end. The
recipient requires to have his or her unique information to decrypt the message. For
example, their private key.

2.3.2 Certi�cates

Before, S/MIME can be used for digitally signing emails, encrypting emails or both, a
certi�cate is needed. This certi�cate has to be issued by a certifying authority or CA. A
CA can be an in-house CA (catering to the needs of just the organisation in which it’s
based) or it could be a public CA (caters to the needs of anyone who so wishes to use
its services).

As far as message encryption is concerned, even after getting the certi�cate issued by
the CA, the sending user will need the certi�cate of the receiving user that he or she
wishes to send an email too. Nowadays, many email clients do this task automatically.
Once the destination side’s certi�cate is available, the sending side can encrypt an email.

The CA could have varying policies, and dependent on them, the issued certi�cates (and
all their content) maybe publicly posted for reference and veri�cation by other users.
Thus, users can lookup other users using their email addresses or names and get their
associated certi�cates. The CAs also maintain a certi�cate revocation list or CRL, which
lists out all the certi�cates which have been revoked. A revoked certi�cate implies that
any entity that in the future tries to present this certi�cate should not be trusted.

2.4 OpenPGP

OpenPGP is an industry standard containing protocol speci�cations for Pretty Good
Privacy. Pretty Good Privacy or PGP [3] is an open source email security package.
Its a commercial product that follows the OpenPGP standard. It provides for privacy,
authentication, digital signatures, and compression. PGP is largely based on existing
cryptographic algorithms and does not create any of its own. It’s based on RSA, IDEA,
and MD5 [24]. PGP and similar software follow the OpenPGP standard, de�ned in RFC

2.4. OpenPGP 15

4880 [25], for encrypting and decrypting data. Another tool like the PGP is the GPG
which is an open source software implementation of the OpenPGP standard.

2.4.1 OpenPGP in Operation

OpenPGP can be called a hybrid cryptosystem as it combines some of the best features of
both conventional as well as public key cryptography. This hybrid nature of OpenPGP
is helpful. Conventional forms of cryptographic encryption is way faster than public
key encryption. On the other hand, the public key encryption solves the problem of key
distribution. Thus by using both systems together in the OpenPGP hybrid cryptosystem
– performance and key distribution are highly improved without compromising security
in any way [26].

Figure 2.7: Encryption in OpenPGP

2.4.1.1 Encryption

Given some plaintext, OpenPGP �rst compresses it. This helps in increasing the resis-
tance against cryptanalysis techniques that wish to �nd out patterns in plaintext and
exploit them so as to crack the encrypted data. Compression also helps save disk space
as well as the time it takes to transmit the data.

After this OpenPGP creates a session key which is much like a secret key that can be
only used once. This key is generated using a random number generated from the
random movements of the mouse and typed keystrokes. This random user input from
the mouse and keyboard is only to add extra randomness to the system.

16 Chapter 2. Background

This session key then works with a secure cryptographic algorithm and encrypts the
plaintext. Once the encryption is complete, the session key is encrypted with the
receiver’s public key. Then, the encrypted data is sent along with this session key to
the receiver.

Figure 2.8: Decryption in OpenPGP

2.4.1.2 Decryption

This is exactly the reverse of the encryption process explained above. OpenPGP on the
receiver’s side, uses the private key of the receiver to �rst decrypt the session key that
has been sent along with the encrypted data. Once the session key has been decrypted,
OpenPGP can use it decrypt the encrypted data.

2.4.1.3 Key Storage

OpenPGP stores the keys in two di�erent �les on disk. One is for public keys, while the
other is for private keys. These �les are called keyrings in OpenPGP terminology. Public
keys of recipients can be added to the public keyring. Keeping the private keyring safe
is very important. If this keyring is lost, a user will not be able to decrypt any OpenPGP
encrypted messages.

2.4.2 Digital Signatures

The system of digital signatures as discussed earlier had a few problems. Firstly, it is
slow and produces a huge volume of data. This could be almost double the size of the
original information we wished to sign. This can be improved by using a one way hash
function. What this hash function does is, it takes a variable length input (in the case of
signing emails this could be a message of any length), and it produces a �xed output.
Basically, no matter how long an input is provided to this hash function, it will always

2.4. OpenPGP 17

Figure 2.9: Using Digital Signatures in OpenPGP

give us a same �xed length of output. While the hash function makes sure the output
length is always �xed it also ensures that any changes to the content being passed into
it, will de�nitely a�ect the �nal output produced.

OpenPGP uses a similarly strong hash function on the plaintext that a user is signing.
This hash function generates a message digest. A message digest is a �xed length data
item. OpenPGP uses this digest and the private key to create the digital signature which
can be transmitted alongside the message. On the receiving end, the recipient can
re-compute the message digest to ensure that the message was not tampered with thus
verifying the signature. Even a slight change to the actual message will compute a
di�erent hash that will not match the digital signature. In OpenPGP, digital signatures
play a very important role in authenticating and validating another users OpenPGP
keys. The process of digitally signing in OpenPGP is shown in Figure 2.9

2.4.3 Digital Certi�cates

Digital certi�cates have already been discussed in the preceding sections. They are
also used in OpenPGP. OpenPGP recognises two formats of certi�cates – OpenPGP
certi�cates and X.509 certi�cates. X.509 certi�cates have already been discussed in
detail. Here, OpenPGP certi�cates will be further elaborated upon.

OpenPGP certi�cates are unique in one aspect that a single certi�cate may contain
multiple signatures. Furthermore, these signatures might only authenticate some labels
and not all labels present in the certi�cate. Di�erent people may have di�erent opinions
about how to check for authenticity, and therefore what one person may authenticate
with a signature might be di�erent from another person. A signature attests to the

18 Chapter 2. Background

Version Number This identi�es which version of OpenPGP was used to
create the key associated with this certi�cate.

Public Key This is the public key of the certi�cate holder. It also has
the algorithm used to create this key - either RSA, Di�e-
Hellman or Digital Signature Algorithm (DSA).

Certi�cate Holders
Information

This consists of the identity information about the user,
such as the user’s name, their ID, and so on.

Digital signature This is called a self-signature. This signature is made using
the private key that corresponds to the public key in this
certi�cate.

Validity period This is the time period for which the certi�cate is valid for.
It has a start date and an expiration date.

Key Encryption Al-
gorithm

This is the symmetric encryption algorithm which the cer-
ti�cate owner prefers to use to encrypt information. This
could be either CAST, IDEA or Triple-DES.

Table 2.2: Information Inside a OpenPGP Certi�cate

authenticity that a label is associated with a particular public key. However, in no way
does a signature attest to the authenticity of all the labels associated with that public
key. OpenPGP certi�cates di�er from X.509 certi�cates in many ways. Some of the
di�erences are as follows. OpenPGP certi�cates can be created by a user themselves
whereas a X.509 certi�cate has to be issued by a certifying authority. In the case
of OpenPGP certi�cates anyone can play the role of a validator, whereas for X.509
certi�cates, only the CA can validate a certi�cate. X.509 certi�cates support only a
single name for the key’s user. Furthermore, X.509 certi�cates support only a single
digital signature to attest to the keys validity whereas OpenPGP certi�cates can have
numerous signatures for validating a key.

2.4.3.1 Web of Trust

Before understanding the OpenPGP web of trust, its important to understand two
important OpenPGP speci�c terms - meta-introducers and trusted introducers. A meta-
introducer is very much similar to a CA in a PKIX environment. It is the entity most
trusted by all users just like a CA. A meta-introducer, typically delegates the ability to
trust keys upon others who then become known as trusted introducers. These trusted
introducers can validate keys to the same e�ect as can the meta-introducer. The key
di�erence between a meta-introducer and a trusted introducer is that, only a meta
introducer can create more trusted introducers. A trusted introducer cannot create
more trusted introducers. In a PKIX environment, the meta-introducers are similar to
the Root CA, while the trusted introducers are similar to subordinate CAs.

In a typical PKIX environment, most of the times people rely on a CA to establish a

2.4. OpenPGP 19

certi�cate’s validity. In brief, the users trust the CA. In OpenPGP’s view of trust, the case
is very di�erent. Key authentication in OpenPGP depends on a distributed trust model
called the web of trust. This model uses a decentralized system of trusted introducers.
Any user can be a trusted introducer and thus act as a CA. OpenPGP allows anyone to
sign anyone else’s public key certi�cate which ultimately creates a web like structure
of validations.

Any OpenPGP user can validate another OpenPGP user’s public key certi�cate. However,
such a certi�cate is only valid to another user if he or she recognize the user validating
the certi�cate as a trusted introducer.

Figure 2.10: An example for Web Of Trust

In Figure 2.10 ,you can see an example for a web of trust. An arrow from Bob to Alice
means that Bob has signed a key of Alice. A dotted arrow between them means that Bob
trusts Alice to be an introducer. Now, since Alice signed Charlie’s key, Alice becomes a
trusted introducer for Bob to Charlie. Hence, Bob trusts Charlie’s key to be the real one.

2.4.3.2 Revocation of OpenPGP Certi�cates

The web of trust that OpenPGP uses, creates an interesting scenario when it comes to
revocation of certi�cates. In PKIX environemnts, as the CA was the only one to sign
the X.509 certi�cate, it can revoke its signature from the certi�cate.

However, in an OpenPGP environment, multiple signatures exist in a certi�cate. In
this case, anyone who has signed a certi�cate can revoke his or her signature on the
certi�cate, To do this the person will have to use the same private key with which he or

20 Chapter 2. Background

she created that signature in the �rst place. When a signature is revoked, this indicates
to other users that this particular user (who has revoked the signature) does not trust
the certi�cate anymore. A simple reason for this could be that the user believes that the
private key of the certi�cate has been compromised or the identity data that corresponds
to the certi�cate is no longer correct. In case of OpenPGP, a revoked signature carries as
much signi�cance as a revoked certi�cate. If the whole certi�cate needs to be revoked,
then this can only be done by the owner of the OpenPGP certi�cate i.e. the user who
holds the corresponding private key of the certi�cate. The owner of the OpenPGP
certi�cate can also designate a revoker who can revoke the certi�cate on his or her
behalf when the need be.

Informing other users about the revocation of a certi�cate is also di�erent in the case
of OpenPGP environments. As far as PKIX environments are concerned, as discussed
before, a CA maintains a certi�cate revocation list which is basically a list of all revoked
certi�cates. In case of OpenPGP certi�cates, the most common way to communicate
to other users that a certi�cate has been revoked is to post it on a certi�cate server
(synonymously known as a key server).

21

Chapter 3

Analysis

This chapter analyses the problem that this thesis is trying to solve. It further analyses
each step of the certi�cate lifecycle. Going through each step of the certi�cate lifecycle
and analysing it is important. Owing to this analysis, the requirements for a certi�cate
management service can be laid down.

3.1 Problem Analysis

As stated earlier in the Introduction chapter, the goal of the thesis is to analyse how
an e�ective, usable and secure system can be implemented for big organisations so
as to further the goal of secure communication. The thesis elaborates on the design
and realization of a management service for digital certi�cates tailored to the needs of
larger organizations and the requirements to enable secure communication. The thesis
will also research aspects of a decentralized key management service which generates,
backs-up, synchronizes and recovers keys - all while adhering to the organizational
requirement for key escrow mechanisms and focusing on the users privacy.

From this we can understand the problem the thesis wishes to address. First and fore-
most, the problem of security and usability. The certi�cate management service that is
to be designed and implemented, needs to be usable. Unlike, other available services
discussed before, It needs to be easy to grasp and easy to use for a normal user while not
compromising on security. Secure communication continues to remain a hard task for
many, and hence the certi�cate management service wants to make it an easy procedure.
By using state of the art secure cryptographic algorithms, the security aspect of the
new service can be maintained.

Furthermore, owing to the fact that large organizations may decide to use either S/MIME
or OpenPGP or even both – compatibility for both these technologies needs to be
provided by the new service.

22 Chapter 3. Analysis

Providing the function of backing up keys and recovering them, is an additional and
very helpful feature for the end users. There could be numerous reasons for a user to
lose his or her private keys. This option helps nullify the e�ects of such a problem.

Before the entire problem can be analysed to provide us with an overview of the require-
ments of the new service, a more detailed look into various aspects of the centre-piece
of the service – certi�cates – is needed. By looking at each step in the lifecycle of a
certi�cate a better understanding of what functions a typical certi�cate management
service needs to perform can be reached. This analysis is done in the next section.

3.2 A General Certi�cate Lifecycle

The following sections look into the general certi�cate lifecycle and what happens in
each step of a certi�cates life.

3.2.0.1 Enrolment

This step is more of a cooperative task between the CA and the user. The users requesting
a certi�cate from the CA initiate the request. This enrolment request generally contains
the public key of the user and the enrolment information. Once the user requests a
certi�cate from the CA, the CA veri�es the information sent to it on the basis of its own
policies. If the policies stand with the certi�cate, it will issue the certi�cate, post it to a
repository for example, and send back to the user an identity certi�cate that he or she
can now use.

This step can be broken down into the following sub steps from the explanation above:

1. Here the user registers with the CA, either directly or through a RA, thus making
himself or herself known to the CA. Only once the registration is complete, will
a CA issue a certi�cate or certi�cates to the user.

2. The User now creates a request for a certi�cate and sends it to the CA. This is
simple Certi�cate Signing Request when talking about X.509 certi�cates.

3. The CA will check the submitted request against its policies. These policies could
be about various things, like how much should be the minimum key length of the
submitted certi�cates corresponding private key, or which particular encryption
algorithm should be used. Furthermore, the CA or the RA may have some manual
checks too wherein for example, the user may have to manually present himself
at a point of contact with the CA or RA. If all of this succeeds, the CA can approve
the certi�cate for issue.

3.2. A General Certi�cate Lifecycle 23

4. Following successful approval for the certi�cate, the CA can issue the certi�cate,
post it to a repository if the need be (depending on its own policies) and issue
an identity certi�cate to the user. Now the user can successfully start using this
certi�cate.

In the case of OpenPGP, a user can upload his or her public key to a key server. A public
key received by the server is then either added to the server’s own database or merged
with an already existing key.

3.2.0.2 Distribution

In this case, the certi�cate is distributed to the user by the CA. It’s considered a separate
process than the Enrolment process, because some management functions of the CA
might come into action. The CA can for example set its own policies that a�ect the
use of the certi�cate. Furthermore, the certi�cate can also be distributed through a
repository for other users to �nd the corresponding certi�cate for a user and use it to
encrypt emails that they wish to send to that user. This could be a database or a directory
service (using for example the Lightweight Directory Access Protocol or LDAP). The
same repository also stores the Certi�cate Revocation Lists.

When it comes to OpenPGP, the certi�cates can be distributed using key-servers. This
server holds OpenPGP keys that have been signed by the server itself. Other users
can then request keys from the key-server. The server consults its own database and
returns the requested public key if it is found, to the requesting user. The users may
need to inform their own OpenPGP installations to trust such a key server as a trusted
introducer. Hence, all keys signed by the server will be trusted by the user’s OpenPGP
installation.

3.2.0.3 Validation

When a certi�cate is used, the validation process for that certi�cate begins. In this
process, the CA checks the status of the certi�cate and then checks that the certi�cate is
not in the certi�cate revocation list (CRL). Some applications can also check the status
of certi�cate before they use the certi�cate. It is however totally dependent on how the
applications function and how they are con�gured.

Validation of a certi�cate di�ers highly in OpenPGP environments. As discussed before,
validation is carried out using the web of trust model of OpenPGP along with trusted
introducers.

24 Chapter 3. Analysis

Reason Code Meaning
0 Unspeci�ed Reason
1 Private Key Compromise
2 CA Compromise
3 Certi�cate User’s a�liation has changed
4 Certi�cate or the private key have been superseded by a

new certi�cate or private key
5 The issuing CA is no longer in operation
6 The certi�cate has been placed on hold
9 The CA has withdrawn the certi�cate user’s privileges to

use the certi�cate or the private key
10 Authority Information Access or AIA compromise

Table 3.1: The Reason Codes for Certi�cate Revocation

3.2.0.4 Revocation

A certi�cate that is issued by a CA has a time period for which it is valid. That is to say
it has a start of validity date and end of validity or expiration date. At times, for various
reasons, a certi�cate may need to be revoked prior to reaching its expiration date. In
this case, the CA can be informed and the CA will add the certi�cate to its Certi�cate
Revocation List or CRL. As mentioned earlier, various reasons exist for a certi�cate to be
revoked. For example, the corresponding private key for a certi�cate was compromised
or stolen by a malicious user. In this case the certi�cate owner can ask the CA to revoke
his or her certi�cate. The CA has to provide for such functionality. Furthermore, while
revoking certi�cates, the CA administrator needs to provide a "reason code" for revoking
the certi�cate. The reason codes are presented in table 3.1.

PKI-enabled applications are con�gured to check CAs for their current certi�cate re-
vocation lists. They mostly verify before using a certi�cate if it has been added to a
revocation list or not.

The similar logic of revocation applies to OpenPGP certi�cates. However, the methodol-
ogy is totally di�erent owing to the web of trust model. As discussed in the Background
chapter, any user who had signed a public certi�cate and had thus trusted the certi�cate,
can revoke his or her signature from that certi�cate. This revoked signature holds
as much weight as a revoked certi�cate does in a PKIX environment. If an OpenPGP
certi�cate has to be revoked, only the owner or a user designated by the owner of the
certi�cate can revoke the certi�cate. Furthermore, a key server can be used to inform
other users about a revoked OpenPGP certi�cate.

3.3. A Modi�ed Certi�cate Lifecycle 25

3.2.0.5 Renewal

When a certi�cate reaches its expiry date, there are various options that can be taken.
For starters, the certi�cate can be allowed to get expired. On the other hand, if the
user still wishes to use the certi�cate, he or she can ask the CA to renew the certi�cate
for them. The CA will of course have to approve this renewal request typically by
following the checks on the user information again and checking its own policies for
renewal. It has to be noted that in case of certi�cate renewal, the user can chose if they
want to generate wholly new public-private key pairs or use the ones from the previous
certi�cate itself. Furthermore, the renewal process can be automated or might require
the user to submit a renewal request with the CA explicitly.

OpenPGP certi�cates have validity periods too which indicate when the certi�cate will
expire. These certi�cates can be renewed as well.

3.2.0.6 Destruction

When a certi�cate is no longer in use, it has to be destroyed completely. Primarily this
is done by deleting the certi�cate, its backups, and the backups of its private key as well
as the original copy of the private key. Certi�cate destruction helps ensure that in the
future the certi�cate is not used maliciously.

3.2.0.7 Auditing

The CA carries out certi�cate auditing. This is totally dependent on each CA. Each CA
has a di�erent set of management tools or even policies as to what all it wishes to audit.
In general auditing of certi�cates involves, monitoring certi�cate creation, certi�cate
expiration and certi�cate revocation.

Similar auditing of key servers can be carried out in an OpenPGP environment. Although
this auditing is not as comprehensive as that in the case of CAs in PKIX environments,
it still can provide details about when a certi�cate was enrolled, updated, revoked or
requested by a user.

3.3 A Modi�ed Certi�cate Lifecycle

Based on the above analysis of a certi�cate lifecycle as it looks generally, a more modi�ed
lifecycle that is appropriate for an e�ective certi�cate management service was created.
This lifecycle looked at a certi�cate from its starting point till its end point while keeping
in mind the certi�cate management service that this thesis wishes to design. Since this
was a certi�cate management service and not a Certifying authority service, many of

26 Chapter 3. Analysis

the tasks that happen in the lifecycle of certi�cate did not apply and thus did not have
to be implemented by the service. For example, the service does not have to create its
own revocation lists or carry out the entire functions of revoking certi�cates. However,
it should have the functionality to send a revocation request to the competent authority
and initiate the revocation process.

Keeping all this in mind, and a vision for the certi�cate management service, a modi�ed
lifecycle was created and analysed.

1. User Registration

2. Request

3. Approval

4. Issue

The above four steps of the lifecycle are similar to the steps described under
enrolment in the previous section. However, here enrolment is considered as the
next logical step after these four steps. So a user needs to register with the CA,
then request for a certi�cate which the CA can approve or reject. Upon approval
of the CA, the certi�cate is issued. In case of OpenPGP, when a user requests a
key server to sign his or her certi�cate, the key server has to approve the request
and then issue the resultant key server signed certi�cate to the user.

5. Enrolment – Once the certi�cate is issued, it can be enrolled. In PKIX environ-
ments, the CA can post it to a repository, and send back to the user an identity
certi�cate that he or she can now use. In case of OpenPGP environments, the
certi�cate is enrolled in the key server.

6. Distribution – Here the certi�cate is distributed to the user. It can also be stored
in a repository and later distributed to other users through that repository. This
could be a repository attached to a CA (for PKIX), a key server (for OpenPGP) or
the repository attached to a certi�cate management service.

7. Modi�cation – Here the certi�cate can be modi�ed. Many a times a user may need
to change some of their information in a certi�cate. This could be for example a
name change and so on. Hence modi�cation of the certi�cate should be possible.
In this step, actually, revocation is followed by generation of a new certi�cate.
While revocation is easy in a PKIX environment, in OpenPGP environments this
certainly would require a key server. In the absence of a key server, users who
have signed the certi�cate (whose data needs to be changed), will need to be
contacted individually and they will have to revoke their individual signatures
from the certi�cate.

8. Renewal – Here the certi�cate is nearing expiration and needs to be renewed.

3.3. A Modi�ed Certi�cate Lifecycle 27

9. Revocation – Here the certi�cate is undergoing revocation or has been revoked
already. For PKIX environments, this would require the revocation of the CAs
signature by the CA from a certi�cate. In case of OpenPGP, this would entail
revocation of an individual or more signatures from an OpenPGP certi�cate or
the revocation of the whole certi�cate by the owner or a designated revoker of
the certi�cate.

10. Expiration – Here the certi�cate has expired and thus cannot be used any longer
to encrypt or sign emails.

Looking at this modi�ed life-cycle, various aspects of an e�ective certi�cate manage-
ment service can be laid out. Figure 3.1, this life-cycle can be seen (Please note that
although it is shown as a circle, it is not directional). In the next chapter, this thesis will
use these very steps of the life-cycle to analyse the requirements for an ideal certi�cate
management service.

Figure 3.1: The modi�ed certi�cate life-cycle.

28 Chapter 3. Analysis

3.4 The need for a Certi�cate Management System

It can now be clearly seen that the lifecycle of a certi�cate begins far before the certi�-
cate is issued and extends beyond the certi�cate being enrolled and distributed. Some
of the steps in a certi�cate’s lifecycle can also be complex to manage. Hence, an e�ec-
tive system is required which can manage a certi�cate throughout its lifecycle. To be
truly e�ective, this system must take into account every step in a certi�cate’s lifecycle.
Furthermore, this system will also have some functionalities of an OpenPGP key server
to accommodate the OpenPGP technology apart from supporting X.509 certi�cates.

This system must be able to register users who in turn can create certi�cate requests.
The system should allow for a mechanism that allows for these certi�cate requests to
be approved or declined. If and when a request is approved, the system should forward
it to an appropriate certifying authority or registration authority to get a certi�cate
issued for the approved certi�cate request.

Once a certi�cate is issued, this system should take care of certi�cate enrollment and
distribution. The users using the system should be able to get their issued certi�cates
easily through the certi�cate management system and its attached repository.

If a user requires, he or she should be able to modify his or her certi�cate data and the
certi�cate management system should be able to provide the functionality for the same.
The process of revoking certi�cates and issuing new ones with the modi�ed data should
be automated as much as possible.

The system should also provide users with an easy way to revoke their certi�cates.
Furthermore, certi�cate renewal should also be feasible with an e�ective certi�cate
management system. Lastly, in case a certi�cate expires, the certi�cate management
system should present this information to the user.

29

Chapter 4

Related Work

There are a few systems that come to mind, when discussing certi�cate management
services. These systems have existed for quite some time now. This chapter discusses
three of the more prominent of these systems - Enterprise PKI with Windows Server,
EJBCA and OpenCA.

All these systems have their own limitations, which will be discussed in their corre-
sponding subsections. These limitations are a motivating force behind the need for
designing and realizing a management service for digital certi�cates that is tailored to
the needs of large organizations.

For starters as far as a certi�cate management service is concerned it is a service that
can interact with these systems. While all three of these systems help in providing a
PKI and a CA, there is still a need for a full �edged functional service that interacts with
this. This service is not provided for by these systems.

4.1 Enterprise PKI with Windows Server

Enterprise PKI with Windows Server is not a standalone system by itself and is more
of a service that can be con�gured on a Windows Server Operating System. Microsoft
Windows Server can be used to set up a public key infrastructure. It can be done using
the Active Directory Certi�cate Services or AD CS [27]. AD CS is an identity and access
control security technology that provides for customizable services for creating and
managing public key certi�cates that are used in software security systems that employ
public key technologies [28]. By using the server manager in Windows Server, the
following components of AD CS can be installed:

1. Certi�cation Authorities - A root CA or subordinate CA can be set up to issue
certi�cates and to manage the validity of the certi�cates.

30 Chapter 4. Related Work

2. CA Web enrolment - This allows users to connect to the CA through a web browser.
Users can then request certi�cates and even retrieve certi�cate revocation lists.

3. Online Responder - This service accepts revocation status requests for speci�c
certi�cates. It can evaluate the status of these certi�cates and can send back a
signed response which contains the requested certi�cate status information.

4. Network Device Enrollment Service - This allows routers and other network
devices to also be able to obtain certi�cates.

5. Certi�cate Enrolment Web Service - This allows users and computers to perform
certi�cate enrolment and uses the HTTPS protocol.

6. Certi�cate Enrolment Policy Web Service - This enables users and computers to
obtain certi�cate enrollment policy information.

Setting up the PKI with Windows Server is not that complicated. It can be used to setup
the PKI in six logical steps as follows:

1. Build a standalone CA that will function as the root CA

2. Create an enterprise subordinate CA

3. Deploy certi�cate templates

4. Enable certi�cate auto-enrolment

5. Set certi�cate revocation policies

6. Con�gure and Verify private key archive and recovery

The setting up of the Enterprise PKI with Windows Server is not too complex although
it requires a Windows Server operating system thus limiting the user-base. This is not
a platform independent service. Furthermore another limitation is that AD CS supports
variety of applications including S/MIME but does not support OpenPGP.

4.2 EJBCA

Enterprise Java Beans Certi�cate Authority, or EJBCA, is a free software public key
infrastructure CA software package mantained and sponsored by PrimeKey Solutions
AB [29].

EJBCA is implemented in Java EE. It has been designed to be platform independent.
Multiple instances of EJBCA are run simaltaneously. They all share a database which
contains the current certi�cation authorities. Hence, each instance of the software can
access any of the CAs.

4.3. OpenCA 31

EJBCA support various kinds of PKI architectures like single server, distributed RAs
and external validation authority (A Validation Authority provides services that can be
used to validate a certi�cate) [30].

EJBCA provides for an option to chose between SHA1 with RSA and SHA256 with RSA.
It allows for di�erent key sizes too. The supported key sizes are 1024, 2048 and 4096
bits. However, not all applications support the 4096 key size.

The prominent limitation of the EJBCA is that it does not support OpenPGP. The other
limitation of EJBCA is that it is very complex to set up and con�gure. Although an EJBCA
Virtual Machine, with the setup of EJBCA already done, is available from PrimeKey
Solutions - it is a very basic implementation with many features of EJBCA still requiring
further setup. Furthermore, problems have also been noticed with EJBCA when using
4096 bits key sizes.

4.3 OpenCA

OpenCA, o�cially called the OpenCA PKI research Labs, is a Public Key Infrastructure
collaborative e�ort to develop a robust, well featured certi�cation authority. It provides
for implementing the most used protocols with full-strength cryptography. It is heavily
based on various open source projects like OpenLDAP, OpenSSL, and Apache Projects
[31].

OpenCA was built keeping one problem in mind - setting up of a public key infras-
tructure. Almost all of trust centre software is expensive. OpenCA’s goal is to build
the organizational infrastructure for a PKI. The databases in OpenCA are able to store
all user related information from the point of view of a CA. This includes certi�cate
signing requests, certi�cate revocation requests and certi�cate revocation Lists [32].

Almost all operations in OpenCA can be carried out using six pre-con�gured interfaces.
Many more interfaces can be created from these interfaces. The cryptographic backend
of OpenCA is OpenSSL.

OpenCA has been designed to work in a distributed infrastructure. It allows you to build
a whole hierarchy of CAs and RAs with three levels or more. It can let you create an
o�ine CA and an online RA. It can be easily used by both small and large organisations.

OpenCA is one of the best certi�cate authorities available to Linux users. Its basic
features allow for various algorithms like DES, DES3 and IDEA. It easily supports large
key sizes - 1024, 2048 and 4096 bits. The algorithm it uses for the digital signature is
SHA1 with RSA encryption [30].

One of the prime limitation of OpenCA, just like the Microsoft Windows PKI is that
it too does not support OpenPGP. Apart from this, unlike the Windows PKI, OpenCA

32 Chapter 4. Related Work

is di�cult to setup and use. Though the developers of OpenCA have provided a well
written user guide as well as an installation guide to do so, not every user can set it up.
This limits its use to only expert users or organisations willing to part with funds to hire
expert users to set it up for them. Furthermore, OpenCA cannot work as a standalone
application. It requires interactions with its web interfaces to function.

33

Chapter 5

Requirement Analysis

To proceed further with the design of the certi�cate management service, a complete
understanding of the requirements for such a service is required. Before the system could
be properly designed, it was important to know what will be the various functions of the
service. This analysis needed to encompass all aspects of the service. The requirement
analysis built upon the analysis done in the Analysis chapter. This was important so
as to make sure that the certi�cate lifecycle and the tasks related to it would be fully
supported and integrated with the resultant system. The analysis of all stakeholders
was chosen as the most suitable point to begin with. This was because, the stakeholder
analysis could easily help determine every single kind of user that would eventually
use the service. Then, from the stakeholder analysis, the various ways in which each
stakeholder interacts with the system can be determined. This is synonymous with a
use case analysis for each user. Following both the stakeholder analysis and the use case
analysis, the functional and technical requirements of the system can be determined.
Such careful analysis of the system ensures that all important functionality that should
be present in such a system have been covered and not left out.

5.1 Stakeholder Analysis

The Stakeholder Analysis was the �rst of the two analysis carried out so as to un-
derstand the needs of the users that will interact with this system. The Stakeholder
analysis looked at all the di�erent kinds of users the system will interact with. Using
the stakeholder analysis, the use case analysis can be carried out which can determine
the various use cases for each user. In the Stakeholder Analysis, six types of users
were determined – system administrators, end users, service operators, support sta�,
recovery operators and external users. Each user is discussed in detail below:

System Administrators – This is an administrative role similar to that of a system

34 Chapter 5. Requirement Analysis

administrator in other systems. They take care of the infrastructure in which the service
runs. Their tasks are related to the environment in which the service runs and functions
and hence they are interacting with the service completely "externally".

Service Operators – This is also an administrative role. However, the service operators
handle the service directly and are interacting with the entire service "internally". For
example, they can manage the users interacting with the service or create security
policies which other users have to follow. Furthermore, they can monitor or interact
with all the tasks that the service can do. Finally, they have to oversee that the service
runs smoothly.

Support Sta� - Just like a support sta� at a call centre, they help end users with various
kinds of support activities. For example, an end user may not be able to get a certi�cate
issued by the service after repeated attempts. In this case, the end user can take the
help of the support sta� in �xing the issue. In brief, the support sta� takes care of any
questions and troubleshooting help the end users may require.

Recovery Operators – These users are designated persons whose job is to recover
certi�cate keys. They have to take care of local regulations in this regard as well as the
standards and directives of the organisation itself. For example, In Germany these keys
are protected by Data Protection Laws, and this has to be taken into account by the
recovery operators.

End Users – These are the main users of the service. They are the end entities that
require certi�cates to communicate securely and for whom the service is being set up
per se.

External Users - These users are not necessarily part of the organisation that is deploy-
ing the certi�cate management service. They are the users external to the organisation
and with whom members of the organisation wish to and/or are already making secure
communication using the certi�cates created using the service. They could be customers
of the organization, research partners, etc.

5.2 Use Case Analysis

Based on the above Stakeholder analysis, use cases were analysed keeping each user
in mind. Under the use-case analysis, each user’s interactions with the system were
noted down. This use case analysis is important as it will help lay the foundation for
further analysis of work-�ows for each user. The use case diagrams that were created
as a result of the use case analysis are presented in Figures 5.1, 5.2 and 5.3. Figure 5.1
shows the use case diagram for the Service Operators, Recovery Operators and External
Users. Figure 5.2 shows the use case diagram for the Support Sta�. Lastly, the use case
diagram for the End User is shown in Figure 5.3.

5.2. Use Case Analysis 35

Figure 5.1: Use case diagram for the Service Operators, Recovery Operators and External Users.

36 Chapter 5. Requirement Analysis

Figure 5.2: Use case diagram for the Support Sta�.

5.2. Use Case Analysis 37

Figure 5.3: Use case diagram for End User.

38 Chapter 5. Requirement Analysis

Next, the use case analysis was further improved upon by a more holistic analysis.
The results of this analysis, were required to determine the functional requirements
of the service. There are multiple activity diagrams that will be presented in the next
few pages. Though, divided for each user, some users have multiple activity diagrams
showing di�erent activities. This was done owing to space constraints.

Figure 5.4: Activity Diagram for Service Operators showing their Disaster Recovery and Backup
related work-�ows.

In Figure 5.4, work-�ows for Disaster Recovery and Backup have been shown. These
work-�ows are not highly detailed. The service operator can take a backup of the entire
system. This includes generated certi�cates, certi�cate signing requests, log data, etc.

In case of a system failure, the service operator can recover the system using the

5.2. Use Case Analysis 39

backups that have already been made. Added security can be provided by asking for
a con�rmation and asking for the service operator’s password, whenever the recover
function is to be used.

In Figure 5.5, basic user access management work-�ows can be seen for service operators.
As discussed earlier, service operators are the administrators dealing with the system
internally. Hence, they take care of all user access in the system. In the basic sense, a
service operator should be able to list all users that exist for the system. This can be
seen by the List Users action in the work-�ow.

Furthermore, the service operator must be able to create new users, delete existing users
as well as modify user data for users present in the system. When the service operator
shall list all users, he or she will have the option next to each user to delete them or
modify their data.

User Roles are important for proper User Access Management. This shall help divide the
users properly. The basic roles that shall exist in the system depends on the Stakeholder
analysis done in the previous section. The roles are as follows:

1. Service Operators

2. Support Sta�, and

3. End Users

Since the external users are to access the system without requiring a log-in, a role
for them is not needed. The same applies for the System Administrators as they only
interact with the system externally.

In Figure 5.6, work-�ows for Reporting and Logging can be seen. The Service Operator
has the task of reporting to the CA with audit logs of the system. In most cases, a CA
may require various kinds of log data like logs of certi�cation requests or revocation
requests. It might be the CA’s policy to do so or it might even be legal regulations that
the CA is bound to follow. Thus, it is needed that the Service Operator should have an
easy to use interface to easily create log reports, that he or she can submit to the CA.
The Service Operator must be able to select what data out of the logs he or she wants
to send to the CA. To further ease the work of service operators, it should be possible
to select data by using various search options. Search options could include selecting
what kind of log data needs to be selected, for which time period it needs to be selected
and so on.

Apart from reporting purposes, logging is surely a great way for the service operators
themselves to easily manage the system and audit it when needed. They can monitor
system misuse and can also correct system faults if they have the logs readily available.
The log data itself needs to be stored safely, as a CA can have a policy on data retention
too.

40 Chapter 5. Requirement Analysis

Figure 5.5: Activity Diagram for Service Operators showing their User Access Management
(UAM) related work-�ows.

5.2. Use Case Analysis 41

Figure 5.6: Activity Diagram for Service Operators showing their Reporting and Logging related
work-�ows as well as some other actions that they can take.

42 Chapter 5. Requirement Analysis

The service operators can also set the system wide Certi�cation Policy. This could have
various aspects to it like the minimum key length, or which algorithm to be used, etc.
Service Operators will also be able to internally con�gure the system.

In Figure 5.7, work-�ows for a Support Sta� member listing and viewing certi�cate
signing requests and revocation requests is shown. The information for the same is
available in the database, and is then made available to the Support Sta� members.

When it comes to the Certi�cate Singing Requests, the support sta� still has a role to
play. Once, the end user has sent in a Certi�cate Signing Request or CSR, physical
checks may be required. For example, its oft the case, that the applying user will have
to personally visit a contact point, where he or she has to present some kind of identity
proof to prove that they are actually the ones applying for the certi�cate. This is where
the support sta� plays a role. A user will visit the support sta� after sending a CSR to
the system. There, the user will present some form of valid ID to the support sta�.

The support sta� can then approve or reject the user’s original request. This request
will then be sent automatically to the CA. The CA can have its own checks and policies
to take care of. Once done, the CA can issue the certi�cate (which will be directly sent
to the user for download) or the CA can reject the request.

When it comes to the revocation requests, the support sta� plays a role here too. Upon
receiving a revocation request, the support sta� can cross check the details and approve
the requests.

A provision for auto approval of revocation requests shall exist too. Here, if a revocation
request is not approved for say 48 hours, it is automatically approved. For logging
and reporting purposes, as well as for the purposes of the Certi�cate Revocation Lists
maintained by a CA, a proper reasoning for revocation of the certi�cate must be given.
An end user may not be technically sound enough to provide these details. Hence, the
support sta� will have the option to vet the request, read the user provided description
and then select an appropriate reason code for the revocation from a list.

In Figure 5.8, we can see the work-�ow related to changing a certi�cate’s data. For
various reasons, a user may apply for changes to his or her certi�cates data. This change
of data should and will have to be approved by the Support Sta�. This change in data
could once again require a Physical Identity check.

The support sta� shall be able to approve a change data request on his or her discre-
tion. Once approved, the system will revoke the previous certi�cate with the old data.
Simultaneously it will also issue the new certi�cate with the new data and update the
database for the same. The new certi�cate can then be sent to the user.

The �gure also shows the work-�ow for approval of renewal requests and OpenPGP
key signing requests.

5.2. Use Case Analysis 43

Figure 5.7: Activity Diagram for Support Sta� showing work-�ows related to Approving Certi�-
cate Signing Requests and Approving Revocation Requests.

44 Chapter 5. Requirement Analysis

Figure 5.8: Activity Diagram for Support Sta� updating a user’s information in a certi�cate that
was already issued.

5.2. Use Case Analysis 45

Figure 5.9: Activity Diagram for Support Sta�’s various work-�ows where they can query the
database for various kinds of information.

46 Chapter 5. Requirement Analysis

In Figure 5.9, a bit more simpler work-�ows for the Support Sta� can be seen. In short,
these work-�ows discuss the various kinds of information the support sta� can see
about the system and about user activity within the system. This information is the
additional information that can be seen by the Support Sta�, apart from Certi�cate
Signing Requests and Revocation Requests. The additional information is:

1. Renewal Requests - All requests made by users to renew expiring certi�cates.

2. Certi�cates Issued - All certi�cates that were successfully issued by the CA. Before
the certi�cates are transmitted back to the users, they need to be stored in the
database of the service as well.

3. Change Data Requests - All requests made by end users to change their validation
data.

4. OpenPGP keys present in key server and keys uploaded to the server - This shall
have information about all OpenPGP keys that have already been uploaded and
successfully signed by the key server’s key. It shall also includes all requests made
to upload OpenPGP keys by users to the server.

The above described functionality can help the support sta� provide better support to
other users. Do note that the support sta� can also be contacted by E-Mail, Phone or
Physical visit. The additional means of communication are important to improve the
reachability (accessibility) to the Support Sta�, else their role in the system will curtail..
The Support Sta� can also be contacted by external users, for example if an external
user feels that a certi�cate is being misused.

In Figure 5.10, the recovery sta�’s work-�ows are shown. The recovery sta� should
have the ability to search for a user and then select the certi�cate that the Recovery
Sta� may wish to recover.

Since this matter concerns the local regulations, organizational policies, etc. these work-
�ows need to be closely monitored and have checks and balances in place. Many a times
a Data Protection O�cer will be informed as well. Without their sanction, these tasks
may be nearly impossible to crack.

If the work �ow is to be looked at, it is very straightforward. The recovery operators
can list all certi�cates that were issued through the service. Since the database stores all
information regarding CSRs, Issued certi�cates, etc. this data is always available. Upon
selecting a certi�cate, the recovery operator can view the certi�cate’s public details.
There should be an appropriate function or button next to each certi�cate that kick
starts its recovery process. Once this process is started, the Data Protection O�ce or
DPO is contacted about recovery of the said certi�cate’s private key. Alternatively, the
recovery operator can also search for a certi�cate, instead of going through the tedious
task of �nding one in a huge list.

5.2. Use Case Analysis 47

Figure 5.10: Activity Diagram for Recovery Operators.

48 Chapter 5. Requirement Analysis

Figure 5.11: Activity Diagram for an End User showing work-�ows related to certi�cate requests
where a CSR is generated within the browser itself.

5.2. Use Case Analysis 49

In Figure 5.11, the detailed activity diagram shows the entire work-�ow of generating a
Certi�cate Signing Request in a browser.

The end user is able to create a CSR in the browser, by providing all the needed details.
These details include the needed �elds for a X.509 certi�cate. Once the user clicks the
generate CSR button, a CSR is generated along with the corresponding private key and
public key. The user should have the option to backup the private key to the server.
Before being transmitted to the server, the private key is encrypted to prevent it from
being compromised.

In a new window, a secure code for the private key will be generated. This will be
generated by the service itself. The user shall be prompted to save this secure code,
and then in the next window asked to provide it again. This way it can be ensured
that the user has saved the code somewhere locally. Then this code will be used to
symmetrically encrypt the private key. Once encrypted, the encrypted blob can be sent
to the server for storage.

The service will need to carry out validation checks on the data in the CSR. This could
include checks on the CSR following the security policies as laid down by the Service
Operators. Apart from this, manual Identity checks may be also required as per the
CA’s policy. In case of this certi�cate management service, a support sta� member may
need to carry out a manual identity check to approve the CSR and then send it to the
CA. The CSR request needs to be stored in the database of the service. The CSR should
be ideally stored along with the public key. When the certi�cate is issued (if it is issued)
by the CA, it should also be stored along with the corresponding CSR and public key. If
the user backs up his or her private key to the server, then that should also be stored
correctly with the corresponding CSR, Public Key and Certi�cate.

In Figure 5.12, the work-�ow for submission of a revocation request can be seen. The
�gure, also shows, the work-�ow for an End User to change his or her certi�cate data.

The work-�ow for creating a revocation request is straightforward. While submitting
the revocation request, the user has to supply related details. Primarily this would
include a description of why he or she wishes to revoke their certi�cate. This request,
upon con�rmation, is then sent to the server, where the Support Sta� needs to approve
it before it is sent to the CA. Note that the revocation request shall auto approve in 48
hours, if no action is taken by the support sta�. Once the revocation request is complete,
the user can be informed. In future, as soon as the certi�cate is revoked, the user should
be informed about that too.

If the user wishes to change his or her validation data, then in that case, all they have
to do is enter the new data and submit it to the service. The Support Sta� once again
comes into play, as they may have to perform manual identity checks once again. Note,
that the previous certi�cate will be revoked and a new one will be issued, as discussed
under the appropriate activity diagram for the Support Sta�.

50 Chapter 5. Requirement Analysis

Figure 5.12: Activity Diagram For an End User showing work-�ows related to submitting of
requests for revocation or requesting for change in certi�cate data.

5.2. Use Case Analysis 51

Figure 5.13: Activity Diagram For an End User showing work-�ows related to submitting of
certi�cate renewal requests and submitting of OpenPGP keys.

52 Chapter 5. Requirement Analysis

In Figure 5.13, the work-�ow for submitting a certi�cate renewal request can be seen.
The work-�ow for submitting a OpenPGP key to a key server is also present.

When a certi�cate is nearing its expiry, the end user shall have the possibility to �re o�
a renewal request to the service. This renewal request is simple. The normal validation
checks and veri�cation of user data, as done when creating a certi�cate for the �rst time
will need to occur again. These checks are needed to assure if the user still requires a
certi�cate or not. For example, the user could have moved out of the organization and
hence no longer should be issued a certi�cate. Once again, manual identity checks may
also be required. Once the support sta� approves, the renewal request, it can be sent to
the CA.

It needs to be noted here, that a methodology of automatically warning users can be
created when their certi�cate is nearing expiry. This could be an internal service-wide
warning system or an external system that for example triggers an E-Mail message to a
user informing them that their certi�cate is expiring shortly.

In case of submitting a OpenPGP key to the key server (KS) for storage, the work-�ow
is simple. The user uploads his or her OpenPGP key which needs to be signed by the
key server’s key. This shows that the key server trusts the user’s key. Once signed, it
needs to be stored on the key server, and mapped to the corresponding user.

In Figure 5.14, some more work-�ows can be seen. The End User has the option to also
upload an already generated CSR to the system. This CSR may be generated using the
OpenSSL command line tool for example. Once the CSR is uploaded, it needs to be
parsed and data in it needs to be veri�ed before it can be sent to the CA for issuing a
certi�cate. Here too, the validation checks come in to play as they did with a CSR being
generated in the browser. The manual identity checks may also be required.

The End User, should also be able to back up his or her private key to the system. This
option is provided, in case the user forgets to backup his private key while generating the
CSR in the browser. This option also helps in the case where a user maybe generating a
CSR locally and uploading it to the service. However, in this case some checks are needed
to be performed - primarly if the private key being backed up actually corresponds to
the public key information already available with the service.

Lastly, the End User, has the functionality of recovering a lost key from the system,
provided an appropriate back up exists. This is a simple interaction with the server. The
user should have his or her secure code safe somewhere, else once the backed up key is
sent to the user, it will be unrecoverable as it will be an encrypted blob. The secure code
generated during backing up the key will be needed to get the actual private key back.

These were all the activity diagrams for the stakeholders that are needed to be properly
authenticated to access the certi�cate management service. The next stakeholder - the
external user - is di�erent in this regard.

5.2. Use Case Analysis 53

Figure 5.14: Activity Diagram for an End User showing work-�ows related to Uploading of a
CSR, Backing up of private keys and Recovery of backed-up keys.

54 Chapter 5. Requirement Analysis

Figure 5.15: Activity Diagram for External Users.

In Figure 5.15, a simple activity diagram is presented. The external user does not require
to be logged in to the system. The external user can update the OpenPGP Key server with
his or her own key. The external user can also interact with the associated Certi�cate
Directory Service of the system.

5.3 Functional Requirements

Based on the Use-Case analysis, the functional requirements could be determined. The
following list shows these requirements. This covers the major functional requirements
the system needs to have. It also lists some non-functional requirements of the system.
(Note that FR stands for Functional Requirement and NFR stands for Non-Functional
Requirement).

• FR1: Upload Certi�cate Signing Request - Once uploaded, to let the certi�cate
be checked and validated and then sent to the CA for issue. Once issued, the
certi�cate should be sent back to the user.

• FR2: To generate a CSR in the browser - In case the user does not have a CSR
already generated, he or she can do the same in the browser and then send it to
the CA through the service.

• FR3: Backup and Recover Key Data - Users have the ability to back up and later
recover their key data if for some reason they would lose their own local copy. This
should also allow to back up the key data when not done initially (For example,
when the CSR was generated in the browser).

• FR4: Revoke certi�cates - Users should be able to send revocation requests to the

5.3. Functional Requirements 55

service which can then be vetted by the Support Sta� before being transmitted to
the CA.

• FR5: Renew Certi�cates - Users should be able to renew their certi�cates which
are going to expire soon.

• FR6: Change Certi�cate Data - Users should be able to change their certi�cate
validation data if ever the need arise.

• FR7: Submit OpenPGP Keys to Server - Users should be able to submit their
OpenPGP keys to the OpenPGP Key servers.

• FR8: Request Certi�cate Destruction - Users must be able to request the com-
plete destruction of all their certi�cate related data available with the certi�cate
management service.

• FR9: Logging and Reporting - Service Operators shall be able to easily maintain
and manage logs and reporting functions as required by the CA.

• FR10: User Access Management - Service Operators must be able to easily manage
the users of the system.

• FR11: Back-up and Recovery of the System - This should be possible for the
Service Operators to carry out.

• FR12: Set Internal Con�guration - The Service Operators must be able to set up
the internal con�guration of the system.

• FR13: Set Certi�cation Policy - Service Operators must be able to set up the
system-wide certi�cation policies.

• FR14: View and Verify requests in the system - Support Sta� must be able to view
all pending requests in the system.

• FR15: Recover Keys - Recovery Operators must be able to recover keys.

• FR16: Interact with Directory Services - External Users must be able to interact
with the directory service.

• FR17: Report Issues - All users must be able to report issues to the Support Sta�.

• FR18: Report Certi�cate Speci�c Issues - External users, not logged in to the sys-
tem, must be able to report certi�cates they may think are being used maliciously.

• FR19: Update Key to OpenPGP Keyserver - External Users must be able to have
this basic interaction with the key server.

• NFR1: Usability - The system needs to have a high emphasis on usable security.

• NFR2: Underlying Database - The system should be able to easily switch between
di�erent databases.

56 Chapter 5. Requirement Analysis

• NFR3: Cryptography - The system should use strong cryptographic algorithms
and ideas to keep all information in the system especially the backed up private
key data secure.

5.4 Technical Requirements

On the basis of all the above analysis, a technical requirement analysis was also needed
to be carried out. Through this, the various technical requirements that are needed for
the service to run smoothly could be determined. These are the basic requirements for
the environment in which the certi�cate management service is to run.

The certi�cate management service requires a persistent storage for its database. It
would also require an interface with an external CA, as the service itself does not carry
out the functions of a CA. The service will also require an interface to be easily accessed
externally. This would be best achieved by realising a REST (Representational State
Transfer) API for the service. This API should take into account that external access to
the service should be secure.

57

Chapter 6

System Design

This chapter discusses the system design of the certi�cate management service. On
the basis of the functional requirements and technical requirements laid down in the
previous chapter, an actual system can now be designed.

6.1 A Reliable Design

The certi�cate management service is to be designed so that it can e�ectively cover all
requirements of such a service while allowing the functionality provided by the service
to be accessible through external components.

6.1.1 System Components

The certi�cate management service will be best realised if it was divided into two
main sub-components – a frontend and a backend. These are the primary internal
components of the service. This separation simpli�es development of the service and
helps ease future maintenance work. HTTP calls can be easily made from the frontend
(client-side) to the backend (server side). Furthermore, a uniform interface is required
to allow for interactions between the client and server. This should be realised by using
HTTP Verbs (like GET and POST), Uniform Resource Identi�ers and HTTP Responses.

The frontend (or the CMS Frontend) will be the entry point for the certi�cate manage-
ment service. This will be the part of the service that is facing the users. It is the client
side of the certi�cate management service. It interfaces with the backend to provide
functionalities to users. This component accepts user input and forwards it to the back-
end for processing. It also fetches processed data from the backend. The frontend takes
care of presenting data that has been processed by the backend to the user.

58 Chapter 6. System Design

The Backend (or the CMS Backend) is the server side part of the service that processes
data and generates output after processing user input (received through the frontend).
The output generated in the backend is sent to the frontend for presentation to the user.
Hence, the backend does not have to worry about data presentation. Owing to this, the
backend functionalities can be implemented independently of the frontend. As long
as the interfacing between the frontend and the backend is done right, independent
development of both components is possible.

Figure 6.1: The component diagram for the certi�cate management service.

As can be seen in the �gure 6.1, a simple design for a certi�cate management service is
now created. The service has one primary internal component. This is the Certi�cate
Management System itself. It is the central component in the service. It includes two
sub-modules - the CMS Frontend and the CMS Backend.

Various other external components are also seen in the diagram. A brief description of
all the external components is as follows:

1. Database Storage – This is the database in which the service stores all service-
generated and related data. Requests made by users, need to be stored for further
processing and also to help in audits of the service. Hence the database storage

6.2. CMS 59

is an important component of the service. Interactions with this component are
controlled by the backend.

2. PKI Infrastructure – This includes the RAs and the CAs. The certi�cate manage-
ment service needs to forward requests made by users to an appropriate RA(s)
or CA(s). For example, a certi�cate signing request, whence created by a user
inside the certi�cate management service, needs to be sent for approval to a CA.
Interactions with this component are also controlled by the backend.

3. Authentication component – This module takes care of authenticating users into
the service. This component would ideally be used, if for example members of an
organization need to use their organization speci�c authentication credentials to
log in to the service. Hence, the certi�cate management service should be able to
authenticate users using these credentials. Ideally, the authentication component
interacts with the frontend of the service to authenticate users.

4. IDMS (or) Identity Management System - This is also a organization speci�c
component, that is to be used by Support Sta� to verify identities of members of
the organization that wishes to deploy the certi�cate management service. This
component also interacts with the frontend of the service.

5. Directory Service - This is also an external component for the service. This
service interacts with the certi�cate management service, so as to be able to get
the certi�cates that have been issued by the certi�cate management service and
make them readily available to users through its directory services. This could be
a simple key-server that stores OpenPGP keys or a LDAP directory. The Directory
Service relies on the database component.

6.2 CMS

The CMS is the Certi�cate Management Service. It is the central component in our
service. As already discussed in the technical requirements of the previous chapter, the
service should be realised as a RESTful web application. In line with this architecture,
this component is divided into two sub-modules - the CMS Frontend and the CMS
Backend.

6.2.1 CMS Frontend

The front-end of the service provides an entry point for a user (or another application)
that wishes to interact with the service through a graphical user interface required for
the service (or through a RESTful API). It also inculcates various security mechanisms to
make the interaction with the service secure. This component is open to input which can

60 Chapter 6. System Design

then be further processed by interacting with the backend. Furthermore, this module
interacts with an external component, namely the Authentication component, which
takes care of User Access Management.

All the proposed functional requirements need to be inculcated into the frontend. An
interface to the users is provided by the frontend, so that they can carry out all of the
functions discussed in the previous chapter.

The frontend also needs to provide for an entry point for all kinds of users to carry out
their respective functions. The design of the frontend has to thus separate functionalities
by using an authentication mechanism for users. Therefore, a user with a certain role
will only be able to see the functions available to that particular role.

Figure 6.2: The sub-modules of the CMS Frontend.

The frontend itself is divided into two sub modules - these are the client side frontend
and the server side frontend (or just CMS frontend). These can be seen in the Figure

6.2. CMS 61

6.2. As can be clearly seen the client-side frontend faces the user.

The client side frontend is where most of the cryptographic methods are to reside. To
allow users to generate certi�cates and backup and recover keys, client side crypto-
graphic methods are needed. Apart from this, the client side sub module takes user data,
processes it and forwards it to the server side frontend for further processing.

The server side frontend, takes care of processing the data received from the client side
frontend in to a format that can be sent over the network. It maps client side requests
with appropriate backend functions and gets back the response from the backend and
forwards it to the client side frontend for presentation to the user.

6.2.2 CMS Backend

The back-end provides for all server side functionalities that process user requests made
to the front-end of the service. This component also interacts with external components,
namely the database storage for the service and also the Registration Authority or the
Certifying authority (depending upon the hierarchy of the Public Key Infrastructure).
The interaction with the RA or the CA, would need to be done using API calls. This
component also takes care of all Database related interactions.

The backend also provides an interface that a directory service can interact with pri-
marily to fetch data like issued certi�cates or signed OpenPGP keys from the database..

The design of the CMS backend constitutes of �ve sub-modules as is seen in Figure 6.3.
These sub-modules carry out speci�c tasks. The sub-modules are as follows:

1. CA Module - This module takes care of all functionalities and interactions related
to the CA. The module receives requests meant to be forwarded to a CA or RA. It
processes these requests and uses appropriate API calls or other methods of the
communication supported by the CA, to forward the requests to the CA. It then
also processes the response from the CA and makes the response available for
the certi�cate management service. For example, the CA module could receive
a certi�cation request and then forward it to the CA. It is then to get an issued
certi�cate from the CA (provided all checks by the CA on the certi�cation request
pass). The issued certi�cates can then also be stored in the database of the service
by this module.

2. OpenPGP Module - This module is to take care of all OpenPGP related functionali-
ties and helps in OpenPGP certi�cate processing. It primarily concerns itself with
the signing of received OpenPGP keys with the certi�cate management service’s
key. It can then store the signed key in the database of the service.

3. Database Access Module - This module mainly concerns itself with database
access and encapsulating the database attached to the certi�cate management

62 Chapter 6. System Design

Figure 6.3: The sub-modules of the CMS Backend.

service. All requests sending data for storage to the database or fetching data
from the database will have to interact with this layer.

4. X.509 Module - This module focuses on carrying out X.509 related functionali-
ties and X.509 certi�cate processing. All X.509 related tasks are performed by
this module. Most of these functions will be to extract information from X.509
certi�cates or to format X.509 certi�cates from one format to another.

5. Certi�cate Policy Engine Module - This module will concern itself with checking
incoming certi�cate signing requests. It will check these requests against a certi�-
cate policy that has been established by the service operators. A certi�cate policy
is a document which aims to state what are the di�erent actors of a public key
infrastructure, their roles and their duties. It is a method for CAs to implement
some level of control and syntactic or semantic checks on certi�cate signing re-
quests being received by it. It enforces users to follow CA guidelines and rules by

6.3. Cryptography and Encryption 63

acting as a gatekeeper between the CA and the end users. If a certi�cate signing
request fails this check, then the request will be automatically declined.

6.2.3 Interfacing

As per the proposed functionalities and other requirements, the best way to realise
a part of the interfacing in the certi�cate management service would be to create a
RESTful web application. This interfacing is primarily concerned in providing a REST
API for external access to the service and to interface between the client side frontend
and the server side frontend. REST stands for Representational State Transfer. It is an
architecture style for designing networked applications. It relies on a stateless, client-
server, cacheable communications protocol. In the case of the certi�cate management
service, this protocol is to be HTTP. Simple HTTP calls can be used to make requests
between machines over the network.

6.3 Cryptography and Encryption

Cryptographic functions need to be available in the front-end as well as in the back-end.
As seen in the requirement analysis, the end user can generate his or her own certi�cate
signing request. This can only happen, if su�cient cryptographic functionalities are
provided for in the frontend itself. This needs to be realised by allowing for generation
of public-private key pairs and a corresponding certi�cate signing request in the client
browser (Given that this will be how an end user will interact with the service’s frontend).
The design of these cryptographic mechanisms needs to follow current standards and
needs to be robust. It has to also see to it that user interaction is limited and when
needed, it is easy for the user to understand the tasks he or she is to perform. This would
help increase the usability of the service from a security viewpoint. As discussed earlier,
cryptography creates an impediment for many a normal users. Hence, the design needs
to take this into consideration.

Another requirement of the service is to provide for secure backing-up and recovery of
private keys. This implies that the private key of the user can be securely encrypted in
the frontend and then transmitted to the backend for storage. When it comes to recovery,
the encrypted key needs to be transmitted from the backend storage to the frontend and
then decrypted on the client-side. Once again secure and robust cryptographic methods
need to be implemented in the frontend to allow for this to be possible. Furthermore, if
a user wishes to backup his or her key at a later stage, the frontend should provide for
public-private key veri�cation so as to make sure that the private key being uploaded
matches the corresponding public key for a certi�cate signing request.

The cryptographic methods in the backend would basically be used to interact with

64 Chapter 6. System Design

certi�cate signing requests and OpenPGP keys. An example for certi�cate interaction
is to extract the public key from a certi�cate signing request or to help sign uploaded
OpenPGP keys. Similar interaction methods are available in the backend.

Hence, these considerations would have to be taken into account while designing the
cryptographic functions in both the frontend as well as the backend.

6.4 Database Storage

The backend requires a database to store all service-speci�c data. Various requests
would be created by users using the fronend. These requests could also be of various
types. Hence a database would need to be designed that can su�ciently store all this
data. This would include certi�cate signing requests to revocation requests. A user’s
private keys also would be securely stored in this very database.

A database encapsulation layer would be needed so that the backend logic of the service
does not have to worry about the implementation details of the database (including
the physical schema of the database). This layer would provide the needed business
objects with persistence services (i.e. the ability to read, write and delete data from
data sources). This encapsulation would provide various bene�ts for the certi�cate
management service primarily by removing the coupling between the object schema
and data schema of the service. Hence, either one of these schemas can be further
developed without a�ecting the other one or causing issues between their interactions
with one another. This would also make it easier to implement the service, as all database
related implementations will be in one place.

6.5 PKI Infrastructure

The certi�cate management service does not incorporate its own CA. Hence, it needs to
be designed such that it can interact with an external CA. Therefore, the design needs
to consider the needed PKI infrastructure of RA(s) and CA(s). The best possible design
approach for this would be to design an easy to use API or Application Programming
Interface, that can access a Public Key Infrastructure. For this thesis, either of the earlier
discussed systems can be used - OpenCA, Dogtag or EJBCA. These systems can help
set up a CA that the service should be able to interact with to complete its own tasks.
This will be done through the API. The most important of these tasks is to forward a
certi�cate signing request to a CA so as to get the CA to issue a corresponding certi�cate
for that certi�cate signing request. Apart from this requests to revoke certi�cates, renew
certi�cates, etc. also need to be forwarded by the service to the CA. Lastly, this API
would help in making the service more extensible, as in the future, new functionalities

6.5. PKI Infrastructure 65

can be added so that the service can be extended interact with another kind of CA
system.

66 Chapter 6. System Design

67

Chapter 7

Implementation

This chapter discusses the implementation of the web service. The previous chapter has
laid down the design for the implementation. This chapter discusses how the design
considerations from the previous chapter were implemented to create the certi�cate
management service.

7.1 Building Blocks of the Service

This section discusses the frameworks, libraries and packages that were used to imple-
ment the design for the certi�cate management service. The frameworks were used
so as to meet our requirements of a robust, extensible system that follows a RESTful
architecture. The certi�cate management service was implemented using the Spring
Framework.

7.1.1 Spring Framework

The Spring Framework [33] is an open source application framework and inversion of
reference container for the Java platform. The core features of the Spring framework
can be used by any Java application. There are also extensions available for building web
applications on top of the Java EE platform. Spring Framework allows for the creation
of high performing, easily testable, reusable code. The certi�cate management service
relies on the Spring MVC (Model view container) framework. It provides a model-view-
controller architecture and ready components which can be used to develop a loosely
coupled as well as a �exible web application. The whole Model View Controller pattern
results in the separation of di�erent aspects of the application - the input logic, business
logic and the User interface logic. At the same time, these aspects are all loosely coupled.

68 Chapter 7. Implementation

7.1.2 Spring Security

The certi�cate management service also uses an extension of the Spring framework
called Spring Security. Spring Security is a powerful and highly customizable authen-
tication and access-control framework. This framework is used to help with securing
the certi�cate management service that is to be designed using the Spring framework.
Spring security provides comprehensive and extensible support for both authentication
and authorization of users. It also protects against various attacks that can occur on
applications like session �xation, cross site request forgery, etc.

7.1.3 Spring Data JPA

Another module of Spring Framework that is used by the certi�cate management service
is the Spring Data JPA (Java Persistence API) module which deals with enhanced support
for JPA based data access layers. The Java Persistence API (JPA) is a Java speci�cation
for accessing, persisting, and managing data between Java objects or classes and a
relational database. This module helps in cutting down on the amount of work required
to create a data access layer for an application. This module allows the backend of the
certi�cate management service to easily interact with the database.

Next, the various libraries and packages used to implement the certi�cate management
service are discussed. The libraries are, namely, Web Cryptography API, PKI.js and
Bouncy Castle.

7.1.4 Web Cryptography API

Web Cryptography API or WebCrypto is a JavaScript API for performing basic crypto-
graphic operations in web applications. This API provides for numerous cryptographic
operations like hashing, encryption, decryption, generation of keys and so on. Uses
for this API range from user or service authentication, document or code signing, to
the con�dentiality and integrity of communications. It de�nes a low-level interface for
interacting with cryptographic key material that is managed or exposed by client side
browsers. This API allows applications to perform operations such as signature gen-
eration and veri�cation, hashing and veri�cation, encryption and decryption, without
requiring access to the raw keying material. This API is used by the frontend of the
application for generating Public-Private key-pairs, encryption keys, encrypting data
and decrypting data.

7.2. CMS 69

7.1.5 PKI.js

PKI.js [34] is a pure JavaScript library implementing the formats that are used in PKI ap-
plications (signing, encryption, certi�cate requests, OCSP and TSP requests/responses).
It has been built and maintained by GlobalSign and Peculiar Ventures. It is built on
WebCrypto (Web Cryptography API) and requires no additional plug-ins. This library
provides for creation of Certi�cate Signing requests in the browser and is used especially
for this purpose in the frontend of the certi�cate management service

7.1.6 Bouncy Castle

Bouncy Castle is a collection of APIs and libraries used in programming cryptography-
related tasks. Bouncy Castle includes APIs and libraries for the Java programming
language as well as the C programming language. Bouncy Castle was developed and is
supported by an Australian non-pro�t organization called Legion of the Bouncy Castle.
The Java package of Bouncy Castle is organised such that it contains a light-weight
API suitable for use in any environment with the additional infrastructure to conform
the cryptographic algorithms to the Java Cryptography Extension or JCE framework.
Bouncy Castle supports X.509 certi�cates, S/MIME, Certi�cate Management Protocol
or CMP and OpenPGP. It is a perfect bundle for the certi�cate management service that
needs to be implemented. The Bouncy Castle package is used only in the backend to
carry out server side cryptography operations.

All of the above discussed frameworks, libraries and packages were used to fully imple-
ment the design of the certi�cate management service. They were chosen as the best
options to proceed with implementing the design of the service.

7.2 CMS

The certi�cate management service or CMS, was implemented by dividing it into two
modules - the CMS Frontend and the CMS Backend.

Figure 7.1, shows an abstract component diagram for the implemented certi�cate man-
agement service. As can be seen, the service has been divided into main modules - the
frontend and the backend. The client side frontend is also a part of the frontend, and is
only shown separately in the picture to highlight how the frontend functions. A user
sees the graphical user interface of the certi�cate management service via the client
side frontend. The CMS Frontend has two modules as shown in the �gure - the Web
API and the REST API. The CMS Frontend receives inputs through REST API calls and
responds with HTTP responses.

70 Chapter 7. Implementation

Figure 7.1: An abstract component diagram for the implemented certi�cate management service.

The backend and the frontend interact using Java. The backend in turn has various
sub-modules as already discussed in the design chapter. These can be clearly seen in
the �gure.

7.2.1 CMS Frontend

The CMS Frontend uses the Spring MVC Framework. Figure 7.2 shows the packaging
of the Frontend.

Application.java is the entry point for the application. It helps start the Spring Appli-
cation. The SecurityCon�g.java is a Spring Security speci�c class that takes care of
Security related tasks. It con�gures the application to prevent unauthenticated access
to the various pages of the service. The SecurityCon�g.java class also holds dummy
authentication credentials for three kinds of users. These credentials can be used to
access the application in the absence of an external Authentication component. These
are as follows (these are presented in the format of username:password:role):

1. End User - user:user:USER

2. Support Sta� - support:support:SUPPORT

3. Service Operators - service:service:SERVICEOPERATOR

Since, an external authentication component is unavailable, SecurityCon�g.java helps
implement a similar component for the needs of implementing the service. Apart from

7.2. CMS 71

Figure 7.2: The packaging of the main classes in the Frontend.

the dummy credentials, SecurityCon�g.java also authenticates users using username,
password and role data from the database of the service. It also takes care of user
registration.

The CMSController.java class is the primary controller of the frontend of the cert�cate
management service. It holds all the Request Mappings that are used to map web
requests to Spring Controller methods as is the case in Spring MVC. This controller
interacts with the backend by forwarding the requests to the backend. It forwards these
requests to the CSRManager.java class in the backend. It also gets the responses from
the backend and then forwards it to the user.

The rest of the frontend consists of resources needed to make the web application usable.
Templates were used to create the various pages and other HTML constructs (like the
menu bar) for the application. These are coded in HTML and Javascript. Figure 7.3
shows all the templates that are stored under resources in the frontend. They form the
Graphical User Interface of the application. The stylesheet of the application along with
Javascript libraries (including the PKI.js library) are stored under the static folder while
all the HTML code is stored under the templates folder. Most of these pages have inline
Javascript to create requests that are mapped by the CMSController class. Javascript
is also used to process the responses sent by the backend and then forwarded by the
CMSController class.

The templates were divided on the basis of the roles of the users. Each function that a
user can perform has its own template.

The basic common templates are as follows:

72 Chapter 7. Implementation

Figure 7.3: The templates in the frontend are stored under resources.

1. home.html - This is the home page of the application. After login, the data shown
on this home page varies from user to user.

2. login.html - This is the login page. Spring Security Con�guration that had been
done in the SecurityCon�g.java class makes sure that this is the landing page of
the application and no user can access any other page without authenticating
himself or herself �rst.

3. menu.html - This is the HTML code which is included in all pages and populates
the navigation bar for the application. Navigation options change depending on
the role of the user. Once again here Spring Security comes into help.

4. UserRegistration.html - This is the page where a user can register himself or

7.2. CMS 73

herself with the service. It works in conjunction with the SecurityCon�g.java.

Next are the templates for the End User:

1. EndUserBackUpKey.html - This form helps the user back up his or her own private
key to the server side storage at any point of time.

2. EndUserBrowserCSRGenerator.html - This page helps generate a public-private
key pair for a user and a corresponding CSR, that can then be uploaded to the
backend Server for approval. The page also allows for secure backup of the private
key to the server.

3. EndUserChangeValidationData.html - This page allows a user to create a Change
Data Request wherein he or she can request for change of some validation data
in a certi�cate that has already been issued. This is very similar to the functions
provided in the EndUserBrowserCSRGenerator.html template. This is because, to
change certi�cate data, the previously issued certi�cates need to be revoked, and
a new certi�cate signing request needs to be generated with the changed data.

4. EndUserRecoverKey.html - This page allows the user to recover a private key for
a certi�cate or certi�cate signing request provided that the key was backed-up

5. EndUserUploadCSR.html - This page allows the user to upload a certi�cate signing
request to the backend server for approval. This CSR could have been generated
by the user using any external tool like the OpenSSL command line tool.

6. EndUserUploadPGP.html - This page allows a user to upload his or her OpenPGP
key to the server for being signed by the Server’s own OpenPGP key (provided it
is approved by a Support Sta�).

7. EndUserRevocationCon�rmed.html - When a user decides to revoke his or her
certi�cate from the home page, this template pops-up. Here a user enters the
description of the reason for which he or she wishes to revoke their certi�cate.

The following are the templates for the Service Operators:

1. ServiceOpUAM.html - This page allows the service operators to carry out all User
Access Management related tasks. It shows all available users to the operators.
Operators can Create new users, Modify the data about users or Delete Users
through this page.

2. ServiceOpCreateUser.html - This page is complementary to the ServiceOpUAM.html
and allows for creation of new users.

3. ServiceOpModifyUser.html - This page is complementary to the ServiceOpUAM.html
and allows for modi�cation of user data.

74 Chapter 7. Implementation

4. ServiceOpInternalCon�guration.html - This page allows service operators to
con�gure the web application internally.

5. ServiceOpDisasterRecoveryBackup.html - This page helps in tasks of back-up
and disaster recovery of the web application.

6. ServiceOpReporting.html - This page allows service operators to audit the web
service and check the logs of the web application.

7. ServiceOpCertPolicy.html - This page allows service operators to set up an appli-
cation wide certi�cation policy. This certi�cation policy has to be adhered to by
all users and all certi�cate signing requests are to follow it.

Lastly, the following are the templates for the Support Sta�:

1. SupportSta�CertsIssued.html - This page shows all the certi�cates that have
already been issued using the certi�cate management service. It also shows
corresponding user details in a tabular form. The Support Sta� can view each
certi�cate in a new window.

2. SupportSta�ShowIssuedCerti�cate.html - This page is complementary to the
SupportSta�CertsIssued.html page. It can be used by the support sta� to view
individual certi�cates.

3. SupportSta�ChangeDataRequests.html - This page shows all change data requests
submitted to the service in a tabular form. The Support Sta� can approve or
decline a change data request. They can also view the new data in a new window
as well as the current certi�cate in another window. If approved, they can send
the request to the CA for approval and issuance of a new certi�cate with the new
data.

4. SupportSta�ShowChangedData.html - This page is complementary to the Sup-
portSta�ChangeDataRequests.html page. It shows the data that has been re-
quested to be changed.

5. SupportSta�ShowOldCerti�cateForCDR.html - This page is complementary to
the SupportSta�ChangeDataRequests.html page. It shows the certi�cate as it was
originally issued and for which a change data request has been made.

6. SupportSta�CSR.html - This page shows all the Certi�cate Signing Requests or
CSRs that have been received by the certi�cate management service in a tabular
form. The Support Sta� can approve or decline a CSR. They can also view each
CSR in a new window. If approved, they can send the CSR to the CA for approval
and issuance of the certi�cate.

7. SupportSta�ShowCSR.html - This page is complementary to the page mentioned
in the point above. It shows a Certi�cate Signing Request to the support sta�.

7.2. CMS 75

8. SupportSta�RenewalRequests.html - This page shows all the Certi�cate Renewal
Requests that have been received by the certi�cate management service in a
tabular form. The Support Sta� can approve or decline a request. They can also
view each expiring certi�cate in a new window. If approved, they can send the
request to the CA for approval and issuance of a renewed certi�cate.

9. SupportSta�ShowExpiringCerti�cate.html - This page is complementary to the
SupportSta�RenewalRequests.html page. It shows the expiring certi�cate for
which renewal is requested.

10. SupportSta�RevocationRequests.html - This page shows all the Revocation Re-
quests that have been received by the certi�cate management service in a tabular
form. The Support Sta� can approve or decline a request. They can also view the
certi�cate to be revoked in a new window. If approved, they can send the request
to the CA for revocation of the certi�cate.

11. SupportSta�ShowRevocationCerti�cate.html - This page is complementary to the
SupportSta�RevocationRequests.html page. It shows the certi�cate that needs to
be revoked for which the revocation request has or had been made.

12. SupportSta�DestructionRequests.html - This page shows all the Certi�cate De-
struction Requests that have been received by the certi�cate management service
in a tabular form.

13. SupportSta�PGPInfo.html - This page shows all the OpenPGP Key Signing Re-
quests that have been received by the certi�cate management service in a tabular
form. The Support Sta� can approve or decline a request. If approved, they can
sign the corresponding OpenPGP key in a request with the server’s own key.

14. SupportSta�PopData.html - This page was primarily used to populate the database
of the service of dummy data for testing. It is not part of the �nal implementation.
It �lls up the database with sample certi�cates and certi�cate signing requests
and creates new requests in each table. The page can also be used to delete all
existing data in the database.

15. SupportSta�RevocationCon�rmation - When approving a user’s revocation re-
quest on the SupportSta�RevocationRequests.html page, this page pops-up. The
Support Sta� can then view the description provided by the user describing why
he or she wishes to revoke their certi�cate. The support sta� can then chose an
appropriate revocation code and approve the request.

7.2.2 CMS Backend

Figure 7.4 shows the packaging of the Backend.

76 Chapter 7. Implementation

Figure 7.4: The packaging of the main classes in the Backend

CSRManager.java is the main class in the backend of the certi�cate management service.
It receives requests from the frontend of the service (through the Controller class there)
and processes these requests. Once processed it sends back the responses to the frontend.
This class holds primarily methods to interact with the Database Access Module and to
carry out some string formatting operations.

Certi�catePolicyEngine.java is a class that checks incoming certi�cate signing requests
to be compliant with the Certi�cate Policy set up by service operators. As the name
suggests, this class implements the Certi�cate Policy Engine module that was put forth
in the design chapter.

PGPUtility.java provides utility functions which help in signing OpenPGP keys. While
the signing takes place in CSRManager.java, some functions needed for that whole

7.3. Database 77

process are provided for by the PGPUtility.java. This is the implementation of the
OpenPGP Module.

X509Utility.java class provides utility functions to work with X.509 certi�cates. It
implements the X.509 module from the design.

EJBCAClient.java class provides the fucntionality to interact with the external CA
(implemented using EJBCA). It is the implementation of the CA module from the design.

The other packages in the back-end are all related to the Data Access Layer and are
explained in the next section.

7.3 Database

An Oracle database was created to be used by the certi�cate management service. Each
table, except the CMS_USERS table, has a STATUS column that is used widely to check
status of requests.

The following tables were created:

1. CERTIFICATES_ISSUED - Once, the certi�cates have been issued by a CA, they are
stored i;n this table along with other details of the user the certi�cate belongs to.

2. CHANGE_DATA_REQUESTS - This table holds all the requests for changing the data
in a certi�cate.

3. CSR_TABLE - This table holds the certi�cate signing requests, as well as the private
key (if backed-up).

4. DESTRUCTION_REQUESTS - Any certi�cation destruction requests are stored in this
table.

5. PGP_TABLE - All requests to sign OpenPGP keys and the subsequently signed
OpenPGP keys are stored in this table.

6. RENEWAL_REQUESTS - Certi�cate renewal requests are stored in this table.

7. REVOCATION_REQUESTS - Requests for revoking certi�cates are stored in this table.

8. CMS_USERS - This table is used for the purpose of User Access Management for
the service itself.

The �gure 7.5 shows the packaging of the various classes used to implement the Data
Access Layer for all the previously mentioned tables in the database that is being used by
the certi�cate management service. These classes collectively implement the Database
Access Module from the design. Each table has been provided with an Entity class, a
corresponding repository and a corresponding service class.This created the data access

78 Chapter 7. Implementation

Figure 7.5: This is the structure of the packaging for the classes used to implement the Data
Access Layer for the service.

7.4. PKI 79

layer for the certi�cate management service. This was done on the backend side of
the service. A Repository represents all objects of a certain type as a conceptual set. It
acts like a collection, except with more elaborate querying capability. The entity class
represents the table itself while the service class is where all the query methods are
coded. This was done with the help of Spring Data JPA.

7.4 PKI

While implementing a suitable PKI for the certi�cate management service to interact
with, certain problems were faced.

Initially, OpenCA was planned to be used to implement the needed PKI. This was mostly
to set up the CA that the service would interact with. However, setting up OpenCA
proved to be a major impediment. The o�cial installation guides from OpenCA creators
were unavailable as the wiki on their page for the same was down. A user guide created
by the developers of OpenCA was available but the Installation guide supposedly in
their wiki was unavailable. Tutorials on the Internet created by users, though outdated,
were next used to implement the PKI using OpenCA. Signi�cant progress was made
in this area until some errors emerged after the setup was �nished, and the OpenCA
GUI was tried to be opened. Troubleshooting help for the same was unavailable. The
o�cial documentation could have been used to probably rectify the issue but was
unavailable. Another document created by OpenCA Research Labs as a guide to OpenCA
was informative but was not a de�nitive installation and troubleshooting guide. Owing
to this, OpenCA was discarded as the preferred implementation for the PKI component
for the certi�cate management service.

Upon further investigation of OpenCA, it was also found out that OpenCA does not
provide any kind of service or API, which the certi�cate management service could
interact with over a network. OpenCA o�ers a well made Graphical User Interface that
can carry out all the provided CA operations but this does not meet the requirements
of the certi�cate management service. Hence, the conclusion was reached that even if
OpenCA would have functioned correctly, it would have not been the right choice as
the PKI component for the certi�cate management service (as far as the scope of this
thesis is concerned).

Finally, after investigating other CA systems available for free on the Internet, EJBCA
was chosen as the preferred choice. EJBCA allows for external applications and services
to interact with it using the Certi�cate Management Protocol. EJBCA website also
provides for a Virtual Machine with the EJBCA set up on it. This was thus used to
implement the PKI component of the design for the certi�cate management service.

80 Chapter 7. Implementation

7.5 Processing Certi�cates and Requests

This section discusses how the underlying processes of the certi�cate management
service were implemented.

Many processes central to the certi�cate management service required the use of cryp-
tographic methods. Cryptography was implemented in the frontend through javascript.
As mentioned earlier the PKI.js Javascript library was used in the frontend along with the
Web Cryptography API. All cryptographic tasks thus were implemented using Javascript.
In the backend, cryptographic functions are implemented in the CSRManager.java class,
PGPUtility.java class, X509Utility.java class as well as the EJBCAClient.java class.

The following sections discuss the processes involved in processing certi�cates and
requests.

7.5.1 Generation of a Certi�cate Signing Request

The generation of a certi�cate signing request begins in the EndUserBrowserCSRGen-
erator.html template. Here the end user can generate a certi�cate signing request in the
Browser itself. Using PKI.js and Web Cryptography API, a key pair is initially generated.
After this a CSR is created. The user can then chose how he or she wishes to transmit
the CSR to the server - either with a private key backup or without. In case, the user
chooses to backup his or her key, methods exist to help encrypt the key before being
sent to the server. This method �rst generates a random AES key and then uses it to
encrypt the private key of the user. This AES Key is given to the user so that it can be
used to decrypt the encrypted private key when needed (in the future). A prompt asks
the user to re-enter the secure code, to make sure the user has copied the secure code
somewhere safe. Only after the user re-enters the exact same generated AES key, does
the encryption of the private key begin. Once this �nishes, the key is sent to the server
for storage.

Figure 7.6 shows the sequence diagram of the process of generation of certi�cate signing
requests. In this sequence diagram, it is a given that a user submits his or her browser-
generated CSR to the server along with a secure back-up of his or her private key. As
can be seen, once the private key has been encrypted, the CSR along with the public and
private key are sent as part of the request to the backend. Here the CSR is forwarded
to the Certi�cate Policy Engine Module to carry out semantic checks on the CSR. If
these checks pass, the CSR is then stored in the database of the certi�cate management
service.

7.5. Processing Certi�cates and Requests 81

Figure 7.6: Sequence diagram for the process of generating a CSR and submitting it along with
a secure back-up of the private key.

7.5.2 Issuing Certi�cates

A support sta� user can use the SupportSta�CSR.html template to approve recieved
CSR requests. The support sta� user basically approves a particular CSR and then sends
it to the CA for certi�cate issue. When this request is made by the Support Sta� user,
the backend initially fetches the CSR and other user details related to that CSR from
the database. It then provides all this information to the EJBCA Module. The EJBCA
module uses this information to interact with the CA (implemented using EJBCA). It
makes a Certi�cate Request to the CA, which then results in a response from the CA
which has the issued certi�cate. This certi�cate can then be stored in the database and
distributed to the user. Figure 7.7 shows a sequence diagram for this process.

82 Chapter 7. Implementation

Figure 7.7: Sequence diagram depicting the process of a certi�cate being issued by the CA once
a CSR is approved by a Support Sta� user.

7.5.3 Private Key Backup

The back-up of a private key happens in the EndUserBackUpKey.html template. Al-
though, the EndUserBrowserCSRGenerator.html template provides secure key backup
functionality too, the EndUserBackUpKey.html template allows users to backup their
keys at a later moment. These could also be keys for certi�cate signing requests that
the user may have uploaded to the certi�cate management service without using the
Browser CSR generator. The cryptographic functions on this page check whether the
private key corresponds to a CSR or certi�cate already stored in the service’s database.
The user can select which CSR or Certi�cate the private key belongs to before uploading.
Next, the veri�cation to see if the private key corresponds to the public key is done on
the client side. Following this, the user can chose whether he or she wishes to store the
key on the server in an encrypted form or in plain-text. Therefore, if the user wishes,
methods exist in this template to allow the user to encrypt the private key with a ran-

7.5. Processing Certi�cates and Requests 83

Figure 7.8: Sequence diagram depicting the process of backing-up a key securely to the service.

domly generated AES key (as in the case of the EndUserBrowserCSRGenerator.html
template) before the private key is transmitted to the server for secure storage. Figure 7.8
shows the Sequence diagram detailing the process of key back-up. Here its a given that
the user wants to store his or her private key securely with the certi�cate management

84 Chapter 7. Implementation

service. The process requires the user to �rst select the appropriate certi�cate to which
the key belongs. The service then fetches the public key of the certi�cate. Once fetched,
on the client side, a random string of data is �rst signed using the fetched public key.
Then this signed data is veri�ed using the private key that the user is trying to back-up.
If the veri�cation passes, it means that the private key belongs to the selected certi�cate.
In this case, the back-up of the key can proceed. The key is encrypted in a similar
fashion as to how it is encrypted in the EndUserBrowserCSRGenerator.html template.
AES encryption is used here and a random AES Key or secure code is presented to
the user. This code is used to encrypt the private key and it is then transmitted to the
service backend for storage in the database.

7.5.4 Signing OpenPGP Keys

Figure 7.9: Sequence diagram depicting the process of signing of OpenPGP keys once a key
singing request has been approved by a Support Sta� user.

There is no particular template for signing OpenPGP keys. An end user can upload his
or her OpenPGP key using the EndUserUploadPGP.html template. This will create a
key signing request which the Support Sta� can see in the SupportSta�PGPInfo.html
template. The Support Sta� can then approve a request and the key submitted by the
user is sent to the PGP Module. Here the key is signed using the key provided in the
internal con�guration of the certi�cate management service. The signed key is then
added to the database. Figure 7.9 shows the sequence diagram for this process. A similar

7.5. Processing Certi�cates and Requests 85

design is followed for other processes which require approval of the support sta� - like
renewal requests and revocation requests.

7.5.5 Recovering Private Keys

Recovery of Keys is carried out in the EndUserRecoverKey.html template. Here the end
user can recover a private key (if backed up to the server). The end user needs to �rst
select which certi�cate or CSR he or she wish to recover the key for. Once selected, they
can click the Recover button. The encrypted key is then transmitted from the backend
to the frontend and a decryption process begins. The end user will have to enter the
same secure code he or she were presented with while backing-up this private key or
else the key will not be decrypted. A sequence diagram for the key recovery process
can be seen in Figure 7.10. As can be seen, once the user requests for the recovery of a
key, initially the back up status of the key is checked with the database. Only if the key
is present in the database, does the process continue.

86 Chapter 7. Implementation

Figure 7.10: Sequence diagram depicting the process of recovery of a backed-up key from the
service.

87

Chapter 8

Evaluation

This chapter discusses the results of the evaluation of the implemented certi�cate
management service. The evaluation is based on how the implemented certi�cate man-
agement service improves upon the various steps in the life-cycle of a certi�cate, as
compared to the systems and processes currently in use in the industry and how in some
cases the implemented certi�cate management service overcomes some limitations of
present-day systems and processes. A modi�ed life-cycle was already discussed in the
Analysis chapter. In the following sections, each step of this life-cycle is individually
evaluated with respect to the certi�cate management service. One signi�cant improve-
ment that has to be noted is that the certi�cate management service makes the use of
OpenPGP possible which many systems do not provide for.

8.1 User Registration

An end user needs to be registered with a Certifying Authority (CA) in order to send a
certi�cate request and carry out other interactions with the CA. Usually, users do not
wish to carry out this task, as the CA requires extensive user information for registration.
This adds an extra usability issue, where the user may not wish to �ll out yet another
registration.

Sometimes, user registration even requires a personal veri�cation and the user may
have to pay a visit to the o�ces of a CA or an appropriate Registration Authority (RA)
along with an identity proof. These o�ces could be located at far-o� locations thus
adding an accessibility issue for the end user.

As far as the implemented certi�cate management service is concerned, the user reg-
istration is done through the registration page. As earlier discussed, user registration
should be the domain of an external authentication component, but as far as the scope of
this thesis is concerned, this can be done by the users themselves. The service operator

88 Chapter 8. Evaluation

has the option of creating new users speci�c to the certi�cate management service but
that functionality is to be used in an environment where an external authentication
component already exists.

When the �rst certi�cate request for a particular user is sent to the CA (depending upon
approval), the user is automatically registered with the CA (implemented in this case
using EJBCA). The user does not have to enter any extra credentials for this or carry out
any new registration operations. Any future interactions of the certi�cate management
service with the CA use the same user credentials to authenticate with the CA.

The limitations arising from the need for personal veri�cation also are eliminated
or are highly diminished. As long as the CA or RA trusts the implemented certi�cate
management service, such veri�cation and rules governing it can be left to the operators
of the implemented certi�cate management service. Most of the veri�cation work can
be carried out, if needed, at an easily accessible location for the end user. The rest of
the veri�cation process can be automated by the implemented certi�cate management
service with respect to the CA or the RAs.

8.2 Certi�cate Request

Systems, similar to the implemented service, in use today tend to allow users to request
certi�cates by either generating a certi�cate signing request within a browser or up-
loading a certi�cate signing request to the system. Many a time both the methods are
allowed but sometimes, only one of these methods is allowed.

The implemented certi�cate management service allows for both methods to be used.
The end user can request a certi�cate by generating a certi�cate signing request in the
browser itself and then forwarding it to the service for approval. Apart from this, the
end user can also request a certi�cate by uploading a certi�cate signing request that he
or she may have generated using other means.

8.3 Certi�cate Approval

Many a time, certi�cate management services and similar systems leave the task of
approving a certi�cate on to the CA or the RAs. In these cases, Identity checks are not
performed before forwarding a certi�cate request to a CA or a RA. If the end user sends
forged data or even malicious data to the CA, the CA does not have a mechanism to
verify if the data is correct.

In the implemented certi�cate management service, a certi�cate signing request passes
through two levels of approval:

8.4. Certi�cate Issue 89

1. In the �rst level, once a certi�cate request has been received, the Certi�cate
Policy Module in the back-end of the certi�cate management service carries out
certain semantic checks on the request. It extracts the data inside the certi�cate
signing request to verify if it matches with the known identity of the user. Ideally,
this identity and related data should be provided by an external component -
the Identity Management System. However, as far as the scope of this thesis
is concerned, it is done using the identity information which the user provided
upon registration. It also checks if the request meets requirements for the key
algorithm used and the key length used. If the Certi�cate Policy Engine checks
pass, then the request is stored in the appropriate table.

2. The second and last approval rests with the Support Sta� who can either approve
or decline a request.

8.4 Certi�cate Issue

In the implemented certi�cate management service, once a certi�cate request has been
approved by the Support Sta�, it is forwarded to the CA. The CA in turn, issues the
certi�cate which is then stored in the database of the certi�cate management service as
well as the local repository of the CA. This process follows the same methodology as
processes currently in use in the industry.

8.5 Certi�cate Enrolment

Under this step, once the certi�cate is issued, it can be enrolled. The CA can post it to a
repository for example, and send an identity certi�cate back to the user that he or she
can now use. Present systems enroll certi�cates in this way.

As far as the implemented certi�cate management service is concerned, the CA (im-
plemented using EJBCA) carries out the enrolment process itself. It also sends back
the issued certi�cate to the certi�cate management service. The certi�cate is stored
in the database and presented to the end user on his or her home page. Hence, the
implemented certi�cate management service is in line with the current practices.

8.6 Certi�cate Distribution

Systems currently in use in the industry, distribute certi�cates by putting them in a
repository. The certi�cates can be further distributed to a user using that repository.

90 Chapter 8. Evaluation

The implemented certi�cate management service follows a similar process. It holds all
issued certi�cates in a database table. Similarly, for all signed OpenPGP Keys, there
is another table in the database. These tables can be accessed through the API of the
service. Thus, certi�cates and OpenPGP Keys can be distributed easily to an external
certi�cate directory or key server respectively. On an end users home page, the user is
presented with his or her issued certi�cates and signed OpenPGP keys (and the status
for each) by fetching needed data from the same tables.

8.7 Certi�cate Modi�cation

Current systems, hardly provide the functionality to modify certi�cate data. This is
because previous certi�cate signing requests or certi�cates cannot be changed without
invalidating the respective signatures on them. This brings down the usability of such
systems as a change in user speci�c data in certi�cates is a recurring phenomena in the
real world. For example, A change of name upon marriage or a change of departments
within an organization.

In the implemented certi�cate management service, this limitation is circumvented by
following a simple process. The user can modify the data in a certi�cate that has been
issued to him or her. First, the end user can generate a new certi�cate signing request
with the changed data and submit it. This request is then sent to the Support Sta� for
approval. Once approved by the Support Sta�, the old certi�cate is revoked and a new
one is issued to the end user.

8.8 Certi�cate Renewal

Current systems, many a times, do not provide for any automated way of notifying an
end user about the expiration of his or her certi�cates. An end user may not be aware
and his or her certi�cate may lapse its validity period and expire.

When it comes to the implemented certi�cate management service, it takes care of
notifying the users about their certi�cates which are nearing expiry. Upon user log-in,
his or her issued certi�cates are presented on the home page in a tabular form. Each
certi�cate’s expiry date is also presented here. If a particular certi�cate is nearing expiry,
the user is initially noti�ed by a pop-up message upon log-in. The user can then chose
to renew his or her certi�cate (if needed). This request then needs to be approved by
the Support Sta� before the Certi�cate can be renewed. In this case, the old certi�cate
is revoked and the previously generated certi�cate signing request is re-submitted to
the CA for issuing a new certi�cate. All this is done automatically by the certi�cate
management service once a renewal request is approved by the support sta�.

8.9. Certi�cate Revocation 91

The API of the certi�cate management service also provides for API calls that can check
if a certi�cate is nearing expiration.

8.9 Certi�cate Revocation

Usually, when an end user wishes to revoke his or her certi�cate it can be a tedious
task. One reason for this is trying to understand what reasoning to provide to the CA
for revocation. Also, at times, users fail to understand the implications of revocation.
Another reason is �nding the appropriate way to request a revocation. Many a times,
the end user may need to write an E-Mail to the administrator of a CA or a RA to do
this. In short, the starting point to begin the whole revocation process maybe di�cult
to come by for a normal user. This a�ects the usability and e�ciency of the process of
revoking certi�cates and consequently that of the system itself.

The implemented certi�cate management service tackles both these issues. Upon user
log-in, his or her issued certi�cates are presented on the home page in a tabular form.
Each certi�cate’s current status can be seen here. If the user wishes to revoke a certi�cate,
he or she can press the revoke button for that certi�cate. This makes the whole task
of revoking certi�cates easy for the user as the user does not have to look for the
appropriate method or contact-person to get his or her certi�cate revoked. The user is
then presented with certain information explaining to him or her the consequences of
this action. Here, the end user can also enter the description for the reason why he or
she wishes to revoke the certi�cate.

The request is then sent to the support sta� for approval. Upon approval, the support
sta� then chooses the appropriate reason from a list of revocation reasons and sends the
request to the CA. This makes it easier for the end-user who may not be so informed
about what the di�erent reasons for revocation could be (as de�ned by RFC 5280).
However, the Support Sta� is knowledgeable about them and can choose the appropriate
reason based on the description provided by the user. A revocation request is then sent
to the CA or the RA. Once, the certi�cate is revoked, this same table on the user home
page shows the status of the Certi�cate as revoked.

8.10 Certi�cate Expiration

If the end user does not renew his or her certi�cate well within the validity period then
that certi�cate will be shown as expired in the table on the end user’s home page.

92 Chapter 8. Evaluation

8.11 Summary of the results of the evaluation

Hence, it can be easily understood, that the implemented certi�cate management service
signi�cantly improves in many ways over systems currently used in the industry. It
provides for better usability and more automation of processes thus making the whole
process of secure communication comparably easier for the end user. It has a signi�cant
advantage when it comes to technologies supported over many of its counterparts as it
not onlz supports X.509 certi�cates but also OpenPGP certi�cates.

93

Chapter 9

Conclusion

This thesis analysed how an e�ective, usable and secure system can be implemented for
big organisations so as to further the goal of secure communication. It discussed the
design and implementation of a management service for digital certi�cates which uses
both of the established technologies in the �eld - X.509 and OpenPGP. It discussed the
current technologies, protocols and solutions available for certi�cate management. It
elaborated on these technologies like S/MIME and OpenPGP and their related processes
like Encryption and Digital Signatures.

The thesis also analysed the certi�cate life-cycle and elaborated upon it by putting forth
a modi�ed certi�cate life-cycle that was used in designing the certi�cate management
service and then consequently evaluating it.

Another key �nding of the thesis was the result of the analysis of similar certi�cate
management systems that are in use in the industry today. It was found out that all
investigated systems do not support OpenPGP and are limited in their use by support-
ing only X.509. Many usability issues were also found in these systems. While the
Enterprise PKI with Windows Server was not platform independent and was speci�c to
the Windows Server Operating System, OpenCA and Dogtag CA proved to be limited
by the absence of any non-complicated way to communicate with them over a network
or by the extreme di�culty it takes to set them up.

The thesis laid out the work-�ows that would be needed in a certi�cate management ser-
vice, after studying all possible use case scenarios for the certi�cate management service.
It established the user base that a certi�cate management service would have and laid
down functional requirements of each type of user. The functional requirements for the
thesis were thus divided on the basis of the types of users - the system administrators,
the end users, the support sta�, the service operators, the recovery operators and the
external users. The thesis found that although speci�c users are needed for recovery
of certi�cate keys i.e. the recovery operators, their task requires additional processes
to be formulated. These processes also have legal implications. Hence, this set of users

94 Chapter 9. Conclusion

was left out of the purview of the thesis in the subsequent design and implementation
of the certi�cate management service.

With the design of the certi�cate management service, the thesis was able to design
secure processes for certi�cate signing request generation, key escrow and OpenPGP
key signing. These processes were then implemented using state of the art technologies
and cryptographic methods. One key �nding here was that key escrow proved to be a
di�cult process to implement in an entirely secure manner. A secure implementation is
impossible because the onus of providing veri�ed and correct private key is on the client
system which ideally should not be trusted. Hence, the key escrow mechanism imple-
mented in the certi�cate management service, although up to the mark in comparison
with industry wide standard practices, is not completely secure.

Upon evaluation of the implemented certi�cate management service, the thesis found
that, in many cases, the implemented certi�cate management service signi�cantly im-
proves upon similar systems that are deployed in the industry today. The implemented
certi�cate management service provides a more easily usable service for normal users
which covers both the established technologies - X.509 and OpenPGP. Most systems
fail to provide both these technologies while others are di�cult for a user to use.

In conclusion, this thesis was able to realise an e�ective, usable and secure certi�cate
management service. Researchers and readers alike would be able to get valuable ideas
about the design and realization of a certi�cate management service through the chap-
ters of this thesis. Organizations would be able to use the design for the certi�cate
management service presented in the thesis to implement their own certi�cate man-
agement services. Organizations can also use the implemented certi�cate management
service along with a few changes to meet their own requirements. The implemented cer-
ti�cate management service can also prove as the basis for a larger system comprising
of a certi�cate directory service and OpenPGP key servers.

9.1 Future work

This section outlines future work that can further build upon the implemented certi�cate
management service and improve it.

9.1.1 Key Pair veri�cation on the Server-side

At the moment, the certi�cate management service veri�es a user’s public private key
pair on the client side i.e. in the Frontend. When a user wishes to back-up his or her
private key at a later stage, the service veri�es if the key belongs to an already uploaded
certi�cate or not but this veri�cation process is done on the client-side in the clients
browser. This will require the private key to be �rst transmitted to the server and in no

9.1. Future work 95

way the key can be encrypted before this transmission. Hence, the whole purpose of
secure key back-up where the server cannot in any way view the private key data is
defeated.

Adam Young and Moti Yung introduced the idea of Auto-Recoverable and Auto-Certi�able
Cryptosystems in their paper [35] to address the issue of key escrow where in the keys
can be prevented from being maliciously tampered with. However, this in itself is a work
in progress, and little progress has been made on the topic since 1999. This idea laid
the foundations for the idea of Publicly Veri�able Secret Sharing (PVSS) schemes. Any
secret sharing scheme can be a PVSS Scheme if it is a veri�able secret sharing scheme
and if any party involved in the scheme can verify the validity of the shares distributed
by another participant in the scheme. This would make it feasible for the back-end
of the certi�cate management service to verify if the private key being uploaded to
the server is actually the key belonging to the certi�cate it is being uploaded for. All
this would be done without the server actually being able to see the contents of the
key. A PVSS scheme can be set up for the certi�cate management service in the future,
thus preventing users from backing-up malicious or incorrect keys to the certi�cate
management service.

9.1.2 Backup and Disaster Recovery

The service operators should have the functionality to back-up the entire database of
the certi�cate management service and be able to recover the database from these back-
ups when needed. This functionality was left out of the design and implementation
of the certi�cate management service as it was out of the scope of this thesis. This
functionality can be added as a future addition. This addition would require some
technical requirements to be met like backup servers.

9.1.3 Recovery Operators

Although recovery operators and their required functionalities were discussed in the
Analysis chapter, they were left out of the design and implementation part. This was
primarily because recovery operators require a secure process by which they can recover
keys for certi�cates that have been issued. This has legal implications as well. In the
future, these functionalities can be added once such a secure process is formulated.

96 Chapter 9. Conclusion

97

Bibliography

[1] D. Crocker, “Email history,” The living Internet, 2006.

[2] C. Kaufman, R. Perlman, and M. Speciner, Network security: private communication
in a public world. Prentice Hall Press, 2002.

[3] P. R. Zimmermann, The O�cial PGP User’s Guide. Cambridge, MA, USA: MIT
Press, 1995.

[4] A. S. Tanenbaum, Computer Networks, 3rd ed. Prentice Hall PTR, 1996, ch. 7, pp.
663–667.

[5] A. Whitten and J. D. Tygar, “Why johnny can’t encrypt: A usability evaluation
of pgp 5.0,” in Proceedings of the 8th Conference on USENIX Security Symposium
- Volume 8, ser. SSYM’99. Berkeley, CA, USA: USENIX Association, 1999, pp.
14–14. [Online]. Available: http://dl.acm.org/citation.cfm?id=1251421.1251435

[6] S. A. Brands, Rethinking Public Key Infrastructures and Digital Certi�cates: Building
in Privacy. Cambridge, MA, USA: MIT Press, 2000.

[7] C. Slobogin, “Transaction surveillance by the government,” Miss. LJ, vol. 75, p. 139,
2005.

[8] J. C. Sipior and B. T. Ward, “The ethical and legal quandary of email privacy,”
Communications of the ACM, vol. 38, no. 12, pp. 48–54, 1995.

[9] G. Greenwald, E. MacAskill, and L. Poitras, “Edward snowden: the whistleblower
behind the nsa surveillance revelations,” The Guardian, vol. 9, no. 6, 2013.

[10] G. Greenwald and E. MacAskill, “Nsa prism program taps in to user data of apple,
google and others,” The Guardian, vol. 7, no. 6, pp. 1–43, 2013.

[11] J. Yu, V. Cheval, and M. Ryan, “Challenges with end-to-end email encryption.”

[12] S. Ruoti, J. Andersen, D. Zappala, and K. Seamons, “Why Johnny Still, Still Can’t
Encrypt: Evaluating the Usability of a Modern PGP Client,” ArXiv e-prints, Oct.
2015.

http://dl.acm.org/citation.cfm?id=1251421.1251435

98 Bibliography

[13] W. Stallings, Cryptography And Network Security - Principles and Practice, 1st ed.
Dorling Kindersley India Pvt. Ltd., licensees of Pearson Education in South Asia,
2011, ch. 14, pp. 453–463.

[14] D. Cooper, S. Santesson, S. Farrell, S. Boeyen, R. Housley, and W. Polk, “Internet
X.509 Public Key Infrastructure Certi�cate and Certi�cate Revocation List (CRL)
Pro�le,” RFC 5280 (Proposed Standard), Internet Engineering Task Force, May
2008, updated by RFC 6818. [Online]. Available: http://www.ietf.org/rfc/rfc5280.txt

[15] P. Resnick, “Internet Message Format,” RFC 2822 (Proposed Standard), Internet
Engineering Task Force, Apr. 2001, obsoleted by RFC 5322, updated by RFCs 5335,
5336. [Online]. Available: http://www.ietf.org/rfc/rfc2822.txt

[16] C. Adams, S. Farrell, T. Kause, and T. Mononen, “Internet X.509 Public Key
Infrastructure Certi�cate Management Protocol (CMP),” RFC 4210 (Proposed
Standard), Internet Engineering Task Force, Sep. 2005, updated by RFC 6712.
[Online]. Available: http://www.ietf.org/rfc/rfc4210.txt

[17] M. Myers, X. Liu, J. Schaad, and J. Weinstein, “Certi�cate Management
Messages over CMS,” RFC 2797 (Proposed Standard), Internet Engineering
Task Force, Apr. 2000, obsoleted by RFC 5272. [Online]. Available: http:
//www.ietf.org/rfc/rfc2797.txt

[18] R. Housley, “Cryptographic Message Syntax,” RFC 2630 (Proposed Standard),
Internet Engineering Task Force, Jun. 1999, obsoleted by RFCs 3369, 3370. [Online].
Available: http://www.ietf.org/rfc/rfc2630.txt

[19] M. TechNet. (2006, aug) Understanding s/mime. [Online]. Available: https:
//technet.microsoft.com/en-us/library/aa995740%28v=exchg.65%29.aspx

[20] R. Housley, “Cryptographic Message Syntax (CMS),” RFC 3369 (Proposed
Standard), Internet Engineering Task Force, Aug. 2002, obsoleted by RFC 3852.
[Online]. Available: http://www.ietf.org/rfc/rfc3369.txt

[21] R. Housley, “Cryptographic Message Syntax (CMS) Algorithms,” RFC 3370
(Proposed Standard), Internet Engineering Task Force, Aug. 2002, updated by RFC
5754. [Online]. Available: http://www.ietf.org/rfc/rfc3370.txt

[22] B. Ramsdell, “Secure/Multipurpose Internet Mail Extensions (S/MIME) Version
3.1 Certi�cate Handling,” RFC 3850 (Proposed Standard), Internet Engineering
Task Force, Jul. 2004, obsoleted by RFC 5750. [Online]. Available: http:
//www.ietf.org/rfc/rfc3850.txt

[23] B. Ramsdell, “Secure/Multipurpose Internet Mail Extensions (S/MIME) Version
3.1 Message Speci�cation,” RFC 3851 (Proposed Standard), Internet Engineering
Task Force, Jul. 2004, obsoleted by RFC 5751. [Online]. Available: http:
//www.ietf.org/rfc/rfc3851.txt

http://www.ietf.org/rfc/rfc5280.txt
http://www.ietf.org/rfc/rfc2822.txt
http://www.ietf.org/rfc/rfc4210.txt
http://www.ietf.org/rfc/rfc2797.txt
http://www.ietf.org/rfc/rfc2797.txt
http://www.ietf.org/rfc/rfc2630.txt
https://technet.microsoft.com/en-us/library/aa995740%28v=exchg.65%29.aspx
https://technet.microsoft.com/en-us/library/aa995740%28v=exchg.65%29.aspx
http://www.ietf.org/rfc/rfc3369.txt
http://www.ietf.org/rfc/rfc3370.txt
http://www.ietf.org/rfc/rfc3850.txt
http://www.ietf.org/rfc/rfc3850.txt
http://www.ietf.org/rfc/rfc3851.txt
http://www.ietf.org/rfc/rfc3851.txt

Bibliography 99

[24] W. Stallings, Cryptography And Network Security - Principles and Practice, 1st ed.
Dorling Kindersley India Pvt. Ltd., licensees of Pearson Education in South Asia,
2011, ch. 18, pp. 591–627.

[25] J. Callas, L. Donnerhacke, H. Finney, D. Shaw, and R. Thayer, “OpenPGP Message
Format,” RFC 4880 (Proposed Standard), Internet Engineering Task Force, Nov.
2007, updated by RFC 5581. [Online]. Available: http://www.ietf.org/rfc/rfc4880.txt

[26] N. Associates, PGP 6.0.2 Platform-Independent Documentation: PGP Installation
Guide, an Introduction to Cryptography, Administration’s Guide. Network
Associates, 1998, ch. 1. [Online]. Available: https://books.google.de/books?id=
ghG4AAAACAAJ

[27] Y. Chou. (2013, oct) Enterprise pki with windows server 2012 r2 active directory
certi�cate services (part 1 of 2). [Online]. Available: https://blogs.technet.
microsoft.com/yungchou/

[28] M. TechNet. (2008, mar) Active directory certi�cate services
overview. [Online]. Available: https://technet.microsoft.com/en-us/library/
a8f53a9b-f3f6-4b13-8253-dbf183a5aa62.aspx

[29] P. S. AB. (2016) Ejbca - open source pki certi�cate authority - home. [Online].
Available: https://www.ejbca.org/

[30] A. I. Ghori and A. Parveen. (2006) Pki administration using ejbca and
openca. [Online]. Available: http://ece.gmu.edu/coursewebpages/ECE/ECE646/
F09/project/reports_2006/IL-3-report.pdf

[31] O. Group. (2016) Openca research labs - home page. [Online]. Available:
https://www.openca.org/projects/openca/

[32] C. C. M. P. U. B. A. J. M. Bartosch, M. Bell, OpenCA Guide for Versions 0.9.2+,
OpenCA Group, 2005. [Online]. Available: "http://www2.openxpki.org/docs/
guide/openca-guide.pdf"

[33] Spring, “Springframework reference manual 3.1,” 2011.

[34] GlobalSign and P. Ventures. (2016). [Online]. Available: https://pkijs.org/

[35] A. Young and M. Yung, Auto-recoverable auto-certi�able cryptosystems. Berlin,
Heidelberg: Springer Berlin Heidelberg, 1998, pp. 17–31. [Online]. Available:
http://dx.doi.org/10.1007/BFb0054114

http://www.ietf.org/rfc/rfc4880.txt
https://books.google.de/books?id=ghG4AAAACAAJ
https://books.google.de/books?id=ghG4AAAACAAJ
https://blogs.technet.microsoft.com/yungchou/
https://blogs.technet.microsoft.com/yungchou/
https://technet.microsoft.com/en-us/library/a8f53a9b-f3f6-4b13-8253-dbf183a5aa62.aspx
https://technet.microsoft.com/en-us/library/a8f53a9b-f3f6-4b13-8253-dbf183a5aa62.aspx
https://www.ejbca.org/
http://ece.gmu.edu/coursewebpages/ECE/ECE646/F09/project/reports_2006/IL-3-report.pdf
http://ece.gmu.edu/coursewebpages/ECE/ECE646/F09/project/reports_2006/IL-3-report.pdf
https://www.openca.org/projects/openca/
"http://www2.openxpki.org/docs/guide/openca-guide.pdf"
"http://www2.openxpki.org/docs/guide/openca-guide.pdf"
https://pkijs.org/
http://dx.doi.org/10.1007/BFb0054114

	Introduction
	Goals of the Thesis
	Methodology
	Outline

	Background
	X.509 Certificates and Certificate Signing Requests (CSR)
	Public Key Infrastructure X.509 (PKIX)
	PKIX Management Functions
	PKIX Management Protocols

	S/MIME
	Functions
	Certificates

	OpenPGP
	OpenPGP in Operation
	Digital Signatures
	Digital Certificates

	Analysis
	Problem Analysis
	A General Certificate Lifecycle
	A Modified Certificate Lifecycle
	The need for a Certificate Management System

	Related Work
	Enterprise PKI with Windows Server
	EJBCA
	OpenCA

	Requirement Analysis
	Stakeholder Analysis
	Use Case Analysis
	Functional Requirements
	Technical Requirements

	System Design
	A Reliable Design
	System Components

	CMS
	CMS Frontend
	CMS Backend
	Interfacing

	Cryptography and Encryption
	Database Storage
	PKI Infrastructure

	Implementation
	Building Blocks of the Service
	Spring Framework
	Spring Security
	Spring Data JPA
	Web Cryptography API
	PKI.js
	Bouncy Castle

	CMS
	CMS Frontend
	CMS Backend

	Database
	PKI
	Processing Certificates and Requests
	Generation of a Certificate Signing Request
	Issuing Certificates
	Private Key Backup
	Signing OpenPGP Keys
	Recovering Private Keys

	Evaluation
	User Registration
	Certificate Request
	Certificate Approval
	Certificate Issue
	Certificate Enrolment
	Certificate Distribution
	Certificate Modification
	Certificate Renewal
	Certificate Revocation
	Certificate Expiration
	Summary of the results of the evaluation

	Conclusion
	Future work
	Key Pair verification on the Server-side
	Backup and Disaster Recovery
	Recovery Operators

	Bibliography

