
Department of Informatics
Technical University of Munich

TECHNICAL UNIVERSITY OF MUNICH

DEPARTMENT OF INFORMATICS

INTERDISCIPLINARY PROJECT IN ELECTRICAL ENGINEERING IN

INFORMATICS

Extension of the virtual iLab-Isle

Lars Wüstrich

Technical University of Munich
Department of Informatics

Interdisciplinary Project in Electrical Engineering in Informatics

Extension of the virtual iLab-Isle

Erweiterung der virtuellen iLab-Insel

Author: Lars Wüstrich
Supervisor: Prof. Dr.-Ing. Georg Carle
Advisor: Dr. Marc-Oliver Pahl

Stefan Liebald, M. Sc.

Date: August 31, 2018

I confirm that this Interdisciplinary Project in Electrical Engineering is my own work
and I have documented all sources and material used.

Garching, August 31, 2018
Location, Date Signature

Abstract

The virtual iLab isle – also called vLab – is a virtualization of the physical iLab isle that is used
as part of the practical courses iLab1 and iLab2 at the Technical University of Munich. In the
interdisciplinary project, the vLab is extended in order to make it more usable for students of
the newly created Massive Open Online Course (MOOC) "iLabX". In order to achieve this goal,
the vLab Control Center (VCC), a graphical user interface that integrates the content of the
MOOC into the vLab, is implemented. In addition to that the VCC is offering the possibility
for students to directly provide feedback to the instructors either into a forum that is hosted
on edX – the platform where the MOOC is also located at – or to report bugs that occurred to
the creators of the course directly. Another effort to make the system more usable is to remove
unneeded software and to integrate new software that is needed throughout the course. Finally,
since this system will be used by a variety of users he according documentation for both the
vLab and the VCC are created. This document explains all design decisions in detail that were
taken during the development of the introduced software. Furthermore it describes how the
vLab was adapted in order to integrate it into the MOOC.

Zusammenfassung

Die virtuelle iLab Insel ist eine Virtualisierung der physischen iLab Inseln welche in den Praktika
iLab1 und iLab2 eingesetzt werden um inhalte im Bereich von Computer-Netzen zu vermitteln.
Die Virtualisierung enthält jegliche Möglichkeiten die nötig sind um komplexe Netzwerke in
einer lokalen Umgebung zu emulieren ohne dafür zusätzlich Hardware zu benötigen. In diesem
interdisziplinären Projekt wird die virtuelle Maschine erweitert um sie in einem neu eintwickelten
Massive Open Online Course (MOOC) zu integrieren und einzusetzen. Dazu wird die virtuelle
Maschine um das so genannte vLab Control Center (VCC) erweitert um die Nutzbarkeit für
Studenten des MOOCs zu erhöhen. Das VCC beinhaltet Funktionalitäten die die Inhalte des
MOOCs integrieren und aktuell halten und bietet den Studenten die Möglichkeit Feedback ohne
Umwege an die Veranstalter des Kurses zu liefern. Ein weiterer Schritt um die Nutzbarkeit
zu erhöhen ist die Beseitigung von nicht verwendeter Software sowie die Integration von neuer
Software die von Teilen des Kurses benötigt wird.

Contents

1 Introduction 1

2 Analysis 3
2.1 Previous Work . 3

2.1.1 The physical iLab-Isle . 3
2.1.2 The virtual iLab-Isle . 4

2.2 Integrating the vLab to the MOOC . 5

3 The vLab Control Center 9
3.1 Technology used for building the VCC 10
3.2 Distributing news . 13

3.2.1 Self hosted . 14
3.2.2 Third party hosted . 15

3.3 Caching information locally . 15
3.3.1 Persistent information . 16
3.3.2 Transient information . 19

3.4 Starting local applications . 21
3.5 Feedback channels . 22
3.6 Evaluation of the User Interface . 23
3.7 User survey . 26

4 Hardening the vLab 29

5 Tutorials 31

6 Conclusion and Future Work 33

7 Appendix 35

Bibliography 39

List of Figures

2.1 Schematic of a physical iLab isle . 4
2.2 A picture of the vLab-OS with an open CORE session as shown in [16] . 6

3.1 Selection of a Week in a prototype of the VCC written in Python 11
3.2 Selection of a Week in a version of the VCC that is based on Electron . 12
3.3 Twitter feed that is integrated into the VCC 16
3.4 Structure of the Git repository used for distributing the setup files . . . 17
3.5 Branch selection . 18
3.6 Example of a lab description . 18
3.7 Procedure when the VCC requests data that is served by a Service Worker 21

List of Tables

3.1 Advantages and disadvantages of Python and Electron 13
3.2 Overview of which Nielsen’s usability heuristics are violated by the VCC 26

Chapter 1

Introduction

After some time on the sideline, Massive Open Online Courses (MOOCs) have taken
over public attention. There are MOOCs for any subjects and fields, starting from Music
Production to Software Engineering. Many courses are created by institutions like Har-
vard, Berkeley, Stanford and Georgia Tech. Some of those Universities are even offering
degrees that can be obtained without ever physically attending a class [19] [10]. Even
though most of the platforms where such MOOCs are hosted offer lots of options to test
the content that is being taught, many courses in the field of computer networks only
teach theoretical aspects and lack practical applications. In 2016, the Technical Univer-
sity of Munich (TUM) has also begun to add some new Online Courses for the online
platform edX, one of the leading platforms for such courses. One of these newly devel-
oped courses is called "iLabX". It aims to teach both the theoretical and the practical
parts of basic networking. These basics include the concepts of addressing on different
layers of the the communication stack or explain how routing between different devices
work. In contrary to the approach that most MOOCs in this field are taking, iLabX
tries to teach the theory and has students practice the taught knowledge. In order to
enable students to solve the tasks given in the practical part, a specifically for the course
developed environment. This environment is capable of simulating network setups that
are needed to demonstrate how the concepts that are taught in the MOOC work. The
current version of this environment provides most of the needed functionality that is
required to complete the tasks from the MOOC but has some deficits with regards to
usability. This project aims to improve the usability of the environment such that users
of all skill levels can make of it. To maximize the usability of the environment, content
from iLabX should be directly integrated into it.

Chapter 1: Introduction

The project is split into the following parts: First of all, the existing version of the
environment needs to be assessed such that existing bugs can be found and be fixed.
Afterwards, the environment is supposed to be extended by the vLab Control Center
(VCC), an application that integrates the content of the MOOC into the environment,
which should to make it easier for students to work on the exercises, get the latest news
and to give feedback to the course instructors. In order to see what requirements the
VCC must fulfill to make the vLab more usable, an analysis of the existing system is
done in Chapter 2. Afterwards, the implementation of the VCC and how it fulfills the
specified requirements is explained in Chapter 3. This Chapter also includes an evalu-
ation by applying commonly used heuristics to the VCC to measure the quality of its
usability. In Chapter 4 it is discussed, how the vLab got changed in order to provide
the necessary functionality to the students as well what changes needed to be made to
ensure that programs run without crashing. Finally, in Chapter 5 it is described what
tutorials are available and where they can be found. The final Chapter 6 evaluates
how the new version of the vLab has improved and what can be done in the future to
enhance the user experience even more.

2

Chapter 2

Analysis

One of the main features of the MOOC iLabX is that it aims to teach both the theoretical
and the practical aspects of networking. In order to make this possible in the scope of
an online course, the physical isles of the practical courses iLab1 and iLab2 have been
virtualized. Section 2.1 describes the current state of the virtual environment.

2.1 Previous Work

In Section 2.1.1 the original physical isles are that have been virtualized introduced. The
resulting virtualization that has been developed before is described in 2.1.2. Finally,
the requirements that are needed to integrate the vLab into the MOOC are explained
in Section 2.2.

2.1.1 The physical iLab-Isle

The physical iLab-Isles were originally created for a practical course iLab1 that is offered
at Technical University of Munich. This course teaches different aspects of networking.
Topics include routing and different network protocols that are used in the context of
networking. In order to teach the different aspects of networking, the course uses a
concept that imparts the knowledge in three parts. The first two parts – a lecture and
the so called PreLab teach the theoretical aspects of the content. In the third part –
the Lab – the physical iLab-Isle is needed to show the concepts work in practice. The
physical iLab-Isle consists of six Linux computers where three of them are connected
to a display and a keyboard. These computers can be connected to two switches and

Chapter 2: Analysis

Figure 2.1: Schematic of a physical iLab isle

two routers. During a Lab, students use cables to connect the devices to set up a
specific topology of a network that is used to demonstrate how specific mechanisms
work through different examples.

A schematic of the described environment that is given to iLab students can be seen in
Figure 2.1. The operating system running on the computers of the isle is called iLab-
Operating System (iLab-OS) which is based on the Linux distribution Debian. To fit
the needs of the practical courses it has been heavily customized. This customization
included stripping out programs that were not needed to complete the tasks while other
software packets were added such that students can configure the computers accord-
ingly without having to install additional programs. Even though the system has been
changed, it still offers a familiar environment to work in.

2.1.2 The virtual iLab-Isle

In a preceding interdisciplinary project [16] the environment of the physical iLab-Isle was
virtualized into a single virtual machine – the vLab. Since the vLab is a virtual machine
it can be run on many computers. It is provided as an image that can be imported into
VirtualBox, an application that is capable of virtualizing an operating system within
another operating system. This means the vLab can be run as an application on many
computers that have processors based on x86 technology [18]. Since VirtualBox exists
for the three majorly used operating systems Windows, Linux and macOS the vLab can
be used by a large audience of users, independent from what operating system they use.
Using a virtualized operating system also has the advantage that the guest operating

4

2.2 Integrating the vLab to the MOOC

system is isolated from the system that is running VirtualBox. This means students can
not do any harm to their own operating system while working within the vLab. After
importing the vLab into VirtualBox, it can be started without any further installation
steps. After starting the vLab, the user is presented with a Linux environment. Since the
vLab is based on the earlier introduced iLab-OS, it comes with preinstalled software that
is related to networking. Tools like Wireshark are accessible directly from the sidebar.
The main functionality that is used in the vLab is the Common Open Research Emulator
(CORE)[1][2]. The CORE application makes it possible to emulate complex networks
within the vLab. To achieve this, CORE session can create isolated containers that can
be used as if they were real computers. The containers that are part of the setup can be
connected via simulated cables to each other. In addition to that, CORE is also capable
of emulating switches, hubs and routers that can also be used in a setup. Therefore,
except for the WiFi capabilities, the same setups that can be constructed with the
physical isle, can also be created within CORE without the need for special hardware.
Since CORE has no physical limits like the physical iLab-Isle even more complex setups
can be created within CORE. Each container can be accessed by a shell, as if a SSH
connection was established to it via the Internet. In addition to that it is possible to
run applications on each container and configure it independently from the others. A
picture of the vLab with a started CORE session can be seen in Figure 2.2. In addition
to that CORE has been adapted such that Wireshark can be started directly on each
of the containers without using the shell but by clicking on the container in CORE and
then selecting the program to launch it. In this IDP the vLab is integrated into iLabX
as an external tool such that students participating in the online course can also do
practical tasks without requiring any special hardware.

2.2 Integrating the vLab to the MOOC

The aim of this IDP is to integrate the environment described in 2.1 into the MOOC.
Since this course is not only targeted at people who are familiar with Linux environments
but also to students of other skill levels, the vLab needs to be improved with regards
to usability. In this section it is discussed what is required to achieve this. Similar to
the iLab course, iLabX is split into a theoretical and a practical part. The vLab is only
used throughout the practical part of the MOOC. In order to teach the practical aspects
of the course, each part has a corresponding setup that can be imported and started
in CORE. Students that are using the vLab provided by [16] need to download these
setups, import them into CORE and then start a CORE session. This procedure is
error prone since it has many steps that can fail. For example, students could download

5

Chapter 2: Analysis

Figure 2.2: A picture of the vLab-OS with an open CORE session as shown in [16]

the wrong setup or fail to import the setup into CORE. In case students download all
setup files at the beginning, they need to check if the files have changed throughout the
course and need to keep them up to date. In order to make the vLab more usable these
files should directly be integrated into the virtual machine and updated accordingly. In
addition to that, to make to system more accessible to users that have not used a Linux
environment before, the process of setting up the environment should be shortened and
made more straightforward. During a run of the MOOC, the instructors of the course
also make announcements about changes or give out information about changes through
specific channels. In order to stay informed students need to check these channels by
themselves. Since the provided channel is not integrated into edX, announcements may
stay unnoticed by students. In order to make it easier for students to know about
latest changes without having to check an external source, the channel should also be
integrated into the vLab. Finally, since all students that take part in iLabX need to use
the vLab it is important that all software that needs to be used runs without crashing
and is available to students without any further installations. In case that students
encounter problems or bugs they should have the possibility to inform the organizers
through defined channels about these. In order to answer most of the questions before
they occur, users need to be able to read about the functionality and potential problems

6

2.2 Integrating the vLab to the MOOC

in some specified documentation. This has also the advantage that most of the problems
that may arise during the course and have already been resolved in the documentation,
do not have to be answered by the staff again. This results in the following requirements
that need to be fulfilled in order to make the vLab more usable such that it can be
integrated into the MOOC.

The first requirement that needs to be fulfilled is the integration of content from the
MOOC into the vLab (R1). In order to achieve this, setup files that are needed for
the practical tasks should be automatically downloaded and kept up to date within the
vLab (R1.2) such that students can directly use them without having to download the
files by themselves. The procedure to set the environment up should be simplified such
that students can start working on the problems of the course with as few effort as
possible (R1.1). In addition to that, the channel that is used by the instructors to make
announcements to the students of the course should also be directly integrated into
the system (R1.3) to make the distributed information more accessible to the students.
Finally, students should also be able to give feedback from within the vLab. Therefore a
channel has to be implemented that makes it possible to report and ask related questions
directly from the system (R1.4). Since students might use the vLab on a machine that
is not always connected to the Internet, the functionality described above should also be
provided even when it is offline (R1.5). Since all of the requirements that are included
to (R1) are related to the MOOC it is reasonable to provide the functionality within
a single application that is running in the vLab. This application is called the vLab
Control Center (VCC) and implements solutions that fulfill (R1). One of the main
purposes of the VCC is to enhance the usability of the vLab for users of all skill levels.
Therefore it does not only need to be functional but also must be easy to use. This
should be achieved by adding an intuitive and fast user interface to the VCC. This
implementation is explained in Chapter 3. Finally, the vLab itself should be stable
and software should run without crashing and should be already provided within the
environment (R2) to make it easier for users to complete the course. In order to achieve
this programs that are used throughout the course need to be tested for compatibility
with other programs already present in the environment. In addition to that it has to
be made sure that also customized or self-implemented tools are available to the users
without requiring them to install additional software. These changes are described in
Chapter 4. As mentioned before, new users to the system need documentation (R3) to
be able to use all the provided functionality. This documentation needs to inform users
about different features of the environment as well solutions to common problems that
can occur when using the vLab. The realization of (R3) is explained in Chapter 5.

7

Chapter 2: Analysis

The requirements explained above are listed in the following:

(R1) Integration of MOOC Content

(R1.1) Starting of the CORE setups with as few effort as possible

(R1.2) Integration of the latest iLabX setup files

(R1.3) Integration of news and announcements that are related to iLabX

(R1.4) Channel to report bugs and ask questions

(R1.5) Offline usability

(R2) Stability and completeness

(R3) Documentation

8

Chapter 3

The vLab Control Center

The vLab Control Center (VCC) is the main extension of the vLab to integrate the
virtual machine into iLabX. Its main purpose is to improve the usability of the vLab
for students that take part in the online course by integrating relevant content into the
virtual machine and making it easier to use the environment. This should be achieved
by implementing the functionalities that are described in Chapter 2.2. Before these
features can be implemented it is important to consider what technologies can be used
to realize the VCC. In order to improve the usability even more, all these requirements
need to be implemented while using a fast and intuitive user interface. In order to
realize (R1), the VCC must be able to do the following things:

1. Receive information from specified endpoints on the Internet

2. Cache data locally such that the VCC is still functional when no Internet connec-
tion is available

3. Open local applications that are installed on the machine

4. Display information from the edX forums

5. Send feedback data to a provided backend

6. Provide a fast and intuitive Graphical User Interface

In this chapter it is described how (R1) is realized within the context of the VCC. Section
3.1 discusses different possibilities for the technologies that can be used to implement
such a program. After this, Sections 3.2, 3.3, 3.4 and 3.5 discuss how the different
features that are required for fulfilling (R1) are implemented. Finally, the user interface
is evaluated with regards to usability in Section 3.6.

Chapter 3: The vLab Control Center

3.1 Technology used for building the VCC

There are lots of different technologies available to realize an application like the VCC.
Before the VCC was implemented the two technologies discussed in the following were
considered:

1. Python 3 with PyQt

2. Electron

Since the VCC is supposed to be a local application that is running in the vLab, it makes
sense to consider a programming language that is directly integrated into the system
and does not need any additional installations. One of these is the Python programming
language[11]. "Debian is the largest integrated Python distribution"[12], which means
that the language is directly integrated into the vLab since it is based on Debian. It is a
high-level language that is also capable of object orientated programming. It is widely
used and has applications in many different scientific fields. Therefore, lots of modules
exist that provide solutions for many problems. These modules can be imported to
make the implementation of the features in the VCC easier. An implementation of the
VCC therefore would not require additional software that needs to be installed in order
to run in the vLab. Since Python is already integrated into the system the chances for
compatibility issues are very low since all software that is included in a Debian image
is tested extensively with these regards before. Another advantage of using Python for
implementing the VCC is that it is a scripting language. This means one does not have
to compile the finished application into an executable file. It is sufficient to store the
code for the VCC directly in the file system of the vLab instead to be able to run the
application. As mentioned above, there are lots of modules that can easily be imported
into a Python project. By using this lots of functionality, like methods for networking
or executing commands in a shell, can be imported with little effort. A VCC that is
written in Python therefore could simply use existing modules to start applications,
store data in the file system or fetch data from a source on the Internet, making it easy
to implement features 1,2,3 and 5. In addition to that information from edX can be
received via the provided API with reasonable effort. As it can be seen using Python
to implement the VCC can have a lot of advantages.
On the other hand it has limitations when it comes to building graphical user interfaces.
Even though there are also modules like PyQt that make it possible to create user inter-
faces, it is really hard to create a modern environment with the given tools. Even when
this succeeds it is hard to extend the interface easily when new functionality is added to
the system that also needs to be integrated into the user interface. Another drawback

10

3.1 Technology used for building the VCC

Figure 3.1: Selection of a Week in a prototype of the VCC written in Python

of using the Python language is the lack of support for integrating web content. To be
able to render websites within a user interface that is implemented in Python an addi-
tional webkit needs to be installed. Those webkits are often out of date and lack the
support for the latest web technologies like JavaScript ES6. This may result in content
that is not displayed correctly or not at all. This functionally is needed in the VCC to
integrate edX directly into the application. Despite all of this, a first prototype of the
VCC was developed in Python. This prototype was capable of displaying news and the
descriptions of different parts as well as starting CORE with the corresponding config-
uration. In Figure 3.1 it is shown how this prototype looked like when a week to work
on was selected. It can be seen clearly that this interface is functional but is lacking
the look of other modern applications. Therefore as a second alternative, the Electron
framework [4] was considered. This framework makes it possible to create desktop ap-
plications by using web technologies like HTML, CSS and JavaScript. Some prominent
examples for applications that are implemented using Electron are the Atom text editor
or Visual Studio Code. This applications demonstrate that it is possible to develop
functional desktop applications with Electron. Since Electron is written in JavaScript
it is necessary to install additional software in the vLab to be able to run a VCC based
on this technology. This includes dependencies needed to run Electron as well as the
application itself. One advantage of using Electron, and therefore web technologies,
for implementing the VCC that JavaScript is also commonly used [17]. Therefore also
many modules exist that can be used to provide lots of functionality without much ef-
fort. Using modules to provide functionality also often has the advantage that popular

11

Chapter 3: The vLab Control Center

Figure 3.2: Selection of a Week in a version of the VCC that is based on Electron

modules contain less bugs than a self-implemented version of the feature. One draw-
back of using web technologies is that most of the functionality provided in modules is
aimed at the use in web browsers and not made for desktop applications. Even though,
there are modules that make it possible to execute shell commands. Therefore it would
be possible to implement all the needed functionality like running applications in the
vLab control center. Another advantage of using Electron is the built-in web kit it
comes with. This makes it easy to integrate edX directly into the VCC as it can render
the websites like they were normal parts of the VCC. In addition to that, when using
HTML, CSS and JavaScript to build the VCC it is possible to design fast and modern
user interfaces. An example for this modern interface can be seen in Figure 3.2 where
also a Week/Part of the course is selected to start the corresponding setup.

As it has been discussed before, using either Python or Electron for realizing the VCC
has advantages and disadvantages. One reason to use Python would be that it is directly
integrated into the vLab since it is based on Debian, the largest distribution that directly

12

3.2 Distributing news

integrates the programming language. In addition to that Python comes with lots of
modules that make it easy to add the required functionality to the VCC. The major
drawback of Python is that it is hard to create modern user interfaces that can also
be easily changed afterwards when some of the functionality changes. In addition to
that python lacks the support of reliably integrating web content as there are no web
kits available that support the latest web technologies. This is where Electron has its
advantages. Since it is a technology that makes it possible to create desktop applications
by using JavaScript, HTML and CSS it is easy to directly integrate whole websites into
the application. Since JavaScript is also widely used there are, like in Python, a lot of
modules that can be used to add functionality to the VCC. Even though these are mostly
limited to the usage of the browser, some of them provide the functionality needed to
issue shell commands, making it possible to implement solutions for the functionality
that requires interaction with the vLab. These advantages and disadvantages can also
be seen in Table 3.1.

Advantage Disadvantage
Python Integrated in the VM Webkits not working properly

Many modules available GUI hard to develop
Lightweight

Electron Webkit integrated Additional Software needs to be installed
UI can easily be created
Many modules available Most modules limited to browser

Table 3.1: Advantages and disadvantages of Python and Electron

After studying the pros and cons the Electron outweighs Python since it makes it easier
to create intuitive and fast user-interfaces, even when this comes at the cost of having to
put more effort into the features that require interaction with the vLab. In the following
subsections it is explained how the different features of the VCC are implemented in
order to fulfill (R1) identified in Section 2.2.

3.2 Distributing news

The first feature that is implemented in the VCC is (R13), namely the integration of
news and announcements that are related to iLabX. In order to fulfill this, the VCC
needs to fetch the content from an online source and display the content accordingly.
News and announcements can have different structures depending on the type. For ex-
ample, they can be consisting only of text, but can also include pictures or videos. Before
this data can be integrated and displayed in the application, it needs to be distributed.

13

Chapter 3: The vLab Control Center

Of course there are many different ways to distribute data. In this documentation the
different possibilities are divided into two categories that can be used to distribute data:

1. self hosted and

2. third party hosting options

The advantages and disadvantages of these options are be described in the following
subsections.

3.2.1 Self hosted

The first possibility is to host services by yourself. This has the advantage of being
in full control over the content that is distributed. One can decide which content is
shown and who can access the data. In addition to that, one can decide how the data is
displayed to the users. This comes at the cost of having to maintain the corresponding
resources that are necessary to make the data accessible to others. The servers hosting
the service need to be maintained, kept up to date and have to be hardened such that
they are not vulnerable to external and internal attacks. Generally, self-hosting a service
can be a complicated task.

When deciding to use a self-hosted way to distribute news and announcements, the
following two options were considered – using an already existing blog or hosting a RSS
(Rich Site Summary) feed. Using the blog located at vlab.net.in.tum.de would have
the advantage of using a service that is already set up. In addition to that using this
method would not introduce more maintenance overhead for a new service. On the other
hand, using a blog platform is not a good format to distribute news as the format of a
blog post differs from news entries. Therefore this approach was discarded. The second
possibility considered for a self-hosted service was to set up a RSS-feed. The RSS format
is often used to inform subscribed users about any updates or changes of the source that
has set up the feed, e.g. a website. RSS feeds follow a strictly specified format [13] that
is a flavor of the XML language. Another advantage of using RSS is that since it follows
this straight forward format, hosting it is not complicated. It is sufficient to display the
corresponding XML file that contains the news and announcements as items in order to
set it up. Users then can get the information by either accessing the file directly or using
an RSS reader. Finally, there are also modules that can be imported in JavaScript that
are able to parse RSS feeds to further process and display the data. This can be used
in the VCC to integrate this feature into the vLab. Another advantage of using RSS
is that it is fully opt in. This means only people who want to receive the information
can subscribe to the feed. Since the feed is available from a source outside of the vLab,

14

vlab.net.in.tum.de

3.3 Caching information locally

they can also subscribe to the feed on other devices than the vLab. This also means
that people who are not subscribed do not receive the announcements and can rely on
getting the information delivered into the VCC. A big disadvantage is that maintaining
the RSS feed without additional tools adding new announcements can be a tedious task
since every time, the XML has to be edited by hand. In addition to that, the kind of
information is limited to text and links by default, making it hard to integrate videos
or images directly into the feed.

3.2.2 Third party hosted

As an alternative to hosting the service that distributed news and announcements on
your own, one can also rely third parties to provide the needed infrastructure. This has
the advantage of not having to set up the infrastructure and maintaining and hardening
the service against malicious use. This comes at the cost of not being in full control
over how data is displayed and how long it stays available. This is all decided by the
provider of the service. On the other hand, those services are often more convenient to
use and provide interfaces to both create and receive content, making it easy for the
creators and the students of iLabX to send and receive the announcements. One of
these services is Twitter [7], an online service that lets users interact with each other
by using so called tweets. Those tweets are small messages that can also contain videos
and images and are publicly available. Similar to RSS feeds, tweets of a single user
can be displayed as a single stream of tweets. Twitter therefore combines having a
singe public source for distributing data without having high maintenance costs of the
infrastructure and provides an easy to use interface for both students and creators.
Another advantage of using Twitter over RSS feeds is that the information is displayed
in a modern way without having to use additional software. In addition to that, the
corresponding Twitter-feed can easily integrated into the VCC by integrating the page
into the application. An example for this can be seen Figure 3.3. Therefore, Twitter is
used to distribute news and announcements that are related to iLabX.

3.3 Caching information locally

There are two types of data that need to be stored in the vLab. The first type is
persistent information that needs to saved in the file system of the vLab so other ap-
plications can access and process it. This information can be setup files or information
about the labs of the MOOC. Those files rarely change over time but need to be kept
up to date to ensure all students are working within the same environment. The other

15

Chapter 3: The vLab Control Center

Figure 3.3: Twitter feed that is integrated into the VCC

type of information was described in Section 3.2 – News. News and announcements do
not need to be stored persistently in the vLab, as they are not processed or accessed
by other applications than the VCC itself. In contrary to the first type of data, news
and announcements tend to be updated more often. Since both types of information
have such different characteristics, it is reasonable to have two different mechanisms for
storing the data locally and keeping it up to date. These two mechanisms are described
in the following subsections.

3.3.1 Persistent information

The first type of information that should be stored in the vLab can also be considered
to be persistent data. This is because the files containing the information need to be
stored in the local file system such that they can be accessed by applications in order
to be used. One example for these files are the CORE setup files that configure the
environment for the different labs. Since these files do not change very often over time, it
is reasonable to look at mechanisms that download the files to the local file systems and
only update them when they are changed. The first mechanism that was considered was
a self implemented version of a procedure which ensures that the latest version of a file
is in the local system. After downloading the files onto the system, the mechanism needs

16

3.3 Caching information locally

Figure 3.4: Structure of the Git repository used for distributing the setup files

to check regularly if the file at the source has been updated. In case of a modification,
it modifies the file with the corresponding changes. In case nothing changed, nothing
is done. Even though it is not hard to implement this functionality, there is already an
established tool that does exactly this – Git. This well documented and commonly used
tool already implements the needed functionality. Moreover it can be used by issuing
shell commands, making its integration into the VCC straightforward. In addition to
that it can easily be used in conjunction with GitHub [5], a service that provides the
needed public backend for free. Therefore it makes sense to use Git over some self-
hosted and self-implemented caching mechanism. The structure of the Git repository
is described in the following. In the master branch there is single file that contains the
names of available branches. Each branch represents a run in the MOOC and contains
the content of the run. When starting the VCC for the first time, students need to choose
the corresponding branch that represents the run they are in to continue. Each branch
then contains the setup files for CORE and descriptions of the labs that are displayed
in the VCC. Using this structure has the advantage that students from different runs
can still access the setups they were using when they completed the course, even when
some other run is currently active. This structure can also be seen in Figure 3.4 while
Figure 3.5 shows the dialog that students are presented with in the VCC in order to
select their branch. As mentioned before, each branch contains both CORE setup files
and descriptions of each lab that is displayed in the VCC.

The description of each lab is delivered in a file which contents are in the JSON format
that is then processed by the VCC to display the lab accordingly. The content of each
JSON file defines how the corresponding lab is presented in the VCC. This gives the
instructors of the course different possibilities to influence how the VCC looks like to
the students and to unlock content at a later point in the course. In order to make
this possible, the description of each lab has the same structure. Each JSON file has
a week, available, description and background key that can be set individually. The

17

Chapter 3: The vLab Control Center

Figure 3.5: Branch selection

{
"week": "1",
"available": "True",
"description": "Signal encoding and Ethernet",
"background": "#51A8F9"

}

Figure 3.6: Example of a lab description

week key is used to associate the JSON to a specific part that is displayed in the VCC.
In addition to that, instructors can indicate whether the lab should be available. In
case the availability is set to true, the description is displayed in a field where the color
matches the one set in the background key. In addition to that the VCC adds a button
where students can start the corresponding lab with the click of the according button.
In case the availability is set to false, this button is not added and the selection of the
part shows a message that the lab is not available yet. An example of such a JSON
description can be seen in Figure 3.6.

Another advantage of delivering content in this way instead of having it preinstalled in
the vLab is that the content can be fully controlled by the organizers of iLabX. This
means they can update setups throughout the course or make the content available at

18

3.3 Caching information locally

some later point by adding and pushing it to the Git repository. With the proposed
mechanism, students always have the correct version of the content to work with. The
only problem that arises is when students modify the files. In this case a simple git pull
is not an ideal way as this command tries to merge changes. To tackle this obstacle,
all modifications that are done by students to the configuration files are overridden. In
order to do so the following procedure is executed. In the beginning, the HEAD is reset
to the latest local push that was received, thus deleting all modifications. After this is
done, a normal pull can be performed to update the files to the correct version. One
draw back of delivering the configurations over Git is that the VCC needs an Internet
connection at the first start-up in order to download the files. This is a general problem
that arises with every solution that relies on getting the latest content from the Internet
instead of having it preinstalled in the image of the vLab. Therefore the approach to
use Git to keep the configuration files in the virtual machine seems to be a reasonable
solution.

3.3.2 Transient information

The other type of information that has to be cached locally are news and announcements
so they can be displayed in the VCC. Since they change a lot more often than the setup
files it is unnecessary to store this kind of information in Git. As described in Section 3.2,
news and announcements are distributed via Twitter. Therefore, a mechanism is needed
that caches the content from Twitter in the VCC and displays the latest available content
to the students when accessed. This can be done in various ways. The two methods
considered were (1) implementing an own mechanism that stores the files in the local
file system or (2) using a network proxy called service workers. One advantage of having
a self-implemented mechanism for exactly this purpose would be that it is specifically
designed for this task. This way, the mechanism can be implemented as efficient and
lightweight as possible. On the other hand, implementing such a mechanism requires
more time than using a module that provides most of the needed functionality. In
addition to that, an already existing module may not be as efficient as a mechanism
that is specifically designed for this task, but it can be reused for similar tasks, making
it available for all caching of this type that may be needed in the VCC. Therefore,
JavaScript service workers [14][15] are used to provide this functionality in the VCC.
Service workers are scripts that are running in a browser that can intercept and handle
network request that are being made from the browser. They are therefore working
as a network proxy to the VCC. In addition to that, service workers can provide the
functionality to cache websites in order to provide offline functionality. In order to

19

Chapter 3: The vLab Control Center

achieve this, they run independently from the VCC in a different lifecycle. Until a
service worker can be used, it needs to go through three steps of its lifecycle:

1. Registration

2. Installation

3. Activation

In the beginning, the service worker needs to be registered. Essentially this is simply
telling Electron and the VCC where it can find the service worker which is serving and
caching the content. Whenever the VCC is requesting the content from a website a
service worker is registered for, that request is intercepted by the corresponding service
worker. After a service worker has been registered, the next step is the installation.
This means that the worker is initialized with all its functionality and cache. If the
initialization is successful, the service worker is considered installed. If a service worker
fails to be installed a new installation process is attempted at a later point (e.g. when
the content is requested again). Finally the service worker can be activated. When being
activated for the first time, the service worker loads all the content into the local cache.
Only after that it can be used by the application. Therefore, the content can only be
displayed when the news view is clicked for the second time. After the first activation is
finished, the VCC can fetch data from the service worker. To make sure that always the
latest content is delivered to VCC, the default implementation of service workers needed
some changes such that the most recent content is displayed. In the standard procedure,
content from the cache is displayed to enhance the experience, speed up that process and
reduce loading times. The service worker then tries to fetch more recent content from
the original source into the cache and update it accordingly. In the implementation that
is used for the VCC, the service worker first tries to get the content from the source on
the Internet and only serves the content from the cache when no Internet connection is
available. This makes sure that the latest news and announcements that are currently
available are displayed to the user. Another advantage of using service workers is that
it provides a caching mechanism that can be used for almost any type of data that is
supposed to be cached in the VCC. This means whenever there is the need to cache
additional content within the application this can be done straightforward. All that
must be done is to register a new service worker. So whenever the VCC tries to fetch
data that is served by a service worker the request does not go to the source on the
Internet directly, but to the service worker that is serving that content (1), as illustrated
in Figure 3.7. In case there is an active Internet connection the service worker request
(2.1) and fetch that content from the Internet source (3.1), store it in its cache (4) and
deliver it to the VCC (4). In case there is no Internet (2.2), the service worker replies

20

3.4 Starting local applications

Figure 3.7: Procedure when the VCC requests data that is served by a Service Worker

with the latest content it has stored in its cache (3.2). Finally, this data can simply be
integrated into the VCC as if it was fetched by a normal request to the Internet (4).
The difference is only that in case there is no Internet connection, the latest content
from the cache is displayed. Therefore the users of the VCC never experience a case
where no news or announcements are displayed in the VCC.

3.4 Starting local applications

After all the latest data that is needed to solve the tasks from MOOC is loaded into the
vLab, the next step is to make it more accessible. News and announcements are directly
displayed in the VCC and also the descriptions of all labs are processed by the labs view.
In order to make it easier for the users to make use of the CORE setup files, the process
of setting up the environment for the labs should be simplified. One example for this is
to have an interface that lets the students choose the week they want to work on and
then start the CORE Emulator in the correct configuration with the click of a single
button. This does not only make the process of setting up the environment easier, but
also eliminates potential error sources during that process. Without this simplification,
students would first need to start the CORE environment. Afterwards students need

21

Chapter 3: The vLab Control Center

to select the correct setup for the week from the file explorer. Finally, the loaded setup
needs to be started before students can actually start working on the given tasks. To
simplify this process, the VCC needs to be capable of starting applications that are
installed in the vLab. Two different ways to achieve this were identified. The first
one involves using the so called IPCMain process. This process makes it possible for
the displayed content to communicate with the main process that is running the VCC.
Using this, special commands and messages can be sent to the IPCMain process that
then triggers certain behavior from the main process, like executing shell commands.
This means that, in order to provide functionality, the source code needs to be changed
at two different locations. The first is functionality that needs to be implemented such
that it can be triggered. This functionality is added in the main process that runs the
VCC. The second change needs to be made in the code of the website itself such that
it can send the according messages to the main process. Instead of taking this rather
complicated and bug prone approach it is also possible to use the functionality directly
from the website itself, eliminating the additional step of using the IPCMain process.
This makes it possible to put all the needed functionality into its own JavaScript files
that can be imported in the views where the functionality is needed e.g. a Git module
that handles all Git operations. This makes it also easier to maintain and extend
the codebase in the future. Finally, using this approach it was possible to reduce the
procedure described before into the click of a single button by starting CORE directly
with the corresponding setup for the chosen lab.

3.5 Feedback channels

The last feature that is required to integrate the VCC into iLabX and to fulfill (R1)
is the implementation of a feedback channel. This channel should give students the
options to provide feedback to the instructors directly from within the vLab. There are
two different types of feedback planned. The first one is textual feedback that can be
given through the edX forums. To integrate this forum, a button has been added to the
VCC from which a new window is opened. This window opens the edX forums page such
that students can ask questions or report issues there. The second type of feedback is
more complicated. In [3] a snapshot functionality has been added to the vLab. This is a
feature that makes periodic snapshots of the running CORE session such that students
can revert to that earlier stage of the vLab in case they do something wrong. This
feature should also be used to report bugs of the vLab to the instructors. Therefore,
next to a view where all the local snapshots are provided, the VCC needs to be capable
of uploading selected files to the provided backend such that the instructors can analyze

22

3.6 Evaluation of the User Interface

and fix the issue. Since the snapshot functionality was not fully implemented at the time
of finishing this project, the corresponding views have been implemented but not been
integrated into the VCC. This needs to be adapted after the feature is fully functional
to fully integrate this feature in the VCC.

3.6 Evaluation of the User Interface

One of the main goals of this IDP was to make the vLab more usable. Most of this
improvements revolve around the VCC. In order to evaluate the design and usability
of the user interface which has been implemented in the vLab Control Center the 10
heuristics established by Jakob Nielsen to evaluate usability are used. Even though
these were introduced in 1995 [8], they are still used today to evaluate user interfaces
of all kinds. The ten heuristics are:

1. Visibility of System Status

2. Match Between System and the Real World

3. User Control and Freedom

4. Consistency and Standards

5. Error Prevention

6. Recognition Rather than Recall

7. Flexibility and Efficiency of Use

8. Aesthetic and Minimalist Design

9. Help Users Recognize, Diagnose, and Recover from Errors

10. Help and Documentation

In the rest of this subsection, the meaning of these heuristics is explained. In addition
to that, the VCC is evaluated on how well the user design has been implemented in
the VCC or if it has violated some of these heuristics. Finally, a user survey has been
conducted to confirm this evaluation which is discussed in the next section.

The Visibility of System Status heuristic is supposed to tell if the user is kept
informed about what is going on in the system via feedback that is shown in a reasonable
time. An example for this could be a specific symbol that is shown when data is
processed. In the VCC there are not many processes that trigger actions that run in
the background. The only process that is not directly visible to the user is the download

23

Chapter 3: The vLab Control Center

of data onto the system via Git. This process is made visible by an icon that indicates
that the VCC is using Git to download the data. This icon appears while the data is
being synchronized and disappears when no download is happening. All of the other
processes that are started appear immediately in sight of the user, e.g. when a lab is
started, CORE appears on top of the VCC. Overall it can be said that this heuristic is
not violated at any point by the design of the VCC. The second heuristic in the list is
the Match Between System and the Real World. This means that the system, in
this case the VCC, should not use any advanced technical terms that are not known by
the users but language and terminology that is easy to understand. In addition to that
the order in that items appear should be logical and follow common conventions. The
VCC therefore needs to be analyzed with regard to those two aspects. The language
used throughout the application is the same language that is used within the MOOC.
All buttons and descriptions are labelled accordingly and there is no additional technical
language that is introduced in the VCC that is not used in the course. In addition to
that the icons that are used in the navigation on the right side were chosen such that
they represent symbols that are used for similar purposes. The only icon that can be
argued about would be the earth symbol that is used to navigate to the lab view. A
better symbol to represent the Lab could be a test tube that represents this view. On
the other hand, it can also be argued that the globe that is representing the Internet
which is the subject of the whole course. The problem with introducing the test tube
as new icon would be, that it has to be designed in a way to fit it into the design of
the other font awesome icons that are used. To make things easier, the globe, which
was already available is used to represent this view. The order of the icons that are
located in the side bar are the following: home, news, labs, help. This is a common
order of these categories. Another option to order the icons would be to put the lab
before the news as it is used more often. This order would be different from the order
that other applications use. The next heuristic is called User Control and Freedom.
This refers to the fact that users could unintentionally use functionality and therefore
need an "emergency exit" from a state they can not continue further from. In the VCC
every action can be undone by a simple click on the icon of the view. In addition to
that, every new window that opens up can be closed without affecting some other part
of the system. Therefore the emergency is implicitly given to the user, even though it
may not be clearly marked. Since this functionality is included implicitly it may not
be obvious to the users and they may not be aware of this. Finally, there is no explicit
button for an "emergency exit" since the interface is designed in such a way that users
can reach all other functionality even when they may have accessed some functionality
by accident before. Therefore, the heuristic is partially fulfilled given that there is an
implicit emergency exit at all times that may not be marked clearly enough at some

24

3.6 Evaluation of the User Interface

times. The Consistency and Standards heuristic is an indicator if an application
follows conventions that are set by the platform. This includes the meaning of symbols
and the placement of these within the application. The VCC uses the same windows
that are displayed for all applications that are running in the vLab. This makes it
consistent with other windows that are displayed within the system. In addition to
that the VCC has its options on the right hand side of the screen similar to the task
bar on the right hand side of the vLab. The icons that are used are, as mentioned
before, consistent with the icons and symbols that are used by other applications for
similar functionality. Therefore the VCC does not violate this heuristic. Very closely
related to this is also the Recognition Rather than Recall heuristic. It means a
user should not be overwhelmed with things that he has to remember but that he can
recognize what to do in order to use certain functionality. This heuristic is complied
with in the VCC as the emphasis for navigating and using functionality is on the use of
icons. Therefore the only thing a user has to remember is behind which icon he can find
the given functionality. This is to make it easier for the user to use the VCC through
recognition instead of having to remember what to find where since the symbols are
already an indicator for the functionality. In some cases the user may encounter errors
which is measured Error Prevention heuristic. It says that the design should be in
such a way that errors are prevented before they occur. In addition to that actions
that can cause errors need to be confirmed by the user before they are executed. In
the VCC, the only action that is error-prone is pulling data from the Internet. Even
though user has no influence on whether this action executed or not, she needs to be
informed that the latest update has failed and the system may not be using the latest
data. In order to achieve this, the user gets a warning in case the operation has failed.
Another heuristic to look at is the Flexibility and Efficiency of Use, which is about
the integration of accelerators for expert users to speed up the usage and the possibility
for users to tailor the work flow for their needs. This heuristic is violated by the VCC
as no such possibilities exist and may need to be added in the future. One possibility
may be to choose a different view than the landing page as the default view, e.g. the
lab view such that the lab environment can be started even faster. Since the interface
of the VCC is rather simple there are not many options for speed up the interaction as
it is limited to four views where all features can be accessed from directly. This simple
design also plays into the Aesthetic and Minimalist Design heuristic which says
that the information that is displayed should be limited to the relevant bits instead of
overflowing the user with too much input to process. The text on the buttons and in the
views is reduced to the needed amount of information. The lab view gives a quick idea
of what the lab is about and descriptions in other views are as concise as possible. At
the moment, users are not supported in the Recognition, Diagnosis and Recovery

25

Chapter 3: The vLab Control Center

Heuristic Violated
Visibility of System Status no
Match Between System and the Real World no
User Control and Freedom partially
Consistency and Standards no
Error Prevention partially
Recognition Rather than Recall no
Flexibility and Efficiency of Use yes
Aesthetic and Minimalist Design no
Help Users Recognize, Diagnose, and Recover from Errors yes
Help and Documentation no

Table 3.2: Overview of which Nielsen’s usability heuristics are violated by the VCC

from Errors that might occur which is also a violation of this heuristic. Even though
this is a problem, this heuristic is according to [9] not one of the most important ones
to measure a good usability. Finally, the Help and Documentation of the VCC are
located on edX where users can find answers in a dedicated section to this as well as a
dedicated section for questions on the edX forum. This has the advantage that users
do not need to remember different places for where they can find answers and solutions
to problems they might encounter. Table 3.2 gives a quick overview of which heuristics
are violated by the VCC.

3.7 User survey

In order to confirm the evaluation of the previous subsection with users, a small user
survey with 13 students was conducted after they used the VCC (and the vLab overall)
as part of a test run of the iLabX course. The survey was composed of 10 questions
aiming at the heuristics discussed above, the questions itself can be found in the Appen-
dix. All heuristics presented in Section 3.6 but Flexibility and Efficiency of Use were
covered by the survey as it is violated completely by the VCC. The results of the survey
are discussed in the following. Like the heuristics, the questions can be divided into
four different categories [6]. The first category describes if the interface meets the users
expectations. It includes the Match the real world, Consistency and Standards and the
Help and Documentation heuristics. 92.3% of the participants felt that the VCC was
only using language that was also used throughout the MOOC. In contrary to that only
on participant of the course thought that the VCC consisted mostly of terms that were
never used before. This implicates that the VCC uses language that is known to the
users and does not introduce new terminology. In addition to that 46% of the users

26

3.7 User survey

said that the VCC is very similar to other applications they use and 31% indicated that
the VCC has still some similarities. The remaining 23% stated that the VCC has few
similarities with applications they use. Therefore it can be concluded that the VCC
follows common standards that are also used throughout other applications. Finally,
77% of the participants of the survey stated that they knew where to find the needed
documentation to solve problems they encountered. The other 23% reported that they
did not know where to find information that can help solve their problem. No student
indicated that she did not know where to find the documentation at all. This gives
insight that students were aware of where to find information but does not give insight
into the quality of the documentation that exists. As mentioned before, the amount of
existing documentation is not sufficient at the moment, making it necessary to extend
it in the future.

The next category is about how much the user is kept informed and how much he can
influence the actions that are executed by the VCC. The heuristics that are in this
category are User Control and Freedom, Visibility of System Status and Flexibility and
Efficiency of Use. For the User Control and Freedom, users were asked if they were aware
that they could always or most of the time redo actions if they did something wrong.
12 out of the 13 students reported they could always redo things in case they clicked
something wrong with one student reporting that this options was totally missing. It
therefore can be said that to most users it seemed to be clear how to get out of a
stale state even when the explicit "emergency exit" was missing. In order to improve
on this, an explicit "back" button could be added in the future to the VCC. Using the
heuristic Visibility of System Status, 53.8% of the students stated they were aware of
what actions of the VCC were executed all of the time while 38.5% indicated they were
aware of ongoing processes most of the time. Only 7.7% of the students stated they
were not aware of the processes that were going on most of the time while no user was
not aware of anything that was executed by the VCC. As mentioned before, there was
no question regarding to Flexibility and Efficiency of Use since there are no options to
customize the user experience within the VCC in the current version.

The third category revolves around how error handling of the VCC. The three heuristics
that can be put into this domain: Error Prevention, Recognition Rather than Recall,
and Help Users Recognize, Diagnose, and Recover from Errors. This topic is covered by
two questions. The first one asked if the amount of information after an error occurred
was sufficient. This was confirmed by 6 out of the 13 students. Two students said they
were presented with too much information while the remaining 5 students indicated
that they were missing crucial information to understand what the nature of the error
was. This is supported by the second question in this field that asked if students were

27

Chapter 3: The vLab Control Center

told what went wrong in case of an error. Only 38.5% of the users knew what caused
the error and another 46.2% were partially aware of what happened. This indicates,
that the VCC’s capabilities of reporting errors can be improved in the future which was
also found by the evaluation done in Section 3.6.

The final domain is about how simple the design of the VCC is which is represented by
the Aesthetic and Minimalist Design heuristic. In order to gain more insight over how
satisfied the users were with the design of the interface they were asked two questions.
The first one was about how well they could get used to the VCC in order to be able to
work with it. 76.9% of the students stated that it was very easy to get used to the VCC
while the other 23.1% said it was fairly easy to use the VCC. No student said it was
hard to interact with the system. Finally, students were also satisfied with the amount
of information that was displayed within the VCC with 11 out of the 13 students stating
it contained the perfect amount of information and two of them indicating they were
presented with too much information. Overall the survey reflected most of the points
that were mentioned before and are listed in Table 3.2. The only difference is that users
were more satisfied with the documentation and with regards to the User Control and
Freedom heuristics. Finally, it can be said that the participants were satisfied with the
interface of the VCC. This concludes how the vLab Control Center was implemented
as part of this project.

28

Chapter 4

Hardening the vLab

A minor, but also important part of the project was the hardening of the vLab with
regards to stability in order to fulfill (R2) described in Chapter 2. This is required
to make it possible to work through tasks that are part of iLabX. Since the vLab is
tested as part of [3], the main focus lies on making it possible to do the tasks given in
iLabX. Most of the errors encountered in this aspect was with regards to the CORE
emulator. The first major issue that occurred was that it was not possible to open a
shell on hosts within a running CORE setup when using SSH to connect to a container.
This is necessary as students might want to connect from one container to an other
container directly via SSH and not via the vLab as host system. This problem was
caused by the devpts virtual file system that was not mounted in the CORE containers.
This file system is needed to spawn "pseudo terminals" (also short pty) that enable a
Linux environment to open terminals that are not directly connected with hardware
like a keyboard or mouse to provide input. To be able to open a shell via SSH on the
CORE containers it was necessary to add a corresponding entry in the file system in the
fstab file that then needs to be mounted by every container in the CORE setup in order
to enable SSH on them with the command mount -a. This error occurred since each
CORE container does not use a so called initialization system like systemd in order to
initialize such file systems to make such operations possible. Therefore devpts had to
be mounted manually.

Another critical point that needed to be fixed before the MOOC could start was the
possibility to run Firefox reliably via X forwarding. Firefox crashed regularly when
opened with the ssh -X <host> "firefox" command. The reason for that is related to
the Xorg display server as there are issues with the connection to the correct DISPLAY
environment that is used within the vLab. Most of these crashes could be prevented

Chapter 4: Hardening the vLab

by explicitly setting the DISPLAY variable in the command resulting in the following:
ssh -X <host> "env DISPLAY=:0 firefox". This spawns a new Firefox session on that
host that is be displayed in the vLab. The next problem that occurs is that if there
is a second instance of Firefox that is already running in the vLab, both sessions are
connected. This behavior is not intended as it has some side effects on the IP addresses
that are used within CORE when websites that are located on other containers are
accessed. In order to prevent this it is possible to spawn an isolated Firefox session
one has to use the "no-remote" argument. Therefore, the resulting command is ssh -X
<host> "env DISPLAY=:0 firefox -no-remote". On a few occasions it can still happen
that Firefox crashes on the first start up but restarting the browser solves this problem.
To be able to correctly render websites that are hosted on other CORE containers, some
Firefox-settings needs to be pre-configured. This can be done by placing corresponding
files in the vLab file system when building the image. The corresponding file is located
in the "/usr/lib/firefox-esr" where the multiprocesses need to be disabled in order to
display the websites correctly.

In addition to these special configurations some packages were removed in order to
make the resulting image of the vLab smaller. This included the removal of a second
browser and other software such as the Libre Office Suite that is not needed throughout
iLabX. On the other hand self-implemented software was added to the system. These
additions include the VCC and some custom scripts that are capable of generating
specially crafted packets that can be sent to other hosts. Moreover, we composed the
corresponding man pages for these self-implemented programs and added them to the
man database. Finally, in order to make the setup file for the final part of the MOOC
smaller, the contents for web server were added into the vLab.

Overall it can be said that the environment by [16] was already very stable and there
were not many bugs encountered that had to be fixed as part of this project.

30

Chapter 5

Tutorials

Since the vLab is used as part of a Massive Open Online Course it is also used by
an audience that is not familiar with the system. In order to make all features of the
vLab accessible they need to be documented. The documentation that is provided to
the users of the vLab is currently hosted on edX. This is reasonable, since most users
that are using the vLab are also participants of the course iLabX. In order to make the
information more accessible to those users, it therefore does make sense to integrate the
documentation of the vLab into the platform of the MOOC itself instead of providing
another source to host the content. The documentation contains both information about
how to set up the vLab as well as how to use the functionality delivered by the vLab.
The first section of the documentation is about how to install the environment with
VirtualBox. This is then followed by a short introduction about what functionality
is provided by the environment. In order to integrate the MOOC into the vLab, the
VCC has been added to the system. Its features are explained in the next section of
edX. It contains brief information about how to choose the correct branch and how
each view of the vLab works. The last two sections are about CORE and the Linux
environment itself. The first section about CORE contains information how to access
the containers in a running setup and how to change the appearance of the setup by
displaying interfaces or IP addresses. The section about Linux contains a brief tutorial
on how to get started in a Linux environment.

Overall, it can be said that the documentation needs to be extended in the future. At
the moment it only contains information about how to properly utilize features provided
by the environment but not how to resolve errors that may occur. In addition to that,
the documentation should be extended by some tutorial videos to make the system even
more accessible to new users. Moreover, some reference to the documentation of the

Chapter 5: Tutorials

Debian distribution should be added since the vLab-OS is based on this distribution.
Therefore most errors that occur with regards to the Linux environment can be solved
with the extensive documentation that is provided for Debian.

32

Chapter 6

Conclusion and Future Work

In the project that is has been realized in this IDP, the virtual iLab isle has been
extended and improved such that it can be used in the newly developed Massive Open
Online Course "iLabX". In order to realize this, the requirements that were described in
Section 2.2 needed to be fulfilled. To integrate the MOOC into the vLab, the so called
vLab Control Center has been developed and integrated into the existing image of the
virtual machine. The VCC downloads and keeps the latest data that is needed up to
date when it is connected to the Internet. In addition to that, this data is also kept and
cached accordingly in the local system to make it available to the users even when there
is no connection to the Internet. The downloaded data is also integrated into the VCC
making it available to the users within a single application. In addition to that, the
procedure that was required to set up the CORE environment was eliminated. Instead,
the correct environment can be set up with the click of a single button in the VCC. The
VCC adds further channels that enable students to provide feedback to the instructors
from iLabX making it possible to report bugs or suggest improvements for the system
from within the vLab itself.

The image of the vLab itself has decreased in size as unneeded software was removed.
Besides that other software has also been added to make it possible for students of the
course to solve the given tasks without having to install additional software. In addition
to that, the vLab and installed programs have been customized even more to fit the
needs of its users.

The current version of the vLab can be used to successfully run the course iLabX as it
has been shown by a test run that took place at the TUM in summer 2018. Students
of the course were satisfied with the given environment and only known issues occurred

Chapter 6: Conclusion and Future Work

during the run. In the future, these issues need to be fixed. Another shortcoming is the
documentation which only consists of tutorials of how to use features of the vLab, but
does not contain solutions to problems that may be encountered by the user.

34

Chapter 7

Appendix

Questions of the conducted user survey.

Chapter 7: Appendix

36

37

BIBLIOGRAPHY

Bibliography

[1] “Comparison of CORE Network Emulation Platforms”. In: Proceedings of IEEE
MILCOM Conference (2010), pp. 864–869.

[2] Core Open Research Emulator (CORE). https://www.nrl.navy.mil/itd/ncs/
products/core. Accessed: 2018-08-17.

[3] Yaroslav Dushko. “Testing of Virtual iLab Isle”. Masters Thesis. Technische Uni-
versität München, 2018.

[4] Electron | Build cross platform desktop apps with JavaScript, HTML, and CSS.
http://electronjs.org/. Accessed: 2018-08-18.

[5] GitHub. https://github.com/. Accessed: 2018-08-22.
[6] Stephan Krusche. Lecture notes in Project Organization and Management. 2017.
[7] Haewoon Kwak et al. “What is Twitter, a social network or a news media?” In:

Proceedings of the 19th international conference on World wide web. AcM. 2010,
pp. 591–600.

[8] Jakob Nielsen. “10 usability heuristics for user interface design”. In: Nielsen Nor-
man Group 1.1 (1995).

[9] Jakob Nielsen. “Enhancing the explanatory power of usability heuristics”. In: Pro-
ceedings of the SIGCHI conference on Human Factors in Computing Systems.
ACM. 1994, pp. 152–158.

[10] Online Master of Science in Computer Science. http://www.omscs.gatech.
edu/. Accessed: 2018-08-22.

[11] Python. https://www.python.org/. Accessed: 2018-08-18.
[12] Python in Debian. https://wiki.debian.org/Python. Accessed: 2018-08-18.
[13] RSS 2.0 Specification. http://cyber.harvard.edu/rss/rss.html. Accessed:

2018-08-19.
[14] Service Workers: an Introduction. https : / / developers . google . com / web /

fundamentals/primers/service-workers/. Accessed: 2018-08-14.
[15] ServiceWorker Cookbook. https://serviceworke.rs/. Accessed: 2018-08-14.

BIBLIOGRAPHY

https://www.nrl.navy.mil/itd/ncs/products/core
https://www.nrl.navy.mil/itd/ncs/products/core
http://electronjs.org/
https://github.com/
http://www.omscs.gatech.edu/
http://www.omscs.gatech.edu/
https://www.python.org/
https://wiki.debian.org/Python
http://cyber.harvard.edu/rss/rss.html
https://developers.google.com/web/fundamentals/primers/service-workers/
https://developers.google.com/web/fundamentals/primers/service-workers/
https://serviceworke.rs/

BIBLIOGRAPHY

[16] Moritz Sichert. “Virtual iLab Isle”. Interdisciplinary Project. Technische Univer-
sität München, 2017.

[17] StackOverflow Developer Survey 2018. https://insights.stackoverflow.com/
survey/2018/#most-popular-technologies. Accessed: 2018-08-18.

[18] VirtualBox End-user documentation. https://www.virtualbox.org/wiki/End-
user_documentation. Accessed: 2018-08-22.

[19] Jochen Wulf et al. “Massive open online courses”. In: Business & Information
Systems Engineering 6.2 (2014), pp. 111–114.

BIBLIOGRAPHY40

https://insights.stackoverflow.com/survey/2018/##most-popular-technologies
https://insights.stackoverflow.com/survey/2018/##most-popular-technologies
https://www.virtualbox.org/wiki/End-user_documentation
https://www.virtualbox.org/wiki/End-user_documentation

	Introduction
	Analysis
	Previous Work
	The physical iLab-Isle
	The virtual iLab-Isle

	Integrating the vLab to the MOOC

	The vLab Control Center
	Technology used for building the VCC
	Distributing news
	Self hosted
	Third party hosted

	Caching information locally
	Persistent information
	Transient information

	Starting local applications
	Feedback channels
	Evaluation of the User Interface
	User survey

	Hardening the vLab
	Tutorials
	Conclusion and Future Work
	Appendix
	Bibliography

