
Technische Universität München
Department of Informatics

Interdisciplinary Project in Electrical Engineering

Virtual iLab Isle

Moritz Sichert

Technische Universität München
Department of Informatics

Interdisciplinary Project in Electrical Engineering

Virtual iLab Isle

Virtuelle iLab-Insel

Author Moritz Sichert
Supervisor Prof. Dr.-Ing. Georg Carle
Advisor Dr. Marc-Oliver Pahl
Date October 27, 2017

Informatik VIII
Chair for Network Architectures and Services

Abstract

The iLab courses are practical lab courses that give students a very deep understanding
of how the internet works. In that course students work on a so-called iLab Isle which
is a work space that has all hardware that is needed to work on the practical exercises.
In the future a MOOC called iLabx that is very similar to the iLab will also be o�ered by
the TUM. Because students can’t be expected to have access to such special hardware
that is available on the iLab Isles at home, we create a system – the vLab OS – that
virtualizes all of the hardware of an iLab Isle. This system is very similar to the iLab OS
that runs on the computers on the iLab Isle so that students used to working on an iLab
Isle will have no di�culty using the vLab OS.

Zusammenfassung

Die iLab-Praktika bieten Studenten die Möglichkeit, ein tiefes Verständnis über die Tech-
nologien im Internet aufzubauen. Im Rahmen des Praktikums arbeiten die Studenten an
einer sogenannten iLab-Insel. Die iLab-Insel ist ein Arbeitsplatz, an dem alle Hardware,
die für die praktischen Aufgaben benötigt wird, verfügbar ist. In der Zukunft wird die
TUM auch den MOOC iLabx anbieten, der dem iLab sehr ähnlich ist. Da nicht erwartet
werden kann, dass Studenten zu Hause Zugri� auf Hardware haben, die der in einer
iLab-Insel verfügbaren gleichwertig wäre, erstellen wir ein System – das vLab OS –,
das die gesamte Hardware einer iLab-Insel virtualisiert. Es ist dem iLab OS, das auf den
Rechnern der iLab-Inseln läuft, sehr ähnlich, sodass Studenten, die das iLab OS gewohnt
sind, keine Schwierigkeiten haben sollten, das vLab OS zu verwenden.

I

Contents

1 Introduction 1
1.1 Outline . 2

2 Analysis 3
2.1 Virtualization as Common Ground . 4
2.2 Operating System . 4
2.3 Linux Distribution . 5
2.4 Emulation of Network Setups . 5
2.5 Summary of Requirements . 6

3 How the iLab OS Works 7
3.1 Building the iLab OS . 8
3.2 Boot Process . 10

4 The vLab OS 11
4.1 Features of the vLab OS . 11
4.2 Building the vLab OS . 12
4.3 Boot Process . 14

5 Conclusion 15
5.1 Future Work . 15

Bibliography 17

III

List of Figures

2.1 Workspace for students of the iLab course called “iLab Isle” 4

3.1 Boot process of the iLab OS . 9

4.1 Screenshot of the vLab OS with CORE 12

V

List of Tables

2.1 Comparison between systemd-nspawn and CORE 6

3.1 URLs to iLab OS documentation and components 7
3.2 iLab OS client image source repository subdirectories 8

1

Chapter 1

Introduction

For many years the Chair for Network Architectures and Services of Technische Uni-
versität München (TUM) has o�ered the practical courses “iLab” and “iLab 2” with great
success [1]. Both are lab courses that cover many technologies used in the internet today.
The topics students learn in the course range from low-level details of how networking
works on the link layer (e.g. LAN and WLAN) to very high-level services that are very
important for the internet and used by many people every day (e.g. HTTP and e-mail).
They aim to give students in-depth knowledge about most or all of those technologies
while also o�ering weekly practical hands-on exercises. After participating in the iLab
courses the students will not only have a very deep theoretical background about how
the internet works but will also be able to set up new or work on existing real-life
scenarios like home networks but also large scale ISP scenarios.

Independent from the iLab courses TUM started a MOOC (Massive Open Online Course)
program in 2017 that is aimed at but not exclusive to prospective students of a master’s
degree of computer science. Because the iLab courses proved to be very successful, the
Chair for Networking Architectures and Services is currently working on an adaptation
of the iLab as a MOOC called iLabx [2]. This MOOC will be very similar to the iLab
course and in particular also have practical exercises.

The main part that makes the iLab unique is that students can directly experience
working on large network setups. For this they have access to a lab room that is
equipped with all the hardware needed for the practical exercises. The iLabx MOOC
aims to keep the spirit of the iLab courses so that students will be just as motivated to
work on it. In this Interdisciplinary Project we created a system called “vLab OS” which
allows all participants of the iLabx MOOC to work on its practical exercises, regardless
of how powerful their computer at home is or which operating system they use.

2 Chapter 1. Introduction

1.1 Outline

The thesis is structured as follows. In Chapter 2 we analyze the current situation of
the iLab Isle and how it can be virtualized. Chapter 3 presents the iLab OS which this
work is largely based on. In Chapter 4 we present the vLab OS that was developed in
this Interdisciplinary Project. There we show the di�erence and the new features of the
vLab OS and document how it can be built and run. In the end in Chapter 5 we describe
how the vLab OS can be improved in the future.

3

Chapter 2

Analysis

Currently, in the iLab courses students work on their practical exercises in a lab room.
This room has multiple so called “iLab Isles” which is the main workspace for all par-
ticipants of the course during a semester. Figure 2.1 shows such an isle. As students
typically work in groups of two, each iLab Isle consists of two full workspaces side by
side. Because many exercises try to emulate complex real-world network setups, each
iLab Isle is equipped with special hardware. The most important component is the iLab
PC. An iLab PC has an integrated ethernet port and an extension card that adds four
more ethernet ports. It also has another extensions card for wireless LAN. To ensure
that students can fully focus on their exercises the iLab PCs use a custom Debian-based
Linux system called “iLab OS”. It comes with all software that is needed for the exercises
pre-installed. As already mentioned, many exercises simulate large network setups, so
each student has three iLab PCs for a total of six per iLab Isle. On each side there is also
a Cisco router which helps simulating ISPs and of course LAN switches to be able to
connect the hardware in many di�erent ways.

On the other hand, students participating in the iLabx MOOC will work on the exercises
on their own computer at home. This means that among all participants there will
be a large variety of operating systems used, at least Windows, Mac OS X and Linux
should be expected. Also most home computers are hardly comparable to an iLab PC in
terms of their networking capabilities. Despite all of this, the practical exercises in the
iLabx MOOC should not di�er much from the ones in the iLab courses. A goal of the
iLabx MOOC is to keep the appeal of the iLab which lets students experiment on large
networking scenarios they don’t usually come in contact with.

To achieve this, a system is needed which allows students to work on a Virtual iLab
Isle. Speci�cally, this means that they should be able to start di�erent PCs, connect
them to each other and to network switches, and analyze all network tra�c. Such a
system could also not only be used for the iLabx MOOC but would also be bene�cial
for students of the iLab courses that want to continue experimenting on setups they

4 Chapter 2. Analysis

Figure 2.1: Workspace for students of the iLab course called “iLab Isle”: Students typically work
in groups of two, so each each isle o�ers two full workspaces side by side. To be able to simulate
complex network setups each isle also has six special iLab PCs with �ve ethernet ports each and
two Cisco routers.

started on an iLab Isle at home. We call this system vLab OS.

2.1 Virtualization as Common Ground

As already mentioned, the vLab OS will eventually run on many di�erent computers.
This means that at least the major operating systems Windows, Mac OS X and Linux
should be supported. There are di�erent ways to achieve this. Creating separate versions
of the vLab OS – one for each operating system – is an obvious solution but is not really
feasible. Apart from the obvious overhead of managing three separate versions, another
issue is also that the three operating systems are also fundamentally di�erent in how
they realize virtualization of networks and computers. For the vLab OS it would be
desirable to have a common ground, i.e. an environment that is available on every
computer. Using virtual machines is a perfect candidate for this. Programs that run
virtual machines (e.g. VirtualBox, VMware) are available for all three operating systems,
so providing the vLab OS as a virtual machine means that a single version of it can run
on all operating systems without requiring any changes.

2.2 Operating System

Because virtual machines are essentially entire computers in themselves, this means
that the vLab OS must be an entire operating system and not only a single program.
Eventually, the vLab OS will be distributed to all participants of the iLabx MOOC.

2.3. Linux Distribution 5

Because the course should be free of cost for anyone, this leaves Linux as only sensible
choice for the operating system the vLab OS will use. Fortunately, Linux supports
creating virtual ethernet interfaces and switches. Together with its capabilities to
create containers this further strengthens our choice of using Linux. Being able to run
containers is very useful as they are basically a very light-weight alternative to virtual
machines. They behave like separate machines on the same system that only share the
kernel but are otherwise mostly independent from each other, which allows to emulate
many computers without requiring powerful hardware.

2.3 Linux Distribution

There are many choices of Linux distributions which make good candidates for the vLab
OS. The distribution of choice should be easy to use and have all packages related to
networking that could be useful for practical exercises. In the iLab courses the question
of which distribution to use was solved by creating a new, custom one called “iLab OS”.
It is based on Debian and is tailored to the needs of the iLab: It has all programs needed
for the practical exercises pre-installed and is con�gured so that students can sit down
on an iLab Isle and directly start working on it. As such it also a good choice for the
vLab OS. As the vLab OS is mostly based on it, we describe it in more detail in Chapter 3.

2.4 Emulation of Network Setups

Te main feature needed for the vLab OS is of course the virtualization of the iLab Isle. As
already mentioned, Linux supports virtual interfaces and containers. This makes a good
backend for the network virtualization. Still, manually creating the virtual interfaces and
containers requires a lot of knowledge about Linux and advanced usage of the terminal
which would make working with the vLab OS unnecessary hard. Instead, we want
a preferably graphical interface in which students can easily create and connect new
virtual PCs and switches. We found two possible candidates for this task: the systemd-
nspawn tool that is part of the systemd init system [3] and the Common Open Research
Emulator (CORE) [4]. Table 2.1 shows the di�erences, advantages, and disadvantages
of both programs. To summarize, the main plus point of systemd-nspawn is that it is
built-in into systemd which is installed already, so no new packages are needed. On
the other hand CORE comes with an easy to use GUI in which new PCs, switches, and
connections can be created by just clicking. For this reason we choose to use CORE in
the vLab OS.

6 Chapter 2. Analysis

systemd-nspawn CORE

Quick Facts • included in systemd
• LGPL License
• written in C
• low level command line tool

• from U.S. Naval Research
Laboratory

• BSD License
• written in Python and C
• high level GUI

Con�guration
of Scenarios and
PCs

Scenarios can be created in
the GUI and saved to XML
or JSON-like �les. More com-
plex setups can be created with
shell scripts that run in the vir-
tual PCs.

Write shell scripts that create
network interfaces, bridges,
etc., and start all PCs and
con�gure individual PCs with
shell scripts as well.

Starting and Stop-
ping PCs

By clicking on them in the GUI.
Persistent con�guration must
be con�gured explicitly.

Again, run a shell script to
start and stop containers. Re-
boot is possible without losing
changes.

Table 2.1: Comparison between systemd-nspawn and CORE

2.5 Summary of Requirements

In this chapter we analyzed the requirements of a system that emulates the iLab Isle
workspace. They can be summarized as follows:

• Must run on all major operating systems, so virtual machines are used

• Operating system running in the virtual machine must be free and support e�-
cient emulation of networks, so use Linux

• Needs easy-to-use interface to create network setups, use CORE

Lastly, we have a few additional technical requirements for the vLab OS. As it should
be able for all interested students to run the vLab OS, it should require as little system
resources as possible and run on low-end hardware. Also, since the vLab OS is essentially
an entire operating system, it could potentially be a large download that would be
required for each student. To make it possible to participate in the iLabx MOOC even
with a low-bandwidth internet connection, we want the vLab OS to be as small as
possible. A �le size of 2 GB or smaller is desirable which should be possible to be
downloaded within a few hours even with slow internet connections.

7

Chapter 3

How the iLab OS Works

As mentioned earlier, the iLab OS is based on the Debian Linux distribution [5]. Debian
and the iLab OS itself are open source and can be freely used. The iLab OS consists of
two components: The client image which is the actual disk image that the iLab PCs
boot from and the iLab control server. There is also a short documentation about both
components. All URLs for the iLabOS can be found in Table 3.1.

iLab OS documentation: https://ilab.net.in.tum.de/ilabos/

iLab OS client image git repository: git://git.net.in.tum.de/ilab/image.git

iLab OS control server git repository: git://git.net.in.tum.de/ilab/server.git

Table 3.1: URLs to iLab OS documentation and components

The client image is the most important component of the iLab OS. It is essentially a
disk image of a Debian installation with many additional packages. Among those the
most important ones are GNOME (desktop environment), Wireshark (network sni�er)
and several internet service programs, like an IPv6 router advertisement daemon, a
DNS server, and many more. It also comes con�gured so that is convenient to use for
participants of the iLab courses. The main di�erences between the iLab OS and a normal
Debian installation is the factory reset functionality. Because over the course of a week
many students will work on the same iLab Isle, every time an iLab PC is rebooted it
is reset to its initial state unless the student explicitly chooses otherwise. This means
students can freely change anything on a running iLab PC without having to fear a
crash. More details about how the factory reset works are explained in Section 3.2.

The other component is the iLab control server. It is mainly used to provide the client
image to the iLab PCs that use network boot. The control server is connected to all iLab
PCs in the lab room in the so called management network. Because the vLab OS does
not use a control server, we will not describe it here but focus on the client image.

https://ilab.net.in.tum.de/ilabos/
git://git.net.in.tum.de/ilab/image.git
git://git.net.in.tum.de/ilab/server.git

8 Chapter 3. How the iLab OS Works

3.1 Building the iLab OS

To build the iLab OS client image the source repository (see “iLab OS client image git
repository” in Table 3.1) is needed. Table 3.2 shows a description of the most important
subdirectories in the source repository.

Subdirectory Description

auto/ Contains scripts that are used to create the actual
image in the end. In particular the script auto/build
uses the Debian image builder program live-build

to create it.

config/ All con�guration that a�ects how the client image
will be built and actual �les that should be included
in it are located here.

config/hooks/ This directory contains scripts that will be run in-
side the new client image at the end of building it.
Those scripts disable the automatic startup of several
services and con�gures the ilab user for example.

config/includes.chroot/ The contents of this directory are copied as is into
the client image by the build script. It contains sev-
eral scripts for the initramfs system that customize
the boot process (described in more detail in Sec-
tion 3.2) and a few customizations for the iLab OS,
like a custom start page for the browsers.

config/package-lists/ This directory contains a list of apt packages that
are installed in the client image. This list contains
many programs useful for networking, e.g. Wire-
shark, radvd, bind9, etc.

config/preseed/ This directory is also used by apt while building the
client image. It contains preselected con�guration
options for choices that are normally given to the
user when installing Debian.

Table 3.2: iLab OS client image source repository subdirectories

As already mentioned, the program to create the image is called live-build. It was
originally made by the Debian project to make their live boot installer images. Since a
live boot, i.e. a system that con�gures itself every time it is booted, is exactly what is
needed for the iLab OS, it makes sense to use this existing software.

3.1. Building the iLab OS 9

boot loader

user selects
options

loads kernel

loads initramfs

executes
/sbin/init

of initramfs

initramfs

mounts /dev,
/proc, and
/sys

parses kernel
command line

runs initramfs
scripts

mounts root
�le system

executes
/sbin/init of
root �le system

init system

starts services

loads desktop
environment

contains most of
the logic special
to the iLab OS

Figure 3.1: Boot process of the iLab OS: It is very similar to the boot process of any other Linux
system. Starting with the boot loader it �rst loads the kernel and the initramfs. The initramfs
then does a �rst initialization of the system and eventually starts the system by executing the
init daemon. Most logic that di�erentiates the iLab OS from any other Linux system is contained
in the initramfs scripts.

10 Chapter 3. How the iLab OS Works

3.2 Boot Process

To implement the factory reset function and to give the user a readily usable system after
booting (i.e. no need to login or provide any password) the iLab OS needs to customize
the boot process. An overview of the most important steps of the boot process can be
seen in Figure 3.1.

As in most Linux systems shortly after powering on the boot loader is executed. It
usually loads the kernel and initramfs from the disk into memory. The initramfs is a �le
system that lies entirely in memory and contains �les that are needed to load the actual
root �le system. It is also possible to execute scripts there that can a�ect how the root
�le system is mounted. This is exactly the place where the factory reset function can
be implemented.

The boot loader starts the kernel which itself starts by executing /sbin/init from the
initramfs. There, �rst the basic virtual �lesystems /dev, /proc, and /sys are mounted.
Then the kernel command line which can be read from /proc/cmdline is parsed for
any options that a�ect the boot process in the initramfs. After this comes the most
important part for the iLab OS: the initramfs scripts are executed.

In the iLab OS one of the initramfs scripts contains the logic for the factory reset function.
It checks if the string ilab-reset appears in the kernel command line. If it does, the
system is reset to its original state. The boot loader is con�gured to always include this
string in the kernel command line unless the user explicitly chooses an option to not
reset the system.

Then the root �le system is mounted and the real init daemon (systemd) is started. It
starts all con�gured services, which includes the live-boot service that comes with
live-build mentioned earlier. live-boot takes care of con�guring the system and
logging the user in automatically. Lastly, the desktop environment is started and the
iLab OS is ready to use.

11

Chapter 4

The vLab OS

The iLab OS works very well in the iLab courses. It allows students to work on their
practical exercises and integrates well with all the hardware available in an iLab Isle. It
is not designed to run anywhere else but on the iLab PCs, however. This means that
for students that want to work on exercises at home and especially students from all
over the world that are participating in the iLabx MOOC there is no easy way to use the
iLab OS. So a new version of it is needed which allows students to create all network
setups that could also be created on an iLab Isle. We call this new version vLab OS. It
essentially virtualizes an entire iLab Isle while trying to stay very similar to the iLab OS.
To use it students only have to download a virtual machine appliance and run it on a
virtualization program (e.g. VirtualBox, VMware).

Just like the iLab OS the vLab OS is open source and can be freely used. The source code
can be found in the iLab OS git repository (see Table 3.1) in the vlab branch. There is also
a blog which contains how-to’s related to the vLab OS and also links to download the
vLab OS as virtual machine image. It can be found at https://vlab.net.in.tum.de/.

4.1 Features of the vLab OS

As the vLab OS is based on the iLab OS, they share many features. Especially all
programs related to networking that are pre-installed in the iLab OS are as well in the
vLab OS. The goal is that students of the iLab courses don’t have to learn any new
programs when using the vLab OS. However, one goal of the vLab OS is also that the
downloadable image stays as small as possible. For this reason we decided to replace
the Gnome desktop environment with XFCE. As a direct result the image size went
down from over 3 GB to 2.5 GB. Further optimizations allowed us to shrink the image
size down to 1.4 GB. They are described in more detail in Section 4.2.

Just like the iLab OS, the vLab OS also o�ers a factory reset functionality. Because the

https://vlab.net.in.tum.de/

12 Chapter 4. The vLab OS

Figure 4.1: Screenshot of the vLab OS with CORE: The user interface of the vLab OS is limited to
only the programs students will need: CORE, Wireshark, a browser, and of course the terminal.
In CORE an example for a simple network setup is loaded.

vLab OS is geared towards students working with it at home instead of being installed
on a computer that many students use, the default option in the vLab OS is to not reset
it when booting. Still, when the user chooses the factory reset option when booting, the
virtual machine will reset itself to its initial state. The factory reset is implemented so
that it doesn’t need to download the whole disk image. It uses snapshots of the BTRFS
�le system instead so that the factory reset can be done o�ine. More details about this
can be found in Section 4.3.

As mentioned in Chapter 2 already, we use CORE for the network emulation. A screen-
shot of the vLab OS with CORE can be seen in Figure 4.1. Because CORE is open source
as well, this allowes us to slightly customize it to our needs. In the original version CORE
gives random, incomprehensible names to the virtual network interfaces it creates for
the virtual PCs. Because we want students to easily �nd the correct network interfaces,
we changed this so that CORE chooses descriptive names, instead. Our patches to CORE
can be found here: https://gitlab.dev.ds2os.org/mooc4masters/core-network.

4.2 Building the vLab OS

The directory structure of the vLab OS source repository is the same as for the iLab OS
as described in Table 3.2. In fact it is intended to be the same so that future updates to

https://gitlab.dev.ds2os.org/mooc4masters/core-network

4.2. Building the vLab OS 13

the iLab OS that would also bene�t the vLab OS can be easily merged into it.

Instead of live-build that was mentioned in Section 3.1 the vLab OS is built with a
Python script called create-vm.py. The script runs only on Linux and requires the
following programs to be installed:

• Python (version 3.5 or newer)

• systemd (in particular systemd-nspawn is needed)

• btrfs-progs

• debootstrap

• rsync

When the script is executed, it starts by installing a base Debian system with debootstrap
in a temporary directory. Because debootstrap needs root permissions to run, the script
must be executed as root, as well. When this is �nished, the temporary directory will
contain a very minimal system that does not even have a kernel installed.

So the next step is to install all packages. This is done by �rst copying the contents
of config/apt/ to etc/apt/ in the temporary directory. Then all packages listed in
config/package-lists/ are installed by using systemd-nspawn. With systemd-nspawn
a temporary container is created in which the installation can be executed so that the
outer system (i.e. the one where the Python script is running on) is not a�ected by any
services that are installed. In particular this prevents unwanted behaviour when the
installer tries to start or stop services that exist on the outer system. In this step all
packages are downloaded from a Debian mirror and are directly installed, so it takes
several minutes.

When all packages are installed, all �les from config/includes.chroot/ are copied to
the temporary directory. Just like in the iLab OS those are mainly con�guration �les
that customize the appearance of the system. Most importantly in this step all custom
initramfs scripts needed for the vLab OS are copied as well. How they work exactly is
explained in Section 4.3.

Next the kernel is installed. It is not installed in the earlier step together with all other
packages because in the previous step some �les that a�ect how the kernel is installed
are copied. Namely the �le /etc/kernel-img.conf in which a con�guration option is
set that makes the installer create a symbolic link to the kernel. This is important for
the boot scripts to �nd the kernel.

After that all scripts found in config/hooks/live/ are executed in the new system,
again with the help of systemd-nspawn. As when building the iLab OS those scripts
disable services that are only needed for some exercises, create an ilab user, etc. When
this is done, the new system is almost entirely con�gured.

14 Chapter 4. The vLab OS

Only then the actual disk image is created. Until this point the whole system is only
installed into a temporary directory. In this step the disk image is prepared by partition-
ing and formatting and then mounting it. Then all �les from the temporary directory
are copied into the mounted disk image. The reason why the previous steps are not
executed directly on the disk image has to do with making the disk image smaller. In
the previous steps many packages are installed which means that many �les are created
but also moved around and removed again. Especially removed �les are problematic
for the size of the �nal disk image because modern �le systems remove a �le by just
removing some inodes from a list. This means in particular that the data of removed
�les is still there and can be reused for new �les later but is not empty (i.e. only bytes
with value 0). Then, when the disk image is compressed to its �nal version that must
then be downloaded by students, this makes a huge di�erence in space. When �les are
only copied to the disk image, no �les are ever removed or moved so this issue does
not arise. We managed to reduce the size of the compressed disk image from 2.5 GB to
1.4 GB by doing this.

In the end the fstab is created and the boot loader is installed onto the disk image. Then
it is ready to be used as raw disk image in a virtualization program.

4.3 Boot Process

The boot process of vLab OS works very similar as in the iLab OS. The structure is still
as shown in Figure 3.1. Also most components described in Section 3.2 work the same
in the vLab OS. One di�erence is how the factory reset function is implemented.

The root �le system of the vLab OS is formatted with the BTRFS �le system. When
it is booted for the �rst time, the initramfs script in the vLab OS creates a snapshot
of the root �le system. This means that the original state of the �le system will still
be available later. Indeed, when the user chooses the factory reset option, the current
snapshot is removed and a new snapshot is created. Because the main �le system from
which snapshots are created is never directly used, this way it is always possible to reset
the system to its original state.

The vLab OS also has one additional service that is started in the init phase after the
initramfs: the VirtualBox Guest Additions. Because we expect most iLabx MOOC
participants to run the vLab OS on VirtualBox we want to ensure the best compatibility
with it. So when the vLab OS detects that is started in VirtualBox, it will install the
VirtualBox Guest Additions (without needing an internet connection).

15

Chapter 5

Conclusion

In this Interdisciplinary Project we created the vLab OS which ful�lls all the goals
mentioned in Chapter 2: It can be downloaded as single �le with moderate size (1.4 GB)
which should be possible to download within a few hours with most internet connections.
Also, it is a virtual machine appliance that can be run by di�erent virtualization programs
like VirtualBox and VMware that themselves run on all major operating systems. Most
importantly it achieves the goal to let students run entire network setups at home very
well by using the CORE network emulator.

5.1 Future Work

For the factory reset there is a possible improvement that could be implemented in the
future. The idea of the factory reset is that the virtual machine can be reset to a working
state again regardless of what a user did. But currently the kernel and initramfs �les in
the /boot directory are not protected. This means that if they are deleted, the system
will not boot anymore, not even when the factory reset option is chosen. While it is
unlikely for someone to accidentally delete any of those �les, it would still be better if
the vLab OS was not vulnerable to this. Protecting the boot �le system just like the root
�le system, i.e. by creating a snapshot of it in the initramfs, could solve this problem.

From the usability perspective it would also be good to make the vLab OS even easier
to use for people who never used Linux before. All functionality that is needed for a
practical exercise of the iLabx MOOC should be reachable with one mouse click. Ideally
the users should have a “gaming console experience” in that they don’t have to know
the operating system in detail but can instead focus on the tasks.

When talking about the iLabx MOOC one could also add a mechanism into the vLab
OS that automatically loads the latest information about the course. An overview of all

16 Chapter 5. Conclusion

past, present, and future tasks that can be reviewed and started with one click could
also add to the “gaming console experience”.

17

Bibliography

[1] “iLab – build your own Internet.” [Online]. Available: http://ilab.ds2os.org/?site=
teaching/ilab

[2] “iLabX – the Virtual Internet Laboratory.” [Online]. Available: http://ilab.ds2os.org/
?site=mooc4masters

[3] “systemd System and Service Manager.” [Online]. Available: https://www.
freedesktop.org/wiki/Software/systemd/

[4] “Common Open Research Emulator (CORE).” [Online]. Available: https:
//www.nrl.navy.mil/itd/ncs/products/core

[5] “debian – The universal operating system.” [Online]. Available: https://www.
debian.org/

http://ilab.ds2os.org/?site=teaching/ilab
http://ilab.ds2os.org/?site=teaching/ilab
http://ilab.ds2os.org/?site=mooc4masters
http://ilab.ds2os.org/?site=mooc4masters
https://www.freedesktop.org/wiki/Software/systemd/
https://www.freedesktop.org/wiki/Software/systemd/
https://www.nrl.navy.mil/itd/ncs/products/core
https://www.nrl.navy.mil/itd/ncs/products/core
https://www.debian.org/
https://www.debian.org/

	Introduction
	Outline

	Analysis
	Virtualization as Common Ground
	Operating System
	Linux Distribution
	Emulation of Network Setups
	Summary of Requirements

	How the iLab OS Works
	Building the iLab OS
	Boot Process

	The vLab OS
	Features of the vLab OS
	Building the vLab OS
	Boot Process

	Conclusion
	Future Work

	Bibliography

