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Abstract

Internet telephony and Voice-over-IP (VoIP) in general are popular and ubiquitous means
of communication. In the last years research has led to a high standard of securing
VoIP conversations in terms of con�dentiality, authenticity and integrity. However,
privacy is generally left unaddressed despite the fact that the calls’ meta-data themselves
o�er valuable information to an adversary. This is increasingly important as Internet
applications are vulnerable to comprehensive surveillance and active attacks.

State-of-the-art anonymity systems, such as Tor, neglect the attack vector of a global
active attacker (GAA) and are vulnerable to tra�c con�rmation attacks. Furthermore,
their high transport delay renders them unsuitable for low-latency applications like
VoIP.

This thesis presents the design and implementation of a prototype named Hidden Real-
Time Protocol (HRTP) for unobservable Internet telephony. It uses continuous and
encrypted pair-wise tra�c of �xed rate and packet size between all peers. We show
that it both provides complete unobservability against GAA and o�ers an end-to-end
latency that is suitable for VoIP. A real-world setup and its evaluation demonstrate that
it is practically feasible to deploy such a system.

Obvious areas of applications for HRTP are in the environment of embassies, non-
governmental organizations (NGOs) and other settings of highly sensitive communica-
tion.

Finally, this thesis develops a variant of HRTP that scales more e�ciently. To this end,
a combination of small broadcast groups and onion-routing relaying in between is used.
The approach still maintains strong unobservability against GAA, but reduces the per
peer tra�c to O ( n

loд2n ) as opposed to a previous growth of O (n).
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Outline of the Thesis
Chapter 1: Introduction & Motivation

The �rst chapter introduces the central terms of privacy, anonymity and unobservability.
It then provides motivation for unobservable Internet telephony by putting them into
context of global Internet surveillance.

Chapter 2: Fundamentals

This chapter introduces the reader to the fundamentals of IT security and related work
in the �eld of anonymous communication systems. Moreover, an exemplary voice-
over-IP pipeline is explained and existing solutions in the �eld of anonymous Internet
telephony are discussed.

Chapter 3: Approach & Design

The approach chapter provides an abstract view on the proposed idea. It de�nes a
notation and describes the protocol on a theoretical level. The chapter concludes by
showing that the designed solution is indeed unobservable under given assumptions.

Chapter 4: Implementation

This chapter describes how the solution has been put into practice on a detailed tech-
nical level. Firstly, it discusses the HRTP protocol covering packet formats and state
transitions. Secondly, the implementations of the gateway and the Android application
are presented.

Chapter 5: Evaluation

The evaluation demonstrates that HRTP holds its promises in a real-world setup. Mea-
surements of latency quantities including the end-to-end audio delay show that it is
suitable for voice conversation.

Chapter 6: �o vadis: Transformation into a Scaling System

In the sixth chapter, it is proposed how the current implementation can be extended in
order to provide better scaling properties.

Chapter 7: Further Work & Conclusion:

This chapter points out areas for further work based on this thesis and related work.
A short conclusion summarizes the central �ndings of this work.

Appendix:

The appendix contains information regarding notational conventions, the evaluation
setup, a log �le of a gateway test and screenshots of the Android application. Further-
more, it gives a comprehensive list of used tools and literature. Finally, it provides the
DVD containing the implementation including instructions for usage.
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CHAPTER 1

Introduction & Motivation

“Big Brother is watching you.”
— 1984 by George Orwell

Privacy and anonymity are two fundamental concepts. With modern, electronic com-
munication, both their importance and feasibility have reached new levels. We will
de�ne the basic concepts of privacy, anonymity, unobservability and will motivate them
with regard to the Internet and global surveillance.

Privacy, Metadata, Anonymity and Unobservability

Privacy is a fundamental human right as stated in the Universal Declaration of Human
Rights adopted by the United Nations (UN) General Assembly: “No one shall be subjected
to arbitrary interference with his privacy, family, home or correspondence, nor to attacks
upon his honour and reputation. Everyone has the right to the protection of the law
against such interference or attacks.” [1, article 12]. In the context of communication,
privacy states how much a participant is exposed while communicating with his peer
or a third party.

When communicating, not only the content (the message) is exchanged, but also addi-
tional information is generated. Examples for such information are the time the message
was exchanged, the sender, the recipient , the used medium and the size of the message.
We call this information metadata. And while con�dentiality of the content can be
easily achieved using encryption, hiding metadata is much more of a challenge.

1



Chapter 1 – Introduction & Motivation

Figure 1.1: Our scale of communication privacy guarantees ordered from least private
(publicly veri�able identity) to most private (steganographic communication)
from an observer’s point of view. Own graphic.

In most conversations we provide parts of our identity. This allows the other party to
match the communication to any other information they have about us. It might also
go a step further and demand to verify our identity by asking for something only the
two participants know (e.g. a password) or alternative means of certi�cation (e.g. a
passport).

It is not always necessary to reveal our real identity and often it is not advisable. For
this purposes we “identify” ourselves using a pseudonym (e.g. a nick name) that is not
directly linked to our real identity. The other side can still link all information belonging
to a pseudonym, but not match multiple pseudonyms used by a single entity.

Anonymity has been de�ned as “state of being not identi�able within a set of subjects,
the anonymity set“ [2, p.2]. When using strong anonymous communication, no other
party can determine who has sent a message (sender anonymity) or received a message
(recipient anonymity). We �nd anonymity e.g. in the secret ballot in elections.

In an unobservable communication system, only the participation of a member can be
seen, but it is not known whether it is currently communicating or not. In a completely
unobservable system, it cannot be determined if any communication is happening at all.
The system that we have built provides this strong property.

For hiding the mere participation in a system, stenographic techniques can be used.
Here the protected information is hidden within the entropy of another legitimate
communication channel. One example is hiding a short text message in the noise of a
picture [3]. The high overhead makes it di�cult to apply this approach to voice-over-IP
communication.

The Ubiquitous Internet and its Implications

The ubiquity of the Internet neither changes nor rede�nes the aforementioned concepts
of privacy and anonymity. But it interacts with them in a novel and unprecedented
manner. First, we have to make substantial privacy decisions more often. The individual
using a service faces the challenging task to understand and evaluate the repercussions
on private data. Privacy is often willingly traded for free access and comfort, but it
remains unclear how many of these free decisions are actually well-founded decisions.
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An extreme, fatalistic position is the total denial of e�ective privacy at all. A famous
example is the quote of Scott McNealy, the former chief executive o�cer of Sun Mi-
crosystems, who said in 1999: ”You have zero privacy anyway. [...] Get over it.“ [4]

Secondly, the Internet both reduces everyday anonymity and provides means for
anonymity that have not existed before. This might appear contradictory in the �rst
place. On the one hand, the extensive nature of the Internet with its core connection
hubs allows parties to observe a huge amount of everyday actions at a single point. On
the other side, new technical solutions (such as the later introduced MIX networks)
o�er new levels of anonymity that have not been achievable ever before.

Motivation for Unobservable Internet Telephony

The recent years have unveiled that large-scale surveillance of Internet tra�c is no
�ctive worst-case scenario but status-quo. In particular, the existence and feasibility
of global adversaries has to be considered. This challenges the designs of popular
anonymous communication systems such as Tor [5]. And while the content is usually
inaccessible due to encryption, the metadata itself often provides su�cient insight. The
implications of metadata being exploitable are illustrated by the following quote of Gen.
Michael Hayden (former head of the National Security Agency) from 2014: “We kill
people based on metadata [. . . ]”. [6]

In spite of emerging asynchronous communication channels such as instant messaging,
Internet telephony remains an important and fast-growing medium. The international
tra�c of Skype, a widely-known Internet telephony software, “[. . . ] grew 35 billion
minutes in 2014, to 248 billion minutes [. . . ] and Skype’s 2014 tra�c growth was nearly
30 percent greater than the volume growth of every carrier in the world, combined.” [7,
p.8]

However, voice-over-IP brings new challenges to existing anonymity systems by requir-
ing very low end-to-end latency. We will see that tra�c patterns of Internet telephony
make attacks against anonymity easier. As current solutions fail to provide reasonable
anonymity facing a global adversary, we design, implement and evaluate a new solution
for unobservable Internet telephony.

Our solution �ts to scenarios with a few dozens of stationary communication partners
which can legitimately deploy strongly protected communication channels. Prime use
cases can be found in the environment of diplomatic embassies and non-governmental
organizations (NGOs).

3
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CHAPTER 2

Fundamentals

“The only truly secure system is one that is powered o�, cast in a block of
concrete and sealed in a lead-lined room with armed guards.”

— Gene Spafford

For meaningful security analysis of IT systems, attacker models are necessary. They
are introduced here along with basic IT security terminology. An overview on anony-
mous communication systems shows that related work lacks strong security guarantees
against global active attackers or are unsuitable for VoIP. The technical discussion of
VoIP and its components unveils very speci�c and interesting challenges for this �eld
of Internet Protocol (IP) application. Reviewing available and deployed solutions shows
that they provide authenticity and integrity guarantees in an exemplary manner, but
lack protection against observation of meta-data.

This chapter serves the purpose of providing the fundamentals to the aforementioned
topics. However, even the experienced reader will �nd interesting details that play into
the design and implementation of the developed solution.

IT security is fueled by creative attacks that challenge the status-quo and show weak-
nesses. Attack boxes are added wherever an attack illustrates the limitations of the
discussed concept and idea.
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Chapter 2 – Fundamentals

2.1 Terminology in IT Security

Security Guarantees

The classic IT security model is build around the key guarantees of con�dentiality,
integrity and availability. These concepts are referenced as the CIA1 triade. Modern
literature often extends this by further aspects such as privacy [8]:

Con�dentiality describes the protection information against disclosure to a third
party. If Alice shares a message with Bob in a con�dential manner, no one else
can access the private information of that message. However, the event of message
passing itself might be observable.

Integrity ensures that an exchanged message cannot be altered by a third party without
being noticed by the recipient.

Availability refers to protection against distortion by an attacker. As an unavailable
system is of no use, the design goal is to provide a scalable way of increasing the
e�ort required by an attacker to do so.

Accountability allows to prove that certain actions and information have been issued
by a certain participant. Using accountable methods he cannot deny his actions
later.

Authenticity ensures the identity of a participant or object. For message exchange,
both parties usually want to make sure that the message came from the expected
sender.

Privacy or Anonymity captures the ability of an individual to be indistinguishable
from a set of peers. The degree of anonymity is often coupled to both one self’s
and others’ behavior.

For this paper, the guarantees of con�dentiality, integrity, authenticity and anonymity
are the most interesting and important ones.

Attacker Model

For a profound and meaningful analysis of security solutions, one must know about the
anticipated attacker. As absolute security is considered unachievable, this reductions
allows to argue about relative security for di�erent scenarios. This is done by specifying
an attacker model that de�nes the adversary’s motivation and abilities. The following
paragraphs introduce the most relevant characteristics for the topic of anonymous
communication as in [9].

1An acronym of the covered guarantees and not the US intelligence service

6



2.2 – Anonymous Communication Systems

Position: An internal attacker participates in the anonymous communication system
(e.g. as a relay node). An external attacker only controls the connections between
the nodes.

Scope: Here, we di�erentiate between global and local attackers. While a global at-
tacker controls all connections of the system, a local attacker is limited to a
(geographical) subset. For example, he can only control one autonomous system
(AS).

Flexibility: A static attacker has prede�ned observation points (e.g. controlled nodes)
and cannot change them. An adaptive attacker is able to change its observation
points and “follow” the tra�c. Global attackers are always considered adaptive.

Participation: While a passive attacker is limited to observe the tra�c, an active at-
tacker can also manipulate tra�c. This includes dropping packets, replaying them
at a later point of time or modifying their content.

An attacker might not need (nor intend) to fully break an anonymity scheme. Depending
on the scenario, he might succeed neither knowing the information exchanged nor
discovering new sender-recipient relations.

The tra�c analysis attack denotes the idea of extracting intelligence from tra�c patterns.
This covers e.g. packet sizes, inter-packet delays or times where no conversation takes
place. Such data can easily be recorded and analyzed o�ine. For example, from an
increasing communication intensity that �nally drops, the adversary might deduce that
a plan has been coordinated and �nalized. Regarding Internet telephony, there is an
interesting approach where one can reconstruct speech just from the di�erent packet
sizes of a variable bitrate codec (see box 2.3.1).

Another example is tra�c con�rmation. Here the attacker starts with a strong a-priori
suspicion that A and B are communicating and seeks to con�rm it. As most solutions
are designed to only prevent the discovery of sender-recipient pairs, the con�rmation
of a suspicion can often be performed involving signi�cantly lower e�orts. A typical
(active) approach is to distort the tra�c on the sender’s side and observing the same
distortion on the recipient’s end.

2.2 Anonymous Communication Systems

This section introduces anonymous communication systems ranging from proxy servers
to more elaborate peer-to-peer (P2P) systems. However, we will discover that they lack
resistance against tra�c con�rmation attacks by a global passive adversary (GPA) and/or
are not suitable for voice-over-IP applications. Table 2.1 gives an overview of the covered
systems and our solution named HRTP.
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Chapter 2 – Fundamentals

VoIP IP LPA GPA GAA+ E�ciency

Proxy    # #  

MIX #   H# H#  

Tor #   # # H#

Drac    H# H# H#

ISDN  #   H# #

HRTP      #

Table 2.1: Comparison of well-known anonymous communication systems. VoIP: The
system is usable for Internet telephony; IP : built using an IP network; LPA: The
system protects against a local passive adversary; GPA: The system protects
against a global passive adversary; GAA+: The system protect against a global
active adversary including protection against tra�c con�rmation; E�ciency:
E�ciency as ratio between payload tra�c and total tra�c;
 =ful�lled, H#=ful�lled with restrictions, #=not ful�lled

2.2.1 Proxy Servers

Using proxy servers is a simple, straight-forward solution for escaping a local adversary.
The tra�c of the client is tunneled to a remote proxy server which is out of reach of the
local attacker. Then, the proxy uses its own identity to forward the tra�c and tunnels
replies back to the original client. This approach requires the client to fully trust the
proxy as it can reconstruct the client’s communication pattern. Therefore, proxies are
rather a pseudonymous communication system than an anonymous one.

However, proxy servers come with many advantages. Usually they provide a high-
bandwidth and a low latency, which makes them suitable for every internet applications.
Many proxy servers have application-layer aware functionality and can e.g. cache web-
sites and perform privacy-preserving protocol modi�cations.

Today, often a virtual private network (VPN) is used to achieve a similar e�ect. The
main advantage lies within the fact that a VPN routes the complete tra�c of a machine.
Therefore, it is less likely to leak information via third-party plugins e.g. Adobe Flash.

Common use cases for proxies and VPNs are securing company tra�c and circumvent-
ing geo-blocked websites. The former allows the IT to apply security regulations to
all company tra�c, since even remote tra�c is tunneled through the main gateway
beforehand. The later makes use of the fact that the proxy is physically located within
one of the white-listed countries. Therefore, the client can access e.g. geo-blocked
services from abroad.

8



2.2 – Anonymous Communication Systems

2.2.2 MIX-Networks and Onion-Routing

Both MIX networks and onion-routing use (multiple) intermediate nodes to hide the
actual path of a message. In general, the batch processing of MIX networks, lead to
higher end-to-end latency. Both provide anonymity even with some intermediate nodes
being compromised by an attacker.

MIXes

The idea of MIX networks has been originally developed by David Chaum [10]. In a
MIX networks, intermediate nodes called mixes are designated for forwarding packets.
They collect a certain amount of packets, process them and send them all in one batch.
The links to and from the mixes are encrypted s.t. packets entering and exiting the
mix appear di�erent to an observer. When sending the batch of packets, there is no
particular order of the packets. The changing encryption and the re-ordering makes
it hard for an attacker to “follow” a certain packet. Implementations of the original
concept are mixmaster [11] and mix-minion [12].

MIX networks make use of di�erent mixing strategies in order to form the individual
batch sets. This paragraph brie�y covers the most interesting ones2. The original
strategy is threshold mixing where the mix collects exactly n messages before sending
a new batch. This, of course, imposes a high delay on most messages. The timing mix
sends a regular batch every t seconds. However, this can decrease anonymity when
there have been only few messages within one such interval. In pool mixes a certain
amount of messages is hold back every batch. This increases the resistance against
n− 1. The exponential mix falls in the same category where messages are independently
delayed by a random delay d (exponential distribution).

Attack: n−1 attack In an−1 attack, the active attacker can control the incoming
messages of a mix. He will replace all other messages except for the one he wants
to track, with his own ones. After the mix, he then can easily �lter out his own
messages and knows the destination of the message of interest. When the messages
are dropped instead of replaced, its also referenced as a trickle attack.

Onion Routing (Tor)

In onion routing the outgoing packets are encrypted with multiple layers. One for
every intermediate node which are named relays. Upon receipt, a relay can remove the
outermost layer and forward the packet to the next node. We call such a sequence of
relay nodes a circuit. For an (active) attacker it is hard to determine the complete circuit
as he only gains information about the preceding and succeeding nodes.

2More mixing strategies and detailed discussion can be found in the introductory survey by Serjantov
et al. [13]
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Chapter 2 – Fundamentals

The onion router (Tor, [5]) is the predominant implementation of onion routing. It
focuses on a practical and easy-deployable overlay network that can be used by any
application that supports SOCKS proxies. In order to reduce the latency, the relay nodes
of Tor do not perform any of the aforementioned mixing.

Nevertheless, given the limited amount of bandwidth per relay node and the additional
hops, the Tor network often imposes a multi-second latency. Additionally, the Tor
network is completely built upon TCP/TLS connections which are also used to tunnel
UDP packets. The insightful paper by Raerdon et al. [14] performed a detailed dissection
of Tor’s performance issues and evaluated an alternative implementation using TCP-
over-DTLS which could drastically improve the latency. Despite the e�orts, the circuit
latency still remained >500ms.

The Tor network is not designed to protect against a global passive adversary, but a
partial active adversary that controls a fraction (� 50%) of the network [5, p.5]. The
main focus lies within preventing tra�c analysis attacks rather than tra�c con�rmation.

Attack: Remote covert channel analysis Murdoch et al. [15] showed that it
is possible to perform certain tra�c analysis given only very limited resources on
the attacker’s side using a covert channel analysis. Here the attacker does not need
any physical access to the relay node or its wires.

In its most common usage for anonymously sur�ng the web, Tor only provides sender
anonymity. However, with its capability called hidden services, one can provide services
over the Tor network which guarantee both sender and responder anonymity. For this,
the services is announced via an introductory point and then both sides build a circuit
to a chosen rendezvous point.

2.2.3 Alternative Approaches

Besides the well-known MIX and onion routing approaches, the literature provides
countless alternative approaches for anonymous communication such as ISDN-Mixes,
DC-Nets and Drac. However, most of them have remained scienti�c designs without
actual implementations. The following approaches are chosen due to their direct and
indirect relation to the solution of this thesis.

ISDN-Mixes

The ISDN-Mixes, as proposed by P�tzman et al. [16], focus on untraceable Integrated
Services Digital Network (ISDN) voice calls. It is one of the �rst technical descriptions of a
system that uses constant heartbeat messages (here called “time-slice channels”) in order
to protect against tra�c observations. However, it has been designed before the Internet
reached its today’s capacity, thus its design requires a special ISDN infrastructure.
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In the ISDN-Mix network, local ISDN exchange groups form independent sets that
continuously broadcast to their local exchange point. The local exchange point is
behind a cascade of mixes. When a participant is currently inactive, it establishes a
channel with itself (setting up a connection through the mixes to the local exchange
which will mirror the tra�c back the same way).

In an actual call, the participant will use the time-slice channels to inform the other
party about its incoming call. Both then connect to the local exchange through the
mixes and the local exchange forwards the packets to each other. For calls over the
long distance network, the local exchange forwards the packets to the other side’s local
exchange.

Figure 2.1: Overview of the ISDN-Mix design: The left side shows one local area consist-
ing of the subscribers (A, B, ...) and the local exchange 1. The local exchange
is separated in the connection accepting part, the intermediate mixes and the
part that �nally processes the messages. All local exchanges are connected
via the long distance network. Own graphic.

DC-Net

The Dining Cryptographers (DC) problem [17] has been published by David Chaum.
It is not designed for voice communication, but shows how mathematical properties
can be used for building a completely unobservable communication system: Three
cryptographers want to �nd out if one of them payed the dinner without disclosing
who actually payed. In Chaum’s solution every cryptographer throws a coin (head=1,
tail=0) such that it is only seen by him and its right neighbors. In a next step, every
cryptographer announces the result when he exclusively-ors the coins he sees. Except
the one, who actually payed: That one negates his result. When all the single results
are exclusively-or-ed again, it results in 1, if one of the cryptographers has payed. This
is illustrated in �gure 2.2.

This concrete example can easily be extended. In order to communicate more than one
event (=̂ one bit), the protocol is repeated multiple times. For larger dining tables, the
cryptographers must form a fully connected graph. However, with increasing number
of cryptographers the likelihood of collisions increases. The Herbivore [18] prototype
is built upon the concept of DC networks. It uses small sub-graphs in order to scale to a
larger number of participants.
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Figure 2.2: The Dining Cryptographers problem with the cryptographers C1, C2 and
C3 and their announced results in the dotted boxes. The coin tosses on the
edges. Left side: 0 ⊕ 1 ⊕ 1 = 0, therefore no one has payed. Right side: C3
negates its announcement, 0 ⊕ 1 ⊕ 0 = 1. Therefore, one has payed. Own
graphic.

Drac

The Drac concept [19] describes a broadcast system based on an underlying social
network. It explicitly focuses on protection of voice-over-IP against a global adversary.
The paper’s result are based on a software simulation.

During operation, constant heartbeat connections are established to friends of the
underlying social network. The heartbeat connections are fully padded with cover
tra�c, s.t. an observer cannot deduce valuable information. The friendship graph is
considered to be publicly available anyway. For establishing a call to a non-friend node,
the friends are used as relay nodes.

However, this leaves the caller with the challenge to fully trust his friends (and the set
of their friends). This implies that an attacker, which by assumption knows the social
graph, has a nicely pre-de�ned set of nodes that he needs to compromise.

2.2.4 Attacks on Anonymous Communication Systems

This subsection brie�y discusses a set of attacks that representatively show limitations
of the aforementioned anonymous communication systems. Much more is summarized
in [20]. However, most of them do not apply to our solution. Attacks that are concrete
to a speci�c implementation detail (e.g. codec leakage) are presented in “attack boxes”
in the right context.

Attack: Statistical Disclosure The idea of a statistical attack is to observe a set of
participants and collect statistical measurements about their tra�c. Examples for such
quantities are consumed bandwidth, inter-packet delay and other patterns. Those are
then pair-wise correlated in order to �nd communication pairs. See: [21, 22]
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Attack: Intersection Attacks In an intersection attack, the statistical disclosure
approach is repeated several times. The sets of potential communication pairs of each
round are intersected until the result is of size one. This allows to use less signi�cant
statistical measures. One approach would be to observe the times a peer is online.
See: [21].

Attack: Tagging/Watermarking When the normal statistical variations are not
signi�cant, one can try to watermark the packets. Wang et al. [23] showed this for
VoIP low-latency anonymous networks. On the sender’s side, they watermarked the
inter-packet delay and were able to correlate this with the resulting packet �ow at a
receiving node. This can also be an example of an active tra�c con�rmation attack.

Attack: Protocol Leakage An often overlooked problem is the leakage of informa-
tion via the tunneled protocol that can de-anonymize the user. An impressive example
is the Panopticlick3 demonstration by the Electronic Freedom Foundation (EFF). Solely
based on the characteristics of the browser (user agent, headers, installed fonts, ...) many
user can be uniquely identi�ed. The VBR codec leakage as discussed in 2.3.1 is another
example of this category.

2.3 Voice-over-IP

Voice-over-IP (VoIP) summarizes all techniques that allow speech communication over IP
based networks. Before, speech communication (i.e. telephone calls) was mainly routed
using circuit switching. The main advantage of circuit switching is that it easily provides
bandwidth and latency guarantees. However, building an application speci�c network
is ine�cient due to the extra infrastructure and underutilized links. Packet switching
networks (such as the global IP network) are more e�cient as they allow to multiplex
many applications with varying bandwidth on a single link. The modern protocols and
signi�cant capacities of today’s Internet leave most guarantees a secondary concern.

Today, there are two prevailing applications of VoIP. Firstly, VoIP is replacing the circuit
switching backbones of the classical telephone network4. This has been transparent
to most users, as the existing telephone numbers have been maintained. Secondly,
there are direct internet telephony services such as Microsoft’s Skype and Facebook’s
Messenger. Those come with their own identities and provide software that can run on
various platforms.

As soon as entering the microphone, VoIP data is a highly perishable good. This section
outlines how the typical VoIP pipeline is structured and highlight how implementations
deal with the end-to-end latency requirements. An overview on available solutions
concludes this section.

3https://panopticlick.e�.org/
4The number of VoIP-based connections competing with classical phone connections has increased

from 7.8m of 38.3m (2010) to 17.1m of 36.9m (2014) in Germany [24, p.75].
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2.3.1 The VoIP pipeline

The term VoIP pipeline denotes all steps taking place from the voice recording on the
sender’s side to the the playback on the recipient’s side. Figure 2.3 shows the char-
acteristic steps and the intermediate artifacts. They are explained in the following
sub-sections.

One must consider that every transformation requires some sort of bu�ering of the
previous artifacts. Therefore, every step adds up to the total end-to-end delay of the
voice transported. Good implementations must take in-depth details and interplay of
the single steps into consideration in order to provide a reasonable communication
experience.

Figure 2.3: High-level overview of a typical VoIP pipeline. The upper part represents
the sender’s part while the recipient’s portion is shown below. Own graphic.

Sampling and Quantization

The �rst step of the VoIP pipeline is the transformation of the continuous sound signal
into a sampled, digital one. This process involves sampling and quantization and is illus-
trated in �gure 2.4. Sampling denotes the reduction of the originally time-continuous
signal to a time-discrete signal. Commonly, sampling frequencies for voice are between
8 (narrow-band) to 48 (full-band) kHz. Quantization then performs the mapping of
the analogous value to a (�nite) set of digital values. This mapping can be linear or
non-linear5 for providing in important regions.

Codec

A codec compresses digital audio into a proprietary codec data stream which has a
signi�cantly smaller bandwidth. While there are loss-less codecs, the majority of use-
cases use lossy codecs as they provide a higher compression rate. Within the lossy

5Examples are the A-law or µ-law algorithm for the Pulse Code Modulation (PCM) method.
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Figure 2.4: Transforming an analogous signal into a digital one (from left to right): The
original signal, the signal after being sampled and the signal after sampling
and 3-bit quantization. Own graphic.

codec family one di�erentiates between constant bit rate (CBR) and variable bit rate
(VBR) encoding.

The application programming interface (API) of codecs usually expects calls with a
prede�ned amount (e.g. {10,20,40}ms) of audio. Those are then encoded and returned
as single frames. Each frame typically has a small header segment and can be decoded
independently. The larger the frame size, the more e�cient the compression becomes,
as there is more neighbor data for the compression algorithm and the header portion
shrinks. In VBR mode the sizes of the frames vary depending on the complexity of the
encoded audio.

Attack: VBR Codec Leakage Encoding voice using a variable bit rate codec
has many advantages in a normal VoIP application. Firstly, the bandwidth can be
quickly adapted to the current congestion. Secondly, silence can be compressed
very e�ciently and reduces the overall tra�c. However, it has been shown that the
resulting variations of the size of encoded packets are su�cient to recover single
tones and complete words. [25]

Transport

The created frames then need to be put into packets and handed over to the transport
layer. The minimal meta information for the outer packet packet contains a sequence
number for detecting loss and a timestamp for synchronization purposes. Typical
synchronization challenges are multi-stream coordination (lip sync), error concealment
and correction of clock skew.

For real time applications, such as VoIP, the user datagram protocol (UDP) is the method
of choice. It’s state- and connection-less nature imposes a minimal overhead and pro-
vides fast and direct delivery. Importantly, it does not integrate any mandatory bu�ering,
s.t. the overall end-to-end delay is no further increased.
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When sending packets over the Internet, a good VoIP application has to mitigate a
number of di�erent anomalies. The most obvious one is packet loss. In real-time
applications, there is usually no time to request a retransmission. If a UDP packet is
fragmented along the way and a single fragment is missing, the whole packet is dropped.
This increases the overall loss ratio by the factor of fragmentation. Therefore, it is crucial
to keep the packets as small as possible. Delayed packets that arrive after their intended
playback, are useless and can be considered as lost packets. Interestingly, it’s often not
the transport that causes the most-signi�cant delay, but the input bu�er that has to deal
with the e�ects of transport.

For these reasons, the transmission control protocol (TCP) is considered a bad choice
for real time applications. It’s retransmission ability is typically useless, as the packets
would arrive too late. Also, it provides little means of timing control, thus increasing
the overall delay. [26, p. 639]

Playback

An often overlooked aspect of VoIP is the playback coordination on the recipient’s side.
And it is probably the one that is the most challenging to get satisfyingly right.

In the beginning, all received packets are parsed and queued into the input bu�er. The
bu�er serves the purpose of re-ordering late arriving packets. Together with a bu�er of
out-dated packets it is also used for error correction purposes (see next section).

Next, the packet gets parsed, decoded and queued into the sample bu�er. The sample
bu�er is usually in a special memory region that is available to the sound device driver.
This bu�er serves the purpose of mitigating delays and short interruptions (e.g. IP
congestion, context switches) in any of the previous steps. Often the playback rate is
adapted when the bu�er �lls too slowly or too quickly.

Figure 2.5: Algorithmic overview of a typical playback process. The actual implementa-
tion contains more technical details such as coordination of di�erent threads
and possible delaying of decisions. Own graphic.
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Error Concealment and Correction

Error concealment and error correction are two di�erent approaches for reducing the
audible e�ect of packet loss. However, they can be used in combination where error
concealment takes place when error correction failed.

When frames get lost, the audio stream on the recipient’s side has a gap. A simple error
concealment strategy is �lling the gap by silence, using the next packet’s timestamp for
estimating the required duration. Interestingly, substituting random noise instead of
pure silence results in better intelligibility6. The quality can be further improved by
repeating the previous samples or trying to reconstruct the missing samples based on a
speech model. [27, p.233]

The two dominant strategies for error correction in VoIP are forward error correction
(FEC) and audio redundancy coding. In former, groups of packets are formed and used
to compute an additional FEC packet. The computation is usually performed using a
simple parity scheme or Reed-Solomon codes [28]. In event of a loss, the FEC packet
can be used in conjunction with the other packets of the group for reconstructing the
lost packet. One major drawback is that the input bu�er must wait for the FEC packet
for correction, adding additional delay to the pipeline.

When using audio redundancy coding an additional audio stream of very low quality
is established. The frames of this stream are then added to the packets of the original
stream, but always delayed by an o�set of one. In case of a loss, the missing audio
sequence can be reconstructed from the redundancy frame of the preceding packet. A
comprehensive discussion on error correction for media streams can be found in [29].

Figure 2.6: When using FEC (left side), the missing third packet is reconstructed from
the extra FEC packets and the other successfully received packets. On the
right side, it is recovered using the redundant audio frame in the fourth
packet. Own graphic based on [29].

6This has been shown by various listening tests. It is suspected that the brain’s ability to reconstruct
speech works better when there is no complete silence. [27, p.233]
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2.3.2 State of the Art

Modern VoIP solutions address all those challenges and often provide quality superior
to conventional phone lines. One important building block for many applications is the
Real-time Transport Protocol (RTP). It provides an extensive framework around uni- and
multicast transportation of audio and video over IP.

RTP as de�ned in RFC 3550 [30] comes together with the Real-time Transport Control
Protocol (RTCP) and both build upon UDP. The RTP packets are transporting data from
the sender to the receiver, while the RTCP is used to transport metadata and coordinate
sessions. The standard covers multi-sender scenarios, middle boxes called mixes, rate
controlling and quality control. By this, it allows interoperability of many applications.

The outline of a RTP packet is shown in �gure 2.7. The sequence number is used for
estimating packet loss and the timestamp allows to provide synchronization of multiple
streams as well as dealing with clock skew. Contributing source (CSRC) identi�ers are
used when the synchronization source (SSRC) mixes multiple streams. As many �elds of
the header remain constant or change by a constant di�erence between two subsequent
packets, middle boxes can perform transparent RTP Header Compression. This reduces
the combined header of IP/UDP/RTP to a total of 2–4 bytes.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

V P X #C M PT sequence number
timestamp




RTP
Header

synchronization source (SSRC) identi�er
contributing source (CSRC) identi�ers

· · ·

payload stream data (MP3, Opus, MP4, . . . )

. . .optional RTP padding




RTP
Payload

Figure 2.7: Outline of a RTP packet: V = version, P = padding bit, X = extension header
bit, #C = number of CSRC identi�ers, M = payload speci�c marker bit (e.g. for
synchronization frames in video codecs), PT = payload type. Own graphic.
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The choice of the payload is not speci�ed by the original standard and left to be agreed
on application level. Typical codecs for VoIP are the ARM-NB and ARM-WB codecs, the
G.7xx codecs and the open source codecs Speex and Opus. Opus is used for the HRTP
implementation as described in 4.3.3.

Also, the Session Initiation Protocol (SIP) should not be left unmentioned. SIP is used
for establishing VoIP calls. It can be used in a stand-alone client or in a proxy manner
between conventional phones and IP services. SIP takes care of registering clients,
ringing the opposite and agreeing on codecs. The media transport is usually using RTP.

2.4 State of the Art in Secure VoIP

Standardized protocols such as SRTP and ZRTP form valuable building blocks for mod-
ern and secure VoIP applications. While providing high-levels of con�dentiality, in-
tegrity and authentication, they all lack strong privacy guarantees against a global
passive attacker.

2.4.1 Secure Real-Time Protocol

The Secure Real-Time Transport Protocol (SRTP) as de�ned in RFC 3711 [31] adds
con�dentiality, integrity and authenticity to the popular RTP protocol. It does so by en-
crypting the payload and adding an authentication tag (optional, over the whole packet)
to the RTP and RTCP packets. SRTP supports AES-CM and AES-f8 for encryption and
HMAC-SHA1 for integrity.

As the header remains unencrypted, an attacker can deduce information from the
transmitted timestamps, the sequence number and the packet size itself. However, this
allows middle boxes to apply RTP header compression techniques (e.g. RFC 2508) to
encrypted packets.

The SRTP key hierarchy has the masterkey and the mastersalt as its given root keys.
The actual session keys called srtp_sessionenc , srtp_sessionauth and srtp_sessionsalt
are derived using AES-CM as the derivation function and XOR-ing the label (0x00, 0x01,
0x02, respectively) with themastersalt :

srtp_session {enc,auth,salt } := AES_CM (masterkey , label ⊕ mastersalt )

It is important to note, that SRTP itself does not de�ne any key establishing and agree-
ment steps. It is assumed that key establishing is handled o�-band. One example is
ZRTP, which is described in the next section.
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2.4.2 ZRTP

The Z Real-Time Transport Protocol (ZRTP7) is a key agreement protocol for establishing
SRTP sessions. It runs on the same port as RTP and uses a very similar packet format.
This way, it can be integrated transparently as a middleware to existing RTP applications.
ZRTP comes with nice cryptographic properties such as Perfect Forward Secrecy8 and
protection against Man-in-the-Middle (MitM) attacks. The caller is called initiator and
the callee is referred to as responder.

In this sub-section gives a very brief overview on a representative ZRTP session. It skips
the details of using cached secrets or multi-streams and focus on giving a high-level
understanding of which cryptographic operations are performed in a simple session.
Further it omits all technical details, such as message formats, algorithm negotiations
and context parameters in hash functions.

ZRTP is multiplexed on the same port as RTP. In order to be distinguished reliably, it
adapts to the RTP format, but uses an invalid RTP version of 0x00. A client supporting
ZRTP can then check the �eld that normally carries the timestamp. In ZRTP, this �eld
has the “magic cookie” value 0x5a525450 (hex-ascii for zrtp). The �rst message received
will be a Hello message that is replied to by an HelloAck.

In the next step, the responder computes its Di�e-Hellman (DH) key-pair DH_pubR ,
DH_secretR and commits using a Commit message. The initiator then generates its DH
key-pair. Now the DHPart1 message containing DH_pubI is send and the responder re-
sponds with his DHPart2 message containing DH_pubR . Both parties then can compute
the DH value. This is used in conjunction with a hash hm over all previously exchanged
messages to compute a shared secret s0. The �elds s {1,2,3} refer to information from the
cached secrets9 and are null during the �rst call.

DH = DH_pub DH_secretR
I modq

= DH_pub DH_secret I
R modq

s0 = H(DH ,hm ,s1,s2,s3)

7The Z is meant as a reference to Phil Zimmermann, the main inventor, but Zimmermann is not part of
the acronym itself.

8In a cryptographic protocol with Perfect Forward Secrecy, an attacker, who manages to compromise
the long-term secret key and/or a single session key, cannot decrypt messages exchanged earlier. This is
usually achieved using Di�e-Hellman key exchange for establishing temporary session keys.

9The idea of cached secrets is similar to key continuity of the SSH protocol. After the �rst call, both
sides store a retained secret that is derived from the shared secret s0. By this, the parties can be sure to
talk the already authenticated partner next time by comparing their secrets. Perfect forward secrecy is
ensured by updating the cached secrets at the beginning of every session.
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The shared secret s0 is used for deriving the master keys and salts for SRTP for each
direction. Also, the ZRTP session key zrtpsess is derived that is used in the context of
supporting multiple streams in a single RTP session:

srtp_masterkey,I = K(s0, "Initiator SRTP master key")
srtp_master salt,I = K(s0, "Initiator SRTP master salt")
srtp_masterkey,R = K(s0, "Responder SRTP master key")
srtp_master salt,R = K(s0, "Responder SRTP master salt")

zrtpsess = K′(s0, "ZRTP Session Key")

ZRTP uses Short Authentication Strings (SAS) in order to prevent MitM attacks. The
SAShash �nally depends on the DH value. An attacker in the middle, will fail to generate
two DH key exchanges with both parties resulting in the SAS message due to the early
Commit message [32, p. 20f]. Even for SAS as short as 16 bit. Using the rightmost n bytes
as the SAS value , it can be rendered as Base32 (B32 with n = 20, e.g. “bjt1”) or using the
PGP word list (B256 with n = 16, e.g. “glitter unicorn”). The SAS strings are compared
over the then established voice channel using human judgment.

SAShash = K(ZRTPsess , "SAS")
SAS value = riдhtmostbits (n, SAShash )

2.4.3 Overview on Available Solutions

Finally, we will give a brief overview on chosen existing solutions that promise secure
VoIP communication, namely OnionPhone, Skype and SilentCircle.

VoIP over Tor One tempting approach is to tunnel VoIP applications over an existing
general purpose anonymity communication system such as Tor. The OnionPhone10

is an open source implementation that provides sender and recipient anonymity us-
ing Tor’s hidden services. It can be used as a plugin for the Torchat application and
comes with additional features such as a vocoder that can distort the speaker’s voice.
The OnionPhone comes with an additional layer of encryption, mutual authentication,
perfect forward security and key management.

Although Tor is a “low-latency” network, the end-to-end latency is often still within
the range of several seconds and makes voice conversation di�cult. Also, we have seen
that Tor does not protect against strong attackers such as an global passive adversary
and is vulnerable to tra�c con�rmation attacks.

10http://torfone.org/onionphone/index.html
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Skype The Skype11 network is probably the world’s most popular direct Internet
telephony system. It comes with clients for various platforms and despite its central
registration server, it is mainly a P2P system. Its developers claim that it uses strong
encryption for skype-to-skype calls, but the proprietary protocol makes independent
research di�cult. It provides little to no privacy guarantees due to its direct communi-
cation links and its compliance with lawful interception.

Silent Circle The SilentCircle12 company o�ers commercially available solutions
including secure telephony, messaging and mobile phones. It’s technology is based
upon ZRTP (see 2.4.2), thus providing its MitM defenses and strong cryptographic
operations. However, it does not address any anonymity guarantees, but focuses on
avoiding compromised devices by providing a hardened smartphone.

11http://www.skype.com/en/
12https://home.silentcircle.com/
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CHAPTER 3

Approach & Design

“Simplicity is prerequisite for reliability.”
— Edsger W. Dijkstra

The proposed design is based on a broadcast scheme. All participating peers establish
continuous pair-wise streams by sending encrypted packets of same size at a constant
rate. The continuous broadcast without exploitable1 metadata makes all communication
completely unobservable for a global attacker even with a strong a-priori suspicion. By
splitting the communication into a control stream and a data stream, both low latency
and strong protection are achieved.

Gateways separate the observable Internet from the unobservable internal network
where the handsets of the local users are registered. They also manage the handsets’
keys and are the origin of the broadcast tra�c. By this separation, the status of the
handsets is not leaked, as the tra�c is never disrupted.

3.1 Setting and Scope

The proposed solution anticipates a global active adversary (GAA). Even in such a
scenario, it provides its strong unobservability guarantees against communication-
con�rmation attacks. However, it is neither censorship-resistant nor stenographic. The
approach as described here only scales to a small number of participants and does not
provide bootstrapping for new users.

1An information is called exploitable if it unveils new information about a secret property, the change
of a secret property or the exchange of such.
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3.1.1 Adversary and Assumptions

The description and analysis anticipate a global active adversary (GAA). The adversary
controls all of the public network from the interface of one gateway to the interface
of any other gateway. Let Y be such an adversary. Y has capabilities to record all
tra�c on every link, analyze it instantaneously and perform modi�cations at any point.
Further, Y can participate in the protocol with multiple identities as Y has access to all
speci�cations and source-code. This, of course, makesY also an global passive adversary
(GPA) that can act adaptively.

The attacker has a strong a-priori suspicion of two known participants who are commu-
nicating or not. The tra�c con�rmation attack is considered successful if the attacker
can verify his hypothesis with p � 50%.

The guarantees of unobservability, con�dentiality and integrity are built upon two
relatively weak assumptions: Firstly, it is assumed that all communication behind the
gateway (that is, between gateway and handsets) happens in an unobservable private
network. Secondly, the assumption is made that carefully applied encryption and
signatures do not leak any information about the used keys or the content processed.

3.1.2 Non-Covered Aspects

The current solution provides no decentralized bootstrapping for joining clients.
A system with multiple users is expected to be set up manually by exchanging public
keys and IP addresses. This information is entered locally in a con�guration �le and re-
mains static during operation. This is intended as con�guration changes might disclose
exploitable information to the attacker.

Another aspect that is not covered by the approach presented in this chapter is scal-
ability. By using broadcast tra�c, the required resources grow supra-linear with the
number of participating users. While this is acceptable for the aforementioned use case
of embassies, this is de�nitely limiting the number of feasible scenarios. Chapter 6
discusses how the system can be extended in order to provide a better scalability.

A global active attacker Y ′ can not only observe packets but also manipulate tra�c.
Y ′ might simply drop all packets of the protocol, thus attacking the system’s availabil-
ity. The system is not censorship-resistant, but it never leaks any information about
communication when disturbed in any manner.

While providing unobservable VoIP, it is no stenographic system. An attacker (even with
very limited resources) can determine that the system is used and who is participating.
However, it remains completely unobservable (following the de�nitions in the �rst
chapter) as the attacker cannot determine that there is meaningful communication
happening over the system.
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3.2 Approach

In the approach, continuous tra�c is sent between each pair of participants. The packets
are encrypted such that only the recipient can decrypt them. As the packets have a
�xed size and are sent at a �xed rate, an observer cannot deduce information from the
tra�c patterns. Each participant is registered at a trusted gateway which ensures that
the continuous tra�c never stops and that replaces the payload with dummy data when
there is no active call.

The user interacts with its terminal using an application on a smart phone or handset
device. It is assume that the communication between the handset and the gateway takes
place in a private, unobservable network. By this, there is no need for continuous tra�c
between those two, reducing the required resources on the handset.

3.2.1 Overview, Terminology and Notation

The following paragraphs introduce some notation that will allow to describe the ap-
proach more precisely. This will be helpful in the sections on provable anonymity
(section 3.3) and when discussing the scalability of the solution (chapter 6). More gen-
eral notational conventions are given in the appendix A.1.

System S , GatewaysGS and UsersUS

We de�ne a system S consisting of a set of k gateways GS = {G1, . . . ,Gk } and a set of
n users US = {U1, . . . ,Un }. There might be multiple users per gateway, but only one
gateway per user Ui which we denote by writing G (Ui ).

The users connected to a gateway G j are called local members and are referred to as
L(G j ). The set of all users known to G j are referred to as peers or P (G j ). This includes
all local members. Therefore, L(G j ) ⊆ P (G j ),∀j. Consequently, in a fully-connected
system S (that we will most-often assume) it holds that⋃
д∈GS

L(д) =
⋃

д∈GS

P (д) = U and ⋂
д∈GS

L(д) = ∅.

All gateways of the system S are connected via a public network and know each others’
IP addresses IPGi . We also de�ne a set of handsets HS = {H1, . . . ,Hn } and for simplicity,
we assume that userUi uses exactly one handset, namely Hi . A handset Hi is connected
to the gateway G (Hi ) = G (Ui ) via an internal, unobservable network.

Each userUi has a public-private key pair KPi = (pubi , privi ) consisting of a public key
and a private key. Furthermore, each user has an identi�er IDi .
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Figure 3.1: Overview of a system S with GS = {G1,G2,G3} and US = {A,B,C,D}. An
edge between the a pair of gateways denotes a data- and control stream for
each direction.

Control- and Data-Streams Di ,Ci

In the protocol, for every Ui we have two distinct streams (data and control) between
д = G (Ui ) and all p ∈ P (д). For this, every peer p = Ui has two distinct ports at gateway:
portc,i , portd,i for its control- and data stream, respectively.

When saying “UA sends data stream packets to UB”, we mean that the gateway
GA = G (UA) sends data to GB = G (UB ) using the address tuple (IPGb , portd,B ). The
data stream from UA to UB is written as DA,B . The i-th packet is referred to as DA,B[i].
Similarly, the control stream denoted by CA,B .

Due to the broadcast approach, we conclude that DA,x is identical for all x ∈ P (G (UA)).
It is su�cient to write DA, CA for referencing the outgoing streams of A and DA[i],
CA[i] for the i-th packet of these. We denote the point of time the packet was sent as
the packet’s timestamp DA[i]t ime .

3.2.2 The Streams

The broadcasted communication originating from userUi is split into the control stream
Ci and the data stream Di . Both have in common that packets are sent at a �xed rate and
have �xed size. These two characteristics never change through the course of operation.
More details of the actual implementation can be found be found in the next chapter.

Control-Stream Ci : Control stream packets are sent at a very low rate and have a
relatively large payload size. The content is protected using public key cryptography.
They are used for signaling session initiation and for initial key establishment.

Due to the use of public key cryptography for both encryption of the payload and
authenticity using signatures, their processing requires relatively large computational
resources. The used methods must not leak any information about the key used or the
content protected.
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A packetCA[i] sent fromUA contains the sender’s identi�er, a sequence number, the en-
crypted payload and a signature of the complete content. When no session is established,
the payload is encrypted with an unused public key.

CA[i] = {IDA, seqnr = i, E (pubpeer , payloadC,i ), S (privA, CA[i])} 2

Data-Stream Di : Data stream packets are sent at a high rate and have a size large
enough for containing single codec frames. They are protected using symmetric cryp-
tography and contain multiplexed audio data and messages for the �nal key agreement.

A packet MD sent from UA contains the sender’s identi�er, a sequence number, the
encrypted payload and a message authentication code (MAC,H) of the complete content.
The used methods must not leak any information about the key used or the content
protected. When there is no established session key, a random key is chosen.

DA[i] = {IDA, seqnr = i, E (sessionenc , payloadD,i ), H(sessionauth , DA[i])}

Dummy Packets When a stream is missing payload for its next packet, the payload
is �lled up with a random string. The resulting packets are called dummy packets. It is
important to see that they are still encrypted the same way and have a valid signature
or MAC, respectively. An attacker cannot distinguish them from packets containing
“real” payload.

3.2.3 The Gateway

The main purpose of the gateway is the handling of incoming packets and the continuous
casting of outgoing packets to all connected peers. While doing this, the gateway is in
one of two main states: Either there is a session with an explicit remote peer, or there
is no current session.

Another important task is the decoupling of the handset from the public observable
network. By doing so, no information about the handset can be observed, e.g. its online
times, used subnets or general latency. Moreover, this allows for the handset to remain
in standby while all costly and continuous cryptographic operations are handled by the
more powerful gateway.

For simplicity, this section focuses on a single user A and its gateway G1. A multi-user
gateway can be imagined as multiple single-user gateways running on a single machine.
The actual implementation, of course, uses much �ner states which are described in
detail in the implementation chapter. Figure 3.2 shows the process of a straight-forward
call establishment.

2Here, CA[i], as second argument to S , refers to the complete message without the signature
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State: no peer When no peer is connected, outgoing control packets CA[i] are en-
crypted with a random public key, such that no peer can decrypt its content. Similarly,
outgoing data packets DA[i] are encrypted using a random key.

All incoming data packets are dropped, as there is no current session. However, all
incoming control packets CX [i],X , A are carefully processed after their signature has
been checked using the sender’s public key pubX . When the packet can be decrypted, it
was encrypted with A’s public key pubA. This way the gateway knows that it is called
and will notify the handset.

Upon acceptance, G1 changes its encryption key for outgoing packets to X ’s public key.
It also generates an initial session key keyAX for the data stream and sends it to X using
the next packet in the control stream. Both gateways move into the established peer
state.

State: established peer When the gateway has an active peerX , all incoming packets
not originating from that peer are dropped. The current peer’s packets’ authenticity is
veri�ed using their signature and MAC. Voice data is forwarded to the handset. On the
other hand, voice data from the handset is accepted and forwarded to X within the data
stream.

When there has been no authenticated packet from X for a certain amount of time, the
session will time out. The same happens when the user decides to terminate the call.
A �nal CLOSING control is sent to the other side. Then the session key as well as the
outgoing public key is replaced by a random key. The gateway is now in the no peer
state again.
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Figure 3.2: A simpli�ed sequence diagram showing the interaction of A calling C. The
transition from dashed to solid lines show the change of the state (no peer to
established peer). I: A initiates the call by informing his gateway G1. When
the next control packet is due, G1 will send a HELLO encrypted with C’s
public key to G2. II: G2 will signal the incoming call to C which accepts it.
G2 computes an initial session key keyAC. III: G2 sets its outgoing key to
the public key of A and transmits keyAC within the next control packet. IV:
Both gateways can now encrypt and decrypt the data stream and forward
the payload to the handsets. V: As initial signaling is done, the data stream
payload is no longer of interest. By still using the opposite’s public key, the
session does not time out. Own graphic.
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3.3 HRTP is Unobservable

In this section it is shown that the proposed communication system is unobservable
as per de�nition below. Without loss of generality, the communication stream C =

CA,D = DA from UA to UB is discussed.

3.3.1 De�nitions and Axioms

Our more formal de�nition of unobservability is built on the understanding of ex-
ploitable information:

Definition 1 An information is exploitable if it unveils new information about a
secret property, the change of a secret property or the exchange of such. An example
for such an property is the internal call state of the gateway.

Definition 2 A stream is unexploitable i� only A and B can extract exploitable
information from its packets. A stream is exploitable i� any of its packets is exploitable
for Y , A,B.

Definition 3 A communication system S between A and B is unobservable if all of
its communication (i.e. its streams) are unexploitable.

The only assumptions made are that the cryptographic routines do not leak information
about the used key or plaintext:

Axiom 1 The encryption routines Esymm and Easymm do not leak any information
about the used key or encrypted content except the number of bytes encrypted. Using
(implicit) nonces within the encrypted payload, the ciphertext is di�erent every time.
Without the key, the ciphertext cannot be distinguished from a random string. Note
that this implies that same plain text and key combinations result in di�erent cipher
text

Axiom 2 The signature routine S and MAC routine H do not leak any information
about the used (private) key. Without the key, the MAC cannot be distinguished from a
random string.
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3.3.2 Showing Unobservability

We �rst show that individual �elds of the packets are unexploitable. Those lemmata are
then combined for showing the unobservability of the communication system between
A and B against any Y , A,B.

Lemma 1.a The timestamp of the packets C[i] and D[j] is not exploitable, ∀i, j ≥ 0.

Proof: Full induction for C[i] (D[j] analogously):

i = 0: The initial timestamp is per de�nition C[0]t ime = 0.
i = 1: The timestamp of the second packet does not reveal any information, as its dif-
ference to the �rst packet’s timestamp appears random to an observer.
i > 1: The timestamp for any further packet can be predicted. For this, Y computes
∆C = C[i − 1]t ime −C[i − 2]t ime . Then the timestamps of the next packets are
C[i]t ime = C[i − 1]t ime + ∆C . Information that can be predicted cannot disclose any
secret information. �

Lemma 1.b The size of the packets C[i] and D[j] is not exploitable, ∀i, j ≥ 0.

Proof: As per speci�cation, the size of C[i] and D[i] remains constant. Therefore, they
are predictable and do not disclose any secret information. �

Lemma 2.a The source identi�er �eld the stream packets C[i] and D[j] is not ex-
ploitable, ∀i, j ≥ 0.

Proof: The source identi�er �eld is always IDA. Therefore, it is predictable and do not
disclose any secret information. �

Lemma 2.b The sequence numbers �eld of the stream packets C[i] and D[j] is not
exploitable, ∀i, j ≥ 0.

Proof: Full induction for C[i] (D[j] analogously):

i = 0: For the �rst packet the source identi�er is randomly chosen. Therefore is dis-
closes no secret information.
i > 0: The source �eld C[i].seqnr can be predicted by Y computing
C[i].seqnr = C[i − 1].seqnr + 1. Analogous for D[i].seqnr . �

Lemma 3 The signature of the stream packet C[i] is not exploitable, ∀i ≥ 0.

Proof: We analyze both the steps of signing and verifying:

The process of signing does not provide exploitable information about its input. First,
the private key privA is not leaked as per axiom 2. Second, the string that is signed is
available in the same packet and therefore is not secret.

31



Chapter 3 – Approach & Design

The veri�cation result of the signature (which can be done by Y ) does not unveil any
secret information: If it succeeds, it shows that the message has been created byAwhich
is expected. If it fails, either A or an attacker has changed it. This does not unveil any
secret between A and B. �

Lemma 4 The MAC of the data packet D[j] is not exploitable, ∀j ≥ 0.

Proof: Following axiom 2 the MAC does not leak any information about secret proper-
ties. �

Lemma 5 The encrypted portion E (privB ,payloadC,i ) is no exploitable information
for Y , B, ∀i ≥ 0.

Proof: Follows from axiom 1, as privB is only known to B. �

Lemma 6 The encrypted portion E (sessionenc ,payloadD,j ) is no exploitable informa-
tion for Y , A,B, ∀j ≥ 0.

Proof: Only A and potentially B are in possession of sessionenc . Following axiom 1, no
information about the key and the content is leaked to anyone else. �

Theorem: Unobservability The proposed communication system between A

and B consisting of stream C,D is unobservable for Y , A,B ∈ U , given Y knows U ,G,
all public keys pubi and C[i],D[j] with i, j ≥ 0.

Proof: Unobservability From lemmata 1.a, 1.b, 2, 3 and 5 it follows that the packet
C[i] is unexploitable, as every of its �elds is unexploitable. From lemmata 1.a, 1.b, 2, 4
and 6 it follows that the packetD[j] is unexploitable, as every of its �elds is unexploitable.
As C[i] and D[j] are unexploitable ∀i, j ≥ 0, the streams C and D are unexploitable
(de�nition 2). Therefore, the proposed communication system between A and B is
unobservable (de�nition 3). �
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CHAPTER 4

Implementation

“Let us change our traditional attitude to the construction of programs:
Instead of imagining that our main task is to instruct a computer what to
do, let us concentrate rather on explaining to human beings what we want
a computer to do.”

— Donald E. Knuth

The main outcome of this thesis is a prototype providing unobservable Internet tele-
phony. For this the HRTP protocol has been been designed and speci�ed to match
the properties declared in the previous chapter. The gateway can be deployed as a
stand-alone Java application. The handset is implemented as an application for Android
devices.

The main focus is avoiding leakage of any side-channel information from the gateway.
Moreover, the challenges of VoIP, as discussed in 2.3, are explicitly addressed by the
implementation. All components are designed to run on low-resource devices and
provide very low end-to-end latency.

The prototype is built with the intention to serve as a foundation for further extensions
and modi�cations (as described in chapter 6: “Quo vadis: Transformation into a Scaling
System”) in mind. Therefore, modularity and testability are considered throughout the
architectural design.
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HRTCP Control Stream HRTP Data Stream

Session initiation Transport of
and coordination ZRTP and audio

OSI L3/L4 IP/UDP IP/UDP
Rate 1/5 s 1/30 ms
Total Size 522 Byte 80 Byte
Payload Size 190 Byte (36.4%) 44 Byte (55%)
Bandwidth 0.102 KiB/s 2.604 KiB/s
Encryption RSA-2048-OAEP AES-256
Authenticity SHA-1 with RSA-2048 HMAC SHA-512 (truncated)

Table 4.1: Overview on the control stream and data stream from a technical perspective.
All data is calculated from speci�cation, not measured.

4.1 The HRTP Protocol

The protocol is based on pair-wise data and control streams. The implementations
are referenced as the Hidden-Real-Time-Protocol (HRTP) stream and the Hidden-Real-
Time-Control-Protocol (HRTCP) stream, respectively. The name HRTP also refers to the
complete protocol which includes both streams.

Despite the similarity of the acronym, HRTP is not based on RTP nor SRTP. The main
reasons are that (S)RTP has a relatively large overhead, does not protect the timestamp
and provides no conform way to guarantee �xed-sized messages. However, the design
adapts a lot of the best practices from RTP. Examples are the UDP transport protocol
as well as the formats of sequence numbers and timestamps. This allowed us to easily
integrate the existing ZRTP standard for key agreement and exchange.

4.1.1 Streams and Packets

Both the HRTP and the HRTCP streams are generated and sent by the gateway for every
single local user. The packets have a speci�ed �xed size and rate - see table 4.1 for an
overview. UDP has been chosen as the transport protocol. It provides small overhead
and it is, in contrast to TCP, suitable for very low latency communication. HRTP has
been designed to be tolerant with regard to packet loss and re-ordering.

HRTP

HRTP stream packets have a �xed size of 80 byte and the e�ective payload size of 44 byte
results in a payload ratio of 55%. HRTP packets are emitted every 30 ms (see table 4.1).
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0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Source Identi�er
Sequence Number Timestamp (high bits)

Timestamp (low bits) Payload Sequence Number
Payload Type

Payload (44 Byte: Audio, ZRTP, Dummy)

Padding Count

auth.







enc.

HMAC

Figure 4.1: Structure of a HRTP packet. Fields highlighted in gray are encrypted using
sessionenc . Own graphic.

The packet’s private information are protected using AES with 256 bit key size and
keyed-hash message authentication code (HMAC) using SHA-512.

HRTP packets start with a public header consisting of the source identi�er and a sequence
number. The source identi�er allows the identi�cation of the sender behind middle-
boxes where the source IP address has been replaced. The sequence number allows
packet re-ordering. In combination with the HMAC it also provides protection against
replay attempts.

In HRTP multiple input streams can be multiplexed into the data stream. Examples
are audio codec frames, ZRTP messages and dummy tra�c. As the bandwidth is �x,
payloads from low-priority sources are dropped at will by the gateway. See section 4.2.2
for details.

The encrypted part starts with the private header. It contains a mandatory 32 bit times-
tamp and a 16 bit sequence number. The sequence number is used to detect loss of
packets in a particular payload stream (e.g. audio codec). It is also used by the playback
pipeline in conjunction with the timestamp for error concealment. The 8 bit payload
type is used for demultiplexing di�erent payload streams. The valid payload types are
0x00 (DUMMY), 0x20 (AUDIO_OPUS_LOW), 0x40 (ZRTP) and 0x42 (FRAGMENT).

The private payload is padded with 0x00 to a length of 44 byte. The number of added
bytes is stored in the 8 bit padding count �eld and will be removed at the receiver’s
gateway. The length of the payload �eld has been chosen to �t 99% of the frames created
by the used Opus codec con�guration. For this, a pre-recorded speech sequence has
been processed on the handset and the resulting frame sizes have been measured. The
results showed that p99 = 44 bytes (see �gure 4.10 in section 4.3.3).
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The portion consisting of the private header and the private payload is encrypted using
AES in counter mode with a key size of 256 bit. The initialization vector depends on
the packets sequence number for preventing reusage of the cipher stream. The whole
packet is authenticated and integrity protected by an SHA-512 HMAC over the complete
packet. In order to reduce the size, the HMAC result is truncated to 8 bytes1.

Important payloads (e.g. ZRTP messages) that are to large for a single payload, are
transparently fragmented by the gateway. The detailed implementation is discussed in
section 4.2.2.

HRTCP

HRTCP stream packets have a �xed size of 552 byte and the e�ective payload size of 190
byte results in a payload ratio of 36.4%. HRTCP packets are emitted every 5 seconds (see
table 4.1). The packet’s private information are protected using RSA with 2048 bit key
size and Optimal Asymmetric Encryption Padding (OAEP). Integrity and authenticity
is ensured by a SHA-1 RSA-2048 signature.

Similar to the HRTP packet, the HRTCP public header starts with a 32 bit source identi�er
and a 16 bit sequence number. Additionally, the HRTCP contains three 8-bit �elds
specifying the encryption algorithms used in both the HRTP and HRTCP stream. This
allows to change the used algorithms at one gateway without having to update the
con�gurations of all other connected gateways.

The encrypted part consists of the 8 bit payload type �eld and the actual payload. Possible
payload types are 0x00 (DUMMY), 0x10 (KEYS) and 0x20 (CLOSE). The unused payload
length is padded with zero bytes similar to the HRTP packet.

The encryption is performed using RSA-2048 with Optimal Asymmetric Encryption
Padding (OAEP) as speci�ed in [33]. Prior padding schemes had weaknesses when
encrypting similar messages using the same key. Using OAEP solves this
problem [33, p.19]. Since it uses random padding, the same plaintext results in di�erent
cipher texts. However, due to the padding, the usable input size is reduced to
blockLen − 2 · hashLen − 8 = 2048 − 2 · 256 − 8 = 1520b = 191B. Because of an imple-
mentation bug in the OAEP padding of the used cryptographic library (BouncyCastle),
only 190 byte can be e�ectively used in the prototype.

The complete message is signed with A’s private key privA using RSA-2048 with SHA-1.
In combination with the sequence number this also provides replay protection.

1The standard SHA-512 HMAC would result in a 512/8 = 64 byte tag – almost doubling the packet size.
The implementation truncates the result to 8 byte. Considering the birthday paradox, an attacker still has
to try ≈ 5.1 · 109 messages for creating a collision with probability 50%. Given that the attacker can only
change a very small amount of data valid for a short amount of time, we think this choice is reasonable.
Note: unsafe integrity does not a�ect the unobservability properties!
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0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Source Identi�er
Sequence Number Hrtcp Enc Type Hrtp Enc Algo

Hrtp Mac Algo Payload Type

Payload

+ Normal Padding

+ RSA-OAEP Overhead (256 − 190 = 66byte)

auth.







enc.
Bpub

Signature with Apr i v (256 B)
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

hhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

Figure 4.2: Structure of a HRTCP packet from A to B. Fields highlighted in gray are
encrypted using pubB . Own graphic.
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4.1.2 Cryptographic Overview

This sub-section explains the keys and their creation that are involved for communi-
cation between gateways. The protection of the communication between the gateway
and handset is discussed in sub-section 4.3.4. Figure 4.3 provides an overview of all
involved keys and their relation.

Upon registration, each user A creates and saves a RSA-2048 key pair consisting of his
private key privA and the corresponding public key pubA. Additionally, he creates a
dummy key pair and saves only the public key as dummyA. A shares its public key with
all peers that he wants to communicate with. The identi�er IDA, is calculated as the 4
most-signi�cant bytes of the SHA-256 hash of his public key:

IDA = HSHA−256 (pubA)[0 : 4]

Upon establishment of a session, both users create two secrets sessionmaster and
sessionsalt . The secrets are exchanged through the HRTCP channel. The newly received
pair, will be stored as sessionmaster ,in , sessionsalt,in and is used to decrypt incoming
HRTP packets. The locally created secrets are becoming sessionmaster ,out , sessionsalt,out
and are protecting all outgoing HRTP packets.

From those master secrets, the individual keys for encryption, authentication and salting
are derived similar to the scheme used in SRTP (see 2.4.1):

sessionenc, {in,out } := AESCM (sessionmaster , {in,out }, 0x00 ⊕ sessionsalt, {in,out } )

sessionauth, {in,out } := AESCM (sessionmaster , {in,out }, 0x01 ⊕ sessionsalt, {in,out } )

sessionsalt, {in,out } := AESCM (sessionmaster , {in,out }, 0x02 ⊕ sessionsalt, {in,out } )

Based on the, now secured and accessible, HRTP stream, ZRTP is run. ZRTP will perform
a Di�e-Hellman key exchange and therefore provides perfect forward secrecy for all
further data in that session. The resulting master keys and master salts are replacing
the initial session secrets and key derivation is taking place once more. Comparison of
the SAS also protects against the (very unlikely) existence of a man-in-the-middle.

When no session is active, outgoing HRTCP packets are encrypted using the dummy
key dummyA. By this, it is ensured that no information, whether encryption has been
applied or not, leaks. Equivalently, the session secrets are replaced by random values and
all previous secrets are forgotten. All cryptographic operations meet the requirements
of the axiom in sub-section 3.3: They do not leak any information about the key or the
plaintext used.
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Figure 4.4: Overview of call states and their transitions. The procedure is identical for
caller and callee after the “create session secrets” step. Own graphic.

4.1.3 Protocol Flow

This section explains all state transitions in an exemplary protocol run. A graphic
illustration can be found in �gure 4.4. Every user has a running session on the gateway
that represents the communication and cryptographic status. The session is always in
one of six states: NOT_ACTIVE, CALLING, RINGING, INITIATING, ACTIVE or CLOSING. The
default state is NOT_ACTIVE, where no remote peer is set. Here the dummy key dummyA
is set for outgoing HRTCP packets, as well as random session secrets for HRTP.

Calling B When the user decides to call another peer B, the gateway will set the key
for outgoing HRTCP packets to B’s public key pubB . At the same time, the gateway
will create sessionmaster ,out and sessionsalt,out . The payloads of all outgoing HRTCP
packets are now set to 0x10 (KEYS) and contain the aforementioned session secrets.

Receiving a call from A The gateway of B tries to decrypt every incoming packet
with privB . As soon as one of the decryption attempts is successful and unveils a KEYS

payload, the gateway is aware that another peer is calling. Let’s assume A is calling B.
The gateway then connects to B’s handset and ask whether the user wants to accept
the call from A. The state during this time is RINGING.

Only upon acceptance by the user, the gateway updates its key for outgoing HRTCP
packets to pubA. By this A learns about the acceptance by B, as A can now decrypt B’s
HRTP packets. Analogously to A, B computes its secrets and sends them as payload of
the HRTCP packets. A will also parse the received payload and use the keys as local
sessionmaster ,in and sessionsalt,in .
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Both A and B can now decrypt incoming HRTCP and HRTP packets from the other side.
Both advance to the state INITIATING.

Initiating and ZRTP During the INITIATING state, both partner perform the ZRTP
protocol over the HRTP stream. When the ZRTP protocol is �nished, the session secrets
are replaced and session {enc, auth, salt } are derived again. The session’s state changes
to ACTIVE. Both users can now compare the short authentication string (SAS) on their
handset. Now, voice packets are multiplexed into the HRTP stream as well.

Closing the call When a party decides to leave the call, its session moves to the
state CLOSING. Here, the gateway sends a �nal HRTCP packet with the payload type
0x20 (CLOSE). This signals the other side to end the session as well. Alternatively, a
sessions times out when it couldn’t decrypt any HRTP or HRTCP packet for the last 15
seconds. Before moving to NOT_ACTIVE, A’s outgoing public key is replaced by dummyA
(dummyB , respectively) and all session secrets are replaced by random values.

4.2 The Java Gateway

The gateway is implemented as a stand-alone Java application that can run on low-
resource devices. It’s modular design using components with clearly separated respon-
sibilities allows extension and comprehensive testing. The gateway can run multiple
sessions with local members at once, involving multiple datagram services but only on
API service.

For guaranteeing unobservability in practice, it is of uttermost importance that the
pattern of outgoing packets is completely uncorrelated to the internal state. For this,
the protocol state and payload calculation is isolated by using a priority bu�er and a
dedicated broadcasting scheduler and performer.

4.2.1 Architecture

The architecture of the gateway implementation has been developed with a stand-alone
deployment and a modular design in mind. This sub-section discusses the implementa-
tion’s modularity and describes the single components involved.

Stand-Alone and Modular Design

The gateway can be compiled into a single Java Archive (.jar) �le that runs on every
device providing the Java Runtime Environment (JRE). This allows to use a wide range
of systems for running the gateway. Due to its low resource consumption, also small
devices such as classic Internet home routers can be used as a target platform. For the
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Figure 4.5: UML diagram showing the pattern used for the symmetric classes of the
cryptographic framework component. Own graphic.

use of strong cryptographic ciphers (e.g. AES 256) the Java Cryptography Extension
(JCE) has to be installed.

The single components are composed using dependency injection provided by the dagger
library. Dependency injection frameworks take care of creating and initializing objects
and free the programmer from individually creating the dependencies of a class. This
greatly simpli�es the exchange of individual implementations. Furthermore, it allows
to mock classes for comprehensive and precise unit testing.

Many classes are based on the Service interface of the Guava library. The composi-
tion of the main components is in fact a hierarchy of Service implementations. This
simpli�es the management of the components’ life-cycles and makes them more eas-
ily exchangeable. The Guava library provides abstract implementations for services
that require to run a thread or scheduled execution. Most prominently, we use the
AbstractScheduledService for periodic broadcasting of packets.

Components

The gateway implementation can be divided into the following components: The overall
orchestration, the bridge towards the handset, the session worker component, the HRTP
protocol implementation, the cryptographic framework, the model and con�guration
as well as the statistics component:

Overall Orchestration: The main entrance point is the MainApplication class. First
the command line arguments and con�guration �le are parsed. After this, Main-
Control is injected and used for starting the main services of all sub-components.

Model and Con�guration: The model is stored in the singleton GlobalState object
which consists of all LocalMembers, Peers and Sessions. It also ensures the one-to-
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one relation between session objects and local members. For storing and retrieving
the con�guration, the GlobalState is converted into a GlobalConfiguration

object which is then (de-)serialized using the Jackson library.

Protocol: The protocol component itself is state-less. The Protocol class speci�es
state transitions and how in- and outgoing packets are handled. For this it has an
one-to-one relation with a Session object. The protocol components also de�nes
the format of HrtpPacket, HrtcpPacket, HrtpPayload and HrtcpPayload. All
cryptographic state is referenced in ProtocolCrypto which also controls the
ZrtpManager.

Bridge: The bridge component speci�es the communication with the Android handset.
The API communication is based on io.netty and supports SSL certi�cates speci�ed
in the con�guration �le. The HTTP handling is setup in BridgeManager then
parsed and passed to the ApiHandler. The bridge component also includes the
AuthManager for authenticating the handset. This all is described in detail within
the Android implementation section 4.3.4.

Crypto Framework: The crypto framework has been designed for allowing testing
of primitives and on-the-�y updating of keying material and algorithms. Further-
more, it separates the keying management from the application of cryptographic
operations. The keying information, as well as the algorithm choice, are stored
in SymmetricCryptoState2 objects.

Those state objects are used as input for the SymmetricCryptoFactory for cre-
ating SymmetricCrypto objects. The SymmetricCrypto objects provide the basic
encrypt(...), decrypt(...) and hmac(...) operations transparently. Fig-
ure 4.5 shows the classes involved in an exemplary usage scenario. The Bouncy-
Castle library is used for implementations of ciphers.

SessionWorker: The SessionWorker is initiated once per session and managed by the
SessionManager. It controls all processes for handling in- and outgoing pack-
ets as well as the protocol. For ingoing packets the DatagramListener is used,
and the DatagramBroadcaster is responsible for distributing outgoing packets.
Figure 4.7 shows the components and their detailed discussion takes place in
sub-section 4.2.2.

Statistics: The individual statistic components are injected by classes that provide mon-
itoring data. Examples are bandwidth monitoring for HRTP tra�c or measuring
the distribution of time required for decrypting incoming HRTCP packets. For this
purposes, constant memory implementations (e.g. MovingAverageListPooling)
are provided and centrally managed.

2The same pattern is implemented for asymmetric encryption using AsymmetricCryptoState objects

43



Chapter 4 – Implementation

Figure 4.6: Overview of the PayloadPriorityRoundRobin usage in the protocol compo-
nent. Its FixedSizeQueues decouple the payload creation from the broad-
casting. Own graphic.

4.2.2 Isolated Payload Broadcasting

For the unobservability promises of the HRTP protocol, it is important that the gateway
does not leak any side channel information. For instance, the timing of the packets must
always be precisely 30 ms. Other operations such as API communication or updating
the keys must not interfere with this.

Therefore, the implementation completely decouples the processes of creating packet
payloads and broadcasting the actual packets.

Payload Priority Round Robin Datastructure

The PayloadPriorityRoundRobin is the central datastructure for isolating the payload
creating components from the broadcasting service. It allows to multiplex di�erent
input stream into a stream with a limited payload rate and is illustrated in �gure 4.6.

Internally it contains di�erent FixedSizeQueues for each payload type. FixedSizeQueues
provide the standard queue interface (add(), poll()), but also have a maximum size.
When adding an object to a full FixedSizeQueue, the oldest element is removed before
adding the new one.

Our PayloadPriorityRound has such a FixedSizeQueue for ZRTP, audio and dummy
payloads. It provides an add(HrtpPayload payload) adding the payload to the queue
matching its type. Its poll() method �rst tries to retrieve an element from the ZRTP
queue, then from the audio queue and �nally from the dummy queue. By this, the �rst-in
element of the queue, which has the highest priority and is not empty, is returned.

The implementation uses a ZRTP queue size of 30, an audio queue size of 5 and a dummy
queue size of 10. The high ZRTP queue size provides enough spaces for all fragments
of large ZRTP messages. The audio queue is intentionally small to rather drop audio
packets than storing them to long (5 · 30ms = 150ms)). The dummy queue size needs to
be large enough to never run empty, as this would result in a disruption of the outgoing
packets.
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Isolated Payload Broadcasting Pipeline

The core classes for the isolated payload broadcast are summarized in the UML diagram
in �gure 4.7. The core component is the SessionWorkerwhich is responsible for both the
datagram services and the Protocol. It also hold the de�nite reference to the Session

model. The SessionWorker is initiated and started by the SessionManager when the
gateway is booted. It will �rst create the SocketManager that provides a transparent
facade to the DatagramSocket. This allows later extension with support for multicast
protocols.

When payload creating services have created a new HrtpPayload, they call the
offer(HrtpPayload payload) method on the Protcol object. Where applicable, the
offer(...) method will split the payload into fragments as described below. After
this, the payload is added to the aforementioned PayloadPriorityRoundRobin data
structure.

Upon creation, the SessionManager has created a DatagramBroadcaster provided with
reference to the Protocol object. The DatagramBroadcaster implements an
AbstractScheduledService with a �xed rate of 30 ms. In every iteration it calls the
createHrtpPacket() on the Protocol. In that method, the highest-priority payload
is retrieved using PayloadPriotrityRoundRobin’s poll() method. A HrtpSource (not
in the UML diagram) is used for decorating the payload with correct encryption and
HMAC, as well as increasing sequence numbers. The resulting byte[] packet is passed
by the DatagramBroadcaster to the SocketManager along with a list of all peers.

The most important observation is that all steps executed from the beginning of the
DatagramBroadcaster iteration, are not depending on the payload in any manner. In
fact, every iteration the very same steps are executed down to the lowest layer of
the AES and HMAC algorithm. This of course does not account for dynamic runtime
optimizations by the Java Virtual Machine (JVM).

The SessionWorker also starts the DatagramListener which uses thread pools for han-
dling incoming HRTP and HRTCP packets. The individual thread pools will concurrently
call the handleHrtp() and handleHrtcp() packets on the Protocol.

Fragmentation of Large Payloads

With an average size of 147 B, ZRTP packets are much larger than the available payload
of HRTP packets (see �gure 4.8). Fragmentation is used to mitigate this. The resulting
HRTP packets marked with the FRAGMENT (0x42) type. They start their payload with a
8-bit counter of the current fragment of the payload, a 8-bit integer denoting the total
number and the original 8-bit payload type.

The fragmentation is implemented in Fragmenter (ArrayList<HrtpPayload>
split(HrtpPayload payload)) and re-assembling of fragments takes place in
FragmentAssembler (HrtpPayload merge(HrtpPayload fragment)). Both methods are
designed such that they run in asymptotic O (1) using concurrent hash maps.
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Figure 4.8: Histogram showing frequency of message lengths for both directions of a
ZRTP run: avд = 147.4, p90 = p99 = 468. Own graphic.

4.2.3 Performance Considerations

The implementation makes use of several measures to reduce computational e�orts. The
most important ones are e�cient packet �ltering, thread pooling for packet veri�cation
and pooling of cryptographic objects.

E�cient Filtering and Veri�cation of Incoming Packets

Based on the source identi�er, HRTP packets that do not match the current peer can
be dropped without performing any cryptographic operation. Even if the attacker is
able to guess and spoof the current peer identi�er, the HMAC veri�cation is of very
low cost. All �ltering for both HRTP and HRTCP take place before any part besides the
source identi�er and HMAC (or signature, respectively) is parsed.

Veri�cation of HRTCP packets is more costly due to the asymmetric algorithms that
are involved. Here, packets from peers can be randomly sampled when they exceed a
certain threshold. This is acceptable, since (1) packet loss is expected by the protocol
and (2) once a KEYS payload got successfully handled, all communication takes place in
the cheap to verify HRTP stream.

Thread Pooling for Handling Incoming Packets

Creation of threads is costly on the Java Virtual Machine (JVM). Therefore, the handling
of incoming HRTCP and HRTP packets is done using ThreadPoolExecutor objects
in the BroadcastListener. This provides a scalable and reliable setup for multi-core
machines. Moreover, it also minimizes thread creation by to caching �nished ones. The
ThreadPoolExecutor uses a task queue for limiting the load. Packets exceeding the
queue are dropped. Di�erent thread pools are used for HRTCP and HRTP as the packet
types have very di�erent characteristics regarding their handle time and computational
e�orts
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Pooling of Cryptographic Cipher Objects

Early runs showed that frequent recreation of ciphers is a costly operation in Bouncy-
Castle. It required costly computations and created a lot of churn with regard to the
garbage collection. Therefore, the implementation makes use of pooling for all cipher
objects. This is thread-safely implemented in CryptoPool.

CryptoPool maintains an internal ConcurrentMap with Storage objects for each dif-
ferent cipher type . Clients borrow a cipher using the borrow(Type type, String

cipherConfig). If there is no object available in the storage object, the storage ob-
ject is �lled up to a minimum level. Clients can return the cipher object later using
giveBack(String cipherConfig, Object object). It is then made available on the
next call of borrow(...).

4.3 The Android Handset

For the implementation of the handset, the Android platform has been chosen. It is the
most popular smartphone platform today. Moreover, applications are developed in Java,
which allows to reuse code from the gateway. We implemented a custom VoIP pipeline
on Android. It uses the Opus codec as native library written in C for high performance.
The pipeline is build modular and can generate statistics.

4.3.1 Introduction to Android

The Android platform is an operation system for mobile devices like smartphones and
tablets. Being an open and free platform it quickly reached the leading position in
the smartphone market. In 2014, over 80% of all sold devices ran Android [34]. This
development is mainly driven by the huge engagement of Google and a wide cooperation
network of with other partners.

The mobile applications – called apps – are developed in Java and can be installed on
devices of di�erent vendors. Performance sensitive parts can be realized in C, shipped
pre-compiled and accessed via the Java Native Interface (JNI). The main compatibility
factor is the supported API level of the device. The HRTP handset app supports a
minimal API level of 153 which is supported by more than 85% of current Android
devices [35].

Android protects the user’s security and privacy by employing a permission model.
Every app has to specify a given set of permission it requires. The user then has
to accept those during the installation. Our Android app requires the following per-
missions: The android.permission.RECORD_AUDIO for accessing the microphone and
android.permission.INTERNET for establishing connections to the gateway.

3code name: ice cream sandwich, version: 4.0.3+
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Applications on Android consist of activities and services. Activities are launched upon
user action and are responsible for graphical user interaction whereas services can run
independently of the activities and perform background tasks. Besides this, Android
uses the pattern of content providers. Content provider have a standardized query
interface and o�er a speci�c type of content, e.g. all contacts in a SQLite database.

4.3.2 Architecture

Similar to the gateway, the Android application is built using dependency injection
provided by the dagger library. Also, guava.Service classes are employed for uniform
control of sub-components. Both measures drastically improve the modularity and
exchangability of the components.

The application has an always running background service BackgroundAndroidService
that listens for state changes of the session at the gateway. When something changes,
events are asynchronously passed via a global EventBus. In case of an incoming call
(state=RINGING), a noti�cation is shown. Stored local contacts are made available using
a content provider PeerProvider.

The MainActivity contains a PeerListFragment showing all stored HRTP contacts, a
StatisticsFragment showing statistics about the gateway and a TestCodecFragment

for locally testing the Opus codec using di�erent settings. Furthermore, the
LoginActivity is shown when the app is started for the �rst time or the user decides
to logout.

Figure 4.9 shows an overview of the app’s components. All details regarding the VoIP
pipeline component including the CallActivity and VoipService are explained in the
section below.

4.3.3 VoIP Implementation

The VoIP implementation is built around the CallActivity and the VoipService. The
CallActivity is opened whenever a call is accepted or initiated. On the one side, it
uses the BridgeApi to keep up-to-date with regard to the session state on the gateway.
On the other side, it employs the VoipService for managing the VoIP pipeline. Both
share a instance of VoipStatistics for debugging purposes.

The VoipServices manages two independent pipeline services: One for outgoing
voice and one for incoming voice. The one for outgoing voice is managed by the
RecordEncodeSendService. It has an internal thread that reads samples from the mi-
crophone and passes them to the Encoder. When encoding has �nished, the frame
is passed to the AudioPacketSender. The AudioPacketSender then will built a valid
AudioPacket using AudioCrypto and send it as an UDP packet to the gateway.

The incoming voice packets are handled by the pipeline managed by the
ReceiveDecodePlayService. When an AudioPacket is received by the
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Figure 4.10: Results of running the Opus codec with 8 kHz sampling rate, 40 ms frame
size and 6 kbit/s bitrate on a conversation example: avд = 27.6, p90 = 37,
p99 = 44. Own graphic.

AudioPacketReceiver, it is passed to the internal, concurrent FrameBuffer. The bu�er
level is used for adaptive playback as described in section 2.3.1. Finally the frames are
handled by the Decoder and passed to the AudioTrack instance for playback.

The Opus Codec

For voice encoding, the free and open-source Opus codec [36] has been chosen. While
the encoder is still in active development, listening tests have shown that it meets or
outperforms the performance of commercial codecs [37]. The Opus codec comes with
error concealment, forward error correction and �exible bitrate and frame sizes. The
implementation employs Opus with a default con�guration of 8 kHz sampling rate,
40 ms frame size and 6 kbit/s bitrate. Tests have shown no need for explicit forward
error correction, as the drop rate was very low.

The Opus integration can be found within the de.tum.hrtp.android.codec package.
For this, the original C implementation is compiled for the �xed-point ARM/ARMv7
architecture and integrated via JNI. This makes the encoding fast on mobile devices
(<2 ms runtime per 40 ms frame). We plan to release the Opus binding as an independent
open source project.

The use of a strategy pattern with the interfaces Decoder and Encoder allows to easily
exchange the current implementation found in OpusDecoder and OpusEncoder. The
binding to the native libmyopus.so library is performed in the global OpusCodec in-
stance. It provides methods for creating new natives instances and performing calls
to the native encode and decode methods. The pointers to the native instances of the
Opus library are casted to 64 bit long integers, since Java has no native pointer type.
Those references are maintained by the OpusDecoder and OpusEncoder instances.

The codec with is evaluated a 10 second pre-recorded conversation using the afore-
mentioned con�guration. The main goal was to �nd out about the actual frame size
distribution. The results of the test can be seen in �gure 4.10. From calculations (see
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below) one expects an average frame size avдexp of 30 B. In the experiment, Opus stayed
below that limit with avдr eal = 27.6 B. However, due to the variable bitrate, more than
10% of the frames were larger than 37 B.

6000 b/s

8 b/B
· 40ms = 30B

4.3.4 Implementation Details

This section explains how the communication between the handset and the gateway is
performed. Furthermore, it brie�y discusses the built user interface.

Secure API between Handset and Gateway

Communication between the handset and its gateway is performed via a simple Hy-
perText Transfer Protocol Secure (HTTPS) API. The current implementation employs
a poll-based architecture where the gateway replies with JSON data structures. The
de�nition of the exchanged objects is speci�ed by plain old Java objects (POJOs) in
.hrtp.gateway.json.*. That package is linked to the Android app as well. The li-
braries Jackson and GSON are used for mapping between JSON strings and the POJOs.

The HTTPS service is implemented on the gateway’s side using the io.netty library.
The request handling on the Android side is implemented based on the square.retrofit
library. The API communication is secured using SSL with certi�cate pinning4. Upon
login, the user identi�es itself using its identi�er and password. It then gets a temporary
authentication token that is added to all following request as a HTTP header parameter.

Secure Audio between Handset and Gateway

For exchange of the audio frames, a temporary UDP connection is created during
the call. The format of the audio packets and their protection is implemented in
.hrtp.bridge.AudioPacket and .hrtp.bridge.AudioCrypto. Again, this package is
linked into both projects. The packets are encrypted, integrity protected as well as
authenticated. For this, the JsonSession objects speci�es a srtpKey chosen by the
gateway for each new call. For the encryption AES-256 in counter mode is used and the
authentication tag is computed using HMAC with SHA256. The implementation allows
the handset to be behind NATs or switch between subnets during a call.

4When using certi�cate pinning, the client (here the Android device) can validate the certi�cate inde-
pendently of the normal certi�cation hierarchy. Often the certi�cates �ngerprint or a hash of the public
key is used. By this also self-signed certi�cates can be used responsibly.
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User Interface Considerations

The user interface follows the Material Design pattern by Google. This allows the app
to �t well into the existing Android environment. Also, it’s usage patterns follow the
best-practices established by popular VoIP applications. This allows to use the app for
user studies in the �eld of secure VoIP.

When the app is �rst started, the user is presented the login screen (appendix �gure A.1,
left). He can also create a new identi�er for its gateway (appendix �gure A.1, middle).
After login, the list of his contacts is shown (�gure 4.11, left). By clicking on one, the
call is initiated. As soon as the state changes to ACTIVE, the short authentication string
(SAS) is also shown besides more debug information (�gure 4.11, right).

With the idea of being a prototype for future development, the app allows helpful
access to internal information. For instance, the user can access statistics about his
current gateway. Those include the currently consumed bandwidth for HRTP and
HRTCP and the handle time for incoming HRTCP packets (appendix �gure A.2, left).
Furthermore, the CallActivity displays information about the VoIP pipeline such as
length of codec frames and the level of the input bu�er (�gure A.2, right). Finally,
the PreferencesActivity allows to change important settings without re-compiling.
Examples are usage of SSL, the gateway, disabling adaptive playback and con�guring
the background service.

53



Chapter 4 – Implementation

Figure 4.11: Screenshots of the Android handset application. Left: The
PeerListFragment showing all local contacts. Right: An active call
within the CallActivity. More screenshots are shown in appendix A.3.2.
Own graphic created using Android Open Source Project’s (AOSP) Device
Art Generator.
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Evaluation

“Program testing can be used to show the presence of bugs, but never to
show their absence!”

— Edsger W. Dijkstra

We created an automatic test system that can deploy HRTP gateways on four servers
in di�erent locations. Those are then instrumented to perform calls resulting in large
number of veri�able benchmark measurements. The results show that 90% of all calls
are established in less than 11 seconds. Furthermore, the average HRTP round-trip-time
of 50 ms (including network delay) con�rms that the prototype is a very low-latency
communication system. We also measured the packet jitter in di�erent contexts and
see that is does not unveil information about the internal session state.

A setup using a microphone and a sound generator is built for measuring the perceived
voice delay. By analyzing the time of single sounds traveling through the system, an
end-to-end delay of less than 400 ms is determined. This shows that the prototype is
feasible for voice communication.

5.1 Method

The gateway was installed on a set of servers at multiple locations in order to incorporate
real-world characteristics into the evaluation. In its biggest deployment it serves n =
25 users. The quantitative evaluation focuses on the metrics of latency, inter-packet
characteristics and call establishment times.
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small: n = 8 large: n = 25
Name Location LocalMembers Peers LocalMembers Peers

LDN London, GB 2 8 5 25
FRA Frankfurt, DE 2 8 5 25
TUM Garching, DE 2 8 9 25
LRZ Garching, DE 2 8 6 25

Table 5.1: Overview of the test setup with respect to the two modes small and large.
Each gateway also has own local members as its peers. More information on
the machines can be found in A.2.1.

5.1.1 Test Setup

For testing the implementation, a setup consisting of four servers was deployed. The
setup can be either run in mode small (8 users) or large (25 users). Deployment is handled
by a local script that sets up the remote machines using SSH. Table 5.1 summarizes the
setup.

All servers provide at least 2 GHz CPU and 512 MiB RAM. They run a GNU/Linux and
the most recent version of Oracle’s Java 7. For incorporating implications of a real-world
scenario, the machines are located in Munich, Frankfurt and London. More detailed
information is o�ered in the appendix A.2.1.

For automating testing a mock_caller and a mock_callee instrumentation script was
written. The former can initiate a call to another user and the latter can accept calls from
other users. Both interact with the API over HTTPS/JSON as a real handset would do.
When the mock_caller has established a call, it will start a Java component that sends
audio packets and measures their round-trip-time (RTT). When accepting an incoming
call, the mock_callee will send all audio packets back to the gateway immediately. For
real end-to-end testing a setup with real smartphones is used and described later.

5.1.2 Test Metrics

For the evaluation, we have to clarify the measured quantities. In �gure 5.1 one sees
that the total path of the audio from the sender’s handset 1 to the receiver’s handset 2
can be divided into several segments. The identical notation is used for the name of a
segment and its latency:

TH S1,encode The time between the events of a voice sample entering the microphone
and the sample being transmitted in an audio packet by the datagram socket of
the sender’s handset.

TI nner 1 The network latency between handset 1 and its local gateway 1.
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Figure 5.1: The total path from the sender’s handset to the receiver’s handset can be
broken down into functional segments. Own graphic.

TGW 1 The processing time within gateway 1, measured from the arrival of the audio
packet to sending of the wrapping HRTP packet. This is strongly coupled to the
HRTP rate of 30 ms, as the packet is �rst queued at the RoundRobinPriorityPayload
datastructure where it gets picked up by the DatagramBroadcaster.

TN et wor k The network latency between gateway 1 and gateway 2. We have mea-
sured an average TNetwork of 10 ms (= 20 ms RTT) for the setup when taking all
combinations of gateways into account.

TGW 2 The processing time within gateway 2, from arrival of the HRTP packet to
sending the audio packet to handset 2. This time is negligible since the packet is
directly forwarded at the receiver’s gateway without bu�ering.

TI nner 2 The network latency between gateway 2 and its handset 2.

TH S2,decode The time from arrival of the audio packet at the receiver’s handset to the
playback of the voice sample.

Composed Latency Metrics The aforementioned single segments are hard to mea-
sure individually. Furthermore, their individual meaningfulness is quite low, as many of
them are dependent on each other. Therefore, we de�ne the following latency metrics
that are more suitable for the evaluation (see �gure 5.1):

TEN D2EN D de�nes the total end-to-end (E2E) delay as the sum of all aforementioned
segments. This is the most important measure as it describes the perceived delay
in a voice communication.

TH RT P = 2 · (TGW 1 + TN et wor k + TGW 2) is the minimum RTT delay, that the ap-
proach would add to a local-running VoIP solution.

TV oI P = TH S1,encode + TH S2,decode denotes the delay that is created by the VoIP
pipeline.

Inter-Packet Metrics When analyzing the output of the gateway, we are interested
in verifying that the packets are emitted at a constant rate. The expected inter-packet
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delay for HRTP is ∆ = 30 ms. The jitter describes the deviation from the expected inter-
packet delay. More formally, the jitter ji for the i-th packet is de�ned as ji = (ti−ti−1)−∆,
where ti denotes the arrival of the i-th packet.

Call Establishment Metrics For the end user it is important how fast a call can be
established. The process of call establishment is divided into two main steps. First,
TCallinд denotes the waiting time for the user in the calling state given that the other
party immediately responds to the incoming call. Second, TInit iat inд describes how
long the ZRTP negotiation runs. The sum TEstablish = TCallinд + TInit iat inд denotes
the time the user has to wait from the click of the call button until the actual voice
communication happens.

5.2 Results

Manual testing con�rms that HRTP provides a stable call establishment and good speech
quality. The automated setup reveals that 90% of the calls have a call establishing time
TEstablish ≤ 10118 ms in the small setup. The is larger than the usual delay of other
products, but can be improved by a higher HRTCP rate.

For both setups, the protocol round-trip-time THRT P meets the theoretical expectation
of 50 ms (see section 5.2.3). The total perceivable voice delay TE2E is less than 400 ms
which is very suitable for VoIP communication. We illustrate the stream multiplexing
in order to discuss its correct behavior. Finally, we verify that the jitter of outgoing
packets shows no simple correlation with the internal call state. Important notation
such as percentiles are explained in the appendix A.1.

5.2.1 General Results

Before discussing time related metrics in the following sub-sections, we have a look
at general characteristics. First, we examine the packet sizes. The e�ective network
consumption for each packet is the sum of its payload, the HRT(C)P overhead, the UDP
header and the IP header. The UDP header has a �xed size of 8 byte. The IP header
has a minimum size of 20 bytes and 40 bytes for IPv4 and IPv6, respectively. Figure 5.2
illustrates their relative sizes.

The rate of HRTP (30 ms) is much higher than the one for HRTCP (5 s). Therefore,
the HRTP tra�c (24 kib/s including IPv4 + UDP) clearly dominates the HRTCP tra�c
(0.86 kib/s). In �gure 5.3 the total outgoing tra�c of a single gateway with respect to a
given number of peers is shown. One can see, that an average internet connection of
≈10.000 kib/s can serve several local members with up to 40 remote peers.

During manual testing further observations were made that are brie�y explain here with-
out detailed analysis: The average end-to-end packet loss is around 0.0-2.5%. The largest

58



5.2 – Results

portion of loss is due to the drop of codec payloads larger than 44 byte. Furthermore,
we could not observe any packet re-ordering during the test.

Professional analysis of the Opus codec quality in literature suggests a good performance
even at the low bitrate of 6 kbit/s (discussed in 4.3.3). During practical testing, we
con�rmed that the speech quality is comparable to other internet telephony services1

and that the end-to-end delay is su�ciently low for a smooth conversation.
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Figure 5.2: The diagram shows the e�ective size of the HRTP and HRTCP packets in
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1For comparision Skype and Facebook’s Messenger were used
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5.2.2 Call Establishment MetricsTEstablish,TCallinд,TInitiatinд

ForTCallinд we will �rst formulate the theoretical expectations using a simpli�ed model
where A calls B under ideal circumstances. Then we perform quantitative experiments
using the small and large setup. Finally, we account for TInit iat inд .

The calling procedure can be modeled using two random distributions. When we have
set A’s status to CALLING, we wait for the next HRTCP transmission cycle. The waiting
time is modeled by the uniformly distributed random variable X1 = U (0,5000). We
consider the time between receiving the packet from A at B and B’s next HRTCP trans-
mission. Again, this results in a uniformly distributed random variable X2 = U (0,5000).
The total time is the sum of these two random variables. Applying convolution, we
get a triangular distribution ftr ianд (x ) with the following probability density function
(PDF):

ftr ianд (x ) = fX1+X2 (x ) = ( fX1 ∗ fX2 ) (x ) =




2x
10000·5000 0 ≤ x ≤ 5000
2·(5000−x )
10000·5000 5000 ≤ x ≤ 10000
0 otherwise

where fX1 = fX2 =



1
5000 x ∈ [0,5000]
0 otherwise

For the practical evaluation of TCallinд we automatically performed n > 200 calls on
both the small and the large setup. We used the mock_caller script for measuring how
long the client was within the CALLING state. The results of outgoing calls from the
server LDN were excluded as the server showed inconsistent behavior when sending
large UDP packets due to reasons that we could not explain. The results are summarized
in table 5.2 and illustrated in �gure 5.4.

One can see that the small setup reproduces the theoretical expectations from above.
The average length for establishing a call is just 1% larger than the average of ftr ianд .
However, in the �rst large setup we see a shift of the average value by ≈ 5,000 ms. This
means that on average, during one interval of calling, one HRTCP interval is missed
due to long processing queues or the packet is dropped, respectively. The o�set of
almost exactly 10,000 ms for p90 indicates, that in 90% of all call establishing attempts
no more than two HRTCP intervals are missed. In general, we consider an average
TCallinд ≤ 10,000 suitable for most use cases.

We performed the same procedure for TInit iat inд which denotes the time in state
INITIATING (see 5.2). The results are illustrated in �gure 5.5. Here we see a very
small deviation between individual calls and between the small and the large setup. The
average value only increases from 2,408.6 ms (small) to 2,506.0 ms (large). This shows
that the performance considerations of the implementation (such as early packet drop-
ping) are indeed e�cient. Due to the small variance, the results for TEstablish are quite
unspectacular. For the small setup, it takes on average 7,463.4 ms, while the average in
the large setup is 12,537.6 ms (see 5.2).
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Setup n avg [ms] p90 [ms] p99 [ms]

TCallinд Theory ∞ 5,000.0 7,771.4 9,298.0
Small 287 5,054.8 7,768.2 9,516.1
Large 208 10,031.6 17,874.8 50,467.6

TInit iat inд Small 287 2,408.6 2,688.5 3,021.6
Large 208 2,506.0 2,841.3 3,111.7

TEstablish Small 287 7,463.4 10,118.7 11,913.2
Large 208 12,537.6 20,328.7 53,301.4

Table 5.2: Table showing the results for TCallinд , TInit iat inд and TEstablish from both
the theoretical calculation and the practical evaluation.
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Figure 5.4: Histograms showing the distribution of TCallinд for the small setup (top)
and large setup (bottom). The red triangle shows the expectation from the
calculations of Ttr ianд . Compare table 5.2 for details. Own graphics.
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Figure 5.5: Histograms showing the distribution of TInit iat inд for the small setup (top)
and large setup (bottom). Own graphics.

5.2.3 Latency of the HRTP NetworkTHRTP

For the claim of HRTP being a very low-latency anonymous communication system,
the delay THRT P is an important benchmark. It measures the e�ciency of the payload
multiplexing, the round-robin datastructure and the HRTP packet format. It is the
absolute lower bound for TE2E of every kind of every application running over HRTP.

We automatically performed n > 200 calls using the mock_caller script on both the
small and the large setup. In order to take di�erent link characteristics into account,
the calls are evenly distributed among all combination of gateways for the caller and
callee. In every call we sent approximately 90 audio packets in a round-trip fashion.

Again, one can model this using two uniform distributions U (0,30). However, here the
network delay of ≈ 10 ms per direction (or 20 ms RTT) can no longer be neglected. Since
the resulting convolution is excessive for this purpose, we provide a qualitative analysis
here. Intuitively, one can still see that the sum of both distributions distributionsU (0,30)
results in a triangular distribution with a mean value of 30 ms. When adding an average
network RTT o�set of 20 ms, we obtain the theoretical expectation of THRT P =50 ms.
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The results of both the small and the large setup show an average RTT that is very close
to that expectation. This con�rms once more, that the performance considerations of
the implementation scale well. The relatively high p99 value of the large setup indicates
outliers. Those are probably caused by the high bandwidth or bu�er queues on lower
layers.

n = #calls m = #packets avg [ms] p90 [ms] p99 [ms]

Theory ∞ ∞ 50.00 — —
Small 396 34,788 48.83 69.4 88.9
Large 280 23,679 50.01 73.8 123.2

Table 5.3: Results for THRT P for both the small and large setup.
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Figure 5.6: Histograms showing the distribution of THRT P for the small setup (top) and
large setup (bottom). Own graphics.
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Figure 5.7: Screenshot showing four seconds of the recorded wave �le containing two
iterations opened in the audio-editing program Audacity. Each iteration
consists of the initial “click” and the “echo”. The �rst one has a measured
delay of 379 ms. Own graphic.

5.2.4 Total Perceived Voice DelayTE2E (andTVoIP )

The total perceived voice delay was measured in a local setup with two smartphones, a
local gateway and audio equipment: Firstly, a microphone is positioned in a manner that
it both records the second smartphone’s loudspeaker and all ambient sounds. Secondly,
a loudspeaker is installed which plays a “click” sound every ≈ 2 seconds. Finally, a voice
call between both smartphones is established and the �rst smartphone’s loudspeaker is
muted.

Every iteration the microphone will �rst record the click sound coming directly from the
loudspeaker. In the meanwhile, the click sound is also processed by the VoIP pipeline
on the �rst smartphone, makes it way through the HRTP protocol including all gateway
handling and then is played back by the second smartphone. The microphone then
records that “echo” from the second smartphone’s loudspeaker as well.

The di�erence between the click-event and the echo-event is the total perceived end-
to-end delay TE2E (minus TNetwork

2). Figure 5.7 shows an excerpt of the recorded wave
�le. In order to measure TVoIP , the Android application has been changed to forward
the audio packets to itself and not to the gateway. Of course, recording and playback
now happens on a single phone.

For both versions 10 minutes were recorded and analyzed. Table 5.4 summarizes the
results. They are visualized in �gure 5.8. For analysis, the �le is processed by a Python
script that measures the distances between all pairs of click-events and their echo-events.

The most important observation is that the HRTP pipeline does not signi�cantly increase
2The TNetwork is not included, as the HRTP packets are directly handled by the loopback network

interface. Experiments showed thatTNetwork is ≈ 20ms . As it also has a every low in�uence on the HRTP
payload jitter as shown in the next section, one can get a good approximation of the real TE2E value by
simply adding 20ms.
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the average total perceived delay: avд(TVoIP ) ≈∆<2% avд(TE2E ). This is mostly due to
the fact, that the input bu�er’s length of ≈120 ms dominates THRT P .

However, one can see that the standard deviation for TE2R is ≈ 20 times higher than for
the single setup without HRTP. This is caused by the jitter of the audio transport stream
within HRTP. As the jitter also causes packets to arrive late, it can drain the bu�er. The
drainage of the bu�er then results in the next packets played faster than intended (even
faster than in the TVoIP setup).

n avg [ms] p90 [ms] p99 [ms] std [ms]

TVoIP 286 373.15 375.0 380.0 45.0
TE2E 287 378.92 408.0 446.0 897.0
TE2E +TNetwork — 398.92 — — —

Table 5.4: Results from the measurement of the total perceived voice delay. For the last
row, an estimate of 20 ms RTT for TNetwork was added.
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Figure 5.8: The graphic shows the total perceived voice delay. The top graph was created
using a single smartphone without a gateway involved (TVoIP ). The bottom
one shows TE2E using a two smartphone setup with a local gateway. Own
graphic.

65



Chapter 5 – Evaluation

5.2.5 Verifying Stream Multiplexing

For veri�cation of the multiplexing procedure in HRTP, we analyze the queue behavior.
To this end a local setup was modi�ed to log the currently outgoing HRTP payload type
and the length of the queues withing the PayloadPriorityRoundRobin data structure.
The results for an outgoing call are shown in �gure 5.10.

The diagram veri�es several interesting properties. First, the dummy packets are created
as desired and never reach a critically low bu�er level. In fact, they never drop below a
level of 9. Second, the priority of HRTP and audio payloads is obeyed. Whenever, there
is an HRTP or audio packet, the dummy bu�er grows to its maximum level of 10.

Furthermore, one can observe that the output throughput is in fact constant. When
adding up the lines of the accumulated packet output, the resulting line will have linear
slope of 1. Finally, it is important to note that the audio bu�er (blue) almost never queues
up to a level higher than 2. This shows that the gateway can handle the incoming audio
payloads in a timely manner.

5.2.6 Outgoing Packet Jitter

For verifying that the HRTP output is decoupled from the internal state, we captured
and analyzed outgoing HRTP packets. They were analyzed with respect to their jitter.
Jitter denotes the deviation in inter-packet delay.

The capturing was performed on TUM (compare the setup section 5.1.1). We observed
two scenarios: (A) No call was established and (B) a call to LRZ was established. For
each of the scenarios, we looked at two metrics: (1) The jitter of packets sent by TUM

and (2) the jitter of packets sent by LRZ. For capturing the command-line tool tshark
(part of the wireshark package) were used. Packets going from TUM to LRZ have been
captured using:

tshark -i any -c 10000

-f "dst host 141.40.254.58 && udp && src port 22001 && dst port 22002"

Vice versa, the opposite direction was captured (on TUM as well) using:

tshark -i any -c 10000

-f "src host 141.40.254.58 && udp && src port 22002 && dst port 22001"

Each series captured 10,000 packets. The results are shown in table 5.5 and �gure 5.9.
The jitter of the locally sent packets is less than 0.02 ms for p90. Compared to the sending
rate of 30 ms, this is less than 0.07%. The jitter of the incoming packets is much wider
due to the network transport in between.

We also note that there is no signi�cant di�erence between the jitter during a call and
while there is no active call.. However, this is only one possible metric and does not
prove that the decoupling in the gateway is solid. More approaches for veri�cation are
discussed in the chapter 7 on further work.
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avg [ms] p90 [µs] p99 [µs]

A 1 TUMout 0.0072 20.00 78.06
B 1 TUMout,call −0.0025 21.00 56.03
A 2 TUMin −0.0290 115.00 250.00
B 2 TUMin,call −0.0150 126.00 243.00

Table 5.5: Experiment results for all combinations of scenarios and metrics. The regular
inter-packet delay is 30 ms. Note that di�erent units are used: 1s = 103ms =
106µs
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Figure 5.9: Histograms showing the jitter for all combinations of scenarios and metrics.
Own graphic.
Left=A: no call; Right=B: call;
Top=1: outgoing packets; Bottom=2: incoming packets.
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CHAPTER 6

�o Vadis: Transformation into a Scaling System

“Divide et impera” — Latin Proverb

This chapter presents a modi�cation of the proposed approach that allows for HRTP
to scale more e�ciently to a large number of users. The basic idea is to create single
islands of m(n) = log2 n users. This concept borrows from ISDN mixes (described
in 2.2.3) which employs small broadcast groups. . Besides the intra-island connections,
every peer is also connected to remote peers of other islands. Those connections are
used to relay tra�c from one island to another one. Each user can control on which
islands his tra�c is present without an attacker noticing. Consequently, the approach
becomes much more e�cient as all users are no longer pair-wise connected.

The �rst part describes the feasibility of this approach using concepts from the �eld of
peer-to-peer systems such as onion-encrypted relaying and proof-of-work veri�cation.
Furthermore, it argues how the system still provides strong unobservability character-
istics. The second part describes the choice of m(n) and discusses a theoretical analysis
of the total bandwidth required.

6.1 Idea and Approach

For this chapter’s approach, the n users are split into groups1 ofm(n) ≈ log2 n members.
We call those groups broadcast islands as they work similar to the “original”2 approach

1The choice of this concrete function is motivated in section 6.2 below.
2We refer to the original approach presented in chapter 3, 4 and 5 as “original” or “old”.
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Figure 6.1: Sample graph with n = 18 forming 4 islands. A is calling F . All solid lines
mark links that contain A’s outgoing HRTP and HRTCP broadcast tra�c. A
has established the relay links C–H and D–R. Own Graphic.

but with a much smaller set of users. Within the islands, every peer establishes bi-
directional broadcasting with each other local peer. We refer to this as intra-island
communication. Figure 6.1 illustrates this using an example.

Connections Between Islands Every peer has an average of p connections to peers
not belonging to his local island. We call this inter-island communication and the prop-
erties of p are described in 6.2.2. When a user tries to establish a connection to another
island, he tries all peers of that island until he has found one having free capacity.

Inter-Island Relaying Consider we are trying to talk to a peer on another island.
We will �rst ask a random peer on our local island to forward all of our tra�c to another
island. The local peer will establish that connection to a random peer on the remote
island. We then agree with that remote peer that he will inject all of our HRTP and
HRTCP tra�c into his local intra-island broadcasting. Withing this relay chain, tra�c
is protected using onion-routing encryption. The negotiation and initial key exchange
with the individual peers in handled using the HRTCP stream.

Parallel and Ephemeral Relaying Each user is encouraged to establish a reason-
able amount of parallel relay routes. This increases the anonymity set of the island.
Furthermore, each user changes them in a regular manner (e.g. once per minute) and
not only for call establishment. This prevents an attacker from observing exploitable
information from inter-island communication.
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Preservation of Unobservability Due to the number of parallel relay routes, an
attacker has to control allm− 1 local peers to �nd out about the set of islands the victim
is broadcasting to. After this, he still does not know whether actual communication is
taking place. However, over a long period of time, he can start an intersection attack.
If that is successful, this can provide the observation that, with a certain probability,
the victim is talking with a remote peer on a speci�c island. The attacker then needs to
in�ltrate allm − 1 peers of that remote island.

Proof-Of-Work for Limiting Relaying Proof-of-work (PoW) is a concept from the
�eld of peer-to-peer systems and is used to limit the users consumption of shared
resources (here: relay connections). A PoW is a cryptographic puzzles that veri�es
that a user possesses actual computational resources. This makes execution of sibling
attacks3 harder. Such a sibling attack could exhaust the relay capabilities of all local
peers except those of the attacker. The victim would then have to pick one that is
controlled by the attacker.

The cryptographic challenges are created by all relay nodes and are refreshed period-
ically. They are announced using the HRTCP stream. Creating a hash with leading
zero-bits is a common example for a PoW: Here, the veri�er announces a string C and
a number b. For solving the puzzle the supplicants have to �nd a string x s.t. H(x ‖C )

has b leading zero-bits. This is computationally intensive for the client, as he has to
try Θ(2b ) random x on average. On the other hand, the veri�er can cheaply verify the
correctness of the solution by computing the hash.

Increase of Latency The relay tunnels will add additional latency to the voice trans-
port. In fact, the intermediate nodes will add 2 ·TGateway for processing and 2 ·TNetwork

for the extra links. A sophisticated implementation would take the geographic neigh-
borhood into account when assigning the island neighborhoods. This can reduce the
e�ect of the TNetwork . The TGateway latency can be reduced by increasing the sending
rate for HRTP. This appears feasible, as we show that the bandwidth of an individual
peer is much lower in the approach proposed in this chapter.

Churn The term churn describes the entering and exiting of users in a peer-to-peer
system. For the approach we expect a very low churn rate from legitimate users, as the
unobservability guarantees are built upon the continuous broadcasting. A small churn
rate can be enforced by requiring a fresh solution for a strong PoW challenge before
being able to join an island.

3In a sibling attack, the attacker incorporates many users at the same time [38]. This increases the ratio
of attacker controlled nodes to legitimate nodes. As an attacker does not have unlimited computational
resources, he it is hard for him to perform PoWs for all of its fake identities.
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6.2 Parameter Design and Analysis

We �rst make a choice for the size and number of the islands as functions of the total
number of users n. We take care that the islands can easily split up when they become
too large. Later, we show that the total bandwidth – and especially the bandwidth for
individual peers – scales nicely with increasing n.

6.2.1 The Number of Islands i (n) and Their Sizem(n)

For the design we decide that the average size of a broadcast island is m(n) = log2 n,
where n is the total of users. This choice appears to be arbitrary at this point. We
justify the choice with the results shown below: It is the best performing choice of all
simple candidate functions that we have considered. However, a practical application
will require further �ne-tuning. One can see that the number of islands i (n) depends
on both n and the choice ofm(n):

m(n) = log2 n

n = i (n) ·m(n) ⇔ i (n) =
n

m(n)
=

n

log2 n

Obviously, the number of islands must be integral. We discretize i (n) and call the result
i ′(n). For i ′(n) we would also like to have the following property: For every change of
its value, it doubles the number of islands. This simpli�es the redistribution of too large
islands. With the aforementioned property, every island is split into exactly two new
ones, whenever the island count is increased.

This is done by mapping the function values to their next smaller power of two using
d (x ). We formulate i ′(n) using this new function. We also de�ne m′(n) as the size of
the largest island given that new users are distributed equally amongst all islands:

d (x ) = 2blog2 (x )c , x > 0

i ′(n) = d (i (n)) = 2


log2

*
,

n

log2 n
+
-



m′(n) =

⌈
n

i ′(n)

⌉
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The following plot4 shows the behavior of m′(n) and i ′(n). For comparison, also the
originalm(n) and i (n) are shown as dotted lines:
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6.2.2 Bandwidth Scaling Properties

For analyzing the bandwidth, we use the original functions m(n) and i (n) instead of
their discrete siblings. We choose the number of HRTP and HRTCP connections as the
main metric instead of concrete kbit/s. However, both metrics are proportional. We �rst
analyze the intra-island bandwidth bwm (n) and then discuss the inter-island bandwidth
bwi (n). Both add up to the total bandwidth bwtotal (n):

bwtotal (n) = bwm (n) + bwi (n)

Before we analyze the new approach, we recall that for the “old” approach, each user is
connected to all other peers except himself: n − 1. This results in a quadratic growth
of the total bandwidth bwold = O (n2) in big O notation5. The bandwidth for each user
grows linearly with its number of peers:

bwold (n) = n · (n − 1) = O (n2)

bwpeer ,old (n) = n − 1 = O (n)

4For all plots: We ignore the corner cases of n < 4, as the logarithm in the denominator leads to
meaningless numbers. One can assume that we only have one island withm(n) = n, for n < 4.

5This thesis uses the common convention of writing f = O (д) instead of f ∈ O (д).
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The intra-island bandwidth bwm (n) is similar to this, as it reassembles the old approach
in a small setting. Each user is connected to each of the other peers on his island. The
extra tra�c that is forwarded from external users is accounted for with a factor of 2:

bwm (n) = 2 · i (n) ·m(n) · (m(n) − 1) ≤ 2 · i (n) ·m(n)2 = 2 · n log2 n

Before analyzing the inter-island tra�c, we need to de�ne the parallel factor p. The
parallel factor denotes the number of outgoing inter-island connections for each user.
We think it is a reasonable choice to pick p such that each island has on average two
connections to each other island:

p (n) = 2i (n) − 1
m(n)

≤ 2 i (n)

m(n)
= 2

n
log2 n

log2 n
= 2 n

log2
2 n

; p (100) ≈ 4.53

As every node has p (n) outgoing inter-island connections on average, the total inter-
island bandwidth bwi (n) is composed as follows:

bwi (n) = n· (n) ≤ 2 n2

loд2
2n

The total bandwidth bwtotal (n) grows sub-quadraticly in the number of users:

bwtotal (n) = bwm (n) + bwi (n) ≤ 2n log2 n + 2 n2

log2
2 n
= O (

n2

log2 n
)

For correctness of the last step: First the term n
log2 n

is factored out. One can show that
∀n > 1 : n

log2 n
> 0. The fact that linear functions grow asymptotically faster6 than

poly-logarithmic functions (logc n) then leads to the �nal estimation:

∀c > 1 : logc n = O (n) ⇒ n logn = n

log2 n
· log3 n = O (

n

log2 n
· n) = O (

n2

log2 n
)

Note that the base b of the logarithm is not signi�cant for the big O notation, since it
basically reduces to a constant factor:

∀b > 0, n > 0 : logb x =
logn
logb =

1
logb · logn = Θ(logn).

6A proof for ∀a > 0, c > 0 : logc n = o(na ) can be found in “Introduction to Algorithms” by Cormen
et al. [39, p.56f].
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The individual portions of inter- and intra-island bandwidth as well as the total band-
width are displayed in the plot below. For comparison, the bandwidth of the old approach
is shown as a dashed red line:
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CHAPTER 7

Further Work & Conclusion

“Science is what we understand well enough to explain to a computer. Art
is everything else we do.”

— Donald E. Knuth

This thesis points out further work in the �elds of veri�cation of unobservability, ex-
tensions based on the prototype and implications of design simplicity for end-user
acceptance. We conclude that the HRTP approach stands out from the state of the art
due to providing both strong unobservability and very low-latency communication. A
variable combination of broadcast tra�c and onion-routing appears to be a promising
direction for further research.

7.1 Further Work

Veri�cation of unobservability is still an open topic and we think that one can build a
widely applicable approach using formal logic or machine learning concepts. We will
also discuss how the current HRTP prototype can be extended. The most interesting
dimension is probably to create a solution with an adjustable combination of broadcast
tra�c and onion-routing elements. Furthermore, we believe it is worth to evaluate
how simplicity of protocols not only serves implementation quality but also increases
end-user acceptance.
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7.1.1 Veri�cation of Unobservability

Veri�cation of unobservability is still a vague undertaking. We are missing a widely
accepted and generally applicable method for analyzing unobservability properties of
systems – or we have failed to �nd such. We think that such a method can be developed
on the foundation of the terminology of P�tzmann et al. [2] that we used throughout
this thesis. We identi�ed two promising approaches:

Firstly, using formal logic for veri�cation of unobservability would be a natural and
broadly accepted approach. Formal logic has already been used to verify anonymity
systems. The modular framework by Hughes et al. [40] as well as the work by Van Eijck
et al. [41] could form a foundation for this. We think that they need to be extended by
observation properties with regard to implementation speci�cs such as packet emission.

Secondly, a more practically oriented, quantitative approach would be the application of
machine learning (ML). Here the existence of a working classi�er would show that the
analyzed protocol has observable characteristics. Labeled test sets can be generated by
a setup similar to the evaluation. ML is already used for intrusion detection of networks
and the review by Tsai et al. [42] provides an introduction to this �eld.

7.1.2 Quo Vadis HRTP

Chapter 6 has presented an extension to HRTP that scales e�ciently. However, the
implementation and evaluation of such a broadcast-island system is out of the scope of
this theses. Nevertheless, it would be tempting to build such a system.

An important observation is that the proposed extension combines broad-cast tech-
niques with onion-routing. We think that it can lead to a solution where the individual
user can choose his own mixture of both. He could control the ratio of cover tra�c,
broadcasting and onion-routing for his tra�c. This would allow to adaptively choose
the right balance of delay, bandwidth and privacy for each application.

Furthermore, the primary protocol and its implementation require further �ne-tuning.
We think that the consumed bandwidth and latency can be improved by optimizing
parameters such as the HRTP rate. Also other payload types such as text messages
could be introduced. Using GNU Privacy Guard (GPG) instead of the proprietary key
management would greatly simplify deployment.

Currently, the need of unobservable private networks between the handset and the
gateway limits the mobility of the end-user. In order to overcome this, we see two
central starting points: Firstly, one �nds a way to create cover tra�c from a handset or
smartphone without draining the mobile device’s battery too fast. Such a low-energy
cover tra�c would also be interesting for other applications, e.g. sensor networks.

Secondly, one could design a way for the user to move between trusted gateways. When
visiting another private network, the user brings his private key and identity on a

78



7.2 – Conclusion

secure element (SE)1 that he plugs into a gateway. As all tra�c is sent to every gateway
anyway, this migration can be performed in a manner such that it does not lead to any
observable changes.

7.1.3 Understandable Anonymity Systems

We think that the actual security of communication systems also depends on the end-
user’s understanding of its concept, its capabilities and its short comings. In this thesis,
we have proposed an approach that is much simpler to explain than other services such
as Tor.

Our �rst hypothesis is that understandable concepts leads to a higher acceptance:
A user understanding why the call establishment takes longer than a regular land-
line call, is more likely to accept this short coming. Moreover, we suspect that the
achieved security is increased: By knowing the necessity of the gateway running with-
out interruption, the end-user won’t act with negligence by turning it o� after each
call.

7.2 Conclusion

In this thesis we have discussed the design, implementation and evaluation of a pro-
totype for unobservable Internet telephony using a broadcast-based approach named
HRTP. We have shown that it in fact provides unobservability guarantees against strong
attackers. A practical deployment and quantitative evaluation has revealed that such a
broadcast-based approach is indeed feasible. The prototype can serve as a foundation
for further practically oriented research in the �eld of secure VoIP. The source code is
made publicly available with this thesis and you are encouraged to hack.

Compared to the state of the art, HRTP stands out with regard to two aspect: It provides
strong unobservability guarantees against global active attackers, while other popular
implementations limit their attack vector to partial active attackers. Secondly, it provides
very low-latency communication suitable for VoIP. However, this comes at the cost of a
total tra�c that is quadratically growing with the number of users.

Finally, we have described how the approach can be adopted to provide a scaling un-
observable communication system. The brief analysis of the broadcast island concept
shows that it drastically reduces the required per peer bandwidth toO ( n

loд2n ). A variable
combination of broadcasting and onion-routing forms an interesting starting point for
further research.

1A secure element is a tamper-resistant chip that allows to securely store information such as private
keys. It can also perform cryptographic operations on-chip without the sensitive information leaving
the trusted environment. Examples for secure elements include credit cards, subscriber identity modules
(SIMs) or trusted platform modules (TPMs).
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A.1 Notation and Conventions

We use the following notation for writing packets, strings and cryptographic operations.
For conventions regarding the HRTP system, see section 3.2.1.

Bits, Bytes, Packets and Strings: Bits are abbreviate as b and bytes as B. This thesis
sets that 1 B has 8 b. For larger quantities the IEC pre�xes Ki (= 210), Mi (= 220), Gi
(= 230) and Ti (= 240) are used. The concatenation of strings is written using the vertical
bar operator: s12 = s1‖s2. Sub-strings are denoted using the Python index operator:
"HELLO"[1 : 3] = "EL"

When de�ning messages and packets in protocols, we often do not care about the exact
representation, but want to show the individual information stored. This is expressed
using the following notation: msдhello = {"HELLO",A,B}.

Cryptographic Operations E ,D,H,K,V ,S: The paper will use cryptographic op-
erations such as (a)symmetric encryption, decryption, hash functions, signatures and
key derivations. All operations will take the key as the �rst argument and more input
as further arguments. Initialization vectors (IV) are usually omitted. Where it is helpful,
the operations use the name of the implementation of the cryptographic operation such
as aes or sha256.

(A)symmetric en-/decryption of a plain-text p, with a key k is written as enc (k,p) or
E (k,p) or D(k,c ) or aes (k,c ) or rsa(pub,p). For a cryptographic hash function or a
hash-based message authentication code (MAC) we write hash(k, . . . ) or H(k, . . . )

or sha256 (k, . . . ). Key derivation functions are denoted using kdv(k, . . . ) or K(k, . . . ).
Signatures are written as siдn(pub,text ) or veri f y (priv,siдnature ) or S (pub,text ) or
V (priv,siдnature ).

Results and Plots: For most results the 90th and 99th percentile are given and refer-
enced as p90 and p99, respectively. Histograms (example below) show both percentiles
using a very light gray and a medium light gray. The notation avд(. . . ) is used for the
average value. It is displayed by a dotted red line. std is the standard deviation.
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A.2 Evaluation Details

A.2.1 Con�guration of Servers

HrtpLondon (LDN)

• Virtual Server hosted by DigitalOcean in London, UK

• 1x Intel Xeon CPU 2.4 GHz; 512 MiB

• Ubuntu 14.04 LTS; Oracle Java 7

HrtpFrankfurt (FRA)

• Virtual Server hosted by DigitalOcean in Frankfurt, GER

• 1x Intel Xeon CPU 2.4 GHz; 512 MiB; Oracle Java 7

• Ubuntu 14.04 LTS; Oracle Java 7

HrtpTum (TUM)

• Virtual Server hosted by Chair for Network Architectures and Services in
Garching1, GER

• 2x Intel CPU 3.2 GHz; 512 MiB; Oracle Java 7

• Debian 3.16.7; Oracle Java 7

HrtpLrz (LRZ)

• Virtual Server hosted by the Leibniz Rechenzentrum (LRZ) in Garching, GER

• 1x CPU 2.5 GHz; 2010 MiB; Oracle Java 7

• Debian 3.16.7; Oracle Java 7

1Garching bei München is a (small) city north of Munich
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A.3 Logs & Screenshots

A.3.1 Log of End-To-End Gateway Test

The following output shows a end-to-end unit test case. It is chosen here as it produces
a very exemplary output of the gateway application. The case simulates the whole
process from creating key-pairs, over establishing a call, performing ZRTP and sending
messages. For this it uses just the normal HTTP APIs. The output has been reformatted
for better readability:
------------------------------------------------------------

Step: setup

20:28:00.812 [main] TRACE - Created RSA keys of length 2048 in 2193 ms

20:28:02.791 [main] TRACE - Created RSA keys of length 2048 in 1959 ms

20:28:04.588 [main] TRACE - Created RSA keys of length 2048 in 1797 ms

20:28:06.113 [main] TRACE - Created RSA keys of length 2048 in 1524 ms

20:28:08.482 [main] TRACE - Created RSA keys of length 2048 in 2367 ms

------------------------------------------------------------

Step: startup

20:28:08.546 [MainControl STARTING] TRACE - Loaded configuration with 2 (2 new) local

members and 3 (3 new) peers

20:28:08.557 [BridgeManager STARTING] TRACE - I’ve registered 11 ApiLookups

20:28:08.557 [BridgeManager STARTING] WARN - No SSL certificate registered nor loaded!

This is insecure!

20:28:08.657 [BridgeManager STARTING] DEBUG - Started bridge manager on port

/0:0:0:0:0:0:0:0:8080 {}

20:28:09.273 [MainControl STARTING] INFO - Up and running :) after 778 ms

20:28:09.289 [SocketManager STARTING] DEBUG - ports opened: hrtp=20001 hrtcp=30001

20:28:09.322 [SocketManager STARTING] DEBUG - ports opened: hrtp=20002 hrtcp=30002

20:28:09.361 [SessionWorker:A01B4A24 STARTING] TRACE - started

20:28:09.361 [SessionWorker:D22EA391 STARTING] TRACE - started

------------------------------------------------------------

Step: 1a: authorize A

------------------------------------------------------------

Step: 1b: authorize B

------------------------------------------------------------

Step: 2a: A calls B

20:28:09.284 [main] TRACE - Start calling A01B4A24 @ /127.0.0.1:20002/30002

20:28:09.462 [SessionWorker:D22EA391 RUNNING] TRACE - state: NOT_ACTIVE -> CALLING, peer

=A01B4A24

20:28:12.970 [SessionWorker:A01B4A24 RUNNING] TRACE - state: NOT_ACTIVE -> RINGING, peer

=D22EA391

------------------------------------------------------------

Step: 2b: check RINGING status on B’s side
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------------------------------------------------------------

Step: 3a: B accepts call

20:28:17.293 [main] TRACE - Accepting call

20:28:17.332 [main] DEBUG - [A01B4A24] [ZRTP] created new ZID= a6f2535d70a944d12386347d

20:28:17.334 [ZRTP-ZRTP-0] DEBUG - [A01B4A24] ZRTP: Thread Starting

20:28:17.340 [ZRTP-ZRTP-0] DEBUG - [A01B4A24] DH algorithm set: <NA> -> DH3k

20:28:17.381 [SessionWorker:A01B4A24 RUNNING] TRACE - state: RINGING -> INITIATING, peer

=D22EA391

20:28:17.384 [ZRTP-ZRTP-0] DEBUG - [A01B4A24] ZRTP: Sending HELLO...

20:28:17.536 [Timer-0] DEBUG - [A01B4A24] ZRTP: Sending HELLO...

20:28:17.837 [Timer-0] DEBUG - [A01B4A24] ZRTP: Sending HELLO...

20:28:18.261 [DatagramListener:D22EA391-hrtcp0] DEBUG - [D22EA391] [ZRTP] created new

ZID= eec224f7c516dd05e0431e79

20:28:18.262 [ZRTP-ZRTP-1] DEBUG - [D22EA391] ZRTP: Thread Starting

20:28:18.263 [ZRTP-ZRTP-1] DEBUG - [D22EA391] DH algorithm set: <NA> -> DH3k

20:28:18.279 [ZRTP-ZRTP-1] DEBUG - [D22EA391] ZRTP: Sending HELLO...

20:28:18.283 [SessionWorker:D22EA391 RUNNING] TRACE - state: CALLING -> INITIATING, peer

=A01B4A24

20:28:18.361 [ZRTP-ZRTP-0] DEBUG - [A01B4A24] ZRTP: Received Hello, word length 28

20:28:18.362 [ZRTP-ZRTP-0] DEBUG - [A01B4A24] ZRTP: HELLO - FarEndClientID

PWaveIPrivateGSM

20:28:18.364 [ZRTP-ZRTP-0] DEBUG - [A01B4A24] DH algorithm set: DH3k -> DH3k

20:28:18.365 [ZRTP-ZRTP-0] DEBUG - [A01B4A24] ZRTPCache: selectEntry(

eec224f7c516dd05e0431e79)

20:28:18.366 [ZRTP-ZRTP-0] DEBUG - [A01B4A24] DH algorithm set: DH3k -> DH3k

20:28:18.371 [ZRTP-ZRTP-0] DEBUG - [A01B4A24] Writing public key for DH3K mode:

144715746101581623712250303795625375149 [...]

20:28:18.379 [ZRTP-ZRTP-0] DEBUG - [A01B4A24] Writing key bytes: 3

fc4d80e01b3729d42a96520867544f614ce1d8d45637d6621fc46 [...]

20:28:18.383 [ZRTP-ZRTP-0] DEBUG - [A01B4A24] ZRTP: Sending HELLOACK...

20:28:18.390 [ZRTP-ZRTP-1] DEBUG - [D22EA391] ZRTP: Received HelloACK

20:28:18.438 [Timer-0] DEBUG - [A01B4A24] ZRTP: Sending HELLO...

20:28:18.510 [ZRTP-ZRTP-1] DEBUG - [D22EA391] ZRTP: Received Hello, word length 28

20:28:18.510 [ZRTP-ZRTP-1] DEBUG - [D22EA391] ZRTP: HELLO - FarEndClientID

PWaveIPrivateGSM

20:28:18.511 [ZRTP-ZRTP-1] DEBUG - [D22EA391] DH algorithm set: DH3k -> DH3k

20:28:18.511 [ZRTP-ZRTP-1] DEBUG - [D22EA391] ZRTPCache: selectEntry(

a6f2535d70a944d12386347d)

20:28:18.511 [ZRTP-ZRTP-1] DEBUG - [D22EA391] DH algorithm set: DH3k -> DH3k

20:28:18.513 [ZRTP-ZRTP-1] DEBUG - [D22EA391] Writing public key for DH3K mode:

5344216802091970408264038254962466603442 [...]

20:28:18.518 [ZRTP-ZRTP-1] DEBUG - [D22EA391] Writing key bytes:

eb7e1e32abab93668cbb3994ce104414c7af774db3a7592fe77b513 [...]

20:28:18.521 [ZRTP-ZRTP-1] DEBUG - [D22EA391] ZRTP: Sending HELLOACK...

20:28:18.539 [ZRTP-ZRTP-0] DEBUG - [A01B4A24] ZRTP: Received HelloACK

20:28:18.539 [ZRTP-ZRTP-0] DEBUG - [A01B4A24] ZRTP: Sending COMMIT...

20:28:18.540 [ZRTP-ZRTP-0] DEBUG - [A01B4A24] DH algorithm set: DH3k -> DH3k

20:28:18.629 [ZRTP-ZRTP-1] DEBUG - [D22EA391] ZRTP: COMMIT MESSAGES RECEIVED

20:28:18.630 [ZRTP-ZRTP-1] DEBUG - [D22EA391] ZRTP: hash type - S256

20:28:18.630 [ZRTP-ZRTP-1] DEBUG - [D22EA391] ZRTP: cipher type - AES1

20:28:18.630 [ZRTP-ZRTP-1] DEBUG - [D22EA391] ZRTP: auth type - HS80

20:28:18.630 [ZRTP-ZRTP-1] DEBUG - [D22EA391] ZRTP: key type - DH3k

20:28:18.630 [ZRTP-ZRTP-1] DEBUG - [D22EA391] ZRTP: sas type - B256
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20:28:18.631 [ZRTP-ZRTP-1] DEBUG - [D22EA391] ZRTP: Received Commit, acting as responder

, iState: ZRTP_STATE_GOT_HELLO_ACK

20:28:18.631 [ZRTP-ZRTP-1] DEBUG - [D22EA391] ZRTP: Sending DHPart1...

20:28:18.631 [ZRTP-ZRTP-1] DEBUG - [D22EA391] ZRTPCache: selectEntry(

a6f2535d70a944d12386347d)

20:28:18.632 [ZRTP-ZRTP-1] DEBUG - [D22EA391] DH algorithm set: DH3k -> DH3k

20:28:18.633 [ZRTP-ZRTP-1] DEBUG - [D22EA391] Writing public key for DH3K mode:

534421680209197046603442374991151030385 [...]

20:28:18.637 [ZRTP-ZRTP-1] DEBUG - [D22EA391] Writing key bytes:

eb7e1e32abab93668cbb3994ce104414c7af774db3a7592fe43237 [...]

20:28:18.990 [ZRTP-ZRTP-0] DEBUG - [A01B4A24] ZRTP: Processing DHPart1.....

20:28:18.990 [ZRTP-ZRTP-0] DEBUG - [A01B4A24] ZRTP: Received DHPart1 or DHPart2

usingDH3k

20:28:18.990 [ZRTP-ZRTP-0] DEBUG - [A01B4A24] Getting DH result for mode DH3k

20:28:18.990 [ZRTP-ZRTP-0] DEBUG - [A01B4A24] Reading key bytes: 00

eb7e1e32abab93668cbb3994ce104414c7af774db3a7592fe44 [...]

20:28:18.993 [ZRTP-ZRTP-0] DEBUG - [A01B4A24] Read public key for DH3K mode:

534421680209197040826403825496246660344237 [...]

20:28:19.015 [ZRTP-ZRTP-0] DEBUG - [A01B4A24] DH shared secret:

e256cc1d4d935d7deaa020a8209f4e2d9183346efa1b7d633c1ed3 [...]

20:28:19.016 [ZRTP-ZRTP-0] DEBUG - [A01B4A24] ZRTP: Sending DHPart2...

20:28:19.017 [ZRTP-ZRTP-0] DEBUG - [A01B4A24] ZRTP: calculateS1: no retained secrets.

20:28:19.017 [ZRTP-ZRTP-0] DEBUG - [A01B4A24] ZRTP: iKDFContext:

20:28:19.017 [ZRTP-ZRTP-0] DEBUG - [A01B4A24] ZRTP: S0:

20:28:19.018 [ZRTP-ZRTP-0] DEBUG - [A01B4A24] ZRTP: New retained secret:

20:28:19.020 [ZRTP-ZRTP-0] DEBUG - [A01B4A24] ZRTP: calculateSharedKeys(), SAS: tempest

coherence

20:28:19.020 [ZRTP-ZRTP-0] DEBUG - [A01B4A24] ZRTP: iTxMasterKey:

20:28:19.020 [ZRTP-ZRTP-0] DEBUG - [A01B4A24] ZRTP: iTxMasterSalt:

20:28:19.020 [ZRTP-ZRTP-0] DEBUG - [A01B4A24] ZRTP: iRxMasterKey:

20:28:19.020 [ZRTP-ZRTP-0] DEBUG - [A01B4A24] ZRTP: iRxMasterSalt:

20:28:19.349 [ZRTP-ZRTP-1] DEBUG - [D22EA391] ZRTP: Received DHPart2

20:28:19.350 [ZRTP-ZRTP-1] DEBUG - [D22EA391] ZRTP: Received DHPart2 - not initiator

20:28:19.350 [ZRTP-ZRTP-1] DEBUG - [D22EA391] ZRTP: Processing DHPart2.....

20:28:19.350 [ZRTP-ZRTP-1] DEBUG - [D22EA391] ZRTP: Received DHPart1 or DHPart2

usingDH3k

20:28:19.350 [ZRTP-ZRTP-1] DEBUG - [D22EA391] Getting DH result for mode DH3k

20:28:19.350 [ZRTP-ZRTP-1] DEBUG - [D22EA391] Reading key bytes: 003

fc4d80e01b3729d42a96520867544f614ce1d8d45637d6621f [...]

20:28:19.352 [ZRTP-ZRTP-1] DEBUG - [D22EA391] Read public key for DH3K mode:

144715746101581623712250303795625375149595 [...]

20:28:19.365 [ZRTP-ZRTP-1] DEBUG - [D22EA391] DH shared secret:

e256cc1d4d935d7deaa020a8209f4e2d9183346efa1b7d633c1ed3 [...]

20:28:19.365 [ZRTP-ZRTP-1] DEBUG - [D22EA391] ZRTP: calculateS1: no retained secrets.

20:28:19.366 [ZRTP-ZRTP-1] DEBUG - [D22EA391] ZRTP: iKDFContext:

20:28:19.366 [ZRTP-ZRTP-1] DEBUG - [D22EA391] ZRTP: S0:

20:28:19.367 [ZRTP-ZRTP-1] DEBUG - [D22EA391] ZRTP: New retained secret:

20:28:19.367 [ZRTP-ZRTP-1] DEBUG - [D22EA391] ZRTP: calculateSharedKeys(), SAS: tempest

coherence

20:28:19.367 [ZRTP-ZRTP-1] DEBUG - [D22EA391] ZRTP: iTxMasterKey:

20:28:19.367 [ZRTP-ZRTP-1] DEBUG - [D22EA391] ZRTP: iTxMasterSalt:

20:28:19.367 [ZRTP-ZRTP-1] DEBUG - [D22EA391] ZRTP: iRxMasterKey:

20:28:19.368 [ZRTP-ZRTP-1] DEBUG - [D22EA391] ZRTP: iRxMasterSalt:

20:28:19.368 [ZRTP-ZRTP-1] DEBUG - [D22EA391] ZRTP: Sending Confirm1...
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20:28:19.368 [ZRTP-ZRTP-1] DEBUG - [D22EA391] ZRTP: Confirm plainBytes:

20:28:19.370 [ZRTP-ZRTP-1] DEBUG - [D22EA391] ZRTP: Total length in bytes: 76

20:28:19.409 [ZRTP-ZRTP-0] DEBUG - [A01B4A24] ZRTP: Received Confirm1

20:28:19.410 [ZRTP-ZRTP-0] DEBUG - [A01B4A24] ZRTP: Confirm plainBytes:

20:28:19.410 [ZRTP-ZRTP-0] DEBUG - [A01B4A24] ZRTP: Confirm optlen=20;signLen=0;d=false;

a=false;v=false;e=false;cacheExpiry=4294967295

20:28:19.410 [ZRTP-ZRTP-0] DEBUG - [A01B4A24] ZRTPCache: resetTrust(

eec224f7c516dd05e0431e79

20:28:19.411 [ZRTP-ZRTP-0] DEBUG - [A01B4A24] ZRTP: Sending Confirm2...

20:28:19.411 [ZRTP-ZRTP-0] DEBUG - [A01B4A24] ZRTP: Confirm plainBytes:

20:28:19.412 [ZRTP-ZRTP-0] DEBUG - [A01B4A24] ZRTP: Total length in bytes: 76

20:28:19.412 [ZRTP-ZRTP-0] DEBUG - [A01B4A24] got tx master key (sha256 hashed): 3

b9648105c193dfe4dcff872243ecce54b987851d5b5d101a20e82f2e068b67c

20:28:19.413 [ZRTP-ZRTP-0] DEBUG - [A01B4A24] got rx master key (sha256 hashed):

b341e162c46ca891f10dad2a0de9f3c197a32bdd197c0e6050973ce4ba9d6234

20:28:19.470 [ZRTP-ZRTP-1] DEBUG - [D22EA391] ZRTP: Received Confirm2

20:28:19.470 [ZRTP-ZRTP-1] DEBUG - [D22EA391] ZRTP: Confirm plainBytes:

20:28:19.471 [ZRTP-ZRTP-1] DEBUG - [D22EA391] ZRTP: Confirm optlen=20;signLen=0;d=false;

a=false;v=false;e=false;cacheExpiry=4294967295

20:28:19.471 [ZRTP-ZRTP-1] DEBUG - [D22EA391] ZRTPCache: resetTrust(

a6f2535d70a944d12386347d

20:28:19.472 [ZRTP-ZRTP-1] DEBUG - [D22EA391] got tx master key (sha256 hashed):

b341e162c46ca891f10dad2a0de9f3c197a32bdd197c0e6050973ce4ba9d6234

20:28:19.472 [ZRTP-ZRTP-1] DEBUG - [D22EA391] got rx master key (sha256 hashed): 3

b9648105c193dfe4dcff872243ecce54b987851d5b5d101a20e82f2e068b67c

20:28:19.473 [ZRTP-ZRTP-1] DEBUG - [D22EA391] ZRTP: sessionCompleted(true)

20:28:19.474 [ZRTP-ZRTP-1] DEBUG - [D22EA391] ZRTP: Thread Ending

20:28:19.500 [ZRTP-ZRTP-0] DEBUG - [A01B4A24] ZRTP: Received Conf2ACK

20:28:19.500 [ZRTP-ZRTP-0] DEBUG - [A01B4A24] ZRTP: sessionCompleted(true)

20:28:19.501 [ZRTP-ZRTP-0] DEBUG - [A01B4A24] ZRTP: Thread Ending

20:28:20.504 [Timer-2] TRACE - ZRTP negotiation finished

20:28:20.524 [Timer-3] TRACE - ZRTP negotiation finished

20:28:20.588 [SessionWorker:D22EA391 RUNNING] TRACE - state: INITIATING -> ACTIVE, peer=

A01B4A24

20:28:20.588 [SessionWorker:A01B4A24 RUNNING] TRACE - state: INITIATING -> ACTIVE, peer=

D22EA391

20:28:20.589 [SrtpBridge:D22EA391] DEBUG - srtpBridge: localPort=53975 remoteAddress

=127.0.0.1 remotePort=55004

Updating fda90812076f91ed97ec50e0824ec8a1 -> 5fb30933af49ecdb1a3b70351871ba8f

20:28:20.638 [SrtpBridge:A01B4A24] DEBUG - srtpBridge: localPort=54576 remoteAddress

=127.0.0.1 remotePort=56483

Updating dea4b09c444b7871b65829f55b708d21 -> c02b4f1cf781077d4d3598388f07e6b0

------------------------------------------------------------

Step: 3b: check ACTIVE status on A’s side

------------------------------------------------------------

Step: 3c: compare negotiated SAS strings

A’s SAS is: tempest coherence

B’s SAS is: tempest coherence

------------------------------------------------------------

Step: AUDIO: A sends a packet to B
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Bridge A: 55004 -> 53975 using key = 2iO1P+wGUhDdSe37JjKkjPDqYTuy7ghmrg27tKRLPYc=

Bridge B: 56483 -> 54576 using key = dtJ15LPdVV9YsaeWLLPr/D8VBer6uGcWdX9K/+d09/o=

------------------------------------------------------------

Step: 4a: A closes call

20:28:27.483 [main] TRACE - Stop calling

20:28:27.502 [SessionWorker:D22EA391 RUNNING] TRACE - state: ACTIVE -> CLOSING, peer=

A01B4A24

20:28:28.003 [SessionWorker:A01B4A24 RUNNING] TRACE - state: ACTIVE -> CLOSING, peer=

D22EA391

20:28:28.004 [SessionWorker:D22EA391 RUNNING] TRACE - state: CLOSING -> NOT_ACTIVE, peer

=null

20:28:28.305 [SessionWorker:A01B4A24 RUNNING] TRACE - state: CLOSING -> NOT_ACTIVE, peer

=null

20:28:29.470 [Thread-4] TRACE - ListeningThread stopped!

20:28:29.500 [Thread-2] TRACE - ListeningThread stopped!

------------------------------------------------------------

Step: 4b: Check B’s state

------------------------------------------------------------

Step: 5: A shuts down

20:28:35.494 [MainControl STOPPING] TRACE - Shutting down...

20:28:35.509 [DatagramBroadcast:A01B4A24 STOPPING] TRACE - time stats: avg: 0.0 dev:

0.047 min/max: 0/64

20:28:35.509 [DatagramBroadcast:D22EA391 STOPPING] TRACE - time stats: avg: 0.0 dev:

0.047 min/max: 0/64

20:28:35.511 [DatagramBroadcast:A01B4A24 STOPPING] TRACE - interval stats: avg: 30.0 dev

: 0.000 min/max: 1/64

20:28:35.512 [DatagramBroadcast:D22EA391 STOPPING] TRACE - interval stats: avg: 30.0 dev

: 0.000 min/max: 1/64

20:28:35.515 [DatagramListener:D22EA391] DEBUG - Finished: mExecutorHrtcp.

getLargestPoolSize()=1, maxQueueSize=2

20:28:35.515 [DatagramListener:A01B4A24] DEBUG - Finished: mExecutorHrtcp.

getLargestPoolSize()=1, maxQueueSize=2

20:28:35.515 [DatagramListener:D22EA391] DEBUG - Finished: mExecutorHrtp.

getLargestPoolSize()=1, maxQueueSize=1

20:28:35.516 [DatagramListener:A01B4A24] DEBUG - Finished: mExecutorHrtp.

getLargestPoolSize()=1, maxQueueSize=1

20:28:35.522 [SessionWorker:D22EA391 STOPPING] TRACE - stopped

20:28:35.522 [SessionWorker:A01B4A24 STOPPING] TRACE - stopped

20:28:35.609 [MainControl STOPPING] TRACE - ...everything is shut down
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A.3.2 Screenshots of the Android App

Figure A.1: Left: Login screen after the �rst start of the app. Middle: Creating a new
local member on the gateway from within the app. Right: Adding a new
locally stored contact. Own graphics.

Figure A.2: Left: Statistics about the gateway showing the HRTP and HRTCP bandwidth.
Middle: An active call with another peers showing the SAS and debug
information. Right: Fragment for testing the Opus codec integration and
performance. Own graphics.
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A.4 Used Tools

A.4.1 Development Tools

JetBrain IntelliJ 19 Version 14.0.3 — IDE for Java

Oracle Java Development Kit Version 1.7.0_80 — Compiler and tools for Java

AndroidStudio Version 1.1.0 — IDE for Android

Android SDK Version 24.2 — Source Development Kit for Android

Android NDK Version r10d — Native Development Kit for Android

A.4.2 Used Libraries

Apache Commons CLI Version 1.2 — Library for parsing command line arguments

BouncyCastle Version 1.52 — Cryptographic library used for implementations of RSA,
AES, HMAC and similar

Club Mate Version 2015 — Refreshing beverage high in ca�eine

Dagger Version 1.2.2 — Dependency injection framework used for both the gateway
and the Android application

Google Guava Version 18.0 — Library providing data structures and concurrency im-
plementations

Jackson Version 2.5.1 — JSON library used for parsing and generating con�guration
and API body

Logback Version 1.1.2 — Logging library

io.netty Version 4.0.26 — Network and HTTP library used for providing the API server

okio Version 1.3.0 — Library for secure and convenient byte bu�er handling

zorg Version 25 Jan 2015 — Open-source implementation of ZRTP

A.4.3 Documentation

yED Version 3.14.2 — Graph editor used for �ow charts and UML diagrams

L
Y
X Version 2.0.8.1 — Visual LATEX editor

PDF LATEX Version 3.1415926-2.5-1.40.14 — Type setting program

JabRef Version 2.10b2 — Bibtex reference manager

gnuplot Version 4.6 — Plotting program
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Appendix B – DVD

B.1 Content of the DVD

evaluation/ All raw data from the evaluation

implementation/ Implementation projects of this thesis

android/ Implementation of the handset as an AndroidStudio project

gateway/ Implementation of the gateway as an IntelliJ project

misc/ Various Python scripts used for the evaluation

readme.txt Information �le

thesis.pdf Digital version of this documentation
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[Place for the DVD]
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B.2 Quick-Start Guide

This section explains how the individual components can be built and run in a local
setup. The procedure has been tested on an Ubuntu 14.04 LTS machine and Google
Nexus 5 smartphones (Android version 5.1.1). The projects come with all their libraries
included as JAR archives. While describing the manual building via command line here,
one is encouraged to use the respective IDEs.

B.2.1 Java Gateway

Prerequisites &Building For compiling the gateway, the ANT >= 1.9.3 build tool as
well as Oracle’s latest JDK for Java 7 is required. Also verify that the Java Cryptography
Extension (JCE) is properly con�gured. For instrumenting the test cases, the IntelliJ
IDE is recommended. The gateway can be built using the following command:

cd implementation/gateway

ant -f gateway.xml all

Con�guration Subsequently, the following commands will �rst create two create
two local members and the local con�guration �le:

cd implementation/gateway/out/artifacts/gateway_jar/

java -jar gateway.jar -create -config hrtp.conf

java -jar gateway.jar -create -config hrtp.conf

Now, the local con�guration �le hrtp.conf needs manual editing. First the password

�elds of the local members need to be set. Next, the peerConfigurations are inserted.
For this the following skeleton is adjusted for each desired peer of the gateway and
inserted separated by commas within the empty array structure:

{

"encodedPublicKey": " << insert the peer’s public key here >> ",

"hrtcpPort": 33001,

"hrtpPort": 22001,

"identifier": " << insert peer identifier here >> ",

"inetAddress": "127.0.0.1"

},

Starting Finally, the gateway can be started using the following command. It will start
the session for the individual local members and o�er its HTTP API on port TCP:8080.

cd implementation/gateway/out/artifacts/gateway_jar/

java -jar gateway.jar -config hrtp.conf
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B.2.2 Android Handset App

Prerequisites & Building For building the Android application, the API levels 14
and 22 need to be installed using the Android SDK Manager. The best way to start is
downloading the AndroidStudio1 package that includes the IDE. Without the IDE, the
app can be compiled and installed on a smartphone using the following commands. For
this the device has to have the ADB debug bride enabled and be connected via USB:

cd implementation/android

./gradlew installDebug

Con�guration The Android app starts automatically as soon as it installed. The
settings are accessible by clicking the “wheel” on the login screen or the three dots in
the upper-right corner. Here, the IP of the gateway needs to be set. In a normal setup,
SSL should be deactivated, as the process of creating pinning information is not covered
here.

B.2.3 Android Opus Codec (optional)

The source folder for the Android app comes with a pre-compiled version of the Opus
codec, namely app/src/main/jniLibs/armeabi/libmyopus.so, for the ARM-EABI ar-
chitecture. It supports the instruction sets ARMV5TE and later as well as Thumb-1.

Prerequisites & Building If one really needs to build the Opus codec manually (e.g.
for x86), the following commands will do so after the NDK is properly installed. A
change of the target architecture, also requires one to change the build targets and types
within the build.gradle con�guration for the Android app.

cd implementation/android/app/src/main

/absolut_path_to_your_sdk_folder/android-ndk-r10d/ndk-build -B

1https://developer.android.com/sdk/index.html
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