
Technische Universität München
Department of Informatics

Interdisciplinary Project in Electrical
Engineering

Investigating Mobile Messaging
Security

Elias Hazboun

Technische Universität München
Department of Informatics

Interdisciplinary Project in Electrical
Engineering

Investigating Mobile Messaging Security

Untersuchung von Mobile Messaging Sicherheit

Author Elias Hazboun
Supervisor Prof. Dr.-Ing. Georg Carle
Advisor Dr. Matthias Wachs, Quirin Scheitle
Date April 27, 2016

Informatik VIII
Chair for Network Architectures and Services

Abstract

In this report we document our work in analyzing the security of a selection of
mobile messaging apps. Focusing on network based security, we studied traffic
generated by the apps to gain an understanding of the current state of applying
encryption and authentication protocols. Our findings show a positive trend
in security with developers steadily improving security with newer app updates
partly due to the increased scrutiny from the community and academia. Although
not all apps analyzed had perfect state of the art security properties, none have
shown any major vulnerabilities exploited by normal adversaries. It was also
evident that only one app - namely TextSecure - is using the industry standard
TLS for server-client authentication and security while others have opted for
custom made protocols and algorithms.

I

Contents

1 Introduction 1

1.1 Research Question . 2

1.2 Outline . 2

2 Background and Related Work 3

2.1 Methodology . 3

2.1.1 App Selection . 3

2.1.2 Approach . 3

2.2 Definition of Security Concepts . 4

2.2.1 Layers of Encryption . 4

2.2.2 Transport Layer Security Protocol (TLS) 5

2.2.3 Perfect Forward Secrecy (PFS) 5

2.2.4 Asynchronous Messaging Security 5

2.2.5 Certificate Pinning . 6

2.3 Related Work . 6

3 Analysis 9

3.1 TextSecure . 9

3.1.1 Related work . 9

3.1.2 Analysis and Results . 10

3.2 Threema . 11

3.2.1 Related work . 11

II Contents

3.2.2 Analysis and Results . 11

3.3 WeChat . 13

3.3.1 Related work . 13

3.3.2 Analysis and Results . 13

3.4 WhatsApp . 14

3.4.1 Related work . 14

3.4.2 Analysis and Results . 15

4 Conclusion 19

4.1 Future work . 20

4.2 Acknowledgments . 20

A Decrypting WhatsApp Traffic 21

Bibliography 27

1

Chapter 1

Introduction

The proliferation of smartphones and fast cheap internet connection over mobile
networks meant that users opted to communicate using mobile apps that use the
Internet instead of sending messages over regular cellular networks. This is a
predictable phenomenon, given that for the past few decades society has been
increasingly reliant on digital communication and trying to leverage platforms
such as the Internet for inter-personal communication. For example, E-mail has
been in widespread use since the 1980s [1] and XMPP (originally jabber) since
the early 2000s [2].

However, one big difference between protocols like the ones behind E-mail and
the protocols powering mobile messaging apps today is that the former are open
standardized protocols which were built to allow different providers to interop-
erate, analogous to the interoperability between snail mail service providers [3].
The majority of the most popular mobile messaging apps relies on underlying
proprietary communication protocols that do not support compatibility between
them [4]. On the one hand, the closed platform architecture is very appealing
from a business point of view; app makers get to incorporate added value fea-
tures more easily and encourage users to stay loyal to their platforms or users
might risk getting cut-off from their social circle. On the other hand, this black-
box approach and closed environment hinders compatibility and competition and
most importantly means that when using these apps, users are not able to scru-
tinize the method in which their data is being handled in order to be delivered
to the intended recipient but must place their blind trust in the app makers
discretion [4].

Moreover, security in private digital communication such as email or social media
has been the focus of research ever since the scienitific community realized its
power. For example, standard protocols like OpenPGP [5] were invented to
secure E-mail communication. Nevertheless, adoption of these secure protocols

2 Chapter 1. Introduction

has been lacking. The vast majority of messages today are still sent unsecure and
without complete proofing for privacy, which means that as a society, we have
concluded that the risk of non-secure digital communication does not match the
effort needed to secure it using currently offered secure solutions [6]. This problem
adds another layer of complexity to assessing the security of mobile messaging
apps and to the ongoing effort of securing them.

1.1 Research Question

The goal of this project is to investigate the security properties of a selection of to-
day’s most popular mobile messaging apps in terms of encryption, authentication
and standardized security protocol usage in communication.

1.2 Outline

The report is structured as follows. In Chapter 2, we outline the methodology we
took and give an introduction into the apps and some necessary security terms.
While in Chapter 3, we describe related work and the analysis findings on a per
app basis. Finally, we conclude our report in Chapter 4 where we summarize our
findings.

3

Chapter 2

Background and Related Work

In the following chapter, we outline our methodology, define some key security
terms necessary for the topic at hand, and give a short overview of the related
work that has been done on mobile messaging security.

2.1 Methodology

2.1.1 App Selection

This project continues on a previous research effort conducted at the Chair of Net-
work Architectures and Services [7], where some of today’s most popular mobile
messaging apps were tested in terms of security in relation to users’ geo-location
using an automated test framework. The selection of apps to be tested was
determined based on popularity, security measures, architecture and geograph-
ical server distribution. The apps selected were WhatsApp [8], Threema [9],
WeChat [10] and TextSecure [11] (now known as Signal). The testing was per-
formed on the latest version available on the Android marketplace for each app.
More information on the previous work and its resutls can be found in [7].

2.1.2 Approach

As a first step towards answering our research questions, we investigated the
official app documentation published by the developers. However, since only
one app out of the four is actually open source, we did not envision finding a
thorough description of the inner workings of the app protocols especially in terms
of security. Another source of valuable information for our work was the past
research on this topic done by the scientific community and interested hackers.
While this information could be potentially outdated by later app updates, it

4 Chapter 2. Background and Related Work

gave us a glimpse of the basic app architecture and its approach in securing
users’ data.

Finally, the main method to investigate these apps was by analyzing their network
traffic, that is the network packets being sent and received by the app as seen
by an eavesdropper on the network. The packet capture process itself has been
carried out by the aforementioned research effort at our chair. The process was
done by using two different mobile devices to communicate through the apps
while capturing the resultant traffic in parallel. In total, there were 3256 capture
files split equally among the two mobile phones and the four apps for a total of
407 captures per phone per app. 406 of which were of normal traffic generated by
the app when sending and receiving messages, and one was of the setup process
performed when the phone number is registered for the first time with the app
server.

Analysis of these capture files was done in two steps. Firstly, we manually in-
spected them by hand using Wireshark packet capture tool [12]. Points of interest
we focused on were protocol usage, the existence of encryption and its type and
the existence of certificates for authentication. Secondly, after having a broad
idea of the type of traffic sent by the apps, we automated the analysis process
into scripts that could parse the multitude of capture files.

2.2 Definition of Security Concepts

In the following we present some key concepts that are important for the under-
standing of the discussion that follows in Chapter 3.

2.2.1 Layers of Encryption

Securing messages against eavesdroppers can be done on two different layers of
communication as shown in Figure 2.1. The first layer, end-to-end encryption, is
performed on the plaintext of the message using keys that are only known to the
sender and the intended recipient. The server or any other party handling the
routing of such message cannot decrypt it to reveal the plaintext [13]. The second
layer, transport layer encryption, is performed on messages between the server
and the client using keys shared between them. Transport layer encryption can
be done on plaintext or on messages already secured by end-to-end encryption
[14]. For secure communication, it is necessary to use both layers of encryption.
End-to-end encryption is important when the server cannot be trusted or when
governments can force companies into revealing users’ data, while transport layer
encryption is important against network level attackers and eavesdroppers.

2.2. Definition of Security Concepts 5

Figure 2.1: Transport Layer and End-to-End Encryption

2.2.2 Transport Layer Security Protocol (TLS)

TLS [15] and its predecessor Secure Sockets Layer (SSL) are the current industry
standard for establishing secure connections between a client and a server over
the Internet. They form the backbone of secure HTTP (HTTPS) for millions
of websites ranging from banking to online shopping. They support this by
providing multiple services including authentication, integrity and confidentiality
[15].

2.2.3 Perfect Forward Secrecy (PFS)

The term ”Perfect Forward Secrecy” refers to a property possessed by a com-
munication protocol which guarantees that the compromise of long-term keys,
used to negotiate session keys, does not compromise the secrecy of past session
keys [16]. The most common way to achieve PFS is by Diffie-Hellman (DH) key
exchange using ephemeral keys for sessions and restricting the use of long term
private keys to authentication only [17]. This property is important against a
global passive adversary model, where an attacker can monitor and store traffic
for an extended period of time until they gain access to long term keys with which
(without PFS) they can decrypt all stored traffic.

2.2.4 Asynchronous Messaging Security

In asynchronous messaging such as E-mail or instant messaging, security can be
a challenge compared to synchronous forms of communication, mainly because
communicating parties are not guaranteed to be online at the same time to per-
form key negotiation and other security procedures [18]. In E-mail, protocols

6 Chapter 2. Background and Related Work

like OpenPGP and S/MIME [19] have been proposed and used, though they lack
features such as PFS for example. Other solutions include the use of trusted
third parties for distribution of short term keys while others like Authenticated
Diffie-Hellman do not.

Protocols for instant messaging have been created like Off-the-Record Messaging
(OTR) [20] where a Diffie-Hellman Ratchet is used to create ephemeral keys for
each communication session, this guarantees backward secrecy but session keys
might not be renewed for each message, so PFS is only partially provided [18].
Another approach - which was used in Silent Circle Instant Messaging Protocol
(SCIMP) [21] - is by using key derivation functions (KDF) to compute future
message keys from past keys. This provides PFS, but does not provide backward
secrecy within conversations; if a key is compromised, all future keys can be
derived using the KDF [22].

2.2.5 Certificate Pinning

Digital certificates are electronic documents used for security purposes to verify
the identity of a party in communication. The certificate is said to bind a public
key to an entity; that is, it guarantees that a person or a machine is truly the
owner of the public key which it claims to own [23]. This is crucial in TLS
protocol where a rogue website could otherwise claim to be a legitimate one and
perform a Man-in-The-Middle (MiTM) attack. However, some level of trust that
an entity is providing their own certificate and not a fake one is still needed, that’s
why certificates are usually signed by a trusted third party called a certificate
authority in order to attest for the entity’s claims [24].

To remove this need of trusted third parties or simply to add another security
measure to it, ”certificate pinning” can be used in software where communication
should take place with a specific server or entity. It means that developers insert
the certificate or sometimes the public key in the software itself, and if a commu-
nicating party fails to present a matching certificate or public key, the software
concludes that this party is not legitimate [25].

2.3 Related Work

Interest in analyzing the inner-working of mobile messaging apps especially in
terms of security and privacy has been growing in the past few years, not only
in the scientific community anymore, but also in the general public due in part
to the Snowden leaks [26] in 2013 which exposed governmental schemes of mass
Internet communication surveillance [27]. Today, almost all major apps have been

2.3. Related Work 7

the subject of at least one or more research studies and almost all have since been
updated to incorporate fixes of major flaws found.

Different research projects have focused on different aspects of security and pri-
vacy. Research like Mueller et al [28] focused on vulnerabilities in the authentica-
tion process when registering a phone number and the ability to send unsolicited
messages to victims. Other studies like [29] and [30] focused on the local security
of apps; that is the privacy of messages stored on the mobile phone or the abil-
ity to retrieve sensitive information such as encryption keys from the app’s local
database. Finally, research such as [31] and [32] focused on analyzing network
traffic generated by said apps, whether when sending messages or using VoIP
features or simply authenticating with the server.

In general, early results of research efforts on this topic have shown that devel-
opers have been very negligent in securing users’ data, to the point of sending
messages in clear text, or using very weak encryption schemes. Nevertheless,
later research has pointed out that there is a positive trend in enforcing secu-
rity measures. In fact some developers push increased privacy and security as
features of their apps; citing increased demand for privacy in communication by
customers. For example, Threema and TextSecure were developed and marketed
on the premise of being more secure than their competitors.

9

Chapter 3

Analysis

In this chapter, we discuss the work that we have done. Each section is dedicated
to a single app where we give a short description of it, followed by the related work
surrounding it and finally analyzing the app security and outlining our results.

3.1 TextSecure

TextSecure is an app developed by Open Whisper Systems for Android OS in
2010. It promises end-to-end encryption and is developed with security measures
as its selling point to customers. It is the only one out of the four apps to be
completely open source. It has been recently discontinued and replaced with
a more capable app called Signal, though the base of its text-based messaging
protocol remained the same namely ”Signal Protocol”.

3.1.1 Related work

TextSecure security analysis has been focused on direct inspection of its open
source code and the implementation of their security algorithms. For example,
Frosch et al [33] concluded that apart from some peculiarities in the security
design, TextSecure is successful in providing stateful authenticated encryption.
Their most notable peculiarity was the protocol’s susceptibility to an Unknown
Key-Share attack (UKS) [34] of which they have proposed a fix and informed the
developers who acknowledged their findings.

10 Chapter 3. Analysis

3.1.2 Analysis and Results

In the following section, we describe the major aspects of TextSecure security.
As it is open source, its developers openly publish that TextSecure uses both
end-to-end and transport layer encryption. For end-to-end encryption, it uses
”Axolotl ratchet” also called ”double ratchet”, because it combines DH ratchet
and key derivation based ratchet to provide both PFS and backward secrecy.
Messages are encrypted using keys produced by key derivation ratchets which
are in turn produced by seeding session keys from DH ratchet [22]. As for trans-
port layer, it uses standard TLS protocol to secure the communication with the
server. In all of our capture files of TextSecure, the server used a self-signed
certificate and chose cipher suite ECDHE RSA WITH AES 128 GCM SHA256
for communication. TextSecure also uses certificate pinning to guard against fake
certificates [35].

To cope with asynchronous nature of instant messaging while still providing PFS
and easy user experience, the Textsecure app preemptively calculates 100 prekeys
(signed key exchange messages) and sends them to the server. A client wishing
to communicate with someone would ask the server for the next valid prekey
and calculates a shared secret using its own and the destination prekeys, and
encrypts the message using it [36]. After this first step, the aforementioned
Axolotl ratchet enters full force to regularly update the encryption and MAC
keys for every outgoing message.

For symmetric encryption, TextSecure uses AES in counter mode without
padding, but when the server receives the encrypted message, it encrypts it in
another layer before handing it off to Google Cloud Messaging server to deliver
it to the intended recipient. This second layer of encryption also uses AES but
in CBC mode with PKCS5 padding, and is needed to guarantee that Google’s
server cannot know the sender of the message but only the recipient [33].

Table 3.1 gives a listing of the security primitives used by TextSecure. An in-
depth analysis of these choices is not in the scope of this research effort.

Table 3.1: TextSecure security primitives
Process Algorithm Key Length
Key derivation Axolotl Ratchet 128
Symmetric encryption AES 256
Integrity protection HMAC-SHA2 256

3.2. Threema 11

3.2 Threema

Threema is a popular mobile messaging app in German speaking countries, it
is developed by Threema GmbH with a promise of end-to-end encryption and
hosting data only on servers in Switzerland. Part of its code base is open source
while the majority is proprietary. Like TextSecure, it is focused on the security
and privacy of user’s data as its selling point.

3.2.1 Related work

In his work, Jan Ahrens [37] provided an analysis on Threema protocol especially
in terms of encryption and key exchange. Most of his findings about general
encryption behavior are aligned with what is officially published by Threema [38].
His work also shed light on the binary protocol that Threema uses in terms of
packet format and the message code denotation. Part of Dimitrov, Laan and
Pineda [39] analysis of Threema has also focused on network traffic approach
like the one we are conducting, and their results have demonstrated with high
probability that certificate pinning for TLS communication was present in the app
code because when presented with fake or edited certificates, the app dropped
all communication and in some cases even prevented future communication with
the IP address providing fake certificates.

3.2.2 Analysis and Results

Our analysis of Threema’s network capture files have demonstrated that their
handshake process for user authentication is similar to what is described in [37].
During the authentication process, a three way handshake is performed between
client and server. The client and server exchange freshly generated short term
keys and nonces to be used in this session. As for the messaging protocol it-
self, it does not use standardized protocols like TLS for transport layer security
over TCP, but rely on proprietary binary protocol with security properties imple-
mented using the NaCl Library [40]. However, the directory services protocol that
is the protocol used to discover users among other things as well as the media pro-
tocol, both employ standard HTTP over TLS with certificate pinning. The cipher
suite observed in our analysis was ECDHE RSA WITH AES 256 GCM SHA384.

In the following we will give a brief explanation of the security scheme currently
used in Threema, this information is the aggregate of our work and the various
sources previously mentioned.

When a user runs Threema for the first time on a device, a long term public-

12 Chapter 3. Analysis

private key pair is generated which will be stored locally on the device, of which
only the public key will be sent to the server as identification. The server responds
back by creating a unique 8 character ID and binds it to that public key in its
directory server for future user queries. When a user wants to communicate with
another user whom she knows the public key of, she generates a shared key using
Diffie–Hellman (DH) as shown in Figure 3.1. This shared key will be used to
encrypt the messages and will be equal to the one created by the recipient using
the same method.

Figure 3.1: Threema End-to-End Encryption [38]

As for transport security, whenever Threema restarts (or up to a maximum of
seven days), it creates a fresh temporary key pair for the communication with the
server. The server also creates its own short term key pair and sends its public
half to the client encrypted with the server’s long term private key to prove its
identity. These short term keys will be used to encrypt data between the client
and the server.

Therefore, Threema provides PFS on the transport layer, but not on the on end-
to-end level. Threema developers’ justification for it is that the implementation
of end-to-end PFS is not suitable for the nature of mobile messaging due to users
going offline, the increased complexity of clients interactions and the overhead of
key establishment.

Table 3.2 gives a listing of the security primitives used by Threema. An in
depth analysis of them and their implementation is again not in the scope of this
research effort. However, the use of NaCl library is a good indication since it is a
crypto library designed to minimize operator errors and past studies have proven
its security.

3.3. WeChat 13

Table 3.2: Threema security primitives
Process Algorithm Key Length
Key derivation ECDH over Curve25519 256
Symmetric encryption XSalsa20 256
Integrity protection Poly1305-AES 128

Threema is a closed source app, but that does not bode well for its adoption
by privacy minded people it aims to gain their trust, therefore it has allowed
for an external audit of its security aspects. The audit report [41] has found
no deviations between what is published by Threema in its white paper and the
actual implementation.

Finally, after inspecting the size of the messages in the capture files, we suspected
random padding is being done to conceal the true size of plain text messages
since identical messages resulted in different packet sizes in the capture files we
observed. This was confirmed by [37] and aligns with official Threema documen-
tation.

3.3 WeChat

One of the largest messaging apps by monthly active users, WeChat is developed
by Tenecent in China and has over 650 million active users, mostly in Asia [42]. It
is a feature rich app with many additions to the usual text and voice messages. It
is completely closed source and apart from a public API to send and receive mes-
sages through their services, its developers do not communicate publicly about
its inner working.

3.3.1 Related work

Work analyzing WeChat security in the English language academia is rather
limited. Work such as [31] has focused on VoIP traffic security, while [43] has
focused on forensic analysis of the app artifacts on iPhone. Finally, the most
similar work to our focus was done by Roberto Paleari [44], where he analyzed
network traffic and concluded that WeChat is using a custom protocol somewhat
similar to HTTP/S.

3.3.2 Analysis and Results

We have found that WeChat indeed uses a custom communication protocol to de-
liver messages, and also even uses custom HTTP queries to perform DNS queries

14 Chapter 3. Analysis

as discussed in more detail in [7]. WeChat symmetric encryption algorithm is
AES with 256 bit key length, although not clearly visible in the capture files
themselves, it is alluded to as the encryption method for ”official” WeChat ac-
counts (accounts for verified individuals, i.e. celebrities), and we speculate that
they are using the same length for normal accounts as well but unfortunately
without concrete evidence. Finally, in [44] it is suggested that key derivation is
done using RSA method but we could not verify this ourselves. As for end-to-end
encryption and PFS, we could not find any evidence in the literature or in the
packet capture files of their existence, and we conclude that they are not avail-
able in WeChat. All in all, after analyzing the relevant files, we can only say
that WeChat developers were not very wise in creating their own custom com-
munication protocol with many oddities and also in not being very open about
their app security details. However, we realize that this could be due to Chinese
restrictions on Internet or due to cultural differences in software development.

3.4 WhatsApp

Developed by WhatsApp Inc., WhatsApp is the second most popular messaging
app in the world with over 1 billion users as of February 2016 [45]. Its popularity
prompted Facebook Inc. to buy it in 2014, a move which prompted some users
to abandon it citing privacy concerns [46]. The app is closed source like WeChat
but has announced in late 2014 a partnership with Open Whisper Systems to
incorporate the encryption mechanisms of the open source TextSecure protocol
within WhatsApp itself [47]. Our work affects the state of WhatsApp before the
completion of the partnership on the 5th of April 20161.

3.4.1 Related work

Due to its massive popularity, WhatsApp has been the target of numerous stud-
ies on its security whether from hackers or researchers. Multiple research papers
such as [28] and [48] have analyzed among other apps the authentication process
of WhatsApp and have demonstrated that a MiTM attack can be carried out
against the authentication process of WhatsApp to hijack user accounts. Fur-
thermore, due to address book upload feature, it is possible to enumerate random
phone numbers to test whether or not their respective users were using What-
sApp. Fortunately, the authentication process has been updated as evident in our
capture files where the verification PIN is now generated on the server instead of

1WhatsApp announced on 5 April 2016 that it has completed the transition process to end-
to-end encryption. A quick look at the announcement reveals that the security architecture is
revamped and even user authentication is now possible.

3.4. WhatsApp 15

the client, which renders the attack in [28] to be irrelevant. However, the address
book enumeration exploit is still existent and has proven to be an issue in the
balance between privacy and ease of use of instant messaging apps in general.
Work from enthusiasts have spawned WhatsApp API clones such as [49] and [50]
where they rely on reverse engineering of traffic and code to understand the inner
workings of WhatsApp. While their work is not focused on finding vulnerabilities
or assessing security properties of WhatsApp per se, it is still valuable since it is
almost identical to WhatsApp and is updated regularly to the point where one
can fully use it instead of an official WhatsApp client. Finally, Karpisek, Baggili
and Breitinger [32] have focused on decrypting network traffic of text messages
and VoIP calls using WhatsApp which has proven beneficial in our work.

3.4.2 Analysis and Results

WhatsApp security has proven to be the most changing in our work. Reading
through the past literature and various web articles indicated that WhatsApp
transitioned through multiple states of security provisions and that the general
public and users are not completely aware of it but in fact confused and misin-
formed.

WhatsApp started out as plain text messaging [51], then moved to a very weak
transport layer encryption where the password used for encryption key derivation
was generated from the MAC address or the IMEI of a mobile phone both of which
are not secure enough [52].

Fortunately, the current version of the WhatsApp protocol which we tested has
been since then improved and in the following we will try to summarize our
findings. When a WhatsApp client registers with the server using a new phone
number, the server generates a 20-byte-long password (pw) and sends it over
secure TLS connection to the client which will save it and will be bound to that
phone number for the lifetime of the registration. When a client subsequently
communicates with the server for the sake of sending messages it performs a three
way handshake where the first step is a client hello, followed by a server hello
piggybacked on it a 20 byte challenge data. The client performs the last step of
the handshake by using pw and the challenge data it received as nonce for input
to PBDKF2 function to derive cryptographically secure keys which in turn will
be used to encrypt the challenge data, a timestamp and the user phone number
among other data as a response to the server [32] . By this step, the server
guarantees that it is receiving a fresh handshake request from the intended client
which is the only entity that has knowledge of pw.

After this handshake, the server sends in encrypted form, new challenge data to
be used for the next time a client wants to authenticate itself with the server;

16 Chapter 3. Analysis

thus the client for the next session can simply derive the keys using this challenge
data without a full handshake process, which expedites the process considerably
and makes it even harder for eavesdroppers to decrypt data since the nonce was
not sent in clear text like the normal handshake.

Table 3.3 shows the current security primitives used in WhatsApp and their key
lengths.

Table 3.3: WhatsApp security primitives
Process Algorithm Key Length
Key derivation PBKDF2 160
Symmetric encryption RC4 160
Integrity protection HMAC-SHA1 160

The reliance on pw which is at some point sent over the wire and is also known to
the server, makes WhatsApp considerably less secure compared to Threema and
TextSecure since the latter two rely on private keys known only to the user and
are never transmitted over the wire at any point. WhatsApp also by the virtue
of the previously mentioned key derivation scheme does not guarantee PFS, that
is if an adversary gains access to pw by extracting it from a phone, they can
decrypt in some cases future or even past traffic of the victim. Moreover, an
adversary who can compromise the TLS connection on which pw is transmitted
can eavesdrop on traffic of any future user who registers with the server.

We stated that it is possible only in some cases to decrypt past/future traffic
because of the aforementioned method of authentication where a server sends
the next session challenge data in encrypted form. Therefore, to decrypt traffic,
an attacker must collect all WhatsApp traffic between a client and the server
starting by the three way handshake; this way a chain can be constructed with
the first session decrypted using the first challenge data sent in clear text and all
subsequent sessions can be decrypted using the encrypted challenge data sent in
the now decrypted previous sessions. Unfortunately, in our capture files we had
a gap between the three way handshake and later capture files, so we could not
predict the challenge data used in those sessions (one could theoretically brute
force the challenge data). We could only decrypt the first session (setup traffic
capture) with the server, and in Appendix A we demonstrate steps to repeat our
process.

Originally WhatsApp did not provide end-to-end encryption but in late 2014
it announced that it is partnering with Open Whisper Systems to implement
the Axolotl ratchet of TextSecure in WhatsApp [47]. As of the writing of this
report2, not all WhatsApp client versions support end-to-end encryption and the

2See note 1 on page 14.

3.4. WhatsApp 17

development team as well as the user interface of the client do not convey to the
users any information whether or not end-to-end encryption is in fact enabled on
messages. Moreover, the current version of WhatsApp does not have any form of
user authentication, so a user cannot be sure they are communicating with the
intended recipient but must place trust in the server to authenticate the recipient
which defeats the purpose of end-to-end encryption. Ultimately, we are pleased
to see that WhatsApp is trying to improve its security, but we must also admit
that their current effort for enabling end-to-end encryption is still lacking.

19

Chapter 4

Conclusion

The findings of our analysis can be summarized in Table 4.1.

Table 4.1: Analysis findings
TextSecure Threema WeChat WhatsApp

Transport Layer Encryption Yes Yes Yes Yes
End-to-End Encryption Yes Yes No Partial
PFS Yes Partial No No
Open Source Yes Partial No No

These findings illustrate the wide spectrum of the state of security in today’s
mobile messaging apps. We focus here on two interesting contrasts.

First, the approach to applying security in development. Both WhatsApp and
WeChat developers deployed security as an after thought; they developed their
apps and communication protocols and then little by little decided to add security
measures to their solutions. This approach frees developers (in early stages of
development) to use the simplest and most user-friendly features in their apps,
but sacrifices security and is prone to errors in implementation. On the other
hand, developers of Threema and TextSecure started with a security level in mind
and tried their best to come up with a communication protocol that guarantees
this level without making the app too difficult for an average user to use.

Second, the approach to embracing open source and public or standard protocols
vs secret or proprietary protocols. TextSecure is the only app in this study that
excels in this aspect. The next in line is Threema, although it is closed source,
it uses open source implementations for security related algorithms and publicly
publishes its approach to security. Third follows WhatsApp, it is closed source
and does not proactively communicate its security philosophy, but it has recently
made strides to get better by publishing some aspects of its provided security
level and is collaborating with the makers of TextSecure to incorporate their

20 Chapter 4. Conclusion

security algorithms in WhatsApp. Finally, WeChat is not only closed source but
also doesn’t publish its security approach or even acknowledge its need for better
security like end-to-end encryption.

Our findings have also demonstrated that because app developers have complete
control over the protocols including backend and frontend technologies, they tend
to push updates to their architectures quite frequently. This means that research
findings about the security of one app might be completely invalidated by the its
newest update a very short period later. While this translates into better, more
secure apps for the end users, researchers are spread thin to cover all the updates
from the plethora of apps available in the market. For example, a large portion of
the flaws we found in the literature has already been fixed in the current iteration
of the apps we tested.

4.1 Future work

After we analyzed WhatsApp security, its developers completed the revamp of the
security architecture and moved to end-to-end encryption, so it will be interesting
to analyze their work, and see if they are successful in their effort and compare it
to the offering of TextSecure app. Moreover, one aspect which we could explore
even further is the analysis of WeChat protocol; future work might focus solely
on the reverse engineering of the protocol using deep packet inspection.

4.2 Acknowledgments

We would like to thank Karpisek, Baggili and Breitinger for their valuable input
in helping us decrypt WhatsApp traffic.

21

Appendix A

Decrypting WhatsApp Traffic

WhatsApp messages can be decrypted if the original traffic is captured and the
WhatsApp password file is extracted from the device. In the following we explain
how to do this in Wireshark:

install wirehsark if needed (tested version 1.12):

$ sudo apt−get i n s t a l l w i reshark

install cmake if needed:

$ sudo apt−get i n s t a l l cmake

install required libraries:

$ sudo apt−get i n s t a l l l i bgc rypt20−dev
$ sudo apt−get i n s t a l l wireshark−dev

Download and compile the plugin:

$ wget https://github.com/davidgfnet/wireshark-whatsapp/archive/
072ce9b12cb85891370fb0e3f365e70869d60d97.zip

unzip the archive and cd to the folder. Type:

$ mkdir bu i ld
$ cmake . .
$ make
$ make i n s t a l l

To test it out, open Wireshark:

edit→preferences→protocols→whatsapp.

check enable packet decoding.

https://github.com/davidgfnet/wireshark-whatsapp/archive/072ce9b12cb85891370fb0e3f365e70869d60d97.zip
https://github.com/davidgfnet/wireshark-whatsapp/archive/072ce9b12cb85891370fb0e3f365e70869d60d97.zip

22 Appendix A. Decrypting WhatsApp Traffic

edit user/pass list with one or both of these details:

Mobile 1:

phone number:+4915731538084

password:yqE226nFjlnXLbA55Y7SfBj6IQw=

Mobile 2:

phone number:+4915162498970

password:aDCaW4et3QSQDEuX9fLtKSM+4Bw=

After this, WhatsApp messages should be denoted as WhatsApp protocol in
Wireshark and the payload should be decrypted.

Note that this plugin can only work on a login procedure which includes the orig-
inal challenge response between the server and WhatsApp client. In cases where
the login uses previously transmitted challenge data to hasten the procedure, the
plugin cannot predict the previous challenge data (used as salt) and therefore
cannot decrypt it.

23

List of Figures

2.1 Transport Layer and End-to-End Encryption 5

3.1 Threema End-to-End Encryption 12

25

List of Tables

3.1 TextSecure security primitives . 10

3.2 Threema security primitives . 13

3.3 WhatsApp security primitives . 16

4.1 Analysis findings . 19

27

Bibliography

[1] I. Peter, “The History of Email,” 2004. [Online]. Available: http:
//www.nethistory.info/History%20of%20the%20Internet/email.html

[2] P. Saint-Andre, “Extensible Messaging and Presence Protocol (XMPP):
Core,” Internet Requests for Comments, RFC Editor, RFC 3920, October
2004, http://www.rfc-editor.org/rfc/rfc3920.txt. [Online]. Available: http:
//www.rfc-editor.org/rfc/rfc3920.txt

[3] H. Tschofenig, Improving Security on the Internet. World Wide Web
Consortium, 2014. [Online]. Available: https://www.w3.org/2014/strint/
papers/62.pdf

[4] P. Dashtinejad, “Security System for Mobile Messaging Applications,” Ph.D.
dissertation, KTH Royal Institute of Technology, 2016.

[5] J. Callas, L. Donnerhacke, H. Finney, D. Shaw, and R. Thayer, “OpenPGP
Message Format,” Internet Requests for Comments, RFC Editor, RFC
4880, November 2007, http://www.rfc-editor.org/rfc/rfc4880.txt. [Online].
Available: http://www.rfc-editor.org/rfc/rfc4880.txt

[6] B. Adida, S. Hohenberger, and R. L. Rivest, Lightweight Encryption
for Email. USENIX Association, 2016. [Online]. Available: https:
//www.usenix.org/legacy/event/sruti05/tech/full papers/adida/adida.pdf

[7] Q. Scheitle, M. Wachs, J. Zirngibl, and G. Carle, “Analyzing Locality of
Mobile Messaging Traffic using the MATAdOR Framework,” in PAM, 2016.

[8] “Whatsapp,” 2016. [Online]. Available: https://www.whatsapp.com/

[9] “Threema - Seriously Secure Messaging,” 2016. [Online]. Available:
https://threema.ch/en

[10] “WeChat - Free Messaging and Calling App,” 2016. [Online]. Available:
http://www.wechat.com/en

[11] “Open Whisper Systems,” 2016. [Online]. Available: https:
//whispersystems.org/

http://www.nethistory.info/History%20of%20the%20Internet/email.html
http://www.nethistory.info/History%20of%20the%20Internet/email.html
http://www.rfc-editor.org/rfc/rfc3920.txt
http://www.rfc-editor.org/rfc/rfc3920.txt
http://www.rfc-editor.org/rfc/rfc3920.txt
https://www.w3.org/2014/strint/papers/62.pdf
https://www.w3.org/2014/strint/papers/62.pdf
http://www.rfc-editor.org/rfc/rfc4880.txt
http://www.rfc-editor.org/rfc/rfc4880.txt
https://www.usenix.org/legacy/event/sruti05/tech/full_papers/adida/adida.pdf
https://www.usenix.org/legacy/event/sruti05/tech/full_papers/adida/adida.pdf
https://www.whatsapp.com/
https://threema.ch/en
http://www.wechat.com/en
https://whispersystems.org/
https://whispersystems.org/

28 Bibliography

[12] “About Wireshark,” 2016. [Online]. Available: https://www.wireshark.org/
about.html

[13] J. H. Saltzer, D. P. Reed, and D. D. Clark, “End-to-End Arguments in
System Design,” ACM Trans. Comput. Syst., vol. 2, no. 4, pp. 277–288,
Nov. 1984. [Online]. Available: http://doi.acm.org/10.1145/357401.357402

[14] R. Nelson and J. Heimann, “SDNS Architecture and End-to-End
Encryption,” in Proceedings of the 9th Annual International Cryptology
Conference on Advances in Cryptology, ser. CRYPTO ’89. London,
UK, UK: Springer-Verlag, 1990, pp. 356–366. [Online]. Available:
http://dl.acm.org/citation.cfm?id=646754.704917

[15] T. Dierks and E. Rescorla, “The Transport Layer Security (TLS) Protocol
Version 1.2,” Internet Requests for Comments, RFC Editor, RFC 5246,
August 2008, http://www.rfc-editor.org/rfc/rfc5246.txt. [Online]. Available:
http://www.rfc-editor.org/rfc/rfc5246.txt

[16] H. Krawczyk, Encyclopedia of Cryptography and Security. Boston, MA:
Springer US, 2005, ch. Perfect Forward Secrecy, pp. 457–458. [Online].
Available: http://dx.doi.org/10.1007/0-387-23483-7 298

[17] E. Rescorla, “Diffie-Hellman Key Agreement Method,” Internet Requests for
Comments, RFC Editor, RFC 2631, June 1999, http://www.rfc-editor.org/
rfc/rfc2631.txt. [Online]. Available: http://www.rfc-editor.org/rfc/rfc2631.
txt

[18] N. Unger, S. Dechand, J. Bonneau, S. Fahl, H. Perl, I. Goldberg, and
M. Smith, “SoK: Secure Messaging,” in Security and Privacy (SP), 2015
IEEE Symposium on. IEEE, 2015, pp. 232–249.

[19] B. Ramsdell, “Secure/Multipurpose Internet Mail Extensions (S/MIME)
Version 3.1 Message Specification,” Internet Requests for Comments, RFC
Editor, RFC 3851, July 2004, http://www.rfc-editor.org/rfc/rfc3851.txt.
[Online]. Available: http://www.rfc-editor.org/rfc/rfc3851.txt

[20] N. Borisov, I. Goldberg, and E. Brewer, “Off-the-Record Communication,
or, Why Not To Use PGP,” in Proceedings of the 2004 ACM workshop on
Privacy in the electronic society. ACM, 2004, pp. 77–84.

[21] V. Moscaritolo, G. Belvin, and P. Zimmermann,
Silent Circle Instant Messaging Protocol Protocol Specifi-
cation, 1st ed. Silent Circle, 2012. [Online]. Avail-
able: https://web.archive.org/web/20150402122917/https://silentcircle.
com/sites/default/themes/silentcircle/assets/downloads/SCIMP paper.pdf

https://www.wireshark.org/about.html
https://www.wireshark.org/about.html
http://doi.acm.org/10.1145/357401.357402
http://dl.acm.org/citation.cfm?id=646754.704917
http://www.rfc-editor.org/rfc/rfc5246.txt
http://www.rfc-editor.org/rfc/rfc5246.txt
http://dx.doi.org/10.1007/0-387-23483-7_298
http://www.rfc-editor.org/rfc/rfc2631.txt
http://www.rfc-editor.org/rfc/rfc2631.txt
http://www.rfc-editor.org/rfc/rfc2631.txt
http://www.rfc-editor.org/rfc/rfc2631.txt
http://www.rfc-editor.org/rfc/rfc3851.txt
http://www.rfc-editor.org/rfc/rfc3851.txt
https://web.archive.org/web/20150402122917/https://silentcircle.com/sites/default/themes/silentcircle/assets/downloads/SCIMP_paper.pdf
https://web.archive.org/web/20150402122917/https://silentcircle.com/sites/default/themes/silentcircle/assets/downloads/SCIMP_paper.pdf

Bibliography 29

[22] M. Marlinspike, “Advanced Cryptographic Ratcheting,” 2013. [Online].
Available: https://whispersystems.org/blog/advanced-ratcheting/

[23] D. Cooper, S. Santesson, S. Farrell, S. Boeyen, R. Housley, and W. Polk,
“Internet X.509 Public Key Infrastructure Certificate and Certificate
Revocation List (CRL) Profile,” Internet Requests for Comments, RFC
Editor, RFC 5280, May 2008, http://www.rfc-editor.org/rfc/rfc5280.txt.
[Online]. Available: http://www.rfc-editor.org/rfc/rfc5280.txt

[24] “Certificate Authorities & Trust Hierarchies,” 2016. [On-
line]. Available: https://www.globalsign.com/en/ssl-information-center/
what-are-certification-authorities-trust-hierarchies/

[25] S. Fahl, M. Harbach, H. Perl, M. Koetter, and M. Smith, “Rethinking
SSL Development in an Appified World,” in Proceedings of the 2013 ACM
SIGSAC Conference on Computer & Communications Security, ser.
CCS ’13. New York, NY, USA: ACM, 2013, pp. 49–60. [Online]. Available:
http://doi.acm.org/10.1145/2508859.2516655

[26] S. Landau, “Making Sense from Snowden: What’s Significant in the NSA
Surveillance Revelations,” IEEE Security & Privacy, vol. 11, no. 4, pp. 54–
63, 2013.

[27] N. Unger, “Deniable Key Exchanges for Secure Messaging,” Ph.D. disserta-
tion, University of Waterloo, Canada, 2015.

[28] R. Mueller, S. Schrittwieser, P. Fruehwirt, P. Kieseberg, and E. Weippl,
“What’s new with WhatsApp & Co.? Revisiting the Security of Smartphone
Messaging Applications,” in Proceedings of the 16th International Conference
on Information Integration and Web-based Applications & Services. ACM,
2014, pp. 142–151.

[29] C. Anglano, “Forensic Analysis of WhatsApp Messenger on Android Smart-
phones,” Digital Investigation, vol. 11, no. 3, pp. 201–213, 2014.

[30] A. Mahajan, M. S. Dahiya, and H. P. Sanghvi, “Forensic Analysis of Instant
Messenger Applications on Android Devices,” CoRR, vol. abs/1304.4915,
2013. [Online]. Available: http://arxiv.org/abs/1304.4915

[31] A. Azfar, K.-K. R. Choo, and L. Liu, “Android Mobile VoIP apps: a Sur-
vey and Examination of Their Security and Privacy,” Electronic Commerce
Research, vol. 16, no. 1, pp. 73–111, 2015.

[32] F. Karpisek, I. Baggili, and F. Breitinger, “WhatsApp Network Forensics:
Decrypting and Understanding the WhatsApp Call Signaling Messages,”
Digital Investigation, vol. 15, pp. 110–118, 2015.

https://whispersystems.org/blog/advanced-ratcheting/
http://www.rfc-editor.org/rfc/rfc5280.txt
http://www.rfc-editor.org/rfc/rfc5280.txt
https://www.globalsign.com/en/ssl-information-center/what-are-certification-authorities-trust-hierarchies/
https://www.globalsign.com/en/ssl-information-center/what-are-certification-authorities-trust-hierarchies/
http://doi.acm.org/10.1145/2508859.2516655
http://arxiv.org/abs/1304.4915

30 Bibliography

[33] T. Frosch, C. Mainka, C. Bader, F. Bergsma, J. Schwenk, and T. Holz, “How
Secure is TextSecure?” IACR Cryptology ePrint Archive, vol. 2014, p. 904,
2014.

[34] S. Blake-Wilson and A. Menezes, Public Key Cryptography: Second
International Workshop on Practice and Theory in Public Key Cryptography,
PKC’99 Kamakura, Japan, March 1–3, 1999 Proceedings. Berlin,
Heidelberg: Springer Berlin Heidelberg, 1999, ch. Unknown Key-Share
Attacks on the Station-to-Station (STS) Protocol, pp. 154–170. [Online].
Available: http://dx.doi.org/10.1007/3-540-49162-7 12

[35] L. Onwuzurike and E. De Cristofaro, “Danger is my middle name:
Experimenting with ssl vulnerabilities in android apps,” in Proceedings of the
8th ACM Conference on Security & Privacy in Wireless and Mobile Networks,
ser. WiSec ’15. New York, NY, USA: ACM, 2015, pp. 15:1–15:6. [Online].
Available: http://doi.acm.org.eaccess.ub.tum.de/10.1145/2766498.2766522

[36] M. Marlinspike, “Forward Secrecy for Asynchronous Messages,” 2016. [On-
line]. Available: https://whispersystems.org/blog/asynchronous-security/

[37] J. Ahrens, “Threema Protocol Analysis,” 2014, http://blog.jan-ahrens.eu/
files/threema-protocol-analysis.pdf.

[38] T. GmbH, “Threema Cryptography Whitepaper,” Threema GmbH,
Tech. Rep., 2015. [Online]. Available: https://threema.ch/press-files/
cryptography whitepaper.pdf

[39] H. Dimitrov, G. Pineda, and J. Laan, “Threema Security Assess-
ment,” 2013, https://www.os3.nl/ media/2013-2014/courses/ssn/projects/
threema report.pdf.

[40] D. J. Bernstein, T. Lange, and P. Schwabe, Progress in Cryptology –
LATINCRYPT 2012: 2nd International Conference on Cryptology and
Information Security in Latin America, Santiago, Chile, October 7-10, 2012.
Proceedings. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012, ch. The
Security Impact of a New Cryptographic Library, pp. 159–176. [Online].
Available: http://dx.doi.org/10.1007/978-3-642-33481-8 9

[41] cnlab security AG, “Security Review Threema: Security State-
ment,” 2015, https://threema.ch/press-files/2 documentation/external
audit security statement.pdf.

[42] S. Millward, “WeChat Continues Growth, Hits 650 Million
Users,” 2015. [Online]. Available: https://www.techinasia.com/
wechat-650-million-monthly-active-users

http://dx.doi.org/10.1007/3-540-49162-7_12
http://doi.acm.org.eaccess.ub.tum.de/10.1145/2766498.2766522
https://whispersystems.org/blog/asynchronous-security/
http://blog.jan-ahrens.eu/files/threema-protocol-analysis.pdf
http://blog.jan-ahrens.eu/files/threema-protocol-analysis.pdf
https://threema.ch/press-files/cryptography_whitepaper.pdf
https://threema.ch/press-files/cryptography_whitepaper.pdf
https://www.os3.nl/_media/2013-2014/courses/ssn/projects/threema_report.pdf
https://www.os3.nl/_media/2013-2014/courses/ssn/projects/threema_report.pdf
http://dx.doi.org/10.1007/978-3-642-33481-8_9
https://threema.ch/press-files/2_documentation/external_audit_security_statement.pdf
https://threema.ch/press-files/2_documentation/external_audit_security_statement.pdf
https://www.techinasia.com/wechat-650-million-monthly-active-users
https://www.techinasia.com/wechat-650-million-monthly-active-users

Bibliography 31

[43] F. Gao and Y. Zhang, “Analysis of wechat on iphone,” in 2nd Interna-
tional Symposium on Computer, Communication, Control and Automation,
Atlantis Press., vol. 69, 2013.

[44] R. Paleari, “A Look at WeChat Security,” 2013. [Online]. Available:
http://blog.emaze.net/2013/09/a-look-at-wechat-security.html

[45] “One Billion,” 2016. [Online]. Available: https://blog.whatsapp.com/616/
One-billion

[46] R. Dillet, “Bye Bye, WhatsApp: Germans Switch To Threema For Privacy
Reasons,” 2016. [Online]. Available: http://techcrunch.com/2014/02/21/
bye-bye-whatsapp-germans-switch-to-threema-for-privacy-reasons/

[47] M. Marlinspike, “Open Whisper Systems Partners With WhatsApp
to Provide End-to-End Encryption,” 2016. [Online]. Available: https:
//whispersystems.org/blog/whatsapp/

[48] C. Rottermanner, P. Kieseberg, M. Huber, M. Schmiedecker, and
S. Schrittwieser, “Privacy and data protection in smartphone messengers,”
2015, https://www.sba-research.org/wp-content/uploads/publications/
paper drafthp.pdf.

[49] “The PHP WhatsApp Library,” 2016. [Online]. Available: https:
//github.com/mgp25/Chat-API

[50] “The Python WhatsApp Library,” 2016. [Online]. Available: https:
//github.com/tgalal/yowsup

[51] R. Eikenberg, “WhatsApp versendet keinen Klartext mehr,”
2012. [Online]. Available: http://www.heise.de/security/meldung/
WhatsApp-versendet-keinen-Klartext-mehr-1673054.html

[52] F. Balducci, “WhatsApp is Broken, Really Broken,”
2012. [Online]. Available: https://balau82.wordpress.com/2012/09/19/
whatsapp-is-broken-really-broken-fileperms/

http://blog.emaze.net/2013/09/a-look-at-wechat-security.html
https://blog.whatsapp.com/616/One-billion
https://blog.whatsapp.com/616/One-billion
http://techcrunch.com/2014/02/21/bye-bye-whatsapp-germans-switch-to-threema-for-privacy-reasons/
http://techcrunch.com/2014/02/21/bye-bye-whatsapp-germans-switch-to-threema-for-privacy-reasons/
https://whispersystems.org/blog/whatsapp/
https://whispersystems.org/blog/whatsapp/
https://www.sba-research.org/wp-content/uploads/publications/paper_drafthp.pdf
https://www.sba-research.org/wp-content/uploads/publications/paper_drafthp.pdf
https://github.com/mgp25/Chat-API
https://github.com/mgp25/Chat-API
https://github.com/tgalal/yowsup
https://github.com/tgalal/yowsup
http://www.heise.de/security/meldung/WhatsApp-versendet-keinen-Klartext-mehr-1673054.html
http://www.heise.de/security/meldung/WhatsApp-versendet-keinen-Klartext-mehr-1673054.html
https://balau82.wordpress.com/2012/09/19/whatsapp-is-broken-really-broken-fileperms/
https://balau82.wordpress.com/2012/09/19/whatsapp-is-broken-really-broken-fileperms/

	Introduction
	Research Question
	Outline

	Background and Related Work
	Methodology
	App Selection
	Approach

	Definition of Security Concepts
	Layers of Encryption
	Transport Layer Security Protocol (TLS)
	Perfect Forward Secrecy (PFS)
	Asynchronous Messaging Security
	Certificate Pinning

	Related Work

	Analysis
	TextSecure
	Related work
	Analysis and Results

	Threema
	Related work
	Analysis and Results

	WeChat
	Related work
	Analysis and Results

	WhatsApp
	Related work
	Analysis and Results

	Conclusion
	Future work
	Acknowledgments

	Decrypting WhatsApp Traffic
	Bibliography

