LT 0

TECHNISCHE UNIVERSITAT MUNCHEN
DEPARTMENT OF INFORMATICS

MASTER’S THESIS IN INFORMATICS

Applicability and Performance Analysis
of Encrypted Databases for Smart
Environments

Elias Hazboun

LT 0

TECHNISCHE UNIVERSITAT MUNCHEN
DEPARTMENT OF INFORMATICS

MASTER’S THESIS IN INFORMATICS

Applicability and Performance Analysis of Encrypted Databases
for Smart Environments

Anwendbarkeit und Performanzanalyse von kryptographischen
Datenbanken fiir Smart Environments

Author Elias Hazboun
Supervisor Prof. Dr.-Ing. Georg Carle

Advisor Dr. Heiko Niedermayer, Dr. Holger Kinkelin, Marcel von Maltitz, M. Sc.
Date December 15, 2016

Informatik VIII
Chair for Network Architectures and Services

I confirm that this thesis is my own work and I have documented all sources and material
used.

Garching b. Miinchen, December 15, 2016

Signature

Abstract

Advances in sensor and networking technologies have finally brought about the era
of the Internet of Things. In the near future, people will be living in smart buildings
which are a part of smart campuses and smart cities. These smart environments are
encompassed by a growing array of sensors that constantly collect information - which
is often strongly person related - and interact with the surrounding environment using
an array of actors. However, despite all the research efforts, there still exists a lack of
consensus over how to tackle the privacy issues that might arise from living in such
environments.

In this thesis, we analyze smart environments for their privacy requirements by taking
smart buildings as a concrete example. We then propose the use of encrypted databases
as one building block to enable privacy in such environments. Encrypted databases
are an emerging technology that allows for the storing and processing over encrypted
data without exposing the data to the operator of the database server. Despite named
advantages, encrypted databases come with the cost of reduced flexibility and perfor-
mance. Hence, our main research goal is to assess if such a technology can be applied
to the given problem domain. For this purpose, we analyzed various existing encrypted
databases and selected ZeroDB as a representative technology and our main research
subject. We then conducted performance experiments with the goal of assessing Ze-
roDB’s performance and applicability in our proposed solution.

Our analysis shows that ZeroDB’s performance could allow it to be deployed in smart
environments, given that certain requirements which affect its performance the most -
such as server latency - are carefully managed. However, ZeroDB currently lacks multi-
user support and data sharing capabilities, which currently limits its applicability to
scenarios with only one stakeholder. Nonetheless, we argue that ZeroDB is a promising
technology that - if developed and optimized further - has the potential to succeed and
be deployed in privacy preserving smart environments.

Contents
1 Introduction 1
1.1 Considered Smart Environments 2
1.2 Encrypted Databases, 3
1.3 ResearchQuestions 3
1.4 Methodology 4
1.5 Outline 4
2 Background and Related Work 5
2.1 SmartBuildings 5
2.1.1 Building Automation L L 5
212 SmartBuildings oo 6
2.1.3 Smart Building Protocols oL 7
2.14 Security and Privacy in Smart Buildings 8
2.2 Encrypted Databases 8
2.2.1 Encryption Schemes Enabling Encrypted Databases 9
2.2.2 Categories of Encrypted Databases 10
223 ZeroDB 11
23 RelatedWork. L 12
3 Analysis 15
3.1 SmartBuildings 15
3.1.1 Software Architecture Design 16
3.1.2 Typical Scenarios 17
3.1.3 Users and Data in Smart Buildings 20
3.14 Privacy Requirements 21
3.2 Encrypted Databases 22
3.2.1 A Comparison of Encrypted Databases 24
4 Performance Evaluation Methodology 27
4.1 Experiment methodology 27
41.1 Compared Databases 27

412 ExperimentSetup 28

1II Contents

413 ExperimentFlow 29

42 Experiments e 32
4.2.1 Experiment Exl:Latency 33

422 Ex2:Bandwidth 33

423 Ex3:DatabaseSize 34

424 Ex4:RecordSize 34

4.2.5 Ex5:DataDistribution 35

42.6 Ex6:QueryResultSize 36

4.2.7 Ex7: Multiple-Condition Queries, 36

5 Results Evaluation 37
5.1 ExperimentsResults L 37
51.1 Exl:Latency 39

512 Ex2:Bandwidth oL 40

5.1.3 Ex3:Database Size 41

514 Ex4:RecordSize 43

5.1.5 Ex5: Data Distribution 44

5.1.6 Ex6: QueryResultSize, 46

5.1.7 Ex7: Multiple-Condition Queries 47

52 ResultsDiscussion 48
52.1 Roundtrips 48

522 ExecutionTime 49

5.2.3 Total Traffic Exchanged 49

5.2.4 Database SizeonDisk 0L, 50

5.2.5 Server and Client Response Times 50

53 Conclusions 51

6 Conclusion 53
6.1 Research Contributions 53

6.2 Limitations and Future Work 55

A Typical Use Cases In Smart Buildings 57
B Setup of Database Servers 63
B.1 ZeroDB 63
B2 MySOL . . oo oo 64
B3 ZoDB 64

Bibliography 65

I

List of Figures

1.1

2.1

3.1

4.1
4.2

5.1
5.2
53
54
5.5
5.6
5.7

Categories of smart environments 2
ZeroDB query example 12
An example of our proposed architecture 17
Setup of experiment environment L. 28
Flowchart of an experimentrun 30
Variance in ZeroDB results due to extra packets 39
Effect of client latency on execution time 40
Effect of ZeroDB client bandwidth on execution time 41
Effect of ZeroDB database size on performance 42
Effect of record size on MySQL server traffic 44
Effect of data distribution on executiontime 45

Effect of data distribution on total traffic exchanged 46

List of Tables

3.1

4.1
4.2

5.1
5.2
53

Comparison of encrypted databases 25
Hardware specifications 28
Experiment parameters and their default values 33
Performance analysis of changing query resultsize 47
Results of using multiple condition queries 48
Size of DatabaseonDisk o L. 50

Chapter 1

Introduction

Ubiquitous computing and its derivatives like the Internet of things have been a focus
of research since as early as 1987, but as of yet, no real wide-deployment has ever
been achieved [1]. The consensus today however, is that advancements in wireless
communication and electronic manufacturing have finally reached maturity to the
point of enabling such concepts [2]. Therefore, we are witnessing an era of smart
environments where sensors, displays and actuators are being embedded in everyday
objects and are interconnected together through the Internet to what is commonly
known as the cloud.

These smart environments work by constantly collecting data from the surrounding
physical environment, processing it or directly transmitting it to other surroundings
or remote devices through the underlying network infrastructure. Such environments
could be large and relatively public like smart cities or campuses, or could be small and
relatively intimate and private like smart homes or cars.

However, the pervasive nature of such environments poses a serious question about
their impact on people’s lives and data especially in terms of security and privacy. Today
more than ever, there is a pressing need to gain more insight on smart environments,
their architectures and data handling methods. How can a technology that relies on the
continuous yet distributed collection of users’ private data succeed without risking the
exposure or misuse of such data?

Multiple research efforts have attempted to tackle this problem by employing different
approaches like thorough access-control and accounting of centralized data processing
and storage systems [3], the use of anonymization techniques [4], and the use of trust
based approaches [5]. We believe that the concept of a central data processing and
storage entity in a smart environment inherently poses privacy concerns. Nevertheless,
a completely distributed approach results in an overhead in terms of cost and complex-
ity among other things. In this thesis, we will look into applying the relatively new
technology of encrypted databases to preserve privacy in smart environments that use

2 Chapter 1. Introduction

the cloud to store data.

1.1 Considered Smart Environments

Smart environments could be divided - based on the number of users they serve and
the number of physical areas they span - into three categories as shown in Figure 1.1.
Physical areas here represent the semi-autonomous administrative locations inside an
environment such as buildings in a campus.

1) Single user, single area

Examples of such environments are simple smart homes and smart cars; they are charac-
terized by having data pertaining usually to a single owner or user at a time and confined
in a single physical area. Usually data consists of intimate and private information that
is deemed sensitive to the owner such as life habits and locations driven to.

2) Multiple users, single area

Examples of such environments are more complex smart homes or smart buildings and
smart streets. This category differs from the first by handling data belonging to multiple
users at the same time. Usually data ranges from private information like life habits to
less intimate data such as preferred room temperature. This category will be the subject
of our research.

3) Multiple users, multiple areas

These are large and complex environments that span multiple physical areas such
as smart campuses or even smart cities. They usually handle less private data when
compared to previous categories, but nevertheless - considering that users in these
environments could be complete strangers to one another - data should be handled

carefully.
2 2 2
o ® ' 1 @ i O
Y r ~ Y
“single user, single arca ‘multi users, single area multi users, multi areas

Figure 1.1: Smart environments categorization based on number of users and physical areas

1.2. Encrypted Databases 3
1.2 Encrypted Databases

One of the defining characteristics of ubiquitous computing is cloud computing. A sig-
nificant number of enterprises today are opting to leverage servers, services and storage
facilities in the cloud instead of using locally owned servers. One of the byproducts
however of such usage is that enterprises’ data is stored and processed on platforms
controlled by third parties (cloud hosting companies). This means that private data must
be encrypted against these third parties to avoid being exposed. However, encrypted
data, due to its nature, cannot be processed before being decrypted first. So a typical
data record retrieval from the cloud would involve retrieving a large portion of the
data from the cloud, decrypting it on local servers, querying the specific data records
required, working on them, and then if needed, storing them back on the server in

encrypted form.

Encrypted databases are a relatively new technology that enables applications to not
only store encrypted data, but also perform database queries efficiently on them without
exposing them to any adversary including the cloud operator. Therefore, enterprises
now can utilize encrypted databases on the cloud to skip the initial step of data retrieval
and directly perform their needed queries on encrypted data and retrieve the data

records required.

As a new technology, encrypted databases are still an active field of research, with no
clear consensus over the best method to accomplish them. Currently, research efforts
vary significantly in the underlying database technology, the type of queries supported,
the encryption technology used, and the level of security guaranteed.

1.3 Research Questions

The goal of this master thesis is to investigate the current technological approaches of en-
crypted databases and how to best apply them in a smart building scenario. Specifically,
we aim to find:

+ Question Q1: How should a data processing system in a smart building or other
smart environments be structured to allow for privacy preserving characteristics?

« Q2: What are the limitations of using encrypted databases in smart buildings?

« Q3: How fine grained and flexible can access control to encrypted data be per-

formed using encrypted databases?

+ Q4: What are the factors that affect the performance of encrypted databases and

what is their impact?

4 Chapter 1. Introduction

« Q5: What are the performance effects of using encrypted databases compared to
non-encrypted ones?

1.4 Methodology

To tackle our research questions, we split our work into three phases.

« Phase 1: Study smart buildings and analyzing them from a software engineering
and privacy point of view; what are the typical use-cases, users and data in them,
what are the requirements needed in a privacy preserving solution for them?

« Phase 2: Study encrypted databases, how they work and how they differ from
one another and based on it choose one that fits the requirements found in the
first phase.

« Phase 3: Perform extensive performance analysis tests on that database tech-
nology to evaluate it in terms of effectiveness and limitations in smart building
scenarios.

1.5 Outline

The rest of this thesis is structured as follows:

Chapter 2 offers background knowledge on smart buildings and encrypted databases,
introduces ZeroDB and provides an overview of previous research on the subject of
privacy in smart environments.

Chapter 3 provides an in-depth analysis of smart buildings, their software design,
typical smart buildings scenarios and the requirements needed to preserve privacy in
them. Additionally, it also compares encrypted databases in light of these requirements.

Chapter 4 describes the performance experiments we performed to measure the per-
formance of ZeroDB in smart buildings.

Chapter 5 presents the results we obtained in our experiments. In it we also evaluate
the results and conclude some guidelines on encrypted database use in smart buildings.

Chapter 6 serves as the the conclusion of this thesis where we present our contributions
to the research questions, discuss the limitations of our study and propose future work.

Chapter 2

Background and Related Work

This chapter provides the background information necessary to better understand the
scope of the thesis. It starts by introducing smart buildings and the privacy problems in
them, followed by encrypted databases and ZeroDB - an encrypted database example
which we will focus on in this thesis. Finally, the chapter ends with a selection of
research studies related to tackling the topic of privacy in smart environments and
performance analysis of databases.

2.1 Smart Buildings

2.1.1 Building Automation

To better understand smart buildings, we must first understand their origins which lie
in the idea of building automation.

Ever since buildings began to incorporate various electronic and electric systems, build-
ing management became an increasingly difficult and crucial goal for building owners.
When we realize that buildings incur great costs for companies and influence the effi-
ciency of workers inside them, we can comprehend how critical it is for enterprises to
control buildings effectively and efficiently.

A typical building today incorporates a vast number of systems and services - most often
from different vendors - to perform a variety of goals [6]. These systems are usually
independent and controlled through different channels. Moreover, these systems have a
varying degree of criticality from fire alarms to lighting controls. Therefore, to manage
all of them means that a move to building automation is a must. What we are looking
for then is a comprehensive and integrated solution that could efficiently control and
automate all of modern buildings’ different systems and services.

6 Chapter 2. Background and Related Work

Analyzing a building automation solution, we can divide it into three main components:

« Facilities Management: This includes the typical building services such as
lighting, HVAC, access control, security monitoring and safety sensors. This
also includes the policies set in place to reduce the running costs of operating a
building by efficiently controlling the previously mentioned building services.

« Information Management: The controls that allow for the efficient storage of
information and more importantly its flow throughout the building. This includes
monitoring data, business information and user information.

« Connectivity: Buildings must be fitted with all the connectivity tools needed
for their systems to function. This not only includes the traditional physical
cables but also any modern wireless technologies that might be useful for modern
devices.

In building automation research, a usual model to represent the various functions within
a building automation solution is a three-level hierarchical model [6]. The three levels
from top to bottom are management, automation, and field. The management level is
where the majority of operator interface functions reside. Additional functions include
communication with controllers, statistical analysis, and centralized energy manage-
ment functions. Most of the devices at this level are personal computer workstations.
The automation level is where the majority of real-time control functions are carried out.
The devices tend to be general-purpose, programmable controllers. The field-level con-
tains the devices that connect to sensors and actuators which interact with the physical

world. The devices here are usually unitary or application-specific controllers [7].

2.1.2 Smart Buildings

In recent years, building automation became a standard of modern enterprise level
buildings. However, not every building that employs a building automation system can
be deemed a smart building. For a building to become "smart", it needs: to replace its
devices with their "smart device" counterparts, and to include another layer of control
which could be seen as the intelligent software that interconnects all of its systems and
smart devices together [8]. This intelligence in the software stems from three ideas:

1. It understands the management goals; for example, it can tap into the business
schedule to plan the lighting and HVAC settings of offices which in turn can be

set based on predetermined user preferred values.

2. Tt can utilize advanced algorithms to intelligently reduce energy costs of the
building without affecting user efficiency and comfort.

3. It provides the management with easy access to control and monitoring interfaces

through the web, mobile or any other form needed.

2.1. Smart Buildings 7

The goals of smart buildings have for the past few years centered around [9]:

1. Cost and energy reduction: The European Union has pledged recently to cut
energy consumption by 20% by the year 2020 [10]. When we consider that build-
ings energy consumption has reached 40% of total consumption in the European
Union [11], energy use reduction in buildings becomes a clear candidate for
achieving this goal. Moreover, costs of running and maintaining a building are
such a large contributor to an enterprise’s running expenses that any reduction
in them is beneficial.

2. Staff efficiency both for the building administrators and actual tenants. Mainte-
nance employees’ or security guards’ jobs could become much more efficient by
adding the right sensors and actuators which reduce time to resolve problems and
help identify issues remotely. Additionally, by analyzing schedules, employees’
habits and preferred settings, buildings could intelligently prepare employees’
surrounding environments to help them perform their tasks.

3. Users comfort: while this does not directly affect enterprises and building owners
running costs, it does increase employees’ satisfaction which makes them work
more efficiently and ultimately could increase enterprises profits.

2.1.3 Smart Building Protocols

Inspired by the market demand and the goals mentioned previously, different technolo-
gies and protocols spawned to perform building automation and more recently control
smart buildings and the vast array of smart devices they contain. We will mention here
three major such protocols which took different approaches to perform the task at hand,
noting that the consensus on the market today is that there is no protocol that holds
ultimate advantage over the others; in fact, some buildings employ multiple protocols
together.

« The Building Automation and Control Network (BACnet) [12] is a protocol de-
veloped by the American Society of Heating, Refrigerating and Air Conditioning
Engineers. It was made into a standard in 1995 and has since been continuously
updated. It is an object oriented protocol that allows for the communication be-
tween and integration of the different systems and devices in a building. BACnet
can be used at all levels of building automation, but is particularly suited for
management functions.

+ LonWorks [13] is a family of protocols for building automation and control net-
works, where at its core is the LonTalk protocol for transporting messages. Lon-
Works was developed by the American company Echelon and is used most often
at the automation level for the decentralized processing of automation functions.

8 Chapter 2. Background and Related Work

« Konnex (KNX) [14] is an industry standard for building control communication
systems. It was developed by European Installation Bus Association now known
as Konnex Association, hence it’s dominant in the European market. LonWorks
is the main competitor for KNX in Europe, since both have similar roles building
automation.

2.1.4 Security and Privacy in Smart Buildings

Unfortunately, as with most early information technology concepts and standards,
the protocols we have just mentioned suffer from not paying enough attention to
security from the beginning. In other words, they fail to achieve security by design,
but regard it as an afterthought [15]. In their early iterations, BACnet and similar
protocols did not specify rigorous security controls to the specifications [16]. They
decided to leave security as an optional component to be added by building engineers
and administrators or applied using other protocols such as TLS or VLANSs. In fact,
the majority of BACnet devices today do not even support the security features in the
standard [16]. To complicate things further, since they were invented, smart buildings
took on more privacy critical features and components, which means that security and
privacy aspects now have even a greater importance.

The problem becomes even worse when we turn our attention to consumer grade smart
devices where these devices are usually not even governed by any smart environment
standard and most often include various security bugs in their software. This renders
them entry points to people’s private spaces and in other cases a part of a botnet
army to deploy large DDoS attacks which use insecure IoT devices to amplify their

bandwidth [17].

2.2 Encrypted Databases

Encryption is a well-established technology for protecting sensitive data, especially that
which is handled or stored by third parties, a recent prominent example of which is cloud
storage. Unfortunately, the use of standard encryption schemes for databases in the
cloud renders them completely inefficient [18]. This is due to the fact that performing
database queries like aggregation or equality, on an encrypted column for example,
requires the decryption of the said column first on the client side, since data in standard
encrypted form does not reveal any useful information to perform the requested queries.

Therefore, the concept of encrypted databases stems from the need to efficiently perform
queries over encrypted data in the cloud without exposing any significant information
to third parties or even the cloud service provider [18].

2.2. Encrypted Databases 9

2.2.1 Encryption Schemes Enabling Encrypted Databases

Before we can delve deeper into the different techniques used to achieve encrypted
databases, we should first discuss the different encryption schemes that lie at their
foundation. In the following we present some of the most prominent of these encryption

schemes.

Homomorphic Encryption—First introduced by Rivest et al in 1978 [], homomorphic
encryption is a method in which some computation (addition, multiplication) could
be done on encrypted data and the result is obtained in encrypted form, thus never
needing to expose the original data or the result by decryption.

Any encryption scheme that can only support a subset of operations (usually one)
such as addition only or multiplication only is called partial Homomorphic Encryption
(PHE) [19]. Some traditional schemes fall into this category; for example, ElGamal and
unpadded RSA are PHE schemes supporting multiplication.

Schemes that support arbitrary operations are called Fully Homomorphic encryption
(FHE), that is they support any computation to be performed over ciphertexts. Tradi-
tionally, FHE was considered only a theoretical scheme. However, in 2009, in his PhD
thesis Gentry provided a practical proof of its existence and what is regarded today as
a foundation for FHE research [20]. Unfortunately, even though it is achievable, FHE
is still very prohibitively slow; almost 105 orders of magnitude slower than normal
computations which renders it far from being used today.

Searchable Encryption—This schemee supports the ability to perform a word search
over encrypted pieces of text without exposing the original text or the words being
searched for. Most efficient approaches to achieve this involves creating some encrypted
index of keywords and storing them alongside the encrypted documents [19]. Most
searchable encryption schemes rely on client — server model, hence some research
focus in this area has been around the interactions of having multiple clients storing
encrypted documents in a shared store and allowing for the searching and sharing of

documents.

Deterministic Encryption—This scheme is a one that outputs the same ciphertext given
the same pair of plaintext and key no matter how many times the encryption is repeated
[21]. Deterministic encryption can be used to achieve efficient searchable encryption
among other things such as avoiding the storage of duplicates of encrypted files in the
cloud [21]. However, from a security point of view, its strength is usually weaker than
probabilistic encryption [22].

10 Chapter 2. Background and Related Work

Functional Encryption—In this scheme, an authority that holds a master key can gen-
erate a key to compute a function over encrypted data. That is, functional encryption
allows for a client to learn the output of a function of the ciphertext, but nothing about
the actual plaintext data [23].

Property Preserving Encryption—The scheme allows a group of ciphertexts to be tested
whether or not they satisfy a certain property [24]. This scheme could be seen as a
generalization of order preserving encryption (not discussed here) where the property
tested is "ordering of elements", or keyword searchable encryption where the property
is "equality of keywords".

The previously discussed encryption schemes vary between each other in three trade-
off categories: (1) efficiency, (2) security, and (3) query expressiveness [25]. These
categories ultimately decide which area an encryption scheme is best suited for and
how it used in encrypted databases. In addition, these encryption schemes cannot be
individually seen in a vacuum since they are all related and in some cases they could be
regarded as special cases or generalizations of one another. Finally, it is also possible
to leverage a combination of these schemes to work together and create a more robust
and well-rounded scheme.

2.2.2 Categories of Encrypted Databases

Now that we have reviewed the different schemes of encrypting data in the cloud, we
look into a few practical examples of achieving encrypted databases. There are three

major approaches for achieving encrypted databases [26]. We discuss them below.

Encryption in the cloud—This approach involves using one or a combination of the
encryption schemes we have previously discussed. The most prominent example of this
category is CryptDB [27] which uses a combination of encryption schemes to create
layers of ciphertexts known as "onion-encryption" based on the query to be performed.

Trusted hardware—This approach utilizes trusted hardware modules usually on the
server side to perform the parts of the queries which are deemed too sensitive to expose
to the cloud operator [26].

Client Centric—This approach usually relies on performing as much computation as
possible on the server side, and then relegating the parts that are confidential to the
client side to perform [18]. One example of this category is ZeroDB [28] which is
discussed in the next section.

2.2. Encrypted Databases 11

2.2.3 ZeroDB

In this thesis, we take ZeroDB as a representative example of client centric encrypted
databases in order to assess their performance. Therefore, we deem it necessary to
include an introduction on ZeroDB at this stage of the thesis.

ZeroDB is an open-source encrypted database project from a startup called by the
same name. It is built upon ZODB which is a non-encrypted object-oriented database
providing persistence storage for python objects. The threat model of ZeroDB assumes a
trusted client, a hostile network and an honest but curious server or cloud operator [28].
ZeroDB belongs to the family of encrypted databases that puts the trusted client as
their approach to security; its main concept is its query protocol where the client is
responsible for traversing and maintaining an encrypted B-Tree index on the server
side.

The server in ZeroDB stores an encrypted index as a B-Tree where the nodes are buckets
and the leaf nodes point to actual objects stored. Therefore, to store data on the server,
the client needs to first encrypt the object, send it to the server and update the tree
index to accommodate the new object. Throughout the process the key material never
leaves the client and hence the server cannot determine any information regarding the
plaintext of the object or the overall structure and contents of the index tree.

Let us assume that the client wishes to get all records where an attribute "temperature"
is equal to 23. The client requests the root node of the index tree of that attribute from
the server which in turn sends it back, the client then proceeds to decrypt it to figure
out which of its branches could contain the value 23, then requests from the server to
return the root of that branch. For the server, this request involves a random encrypted
object in memory and cannot infer any more information other than the depth of that
object in the index tree. This step repeats, with each roundtrip of messages allowing
the client to reach a lower depth in the tree until it either finds the objects or none. An
example of this query can be seen in Figure 2.1

In terms of query expressiveness, ZeroDB supports traditional SQL queries like equality,
range, greater and smaller than, etc. Furthermore, it supports search over encrypted
text which is performed by ordering results by a net rank. Net ranks are determined
by the text’s relevance to the word to be searched and include the use of additively
homomorphic encryption.

ZeroDB hence is agnostic to the encryption algorithm used, since the query processing
does not occur over encrypted text on the server, but is rather done by the client which
traverses the remote index. In the actual implementation of ZeroDB, the developers use
AES256 in GCM mode as their underlying encryption scheme. Additionally, they use
SSL protocol to secure the traffic over the network and perform authentication of client
and server.

12 Chapter 2. Background and Related Work

Client Server

ROOT

Target Object

Figure 2.1: An example query sequence where the client remotely traverses through the index
tree to find an object with value 23.

ZeroDB’s approach to encrypted databases creates a large number of message exchanges
and traffic to be sent over the connection between the server and client. As a result, the
developers added some optimizations to mitigate the problems of slow connections. The
optimizations involve bulk-fetching small subtrees where if a subtree is small enough,
the client would simply decrypt the root node and fetch all of its children. The client
repeats this process for all the subtree. Additionally, another optimization is to perform
parallel tree traversal where multiple requests are sent simultaneously.

For sharing data between users of the same database, ZeroDB uses of Proxy re-encryption
which in simple terms allows for the server to act as a proxy and alter the encrypted
text of one user to be encrypted in a way that can be decrypted by another user’s secret
key. This method requires the user to send to the server the re-encryption key and an
optional revocation time.

2.3 Related Work

There is a considerable amount of research on the topic of privacy and security in smart
environments. However, so far there is no consensus on how to best tackle this issue
especially in terms of privacy. Research efforts varied in their proposed solutions but
the majority of earlier works shared the same threat model and goal. Namely, they
tackled first and foremost the issue of outside actors gaining access to private data

2.3. Related Work 13

stored and collected by the smart environment. Only recently that a number of papers
investigated the issue of malicious or simply curious insider actors accessing private
data or exploiting their access to spy on users’ private information.

In their paper [29], Chen et al. designed a context broker for Smart meeting rooms.
To protect users’ privacy in it, they created a policy language for users to define their
own privacy rules. The language allows users take direct control over who gets access
to their data. Moreover, their engine that infers access right based on these policies
exploits the concept of locality. For example, if an actor requests the location of a user
from the system the system will respond with the location only if it is within a value
that could be defined by the user.

Armac et al. [30] on the other hand took a different approach to protect the privacy
of users in smart homes. Their approach involves the use of an identity management
system where users have different identities which - based on the smart environment -
they could select to present themselves as to a smart home. Moreover, they use the con-
cept of anonymous credentials which benefits their system by minimizing traceability
and linkability of users’ identities between smart homes.

Finally, Neisse et al. [31] created a Model-based security Toolkit named SecKit to tackle
privacy and security in smart environments. An interesting inclusion in their toolkit is
the support for trust management. In it, trust relationships could be precisely defined
between users and smart devices. For example, a user trusts device A to collect their
location information but does not trust it to recommend directions to the nearest hospital
in a city. This is a valid concept that we believe could be used in conjunction with other
systems that tackles privacy.

15

Chapter 3

Analysis

This chapter focuses on analyzing smart buildings in terms of software design in its first
half and current encrypted database research in its second half. An in-depth analysis
of typical scenarios and the data flowing in smart buildings is presented, followed by
an analysis of how to ensure proper privacy of data in smart buildings. Moreover, a
comparison of encrypted database offerings is performed, and we conclude the chapter
with an analysis of ZeroDB as an example encrypted database.

3.1 Smart Buildings

To properly assess the software design properties of smart buildings, we must first define
what a smart building is. We envision a smart building as a multi-floor building owned
and maintained by a single company which either occupies it or rents it to multiple
tenants. In the case where the building is rented, most of the tenants are companies
renting offices, meeting rooms, server rooms, and communal rooms. Some offices and
parts of the building are dynamically rented and occupied; they don not have a fixed
occupant during the day but can be booked on demand if they are empty.

The building draws its energy from the smart electrical grid but also has solar panels on
the roof for local electricity generation. It is also connected to hot and cold water supply,
and internally has an extra water tank for storing and heating water locally as necessary.
Additionally, a sophisticated system of heating, ventilation and air-conditioning (HVAC)
is installed throughout the building.

In terms of information technology infrastructure, the building has an extensive com-
puter network cabling reaching all rooms and locations. In addition, cameras, smoke
detectors and other safety and security sensors are installed throughout the building.

Most physical objects in the building are considered smart devices; they are fitted with
sensors, actuators and displays to enhance their functionality. For example, doors,

16 Chapter 3. Analysis

windows, blinds and electronic equipment can be controlled automatically or remotely.
Moreover, their energy consumption is monitored on a per device and room basis.

3.1.1 Software Architecture Design

Sensors and actuators in smart devices usually collect and transmit data to interact with
the physical world around them. These smart devices most often belong to a single
physical location like an office, but send data to and receive commands from a central
server residing in the building. We believe this centralization approach is an inherent
source of risk to users’ privacy in smart buildings. A malicious attacker that gains
access to the central server can achieve complete control over the entire network of
smart devices in the building rendering the whole building and employees’ data exposed.
Moreover, an honest but curious building operator could exploit their "big brother" view
of the building to intrude on employees’ privacy. Even further, when we analyze the
functions of smart devices, it is clear that a majority of their goals can be achieved
without the need of such central entity to coordinate their work.

Therefore, it could be theorized that smart devices within a single location could be
regarded as part of an autonomous region - a locality, thus confining most of the users’
data within said locality. In this solution, an attacker needs to gain physical access
to each locality to achieve complete coverage. However, this complete decentralized
approach results in a dramatic increase in complexity and costs due to the installation of
servers within each locality to govern smart devices and store their data. If we assume
each office or confined space to be a locality, then we have a cost that no building
operator would be willing to pay.

Hence, we propose an architecture that could be seen as a hybrid of the two approaches
we have mentioned. Its basis lies within the following three concepts:

1. Most of the data within a locality should remain inside it, and only a selected
portion is needed to be shared with other localities or with central administration.

2. Centralization of processing and storage is essential to reduce complexity and
costs, and keep an administrative oversight over the building.

3. Building administrators’ access to users’ and devices’ data should be limited to the
proportion needed for them to perform their administrative duties. For example,
a curious administrator should not have access to the whereabouts of a user all
day long.

One way to reconcile these three points is to secure each locality’s data on the central
server in a manner such that even though the data is stored on one server, only the
locality owning the data will actually be able to access it and share it when necessary.

3.1. Smart Buildings 17

Using encrypted databases on a central server allows us to achieve this concept. If we
assume each locality is a user in the database, we can centralize the data on one database
while protecting it from unauthorized access. Figure 3.1 illustrates a high level overview
of smart building using encrypted databases.

Meeting room Personal office

Centralized Encrypted Database

Figure 3.1: Two adjacent rooms with small computing devices in their center which are connected
to an array of sensors and actuators. Each room is also connected to a central encrypted database.

The big light red and light blue rectangles represent two localities e.g. a meeting room
and an office inside a building. They both contain a set of sensors and actuators that
are attached to smart devices. In the center of each locality is a logic unit - a small
computing device - capable of communicating with the sensors and actuators, and also
with with the centralized database at the bottom of the figure. An actual implementation
of such device could be a raspberry pi []. Each logic unit is a unique client on the central
encrypted database whose data can be decrypted by a key known only to said the client.

The advantage of including a logic unit in each locality is twofold. One, it acts as a
coordinator between the various smart devices within each locality, and also between
two localities that want to communicate with each other. Second, it acts as a client to the
encrypted database sever on behalf of all the sensors and actuators in the locality. This is
of great importance since usually these devices are low powered and lack the computing
capabilities necessary to communicate with an encrypted database. Moreover, this also
removes the need to change any software on the smart devices installed in the building,.

3.1.2 Typical Scenarios

In order to get a better understanding of the requirements needed in an encrypted
database to function properly in a smart building, we need to analyze the typical sce-
narios and use cases in which it will be utilized. In this section we present a number of

18 Chapter 3. Analysis

selected scenarios we deemed representative. Moreover, in appendix A, we also present
use-cases derived from these scenarios.

Typical Scenarios:
1. Employee books a room on demand

Description: An employee swipes his badge by sensor near the door of an empty
office, thus opening the door and by using either the app or a small screen mounted
on the office wall, books the room for the next 6 hours.

Analysis:

« Sensor reads user badge, sends data to logic unit pertaining to company
(if the room is rented by one tenant) or to a logical unit belonging to the
building (if the room is shared by multiple tenants).

« Logic unit returns back ACK/NACK.

« Command to actuator is sent to open the door.

« User preferences from database belonging to company are fetched.

« HVAC and lighting systems are informed of user preferences.

« HVAC and lighting systems calculate, using current room and neighboring
rooms’ sensor data, the best possible temperatures.

2. Energy consumption

Description: A company has a fixed amount of electricity consumed per month,
if exceeded, cost of electricity goes up substantially. Moreover, the electric grid
periodically informs building electric system of cost changes. End users are
informed of this when they try to use a non-work critical device like a kitchen
device.

Analysis:

« Electric grid informs the building system of an increase in the cost in the
next two hours due to high demand.

« An employee in that period turns on an electric device..

« The logic unit in the room is informed of the matter, and fetches historical
data of energy consumption of device when this specific employee uses it.

« The logic unit calculates that it will cost money more than what is expected
for an employee per day.

+ The logic unit sends command to device to warn the employee of this.

« If the employee agrees, device continues to work, otherwise it is stopped.

3. Energy consumption optimization

Description: The system is able to precisely optimize the parameter states of mul-
tiple adjacent rooms in terms of HVAC, lighting etc. to save energy consumption

3.1. Smart Buildings 19

without greatly interfering with users’ optimal settings and preferences.

Analysis:

A change is triggered in the parameters of a room’s HVAC, lighting etc.
The central logic unit of that area (floor, department) calculates how this
change can be achieved within the context of the surrounding rooms (or the
rooms communicate between each other to determine this).

Each room affected can change its optimal parameters slightly to accom-
modate for the overall change where the overall energy consumption is
minimized while user comfort remains intact.

For example, before the change trigger, Room 1 had the AC: 21°, Room 2:
23° and Room 3: 20°. When Room 4 is occupied and a user wants it to be 25°.
The end result could become: Room 1: 21.5°, Room 2: 23.5°, Room 3: 20.8°
and Room 4: 24.2°.

4. Fire Emergency

Description: Smoke detectors, detect an increase in CO, levels in a room on some

floor and initiate fire emergency case.

Analysis:

Smoke sensors detect an increase in COs.

Logic unit inside the room calculates that this amount is high enough to
indicate a fire.

Logic unit inside the room contacts the neighboring rooms to inform them
of this and to query their CO, sensor readings to check if the fire is spread.
Logic unit also informs the central building emergency system of the fire in
the room and possibly the readings of neighboring rooms.

Logic unit disables HVAC systems and if the room occupancy is empty, it
will close all windows and doors to prevent the spread of fire.

Central logic unit now initiates building wide emergency protocol (including
shutting down empty elevators and fast evacuation of used ones).

5. Periodical calculation of energy and water consumption

Description: For saving purposes, periodical calculation of consumption per floor,

per room, per building, per tenant is done to better understand it and try to

minimize it as appropriate.

Analysis:

Energy consumption is logged in the logic unit of a room at the end of each
day.
The same is done for a floor, and for a tenant.

20 Chapter 3. Analysis

« At the end of the month, data is carefully shared to calculate the consump-
tion.

« Consumption analysis is shared with room occupants, tenants and building
owners and operators as appropriate.

6. Room occupancy

Description: sensors at room doors calculate number of occupants in each room
and their identities. This data can be used in a variety of ways:

+ Calculate the best HVAC and lighting settings to suit most of the employees
in a meeting room. For example, lowering the light intensity in the room or
increasing the fan speed.

+ Calculate the number of employees in the building at any point to better
adjust cost savings. For example, based on their location, elevators in almost
empty sections can be turned off.

« In case of a grievous incident, the system can inform authorities of the
whereabouts of an employee or a room occupant at a specific date in the
past (A specific set of pre-defined and agreed data can only be accessed).

3.1.3 Users and Data in Smart Buildings

Analyzing the previous scenarios, we can divide the users of a smart building into the
following groups:

Employees.

Guests.

Building Operators.

Third party service personnel.

RANE A

Intruders (anyone not belonging to any of the previous categories).

In a similar vein, we can divide the data flowing through the smart building into different
categories, which can help us in understanding the privacy requirements needed for
each of them. The categories are:

1. Basic Data

a Sensor Data (pertaining to a room).

b Sensor Data (pertaining to a user).

¢ Arbitrary Data (File, announcement, software update, etc.)

d Maintenance Data (Device and system status, reporting of system inter-
communication).

e Commands to an Actuator.

f Preferences of a User.

3.1. Smart Buildings 21

2.

g Emergency data (usually commands).
Processed Data

a Aggregated Data which usually decreases privacy criticality.
b Enrichment of data by complex functions which usually increases privacy
criticality.

Finally, we can also summarize how data is flowing inside a smart building:

A

Between a sensor or an actuator and a logic unit and vice-versa.
Between physically close localities

Between physically separated localities.

Between a locality and the server.

Between the building and an outside entity or entities.

3.1.4 Privacy Requirements

From the previous analysis we can infer a set of requirements that must be in a tech-

nology to be considered as a viable candidate to power the end solution. These are

discussed below:

Requirement R1: Strong encryption - Data must be stored using a strong
encryption scheme with keys known only by the data owner that even the ad-
ministrator of the system cannot access arbitrary data in plaintext.

R2: Multi-user support - The system must be able to handle multiple users or
tenants and appropriately handle their data.

R3: Secure Sharing - The Owner of the data might be willing to grant access
rights to its data to the system, a user in the system or a third party. By doing
so, the owner will not risk exposing the plaintext to any party other than the

intended, even the database itself.

R4: Timed or revocable access rights - Access rights to data elements can be

granted temporarily or revoked on demand.

R5: Non-trust based - No trust in an entity should be needed to operate the
system securely. All system guarantees must be made solely on the basis of
mathematical proofs of security.

R6: Secure, efficient aggregation - Database queries and aggregation functions
like sum, average etc. should be achievable by the system in a reasonable time on

encrypted data belonging to multiple users.

22 Chapter 3. Analysis
3.2 Encrypted Databases

Having analyzed the software architecture of smart buildings using encrypted databases
and summarized the requirements needed in an encrypted database to make it usable
in such an environment, we now offer a survey of the available research on encrypted
databases and compare their viability for our smart building architecture.

We analyzed numerous research projects that dealt with encrypted databases. They
ranged in their purpose and functionality from completely theoretical studies to com-
mercial products. In the following we offer a brief overview of the most prominent
encrypted databases we analyzed.

CryptDB

Published in 2011, CryptDB [27] is one of the most prominent research projects on the
topic. It is often cited by other authors and used as a comparison reference. It relies
on SQL aware encryption schemes to protect the data. CryptDB addresses two types
of attackers, a curious database administrator and an attacker who gains access to the
database server. For the latter type, CryptDB doesn’t guarantee the confidentiality for
users already logged in the system, but ensures it only for logged-out users.

CrypDB uses three concepts to accomplish its goals. First, it uses well defined SQL
queries that rely on equality checks, aggregates, and joins which in turn can be used
to adapt encryption schemes to work on encrypted data. Second, it uses onions of
encryption to store multiple ciphertexts within each other, each layer of encryption
uses an encryption scheme designed specifically to accommodate a different type of
query. Finally, it chains encryption keys to user passwords, so that even if the database
is compromised, the attacker must know the user’s password to gain access to their
data [27].

Arx

Arx [32] is a encrypted database partly developed by the same authors of CryptDB. It
uses AES to guarantee strong encryption properties. However, since AES cannot be
computed upon, the authors introduced two database indices (for equality and range
queries) which are built on top of AES. In addition, it uses one-time obfuscation in the
index tree, which means that partial index rebuilding must be done after each query.

The architecture of Arx involves a client proxy and a server proxy which act between
the unmodified standard client and database serve. The client proxy handles sensitive
data and has access to encryption keys, whereas the server proxy is part of the server

3.2. Encrypted Databases 23

which is under attack. The database server itself could be of any type, however Arx
authors implemented it on top of MongoDB a NoSQL database.

SEEED

Search over Encrypted Data (SEEED) [33] is a framework developed by the company
SAP for tackling the problem of encrypted databases. SEEED relies on a modified version
of the onion encryption concept developed in CryptDB. A SEEED database driver was
developed to translate and encrypt SQL statements to be sent to the server. As for the
threat model, it comprises a trusted client, an untrusted network and an honest but

curious server operator.

TrustedDB

TrustedDB [34] is a trusted hardware based relational database. Its developers argue
that using secure server-side hardware like the IBM cryptographic co-processors for
secure database processing is highly efficient than using common hardware. Therefore,
TrustedDB runs two database management servers, a modified SQLite server on the

secured hardware, and a normal MySQL server on the normal hardware.

Cipherbase

Cipherbase [35] is the result of work at Microsoft Research where they tried to leverage
in-server trusted hardware to run a small part of the encrypted database that deals
with confidential data. They boast that by limiting the use of trusted hardware to a few
thousand lines of Verilog code they achieve higher performance compared to databases
that run a larger part of the database in trusted hardware.

In terms of functionality, Cipherbase supports most of SQL database features and even
some of it without any change in the underlying original code. Finally, for secure
hardware, the authors chose a PCle-based FPGA board to run their critical sections of

code.

MuteDB

Multi-User relaTional Encrypted Databse (MuteDB) [36] is an architecture for secure
SQL operations over encrypted data in the cloud. It is unique among the rest in that
its threat model involves having legitimate users colluding with cloud operators to
compromise other user’s stored data. It relies on key management and access control

policy enforcement to guarantee data confidentiality.

24 Chapter 3. Analysis

ZeroDB

We have already introduced in the previous chapter ZeroDB; an encrypted database that
relies on the client to do most of the heavy-lifting in terms of computation to secure
data on the cloud. However, when we delved deeper into its most recent implementa-
tion which is published on GitHub, we noticed a few discrepancies between what is
claimed in the white paper which we based our introduction upon and what is actually
implemented.

The first major discrepancy is multi-user management support, even though we see its
seeds in the code, in its current shape it is not fully supported and it is recommended
to only use one user per database. The second discrepancy lies in the possibility of
data sharing between users. In the paper, they mention two different possible meth-
ods to achieve this: proxy re-encryption and delta-keys, none of which is currently
implemented. In the published code, some proxy re-encryption tests are visible in the
published code. When asked about it, the developers pointed out that it possible to
perform proxy re-encryption in ZeroDB, but they don’t have actual implementation
developed for it yet. Finally, since data sharing is not possible, timed or revocable access
control to shared data is consequently not possible as well.

3.2.1 A Comparison of Encrypted Databases

Given the requirements that we have compiled for a scheme to work in a smart building,
we now offer a comparison of the different databases we have researched in terms of
these requirements. In table 3.1, we show our results where we included a column to
address the ZeroDB discrepancies we found. Additionally, we also added a column
which states whether or not a publicly available API is there for that database, since
without one designed for third parties to use, it would be too difficult for us to utilize it

in our analysis tests.

From the table, it is clear that ZeroDB, although misses a few requirements because
of its current limitations, is still the right candidate for us since it not only has an API
available for us to use, it is also in active development. Moreover, the discrepancies can
be ultimately reconciled in the future so that it fully supports most of our requirements.

Nevertheless, we see that moving forward we no longer can perform a complete proto-
type of our proposed solution of a smart building using an encrypted database (ZeroDB).
Therefore, in the next two chapters, we focus instead on planning, performing and
evaluating the results of performance analysis experiments that are designed to assess
the performance, applicability and efficiency of ZeroDB in a smart building.

25

3.2. Encrypted Databases

-a1qissod Afrenyuagod ,, ‘3snxj saxmbar

®JRp OU § ‘Juaurarmbai oy} 399w Jou sa0p -

juawaambar oy sjeawr Afrenaed + ‘quawarinbar o sjeowr A[Suoxys ++

- ¥ - - - + . ++ a[qerreae [V

++ ++ ++ + ++ ++ - - uorjeda183e JUIIDIJO QINdAG

- et - - - i - + 3[qeo0AY IO pawL],

- ¥ - - - + - + Surreyg 21noag

- T+ ++ ent - ++ - ++ 1r0ddng resn-1yny

o +++ ++ ++ ++ + ++ ++ uonydArouy Suoxig
aqpaIsniL, | gaPIMN | qddds | oseqreydy | xay | ga@iddi) | ,gqopz | gqorz

sjuawaanbai Aoearid jo surra) ur saseqejep pajdAIous jo uostreduwro)) :1°¢ S[qe],

27

Chapter 4

Performance Evaluation Methodology

In this chapter, we describe the performance experiments we performed to measure
the performance of ZeroDB in smart buildings. We start by detailing our methodology
including the experiment setup and the databases with which we chose to compare our
results with, followed by listing each experiment, what it measures, how it is performed
and what its goals are.

4.1 Experiment methodology

In order to understand the overall performance and applicability of ZeroDB in a smart
building, we chose to perform experiments that assess its performance given various
operating conditions. We analyzed the different parameters that might affect the overall
performance of ZeroDB, and for each of them designed an experiment that measures
that parameter’s effect on the performance. These parameters are: bandwidth and
latency of the link, size and number of records in the database, distribution of data in
the database, query result size and the use of multiple-condition queries.

4.1.1 Compared Databases

To assess ZeroDB’s performance, it does not suffice to test it in various conditions, we
also need to test other databases in the same conditions and compare its performance
to theirs, which will result in better conclusions on ZeroDB.

The first database we will compare ZeroDB to is MySQL [37]. MySQL is a prominent
open-source relational database. Its performance, reliability and features made it one of
the most used database in the world, powering projects from the US Navy to Uber and
Youtube [38]. We chose MySQL as the first comparison database, because it represents
an industry standard and will most likely represent the expected performance out of

28 Chapter 4. Performance Evaluation Methodology

relational databases. We expect of MySQL to especially outperform ZeroDB when
querying large amounts of data or when the latency between the client and the server
is large.

The second database is ZODB, which is an open-source object-oriented database [39].
In a sense, it is a persistent storage facility for objects in python. The reason we
choose ZODB as the second comparison database is that ZeroDB is based on it, so by
comparing their performances, we can measure two things: the performance penalty
of the algorithm used by ZeroDB to achieve the security and privacy of an encrypted
database, and also the effectiveness — if any - of the optimization algorithms inserted
by ZeroDB into ZODB. However, we do not have sufficient historical or background
information to quantify how the performance of ZODB will measure compared to
ZeroDB.

4.1.2 Experiment Setup
To perform the various experiments, we setup a lab environment where two computers
are setup to act as a server and a client. The computers were desktop computers with

specifications listed in Table 4.1:

Table 4.1: Hardware specifications

Processor Intel Xeon CPU E3-1275L v3
Memory Kingston 8 GB, DDR3-1600
Secondary Storage Crucial SSD BX100, 120 GB
Network Card Intel ET 1340 Server Adapter

Modifiable latency and
bandwidth Ehernet connection

PC1(client) PC2(Server)

Figure 4.1: Setup of experiment environment

In the setup as seen in Figure 4.1, one computer, namely PC1, acts as the server holding
the database, while PC2 acts as a client querying records from the database. The two
computers are connected directly by an Ethernet cable providing 1000 Mbps bandwidth.
Debian Jessie is the operating system installed on both computers in addition to all the
required libraries and packages used in the experiments.

For a more in depth procedure on how the software is setup for each of the three
different databases, please refer to Appendix B.

4.1. Experiment methodology 29

4.1.3 Experiment Flow

The premise of all the experiments is as follows: start network traffic capture on the
link between client and server, instruct the client to send an equality SELECT query
(or its equivalent for ZeroDB and ZODB) to the server, the server responds back with
the query results, stop the traffic capture. This process is repeated a certain number of
times to increase the statistical significance of its results and try to remove the effect of
any irregularities that might exist. Unless otherwise noted, the number of repetitions
for each experiment is set to 10.

To perform this, we wrote multiple Bash scripts that together orchestrate a given ex-
periment from the setup of the database server and the generation of records, to the
execution of the actual queries and recording them in capture files.

An experiment starts by running a script called automate. sh and providing it with the
name of the file that contains the parameters for the experiment. The most important
parameters recognized by the script are:

« Repetitions: number of times the experiment will be repeated.

« Technology: Database to be used (ZeroDB, MySQL, ZODB).

« Record: name of object (for ZeroDB and ZODB) or table (for MySQL) to be
queried.

 Dbsize: number of records stored in the database.

« Recordsize: size of added bytes to the record size.

« Bandwidth: bandwidth in Mbps on the client side.

« Latency: latency in milliseconds between client and server.

« Querysize: number of records queried.

« Distribution: distribution of the randomized values of stored records.

After reading the parameters, automate. sh script repeatedly calls analyze. sh (accord-
ing to the number of repetitions) before finally calling another script to create the
relevant results graphs.

The script analyze.sh is the main script that performs the experiment itself. Its basic
flow is described in Figure 4.2 which we can summarize in the following points:

1. Read the parameters.
2. Setup and run a server instance of the needed database.

3. Populate the database with randomized data generated according to the required
distribution.

4. Configure the latency and the bandwidth of the link as required.

5. Start traffic capture on the server.

30 Chapter 4. Performance Evaluation Methodology

6. Run the client program to query the data from the server.

7. End traffic capture once the client is done.

8. Analyze the capture file and save the important values to an XML file.

9. Shutdown the server instance.

Read
parameters

- Setup and
Database populate
database

configure
latency and
bandwidth

Start traffic
capture

Run client

End traffic
capture

Analyze and
save results in
XML file

Figure 4.2: Flowchart of an experiment run

Data Population

A

Repeat

To perform the experiments, we need to create data records and populate the server

with them. For smart buildings, it is logical that we create records that represent

measurements taken from sensors in the building. In the case of ZeroDB and ZODB,

these records are objects of class Measurement stored in the database. While in the case

4.1. Experiment methodology 31

of MySQL, the records are stored as rows in a table called Measurement. Listing 4.1 shows
the Measurement class attributes which directly translate to columns in Measurement
table.

Listing 4.1: Measurement class definition

class Measurement(Model):
roomID = Field()
nodeID = Field()
value = Field()
date = Field()
desc = Text()
state = Field()

Three important keywords to note from Listing 4.1 are Model, Field() and Text().
Model is a class provided by ZeroDB and should be inherited when trying to create
objects to be stored in ZeroDB. Field() denotes an attribute that should be indexed by
ZeroDB, while Text () informs ZeroDB server that this attribute should support string
searches.

The attributes of the class include the room and node IDs for the measurement, the
value of the measurement and the date and time it was taken on. The remaining two
are the desc and state which represent a text description and the state of the node
creating the measurement respectively.

For MySQL, the table creation statement is shown in Listing 4.2 where ID column is
added to be used as the primary key of the table.

Listing 4.2: Measurement table creation statement

"CREATE TABLE measurement ("

"ID INT UNSIGNED NOT NULL AUTO_INCREMENT,"
"roomID INT(4),"

"nodeID INT(5),"

"value INT,"

"date BIGINT,"

"description VARCHAR("+str(elementsize+10)+"),"
"state INT UNSIGNED,"

"PRIMARY KEY (ID))"

It is worth mentioning that in MySQL, the sizes of each column are set proportionally
so as not to waste storage space. However, in ZeroDB and ZODB, this is not possible
because there is no direct control over it, since it is handled by the underlying layer of
object creation of the database itself.

The values to be stored in each attribute/column is randomly generated. For each

32 Chapter 4. Performance Evaluation Methodology

experiment and for each repetition for an experiment, new values are generated. This
is done to remove any effect that the random generation of data might have on the
performance. However, the values are still controlled to an extent so as to keep the
experiments consistent. In the following, we give a description of the values stored in
each of the attributes and columns.

« roomID: any of 150 random integers between 1111 and 9999 inclusive.

« nodeID: any of 900 random integers between 11111 and 99999 inclusive.

+ value: any random integer between 1 and 9999 inclusive.

« date: actual seconds since epoch time (non randomly generated).

« desc: the string "door" concatenated with a randomly generated string of charac-
ters the size of which is determined in the experiments.

« state: any random integer between 0 and 3 inclusive, where each number repre-
sents a state of the node, for example 1 could represent in-use while 2 represents
turned off.

Traffic Capture and Analysis

Before starting the client to query the database in each experiment, traffic capture has
to be setup on the server network card. It is done by dumpcap which is a command-line
tool to capture network traffic in Linux and is part of Wireshark which is the de-facto
standard for traffic capture. The traffic capture is stopped after the client receives all its
results back from the server.

The traffic for each run is saved in pcapng formatted files for subsequent analysis and
named in a meaningful manner to denote exactly which experiment and run it belongs
to. After that, the file is read by a python script to extract useful statistics from it. These
include but are not limited to: the minimum and maximum time for the client and server
to respond, the total bytes, the number of roundtrips, etc. The statistics for each file are
finally saved as XML files.

These statistics are made after filtering out traffic not related to the experiment. It is
worth mentioning that for ZeroDB, we include the SSL handshake used by the protocol
in the statistics collecting since we deem it an integral part of the query process of
ZeroDB.

4.2 Experiments

In essence, each experiment we will now discuss works by measuring the performance of
varying the value of a single parameter out of the seven we mentioned at the beginning
of this chapter (with the exception of multiple-condition queries), while preserving the

4.2. Experiments 33

others in tact. The parameters and their default values in the experiments are shown in
Table 4.2.

Table 4.2: Experiment parameters and their default values

Latency 10 milliseconds
Bandwidth 1000 Mbps
Database Size 50000 records
Query Size 1000 records
Data Distribution uniform
Record Size 10 bytes

4.2.1 Experiment Ex1: Latency

Even though cloud usage is on the rise, some enterprises are still reluctant to use it,
especially for time-critical operations, since the latency to the cloud could be a barrier
to entry for them. That is why, we would like to investigate in this experiment the
effects of latency on a chatty protocol like ZeroDB.

To manipulate the latency of the link between the client and the server we use the TC
command in the iproute2 package. TC allows for the configuration of traffic control
in the Linux kernel. We enforce the latency to our desired limit by creating a queuing
discipline qdisc on the client’s interface, since typically clients are the parties with
limited latency. The following Listing 4.3 shows the commands used.

Listing 4.3: Modification of latency using TC command

tc gqdisc add dev $interface handle 1: root htb default 11
tc class add dev $interface parent 1: classid 1:1 htb rate 1000Mbps
tc qdisc add dev $interface parent 1:11 handle 10: netem delay $latency

$interface and $latency are variables representing the network interface and the
latency of the link respectively. Values for latency to be tested are 10, 50, 100 and 1000
milliseconds. Note that we define latency here by the total time needed for a message

to perform one roundtrip from client to server and back.

Due to the nature of ZeroDB protocol, we expect latency to greatly affect performance.
For each query to the database, the client needs to send and receive a large number of

messages in order to traverse the encrypted b-tree index on the server.

4.2.2 Ex2: Bandwidth

A parameter of concern for smart environments is the bandwidth between conversing
nodes. A wireless node in a smart building such as a smartphone which uses cellular

34 Chapter 4. Performance Evaluation Methodology

communication can be limited in bandwidth compared to regular computers. This means
that an important test is to measure the effects of low bandwidth on the performance
of ZeroDB.

Similar to latency, we use the TC command to change the bandwidth of the link between
the client and server. Listing 4.4, which should be viewed as a part following Listing 4.3
that dealt with latency change, shows the command used.

Listing 4.4: Modification of bandwidth using TC command
tc class add dev $interface parent 1:1 classid 1:11 htb rate $bandwidth

$bandwidth is a variable representing the bandwidth of the link. Values to be tested for
it in the experiment are: 0.5, 1, 10, 50, 100 and 1000 Mbps. To verify the results of the
command we perform bandwidth measurement tests using iperf.

It is expected that due to the encryption and protocol overheads, ZeroDB performance
will be negatively affected by low bandwidth. To be exact, we expect that up to a
certain point, low bandwidth will increase the overall time needed for a query to be
executed and its results to be returned to the client. After that point, the amount of

traffic transmitted at any given time would not exceed the bandwidth of the link.

4.2.3 Ex3: Database Size

Smart buildings generate a large amount of data that needs to be stored for current and
future use. For example, energy consumption measurements are sent every number
of seconds from an array of points in the building to the servers. Hence, a problem
might arise when the size of the databases becomes too large. This could be the case
when the indexing and searching algorithm cannot deal well with such database sizes.
In this experiment, we want to measure the effect of the increase in database size to the
performance of ZeroDB.

To change the database size, we simply increase the amount of unique random records
with which we populate the database. The values for the number of records to be tested
are: 5000, 50000, 150000 and 250000 records.

We expect that with the increase in the number of records in the database, comes the
increase of the size of the b-tree index, which ultimately means more messages are sent
and received to traverse it.

4.2.4 Ex4: Record Size

Another method to change actual database size, without changing the number of records
like in the previous experiment, is to change the size of each record stored. A special

4.2. Experiments 35

concern about ZeroDB is that unlike traditional databases, it stores actual objects and
their attributes. Moreover, it also stores an additional overhead layer of encryption per
object. This not only affects the size of data at rest, but also affects it while in transit over
the network. Thus, it is interesting to quantify the different dimensions that storing
and querying records with larger sizes pertain.

To change the size of objects, we increase the size of the attribute desc; since it is a text
attribute, we can create increasingly larger values by concatenating more characters. It is
worth noting that we do not simply concatenate the same character multiple times since
this size increase could easily be mitigated by the database’s compression algorithm.
We chose to generate and concatenate random characters from the pool of printable
characters of the String class in Python. In our experiments we test adding 1, 10, 25, 50
and 75 random characters to the string "door" as the value of desc attribute.

We expect that the size of records will increase the total bytes sent over the link and

the time needed to complete the queries.

4.2.5 Ex5: Data Distribution

Typically, when storing measurement records regularly, a majority of records will have
the same value for an attribute. For example, the majority of values for an attribute
about the state of a node, would be "normal", so one challenge could be to quickly find,
among the thousands of records, the few records with state "malfunctioned". Given
that ZeroDB indexes attributes and stores them encrypted in a tree on the server, one
could argue that the time needed to find a record with a specific attribute value could be
affected by the overall distribution of the values for that attribute in the database. With
this experiment, we set out to find the effects of querying records with a certain value
for an attribute when that attribute’s values are uniformly distributed versus when they

are biased towards a given value.

We accomplish this in this experiment by changing the values of state attribute. In the
uniform distribution scenario, we randomly generate records with equally likely state
values between 0 and 3. While in the biased distribution scenario, we generate records
where values 0, 1, 2 and 3 are %17.5, %65, %15 and %2.5 likely to occur respectively.

We expect that in the case of a biased distribution, the time needed to query the same
number of records with a value that is most likely to occur, is lower than that when a
value is least likely to occur. This also holds true in regard to the number of messages

sent and received within that exchange.

36 Chapter 4. Performance Evaluation Methodology

4.2.6 Ex6: Query Result Size

As seen in Chapter 3, scenarios in smart buildings range from querying a single record
for the HVAC settings of a user to querying large number of records to create accounting
reports of the previous week. This variation in query result size is an interesting effect to
quantify; since by measuring its effect on performance, we can justifiably state whether
or not ZeroDB is suitable for each scenario.

To change the number of records returned in the query result, we use the limit keyword.
The values of query result size to be tested are 1, 100, 1000 and 10000 records.

We expect that ZeroDB would have a comparable performance to the other databases
for small query results. Nonetheless, we expect ZeroDB to become much slower and

generate more traffic once the required number of records increases.

4.2.7 Ex7: Multiple-Condition Queries

Database queries often involve performing a statement that contains two or more
conditions at once. In all the previous experiments only one condition is used. In this
experiment however, we would like to assess the capabilities of ZeroDB to find records
that satisfy two conditions at the same time.

The first condition is the one that is used in the other experiments, which is based
equality query of one attribute. The other condition is a range query of the attribute
timestamps. Furthermore, to remove the influence of the actual range values chosen on
the position in the index tree, we vary the timestamp values to be queried while still
taking into consideration that the returned query result size is always equal to 1000
records. This is done to enable us to compare the performance of this experiment with
the query result experiment and conclude the performance penalty of adding a range

query.

We expect that ZeroDB would have a significant performance decrease since adding the
range statement means it has to fetch all the nodes in the subtree between the upper
and the lower limit of the range, which means more traffic sent and more time needed

to complete the query.

37

Chapter 5

Results Evaluation

In this chapter we present and evaluate the results of our performance experiments
for encrypted databases. We start by detailing the results of each experiment, then we
move on to discuss the various factors that affected the performance parameters during
the experiments. Finally, we finish by concluding some guidelines on the applicability
of encrypted databases in smart environments.

5.1 Experiments Results

In this section, we give an overview of the results of each experiment, discussing briefly
the interesting effects that varying each parameter had on performance.

Variance in Results

Before discussing the results, we see it fit to first explain an issue we noted with how
ZeroDB currently works. This issue affects mainly the total traffic sent by the server;
we found that when comparing between the repetitions of the same experiment, the
amount of traffic sent by the server most often was divided around two values.

When investigating further through the capture files, we noticed that in the tests that
had higher amount of traffic, the client was sending one or more TCP reset packets to
the server near the end of the test. However the server kept sending traffic before finally
realizing that the client asked for the connection to be over. While in the tests that had
lower amount of traffic, the client was also sometimes sending TCP reset packets, but
the server seems to have realized in time and did not send any extra packets after that.

Comparing the ACK in the first TCP reset packet sent, we can trace back the packet
that triggered it, and in all cases it was a packet sent by the server directly after a client
had sent a packet itself. More interestingly, if we subtract all the traffic that was sent by

38 Chapter 5. Results Evaluation

the server including and after that particular packet, we end up with almost the same
value as the tests with the lower amount of traffic.

We believe that this behavior could be attributed to either tree pre-fetching or due to the
client asking the server for multiple branches of the index tree, but ultimately reaching
the amount of records it needs in the first few. To illustrate the second case, consider
if a query was requested with "limit 1000" keyword, the client will remotely search in
the index tree and at one point calculates that in three different branches there exists
records that satisfy the query. The client asks the server to send these three branches,
but by the time the client has received the first branch, it had already gotten the 1000
records it needs. So the server ends up sending extra traffic and the client sending TCP
reset packets to inform the server that it had closed the connection.

Figure 5.1 shows a manifestation of this issue in experiment Four. We measure the total
traffic sent by the server versus the size of records stored in the database. Without
accounting for the issue of extra packets, we see on the left graph that no matter
the record size, the various values for traffic sent by the server center around two
different values an upper one equaling to around 257 KB and a lower one around 180
KB. Meanwhile on the left graph, we show that when we remove the extra packets sent
by the server after the reset packet, all values now are around the lower average of 180
KB.

This issue is clearly visible in the amount of packets and traffic sent among the various
metrics we analyze. However it also marginally affects the execution time and the
amount of roundtrips (The exact definition of how we measure them both can be seen

in the next section).

Note that in this chapter we present the data without removing the extra traffic sent by
the server. We deem this extra packet sending as part of the current state of ZeroDB
and by sanitizing the data we are actually misrepresenting the results. Therefore, while
reading the remainder of this chapter, it is important to note that while the conclusions
we make on the correlations between the various parameters and performance are
accurate, the concrete values could have a skew to higher numbers due to this issue.
However, this is sufficient enough for this thesis, since our goal here is to present the
overall performance of encrypted databases such as ZeroDB.

5.1. Experiments Results 39

Before removing unwanted traffic After removing unwanted traffic
T ‘ T T T T T T T T T T T T T T
[)
260 | ° ° $ - 260 | .
' . :
0 . . . g
- -
2 2
8 2401 1 8 2401 |
v v
£ £
2 2
& &
£ 220t - £ 220t -
5} o
2 2
() (]
wn %]
el el
L 200+ . L 200+ .
o o
() (]
C C
7] ° ° v ° []
180 * ¢ § : ° 180 5 3 8 ! .
° e ° N ° ° °
° ° ° [° °)
L e e L e e
—10 0 10 20 30 40 50 60 70 80 —10 0 10 20 30 40 50 60 70 80
Number of bytes added to record size Number of bytes added to record size

Figure 5.1: Difference in the amount of traffic sent by ZeroDB server in Ex4 (record size) when
accounting for extra packets after client TCP reset packets

5.1.1 Ex1: Latency

Varying the latency in the experiments yielded a pronounced effect on the time needed
for a query to be sent and its results to be returned to the client — henceforth called
execution time. We calculate execution time by subtracting the time of the first packet
after the TCP three way handshake and the last packet carrying data corresponding to
the query.

In our experiments ZeroDB’s execution time had almost a linear correlation with the
latency, as did the other databases as well. However, ZeroDB had the most pronounced
increase between the databases when we increased the latency; this is due to the number
of roundtrips that ZeroDB needs to complete a query. Roundtrips are message exchanges
between the client and server; that is the number of times one or more messages were
sent in one direction and one or more messages were returned as a response. The
number of roundtrips amplify the effect of latency, since for each roundtrip, the latency
value must be added to the execution time. In our experiments, ZeroDB had between
32 and 44 roundtrips, so for any change in the latency we made, the effect was greatly
multiplied.

40 Chapter 5. Results Evaluation

Figure 5.2 depicts the increase in execution time versus the increase of latency for the
three databases, notice the linear relationship between the two variables.

100 , ; ; ;
Il ZeroDB
I MySQL 27.941
[ZoDB
10

(2]

©

C

o]

(9]

(O]

(]

£

g 1

=

o

S

3

[9)

[0]

X

w

0.1

0.01

10 50 100 1000
Latency of client in milliseconds

Figure 5.2: The correlation between the client latency and the execution time

Note that due to time constraints we only performed tests on ZODB for 10, 50 and 100
milliseconds, the results shown on the graph for 1000 milliseconds are calculated by
linear interpolation.

5.1.2 Ex2: Bandwidth

Changing the bandwidth of the link between the server and client had a direct conse-
quence on the execution time. This effect can be clearly seen in Figure 5.3 which depicts
the execution time versus the bandwidth of the link. The execution time decreases
from an average of 0.963 seconds for a 0.5 Mbps link to 0.684 seconds for a 1 Mbps link,
the decrease continues also for a 10 Mbps link where the time reaches 0.390 seconds.
However, any increase beyond this point results in no net gain, since at this bandwidth
range, the latency of the link becomes the only dominant factor affecting time especially
since ZeroDB is a chatty protocol.

To realize the point in which the bandwidth stops being a bottleneck for ZeroDB exe-
cution time for this type of query, we calculated the combined average throughput of

5.1. Experiments Results 41

1.0 T T T T

© o o
N o ©
T T T
. . .

Execution time in seconds
o
(o)}
;
A

0.5F i
0.4+ 1—
0.3F i
0%.1 i 1‘0 160 10‘00

Bandwidth of client in Mbps

Figure 5.3: The correlation between ZeroDB client bandwidth and the execution time

ZeroDB client and server for links with 10, 50, 100 and 1000 Mbps. The average value
was around 5.8 Mbps, which means at this point the execution time does not decrease
with bandwidth increase.

For this size of queries, MySQL does not require a large bandwidth to operate since
it sends raw data; that’s why in our experiments MySQL execution time did not get
affected by any change of bandwidth with a stable average value of 0.111 seconds
throughout all the trials.

ZODB follows the same pattern as MySQL in regards to bandwidth, with the execution
time being a stable value throughout the different bandwidth changes equal to 0.315
seconds.

5.1.3 Ex3: Database Size

In the third experiment, we varied the number of records stored in the database from
5000 to 250,000 records. However, the number of records to be queried remained the
same at 1000. We noticed that with the increase of number of records, it took successively
more roundtrips to complete the query which translated into more execution time, more
packets exchanged and more overall bytes sent over the link as seen in Figure 5.4.

42 Chapter 5. Results Evaluation

0.4‘5 T T T T 4‘0 T T T T
(2]
2 38} 1
o
@ 0.40 . 36} i
0 0
£ 234 d
[} =
2035 / 3 ol |
= 3
S € 30]
=) L n
5 0.30 -8l |
(0]
) 26| 1
0.25L .
180 T T T T u T T T T
2290} ;
Q
g 170} 1 2 280} 1
o v
C | - |
€160} 1 g2
g 3
b S 260 |
g 150y 1 2250}]
3 %
S 140} | %240t :
S 230} l
130 L ! ! ! r_— ! ! ! !
5k 50k 150k 250k 5k 50k 150k 250k
Size of database in records stored Size of database in records stored

Figure 5.4: The correlation between ZeroDB database size and roundtrips, execution time and
total packets and traffic exchanged

In ZeroDB, the client remotely traverses the index tree in roundtrips searching for the
required record. Hence, this increase can be attributed to the fact that with the increase
in the number of records, the size of the index tree is increased which in turn lowers
the chance for the wanted record to be found in a branch of the tree.

For MySQL, the increase in the number of records did not have any effect on the
performance. With the execution time and total bytes exchanged remaining stable
around 0.111 seconds and 57533 bytes respectively no matter the database size. Notice
how these values are much smaller than their respective counterparts in ZeroDB. As
for ZODB, it behaved similarly in this experiment to ZeroDB; the increase in number
of records directly increased the roundtrips, execution time and bytes exchanged over
the wire.

Note that due to time constraints, ZODB tests were restricted to database sizes of 5000,
50000 and 150000 records and only repeated 5 times each.

5.1. Experiments Results 43

5.1.4 Ex4: Record Size

The results of this experiment stood out from the rest in terms of how they change in
ZeroDB compared to MySQL and ZODB. In this experiment the change in record size
actually affected the performance of MySQL but did not have any significant effect on
ZeroDB and ZODB. Note that - as we have previously explained - the record size in
our experiment is the amount of random characters added to the end of a string in the
record.

We have already discussed this partially towards the beginning of this chapter. As part
of our discussion of the problem of extra traffic in ZeroDB, we have shown in Figure 5.1
how after removing superfluous traffic, the amount of traffic sent by the server is steady
for all record sizes around an average of 180 KB.

Moreover, if we look into the roundtrips and execution time metrics, record size does
not seem to affect them significantly with roundtrips value remaining steady at 33
roundtrips and the execution time slightly increasing by 0.01 seconds from 0.367 for
record sizes of 1, 10 and 25 to around 0.377 seconds for record sizes of 50 and 75.

ZODB results also follow the same pattern with roundtrips, execution time and ex-
changed traffic staying equal to 21, 0.247 seconds and 140 KB respectively throughout
the experiment. Note that for ZODB we did not test 75 as a record size value and we
only performed 5 repetitions due to time constraints.

As for MySQL, the increase in the size of the record meant an increase in the amount
of traffic exchanged which ultimately meant an increase in execution time. Figure 5.5
depicts the increase in traffic sent by the server. Note how the increase between each test
is roughly equal to the difference in bytes appended to the record times 1000 (number
of records queried).

We believe this can be justified by comparing how MySQL stores its records versus how
ZeroDB and ZODB store theirs. In MySQL strings are stored as raw bytes where each
increase means one additional byte to be sent over the network. On the other hand, the
other databases store objects and properties of those objects in complex structures that
are also compressed to save space.

44 Chapter 5. Results Evaluation

140} :
122.0

=
N
o
T
I

100 -

96.5
71.1
55.8 |
46.6 I
0 I
1 10 25 50 75

Number of bytes added to record size

Traffic sent by the server in kilobytes
H (o)) (o]
o o o

N
o
T

Figure 5.5: The correlation between record size and traffic sent by MySQL server

5.1.5 Ex5: Data Distribution

The results of the Ex5 are shown in Figures 5.6 and 5.7.

First, let us focus our attention on ZeroDB’s execution time in Figure 5.6 and more
specifically on the comparison between querying minority versus majority records. It is
clear that ZeroDB suffers considerably when querying records which are the minority
in the database. The case where the wanted records constitute only a minority of 2.5%
of the records in the database needs on average 365% more time to be completed than
that when they constitute a majority of 65%. As for the case where all data is uniformly
distributed, we notice that its results are almost on par with the majority case.

Second, Figure 5.7 shows the amount of traffic exchanged between the server and client
in the three distribution cases. We can see how even though we are querying the same
amount of records in all three cases, ZeroDB sends considerably more data over the
wire for querying records which are the minority.

For MySQL, querying minority records or the majority barely affected barely affected
performance whether in terms of execution time or amount of traffic exchanged.

ZODB behaved similar to ZeroDB with the same trend of increase in execution time and

5.1. Experiments Results 45

=
©

El Uniform
El Majority 1
I Minority

=
(e}
T

1.340

Execution time in seconds
© o o = = =
N o © o N I
T T T T T T
A

o
N
T

0.091 0.090 0.093

0.0
ZeroDB MySQL ZoDB

Occurance of wanted records in Database

Figure 5.6: The correlation between distribution of data and execution time

total bytes exchanged with the change of data distribution from uniform to minority.

46 Chapter 5. Results Evaluation

1400 1335 | mEE Uniform _
El Majority
I Minority

=
N
o
o

1000

800

600

400

Total traffic exchanged in Kilobytes

200

ZeroDB MySQL ZoDB
Occurance of wanted records in Database

Figure 5.7: The correlation between distribution of data and total traffic exchanged

5.1.6 Ex6: Query Result Size

In this experiment, we changed the number of records returned by using the limit
keyword. Its results for all three databases are summarized in Table 5.1. We can draw
multiple interesting conclusions from analyzing the data in the table.

First, we note that the difference between querying 1 record and 100 records is barely
noticeable in terms of roundtrips and consequently execution time. This is due to how
ZeroDB fetches multiple nodes in parallel that we discussed previously. Moreover, we
can also conclude that given the number of records in our database, the minimum
number of roundtrips to find any value is 19 since it is directly dictated by the depth
of the index tree of the server. Additionally, by dividing the results by the amount of
records queried, we get a rough estimate of the efficiency of ZeroDB per record sent
(these are the values between brackets in the table). For example, increasing the records
queried greatly increases the efficiency of traffic sent by the server from 0.624 KB per
record for 100 records to 0.136 KB per record for 1000 records. Note also how with the
increase in query result size, the server is sending more records simultaneously. This
is deduced by the roundtrips per record and execution time per record values shown
between brackets.

5.1. Experiments Results 47

Table 5.1: Performance analysis of changing query result size

Query size 1 | 100 | 1000 | 10000
ZeroDB
Roundtrips 19 20.6 (0.206) 33.8 (0.034) 128.7 (0.013)
Execution time (s) | 0.199 | 0.223 (0.0022) | 0.367 (0.00037) | 1.66 (0.00017)
Total traffic (KB) | 35.9 | 77.4(0.773) 260.8 (0.261) | 1432.7 (0.143)
Server traffic (KB) | 31.2 | 62.4 (0.624) 203.2 (0.203) | 1359.7 (0.136)
MySQL
Roundtrips 6 6 (0.06) 6 (0.006) 6 (0.0006)
Execution time (s) | 0.062 | 0.064 (0.0006) | 0.091 (0.00009) | 0.26 (0.00002)
Total traffic (KB) | 1.69 | 6.9 (0.069) 56.4 (0.056) 554.1 (0.055)
Server traffic (KB) | 1.1 | 6.3 (0.063) 55.8 (0.0558) | 553.5 (0.055)
ZODB
Roundtrips 12 12.3 (0.123) 21.6 (0.0216) | 117.3(0.0117)
Execution time (s) | 0.130 | 0.1333 (0.0013) | 0.247 (0.00247) | 1.439 (0.000144)
Total traffic (KB) | 29.3 | 33.0(0.33) 140.5 (0.141) | 1222.7 (0.1222)
Server traffic (KB) | 27.7 | 31.4(0.314) 137.6 (0.138) | 1207.1 (0.1207)

It is interesting how the increase from 1 to 100 records barely affected the execution
time needed for the query, but still the server sent more than double the amount of
traffic which means for querying 1 record, the protocol and the connection itself are
barely saturated. On the other hand, even though the percent increase from from 100
to 1000 is less than that of 1 to 100, it resulted in a more pronounced change with 164%
and 165% increase in roundtrips and execution time respectively.

MySQL results follow the same trends discussed about ZeroDB with one major exception
that is the roundtrips value. MySQL requires 6 roundtrips to complete any query no
matter the number of records returned. Moreover, it suffices to say that MySQL is a
magnitude more efficient than ZeroDB in terms of traffic exchanged and total time in
all tested query sizes.

Finally, ZODB - being the underlying database of ZeroDB - follows the same patterns
albeit with more efficiency. That is it needs on average slightly less roundtrips, execution
time and traffic to perform the same queries.

5.1.7 Ex7: Multiple-Condition Queries

In this experiment, we added an extra condition for the queries, namely a range query
based on the timestamp of records. The results of this experiment are listed in Table 5.2,
we added to them the results of experiment Ex6 (query result size) for comparison and
easy referencing.

Note that for ZeroDB, the addition of a range query significantly affected all aspects

48 Chapter 5. Results Evaluation

Table 5.2: Performance results of returning 1000 records with and without the addition of range
query

Query type without range query | with range query
ZeroDB
Roundtrips 33.8 357.2
Execution time (s) 0.223 1.173
Total traffic (KB) 260.8 759.8
MySQL
Roundtrips 6 6
Execution time (s) 0.091 0.096
Total traffic (KB) 56.4 57.3
ZODB
Roundtrips 21.6 614.18
Execution time (s) 0.247 1.638
Total traffic (KB) 140.5 1359.1

of performance. The execution time for example increased by 520% even though the

query result size stayed the same at 1000 records.

Meanwhile, MySQL performance barely changed by the addition of the extra condition
with execution time and total traffic increasing by only 5% and 1% respectively.

ZODB, on the other hand, follows the same pattern as ZeroDB. However, it is interesting
to note that the increase in execution time and total traffic was higher than that of
ZeroDB, which could speak to the optimizations done by ZeroDB developers to ZODB.

Finally, it is worth mentioning that during the variation of the upper and lower limits
in the range queries of this experiment, an increase in the variance of the results was
noted in ZeroDB when compared to the previous results. This could be attributed to
how the records that satisfy both conditions are spread in the index tree.

5.2 Results Discussion

5.2.1 Roundtrips

Due to their protocol’s nature, roundtrips in ZeroDB and ZODB changed significantly
in each experiment, while in MySQL the roundtrips remained equal to 6 in all the
experiments. Furthermore, when we compare ZeroDB with ZODB, roundtrip numbers
were almost always higher in ZeroDB than ZODB. The only experiment where ZODB
needed more roundtrips was Ex7. This could be the case because in ZODB the client
lazily asks for the set of records that satisfies the first condition and then locally evaluates
the second condition on that set.

5.2. Results Discussion 49

Furthermore, if we compare between the different experiments, we note that the amount
of roundtrips needed for a query in ZeroDB is mainly influenced by the query result size,
data distribution and use of multiple conditions in queries. The data distribution case
however stands as a peculiar one, since as far as we can deduce from the source-code and
white paper, ZeroDB uses a sorted B-Tree as index. Furthermore, we specifically coded
our experiment in a way that the attribute in question is indexed. Thus, theoretically,
the search algorithm should be able to find the needed records in only slightly more
roundtrips.

The minimum roundtrips to perform any experiment in ZeroDB was 19 while the
maximum reached upwards of 350 in Ex7. These are significant values for devices
installed in locations where interference in wireless communication must be set to a
minimum. Moreover, they also indicate that one must be certain that the client has a
stable connection to the server, because the client will be actually conversing with the
server and if at any point one packet is delayed or lost, the whole query comes to a halt.

5.2.2 Execution Time

Execution time of ZeroDB follows roughly a similar trend like roundtrips. However, fac-
tors that affected execution time alone are the bandwidth and latency of the client-server
connection. However, we noted that, in the experiments, the influence of bandwidth on
a typical query could be removed if the connection had a bandwidth of more than 5.8
Mbps.

When comparing ZeroDB with MySQL and ZODB, ZeroDB had higher latency almost
always except for when we used multiple conditions like in the case of roundtrips. On
average, ZeroDB had comparable execution time to MySQL when conducting simple
queries with large amounts of records. However, difference between them increases

when we compare more complex queries or change the latency and bandwidth of the
link.

5.2.3 Total Traffic Exchanged

Network traffic exchanged between the client and the server of ZeroDB was significantly
higher than that of MySQL. The main reason for this is the nature of ZeroDB’s storage.
In ZeroDB, data is stored as complex Python objects, while in MySQL only raw data
types are stored. Another reason for this extra traffic is due to the ZeroDB remote tree
traversal protocol which requires more traffic and extra unneeded nodes to be returned
to the client.

When compared with ZODB, ZeroDB generated more traffic which is expected due
to the ZeroDB query protocol and the encryption overhead. An exception to this was

50 Chapter 5. Results Evaluation

noted in Ex 7, where ZODB generated more traffic, the reason for which is mentioned
in Subsection 5.2.1.

Additionally, it should be noted that in ZeroDB, the client contributes a significant
amount of data to the total traffic generated, unlike the case in MySQL. This could be an
issue when the client upload is severely limited compared to its download bandwidth.

5.2.4 Database Size on Disk

As we have alluded before, ZeroDB and ZODB store records as objects, while ZeroDB
stores them as raw bytes of data. Therefore, we expect a drastic difference between them
when we compare the area occupied by their storage on the server disk. In Table 5.3 we
show the area occupied versus the number of records stored in the database.

Table 5.3: Size of Database on Disk
Database ZeroDB MySQL ZODB

No. of Records 50k | 100k | 200k | 50k | 100k | 200k | 50k | 100k | 200k
Size on Disk (MB) | 553 | 1402 | 2912 | 3.5 7.5 13.5 | 564 | 1334 | 2840

We can see that ZeroDB occupies a large amount on disk even for a moderately sized
database of only 50000 records. This can pose an issue when a smart building generates
large amounts of records regularly since size on disk could quickly become a bottleneck.
A solution to this problem could be the use of an archive. However, care must be taken
when archiving data in encrypted form, since key material and users access control
policies must be carefully handled to avoid security and privacy issues.

Finally, in all database sizes, ZODB occupies just a little less disk space than that occupied
by ZeroDB. This is to be expected, since ZeroDB actually uses ZODB as its underlying
database system and adds on top of it some overhead due to encryption and structures
that are needed to support the ZeroDB query protocol.

5.2.5 Server and Client Response Times

During our experiments, we analyzed the server and client response time, by measuring
the delay for each party to respond. We wanted to evaluate whether or not ZeroDB
server or client need more time along the execution of the protocol to compute or
retrieve values. In all the experiments, the response time did not change significantly
enough for us to report on it in Section 5.1; the change in values remained in the
magnitude of 1 in a thousandth of a second, which is not large enough for its effect
to manifest in real world scenarios. Moreover, it could be argued that such a minimal
value could be simply attributed to the server or client processor being busy servicing
other other unrelated processes.

5.3. Conclusions 51

5.3

Conclusions

Based on our results and discussion, we can now make some judgments on the applica-

bility of ZeroDB in privacy preserving smart buildings.

Care must be taken when placing the database server in the network; the latency
and bandwidth of the clients in a smart building to the server must be carefully
measured to ensure the performance requirements are met. For example, if the
server is expected to hold access rights of employees to perform routine tasks
like opening a door or using equipment, the latency should be kept to a minimum
to ensure an interactive querying process is made with the server. Meanwhile, a
measurement collecting database could be placed in an average latency setting,
since interactivity is not highly required. Finally, we believe that ZeroDB perfor-
mance allows it to be deployed in smart buildings as a cloud service given that
what we have just discussed is taken into account.

The amount of stored records in ZeroDB does not significantly influence its
querying performance, which means that ZeroDB could be suitable for intensive
information gathering smart building. However, attention must be directed to the
size occupied on disk, since we have demonstrated that ZeroDB requires large
disk space compared to relational databases like MySQL.

ZeroDB’s lack of full multi-user support and data sharing capabilities hinders it
from being deployed in multi-actor smart buildings in the near future. However,
given that partial support in this area is visible in the source code of ZeroDB, we
believe that if developed in the right direction, ZeroDB could have the capabilities
required to be deployed in smart buildings.

Given the amount of traffic generated and the processing done by the client in
ZeroDB. We believe that less capable devices like wireless sensors and small
actuators should not directly communicate with ZeroDB server, but instead - as
we proposed in Section 3.1.1 - communicate with a mediator that acts as a proxy.

Based on the comparable performance of ZeroDB and its underlying database
system ZODB, we believe that ZeroDB’s privacy overhead is a reasonable one.
In fact most of the performance difference between it and MySQL stems mainly
from the intrinsic nature of its database type and not from the algorithms set in
place to preserve data privacy.

We believe that ZeroDB performance overhead and the nuances - we discussed
in this chapter of using it - are a fair price to pay for the privacy it provides.
We believe that if its capabilities are expanded, building operators will share our
conclusion and see that the benefits of using ZeroDB out-shines the drawbacks

and penalties it incurs.

53

Chapter 6

Conclusion

This chapter offers our concluding remarks for this thesis. We attempt to answer the
research questions we posed in Chapter 1 and finish by discussing the limitations of the
thesis and propose future work to address them.

6.1 Research Contributions

In this thesis, we presented the idea of using the novel concept of encrypted databases to
protect users’ privacy in smart environments. We focused our work on smart buildings
as an example of smart environments.

We additionally performed a comparison of the encrypted databases currently available,
from which we picked ZeroDB as a candidate database to be our research subject.
Moreover, to assess the applicability and performance of a technology like ZeroDB,
we devised and implemented experiments where we varied one of various factors and
noted the effect it had on different performance metrics.

In the following, we present our research contributions by answering the research
questions we posed in Chapter 1 based on our analysis and the performance results of
ZeroDB as a representative of client centric encrypted databases.

+ Question Q1: How should a data processing system in a smart building or other
smart environments be structured to allow for privacy preserving characteristics?

In Chapter 3, we demonstrated that to use encrypted databases, a smart build-
ing would be divided into localities which are treated as unique clients to the
encrypted database. A small computing device in each locality will communicate
data to and from the encrypted database and between the sensors and actuators
within a locality. In this manner, data within one locality would be private to that

54

Chapter 6. Conclusion

locality and only shared with others when necessary. Moreover, the honest but
curious building or server operators cannot violate user’s private data.

Q2: What are the limitations of using encrypted databases in smart buildings?

Encrypted databases’ performance suffers from high latency, which means that
they are greatly limited in their applicability by the client to server latency. More-
over, multi-user support and data sharing between users are still not mature
enough to enable the full deployment of encrypted databases in the architecture
we propose. Furthermore, encrypted databases occupy large server-side disk
space for storing records with 200 thousand records occupying around 2911 MB
of space compared with only 13.5 MB for a database like MySQL. Finally, unlike
traditional databases, the client plays a significant role in the process which means
that it is required to have more processing and networking capabilities in order
to perform adequately.

Q3: How fine grained and flexible can access control to encrypted data be per-
formed using encrypted databases?

Access control is currently limited to allowing a single user to access their own
private data. In terms of multi-users and sharing, access control is non-existent at
the moment with no easy way for users to share data with each other. Moreover,
users cannot efficiently compute functions on data from multiple users, which is
provided by technologies like secure multi-part computation.

Q4: What are the main factors that affect the performance of encrypted databases
and what is their impact?

Our results in Chapter 5 show that the main factors that affect performance are
latency and distribution of stored data. By far, latency is the greatest factor, with
any increase in latency having a pronounced effect on time needed to complete a
query. The distribution of data stored has the potential of affecting the time and
amount of traffic exchanged if the record sought after is less likely to occur, such
as the case when searching for the set of sensors that are malfunctioning.

Q5: What are the performance effects of using encrypted databases compared to
non-encrypted ones?

In all of our conducted experiments in Chapter 5, ZeroDB required more time and
roundtrips, and generated more traffic to complete a query when compared with
MySQL. The difference however varied by the conditions and type of the query.
Moreover, compared with its underlying database technology ZODB, ZeroDB’s
performance was comparable and followed the same trends as ZODB and even
outperformed it in Ex7 that used range queries. This means that ZeroDB’s pri-
vacy and encryption overhead is considerably reasonable. Ultimately, ZeroDB’s

6.2. Limitations and Future Work 55

performance - while is not prohibitively poor - still demands that extra care be
taken when deploying it as a solution in smart environments.

In conclusion, ZeroDB currently lacks of full multi-user support and data sharing ca-
pabilities which prohibits it from being deployed in multi-stakeholder environments
like smart buildings. Nevetheless, we see it as a promising technology that holds the
potential to succeed if developed in the right direction. Furthermore, while ZeroDB’s
performance lags behind that of traditional plain-text databases, we recognize that
it could be deemed as an acceptable price to pay to protect privacy, and that future
solutions could be deployed in a manner that keeps the performance overhead to a
minimum based on our analysis of the main contributing factors to performance.

6.2 Limitations and Future Work

Despite our results and what we have accomplished in this thesis, there is still much
more room to achieve in this area of research. We identify the following main limitations
that we believe our thesis suffered from and derive from them future work proposals
that improve and expand upon our thesis.

« In our experiments, we only tested the performance of using Select type state-
ments as queries to the database. It would be interesting to compare performance
of other types like Insert, Update and Delete.

« We only tested one encrypted database as a candidate in our experiments. While
ZeroDB was the most logical choice for us to use in the thesis, we believe that
in the future it is inevitable for other open-source encrypted databases to be
developed. Future work could look into comparing the performance of these
databases.

« Although we didn’t explicitly turn off client-side caching for ZeroDB, we did
restart the client between each experiment and repetition, which means that the
client always performed a cold start where the cache is empty. Future work could
look into the use of the cache and analyze the performance benefits of using it.

« The dataset used in the experiments was handcrafted by us. We identify that
it might not be optimally constructed to compare the general performance of
databases. That’s why one direction for future work could address this by using
standard benchmark data like TPC-C [40].

« A smart building has many users, but due to ZeroDB constraints, we had to
perform our experiments for a single user. This limits the applicability of our
results onto real world scenarios. A future area to explore is to test multi-user
databases and to also explore the performance implications of multi-user data
sharing and aggregation.

56

Chapter 6. Conclusion

« Finally, we focused in this thesis on smart buildings as one example of smart
environments. However, the future of the Internet of Things (IoT) is creating
much larger environments like smart campuses and smart cities. These pose more
challenges on the privacy front and more strain on databases which support them.
It is interesting to analyze how our solution could be adapted and expanded to
accommodate such environments.

57

Appendix A

Typical Use Cases In Smart Buildings

The following are use cases that stem from the scenarios of smart buildings listed in

Chapter 3.

Number 1

Name Data is shared between localities

Description A locality requests data from a locality under the same company.
Actors Logic unit A, Logic unit B.

Post-condition

« A reply is received by Logic unit A.
+ Data is shared in a way that grants access only to locality A.

Main Course

1. Logic unit in Locality A sends a request to the logic unit in
locality B to share specific data.

2. Logic unit B receives the request and checks the access rights
of the data requested and decides it can share the data.

3. Logic unit B sends the data with its access rights tagged.

Alternate Data cannot be shared due to access rights and the data request

Course is denied.

Number 2

Name Data is shared locally between sensors/actors and logic unit of
same locality.

Description The simplest form of data sharing, could be a temperature sensor
that senses an increase in heat and informs the fan to run faster
accordingly, or could be the RFID sensor reading an employee
badge and sending the data to the logic unit of the room.

Actors Sensors, actors and logic unit within a locality.

Post-condition

« Data never leaves the locality.

58

Appendix A. Typical Use Cases In Smart Buildings

« Data is received by the intended device tagged with the correct

access.

Main Course

1. A device sends data belonging to a user or the room tagged with
identifying information regarding owner and rights to another
device in the same locality.

2. Data is sent encrypted and received by the other device.

Number 3

Name Arbitrary data is shared between localities.

Description Arbitrary data is sometimes needed to be shared between users
(a private file), between localities (a firmware update), across the
entire building (a building-wide announcement). This data could
be private or public.

Actors Users, devices, logic units (any actor in the smart building).

Post-condition

« Privacy policies are not broken.
« Data is sent securely and tagged appropriately.

Main Course

1. The actor initiates the sharing process.
2. Intended entities receive the sent data protected as necessary.

Number 4

Name Energy consumption optimization between physically close local-
ities

Description To optimize energy consumption, two or more physically close
localities can calculate and agree on the optimal setting of an
HVAC system for example.

Actors Logic unit A, Logic unit B, Logic unit C.

Triggers A locality wishes to change its current setting (for example, due

to user entering the room)

Post-condition

+ All rooms agree on the optimal setting for each one.

« Privacy preserving properties (TBD)

Main Course

1. Triggering logic unit A contacts logic units B and C informing
them of the change of setting.

2. Logic units share their current settings as well as their desired
ones.

3. Logic units calculate the optimal setting for each locality where
the desired setting is as close as possible to the real one while

providing optimal energy consumption.

59

Notes At the end of this use case, a chain reaction of optimization rou-
tines with neighboring rooms might start. Thus it is perhaps of
the interest of admins to have an indication of the "stability of the
parameters” of the system.

Number 5

Name User usage pattern or preferences are saved in the database

Description After each use of a smart device, usage patterns or preferences
are stored in a company database in such a way that only the user
can access.

Actors User, Usage pattern/settings database, device.

Pre-Condition

A user finishes using a smart device in the building

Post-condition

« Data is received by the database securely.
+ Data is stored in the database and can only be accessed with the
permission of the user.

Main Course

1. The device collects all relevant information about the user (for
example, energy consumption or preferred settings).

2. Device asks the user if they accept that the data that has been
collected be sent to the database.

3. User accepts this request and optionally clicks on always send
data on this device prompt.

4. Logic unit sends data encrypted and privacy preserved to the

database.

Alternate User denies the request and the data is not sent.

Course

Number 6

Name User preferred settings (usage patterns) is retrieved from database.

Description When a user enters a locality or access a device, user preferred
settings are retrieved from the database to guarantee convenience
and comfort.

Actors User, user preferences database, device or logic unit of locality.

Triggers A user accesses a device or enters a locality.

Post-condition

Data is received by the requesting party securely.

Main Course

1. The device or logic unit recognizes the user by his RFID or any
other means.

2. The device or logic unit queries the database for existing settings
for the user.

60 Appendix A. Typical Use Cases In Smart Buildings

3. The device or logic unit triggers setting change to accommodate
for user preferences.

Alternate No preferred settings are found in the preferences database.

Course

Number 7

Name Access rights increase in emergency.

Description In case of emergency, access rights of actors in the system could

be temporarily increased to hasten and guarantee user and equip-

ment safety.

Pre-conditions

« A user has already given consent to this beforehand.

« Emergency has been triggered.

Post-condition

« Access rights are reverted to normal after the emergency.
« User is notified of the exact date and reason of access and exact

data accessed.

Main Course

1. Access rights are increased on a locality basis in the area affected
by the emergency.
2. Actors accessing the data in these localities are checked against

emergency level access rights and are granted access accordingly.

Notes « Devices in case of fire emergency could be faulty and thus
should be treated with care when granting them rights to issue
commands to actuators.

+ Similar to a "break glass" scenario.

Number 8

Name Data is shared with external entity.

Description Data originating from the smart building could be shared to an
external entity for example regarding water/energy consumption
or building occupancy.

Actors Smart building central server, external entity.

Triggers The need to share data is recognized by the central server.

Post-condition

« Data is shared securely with external entity.
« If user data is part of the data exchange, the user must be notified

of the exact date and reason of sharing.

Main Course

1. Data request is evaluated for privacy criticality.

2. Data is processed to leave as little as privacy critical information
as possible.

3. Processed data is evaluated against privacy criticality rules.

4. If it passes, it is shared with external entity.

61

Alternate Data cannot be shared due to failure in privacy check.

Course

Number 9

Name Logic unit requests data aggregate.

Description Periodically - or on demand - a logic unit requests an aggregate
of data from multiple other localities (or multiple users).

Actors Logic units of multiple localities.

Post-condition

Correct data aggregate is received without breaching privacy of

any entity and securely.

Main Course

Data is already stored in a central database.

1. Logic unit requests data aggregate from database

2. Database computes data aggregate without revealing any pieces
of original data.

3. Data aggregate is sent to requesting entity.

Alternate Data is not stored in a central database, which triggers the central

Course database to query the different localities for their data first.

Number 10

Name Device Discovery and identification

Description Devices must be able to discover and most importantly identify
each other and their access rights.

Actors Devices of the same locality.

Triggers A new device is turned on and connected to the network.

Post-condition

Devices are correctly discovered and identified.

Main Course

1. Neighboring Logic unit receives some communication initiation
message and replies to the device.

2. Device presents information regarding its capabilities and most
importantly regarding its identity that can be trusted.

3. Data aggregate is sent to requesting entity.

4. Access rights are assigned to device and saved for future need.

Alternate
Course

Device fails to present trustworthy identifying credentials and is

not accepted in the network.

63

Appendix B

Setup of Database Servers

In this appendix, we give a brief overview of how each database server was setup, such
that readers who want to engage in the thesis can - if they wish to - reproduce the thesis

results independently.

B.1 ZeroDB

ZeroDB requires python 3.5 to work. In our lab setup, python3.4 was the default, so we
needed to install python3.5 and make it the default python version in the system.

After setting up python, we installed pip3 the package management system in order to
install ZeroDB through it.

The next step involved installing required packages by ZeroDB. The packages are:
build-essential, python3-dev, libffi-dev, libssl-dev

Finally, the last step to install ZeroDB is to run the relevant pip3 commands. Note that
we used zerodb version 0.2.0b2 for the server and 0.99.0b1 for the client.

pip3 install zerodb-server==0.2.0b2
pip3 install zerodb==0.99.0bl

At this point, ZeroDB should be runnable by using zerodb-server command in a
linux shell. However, configuration files must be available for the previous command
to work. The configuration files can be generated by using zerodb-manage init_db,
which creates the configuration files based on interactive input by the user.

The last remaining aspect needed to conduct the experiments was to automate the
creation of zerodb configuration files; We needed to do without the interactive element

of configuration files creation. For this purpose we used expect command that allows

64 Appendix B. Setup of Database Servers

the user to record an interaction in the shell and repeat it for the use in a scripting
environment.

B.2 MySQL

For MySQL, the installation is straightforward using apt-get command shown below.

sudo apt-get install mysql-server-5.7

The configuration files for MySQL were kept in their default values.

B.3 ZoDB

For ZoDB installation, we used the straightforward command provided by pip3.

pip3 install zodb

65

Bibliography

(1]

L. Atzori, A. lera, and G. Morabito, “The internet of things: A survey,
Computer Networks, vol. 54, no. 15, pp. 2787 — 2805, 2010. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S1389128610001568

A. Tera, C. Floerkemeier, J. Mitsugi, and G. Morabito, “The internet of things [guest
editorial],” IEEE Wireless Communications, vol. 17, no. 6, pp. 8-9, December 2010.

E. Welbourne, L. Battle, G. Cole, K. Gould, K. Rector, S. Raymer, M. Balazinska,
and G. Borriello, “Building the internet of things using rfid: The rfid ecosystem
experience,” IEEE Internet Computing, vol. 13, no. 3, pp. 48-55, May 2009.

[4] J. A. Stankovic, “Research directions for the internet of things,” IEEE Internet of

(5]

[11]

[12]

Things Journal, vol. 1, no. 1, pp. 3-9, Feb 2014.

F. Bao and L-R. Chen, “Dynamic trust management for internet of things
applications,” in Proceedings of the 2012 International Workshop on Self-aware
Internet of Things, ser. Self-IoT 12. New York, NY, USA: ACM, 2012, pp. 1-6.
[Online]. Available: http://doi.acm.org/10.1145/2378023.2378025

D. Snoonian, “Smart buildings,” IEEE Spectrum, vol. 40, no. 8, pp. 18-23, Aug 2003.
B. Swam, “Internetworking with bacnet,” Engeenered Systems Magazine, 1997.

2013. [Online]. Available: http://advancedcontrolcorp.com/blog/2013/03/
intelligent-building-management-systems-in-miami/

L. Wang, Z. Wang, and R. Yang, “Intelligent multiagent control system for energy
and comfort management in smart and sustainable buildings,” IEEE transactions
on smart grid, vol. 3, no. 2, pp. 605-617, 2012.

M. da Graga Carvalho, “EU energy and climate change strategy,” Energy, vol. 40,
no. 1, pp. 19-22, 2012.

L. Pérez-Lombard, J. Ortiz, and C. Pout, “A review on buildings energy consumption
information,” Energy and buildings, vol. 40, no. 3, pp. 394-398, 2008.

S. T. Bushby, “Bacnet tm: a standard communication infrastructure for intelligent
buildings,” Automation in Construction, vol. 6, no. 5, pp. 529-540, 1997.

http://www.sciencedirect.com/science/article/pii/S1389128610001568
http://doi.acm.org/10.1145/2378023.2378025
http://advancedcontrolcorp.com/blog/2013/03/intelligent-building-management-systems-in-miami/
http://advancedcontrolcorp.com/blog/2013/03/intelligent-building-management-systems-in-miami/

66

[13]

[14]

[15]

Bibliography

H. Shahnasser and Q. Wang, “Controlling industrial devices over TCP/IP by using
LonWorks,” in Global Telecommunications Conference, 1998. GLOBECOM 1998. The
Bridge to Global Integration. IEEE, vol. 2. IEEE, 1998, pp. 1309-1314.

[Online]. Available: https://www.knx.org/knx-en/knx/association/what-is-knx/

C. Steward Jr, L. A. Wahsheh, A. Ahmad, J. M. Graham, C. V. Hinds, A. T. Williams,
and S. J. DeLoatch, “Software security: The dangerous afterthought,” in Information
Technology: New Generations (ITNG), 2012 Ninth International Conference on. IEEE,
2012, pp. 815-818.

[16] J. Kaur, J. Tonejc, S. Wendzel, and M. Meier, “Securing bacnet’s pitfalls,” in IFIP

[17]

(18]

[19]

[25]

International Information Security Conference. Springer, 2015, pp. 616—629.

M. Nogueira, “Anticipating moves to prevent botnet generated DDoS flooding
attacks,” arXiv preprint arXiv:1611.09983, 2016.

H. Hacigiimiis, B. Iyer, C. Li, and S. Mehrotra, “Executing SQL over encrypted
data in the database-service-provider model,” in Proceedings of the 2002
ACM SIGMOD International Conference on Management of Data, ser. SIGMOD
’02. New York, NY, USA: ACM, 2002, pp. 216-227. [Online]. Available:
http://doi.acm.org/10.1145/564691.564717

B. Prasanna and C. Akki, “A survey on homomorphic and searchable encryption se-
curity algorithms for cloud computing,” Communicated to Journal of Interconnection
Networks, 2014.

C. Gentry, “A fully homomorphic encryption scheme,” Ph.D. dissertation, Stanford
University, 2009.

M. Bellare, A. Boldyreva, and A. O’Neill, Deterministic and Efficiently Searchable
Encryption. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007, pp. 535-552.
[Online]. Available: http://dx.doi.org/10.1007/978-3-540-74143-5_30

S. Goldwasser and S. Micali, “Probabilistic encryption,” Journal of computer and
system sciences, vol. 28, no. 2, pp. 270-299, 1984.

D. Boneh, A. Sahai, and B. Waters, “Functional encryption: Definitions and chal-
lenges,” in Theory of Cryptography Conference. Springer, 2011, pp. 253-273.

S. Chatterjee and M. P. L. Das, “Property preserving symmetric encryption revis-
ited,” in International Conference on the Theory and Application of Cryptology and
Information Security. Springer, 2014, pp. 658-682.

C.Bosch, P. Hartel, W. Jonker, and A. Peter, “A survey of provably secure searchable
encryption,” ACM Computing Surveys (CSUR), vol. 47, no. 2, p. 18, 2015.

https://www.knx.org/knx-en/knx/association/what-is-knx/
http://doi.acm.org/10.1145/564691.564717
http://dx.doi.org/10.1007/978-3-540-74143-5_30

Bibliography 67

[26]

[27]

[30]

[34]

[37]

(38]

A. Arasu, K. Eguro, R. Kaushik, and R. Ramamurthy, “Querying encrypted data,”
in Proceedings of the 2014 ACM SIGMOD international conference on Management
of data. ACM, 2014, pp. 1259-1261.

R. A. Popa, C. Redfield, N. Zeldovich, and H. Balakrishnan, “Cryptdb: protecting
confidentiality with encrypted query processing,” in Proceedings of the Twenty-
Third ACM Symposium on Operating Systems Principles. ACM, 2011, pp. 85-100.

M. Egorov and M. Wilkison, “Zerodb whitepaper,” arXiv preprint arXiv:1602.07168,
2016.

H. Chen, T. Finin, and A. Joshi, “A context broker for building smart meeting rooms,”
in Proceedings of the Knowledge Representation and Ontology for Autonomous Sys-
tems Symposium, 2004 AAAI Spring Symposium, 2004, pp. 53-60.

I. Armac, A. Panchenko, M. Pettau, and D. Retkowitz, “Privacy-friendly smart
environments,” in 2009 Third International Conference on Next Generation Mobile
Applications, Services and Technologies, Sept 2009, pp. 425-431.

R. Neisse, G. Steri, I. N. Fovino, and G. Baldini, “Seckit: A model-based security
toolkit for the internet of things,” Computers and Security, vol. 54, pp. 60 —
76, 2015. [Online]. Available: http://www.sciencedirect.com/science/article/pii/
S0167404815000887

R. Poddar, T. Boelter, and R. A. Popa, “Arx: A strongly encrypted database system,”
Cryptology ePrint Archive, Report 2016/591, 2016, http://eprint.iacr.org/2016/591.

P. Grofig, I. Hang, M. Hérterich, F. Kerschbaum, M. Kohler, A. Schaad, A. Schropfer,
and W. Tighzert, “Privacy by encrypted databases,” in Annual Privacy Forum.
Springer, 2014, pp. 56-69.

S. Bajaj and R. Sion, “Trusteddb: A trusted hardware-based database with privacy
and data confidentiality,” IEEE Transactions on Knowledge and Data Engineering,
vol. 26, no. 3, pp. 752-765, 2014.

A. Arasu, S. Blanas, K. Eguro, R. Kaushik, D. Kossmann, R. Ramamurthy, and
R. Venkatesan, “Orthogonal security with cipherbase” in CIDR. Citeseer, 2013.

L. Ferretti, F. Pierazzi, M. Colajanni, and M. Marchetti, “Scalable architecture for
multi-user encrypted SQL operations on cloud database services,” IEEE Transactions
on Cloud Computing, vol. 2, no. 4, pp. 448-458, Oct 2014.

“MySQL,” 2016. [Online]. Available: https://www.mysql.com/

“‘MySQL customers,” 2016. [Online]. Available: https://www.mysql.com/
customers/

http://www.sciencedirect.com/science/article/pii/S0167404815000887
http://www.sciencedirect.com/science/article/pii/S0167404815000887
http://eprint.iacr.org/2016/591
https://www.mysql.com/
https://www.mysql.com/customers/
https://www.mysql.com/customers/

68 Bibliography

[39] “ZODB - a native object database for python - ZODB documentation,” 2016.
[Online]. Available: http://www.zodb.org/en/latest/

[40] “TPC-C,” 2016. [Online]. Available: http://www.tpc.org/tpcc/

http://www.zodb.org/en/latest/
http://www.tpc.org/tpcc/

	Introduction
	Considered Smart Environments
	Encrypted Databases
	Research Questions
	Methodology
	Outline

	Background and Related Work
	Smart Buildings
	Building Automation
	Smart Buildings
	Smart Building Protocols
	Security and Privacy in Smart Buildings

	Encrypted Databases
	Encryption Schemes Enabling Encrypted Databases
	Categories of Encrypted Databases
	ZeroDB

	Related Work

	Analysis
	Smart Buildings
	Software Architecture Design
	Typical Scenarios
	Users and Data in Smart Buildings
	Privacy Requirements

	Encrypted Databases
	A Comparison of Encrypted Databases

	Performance Evaluation Methodology
	Experiment methodology
	Compared Databases
	Experiment Setup
	Experiment Flow

	Experiments
	Experiment Ex1: Latency
	Ex2: Bandwidth
	Ex3: Database Size
	Ex4: Record Size
	Ex5: Data Distribution
	Ex6: Query Result Size
	Ex7: Multiple-Condition Queries

	Results Evaluation
	Experiments Results
	Ex1: Latency
	Ex2: Bandwidth
	Ex3: Database Size
	Ex4: Record Size
	Ex5: Data Distribution
	Ex6: Query Result Size
	Ex7: Multiple-Condition Queries

	Results Discussion
	Roundtrips
	Execution Time
	Total Traffic Exchanged
	Database Size on Disk
	Server and Client Response Times

	Conclusions

	Conclusion
	Research Contributions
	Limitations and Future Work

	Typical Use Cases In Smart Buildings
	Setup of Database Servers
	ZeroDB
	MySQL
	ZoDB

	Bibliography

