
Technische Universität München
Department of Informatics

Interdisciplinary Project in Electrical
Engineering

Improving the Interoperability of a
Secure Directory Service using HKP,

LDAP and DANE

Valentin Hauner

Technische Universität München
Department of Informatics

Interdisciplinary Project in Electrical
Engineering

Improving the Interoperability of a Secure Directory Service
using HKP, LDAP and DANE

Erweiterung der Interoperabilität eines sicheren
Verzeichnisdienstes um HKP, LDAP und DANE

Author Valentin Hauner

Supervisor Prof. Dr.-Ing. Georg Carle

Advisor Dr. rer. nat. Matthias Wachs

Date October 5th, 2016

Informatik VIII
Chair of Network Architectures and Services

Abstract

Numerous e-mail and address book clients support the retrieval of end-user certifi-

cates from servers on the internet via well-known certificate exchange protocols.

Next-generation directory services that exclusively provide authenticated certifi-

cates need to be accessible via these protocols, too. The aim of this project is to

improve the interoperability of those secure directory services with client appli-

cations regarding the exchange of certificates. For this purpose, server-side Java

implementations of the protocols HTTP Keyserver Protocol (HKP), Lightweight

Directory Access Protocol (LDAP) and DNS-based Authentication of Named En-

tities (DANE) are provided that can be deployed on any target platform with

the Java environment installed. The implementations support transport layer

security as well as mechanisms for access control. The communication with the

back-end of the secure directory service is performed via a clear-cut interface

specifically designed for this project, making it possible to re-use this suite for

arbitrary secure directory services.

Zusammenfassung

Zahlreiche E-Mail- und Adressbuch-Clients unterstützen den Abruf von Endan-

wenderzertifikaten von Servern im Internet mittels bekannter Zertifikatsaustausch-

protokolle. Verzeichnisdienste der nächsten Generation, die ausschließlich authen-

tifizierte Zertifikate bereitstellen, müssen ebenso über diese Protokolle erreichbar

sein. Das Ziel dieses Projekts ist es, die Interoperabilität dieser sicheren Ver-

zeichnisdienste mit Client-Applikationen hinsichtlich des Austausches von Zer-

tifikaten zu verbessern. Dafür werden serverseitige Implementierungen der Pro-

tokolle HTTP Keyserver Protocol (HKP), Lightweight Directory Access Proto-

col (LDAP) und DNS-based Authentication of Named Entities (DANE) in Java

bereitgestellt, die auf jeder Zielplattform mit installierter Java-Umgebung ein-

gesetzt werden können. Die Implementierungen unterstützen sowohl Transport-

schichtsicherheit als auch Mechanismen zur Zugriffskontrolle. Die Kommunikation

mit dem Backend des sicheren Verzeichnisdienstes wird über eine klar definierte

Schnittstelle abgewickelt, die speziell für dieses Projekt konzipiert wurde, um die

Verwendung dieser Suite für sämtliche sichere Verzeichnisdienste zu ermöglichen.

I

Contents

1 Introduction 1

1.1 Goals of the project . 2

1.2 Outline . 2

2 Background 3

2.1 Directory services . 3

2.2 Certificate standards . 4

2.2.1 OpenPGP . 4

2.2.2 X.509 . 4

2.3 Certificate exchange protocols . 5

2.3.1 HKP/SKS . 5

2.3.2 LDAP . 6

2.3.3 DANE . 7

3 Related work 9

4 Design 11

4.1 Certificate exchange interfaces . 12

4.2 Back-end interface . 12

5 Implementation 15

5.1 HKP . 15

5.2 LDAP . 16

5.3 DNS . 18

5.4 Back-end . 19

5.5 Integration into existing environments 19

6 Conclusion 21

6.1 Future work . 21

Bibliography 23

III

List of Figures

2.1 An exemplary directory information tree (DIT) 6

2.2 An exemplary SMIMEA record . 7

2.3 An exemplary OPENPGPKEY record 8

4.1 High-level design of the API and the back-end 11

4.2 Interface of the back-end . 13

5.1 Internal structure of the LDAPController 17

V

List of Tables

2.1 Interface of the OpenPGP HTTP Keyserver Protocol (HKP) . . . 5

1

Chapter 1

Introduction

Before users can send encrypted e-mail using asymmetric cryptography, they need

to retrieve the certificate of the recipient with the associated public key in it. This

can either be done by requesting the certificate from the owner directly or by

downloading it from a public server on the internet. In the latter case, the sender

will have to verify that the retrieved certificate is owned by the person he or she

wants to communicate with, e.g. by checking its fingerprint via an independent

channel like a personal meeting or by validating a chain of trust, e.g. with the

help of a public key infrastructure (PKI). There are several problems with this

approach: While the manual verification is unfeasible when it comes to mass

communication, a chain of trust is available for the fewest end-user certificates.

At this point, the concept of secure directory services comes into play.

With the help of a secure directory service, users can exchange authenticated

certificates over the internet. It is the responsibility of the entity running the

service to verify the real identities of the users and ensure that they can upload

certificates for their own identity exclusively. With this approach, the forgery of

identities can be avoided so that everyone who retrieves a certificate from the

secure directory service can be sure that it is owned by the claimed identity.

Users need to be able to conveniently retrieve certificates from the secure direc-

tory service with their e-mail clients or comparable applications. The design and

introduction of a completely new certificate exchange protocol supporting trans-

port layer security, authentication and life cycle management is desirable, but

cannot be realized that quickly. In order to enable users to retrieve certificates

from the secure directory service by now, it has to be accessible via interfaces

that are currently supported by client applications for the exchange of certifi-

cates. As many existing implementations of certificate exchange servers like the

Synchronizing Key Server (SKS) lack platform independence, do not provide se-

curity features such as authentication and are maintained and extended by the

2 Chapter 1. Introduction

corresponding developer team, they should not be re-used for the secure directory

service. Instead, it is reasonable to provide new and detached implementations of

those interfaces that are platform independent and not tailored to specific secure

directory services, but can be re-used in arbitrary environments.

1.1 Goals of the project

This project’s goal is to improve the interoperability of secure directory services

with mail user agents (MUA) and other client software by providing implemen-

tations of well-known interfaces used to retrieve end-user certificates from servers

on the internet. In particular, it deals with Java-based implementations for the

protocols HTTP Keyserver Protocol (HKP), Lightweight Directory Access Pro-

tocol (LDAP) and DNS-based Authentication of Named Entities (DANE). The

interface components developed during this project can be attached to any back-

end component providing the defined Java methods for the different query types

that are described later on. The job of the back-end is to hand over the requested

certificates after having authenticated the inquirer and fetched the data from the

connected storage service while taking into account the access policy defined.

1.2 Outline

This thesis is structured as follows: Chapter 2 introduces basic information on di-

rectory services, certificate standards and the protocols HKP, LDAP and DANE,

before Chapter 3 presents related work. In Chapter 4, the conceptual design

of the software is explained using the Unified Modeling Language (UML) and

the Interface Definition Language (IDL). Chapter 5 describes the implementa-

tion details and provides examples on how to integrate the artifacts into existing

projects. Finally, the thesis is concluded in Chapter 6 where the main findings

are summarized, limitations of the current work are identified and future plans

regarding this project are sketched.

3

Chapter 2

Background

This chapter introduces the characteristics of a secure directory service and the

background information on the certificate standards and exchange protocols re-

quired to understand this project’s design and implementation.

2.1 Directory services

A directory service is used to retrieve and store resources of arbitrary types in a

hierarchical structure independent of the physical storage location. Typically, it

is used in a network environment, provided by a so-called directory server. The

client queries the server for resources with a specific name or certain attributes

using a directory access protocol and gets back a collection of results. Depend-

ing on the service’s configuration, clients may be able to modify resources, too.

Modern implementations of directory services offer enhanced abilities for user

authentication and authorization.

There is no requirement for directory services to deliver authenticated informa-

tion. That is why the concept of secure directory services has been established.

Within the scope of this project, its goal is to exclusively provide information that

has been verified and authenticated by the entity who is running the service. To

avoid tampering and eavesdropping of the data that is transferred between the

clients and the server, transport layer security is mandatory.

This project focuses on secure directory services that manage end-user certificates

deployed for signing and encrypting data. To avoid the forgery of identities, only

authenticated and authorized users are able to upload certificates, exclusively for

their own identities. The provider is responsible for checking the real identity of

each new user, e.g. by reviewing the identity card, sending a verification code

via regular mail or by performing a standardized digital identification technique.

4 Chapter 2. Background

Furthermore, the ownership of the e-mail addresses associated with the user’s cer-

tificates has to be verified, e.g. by sending e-mails with verification codes to that

addresses. If allowed by the certificate format, signatures of existing certificates

can be uploaded, but must be reviewed by the respective owner. Secure directory

services may even provide more functionalities: The visibility of certificates or

even certain identities of a certificate may be restricted to internal, external or

customized user groups, protecting the owners from leaking sensitive information.

As only authenticated users can upload certificates, users retrieving certificates

from the server do not necessarily have to verify that the received certificates are

owned by the persons they want to communicate with, but are advised to make

sure that the user identity of the certificate is really the queried one.

2.2 Certificate standards

2.2.1 OpenPGP

OpenPGP is a standardized message format used for encrypting and signing data

and for authentication. It is described in RFC 4880 [1]. Each OpenPGP certifi-

cate, often referred to as OpenPGP public key, consists of several independent

components: a single primary key, one or more user identities and optional sub

keys. These components must be signed separately by the owner and may be

signed by multiple third parties. Since there are no signatures for the whole

certificate, it is possible to strip certain components away without making the

certificate invalid. The calculation of the certificate’s fingerprint is based on the

primary key. OpenPGP uses hybrid encryption supporting RSA, AES and elliptic

curve cryptography; signatures are created with RSA or DSA/ECDSA.

After having exchanged OpenPGP certificates, the parties involved must ensure

their authenticity, either by checking the certificates’ fingerprints or by tracing an

appropriate chain of trust. Since the OpenPGP standard defines no public key

infrastructure, it introduces the so-called Web of Trust (WOT), a peer-to-peer

model to verify the authenticity of a certificate. Key owners can sign other keys’

identities and build a chain of trust: If participant A signs the key of participant

B and trusts the signatures created by participant B and participant B signs

the key of participant C, participant A considers the key of participant C to be

authentic.

2.2.2 X.509

X.509 is a public key infrastructure standard described in RFC 5280 [2]. X.509

certificates can be used for encrypting and signing data as well as for securing

2.3. Certificate exchange protocols 5

connections with TLS. A X.509 certificate contains a serial number, a validity

period, the distinguished name of the certificate owner, the public key, the issuer

and finally the signature. The algorithms used for signing and encrypting must

be specified in the certificate; supported algorithms are, among others, RSA

and DSA/ECDSA. The certificate may be signed by the owner, referred to as a

self-signed certificate, or by a certificate authority (CA). In the latter case, the

authenticity of the certificate can be checked by everyone who has installed the

root certificate of the corresponding certificate chain on their system. In contrast

to the Web of Trust, a public key infrastructure is a hierarchical approach for

verifying the authenticity of a certificate.

2.3 Certificate exchange protocols

2.3.1 HKP/SKS

The OpenPGP HTTP Keyserver Protocol (HKP) defined in an IETF draft of

2003 [3] is a HTTP-based key server protocol. Although it was never standard-

ized, HKP is the most popular protocol for exchanging OpenPGP keys. It offers

different methods to query the key server via HTTP GET requests and specifies

a human-readable response format as well as a machine-readable one. Submis-

sions of keys are done via HTTP POST requests. Table 2.1 gives an overview

of the interface. As the draft defines no own authentication mechanisms, HTTP

authentication is the sole way to restrict the access to the key database. Most

client software, however, does not support HTTP authentication together with

HKP. The default port for HKP is 13371, while the TLS-secured HKPS is usually

accessible via the standard HTTPS port 443.

Lookup keys via GET /pks/lookup HTTP/1.1

attribute value description

search [pattern] search pattern (key IDs are prefixed with 0x)

op
index return result list with meta information about keys
vindex return result list with extended meta information about keys
get return ASCII-armored representation of the resulting key ring

options mr return machine-readable output

exact on return exact matches only

Add keys via POST /pks/add HTTP/1.1

attribute value description

keytext [key data] ASCII-armored representation of the key ring to submit

Table 2.1: Interface of the OpenPGP HTTP Keyserver Protocol (HKP)

6 Chapter 2. Background

Synchronizing Key Server (SKS) is an implementation of an OpenPGP-based key

server that speaks HKP [4]. It is written in OCaml and focuses on efficient and

reliable synchronization with other key servers. By now, almost 90 key servers

are connected to the SKS pool [5]. Each key that is uploaded to one of these

servers gets transferred to the others to achieve worldwide distribution.

2.3.2 LDAP

The Lightweight Directory Access Protocol (LDAP) standardized in RFC 4511 [6]

is one of the most popular directory service protocols and follows the request-

response pattern. The directory is provided as a tree structure, allowing both

inner nodes and leaves to store data. Nodes are accessible via a so-called distin-

guished name (DN), a path statement consisting of several relative distinguished

names (RDN). A schema defines object classes that in turn specify obligatory

and optional attributes. Each entry can be assigned to several object classes,

requiring it to provide the obligatory attributes. Figure 2.1 illustrates this con-

cept on the basis of an exemplary directory information tree (DIT). Since LDAP

supports enhanced authentication and authorization mechanisms, it is possible

to enforce sophisticated access policies.

dc=example,dc=edu

ou=admins

...

ou=students

cn=Alice
objectClass=inetOrgPerson
mail=alice@example.edu
...

cn=Bob
objectClass=inetOrgPerson
mail=bob@example.edu
...

ou=employees

...

Figure 2.1: An exemplary directory information tree (DIT); the DN of Alice is
cn=Alice,ou=students,dc=example,dc=edu

2.3.2.1 OpenPGP

For retrieving OpenPGP keys from a LDAP server, a special schema supported by

the GnuPG suite is provided [7]. It defines a new object class named pgpKeyInfo

that holds attributes for the ID, user identities, time of creation and expiration

and the raw data of an OpenPGP key. The location of these key entries must be

2.3. Certificate exchange protocols 7

propagated via a separate entry with the fixed DN cn=PGPServerInfo,ou=system.

GnuPG supports the LDAP authentication mechanism using the bind directive.

2.3.2.2 X.509

The object class inetOrgPerson that is defined in RFC 2798 [8] and included in

most LDAP server implementations provides, among basic personal attributes

like the name, street, locality, telephone number and e-mail address, a dedicated

attribute for storing X.509 certificates named userCertificate (or alternatively

userSMIMECertificate). Various e-mail clients supporting X.509 certificates are

trying to query for this attribute to encrypt e-mails with the recipient’s public

key when a LDAP directory is used as an address book.

2.3.3 DANE

DNS-based Authentication of Named Entities (DANE) [9] is a protocol based on

the Domain Name System (DNS) to bind certificates of servers and end-users to

DNS names and securing the corresponding resource records with DNS Security

Extensions (DNSSEC). Originally designed to enable owners of a DNS zone to

deliver their TLS server certificates to clients securely using TLSA records and

therefore reduce the dependency on certificate authorities [10], it is possible to

assign S/MIME certificates and OpenPGP keys to DNS names in the meantime.

The SMIMEA resource record has not been standardized by the time of the

writing of this thesis, but is available as an IETF draft [11]. Its structure is equal

to that of the TLSA record used for binding TLS server certificates to DNS names.

The first two fields of the record describe the certificate’s usage and encoding.

The matching type field specifies if the record contains the certificate’s raw data

or just a hash of it. Since the DNS does not allow all characters supported in the

local part of an e-mail address, the record’s name is prepared as follows: First,

the local part of the e-mail address is canonicalized, then hashed with SHA-256

and finally suffixed with the type label smimecert and the e-mail domain name.

Figure 2.2 shows an exemplary SMIMEA record.

c93f1e400f26708f98cb19d936620da35eec8f72e57f9eec01c1afd6
._smimecert.example.com IN SMIMEA (

3 0 0 30820307308201efa003020102020...)

Figure 2.2: An exemplary SMIMEA record for the e-mail address hugh@example.com,
providing a so-called domain-issued certificate

8 Chapter 2. Background

The OPENPGPKEY record is on its way to standardization as RFC 7929 [12].

Compared to the SMIMEA record, its structure is much simpler, only consisting

of a value for the raw data of a single OpenPGP key. In particular, it is not

possible to publish the hash or fingerprint of the key only. Due to the size of

OpenPGP keys, the authors recommend using TCP instead of UDP to perform

queries for this record type. Moreover, they suggest to strip away unnecessary

data incorporated into the key, such as embedded images, non-matching user

IDs and unimportant third-party signatures, in order to keep the record’s size as

small as possible. The record’s name is built similarly to SMIMEA, but with the

type label openpgpkey. Figure 2.3 provides an example.

c93f1e400f26708f98cb19d936620da35eec8f72e57f9eec01c1afd6
._openpgpkey.example.com IN OPENPGPKEY (

mQINBFeZ2kkBEACt818CrW3/sl7yQabKp0r...)

Figure 2.3: An exemplary OPENPGPKEY record for the e-mail address
hugh@example.com

9

Chapter 3

Related work

Currently, there are few implementations of secure directory services or compara-

ble solutions. Many organizations are known to host their own internal certificate

server in order to control which entities can upload and download certificates.

However, this project focuses on open-source implementations of secure directory

services that can be run by everyone publicly.

The PGP Corporation developed a so-called next-generation key server technol-

ogy named PGP Global Directory [13] that sends verification codes to the e-mail

addresses of submitted OpenPGP keys. These verification messages are sent re-

peatedly every six months to ensure that the e-mail accounts are still active.

Moreover, owners can remove keys from the directory. Technically, this is not a

revocation since the key is removed physically after the owner has verified the

process by another verification message. Each verified key is signed by a dedi-

cated OpenPGP verification key of the provider to attest that the corresponding

e-mail addresses are valid and the key owner has given the permission to publish

the key. Any user having uploaded his key to the directory can sign other keys

with it, without the need of the owner to approve the change. Signatures created

by keys that are not hosted on the directory get stripped away. The directory

can be queried via the web interface as well as the GnuPG suite with LDAP.

Although the developer highlights that it is difficult for spammers to gather large

quantities of e-mail addresses due to CAPTCHAs and exact search criteria, these

measures can be bypassed by simply using the LDAP interface. As a major draw-

back, the implementation is closed-source and thus can neither be enhanced by

the open-source community nor installed on one’s own server.

There are several e-mail providers that offer an integrated encryption and key

life cycle management system. A popular one is ProtonMail, a hosted e-mail

service that was developed by CERN in 2013 as a reaction to the Snowden af-

fair and provides several special features [14]. The keys used for encryption are

10 Chapter 3. Related work

generated by the client’s browser, ensuring proper end-to-end encryption and

avoiding eavesdropping even by the provider itself. Furthermore, the web client

of ProtonMail has been licensed under the MIT license in 2015 and therefore is

completely open-source. This makes it easy to verify that strong and securely

implemented cipher suites without any backdoor are used. However, ProtonMail

is a hosted software-as-a-service solution and thus not fully compatible with the

existing e-mail architecture: The service has to be used via the website or the

provided mobile applications; neither IMAP nor SMTP are supported. And when

sending an encrypted e-mail to an address that is not registered on ProtonMail,

the recipient cannot read the e-mail with his MUA, but only after having opened

the ProtonMail website using the received link.

Another famous e-mail service focused on encrypted communication is Posteo [15],

a German provider with servers housed in Germany. It uses DANE/TLSA as well

as dynamic HTTP certificate pinning to prevent fraudulent certificate authori-

ties from issuing non-authorized server certificates. As a major drawback, Posteo

does not offer end-to-end encryption since users have to transmit their private

keys to the provider. To still achieve end-to-end encryption, Posteo recommends

a separate browser add-on developed by a third party that encrypts the e-mails

locally.

11

Chapter 4

Design

The access layer designed in this project enables clients to retrieve end-user cer-

tificates from the attached secure directory service via the well-known protocols

HKP, LDAP and DNS. For this, the Application Programming Interface (API)

consists of three so-called certificate exchange interfaces. Each of these interfaces

is provided by a separate controller, whereas each controller is responsible for ex-

actly one protocol. This approach ensures high cohesion, a paradigm of software

engineering which requires that the functionalities within a software component

should be related strongly and fulfill a single and distinct task.

The controllers retrieve the data needed for their transactions from the back-end

component via a well-defined interface with dedicated operations for the different

query types. With this concept, the API and the back-end component are coupled

loosely which allows the substitution of the back-end’s implementation at any

time and thus the re-use of the system for arbitrary directory services. The

component diagram in Figure 4.1 illustrates the overall design.

CertificationService

StorageService

AccessControlService

API

 LDAPController

HKPController

DNSController

Backend

Figure 4.1: High-level design of the API and the interacting back-end, illustrated in an
UML component diagram

12 Chapter 4. Design

4.1 Certificate exchange interfaces

The certificate exchange interfaces can be accessed by any client application using

the respective exchange protocol. The HKP controller handles HKP requests as

defined in the IETF draft of 2003 [3] and accepts connections over TLS. The

LDAP controller speaks LDAPv3, including StartTLS and the directives needed

for authentication, and supports the OpenPGP schema used by the GnuPG suite

as well as the inetOrgPerson schema used by e-mail clients for their address books.

The DNS controller manages a complete DNSSEC-secured zone and runs a basic

DNS server speaking the zone transfer protocol AXFR.

4.2 Back-end interface

The back-end interface can be accessed by the controllers via several clear-cut op-

erations, each of them designed for a dedicated query type and with parameters

for the caller, the query pattern and the matching rule. Figure 4.2 shows its ab-

stract description in the Interface Definition Language (IDL). It covers operations

to retrieve persons by ID, e-mail address and several other meta attributes. The

structure named InetOrgPerson is inspired by the corresponding LDAP object

class, containing attributes such as full name, mail address, e-mail address and

X.509 certificate. In addition to that, it is able to store an OpenPGP certificate.

Nevertheless, the interface defines separate operations for retrieving OpenPGP

certificates, making the handling of HKP and LDAP requests initiated by the

GnuPG suite much more convenient.

The back-end is responsible for providing the query response after having au-

thenticated the caller, checked the access rights according to the access policy

and fetched the data from the attached storage service. The access policy can be

used to restrict the access to certain certificates to a defined group of users. If

allowed by the certificate format, it is even possible to return particular parts of

a certificate only, e.g. those user identities of an OpenPGP certificate that are

intended for the public.

Besides, the interface provides operations for retrieving and authenticating the

so-called subjects. Subjects are registered in the back-end component with

an identifier and a password, but do not necessarily own all the attributes of

InetOrgPerson. For client requests containing authentication data, the controllers

hand over the authenticated caller as an instance of Subject to the back-end’s

query operations. An anonymous subject is provided for requests where no au-

thentication data has been supplied by the client.

4.2. Back-end interface 13

interface Backend {

OpenPGPCertificate getOpenPGPCertificateByFingerprint(
Subject caller, string fingerprint, MatchingRule rule);

OpenPGPCertificate getOpenPGPCertificateByID(
Subject caller, string id, MatchingRule rule);

sequence<OpenPGPCertificate> getOpenPGPCertificatesByMetaInfo(
Subject caller, string pattern, MatchingRule rule);

sequence<OpenPGPCertificate> getOpenPGPCertificatesByEmailDomain(
Subject caller, string emailDomain);

InetOrgPerson getInetOrgPersonByID(Subject caller, string id);

sequence<InetOrgPerson> getAllInetOrgPersons(Subject caller);

sequence<InetOrgPerson> getInetOrgPersonsByMetaInfo(
Subject caller, string pattern, MatchingRule rule);

sequence<InetOrgPerson> getInetOrgPersonsByEmailAddress(
Subject caller, string pattern, MatchingRule rule);

sequence<InetOrgPerson> getInetOrgPersonsByEmailDomain(
Subject caller, string emailDomain);

Subject getSubjectByID(Subject caller, string id);

Subject getSubjectByPrincipal(Principal principal);

Subject getAnonymousSubject();

boolean authenticateSubject(string id, string password);

}

Figure 4.2: Interface of the back-end, described in the Interface Definition Language
(IDL)

15

Chapter 5

Implementation

This project is implemented in Java 7 to achieve a high degree of platform inde-

pendence. Therefore, it was not possible to reuse existing implementations like

the OCaml-based Synchronizing Key Server (SKS) or the popular DNS server

BIND which is written in C. Instead, the certificate exchange interfaces have

been rewritten from scratch using free and well-maintained Java libraries.

Spring Boot1 is used in order to provide a stand-alone application that can be

executed right away for testing and demonstration purposes, without the need for

time-consuming setup and configuration tasks. The different controllers, however,

do not rely on Boot, making it easy to deploy them for environments and appli-

cation servers of one’s own choice. The project’s build process and dependencies

are managed with Apache Maven2.

5.1 HKP

The HKPController is based on a web controller of the Spring Framework3 which

offers a convenient way for mapping HTTP requests onto handler methods and

accessing the request parameters via ordinary method parameters. If Spring is

not available on the target platform, it can be replaced with the servlet concept

of Java EE without any great effort since Spring itself is built on it.

The controller supports not all of the features defined for HKP. In particular, it re-

turns no HTML responses prepared for web browsers, but machine-readable out-

put only. To get a human-readable representation of the result, HKP-compatible

client software such as the GnuPG suite can be used. As the protocol offers no

1https://projects.spring.io/spring-boot/
2https://maven.apache.org/
3https://projects.spring.io/spring-framework/

https://projects.spring.io/spring-boot/
https://maven.apache.org/
https://projects.spring.io/spring-framework/

16 Chapter 5. Implementation

dedicated authentication mechanism, the submission of OpenPGP certificates via

HKP is not possible. Thereby, users are not able to forge identities by uploading

certificates which are not owned by themselves.

The central part of the controller is the handler method lookup. It evaluates

the request parameters, queries the back-end and generates the appropriate re-

sponse for the client. In addition to the HKP draft, a parameter named limit

is supported. If set to a positive integer, the result set gets trimmed to the de-

fined number of entries. This can be useful to decrease the network load and is

supported by SKS as well.

HTTP status codes are used to signal problems with the client’s query. The

code 404 will be returned if the result set is empty, while the code 400 indicates

that the query parameters themselves are invalid, e.g. if the mandatory option

for generating machine-readable output is not set. The status 501 refers to a

operation that is not supported, such as the submission of certificates. Finally,

the code 500 will be sent if an internal server error occurs.

5.2 LDAP

The LDAPController is based on ApacheDS4, a complete LDAP server written

in Java by the Apache Software Foundation. It is fully compatible with LDAPv3

and embeddable in any Java application due to the well-documented API. The

behaviour of ApacheDS can be extended and influenced using the interceptor

pattern. Interceptors are components that alter the default sequence of actions

of a software system by executing custom routines. Usually, these routines are

triggered by events, like the arrival of a new client request.

Since the back-end of the secure directory service stores and manages the cer-

tificates and meta data via a dedicated storage service, the database features of

ApacheDS are not used in this implementation. Instead, it acts as a virtual LDAP

server, responsible for handling the authentication of clients, parsing LDAP re-

quests, handing them over to the interceptors and sending back the responses

received from the interceptors to the clients.

Figure 5.1 illustrates the internal structure of the LDAPController. The em-

bedded instance of ApacheDS is extended with two custom-built interceptors

for retrieving OpenPGP certificates and InetOrgPersons, respectively. The in-

terceptors receive the LDAP requests that have been parsed and transferred to

Java objects by ApacheDS, query the back-end component accordingly and send

back the result objects to ApacheDS, which returns an LDAP-formatted response

4https://directory.apache.org/apacheds/

https://directory.apache.org/apacheds/

5.2. LDAP 17

to the client. If the actual request is preceded with a bind request containing

authentication data, a custom authenticator will check whether the subject is

registered in the back-end with the given credentials. Only if this is the case, the

authentication will succeed and the actual request will be continued.

«authenticator»

BackendAuthenticator

LDAPController

StorageService

AccessControlService

CertificationService

Backend

«interceptor»

InetOrgPersonInterceptor

«interceptor»

OpenPGPInterceptor

ApacheDS

Figure 5.1: Simplified internal structure of the LDAPController, using an embedded
instance of ApacheDS as a virtual LDAP server

As introduced in Chapter 2, a special LDAP schema is needed to handle requests

for OpenPGP certificates performed by the GnuPG suite. This schema is im-

ported into ApacheDS using a LDIF file. After having obtained the results from

the back-end, the OpenPGPInterceptor constructs Java objects of the ApacheDS

type Entry out of them. The LDAP object class pgpKeyInfo is assigned to these

entries, requiring attributes for the certificate’s ID, user identities, encoded data

and so forth. Conceptually the same happens for InetOrgPerson requests: The In-

etOrgPersonInterceptor fetches the results from the back-end and creates entries

of the LDAP object class inetOrgPerson, containing attributes for the person’s

full name, mail address, e-mail address and X.509 certificate. Both interceptors

are implemented to exclusively react to requests for a certain base DN specified

during the initialization process: While the OpenPGPInterceptor’s base DN is

set to the domain’s organizational unit named PGP Keys, the InetOrgPersonIn-

terceptor is responsible for that with the name inetOrgPersons.

The filters of LDAP search requests defined in Section 4.5.1.7 of RFC 4511 [6] can

become randomly complex. Commonly, they are represented as a tree structure:

On the one hand there are branch nodes for conjunction, disjunction and nega-

tion, on the other hand there are leaf nodes which model equality, substrings and

further assertion types. The expression (&(mail=*@example.org)(l=springfield)) is

an exemplary filter, requiring the resulting entries to have an e-mail address of

the domain example.org and the exact locality springfield.

18 Chapter 5. Implementation

However, the API of the back-end supports queries of low complexity only, con-

sisting of a single search pattern for one or several attributes, complemented with

a dedicated matching rule parameter to differentiate between exact and fuzzy

matches. To be still able to query the back-end for LDAP requests, the equality

or substring leaf node of the most decisive attribute supported by the back-end is

extracted from the filter and used as a substitute. Most decisive in this context

means that an order of precedence has been defined on the attributes, e.g. the

e-mail attribute has obvious priority over the locality attribute. Since the gained

result may be a superset of the actual one, the original filter is applied to all

entries before sending the LDAP response to the client. This makes sure that

every result entry satisfies the whole filter.

5.3 DNS

The DNSController uses dnsjava5, a well-maintained Java library written by

Brian Wellington for managing DNS zones in an object-oriented way. It supports

all standardized record types, including those for DNSSEC. During this project,

the need for the new record types OPENPGPKEY and SMIMEA proposed by

the DANE working group emerged. Brian Wellington has kindly extended his

library with these, enabling a state-of-the-art way to assign OpenPGP and X.509

certificates to e-mail addresses via DNSSEC.

Zones can be exported to master files, which are ready to use for DNS server

implementations like BIND, or provided via the zone transfer protocol AXFR. For

the latter, a very basic server called jnamed shipped with dnsjava is started. Since

the developer does not recommend his implementation for production, however,

it should be used for demonstrative purposes only.

The DNSController is instantiated with a zone name, a key signing key (KSK) as

well as a zone signing key (ZSK) needed for DNSSEC and several meta attributes

like the default TTL value. Each instance manages a complete DNS zone, includ-

ing the SOA and at least one NS record. According to the DNSSEC specification,

the DNSKEY records are signed with the KSK, while all other resource record

sets are signed with the ZSK. Unfortunately, dnsjava is not capable of creating

a full NSEC3 chain to prove the non-existence of queried records. Therefore, a

separate utility class has been developed in this project that is compatible with

dnsjava and generates a NSEC3 chain fulfilling the requirements of RFC 5155 [16].

It traverses the given zone, inserts the so-called empty non-terminals, hashes the

record names according to the parameters of the given NSEC3PARAM record,

orders the hashes ascendingly and finally creates the NSEC3 records.

5http://www.dnsjava.org/

http://www.dnsjava.org/

5.4. Back-end 19

Each certificate that is made public by the back-end and associated with at least

one e-mail address of the zone’s domain name is published in the DNS zone using

either an OPENPGPKEY or a SMIMEA record. Every record contains a full

certificate and, as a matter of course, is signed with the ZSK. If several e-mail

addresses of a certificate match the zone’s domain name, they are assigned to

CNAME records pointing to the actual certificate record. To be able to retrieve

the relevant certificates conveniently, the back-end provides dedicated methods

for querying certificates associated with a certain e-mail domain.

5.4 Back-end

The class SimpleBackend is a rudimentary implementation of the interface Back-

end. It uses in-memory Java collections to store the certificates and the meta

data. When instantiated, it imports a few dummy certificates and creates some

test users that are suitable for test requests. Hence, SimpleBackend should not be

used for production, but can serve as a source of inspiration on how to implement

the different query methods.

The classes BCOpenPGPCertificate and BCX509Certificate are implementations

of the interfaces OpenPGPCertificate and X509Certificate, respectively. As their

names imply, they are based on Bouncy Castle6, one of the most comprehensive

open-source cryptography libraries available for Java. Internally, the implemen-

tations store attributes that are needed most frequently in dedicated fields in

order to avoid the browsing of the Bouncy Castle objects on every access. Both

classes can be used for production.

The class User is an implementation of the interface InetOrgPerson and ready for

practical use, too. It owns dedicated fields for the getters required by the interface

and provides setters for attributes where it is appropriate. E-mail addresses that

are added via the corresponding method are parsed by the JavaMail API and

have to conform to the address format defined in RFC 822 [17].

5.5 Integration into existing environments

The class SimpleApplication is the entrance point for the demo instance of this

suite and can serve as an inspirational source on how to integrate it into existing

environments. It uses Spring Boot to create and initialize the HKPController, but

any Java EE application server capable of launching a Web Application Archive

(WAR) can be used, too. The LDAP service and server are started by creating

6https://bouncycastle.org/

https://bouncycastle.org/

20 Chapter 5. Implementation

a new instance of the class LDAPController with the domain name as the sole

parameter. Another constructor is available to manipulate the names of the or-

ganizational units of the certificates. To create a new DNS zone and start the

basic name server, the class DNSController has to be instantiated with the zone’s

name and the key signing key pair as well as the zone signing key pair as param-

eters. Two other constructors are provided to generate the keys automatically or

to define meta data like the TTL values and name servers manually.

21

Chapter 6

Conclusion

This project showed how to improve the interoperability of secure directory ser-

vices with client applications by designing and implementing server-side interfaces

for the well-known certificate exchange protocols HKP, LDAP and DANE. As a

result, it is possible to access these services with existing e-mail clients and com-

parable software, facilitating the distribution and acceptance of secure directory

services. The platform independence of the interface implementations as well

as their stringent separation from the back-end component allow the re-use for

arbitrary secure directory services and server environments. Due to the modular

design of the suite, the support for further protocols can be added easily. While

the implementation of HKP had to be rewritten completely because of lacking

Java libraries, well-maintained third-party software for LDAP and DNS has been

used to handle the actual protocol transactions, making the incorporation of

future updates of these protocols much more conveniently.

In contrast to the proprietary and closed solutions introduced in Chapter 3, the

artifacts of this project are free and open-source. They have been developed to be

utilized and enhanced in further academic projects to achieve the overall goal of

this contribution: the promotion and expansion of secure digital communication

by simplifying the exchange of certificates needed for encrypting and signing data.

6.1 Future work

Although this implementation is feature-complete with regards to the project’s

requirements, there is still future work to do. Currently, it is not possible to

assign more than one OpenPGP or X.509 certificate to a single InetOrgPerson,

respectively. While this is less critical for OpenPGP certificates which themselves

can hold multiple user identities, it may be useful for upcoming use cases to

22 Chapter 6. Conclusion

store several X.509 certificates per entity. It is, however, not recommended to

send all certificates of a person to the client at once since the network load

increases unnecessarily and the client application may not know how to handle the

response. In order to ensure that only the certificate belonging to the requested

e-mail address is transmitted, the e-mail addresses which the certificates have

been issued for must be checked beforehand.

As another limitation, certificates cannot yet be added via LDAP although the

protocol itself provides highly developed authentication mechanisms. The possi-

bility of modifying information via LDAP would decrease the users’ dependency

on non-standardized interfaces of secure directory services like web front-ends.

Unfortunately, most of today’s e-mail clients do not support the upload of data

to a LDAP server.

It may be desirable to extend the back-end’s interface to support queries with

higher complexity. For this, new tree-based data structures can be designed, mod-

eling complex query expressions similar to those used in LDAP. Consequently,

less filter operations would be performed by the interface component, but by the

back-end’s database management system which is usually optimized for perfor-

mance and efficiency. This is particularly important when a huge amount of data

is stored in there.

Moreover, the exemplary DNS server jnamed that is currently used for the han-

dling of AXFR requests should be replaced with an implementation that has been

approved for productive use. Within the DNSController, the process of creating

DNS zones has further potential for optimization: records have to be re-generated

and re-signed only after the underlying information has changed. Additionally,

the key signing key can be kept offline most of the time for security reasons since

it is just needed for signing a new zone signing key. As recommended in RFC

7929 [12], unnecessary information in OpenPGP certificates should be stripped

away before publishing them via DNS to reduce the size of the OPENPGPKEY

records. For SMIMEA records containing huge X.509 certificates, it has to be

considered not to publish their raw data, but just their hashes.

23

Bibliography

[1] Callas J. and Donnerhacke L. and Finney H. and Shaw D. and Thayer

R., “RFC 4880 - OpenPGP Message Format,” https://tools.ietf.org/html/

rfc4880, accessed on August 13th, 2016.

[2] Cooper D. and Santesson S. and Farrell S. and Boeyen S. and Housley R. and

Polk W., “RFC 5280 - Internet X.509 Public Key Infrastructure Certificate

and Certificate Revocation List (CRL) Profile,” https://tools.ietf.org/html/

rfc5280, accessed on August 13th, 2016.

[3] Shaw D., “draft-shaw-openpgp-hkp-00 - The OpenPGP HTTP Keyserver

Protocol (HKP),” https://tools.ietf.org/html/draft-shaw-openpgp-hkp-00,

accessed on August 13th, 2016.

[4] Minsky, Yaron and Clizbe, John and Fiskerstrand, Kristian and Pen-

nock, Phil, “Synchronizing Key Server (SKS),” https://bitbucket.org/

skskeyserver/sks-keyserver/wiki/Home, accessed on August 14th, 2016.

[5] Fiskerstrand, Kristian, “Synchronizing Key Server (SKS) Pool,” https://

sks-keyservers.net, accessed on August 14th, 2016.

[6] Sermersheim, J., “RFC 4511 - Lightweight Directory Access Protocol

(LDAP): The Protocol,” https://tools.ietf.org/html/rfc4511, accessed on

August 15th, 2016.

[7] Walfield, Neal, “LDAPKeyserver - GnuPG wiki - Installing an Ad-

ditional Schema,” https://wiki.gnupg.org/LDAPKeyserver#Installing an

Additional Schema, accessed on August 15th, 2016.

[8] Smith, M., “RFC 2798 - Definition of the inetOrgPerson LDAP Ob-

ject Class,” https://tools.ietf.org/html/rfc2798, accessed on September 6th,

2016.

[9] Kumari, W. and Guomundsson, O. and Farrell, S. and Lepinski, M., “DNS-

based Authentication of Named Entities (DANE),” https://datatracker.ietf.

org/wg/dane/charter/, accessed on September 6th, 2016.

https://tools.ietf.org/html/rfc4880
https://tools.ietf.org/html/rfc4880
https://tools.ietf.org/html/rfc5280
https://tools.ietf.org/html/rfc5280
https://tools.ietf.org/html/draft-shaw-openpgp-hkp-00
https://bitbucket.org/skskeyserver/sks-keyserver/wiki/Home
https://bitbucket.org/skskeyserver/sks-keyserver/wiki/Home
https://sks-keyservers.net
https://sks-keyservers.net
https://tools.ietf.org/html/rfc4511
https://wiki.gnupg.org/LDAPKeyserver#Installing_an_Additional_Schema
https://wiki.gnupg.org/LDAPKeyserver#Installing_an_Additional_Schema
https://tools.ietf.org/html/rfc2798
https://datatracker.ietf.org/wg/dane/charter/
https://datatracker.ietf.org/wg/dane/charter/

24 Bibliography

[10] Hoffman, P. and Schlyter, J., “RFC 6698 - The DNS-Based Authentication of

Named Entities (DANE) Transport Layer Security (TLS) Protocol: TLSA,”

https://tools.ietf.org/html/rfc6698, accessed on August 15th, 2016.

[11] Hoffman, P. and Schlyter, J., “draft-ietf-dane-smime-12 - Using Secure DNS

to Associate Certificates with Domain Names For S/MIME,” https://tools.

ietf.org/html/draft-ietf-dane-smime-12, accessed on August 15th, 2016.

[12] Wouters, P., “RFC 7929 - DNS-Based Authentication of Named Entities

(DANE) Bindings for OpenPGP,” https://www.rfc-editor.org/rfc/rfc7929.

txt, accessed on August 15th, 2016.

[13] Symantec Corporation, “PGP Global Directory - Terms and Conditions,”

https://keyserver.pgp.com/vkd/VKDHelpPGPCom.html, accessed on Au-

gust 11th, 2016.

[14] Proton Technologies AG, “ProtonMail - Security Features,” https://

protonmail.com/security-details, accessed on August 11th, 2016.

[15] Posteo e.K., “Innovative encryption for all: We make email truly secure,”

https://posteo.de/en/site/encryption, accessed on September 13th, 2016.

[16] Laurie, B. and Sisson, G. and Arends, R. and Blacka, D., “RFC 5155 -

DNS Security (DNSSEC) Hashed Authenticated Denial of Existence,” https:

//tools.ietf.org/html/rfc5155, accessed on September 4th, 2016.

[17] Crocker, David H., “RFC 822 - Standard for the Format of ARPA Internet

Text Messages,” https://tools.ietf.org/html/rfc822, accessed on September

6th, 2016.

https://tools.ietf.org/html/rfc6698
https://tools.ietf.org/html/draft-ietf-dane-smime-12
https://tools.ietf.org/html/draft-ietf-dane-smime-12
https://www.rfc-editor.org/rfc/rfc7929.txt
https://www.rfc-editor.org/rfc/rfc7929.txt
https://keyserver.pgp.com/vkd/VKDHelpPGPCom.html
https://protonmail.com/security-details
https://protonmail.com/security-details
https://posteo.de/en/site/encryption
https://tools.ietf.org/html/rfc5155
https://tools.ietf.org/html/rfc5155
https://tools.ietf.org/html/rfc822

	Introduction
	Goals of the project
	Outline

	Background
	Directory services
	Certificate standards
	OpenPGP
	X.509

	Certificate exchange protocols
	HKP/SKS
	LDAP
	DANE

	Related work
	Design
	Certificate exchange interfaces
	Back-end interface

	Implementation
	HKP
	LDAP
	DNS
	Back-end
	Integration into existing environments

	Conclusion
	Future work

	Bibliography

