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Abstract:

Nowadays, city infrastructure relies increasingly on interconnected high-speed networks,
with most of the critical infrastructures today being in part connected to the internet.
This combined with the evolution of malware to more sophisticated levels, raises the need
to implement more elaborate security mechanism. Traditional defence mechanism such as
firewalls, are not enough to circumvent the threats that may arise in today’s networks. To
counter this,an increasing number of network administrators deploy Intrusion Detection
Systems, which monitor the network and raise alerts if anything suspicious is detected. The
traditional approach to defending the system in the case of an Intrusion Detection System,
requires a human administrator to implement defensive actions. Since this is sometimes
inefficient, for example because of time-delays between when a threat is detected and a
measure is implemented, research has been more and more focused on automatizing this
process. By automatizing this process, instead of only informing the administrator, or the
human interface of the security chain, an entity receives the generated alerts and imple-
ments defensive actions based on pre-determined set of actions.

This bachelor thesis is detailing a sub module for an automated reaction system, named
ANSII. One of the core problems that is solved in this thesis, huge amount of duplicate
alerts that is generated, when a high enough number of IDSs is deployed. The reduc-
tion of the duplicates, is an essential part of the Alert Correlation Process, and is called
Alert Aggregation. Additionally, this thesis diversifies itself by considering the benefits
of including feedback from the enforcement mechanics in the network, and by trying to
keep the rule specification for counteractions simple by including dynamic generation of
aggregation rules. The inclusion of feedback is important, since it should help gain new
insights about the state of the detected threats in the system. The approach detailed in
this thesis, aims to improve the overall efficacy and performance of the Policy Component
of the ANSII system.



Kurzfaßung:

Moderne städtische Infrastruktur verlaßt sich zunehmend auf hoch-geschwindigkeits und
zusammen-geschaltete Netze. Eine große Anzahl der kritischen Infrastruktur heutzutage
ist verbunden mit dem Internet, was zusammen mit der Evolution von Malware die
Notwendigkeit erschafft st́’arkere sicherheits Mechanismen zu implementieren. Tradi-
tionele sicherheit, wie eine Firewall, genugt heutzutage nicht um Angriffe zu blocken oder
aufzuheben. System Administratoren, benutzen immer mehr Intrusion Detection Sys-
tems in ihren Netzwerken, um die Netzwerke zu ı̈berwachen. Intrusion Detection Systems,
generieren Alarme, die Alerts genannt werden, wenn verdächtige Elemente im Netzwerk
wahrgenommen werden. Der traditionelle Ansatz bei IDSen ist, das der Administrator
die Alerts erhält und defensive Maßnahmen einsetzt. Dieser Ansatz ist manchmal ineffiz-
ient, da die Verzögerung zwischen wenn eine Attacke erkannt wurde, und die defensiven
Maßnahmen eingesetzt werden, kritisch sein kann. Dies führte zur Forschung für automat-
isiertes Reaktion, wo die generierten Alerts nicht nur zum Administrator geschickt werden,
sonder zu einer Instanz die f́’ur die generierten Alerts defensive Ma
ssnahmen ergreift basiert auf vorgegebenen Aktionen.

Die Bachelor Arbeit die hier präsentiert wird, handelt über ein Sub Modul für ein automat-
isiertes Reaktion System, mit dem namens ANSII. Eines der grundlegenden Probleme das
die Arbeit bearbeitet ist, die große Anzahl an Alert Duplikaten die generiert wird, wenn
es eine große Anzahl von IDSen im Netzwerk gibt. Die Eliminierung von Duplikaten ist
teil eines Prozeß der Alert Correlation heißt, und heißt Alert Aggregation. Zusätzlich zu
diesem Problem, diversifiziert sich die Arbeit von anderen Arbeiten, indem der Feedback,
der von denn Policy Enforcement Point generiert wird, auch mit einbezogen wird. Dies ist
wichtig, denn der Feedback kann helfen um neue Einblicke über denn Status von erkannten
Bedrohungen. Das Ziel der Bachelor-Arbeit ist, die allgemeine Effizienz und Performanz
der Policy Komponente zu verbessern.
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1. Introduction

1.1 Modern Networks and Network Security

Present-day communication is characterized by high-speed networks interconnected with
each other. High-speed communication networks play an essential role in our everyday
activities. A steadily increasing amount of services are offered over the Internet, and new
services emerge, which are served exclusively through the internet and computer networks.
Critical infrastructure like the electrical grids are increasingly becoming interconnected.
Since society relies on the flawless an uninterrupted operation of these infrastructures
and communication networks, security in networked environments becomes an important
aspect[CBCAD09, PoNe97, GoHK03].

One of the reasons that security needs to evolve is the continuous evolution of computer
and network security malware. There is malware that can propagate through networks, like
worms. They can carry payloads in the form of viruses which can render systems unusable
or contain spyware which enables an attacker to spy on his target. The sophistication
of the malware itself has increased. The case of advanced cyberwarfare malware like
Stuxnet proves that security hast to be able to adapt, be more autonomous and flexible
[FGHW+08, PoNe97, RCHP00].

In addition to the ever increasing sophistication and ability of malware, the internet enables
the world access from everywhere. Companies increasingly use XaaS(Everything as a
Service) to enable a distributed working environment. Although it being a successful way
to work from home, and keep costs low it comes with some risks of itself. The greatest
risk which this model bears is that the data itself and the services in use are attackable
from anywhere in the world. Since everything is accessible from the internet, the internet
itself can be utilized as a tool for attacking systems from anywhere with precision. This
increases the need to ensure that customer data and critical infrastructures have adequate
actions of protection [GoHK03].

To counter these increasing amounts of security threats, and to safe keep the important
parts of networks, system administrators cannot rely solely on the firewall to take care of
the defences. A firewall can fall short in blocking more elaborate attacks, since the traffic
blocked,forwarded is only known a-priori. For this reason, the utilisation of Intrusion
Detection Systems in networked environments is increasingly becoming common-ground
[Cupp01].
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Intrusion Detection Systems try to detect intrusions in a system or network. Their deploy-
ment is essential since they enable monitoring of network components, which is required to
ensure an operational state in a network. Monitoring is essential in order to detect attacks
which try to compromise the system, and steal data. Monitoring also provides a way to
see how an attack evolves in a network [Daya].

The field of Intrusion Detection Systems has been actively researched for over 20 years.
Intrusion Detection Systems have become quite adequate in detecting active threats in a
network. The increasing importance of distributed systems, has led also to a more active
deployment of detection mechanisms [Cupp01]. IDS deployment although necessary does
not completely solve the problem and adds a number of problems discussed in Section
1.1.1 .

Traditionally Intrusion Detection Systems are only monitoring a network and notify the
administrator. An increasing trend is the automation of this process, the reasons for which
will be discussed in Section 1.1.2.

Automated reaction systems, work by monitoring the network through the IDSs but in-
stead of only forwarding the alerts to the system administrator, they contain a dedicated
Decision Point which processes the alerts generated by the Intrusion Detection Systems,
in order to decide which action is to be implemented.

1.1.1 Problems

The security components used in networks, although inclusive for themselves are not
enough. First the structure and placement of these components has become increasingly
complex. IDS systems are scattered through the network and independently raise alarms,
even if they are overlapping leading to the generation of duplicate alerts [Daya, FGHW+08,
HoSi11, Cupp01].

When an attack is launched, a single attack instance which is the occurrence of a single
attack type that has been launch in a specific time window from a specific attacker, is
distributed throughout many log files and networks. The single attack instance itself
might also generate hundreds or thousands of alerts [HoSi11, ZaYZ08].

This is for a traditional network, were the system administrator has to inspect the alerts
himself, very complex and generate a relatively high probability for him to decide wrongly
for single alerts [HoSi11, AMZh07, ZaYZ08].

Another common problem which can be observed, is that since the systems are tailored
for human interaction, the security devices which implement the defensive actions do not
provide any form of feedback. In our opinion, feedback would provide the system with
additional insight about active attacks, allowing it to adapt its security policies in order to
accommodate the changes in the networks environment, for example when a threat cannot
be eliminated with the traditional arsenal of available actions.

1.1.2 Reasons for Automation

Section 1.1.1, provided an overview to some of the problems that arise when an increasing
number of Intrusion Detection Systems is deployed into a network, through the use of the
traditional approach to monitoring and reacting.

One of the problems identified, was the human-interaction tailored approach of network
security. Human interaction introduce attack vectors which can be exploited. One of the
most common one is the time-delay between when an attack is detected, and when the hu-
man security expert will implement defensive actions. Time-delay and human-error create



1.2. Thesis Motivation 3

an environment where an automated response would be better suited citecuppensManage-
ment, alertSurvey.

To further understand this reasoning lets look at an example. Lets assume a network
is under an active attack, the administrator gets flooded with alerts that the network is
getting attacked from all sides. He decides to filter everything except serious exploits, but
in turn leaves the network open to a variety of smaller, seemingly unimportant exploits and
attacks. These can subsequently be chained together to access crucial business information
[Cupp01].

To enable automation, new systems have been created which are called Intrusion Re-
sponse Systems(IRS). Intrusion Response Systems do not only monitor a network, but
also automatically implement defensive actions when they detect any malicious or suspi-
cious activity in the network they are protecting. A variety of systems exist, which will be
explored in detail in Section 3.

Automation although helpful is not risk free. Automation is only powerful enough to
take control over human actions. This means that a human has programmed it to act
assuming normal situations. Automation in all areas has a major caveat, when faced with
abnormalities the automation has a limited span of action, and may get confused. In
addition automation does not provide adequate feedback as humans would do. All in all
though because using automation enables us to act faster, it is still relatively an important
feature to have [Norm90].

1.2 Thesis Motivation

Our main focus is to research some of the problems that occur when many IDS systems
are contained in one network. One of the problems that occurs is that the network gets
flooded with alerts. One of the reasons for this is due to the overlapping domains of many
heterogeneous Intrusion Detection Systems. Another aspect being considered is the non-
existent overview of what actions the different security components implement in order to
protect the devices contained in a network, when they are under attack.

1.3 Contributions

In this thesis two sub problems of the communication between many Intrusion Detection
Systems and the Policy Decision Point will be explored. Particularly the options to deal
with the flooding of the network with alerts from the different heterogeneous Intrusion
Detection Systems will be explored in depth. In the process the sub problem of providing
feedback about the actions the Enforcement Point implements to avert attack instances.

The solution that is provided here is based on alert aggregation, and our main focus
will be how to aggregate the alerts in order to reduce the amount of alerts reaching the
Policy Decision Point and how eliminate the duplicates that exist in that alert stream.
In addition the module that will be developed here, addresses the problem of the non-
existence of feedback from the defensive actions implemented by the security components
in the network by receiving it and appending it to the alerts, in order to gain new insights
about attacks performed on the network.

Furthermore it will be investigated how to utilize the aggregation in order to append
additional information for decision making towards the PDP. This will be found in the
form of meta data which are composed of various aggregate information which can be
derived by the alert flow and a list of actions performed in the network for each alert. The
final target is to improve the overall efficacy of the PDP in general by eliminating and in
the process of eliminating the duplicates ensure that no information will get lost.
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1.4 Chapter Overview

Chapter 2: Analysis gives a brief overview over the research field, called alert correlation
process and which part of the process the thesis is located. It introduces the network
environment and the components that are to be investigated, and identifies the problems
which are to be solved through this thesis. Chapter 3: Related Work, provides an overview
of related work, and explains how this thesis distances itself from the related approaches.

Chapter 4:Design introduces the solution to the problems and requirements identified in
Chapter 2. It provides a detailed explanation of the different functionalities that the
solution contains and how these solve the problems previously identified.

Chapter 5: Implementation provides an overview of the frameworks that will be used in
the implementation, and maps each framework to the functionalities defined in Chapter 4.

Chapter 6: Evaluation retouches the requirements identified, the solutions provided and
gives an overview over how the solution should be evaluated in order to verify its correct
functionality.

Chapter 7: Conclusion and Future Outlook concludes this thesis by providing conclusions
that can be derived by the solution, and suggests future work that can be done to further
improve automated reaction systems.



2. Analysis

This chapter will introduce the problem domain in which the thesis takes place. It provides
an overview of the ANSII Project to which this thesis is part of. It gives a detailed ex-
planation of the environment which this thesis handles about, and explains the correlation
process and how this thesis is related to it. Through the environment explanation, the
problems will be identified and then posed as requirements to which a solution has to be
based upon.

2.1 ANomaly identification and embedded Security in In-
dustrial Information systems (ANSII) and Thesis Sub-
ject

ANomaly identification and embedded Security in Industrial Information systems (ANSII)
is a research project which aims to create a model, which integrates IT Security solutions
in industrial information systems. This model includes the selection of the assets that
need to be protected, the threat analysis, risk assessment, and a selection of actions and
implementations. Application specific models and solution cores should be developed
within the field of embedded systems, aiming at industrial information systems [ANSI].

A part off the ANSII project called policy focuses on automating network security detection
and response. The ANSII Policy engine can also analyse attack instances in a network in
order to provide more insight about how to deal with specific attack instances.

This thesis details a sub module, which is part of ANSII’s policy engine. The module
should analyses the alerts generated by the Intrusion Detection Systems in the network.
The analysis should provide information if an attack instance in the network is either
ongoing, terminated or the security components in place have still not responded to it.
Additional information which can be derived from the alerts is also to be provided, in the
form of meta data, an example for this would be the count of duplicate alerts contained
in the network.

2.2 Environment Specification

This section serves as an introduction to the problem domain and the different components
located in it. It will provide an overview of what an Intrusion Detection System is and how
it functions, how alerts are presented as a readable format, and what the Policy Decision
Points and Policy Enforcement Points functionality encompasses.
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2.2.1 Intrusion Detection Systems

Following explanations are taken from [Carv00, FGHW+08, Axel00] except if stated oth-
erwise.

The most well known types of Intrusion Detection Systems are Network Intrusion Detection
Systems(NIDS) which monitor network segments for malicious activity and Host Intrusion
Detection Systems(HIDS), which monitor a host from the network. An example of an
Intrusion Detection System would be an antivirus which classifies as a Host Intrusion
Detection System.

One reason to deploy different Intrusion Detection Systems, derives from the heterogeneity
of the different Intrusion Detection Systems that exist. Different Intrusion Detection
Systems detect different attacks, or classify attacks in another way. In addition to ensure
that attacks will definitely be detected, Intrusion Detection Systems need to overlap each
other in critical segments of a network, for example a network which contains hosts with
access to confidential information [CaCM02].

Intrusion Detection Systems also posses over a variety of detection methods. The first
method is used by so called signature based Intrusion Detection Systems. These try to
detect threats based on their specific signature. A signature can be envisioned as the
unique identifiers of a threat, and can be very specific about what type of threat has been
detected.

The second detection method is used by anomaly based Intrusion Detection Systems.
Anomaly detectors can detect threats by classifying them as anomalies. Anomalies are not
quantifiable and cannot be classified, this happens because the Intrusion Detection System
knows how normal network behaviour and network traffic looks like, and if something is
misbehaving then it is classified as an anomaly. Anomaly detectors are split into two
subtypes the self learning and the programmed anomaly detectors.

Self learning detectors observe the pristine state of a network, building an internal model
of how the network behaves. Self learning detectors are split into two subtypes depending
on how they observe. The first is the non time series observation which does not consider
time constrains and uses stochastic models to create the model of the pristine network.
The second one implements a time series which is identical to the previous one except it
also accounts for a time, that means for example that it knows how the traffic is at midday
with peak traffic, and differentiates it for example with the night time traffic where the
activity in the network is not so intense.

The other type of anomaly detectors are the programmed detectors. As the name states,
the detector has to be programmed, a person is required to teach the system what an
anomalous event looks like. A user controls what is considered normal and what is con-
sidered anomalous. These are also split in two categories. The first being the descriptive
statistics detection method which builds a normal statistical behaviour from the paramet-
ers it collects in a system. An example parameter is the statistical amount of failed logins.
The other category is called the default deny. The detector is explicitly told which of the
observed data is normal, any deviation to that is considered an anomalous event.

In layman term an anomaly detectors monitor for suspicious activity. Suspicious is not
directly malicious so it has to be considered that anomaly detectors are not as precise as
signature based, but can detect the attack types which have still to be identified.

When an Intrusion Detection System detects a suspicious event on the network or system
it monitors, it will generate an alert that contains the information about the source, the
target and the estimated type of the malicious event. An Event in this case, is a single
attack instance, since an attack is either a single attack or a combination of a variety of
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Figure 2.1: Visualised IDMEF Framework [HDFe07]

attacks. Intrusion Detection Systems cannot tell the difference between an attack type,
that means single attack instance and an attack instance, a multitude of single attack
instances, since they are only able to detect the type of a single attack [HoSi11].

2.2.2 Alert Representation

Alerts generated by Intrusion Detection System, are encoded in various formats. In order
to process these alerts, they have to be transformed into a common format. Explained
in detail in Section 2.3, normalisation is a process which transforms the alerts from the
initially encoded format into a common format [MaMZ09, ZaYZ08].

The information that a common format can offer is visualised in Figure 2.1. Figure 2.1
depicts one of the available concepts to represent normalized alerts. The concept in Fig-
ure 2.1. contains mandatory and option fields. The mandatory fields are the Analyser,
CreateTime and the Classification of the detected Event. The Classification contains the
name of the attack type, and optional references. The Analyser field contains information
about the Intrusion Detection System that identified the event, whereas the CreateTime
field the time the alert was generated. [RoCM09, HDFe07]

The core optional fields are the Source, Target and DetectTime fields. The Source and
Target field contain the source and the target of a detected event. These two optional
fields include additional fields, which contain information about a user, service, process
or a file that may be causes or receivers of a detected event. The DetectTime, which
might be different than the CreateTime, specifies the exact time an event was detected.
[RoCM09, HDFe07]

Although a common format allows the security experts, or the Policy Decision Point to
process all alerts in an identical manner, not only do different Intrusion Detection Systems
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provide differently encoded alerts, they also provide different information. For example
an HIDS can identify the particular service an event is targeting, whereas an NIDS can
identify the port(s) that a malicious event targeted. [MaMZ09, CaCM02]

2.2.3 Policy Decision Points and Policy Enforcement Points

Following definitions are taken from [G. W99, Reye04], except if stated otherwise.

The Policy Decision Point (PDP), is the component in charge for managing the security in
networks and networked components. The Policy Decision Point handles decisions of how
a system will react to a detected attack instance. The IETF defines the PDP as the point
where decisions that are to be applied on a network are created. The PDP processes the
policies and in combination with various network information decides which policy is to
be applied. The PDP does not implement the policies, but sends configuration data to the
so called Policy Enforcement Points(PEP). The PDP’s main responsibility is to locate the
policies in a network, and transform the syntax of those policies in a syntax understood
by the different PEPs contained in its network. It also monitors the state of the network
in order to validate if all the conditions that are defined in its policies are held.

The receiving end of the Policy’s Decision Points decisions is the Policy Enforcement Point
or PEP. The Policy Enforcement Point handles the actions a system takes based on defined
policies. The IETF defines the PEP as the place where decisions are actually enforced.
The PEP are devices that participate in the execution of decisions forwarded by the PDP,
a prime example of a PEP is a router or a firewall. The PEP functions by receiving
update configuration data which has to be implemented and in addition informs the PDP
of unknown situations that may occur in the system it is in place.

An example of a Policy Enforcement Point, would be the firewall. The firewall acts as a
border control mechanism. Its function is to block traffic from the outside, but can also
be utilized to block traffic originating from inside the network [Daya]. Blocking traffic
originating from inside a network helps for example to restrict movement of worms. This
prevents unauthorized access from and to the network [Daya]. As a PEP the firewalls
configuration can be changed by the Policy Decision Point, to block additional ports that
might be the target of an attack to the network.

In the networked system that is being investigated, the PDP receives the different alerts
and generates decisions upon whom the PEPs implement defensive actions. Before the
PDP receives the data, the alerts are processed in order to be presented in a better format,
add additional information and derive logical links between alerts. The next section will
introduce this process which allows the different alerts to be processed by the Policy
Decision Point. A subcomponent of that process is also the main research area for this
thesis.

2.3 Correlation Process

The field of research this thesis is based upon is called Alert Fusion or alert correlation
process [VVKK04, MaMZ09]. Figure 2.2 visualises the correlation process as defined in
[VVKK04] design. The explanations that follows is also based on the explanation delivered
in [VVKK04] with some adjustments taken from [MaMZ09].

Normalisation: Details the process for transforming an alert from the machine generated
format generated by an Intrusion Detection System to a common format. Further details
on the common formats is presented in Section 2.2.2

Pre Processing: Details the process which is in charge of augmenting the normalised
alerts, so that all fields contained in the common format contain meaningful values.
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Figure 2.2: Correlation Process [VVKK04]

Alert Fusion: Also defined as Alert Aggregation in [MaMZ09] is the process which
combines together alerts which share common traits. This means it combines alerts which
are detected independently by different Intrusion Detection Systems, but refer to the same
initial event

Alert Verification: This process filters out false positives which are received by the
system. In addition it verifies the success an attack had on the network in order to reduce
its influence in the correlation process when the attack had failed to produce a meaningful
threat to the system.

Thread Reconstruction: Reconstructs attacks which were launched by a single attacker
to a single target.

Attack Session Reconstruction: It is in charge of associating alerts which were gen-
erated by network Intrusion Detection Systems with alerts generated by host Intrusion
Detection Systems.

Focus Recognition: This process operates on alerts which contain a large number of
targeted devices. Its target is to identify the original source or the intended target of an
attack, for example in the case of a DDoS.

Multi Step Correlation: This component, analyses common patterns in attacks. The
patterns are composed of different attack vectors which can be distributed throughout a
network, but can be summed up as one attack.

Impact Analysis: Analyses the impact an attack had on the operation of the networks
individual components, and the individual assets which are monitored.

Prioritization: Assigns priorities to alerts, in order to quickly discard information which
can be considered irrelevant for the safety of a network.

Figure 2.2 is not a standardised concept, and there exists no fixed order for how they can
be implemented. Some of these processes can operate in parallel to each other and it is not
necessary for every alert to pass through every sub process [VVKK04]. Many researchers
define their own way of implementing the correlation process [MaMZ09, VVKK04]. The
only exception to this are Normalisation, Fusion, Correlation, which have a predefined
order. Normalisation always comes before subsequent processing takes place and is always
at the start of the correlation process chain. Alert fusion is always before alert correlation,
and alert correlation is the last part of the three to be implemented [MaMZ09, VVKK04].

The solution to be developed here, implements the Alert Fusion part of the chain visualised
in Figure 2.2. Subsequent sections will analyse the problems contained in this domain and
pose them as requirements to the solution which is to be to be developed.
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2.4 Identified Problems

Section 2.2 introduced the environment, the networked components that are to be invest-
igated. Section 2.3 introduced the Alert Correlation Process where the sub process Alert
Aggregation is essentially the approach used to solve the problems in this thesis. This
section will introduce the problems identified in every part of the information chain of the
environment presented previously.

2.4.1 Alert Stream

Nowadays network administrators, increasingly deploy a large number of Intrusion Detec-
tion Systems, which have overlapping domains. This is done in order to secure critical
regions in a network. These critical regions might contain services which are used in crit-
ical infrastructures , or sensitive company information. The increasing number of deployed
Intrusion Detection Systems, simultaneously increases the amount of alerts generated per
event. Thus the alert stream generated is also increased substantially [MaMZ09, Cupp01].

Through the overlapping domains, an increasing number of alerts is going to be referring
to the same event. The consequence is that the receiving end of the alerts, the PDP or
the system administrator, gets flooded with duplicate alerts [MaMZ09, Cupp01]. In the
domain of ANSII the receiving end is the Policy Decision Point. The Policy Decision Point,
as explained in Section 2.2.3, receives the events and in turn generates decisions based on
conditions contained in its configuration.

The Policy Decision Point, will generate a decision for every alert received, since the system
does not posses the ability to remember which alert it processed and which alert is new to
the system. This means that if ten alerts arrive referring to the same event instance, the
PDP will generate 10 decisions which will be more or less identical if the alerts contain the
same information and satisfy the same conditions specified in the PDP for a decision. This
happens because, even if the PDP does contain other actions it will always consider the
most cost effective measure to implement. If the conditions provided from the alerts do not
change between the alert instances, the PDP will always generate the same action. Thus
it is unnecessary for the PDP to receive the alerts which provide the same information,
that means the same conditions, as in the end the decision that will be generated will be
the same.

The decisions themselves are received by the Policy Enforcement Points. These will then
implement the decision in form of an action. A prime example for an action would be the
reboot of a virtual machine. If the reboot action is executed 10 times in a row, because of
the received decisions, the virtual machine would have a significant down time, attributed
to the actions undertaken by the system that is meant to protect it.

The solution to this problem is to filter out the alerts that have already been seen by the
system from the alert stream. To identify these alerts and classify these alerts, a solution
has to, based on how alerts are represented, find their common traits in the mandatory
fields of the common alert format, for example if two alerts contain the same classification,
originate from the same IDS and target refers to the same host then the alerts would be
similar or duplicate. A solution should serve the PDP only the necessary information for
generating a decision, in order to increase the efficacy of the PDP in its decision making
process, by reducing the process of trying to find a matching rule. In addition the solution
to be developed should act as the PDPs memory, by saving the alerts going to towards
the PDP, in order to remember which alerts were seen before by the PDP.

This approach would reduce the number of alerts reaching the PDP. But it introduces
some problems, as explained in Section 2.2.1 different IDS types provide different type of
information. For example, a NIDS and a HIDS generate 2 alerts referring to the same
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event, and the module blocks the alert generated by the HIDS. If the PDP contains a rule
which is tailored to the alert generated by the HIDS, the PDP will not react to the alert
forwarded towards it. Subsequent alerts are going to be blocked, and the Policy Decision
Point will not generate a decision, thus the Policy Enforcement Points will not react to
the attack.

2.4.2 Information Completeness

As highlighted in Section 2.4.1, by blocking alerts, vital information might also get lost.
Illustrated in the example of Section 2.5, this information might be essential for the PDP
in order to generate a decision, for example the service that is under attack. In addition,
there is no information about the alert stream itself, e.g. one could count the amount of
alerts coming through that display identical data.

An example to understand the information that can be derived by the alert stream is to
consider the following example, an event detected by an IDS classifies as a low severity
event. The event itself is not considered as serious, since no action has to be taken, but
what happens if the event is repeated 100 times in a row. In this case, if the PDP had
this information it could consider the event as a serious threat to the system, and thus
generate decisions in order to invoke defensive actions.

To engage and solve the above problems here, the essential solution is to use alert ag-
gregation, in which similar alerts are aggregated to one alert. Existing solutions such as
[PoNe97], do provide alert aggregation mechanics, but they do not provide any inform-
ation about the alert stream. In addition, the focus of most projects is the correlation
process itself [MaMZ09] without paying attention to the aggregation part of the process
chain displayed in Figure 2.2.

By providing the system with aggregated alerts, the first benefit is that the Policy Decision
Point will receive all the information about an a detected event, attack-instance, which
deals with the problem introduced by blocking the alerts. The additional information
collected by the alert stream, can enable the Policy Decision Point to be more flexible,
since the alert aggregation and information gathering can change the conditions that a
normal alerts would provide.

2.4.3 Interaction with Policy Enforcement Points

Another subject that is not handled by existing solutions is the process of relaying feedback
of the actions enforced in the network. In a traditional system, actions are implemented
either by the Policy Enforcement Points or the system administrator. An action can be
distinguished into three possible cases, the first being when an action can be successfully
applied onto a target device/system/network. This means that the enforcement points did
not get any errors in implementing the action. The second case for an action is when the
action fails to implement. This means that the Policy Enforcement Points, or the security
administrator, could not successfully implement this action, where the cause for this can
vary, for example the attack instance is blocking the action from being implemented.
Another part of the actions are the actions that have not been executed yet. Although the
Policy Enforcement Points and administrators do posses a variety of actions that can be
implemented, most of the time the measure which has the lowest cost for all the actors in
the network is implemented. The PEP and the administrator, although having information
about outcome of the process of implementing an action, they cannot infer if an action
successfully alleviated a detected attack instance.

To tackle this problem, the Policy Enforcement Point should relay the feedback about
the outcomes when implementing an action. The feedback should be structured in such
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way, that it includes the actions successfully implemented, those who failed to implement
and the actions that have yet to be tried. The successfully implemented actions field, will
enable the security system in place to recognize if a measure was successful in dealing with
the attack instance, since if any alert arriving after the action was implemented signals
that the attack instance is still persisting in the network. The only caveat here is when the
attack is performed via an external source. It cannot be distinguished between if an action
that was taken was executed successfully, resolved the detected attack instance, only for
the attack instance to re- emerge because the target system is getting infected by another
source, for example a USB, and an action that although was successfully executed, did not
seem to defuse the detected attack instance.

The actions that the PEPs determined to have failed to implement , and those that still
haven’t been implemented yet, provide the Policy Decision Point with additional actions
that still haven’t been used to resolve the attack instance. For example for a persistent
attack instance, the Policy Decision Point could consider implementing actions that failed
to implement or that have yet to be implemented, which although may come at the penalty
of increased costs, are able to resolve the attack instance. Some problems that can be
considered here is that the feedback from the Policy Enforcement Points might introduce
network lag, or be abused by attackers by including spoofed feedbacks. This problems are
not handled here, since it is not in the scope of this analysis, but are touched as part of
Chapter 6.

Figure 2.3: Decision tree for Actions

Figure 2.3 highlights the benefits of having feedback relayed back from the Policy Enforce-
ment Points in the form of a decision tree. By relaying feedback it can determined if any
action that has been triggered by a specific alert also got successfully implemented, by
examining if feedback for a specific has been received after the specific alert was forwarded
to the PDP.
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The Policy Enforcement Points can determine if an action was successfully executed in the
target system. This can be identified by them, since for example an action that fails to
implement can cause an exception to be thrown. In the end the Policy Decision Point can
determine if an action successfully resolved an attack instance, or if it failed to produce
any results. The Policy Decision Point cannot determine why the action did not produce
any results in resolving the attack instance, since it could be that the root cause of the
attack instance was not dealt with.

2.4.4 Dynamic Aggregation and Default Behaviour

Although alert aggregation and the feedback solve most of the problems, a minor problem
still exists. Today, a variety of policy specification language and a variety of pre build
policy solutions exist. If the above a solution is to be implemented, it would require from
the administrators, to adapt the rules in every Policy Decision Point according to the way
the aggregation is performed, and to how and what aggregation data is collected. This is
especially hard in networks that contain a large enough amount of policy decision points,
since everyone of them has to be manually adapted to the solution, and to any updates or
changes that the solution introduces later on.

The problem here to only including dynamic generated aggregation rules, is when no rules
exist for a specific attack classification. To counter this, the solution should implement a
default aggregation behaviour, in order to be able to handle and identify duplicate alerts
when no dynamic configuration exists. The default behaviour should aggregate the content
based on common fields contained in the alerts.

A core problems of the dynamic rules concept, is that the pre-processing that takes place
will inadvertently add time-delay between the time the alerts will reach the Policy Decision
Point, thus adding a time-delay to when an action is implemented. In addition the dynamic
aggregation rules can also serve as an attack vector, through the configuration file. An
attacker could provide a fake configuration which enables him to circumvent the solution,
thus the solution would provide false information to the Policy Decision Point. These
problems are over the scope of this Chapter, thus want be handled here, but are worth
to be mentioned in order to understand some of the trade-offs that might come with the
proposed solution. These subjects will be analysed further as part of Chapter 6.

2.5 Sample Scenario

As stated in Section 2.2.3 the Policy Decision Point receives events. An alert describes a
detected event in the network, which is thought to be non-conforming(anomaly detection)
or malicious(signature detection). In ANSII, the Policy Decision Point, receives the alerts
in order to automate the reaction to attack instances. The alerts are previously normalised
into a common format, for example the IDMEF format presented in Section 2.2.2. The
following example will portray the problems identified above in a simple scenario, in order
to enable the visualisation of the concepts presented throughout this chapter.

Figure 2.4 depicts the network that is going to serve as an example. The network here
contains three Intrusion Detection Systems, a Host computer, a Policy Decision Point and
a Policy Enforcement Point. The Intrusion Detection Systems are split in the following
way:

• HIDS monitors the activity on the host. Is similar to an anti virus system.

• NIDS1 monitors the network segment, where the Host is located.

• NIDS2 monitors a network which partly overlaps with the network of NIDS1, but
is another type of NIDS.
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Figure 2.4: Sample Network

An attacker starts using a Distributed Denial of Service(DDoS) attack against the Internet
Information Services service running on the Host. The Intrusion Detection Systems, will
detect the DDoS as nonconforming, non regular traffic event, and will therefore generate
an alert containing the information about the source, target, classification of the attack.

Although the alerts describe the same malicious event(the DDoS), they contain different
information. The HIDS, captures the attack from the host’s point of view. The information
contained in the alert generated by the HIDS contains more information about which
service was specifically targeted and which files might have been targeted. The NIDSs
contain more network specific information, the individual ports and have a more accurate
picture from where the attack is coming from, for example multiple sources. Considering
that the NIDSs are heterogeneous, NIDS1 and NIDS2 contain different information since
each one of the has a different view of the system. Here the concept talked about in Section
2.4.1 should become clear. Although the alerts contain different types of information, they
are similar, since they describe the same event just from different point of views.

The alerts, will reach the Policy Decision Point. The PDP is in charge of processing the
Alerts, and to generate decisions on what actions are to be used against the underlying
event. The decisions generated in the Policy Decision Point, are specified in a condition
then action concept. The conditions are mapped to one ore more actions, and the actions,
are chosen to be implemented based on their cost. The PDP in the scenario of Figure 2.4
contains the following condition:When Classification equal to DDoS, for which it executes
the following action: Restart the Host.

The actions can change if the conditions change, as mentioned in 2.4.3. Since the alerts
generated correspond to the same attack instance, no matter how many alerts arrive, since
the environment of the conditions does not change, the same action is going to be executed
for those alerts. If in the example above, the DDoS is performed continuously, it will lead
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to the generation of a huge number of alerts which always invoke the same action, as the
environment does not change and thus the same conditions will be activated over and over
again. This is also a core problem in a network with a large number of deployed Intrusion
Detection Systems [MaMZ09]. One of the reasons that this can be considered a problem, is
that when enough alerts have accumulated, the Policy Enforcement Points in the network
will be too involved in reacting to the one event that generated the alerts, that it may not
react to alerts which refer to an event of a lower priority. A solution to his would be the
requirement posed as part of Section 2.4.1 where duplicate alerts are to be blocked.

As explained in Section 2.4.1 and 2.4.2, if duplicate alerts are to be blocked the information
which may be crucial for a decision, that means information that brings a change to the
environment of the detected attack instance, may also accidentally get blocked, even if it
may invoke a new type of decision. If the rule specifies a specific service that should be
the target of the attack before enforcing any actions, then if the Alert generated by the
HIDS gets blocked, no measure will be implemented to resolve the event that generated
the Alerts. To alleviate this, in Section 2.4.2 it was defined that no information should
be discarded, for example information about the targeted service, but rather be saved
together with informations which can be derived by inspecting the Alert Stream. This
should ensure that even if the solution does not know the rules contained in the Policy
Decision Point, it will always gather additional Information in order to force a change in
environment conditions, for example through the total amount of accumulated alerts.

After the PDP generates a decision, it forwards updated configurations to the PEPs in
order to enforce the actions decided by the PDP. The PEP will implement the actions
chosen by the PDP. In the case of the Policy Enforcement Point, it does not provide any
additional information on whether or not an action was successfully implemented (not
successful in resolving the attack instance) or failed because of an error. This was detailed
in 2.4.3, and Figure 2.3 illustrates the insight that can be gained by providing and saving
feedback information on the actions. It also helps to provide a more complete picture of
what happens in the network. The feedback will also help determine which actions are
not effective against a particular attack instance, if they were successfully executed but
did not have the capability to resolve the attack instance.

2.6 Summary

and how each of these devices function. By having IDSs distributed in overlapping domains
a number of alerts is created that may be identical to each other. In order to understand
links between events, alerts are analysed through a correlation process. Alert aggregation is
part of the correlation process, which is an essential tool in order to derive more information
from the alerts, by eliminating duplicates and fusing information, and the main solution
domain of this thesis.

This chapter identified four problems which are mapped to following requirements:

• R1: Elimination of duplicates in the alert stream, and as a subsequent side effect
reduce the volume of alerts.

• R2: Prevent the loss of information when blocking alerts

• R3: Communicate with the Policy Enforcement Point, in order to receive feedback
about performed actions.

• R4: Flexibility in policy specification, through dynamic provided rules
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R3 is an essential part of the solution since as mention in Section 2.4.3, through the
feedback provided more insight can be gained on how effective a defensive measure is
against a specific attack instances.

R4 should simplify the rule specification in PDP, since it tries to reduce the process of
adapting the rules to the content that would be provided by the solution which is to be
developed.



3. Related Work

3.1 Field of Research

As explained in Section 2 the research field is called alert correlation process or Alert
Fusion. The main focus of the research is to solve the problem that arises when many
IDS systems are present in a networked environment. Alert fusion describes the format
conversion phase and is divided in the processes specified in Section 2.3.

Alert aggregation has as its main function to group alerts together which present similar
traits, the alerts are called similar since the word identical denotes that they contain the
same information which is not the case, since the information differs from alert to alert( a
prime example would be the time of detection which varies between alerts almost always
even if the are talking about the same alert) [VVKK04, MaMZ09]

Alert correlation tries to identify logical relations between the alerts. Alert correlation is
usually performed after alert aggregation, and this explains also way a number of papers
discussed below feature alert aggregation even if it is not the main focus of the papers.
Although the main focus of this thesis is alert aggregation in automated environments,
most of the research presented here is rather either describing the process as a whole, or
focusing on alert correlation [VVKK04, MaMZ09]

Similar to the system being specified here are so-called Intrusion Response Systems or
IRS. These systems combine monitoring and reacting in one package. The approaches
themselves are divided in three principal categories [Carv00].

1. Notification Systems: If an attack is detected, then the system administrator or the
security system is to be notified. The response is left up to the System Administrator.

2. Manual Response: Offers a variety of pre-programmed responses that can be initiated
at the request of the System Administrator. Again it requires human interaction in
order to repel attacks.

3. Automatic Intrusion Response: The systems do not wait for the System Adminis-
trator to respond, but rather contain a set of responses. These type of systems are
again split into their own subcategories.

• Simple Decision Table: Responses associated with an attack that can be detec-
ted. This is a one to one mapping of reactions to certain attack classifications,
there are no alternative actions to be taken by the system.
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• Rule-Based decision module: This type of IRS implements a variety of rules to
allow the system to implement varying responses based on those rules. These
systems are very similar to the concept detailed in this thesis.

At the time of writing this thesis, of the 56 IRS systems available, only 17 implement an
automatic response behaviour. Of these 17 only 4 of the systems implement a Rule-Based
decision module [Carv00].

The most notable of the Rule-Based IRS systems, is EMERALD. EMERALD stands for
Event Monitoring Enabling Responding to Anomalous Live Disturbances is on the most
similar approaches to the approached that is detailed in this thesis. It is diversified imple-
menting a system that can be distributed throughout network domains, and implements
misuse and anomaly detection systems. Target base of EMERALD are large based en-
terprise networks with the need for a scalable intrusion detection and response system
[Carv00, FGHW+08].

EMERALDs architecture is hierarchical. It includes its own custom IDS system, which is
again has a strict hierarchy. It is split in following components [PoNe97, FGHW+08]:

• Service Analysis: Detects misuse of individual network components in a single do-
main

• Domain-wide Analysis: Detects misuse across a number of components in a single
domain, the difference to the service analysis is that instead of looking for misuses on
single components it targets attacks that are distributed on a number of components
in one domain.

• Enterprise-wide Analysis: Performs both of the above functionalities but across all
domains contained in the enterprise network.

The NIDSs in EMERALD are called Monitor. They are only responsible to monitor
the network and detect any event classified by them as an attack-instance. EMERALDs
Monitor architecture is the core of the architecture. The monitor itself also follows a
hierarchical pattern implementing a number of components at its basis.

• Profiler Engine: a statistical anomaly detection engine.

• Signature Engine: implements the signature based detection engine.

• Resolver : A coordinator for analysis and response

• Resource Object : A library that can be plugged in containing the data of the three
other components

The automatic response system,is handled by the Resolver. By employing expert rules,
it receives the events as alerts and invokes a variety of response handlers. The responses
here are handled by two specific metrics.

• Threshold: which defines how much evidence should be present before using a
measure

• Severity: which defines the cost of using the specific response actions
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As explained in Section 2.3 alert aggregation is part of the correlation process. EMERALD
also uses aggregation as part of the correlation engine. Aggregation is implemented by
employing a concept called alert threat. Alerts received by EMERALDS modules, are
considered part of the same threat if they come from the same sensor, and contain the
same classification. EMERALD treats the subsequent alerts arriving by adding them into
the existing threat [Carv00, PoNe97, FGHW+08].

The core difference to our approach that can be observed in regards to EMERALD, is that
our module also tries to address the problem of missing feedback in order to provide more
flexible solutions to the Policy Decision and Enforcement Point. In addition no advanced
rules are specified apart from the expert rules, aggregation data is collected using static
modifiers.

In [DeWe01], Debar and Wespi describe an aggregation method again as part of their
overall correlation process. Alerts are treated the same if identical in the three fields
Classification, Target and Source Address, based on the representation described in 2.2.2.
The aggregation system portrays common alerts as the triple (src,dest,class). To denote
similar fields the algorithm employed uses a wild card *.

For example:

• (src,dest,*) if alerts are containing the same classification

• (*,dest,class) if alerts are contain the same source

• (*,dest,*) if they contain the same classification and same source

The aggregation method is only used to reduce the volume of received alerts. The cor-
relation component works on the situations provided by the aggregation component. The
difference to our approach is that the feature selection here is static, and alerts are cat-
egorized on only three features. No feedback is included in the alerts forwarded and in
addition no aggregation data is collected.

Another correlation engine that employs aggregation is CRIM from the MIRADOR pro-
ject. CRIM uses predicate logic to quantify the alerts, and the alerts are stored in a
relational database. The relational database is used to identify the similarity on the dif-
ferent alert fields. Through expert rules the similarities between the alerts create clusters.
The clusters then are merged together using an aggregation algorithm. The algorithm
produces an indicator called stability, that represents when an alert can be reported. The
cluster stability is a variable that depends on the type of the attack.

[FaJM09] proposes an architecture to aggregate alerts in distribute IDS implementations.
A centralized IDS collects alerts from client IDSs. An aggregation agent aggregates the
alerts which are forwarded to it from the central IDS agent. The aim is to improve
performance between the heterogeneous central IDSs that are placed in the network. The
aggregation algorithm is as follows:

1. Alerts are analysed and placed into four classes: discover, scan, dos, privilege escal-
ation.

2. The class placement depends on the type of attack detected. For example a port
scan would be placed in the dos class.

3. Alerts are treated similar based on the class they have been placed
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4. Alert fields are divided into four classes depending on the type of their value. The
classes are categorical, numerical, temporal and character types. For example the
time of detection is a temporal value.

5. The classification serve as a precursor for implementing a feature similarity compu-
tation as categorical and numerical values yield either true if their identical and false
otherwise.

6. Their algorithm takes as input the original alert, a meta-alert list, a predefined
computing library and a configuration file. The output creates a new or an updated
meta-alert (fused alert).

The approach differs to then detailed in this paper is that the feedback is not considered
in order to keep track of what was implemented as a counter measure.

[MaMZ09] focus is alert aggregation. It tries to reduce the false positives from alerts
generated by anomaly detection IDS. They advocated the use of fuzzy time sets, instead
of fixed time intervals, to determine similarity of alerts. Because on anomaly based IDSs
the anomaly is not known a-priori, this breaks the limiting factor introduced by this. What
is again not considered here is the feedback and the insight that can be won out of it was
explained in Section 2.4.3.

3.2 Difference of Thesis Approach

The approaches presented as part of the Related work, do not consider the insight that
can be learned by analysing the that the system implements and the effect that they
produce. In addition the expert rules create the need for creating different policies, since
no rules for aggregating are directly derived from the policies. This thesis takes under
consideration the matter of relaying feedback about the defensive actions from the PEPs
and how to derive aggregation rules based on the rules that the Policy Decision Point
contains. Through the feedback, the solution tries to provide insight on what actions can
be used to resolve a specific threat.

From the systems and solutions detailed in related works, EMERALDs aggregation ap-
proach is the most similar to the solution that is presented in this thesis. Although it
eliminates the problem of fusing alerts together and presenting them as one unique in-
stance, it does not solve the problem posed in R3 of Section 2.6. No feedback is relayed
on the actions the IRS implemented in order to resolve the threat.

Most of the related work, details the correlation process as a whole, and not the aggreg-
ation part itself. Most of the solutions as in the case of EMERALD, reduce the number
of duplicates using alert aggregation, fuse alerts together in order to provide complete in-
formations about a specific threat, but do not consider feedback as an essential information
for creating automatic response mechanisms. In addition, none of the related work presen-
ted here consider providing a dynamic aggregation method which adapts to the changing
requirements of the Policy Decision Point.
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Section 2 explored the problems that arise when having a large number of Intrusion Detec-
tion Systems in a network. The core problems that will be addressed by our Aggregation
Module are:

• Remove duplicate alerts from the alert stream

• Aggregate alerts with common traits to a larger alert, with no information loss

• Provide additional data that can be inferred from the alert stream

• Provide additional insight to the events that generated the alerts, by including feed-
back on actions performed by the PEPs

• Provide an easy way to scale the solution, by dynamically aggregating using the
configuration of the local Policy Decision Point

Figure 4.1 depicts the Aggregation Module that needs to be added to the network. The
Aggregation Module’s position has to be between the alerts and the PDP, in order to
control the flow of alerts towards the PDP. Its main mission is to aggregate alerts, enhance
them with additional information and to block the duplicate alerts contained in the alert
stream, in order to provide the necessary information for the Policy Decision Point to make
a decision.

The alert produced in the Aggregation Module is going to be called a fused alert. A fused
alert contains all the information of the individual alerts that share common traits, such
as having the same classification. This is further elaborated in Section 4.3.2.

The Aggregation Module can also be viewed as the brain of the PDP since it stores alert
instances, filters them out based on the PDPs specific decision making need, in order to
make this information available when needed. The Aggregation Module will in addition
retain a list of the actions that were implemented in the network. From this point, the
Policy Decision Point can, through the feedback, use alternate actions to combat attack
instances which are unresolved.

If the Aggregation Module would have been placed in another location in the network, it
would not provide any benefit since it would not be able to pass any additional insight
to other security components, and would loose its purpose in pre-processing the alerts
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Figure 4.1: Alert Aggregation Module

before they reach the Policy Decision Point. In addition to this, the feedback which will
be provided by the Policy Enforcement Points, needs to be handled by the Aggregation
Module in order to be forwarded together with the alert that caused the action to be
implemented.

4.1 Definitions

In the design chapter, there is going to be an increased use of custom definitions. These
definitions will be elaborated here.

• Actions:Measures undertaken by the Policy Enforcement Points in a network or host,
in order to defend the network from detected attacks. Actions are derived from the
feedback received from the Policy Enforcement Points.

• Similar Alert: An alert which refers to the same instance of an attack, as a previously
saved one. Are also called duplicate alerts in other papers. We refrain from using
the term duplicate as duplicate refers to identical objects.

• Alert Aggregation: describes the combination of alerts which are similar. These
alerts may contain heterogeneous information, but they are referring to the same
event(Single attack-instance).

• Fused Alert: The product of alert aggregation. The alert that is going to be produced
by the Aggregation Module, which combines the heterogeneous information

• Repeated Alert: A similar alert which was received at the Aggregation Module,
after the Policy Decision and Enforcement Point hat already implemented an ac-
tion against the identified attack.
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• Triggered Alert: A fused alert which gets forwarded based on certain triggers. An
example trigger would be no action has been performed for the alert in the last 10
minutes.

• Meta data: Meta data are the additional information appended to the alert. Meta
data contains a number of aggregate data. and the actions performed by the Policy
Enforcement Points.

• Aggregate Data: Data that is derived from the alert stream. An example for aggreg-
ate data is the amount of similar alerts received.

4.2 Aggregation Module Components Overview

This section provides an overview of the Components that compose the Aggregation Mod-
ule. A detailed explanation of how the interplay and how the components functions is
provided in Section 4.3

4.2.1 Stream Filtering

Stream filtering is the component which is responsible for filtering the alert stream. Its
basic function is to filter the stream based on rules derived by the Policy Decision Point.
If for a specific classification, no rule exists in the PDPs configuration then, the Stream
Filtering component should define a default behaviour. The default behaviour filters alerts
that have already been seen by the Aggregation Module, and forward alerts that are per
4.1 repeated or triggered. This behaviour is discussed in more detail in Section 4.5.

The component satisfies the requirements set that not every alert should be forwarded
and duplicate alerts should be blocked, as stated in R1 of Section 2.6. In addition as
a subsequent positive side effect it helps reduce the traffic that is directed towards the
PDP. Last but not least, the component itself is here to change the PDP from a stateless
machine to a state-full machine by remembering which attack instances have already been
reported to the PDP.

4.2.2 Alert Fusion

Alert fusion is the component that will perform the alert aggregation and meta aggregate
data gathering. Its main functionality is to gather aggregate data from the alert stream
and provide an interface where the similar alerts are combined together, based on their
common traits. The data to aggregate are either derived from the rules contained in the
Policy Decision Point in the case of dynamic aggregation, or when no rules exist using
a pre-defined rules specified and executed by the default aggregation behaviour. The
aggregation process and the default data collected are detailed in Section 4.3.2.

Alert fusion is the component that will perform the alert aggregation and meta aggregate
data gathering. Its main functionality is to gather aggregate data from the alert stream
and provide an interface where the similar alerts are combined together, based on their
common traits. The data to aggregate are either derived from the rules contained in the
Policy Decision Point in the case of dynamic aggregation, or when no rules exist using
a pre-defined rules specified and executed by the default aggregation behaviour. The
aggregation process and the default data collected are detailed in Section 4.3.2.

The component should satisfy the requirement posed in Section 2.4.2 in which the indi-
vidual alert information should not be lost, and that the solution to be developed should
also derive information from the alert stream. Without this component the Aggregation
Module would not be able to provide the Policy Decision Point, with the information it



24 4. Design

may need to generate a decision. It gives the Policy Decision Point the complete picture
about an alert instance.

The Alert Fusion component will include a Memory Container in which all this information
is saved. This Memory Container should be accessible by other functional components
contained in the Aggregation Module, and from outside which may need to form statistics
about the alert, e.g. what attack classification is the hardest to react to with a specific
action.

4.2.3 Action Inclusion

This component is responsible for handling the feedback provided by the PEP. Using this
component the Aggregation Module can provide a list of actions that have been performed.
As explained in Section 2.4.3 action that are received from the Policy Enforcement Points
as feedback can be distinguished between actions that:

• Have been successfully Executed and Implemented ( No error was generated)

• Failed to Execute or Implement (e.g. An error was generated)

• Actions that were never Executed

This enables the Policy Decision Point to revise and develop new strategies for dealing with
specific attack instances. Together with the Alert Fusion and Stream Filtering components,
it enable the Aggregation Module to inform the Policy Decision Point if an action which
was successfully executed, had any effect on the intended targeted threat.

This component handles the feedback by fusing it together with the alerts that generated
the actions in the Memory Container of the Alert Fusion component. It satisfies the
requirement that the Aggregation Module should manage the feedback received from the
Policy Enforcement Points. One of the main features of the Aggregation Module are the
triggers. The triggers enable the Aggregation Module to forward alerts that either have
yet to be dealt with. The feedback in cooperation with the Stream Filtering component,
enables the Aggregation Module to access these triggers, since the main way to recognize
if the Policy Enforcement Point have performed an action for a specific alert is through
the feedback.

4.2.4 Dynamic Aggregation Rules

In order to simplify the definition of policies in the Policy Decision Point, the Aggregation
Module provides an interface which is in charge of receiving the rules specified in the PDP
as a configuration file.

To achieve this, a grammar is specified in Section 4.7. The main functionality of this
grammar is to explain how entries should look like in the configuration file. Each entry
represents one rule that is specified in the PDP. The transformation from rules to entries
in the configuration file is not going to be detailed here, as it is beyond the scope of the
thesis.

4.2.5 Component Order

Figure 4.2 depicts how the different components are placed together. Stream Filtering is
the first component to receive an alert. The Stream Filtering component sets the rules
for when an alert is forwarded. The Alert Fusion component is responsible to save the
individual alert information and combine similar alerts together in its Memory Container.
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Figure 4.2: Functional Components

The Memory Container should be accessible from the other components, in order to have
one central referral point for looking up if an alert was already seen by the Aggregation
Module.

The feedback received by the Action Inclusion component, has to be forwarded towards
the Alert Fusion component, in order for it to be saved into the Memory Container of
the Alert Fusion component. The Stream Filtering component also needs to know about
the feedback, in order to determine if an alert that was already seen is a Repeated Alert.
Through the actions, the Aggregation Module can also provide triggers for the alerts in
order for them to be forwarded which will be detailed in Section 4.5. In addition, if an
action has successfully been applied to an event, this means that the underlying event
which generated the alert has stopped existing, which raised an alert, and there is no
similar alert produced by the same event in the near future, then the alert can be regarded
as resolved and thus be removed from the Alert Fusions Memory Container.

Stream filtering and Alert Fusion form the basis of the forwarding logic. Alert fusion,
combines similar alerts together and the Stream Filtering takes care of the alert to be
forwarded. For this to work one of the two components must have a t Memory Container
in order to remember information about the different alerts. The Memory Container is
included as part of the Alert Fusion, where the Stream Filtering component can query
for further detail if it has to forward an alert. This design decision has been explained
in Section 4.2.2, and the Memory Container will be further detailed in Section 4.3.1 that
follows.

4.3 Functionality Logic

The components represent functional components which are mapped to the requirements
specified in Section 2. Below the functional components, the Aggregation Module has
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to implement some sort of logic in order to sort, combine and forward alerts. These in
addition to questions that arise are handled in this section.

4.3.1 Memory Container

The Memory Container should be accessible to the different components of the Aggregation
Module. Stream filtering should access the Memory Container in order to determine which
alerts are to be forwarded, by comparing the alert received with any saved instances.
The Action Inclusion should be able to access the Memory Container in order to append
information about the received feedback to the appropriate alert.

The Alert Fusion component, as mentioned in Section 4.2.2 has to contain the Memory
Container. The Memory Container is needed in order to save the first instance of new
alerts. This is done in order to remember which alerts have already passed through the
Aggregation Module, thus have already been seen by the Aggregation Module. In addi-
tion to this the Memory Container will serve as the location where the alert aggregation
happens, new information is added to the alert instance saved or update.

The Memory Container serves also as the location in which the information about the
feedback for the individual alerts is stored and where additional data from the alert stream
is contained for each alert is contained. A special case for the Memory Container are the
dynamic aggregation rules. For each rule that is derived, the Memory Container needs to
add a bucket, in which the individual alerts matching these rules are placed inside.

4.3.2 Aggregation Process

The aggregation process details how the individual alerts are aggregated together. For the
dynamic methods, aggregation data gathering is performed based on a-priori knowledge of
the conditions defined in the PDP, the aggregation of the individual alert field is as specified
in the default behaviour. In order for the Aggregation Module to aggregate alerts that are
considered similar through the dynamic rules, the alerts have to be grouped together. This
is done through the buckets located in the Memory Container of the Aggregation Module.
The buckets each contain separate meta data in which the content to be aggregated are
saved into.

For the default aggregation behaviour one of the core subjects in order to define how to
aggregate is the representation of the alerts. The Aggregation Module has to provide
default similarity and aggregation rules. For this three fields are to be considered here.
The source which specifies the source(s) of the attack, the target field which specifies the
target(s) of the attack, and the classification field, which specifies the type of the attack.
The most important factor for similarity is the classification field, if the classification is
the same then the attacks are more or less similar. If two alerts have the same target(s)
or source(s) or both, it can also be said that they are similar [LeLN04].

For the default aggregation behaviour the Aggregation Module needs to also collect ag-
gregate data, which serves the purpose of providing information which is not stored in
the alerts representation and will be lost otherwise. The default behaviour should collect
information about:

• The amount of alerts fused together

• The time when the first instance of the alert was received by the Aggregation Module

• The time when the last occurrence of the alert was received by the Aggregation
Module
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In addition, since one of these traits is always present in an alert, it even be said that this
method would work for anomaly detectors. To aggregate alerts from anomaly detectors,
one can use static time windows[MaMZ09] between the detection times. These will be
pre-set time-windows in which an alert will be considered similar if it displays the same
source(s) or target(s) or both.

When an alert arrives, it gets stored in the Memory Container, in addition the detection
time specified in the common format will be saved as the time when the alert was first
seen. The next alert arriving will be checked in the fields classification, source and target.
If an alert displays the same classification following happens:

• The target(s), source(s) of the attack get combined together.

• For the aggregation data collected it will additionally increment a count which de-
notes how many alerts are combined together. Integer values in the alert are also
displayed as an average over all alerts.

For example if the first alert arriving has a severity of 1, and the subsequent similar
alert arriving a severity of two, the average value between the two,which since it is
always an integer value so in the example presented here the average is 1.5 and would
translate to 2, then the fused alert will contain a severity of 2.

• The detection time of every last received similar alert is saved as the time the alert
has last been seen.

If now an alert displays similar source(s) and/or target(s) they can be considered as not
being similar. This happens because the modules duty is to aggregate alerts and not
correlate them, since the classification points to the single attack instance detected. If a
rule is contained in the PDP specifying that an alert displaying similar source(s) and/or
target(s)is to be reacted upon, the Aggregation Module will treat the alert as similar but
not as part of its default behaviour but rather through the dynamic aggregation methods.

The aggregation behaviour using dynamic rules, derive the data to be aggregate and
the fields that produce similar alerts through a configuration file provided by the Policy
Decision Point. Each alert passing through the Aggregation Module is first queried from
the a-priori rules. The configuration received by the Policy Decision Point, also contains
what aggregation data should be provided. For example if the Policy Decision Point
contains a condition that says Do action A after target Host1 has been attacked by 5
different attack instances the a-priori method does the following:

• The target field is considered matching if it is host 1.

• The alerts information aggregated together are provided in the configuration file. In
this case it would be the classification

• The meta data would contain the number of alerts received, and the time of first
encounter plus the last encounter and in addition the amount of different classifica-
tions

• When the count of different classifications reaches the number 5, the alert will be
forwarded to the Policy Decision Point

An exception to this rule are anomaly detectors. Since they do not provide a concrete
classification but rather only refer to it as anomaly the default aggregation should treat
them as a special case. When the classification anomaly is encountered, the main aspects
of similarity would be the source(s) and target(s) contained in the alert. In this case a
static or fuzzy set time window can be used as in [PoNe97] or [MaMZ09].
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4.4 Feedback

Through the feedback, the Aggregation Module and the Policy Decision Point can detect
in which state a specific attack instance is, and develop new strategies for dealing with
the attack instance. Feedback also signifies a change in environment conditions, since for
examples actions that have been unable to resolve a specific attack instance will not be
considered for re-execution.

For example consider the sample network which is under attack from Figure 2.4, if an
action has been performed, but failed to produce any results, the subsequent alert detected,
states that the action has indeed failed. The Policy Enforcement Point can now implement
another action which may produce results. This way the PDP and PEP can be more
flexible in the face of attack instances which are difficult to resolve.

Figure 4.3: Timers

Reaction Timer: This timer is there to account for the time between when an alert has
been forwarded and when the feedback from the Policy Enforcement Points is expected to
arrive. Similar alerts that arrive in this period are blocked and stored by the Aggregation
Module and are not forwarded to the PDP.

Manifestation Timer: After an action has been performed, there is a critical area in
which the Aggregation Module has to allow the actions that have been performed, to take
effect. For example if an action restarts a host, the Aggregation Module has to wait for the
host to boot again before the action can manifest itself. Similar alerts arriving in this time
period, are again not forwarded to the Policy Decision Point, as the event that generated
the alerts do not carry a statement if the actions where indeed successful in resolving the
threat.

Threat Expiration Timer: After an action has been manifested the Aggregation Module
has to determine if the threat that was detected has been resolved. Any similar alert
arriving in this time window is classified as a repeated alert. The repeated alert is forwarded
to the Policy Decision Point together with the actions that have been performed to resolve
the threat. When the timer expires the alert can be cleaned by the Cleaner. The cleaning
process is detailed in Section 4.6.

4.4.1 Action Saving logic

The actions are split in three categories for all actions that can be successfully implemented
against a threat:

• Successful Actions:

Actions that have been successfully applied against a threat. This does not mean
that the action successfully cleaned or blocked a threat it mainly symbolises that the
action was successfully executed.
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• Failed Actions:

The exact opposite of a successful action. The PEP agent tried to implement an
action but failed. There can be various reasons why the action has failed, for example
that the threat is preventing the action from successfully executing. This has to be
included in the feedback in order for the Policy Decision Point to know that the
actions themselves could maybe alleviate a threat but were not able to be executed.

• Reserved Actions:

These are the actions that have yet to be tried out by the Policy Decision and
Enforcement mechanism. Since actions are implemented based on their effective
cost, most of the time the actions included here are the more expensive solutions.
They have to be included as part of the feedback in order for the Policy Decision
Point to know what actions have yet to be tried out.

The feedback also contains the ID of the alert that has been responded to. This is im-
portant in order for the Action Inclusion component to append the action to that specific
alert contained in the Memory Container of the Alert Fusion component. A fused alert
contains the list of the actions as part of its meta data field.

4.4.2 Problems

One of the core problems in this approach is when no condition is defined, thus no ac-
tion can be executed by the Enforcement Points. The default behaviour of the Aggreg-
ation Module tries to address this problem. By forwarding using the default behaviour,
a triggered alert is always executed after a certain time window T or at an amount X of
accumulated alerts as these variables are presented in more detail is Section 4.5. It is then
up to the PDP to determine that something is wrong and some action has to be taken.
Since no information is lost, the PDP should have enough data to execute a default routine
in order to address the exception.

4.5 Forward Logic

In this section the co operation between the thee component is explained. The forward
logic explains what alerts are forwarded and how this process determines which alerts have
to be forwarded. The analysis is done based on the steps displayed in Figure 4.4. In order
to filter alerts correctly while still being careful enough not to withhold operation critical
information happens as a cooperative process between Alert Fusion and Stream Filtering
for the initial alerts, and Action Inclusion and Stream Filtering for subsequent incoming
alerts.

Figure 4.4 depicts how alert forwarding is handled by the Aggregation Module. It can be
as in all cases in the aggregation be distinguished between the default and the dynamic
behaviour of the Aggregation Module, even if Figure 4.4 combines the two behaviours.

Alert Arrives: In this part of the forwarding logic process chain, the alert arrives in the
Aggregation Module and is added to a queue to be processed.

Information Saving, Memory and Enhancing are the parts of the Forwarding Process that
can be directly mapped to the Alert Fusion component.

Information Saving: Here there are again two different approaches on what kind of
information gets saved. The information that gets aggregated and how it is aggregated is
the same as detailed in Section 4.3.2. If an alert instance does not exist yet, one is created
in the Memory Container of the Alert Fusion component. For the dynamic aggregation
rules, there is no need to create new entries since every rule has its own predefined bucket.
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Figure 4.4: Module Forward Logic

Memory: This is the Memory Container as detailed in Section 4.3.1. It is their to store
the information of the alerts, the fused alert components. Additionally it contains the
buckets for the dynamic aggregation rules. The meta data transferred to the Enhancing
part of the chain are the Meta data detailed again in Section 4.3.2

Enhancing: This is the sub process of fusing the alerts. This is again happening in the
Memory Container, and follows the steps specified in Section 4.3.2. The enhancing process
is the alert aggregation process.

Conditions Apply? If an alert is a similar alert the process checks the different types of
alerts. The initial conditions are as follows:

• Dynamic Aggregation Behaviour: These conditions are directly specified by the con-
ditions defined in the Policy Decision Point. An example would be if an alert contains
the classification port scan to forward the alert when it occurs again in the next three
days.

• Default Aggregation Behaviour: For the default aggregation behaviour, the initial
condition for an alert to be forwarded is for the alert to be a new alert instance.

The initial conditions apply to alerts that have still not been forwarded or reacted upon.
The forwarding logic has to also account for Repeated and Triggered Alerts. For this the
Aggregation Module employees the three timers which can be visualised in Figure 4.3 and
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were explained in Section 4.4. These add additional conditions which are considered for
alerts that already exist in the Memory Container and which have been forwarded to the
PDP. This is a synergy between the Action Inclusion and Stream Filtering component.

Figure 4.5: Timer Example

Figure 4.5 visualises an example to understand the logic of timers, and how they function
in order to enable the Stream Filtering component to make a decision if an alert is going
to be forwarded. An IDS detects an event, and for which it generates AlertOne. Aler-
tOne is received by the Aggregation Module and forwarded to the PDP as defined by the
default behaviour. The PDP generates a Decision which is forwarded to the PEP to be
implemented.

The PEP generates an action called, ActionOne which was successfully implemented.
Subsequently the PEP generates a feedback message about the action and forwards it to
the Aggregation Module. Parallel to this the IDS generates AlertTwo which arrives at
the Aggregation Module after the feedback. Since the Aggregation Module implements
the manifestation timer, ActionOne is not considered to have failed, since it still hasn’t
manifested in the targeted Host. Subsequently AlertTwo is not forwarded to the PDP.

One of the problems to consider here is the time-delay which can occur between when an
alert is sent by an IDS and when it should arrive at the Aggregation Module. Alerts have
to be sorted based on the time they have been detected, in order to account also for the
possibility of latency influencing the arrival time of the alerts. This is important in order
to identify repeated alerts. The case of a repeated alert occurs only if the Detection Time
contained in the IDMEF is after the Implementation Time of the action and after the
Manifestation Timer has expired.

Through the timers, the Aggregation Module can implement the concept of triggered
alerts. Triggered alerts can be used for the Dynamic Behaviour as well as the Default
Behaviour.

Triggered Conditions : If an alert is not a repeated alert, the Aggregation Module
needs to check if any trigger applies to the alert. There are two different cases to consider
here. The default aggregation behaviour and the dynamic aggregation behaviour both use
a timed trigger by employing a variable T, which is the same as specified in Section 4.4.2.
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Variable T :

Denotes the maximum time that needs to pass without receiving feedback of a performed
action. This variable reflects the Reaction Timer.

In addition to variable T, the default aggregation behaviour employees a variable X, and
is also the one defined in 4.4.2.

Variable X :

Denotes the size, the amount of similar alerts that have been aggregated together, a fused
alert needs to reach in order to be considered by the Aggregation Module as significant,
should the Policy Decision and Enforcement mechanism not react at the first forwarded
alert. This variable is needed in order to up the significance of an alert, even before a
timer expires, in the case no immediate feedback is received, and the event that generated
the first alert is generating a huge amount of alerts.

BLOCK: The last step in the forwarding chain. The alert can be safely considered a
similar alert, and thus does not need to be forwarded. Block denotes the action of not
forwarding the alert to the Policy Decision Point. In Section 2, it was defined that no
information should get lost, and in addition the problem of blocking alerts was explored.
The conception of the triggered alerts and timers, helps defuse this problem at its core.
The Policy Decision Point will always get reminded about alerts which have yet to be
resolved.

4.6 Alert Cleaning Logic

An alert can be cleared from the Memory Container after it has been marked as resolved
by the Aggregation Modules components. The cleaning logic describes the process that
should be used in order to free space in the Memory Container and to clean the Memory
Container of alerts that have been dealt with.

The cleaning frees the space taken by alerts and saved meta data, which in turn enhances
the performance when looking for alerts, since the Stream Filtering component has to go
through fewer entries, in order to determine if an alert is new, similar or repeated.

In addition since saved alert information helps us to determine the state of the networks
attacks, a saved instance that does not reflect the current situation should be removed as
it provides inaccurate information. The cleaning also serves as an orientation point for the
forwarding logic, since the look up for the entries is done on the Memory Container.

Again as with every process in the Aggregation Module,a distinguishment has to be made
between the default behaviour of the Aggregation Module and the rule-based(a-priori)
behaviour which is determined by the configuration provided by the Policy Decision Point.

Another distinguishment that has to be made is between an asynchronous and a synchron-
ous cleaning function. The cleaning function can either run as a separate component, or
as part of the Aggregation Module. Before introducing the logic to cleaning, the benefits
and negatives of each approached have to be weighed.

Figure 4.6 depicts a graph which visualises the theoretical difference between a synchronous
and asynchronous cleaner would have on operating memory when the Aggregation Module
is under heavy load. The asynchronous mode would be able to deal with more alerts, since
the Aggregation Module will have more processing time to operate.

In contrast using a synchronous process to analyse the Memory Container each time an
alert is received, will certainly slow down the operation of the Aggregation Module, and
take up resources, thus reducing the amount of alerts that can be processed. If a large
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Figure 4.6: Theoretical Limits of A/Synchronous Cleaning on Memory

number of alerts arrive at the Aggregation Module, running synchronously would have
the problem, that a lot of alerts may get discarded if the Aggregation Module reaches its
maximum processing potential.

Figure 4.7: Theoretical Limits of A/Synchronous Cleaning on Processing

Although the asynchronous mode might have its benefits in the processing sector, there
is a problem concerning the space the alerts would take in the Memory Container. Fig-
ure 4.7 depicts the theoretical memory consumption of the Aggregation Module for the
asynchronous and synchronous cleaner, again the Aggregation Module being under heavy
load.

If the cleaning function runs in synchronous manner, memory space is not a consideration,
since the alerts are cleaned up immediately when they are due. In the asynchronous
version, memory consumption is a problem, which has to be dealt with, since the space
alerts take can exponentially rise when a substantial amount of new alerts arrive, since
the function would run only in specific time-windows or triggers.

Another approach would be to combine the benefits of both. Since the cleaning logic
has to clean alerts using two different approaches, the asynchronous and synchronous
functionality can be implemented in another manner. For alerts that are saved using



34 4. Design

the default behaviour the Aggregation Module can use an asynchronous approach. A
synchronous mode can be used to deal with alerts that are gathered based on the a-priori
rules provided by the Policy Decision Point.

Figure 4.8: Alert Cleaning Logic for Default Behaviour

Figure 4.8 depicts how the asynchronous functionality has to be implemented. In the
default behaviour in order for an alert to be removed from the Memory Container following
conditions have to apply:

• An action has been performed to deal with the alert: This means that no similar
alert arrived after the action was performed, thus is not a repeated alert.

• For each alert a variable Y has to be set. Variable Y denotes a static time window.
A static time window is the time in which two alerts are similar when they display
a common trait [MaMZ09].

In the case of the Cleaner, Y is the time variable between when an action has been
performed, and the next arriving similar alert is considered a repeated alert. It
reflects the sum of the Timers defined in Section 4.4.

From the first condition provides the trigger criteria for the cleaner to run as an asyn-
chronous instance. Through the first condition it can be inferred that the cleaner should
run only after an action has been received. If no action has been received there is no point
for the cleaner to run since no alert would adhere to the condition, thus no alert needs to
be cleaned from the Memory Container of the Aggregation Module.

In the case an alert is a match to one of the rules provided by the Policy Decision Point,
the cleaner functionality has to be implemented in a synchronous manner.

In the case of dynamic aggregation rules the Memory Container contains a bucket for each
rule. Buckets are needed in order to group alerts which match a rule together in order to
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perform the fusion process a-posteriori Each matching alert will be saved to the bucket
corresponding to the rule which applies to its case.

The cleaner will check the bucket of this alert first, and then proceed to check further
buckets. This way it is ensured that only the up-to-date necessary information is included
in the fused alerts. The buckets are restricted in size by the rules, and the entries might also
be restricted through. If for example the PDP only needs the alerts that come concurrently
in 24 hours, all alerts that are expired and of no interest after their occurrence will be
cleaned by the cleaning function.

The cleaner process stops processing in both cases when a new alert arrives. The meth-
ods above partly ensures that the Memory Container will stay at a stable level. In order
to ensure though that there is always enough memory available, the operator of the Ag-
gregation Module should set a thresh hold for the Aggregation Module, that initiates an
non-interruptible cleaning process when memory consumption is nearing critical levels.

The caveat to this approach us that some alerts are going to get dropped during the non-
interruptible cleaning process. One approach that could be used to avoid dropping alerts
is to allocate some of the memory to a queue which would store the alerts for processing.
This way the amount of alerts that would be dropped, could be minimized.

4.7 Dynamic Aggregation Grammar Description

R4 stated that the Aggregation Module should provide the Policy Decision Point the exact
information it needs. The Aggregation Module has to have a-priori knowledge of what the
Policy Decision Point reacts to. For this a universal grammar should be created, in which
the rules specified in the PDP can be translated as aggregation rules into the Aggregation
Module. This will grant the PDP more flexibility as it can define more flexible rules.

This section details the grammar to which the configuration files provided by the PDP
has to adhere to. The grammar serves the purpose of defining a common format to witch
policy specification languages can be translated. The configuration serves as a reference
point to the dynamic aggregation behaviour of the Aggregation Module which is to be
developed.

4.7.1 Concept

The grammar to be developed has to display some form of logic. The universal grammar
is needed, since there are various languages in which a Policy Decision Point can be pro-
grammed. The configuration will be in context free grammar in order to be able to impose
limits to the conditions, with respect to the Policy’s conditions.

Reason for dynamic aggregation method:

• Ease in configuration of policy decision points, no special rules have to be specified
to adhere to the aggregation the Aggregation Module would provide on its own

• No need to adapt the Policy Decision Point to the changing aggregation data collec-
tion or aggregation conditions.

• The dynamic derivation of aggregation rules enables content to be aggregated based
on the policies that are defined in the PDP.

• If a rule is not specified, then the Aggregation Module aggregates using the default
behaviour. If one exists then the exact information specified in the rule will be
aggregated and forwarded to the PDP.
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The rules are written in CFG notation and explain in the section that follow. The rules
have to be provided in the following specific order:

. → AdivBdivC
A → WindowRules | ε
B → F i l t e r R u l e s | ε
C → A g g r e g a t i o n R u l e s | ε
d i v →

Listing 4.1: Individual Entry Specification(CFG Notation)

The div terminal symbol is meant to divide the Rules. This has to happen in order for
them to have a boundary which denotes when one of the rules end and another rule begins.
ε denotes the empty set. The empty set is needed for when a Policy Decision Point has no
such rule. In addition since the configuration file has to be a common format, ε is there
to ensure that every rule is translate in the exact format provided by AdivBdivC, even if
one of the entities is missing.

The Aggregation Module receives this rules as a configuration file, which generates ag-
gregation methods based on the rules contained in the file. This enables the Aggregation
Module to reduce traffic towards the PDP even more, since alerts that interest the PDP
are forwarded when the conditions are an exact match. It also allows the operators to
manage the network, without concerning themselves with adapting the PDP to changing
aggregation rules. These rules will be provided in a file in which each line is a rule entry.

4.7.2 Semantic Order of an Entry

Figure 4.9: Alert Stream Filtering based on Policy Provided Rules

The entries contained in the configuration which is provided, must have a logical semantic
order order. Figure 4.9 depicts an alert stream, which is arriving at the Aggregation
Module. The first priority is to set a limit to the amount of alerts that are going to be
processed, in the figure this is indicated by the black brace. The window set here, can
be either based on time( for example every minute), or based on the a size of alerts e.g.
first 100 alerts. The reason for first filtering the alert stream, is observational in nature.
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WindowRules → T | S | T ’ or ’ S
T → xTM
TM → ’ d ’ | ’ h ’ | ’m’ | ’ s ’ | ’ms ’
S → x
x → ( 1 . . 9 ) ( , ) ? ( 0 . . 9 ) ∗

Listing 4.2: Window Rules CFG

If information is for example gathered in time, one can observe an alert stream every 24
hours in order to determine the impact the identified alerts have on the network.

After imposing a limit to the alerts, the Aggregation Module has to filter out the alerts
that are of interest to the PDP, for the particular rule implemented. For example out of
the 100 alerts contained in the window, the Aggregation Module is only interested in alerts
containing the classification port scan. This has to be implemented in order to specifically
target the alerts that satisfy conditions defined in the PDPs rule set, but before gathering
any information about these alerts or fusing them together. Together with the time window
defined above, if a rule exists that observes the alert stream in 24 hour periods, it can filter
those alerts that are of interest in quantifying how serious a port scan attack might be.

After the alerts are filtered, aggregation data can be collected. For this any aggregate
information needed to be passed to the Policy Decision Point has to be placed at the end.
An example of aggregate information would be the count of alerts.

Continuing the example of the port scan classification, the PDP might want to count how
many alerts have been identified to be containing the classification port scan. All three
rules together now display a logical statement. An example would be that the Policy
Decision Point, contains a rule that implements an action against a port scan if in 24
hours, alerts that display the classification port scan have been observed more than 10
times.

4.7.3 Window Rules

Window rules allows the Aggregation Module, to observe the alerts based on their occur-
rence in a network. For example the PDP can have a rule to react to a port scans. Port
scans can happen in irregular time windows, but they do not have a high severity rating.

Because of this, the PDP might not react to the alert, since the severity is low and might
be a false positive. By specifying for example a time-window, for example 3 occurrences
in 3 days, the PDP can have a more flexible rule that it considers the port scan as high
severity when it occurs in this way. The Aggregation Module would save the alert and
discard it after 3 days.

Considering the above example the window rules has to consist of:

• Size of the window in measurements of time: The values has to specify a
time window. An example would be 24 hours.

• Numeric size of the window: The amount of alerts contained in the window to
be analysed.

• A delimiter which allows the input of both values This is needed in order
to provide both values. The delimiter here should be an OR expression in order to
achieve the FCFS logic in triggers
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Listing 4.2 visualises the concept of Window Rules as a CFG. This is a continuation of
Figure 4.1 from Section 4.7.1.

• T: Symbolises the time value.

• S: Symbolises the numeric length of the window

• TM: Symbolises the concrete time specification. d for day, h for hour, m for minutes,
s for seconds, ms for milliseconds.

• x: Symbolises the numeric value of, it has to be at least one digit long. Terminal
Symbol

• T ’or’ S: In order to allow both arguments to exist the connector between them
should be an OR statement. The reason for this is to adhere to the FCFS principle.

4.7.4 Filter Rules

The filter rules serve as a basis in responding to different attack scenarios. In the example
of a port scan attack, of interest to the Policy Decision Point is to react when an port
scan targets a specific host. When the alert is received by the Aggregation Module the
Aggregation Module will see that the alert contains the classification port scan, and in the
target field it contains host 1.

The filter rules have to include the following:

• Specify the fields of interest together with the value of interest (For example classi-
fication = ”port scan”)

The value should only be mapped with the following mathematical operands if its a
number: =, >, <, != . For strings, since the Aggregation Module will receive alerts
that have been normalised as explained in Section 2.3, the mathematical operands
’=’, ’ !=’ should be used.

In the case of strings, the mathematical operands denote string equality and string
in-equality, and do not check for semantic or other equalities. This is again attributed
to the fact that the alerts received by the Aggregation Module are normalised and
pre-processed before being received.

The dynamic aggregation method will quantify an alert as a match to the rules
when all the specified fields contain data for which the mathematical operation or
the string comparison provide the value of TRUE.

• Functions which operate on alert fields, which will produce a boolean value as their
end result.

This enables the Aggregation Module to include advanced functions. An operator
might want to include custom functions in the policy conditions, which take have
more advanced functionality than the plain mathematical functions. The function
has to yield a boolean function in order for it to be compatible to the previously
specified mathematical functions.

• Functions which operate on fields, but produce a number value as their end results.

In order to use more advanced calculations, there should be an options to use a
custom function. For example one could implement a function that assesses if an
alert has a classification of ’port scan’ and the severity is LOW, but contains several
targets that are high assets to produce a value which determines the impact for the
overall network.
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F i l t e r R u l e s→ L
L → E | (L) | L CON L | not L
E → b o o l F u n c t i o n | AnField SIGN y | A t F i e l d SIGNs

s | numFunction SIGN y
CON → ’ and ’ | ’ or ’ | ’ xor ’ | ’ nand ’ | ’ and not ’
SIGN → = | > | < | !=
SIGNS → ’= ’ | ’ != ’
s → s t r i n g
y → number

Listing 4.3: Filter Rules CFG notation

Figure 4.3 depicts the CFG notation of the Filter Rules. It is a continuation of Figure 4.3
in Section 4.7.1

• L: Denotes that more than one filter rule can be specified.

• E: Denotes a filter expression.

• CON: Denotes the allowed connections between the different filter rules.

• boolFunction: Denotes a custom function. This function is only allowed to provide
a boolean value.

• numFunction: Denotes a custom function. This function is only allowed to provide
a numerical value.

• AnField: Denotes the field of an Alert that contains an arithmetic value.

• AtField: Denotes the field of an Alert that contains a text value.

• SIGN: Denotes the allowed mathematical comparison between a field and a number
value

• SIGNS: Denotes the allowed string operation between a field and as string value.

• y: Denotes the numerical value a numerical Alert field has to be compared with.
Has to have at least 1 digit.

• s: Denotes the textual value an Alerts text field has to be compared with. Has to
have at least 1 symbol.

AnField and AtField have to be considered separately, since they contain two different
types of values. For the numerical values the Aggregation Module can perform 2 more
mathematical functions, namely > and <. Whereas the text fields of an alert are restricted
to the = and != operators. The Function has to yield a boolean value. The functions
themselves have are to be restricted in operating only on alert fields. As stated above an
operator might choose to perform more advanced mathematical or comparison functions
which cannot be attained by the simple mathematical operands =, !=, >, < .

SIGNS symbolises this comparison functions, they symbolise lexicographical string oper-
ations, the Aggregation Module is allowed to compare to strings if they are identical, since
the alerts that will be arriving will have been normalised and pre-processed. This means
that for example a DDoS will always be displayed as a Distributed Denial of Service, rather
than its abbreviation.
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A g g r e g a t i o n R u l e s → H
H → N | H CONA (P) | H CONA H | (H)
N → ( d i s t i n c t ) ? aggrFunct ion
P → P CON Z | (P CON (Z) | P CON P
Z → ( d i s t i n c t ) ? aggrFunct ion SIGN y
CON → ’ and ’ | ’ or ’ | ’ xor ’ | ’ nand ’ | ’ not ’
CONA → ’ | | ’
SIGN → = | > | < | !=
y → numbers

Listing 4.4: Aggregation Rules CFG notation

4.7.5 Aggregation Rules

The aggregation rules describe what aggregation data the Policy Decision Point needs in
order to create a decision for an alert. The port scan example above can help to visualise
this concept. The Policy Decision Point, as a continuance to the example in Section 4.7.4
contains a rule in which the Policy Enforcement Point will react if the port scan targets a
specific host.

Since a port scan might also be a false positive, the PDP reacts only if the average severity
of the alerts received equals 2 or if it has been received a total of 10 times. The counting
measurement on how often the alert has been received is different to the one specified in
the Window rules, since it is the count of filtered alert occurrences in the window specified
above. The Aggregation Module will then count the amount of alerts contained in the
bucket of the specific rule, and calculate their average severity. This data is then added
to the meta data of the bucket.

The aggregation rules have to include the following:

Functions that yield numerical values

These functions operate on the total of alerts contained in a bucket for a specific rule. The
Policy Decision Point can include functions that work on the entirety of the alert stream
such as the count of the alerts contained in a bucket, or the count of individual analysers
which identified an event.

• H: There are two cases of aggregation functions to be handled here

– N: A single aggregation functions that only collects data

– P & Z: An aggregation function which collects data, but also allows to filter
alerts and forward them based on triggers

• CON: Same as CON from Listing 4.3 explained in Section 4.7.4

• aggrFunction: A data collection functions, which aggregates alerts or alert fields.
An example would be ’count’. It can be differentiated between a distinct function and
a normal function. As in SQL the distinct functions only counts unique occurrences
of a field, entry or alert.

• SIGN: Same as in 4.7.4

• CONA: Symbolises the delimiter between different aggregation functions. For ex-
ample count || average

• y: A real number
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Aggregation rules provide two functionalities. The first functionality is to gather aggregate
data for the meta data which is going to be provided together with the alert. The second
functionality is to provide triggers for alert forwarding as specified in Section 4.5. An
example of a trigger in this case would be count = 10. This is provided through the P
letter of the grammar in Listing 4.4. It is different to the filters from Section 4.7.4 and
from the window specification in 4.7.3.

4.7.6 Example Entries

In order to visualise the concept of these entries, some samples are provided here, the
description specify the rule that is included in the Policy Decision Point. The rule is when
the Policy Decision Point will be able to make a decision.

<empty> t a r g e t =’ host1 ’ and c l a s s i f i c a t i o n =’ d e n i a l
o f s e r v i c e ’ d i s t i n c t count ( ana lyzer ID ) > 2

Listing 4.5: Denial of Service on Host 1, with more than 2 Alert Occurences

Listing 4.5, displays the entry in the configuration file where the Aggregation Module
forwards the alert only if a Denial of Service is performed on Host 1, and it was detected
by two IDS systems <empty> denotes the Window, as there is no need for one no window
is specified. target = ’host1’ and classification = ’denial of service’ denote the filter rules,
alerts matching this filter are chosen from the alert stream in order to be aggregated.
distinct count(analyzerID) > 2 denote the aggregation rules. The alert is only forwarded
if the fused alert have been generated by two unique IDSs.

<empty> d i s t i n c t count ( t a r g e t ) = 1 d i s t i n c t count (
c l a s s i f i c a t i o n ) > 5

Listing 4.6: A single host targeted by more than 5 Attacks

Listing 4.6 depicts the entry that corresponds for a rule when a host is targeted by five or
more attacks. <empty> denotes the Window Size, as there is none.( distinct count(target)
=1) is the filter rule when the unique targets contained in the alert are not exceeding
the number one. distinct count(classification) > 5, denotes the trigger condition for the
aggregation meta data collected. The alert will be forwarded if the amount of unique
attack instances performed on the targeted host exceeds the number 5.

5 m c l a s s i f i c a t i o n =’ d e n i a l o f s e r v i c e ’ d i s t i n c t
count ( ana lyzer ID ) > 4

Listing 4.7: Any denial of service targeting a variety of hosts. Identified by 4 or more
analysers in the last 5 minutes

Listing 4.7 depicts the entry that corresponds to a condition that will implement measure
if a DDoS attack targets a variety of hosts, and it is identified by 4 different IDSs. 5 m
denotes the window the alerts are chosen, this means that for every alert arriving in the
last 5 minutes it will check if any of its rules match. classification = ’denial of service’
denotes the filter rule, only alerts containing as classification DDoS are of interest here.
distinct count(analyzerID) > 4, denotes the aggregation and trigger rule, the alert is only
forwarded if this attack instance has been detected by 4 or more unique IDSs.

4.8 Summary

Chapter 4 provided a solution to the four requirements posed in Section 2.6.
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• Solution to R1: Stream Filtering limits the number of alerts forwarded to the PDP
by reducing duplicates.

• Solution to R2: Alert Fusion aggregates similar alerts, collects information from
the data-stream and creates an alert that contains all the information collected.

• Solution to R3: Action Inclusion receives the feedback and appends it to the alert
which caused the action.

• Solution to R4: The language defined in Section 4.7 takes care of dynamically
providing aggregation rules to the Alert Fusion component via a configuration that
is created.

The solution that is provided in this chapter should take care of the identified problems.
As input the Aggregation Module takes the alerts that are generated by the IDSs and
outputs it as combined alerts, and in addition appends additional information gathered
from the alerts.

It receives feedback of the implemented actions, and forwards alerts when they are still
representing not resolved threats to the PDP. This enables to monitor the state of threats
in the network through the alerts that are generated.
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In Section 4 the concept of the solution to be implemented was presented. This chapter
introduces the implementation of this solution. This chapter is structured in the following
way:

• 5.1 and 5.2: Section 5.1 introduces the ESPER Framework used to implement the
Aggregation Module functionality. Section 5.2 ANTLR is detailed which was used to
implement the parser for the Dynamic Rule Generation. In the end of this section the
reader should be able to understand how each framework is to be used to implement
the functionalities defined in 4

• 5.4: This Section introduces the code created for the implementation. Since the
implementation was not finished in time only minor parts of the code are going to
be explained.

5.1 Introduction to ESPER

ESPER is a framework that implements Complex Event Processing(CEP). Event pro-
cessing is a method which focuses in tracking and analysing large stream of information
which contain information(data) about events that are going to, or have happened, with
the purpose of deriving a conclusion from this information stream. CEP combines data
from multiple sources. Its purpose is to understand underlying events or patterns that
imply a more complicated conclusion than the original events. The final goal of CEP, is
to explain and identify more elaborate events, for example a threat, and respond to them
as quickly as possible[Luck12, Schm08, Schm11].

The events processed in CEP may happen across a variety of organisational layers. A core
application field of CEP are brokerage house, in which stock market feeds are analysed
in order to react to the fast changing values of stocks [Schm11]. The events analysed
can also be called a ”change of state” when measurements exceed predefined thresholds.
Analyst imply that CEP introduces a new way to identify patterns in real-time, and can
act as an enabler for better communication between businesses and changing IT and service
departments [McKa09].

In the case of the Aggregation Module, CEP can be used to identify common patterns in
Alerts. Since CEP relies on a variety techniques to infer the patters. These techniques are
according to [EtNi10]:
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• Event-pattern Detection

• Event-Abstraction

• Event filtering

• Event aggregation and transformation

• Modelling event hierarchies

• Detecting relationships between different events

• Abstracting an event-driven process

Since one of the main functionalities of the Aggregation Module is to filter and aggregate
events, CEP is a suitable method to implement in the Aggregation Module. In addition
since CEP can detect relationships between different events, it can also help detect the
relationship between an alert and the feedback about the actions implemented for a specific
alert. It automates the process of implementing an automation module.

There are a variety of solutions available, with one of the being ESPER. The reasons the
ESPER framework was chose for implementing the Aggregation Module are following:

• It allows to process a live-data stream using SQL-Like Statements ESPER does not
operate on a database, as SQL does, but it merely uses queries on data streams
passing through its engine.

• ESPER does not need a database in order to keep track of events, thus simplifying
the process of managing a memory container Since ESPER does not operate on a
database, it also does not need one to save events. This alleviates the problem of
managing a memory system, which are introduce for example when using a database.

• ESPER can be configured to automate the cleaning functionality of the Aggregation
Module ESPERs can be configured with rules, which automate the cleaning of entries
contained in its engine. This simplifies the process of creating a separate Cleaner.

• Since ESPER is a framework facilitating CEP it can detect patterns in events ESPER
can be used to identify common occurrences in events. In the case of the alerts, the
common occurrences are the similarities between the different alert fields.

• Allows to specify time-specific windows in which alerts are saved, enabling a more
manageable timer environment A detailed explanation to this characteristic is provided
in Section 5.1.2

The next Sections give a detailed explanation of the individual components employed by
ESPER.

5.1.1 Event Objects

The first component of ESPER are Event Objects. Event Objects are wrapper Objects,
which represent the Event Class to be analysed. Since the implementation of the Ag-
gregation Module is going to be in Java, Event Objects in this case are Plain Old Java
Objects (POJOs). The term POJO is used to indicate a normal Java Object with no
special functions. This means they are only restricted to the definitions of objects in the
Java Language Specification. A POJO does not extend pre-defined classes, does not im-
plement any interfaces and does not contain predefined annotation. It is mainly composed
of attributes, getters and setters. In ESPER POJOs are called Event beans [TeIn].



5.1. Introduction to ESPER 45

5.1.2 Event Processing Language(EPL)

The event processing language or EPL, is the CEP implementation of ESPER. It is an
SQL-like language which includes a number of improvements, and where queries are so-
called statements. The improvements over SQL are mainly event patterns and windows.

• Patterns:

Patterns are a powerful tool which defines patterns between events in a language.
For example, one can specify that a code segment is to run only if Event B occurs
before an Event A. Consider following use case to understand the concept, a security
system locks a user out when the user tries to type in his password(Event B), before
using the biometric scanner(Event A).

• Windows

One of the main differences of EPL to SQL. When ESPER queries a stream, as
opposed to SQL it also considers time and space. This introduces a variety of applic-
ations, for example that a statement saves only the first 100 alerts that are a match
to it.

An EPL statement is an equivalent of an SQL Query. ESPER contains a variety of objects
which manipulate, control and react to statements:

• Listener

A Listener in ESPER is an object which is initiated when a statement is activ-
ated. An active statement means that the query contained in the statement found a
matching event object. Every statement produced by ESPER can be assigned mul-
tiple listeners, and a single listener can be assigned to multiple statements. Further
detail is provided on the listener object in Section 5.1.3.

• Subscriber

A subscriber object in ESPER is similar in functionality to the Listener Object.
The main difference between the two constructs is that a subscriber receives the
fields received from a statement have be statically programmed. It is faster than a
listener object in processing event objects since the data a statement produces are
immediately forwarded to the subscriber.

• Event Processing Service Provider(EPService Provider)

The Event Processing Service Provider or EPService Provider is an object which
configures the ESPER Engine. Each instantiated ESPER Engine contains its own
Service Provider, in which the events to be processed have to be registered, and the
EPL statements have to be declared and registered [TeIn].

5.1.3 ESPER Listener

As explained above, Listeners are objects which are instantiated when a statement is
activated. This Section will further detail the functionality that Listeners can facilitate in
order for the reader to understand how the ESPER Engine handles matching statements.

When a Listener is instantiated by a statement which he is registered to, it receives an up-
date of the fields defined in a statement. A listener then can manipulate the data received,
by invoking methods which process the received data. It can in addition interact with the
ESPER Engine. This interaction is important, since listeners can forward manipulated
objects again to the engine in order to invoke a more elaborate statement.
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For example in the case of the default aggregation behaviour, an alert instance is cleaned
by the Aggregation Module if feedback has been received for the specific alert and a
predefined buffer period has passed. ESPER can contain four statements which take care
of the above logic:

• StatementOne: In charge of analysing the event stream to find common fields in
alerts.

• StatementTwo: In charge of analysing the alert stream for feedback matching alerts
contained in the engines memory.

• StatementThree: This statement is a pattern which clears an alert for cleaning if
feedback for the alert has been received.

• StatementFour : This statement cleans an alert instance and its feedback out of the
engines memory when certain pre-defined time limits have passed

For the statements above ESPER has to contain three listeners:

• ListenerOne: ListenerOne is directly registered to StatementOne. This listener fuses
similar alerts together, and has to forward this alerts to StatementThree in order to
activate the Pattern.

• ListenerTwo: ListenerTwo is directly registered to StatementTwo. It is in charge of
forwarding the feedback to StatementThree in order to validate the pattern defined
in StatementThree.

• ListenerThree: ListenerThree is directly registered to StatementThree. Its main
functionality is to forward the alert together with its feedback to StatementFour in
order to activate the cleaning timer.

The registered listeners are instantiated as defined in 5.1.2 only when the statement is ac-
tivated to which they are registered is activate. With the example above the reader should
now be able to understand the operational logic of Listeners, Statements and Patterns, and
how these can be used to implement the logic defined in Chapter 4. For more elaborate
examples to further understanding the reader should visit [ESPEa, ESPEb, TeIn].

5.2 ANTLR

Another Tool for Language Recognition or ANTLR, is a parser generator framework.
ANTLRs input is a Context Free Grammar, expressed using the Extended Backus Naur
Form (EBNF), to specify a certain language pattern. It will then proceed to generate a
recognizer for the specified grammar, which will read the input stream and in the case of
non conforming entries it will generate errors. Non conforming entries, are the entries that
do not follow the explicitly defined syntax form. The default action if no syntax errors are
found is for the program to exit. Custom actions can be defined for the elements of the
grammar, and will be automatically executed when an entry is identified which contains
the conforms to the syntax defined in the grammar element.
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5.3 Core Implementation Concept

This section maps the different Frameworks and Framework Components to functionalities
defined in Chapter 4.

ESPER will receive the alerts as event beans. A matching event will be forwarded to
the ESPER engine in order to be processed by a listener. Depending on whether the
default behaviour is to be engaged or the dynamic behaviour the events are stored in its
dedicated window. After that phase the last listener will forward the fused alert to the
Policy Decision Point. The default behaviour statement will be mapped to a subscriber
since the fields that are received from the engine are defined a-priori.

ANTLR will implement the grammar defined in Section 4.7. ANTLR will generate the
parser and lexer in order to generate EPLStatements based on the input received by
the configuration file. The statements will be mapped to a listener, since the content of
the alerts and the statements are not known a-priori. For the implementation the only
aggregation functions that will be allowed are the count,average, minimum and maximum
statements.

Alerts are received normalised in the format specified by the IDMEF specification in 2.1.
In order to provide flexibility the received alerts are going to be transformed to an Event
Bean. For the implementation the event bean will only contain the classes Analyser,
Target, Source and Classification. The actions are going to be implemented as their own
Event Bean in order to be able to simulate the Action Inclusion Component.

5.4 Code Analysis

Since the implementation was not finished in time, there is no code analysis to be made.

5.5 Summary

This chapter provided an overview over the framework the Aggregation Module was to
be implemented with were presented. The implementation framework can be mapped as
follows considering the solutions presented in 4.8:

• Solution to R1,R2,R3: These parts of the solution can be mapped to ESPER. R1
gets implemented through the patterns that can be defined in ESPER, R2 can be
implemented through the different EPLStatements and listeners, and R3 can be im-
plemented again through an alternative event stream which utilizes EPLStatements
to aggregate alerts with their actions.

• Solution to R4: The custom grammar defined in Chapter 4 can be implemented
by implementing the same grammar into ANTLR. By mapping the different gram-
mar definitions to generate EPLStatements, ANTLR provides the best solution to
implement the dynamic alert aggregation.

Additionally this chapter explained how these frameworks interact and why the frameworks
were chosen for this implementation. No code was explained, sine at the time of writing
no implementation was ready.



48 5. Implementation



6. Evaluation

6.1 Evaluation Overview

Section 4 detailed how the solution should be implemented in order to alleviate the prob-
lems identified in Section 2. This Section describes the methods to be used, in order to
identify if the proposed solution has indeed alleviated the problems and at what trade-off
theses problems have been solved. First, an overview the identified problems is presented.
The problems are connected to the different components of the solution, and the criteria
for evaluating the solution are introduced. The subsequent Sections detail how the solution
should be tested.

6.1.1 Evaluation Target

Section 2 identified following problems:

1. Alert Stream:

It has been identified in Section 2 that one of the core problems of having a high
number of heterogeneous IDSs in the system is the generation of many alerts. A
number of these alerts are a duplicated of each other, since they either contain
identical information or are describing the same event.

To counter this in 2 a solution is presented which is implemented as part of the
Aggregation Module. The solution is called Stream Filtering. This components
functionality is detailed as part of Section 4.5. It is responsible for reducing the alert
flow, by forwarding only alerts that have to be forwarded. The advanced forwarding
functionality, e.g. the triggers and timers being set, is based on the synergy of all
three components.

2. Information Completeness:

Filtering the alert stream introduces a sub-problem. As detailed in Section 2.4.2,
by blocking Alerts some of the information might get lost, since heterogeneous IDSs
contain different type of information. In addition based on the location of the IDS
on the network the Alert generated may contain more information about the event
that generated the alert.

To counter this, the Aggregation Module implements the component called Alert Fu-
sion detailed in Sections 4.2.2, 4.3.1, 4.3.2 and 4.5. The Alert Fusion component
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aggregates alerts based on two behaviours the default behaviour and the dynamic
behaviour. The default behaviour is in-place in order to guarantee that alerts are
fused together based on commonly found traits. In the dynamic aggregation beha-
viour the engine combines alerts based on a-priori provided configuration which is
derived of the rules contained in the corresponding Policy Decision Point. It pertains
to-be resolved alerts in its memory, and derives information from the alert stream in
order to display the larger picture relating to a specific event. It is the solution for
the problem of loosing information and is used towards reducing the stream of alerts
that reaches the Policy Decision Point.

3. Missing Feedback:

One of the core problem that this thesis addresses is interaction missing between the
Policy Enforcement Points and the Policy Decision Point, or administrator. Detailed
in Section 2.4.3, and illustrated in Figure 2.3 there is a lot of insight that can be
gained by enabling communication between the actual enforcement of actions and
the Policy Decision Point. One example is to determine if a specific action was
successful in resolving a detected attack instance. To alleviate this problem the
Aggregation Module implements the component with the name Action Inclusion.
This component intercepts the feedback which is provided by the Policy Enforcement
Points. The function it provides is detailed in Section 4.4. This component allows
the security systems to understand if a measure that was implemented successfully
resolved a detected attack instance. This should provide a solution to the requirement
of missing feedback.

4. Dynamic Aggregation Rule Generation:

One of the minor, yet important problems identified was the need to adapt the Policy
Decision Point to the content generated by the Aggregation Module. To solve this
a grammar was developed in Section 4.7 which is read by the Aggregation Module
as a configuration file. Each grammar entry denotes a rule defined in the Policy
Decision Point. It is in its basic form an interface with which the different policy
languages can be translated in order for the Aggregation Module to generate custom
rules based on the data the Policy Decision Point expects to receive.

6.1.2 Evaluation Criteria

Before evaluating the Aggregation Module, there have to be base criteria in which the tests
to be created have to be oriented upon. The first criteria is the modules effectiveness, the
question to be asked is whether or not the Aggregation Module works as intended. To
achieve this each component of the Aggregation Module has to be tested. This criterion
will be called Efficacy of the System.

Stream Filtering has to be tested in order to verify that the alerts are forwarded accord-
ing to the rules that were specified in 4. Alert Fusion needs to be tested on whether or
not it aggregates Alerts correctly. This means it identifies and fuses similar alerts together.
In addition the dynamic aggregation has to be tested in both cases in order to determine
that it functions as intended.

After determining the functionality of the Aggregation Module, the second concern is the
performance. Since the Aggregation Module is added between the alerts and the PDP
it will definitely add some latency from the time the alerts were intended to arrive, and
when they will arrive. The performance has to be investigated in order to determine the
trade-off the theoretical benefits of the Aggregation Module come with. In addition since
the Aggregation Module will be part of a larger system, it needs to be investigated if the
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resources the Aggregation Module is using are kept low enough. This criterion can be
called the Efficiency of the System.

The last criterion to be considered is the overall security of the Aggregation Module and
its individual components. Each component has to be tested in order to determine if the
Aggregation Module adds additional attack vectors to the Aggregation Module. This is
important, since the Aggregation Module operates to enhance the efficacy of an existing
security solution. By decreasing security, it would also undermine the benefit of having
the Aggregation Module in the network.

6.2 Conventional Testing Methods

To test the Aggregation Module, the Intrusion Detection Systems in the network have to be
stimulated by generating events. These events have to malicious actions which will cause
the Intrusion Detection Systems to generate alerts. There are two different approaches for
generating events [ZhGh05, MaMZ09].

The first approach is by using pre-generated data sets, that come in the form of network
traffic dumps. Pre-generated data sets are observations of network activity, which contain
malicious attacks that will subsequently generate cause the Intrusion Detection Systems to
generate alerts, based on the activity that is detected. This is one of the common testing
methods in the field, since it offers a simple way to stimulate the Intrusion Detection
Systems.

For the pre-generated datasets, there exists a number of them that are being used in the
research field. The most notable are the DARPA 99 and 200 data set, and the DEFCON
CTF dataset. DARPA 99 and 2000 are a dump of network traffic, they contain following
attack steps:

• An attacker breaks into a host computer

• After the attacker gains access to the host computer, he proceeds in installing ma-
licious components which are needed in order to launch a DDoS(Distributed Denial
of Service) attack.

• The DDoS components are used to attack an off-site server located outside of the
network.

The DARPA 2000 set contains 2 versions of the said attack, with one of them being a more
sophisticated version of the attack described above [ZhGh05, MaMZ09]. The DEFCON
CTF is a collection of network traffic recorded in a DEFCON convention Capture the Flag
tournament [MaMZ09].

Although the pre-generated datasets are flexible enough, they include a number of prob-
lems. As explained by [MaMZ09] the data sets themselves are not sufficiently describe, and
not enough information exists about what exactly is contained in those dumps. An addi-
tional problem is that a network containing a considerable number of different Intrusion
Detection Systems, is difficult to test since every Intrusion Detection System will generate
another description for the attacks or may not be able to detect some of the attacks. Even
if researchers tried to asses the validity of the datasets, the datasets themselves contain
several inconsistencies which make it difficult to asses if the data is indeed real network
traffic.

From the pre-generated datasets the most favourable is still the DARPA sets. This is
due to them being thoroughly researched and documented and obtainable free of charge
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[MaMZ09]. Still one of the problems that can be detected here, is that the datasets are
outdated stemming from the early 2000’s which is hardly identical to the attacks that can
target modern systems.

The second approach is to simulate attacks. This process has to be recorded in order
to be reproducible for both cases, the one without the Aggregation Module and the one
with the Aggregation Module. In order to simulate attacks, background research has to
be conducted in order to identify which attacks the Intrusion Detection Systems employed
in a sample network are able to detect. Since the Common Vulnerabilities and Exposures
database(CVE) contains reported exploits, it should be used to identify potential attacks
that can be used.

For the purpose of the evaluation of this Aggregation Module, the second approach would
be the most preferable. The second options allows us to generate and document the attacks
performed on the network, and also to simulate the Scenarios defined in Section 6.3. This
will allow the Aggregation Module to be tested exactly as stated above, and the research
being able to produce clear results of whether or not the functionality of the Aggregation
Module is complete.

6.3 Evaluation Scenarios

Before describing concrete testing environments and methods, some scenarios have to be
developed in order to derive test-cases out of them. The following scenarios are abstracted
concepts, meant to reflect the situations which are the most or least favourable towards
the Aggregation Module.

• Scenario No1: Huge number of different Alerts, with no common traits.

This scenario is the worst case for the Aggregation Module. This case can demon-
strate the performance and stability of the Aggregation Module under the heaviest
load possible. The Aggregation Module will be occupied the whole time. This is
characterized by the constant lookups the Aggregation Module has to perform on
its memory in order to find similar alerts. This will demonstrate that the modules
functionalities can work in a stable manner together. It will also show if the Aggreg-
ation Module can correctly aggregate based on the dynamic rules provided. This
scenario can be used to measure the performance and efficacy of the Aggregation
Module under heavy load.

• Scenario No2: Huge number of different Alerts, randomly similar alerts.

This scenario should demonstrate the theoretical real world capability of the Ag-
gregation Module. As with scenario No2 this will demonstrate the stability and
performance of a Aggregation Module in a ”real world” situation. It will also help
understand if the default and dynamic aggregation behaviour, correctly aggregate
events.

• Scenario No3: Medium sized alert stream, which contains a large number of similar
alerts.

This Scenario has to evaluate the benefit of the Aggregation Module. It answers the
questions such as, does the default behaviour aggregate correctly, how many alerts
are aggregated correctly(in %), what the error rate aggregation is. In addition it
displays how well the default behaviour operates. In addition through this scenario,
the feedback received by the Aggregation Module can be quantified. This scenario
can be used to test if the Aggregation Module operates as intended. The amount of
exploits used can be kept at a low range(3-4 exploits).
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In 6.2 the two testing methods were explained, and method two was chosen as a way to
generate alerts. Together with the scenarios described here, testing cases can be construc-
ted. These will be detailed below together with the data that needs to be extracted in
order to understand. The tests will be performed on a test-bed containing networked hosts
and heterogeneous IDSs.

6.4 Experiment Environment

The environment for the test, will be a virtualized network, with no prior traffic. The
system will have 3 to 4 hosts, and 2 to 3 heterogeneous IDSs with overlapping domains.
As mentioned in 6.2 for the evaluation the approach chosen to generate alerts is to simulate
and document attacks.

In the pristine network, without including the Aggregation Module, the first step is to start
recording network traffic and performing a number of exploits in order to gather data.
The data that needs to be collected here is as follows:

• Details of the Exploits:

One of the most important factors to grant us the ability to test is repeatability.
Every attack performed on a host or network in the virtual space has to be docu-
mented. The most important data is the exploit name, the target machine and the
time frame it was performed. In addition document if the exploit was resolved by
the traditional system in place.

• Initial Alerts:

The initially generated alerts have to be collected. This helps identify which IDSs
could detect the exploit, and what information the IDS provide in the first place. In
addition the total count of generated Alerts has to be collected, which indicates how
many alerts have also been received by the Policy Decision Point.

• Record network traffic:

The actions that have been performed, exploits and the network traffic being scanned
by the IDSs has to be recorded. This ensures that the experiment can be replayed
with the Aggregation Module in place, with everything else kept the same.

This has to be performed in three different scenarios which are explained in 6.3. After
collecting the data, it can be replayed into the network in order to simulate the above
scenarios every time a function has to be tested.

6.5 Efficacy

6.5.1 Alert Stream

By replaying the data set collected in 6.4 into the network, since every attack step is
documented a test-case can be created in which it is observed if any Alert forwarded from
the Aggregation Module to the Policy Decision Point is a duplicate. If no significant number
of duplicated Alerts are forwarded to the Policy Decision Point, and the number of alerts
received by the Policy Decision Point is reduced then it can be concluded that the desired
functionality for this component has been achieved.

To test the functionality, the first step is to use the Data-Set collected for Scenario No3.
Scenario No3, as explained in 6.3 is the ideal scenario to test if the system is operating as
intended. Following data has to be collected:
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• The amount of alerts forwarded :

Using this number it can be verified if anything happens at all. If the number of
forwarded alerts is significantly lower than the alerts generated in the initial data-set
creation then the Aggregation Module does filter alerts and reduces the alert flow.

• Forwarding of appropriate Alerts:

Forwarded alerts have to be inspected in order to determine the contents of those
alerts. Since the attack steps and attack instances in the system were documented as
part of the data generation process, it can be safely determined which alerts should
have been forwarded and were not, which alerts should not have been forwarded
but were forwarded. if the alerts that should have been forwarded but were not is
an insignificant amount, then the functionality of the Stream Filtering component is
verified.

The results expected here would be that the alert reduction is significant and that the
amount of not forwarded alerts is insignificant or near zero. If the outcome of the tests
verifies our expected results then it can be safely said that the Stream Filtering component
functions as intended.

6.5.2 Information Completeness

To determine the efficacy of implementing information completeness, the Alert Fusion
component and the Cleaner have to be evaluated. Again the dataset from 6.4 which
corresponds to Scenario 3 is to be used. The dataset has to be replayed into the network,
and following data has to be collected:

• Percent of correctly aggregated alerts:

By inspecting the Alerts contained in the memory of the Alert Fusion component,
the number of aggregated alerts can be determined. From there by inspecting the
contents of the alerts it can be seen which alerts from all the aggregated alerts
contain information that was intended to be fused together. This metric will reflect
the efficacy with which the Alert Fusion component aggregates alerts, and also answer
the question if it aggregates any alerts.

• Up-to-date alert memory :

In Section 4.6 it has been detailed how the cleaner influences the state of alerts
contained in the memory, and the importance of its function. Part of the information
completeness is to deliver the correct information to the Policy Decision Point. As
such it has to be tested if alerts are removed from the memory when the attack
instances that were described expired. This can be derived by inspecting the memory
of the Alert Fusion, since the resolved attack instances were documented as part of
the dataset generation.

The expected result is that the aggregation process produces a significant number of cor-
rectly aggregated alerts, and that expired alerts are cleaned when the attack instance
that produced them expires. This results will prove that the functionalities of providing
information are indeed working and that the Aggregation Module produces the desired
output.
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6.5.3 Feedback

The efficacy of the Action Inclusion component can be determined through the question:

Do attack instances that were previously unresolved get resolved?

In generating the test-data, exploits that were successfully resolved were documented. If
yet unresolved attack instances are resolved by the Aggregation Module i.e. they do not
generate any more alerts after a measure has been invoked, then it can be concluded that
the feedback produced an environment that allowed alternative actions.

If the desired results are produced in this test, then it can be concluded that the feedback
produces the desired effect. The environment changed and a new set of actions can be
chosen to be implemented.

6.5.4 Dynamic Aggregation Rules

This can be tested by crafting custom rules in the policy corresponding to the exploits
used in the data generation. This can be tested with any dataset, for which the dataset for
Scenario No3 is actually best suited since it contains a lower number of alerts. Data can
be obtained here by inspecting Alerts forwarded to the policy. If the Alerts correspond
to the rules that were provided through the configuration file it can be safely said that
dynamic aggregation indeed works as intended.

6.6 Performance

Performance here are two metrics:

• Resource Consumption:

This metric is defined from the Memory Usage and the Processing Power Usage.
In the case of the Aggregation Module, the maximum resource consumption in a
worst case scenario has to be investigated. This also researches the stability of the
Aggregation Module under duress.

• Processing Time:

This metric can be defined from the time an alert enters the Aggregation Module
until the alert is forwarded or blocked. This metric reflects the trade-off to the be-
nefits gained by the functionality of the Aggregation Module. Since the Aggregation
Module is between the alerts and the PDP, it can be safely assumed that the alerts
will arrive later at the PDP which might influence the reaction cycle of the security
system, since actions would be implemented at a later stage, than without the Ag-
gregation Module. If the processing time, is significantly low then the Aggregation
Module does not influence the security system negatively.

• Percent Alert Reduction

This metric should derive itself from the Total Alerts Generated and the Amount
of Forwarded Alerts. Dividing the second with the first, should yield the percent
amount of reduction. It is considered a metric here, since it states how much of
a performance benefit the duplicate eliminations has brought( the PDP processed
fewer alerts, fewer actions have been executed) to the system as a total.
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6.6.1 Alert Stream

In this phase the average processing time of alerts is calculated before they are forwarded.
The data-set that should be applied here is the one derived from Scenario No 1 & 2.
The average processing time of each scenario, when added together, gives the overall
average processing time for heavy load with no processing and heavy load with processing.
It can be assumed, that if the overall average is significantly low, that the trade-off of
implementing the Aggregation Module is also significantly low and will not impact the
day-to-day operations of the Aggregation Module.

6.6.2 Information Completeness

For this the Alert Fusion component will be tested again. The datasets from Scenarios
No1 & No2 should bring the Aggregation Module to its limits. In these scenarios following
data should be collected:

• Processing Power Consumption: Important since the Aggregation Module is a sub
Aggregation Module of a larger engine. The observed processing needs of the Ag-
gregation Module give a detailed picture of how many resources the system will need,
in order to perform its job. The ideal case is that it consumes as less as possible
although if the processing needs are not significantly large it is safe to implement
the Aggregation Module without considering processing a cost.

• Memory Consumption:

Another important factor for the Aggregation Module to be labelled efficient, is the
memory consumption. Ideally memory consumption should be also as low as pos-
sible. The Aggregation Module should also not consume more memory than the one
available since this would classify the Aggregation Module as unstable. This can be
observed throughout the performance of the dataset.Scenarios No1 & 2 should be
used to determine the stability of the Aggregation Module and its memory consump-
tion under full load. In addition Scenario No3 should be also used at this stage in
order to determine the average memory consumption in a scenario which does not
produce a full load.

6.7 Security

Security is an important aspect for evaluating the Aggregation Module. Since the Aggreg-
ation Module will be placed as part of a more elaborate security system, it should not be
one of the attackable vectors. Since this is not part of the thesis only the what can be
done in order to evaluate will be described.

6.7.1 Alert Stream

The Stream Filtering component, affects which alert is forwarded or not to the PDP.
If the Stream Filtering can get exploited to forward false alerts to the module it could
undermine the safety of the system. To test if this is the case, false alerts should be
generated and forwarded to the Aggregation Module, in addition to the alerts that are
generated by using Scenario 3. The alerts should be constructed in such a way that the
Stream Filtering component will always forward them, a possible approach to achieve this
is to generate alerts with different classifications every time.

The desired observation would be that if accidentally false information is forwarded, the
normal operation of the PDP will not get hindered, and that the bogus alerts do not block
actions from being executed.
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6.7.2 Information Completeness

A core security problem would be the memory. The memory can be clogged with spoofed
alerts, making it hard to process or even cause the system to become unstable and ter-
minate. This is not a behaviour that is requested from the Aggregation Module, because
this would render the Aggregation Module not operational, and thus not forward security
alerts to the PDP. The ideal way to test this was described in Section 6.6.

By using Scenario No 1 and No 2 one can determine if the Aggregation Module will stop
functioning if it receives more load than it can process. In addition it will test the capability
the cleaner function has to intervene and reduce memory consumption.

The desired and result here would be that the memory itself, cannot be exploited to
terminate the Aggregation Module.

6.7.3 Feedback

The Action Inclusion component can be misused in order to provide false information to
the Aggregation Module. Here custom fake feedbacks should be generated corresponding
to one of the initial alerts that were saved. The desired result is that the system will not
be influenced by the fake message, since Alerts are not marked as resolved when feedback
is received.

6.7.4 Dynamic Aggregation Rules

In order to generate dynamic aggregation rules, first the Aggregation Module has to receive
a configuration file as its input. One of the core concepts that can be tested here is
if, the configuration file can be tampered with. This would happen by creating a fake
configuration file based on the grammar and giving it as input to the Aggregation Module.

The subsequent part would be to log what the Aggregation Module does with the config-
uration file. One very desired outcome would be that the Aggregation Module recognizes
the faked configuration and does not produce any rules. Another outcome would be that
the Aggregation Module does process the file, generates aggregation rules but that the
rules themselves do not hinder the correct functionality of the Aggregation Module.

6.8 Summary

In this chapter techniques were presented in order to evaluate the requirements posed in
Chapter 2.

These were the following:

• R1: Elimination of duplicates in the alert stream, and as a subsequent side effect
reduce the volume of alerts.

• R2: Hinder loss of information by blocked alerts

• R3: Provide an interface to communicate with the Policy Enforcement Point

• R4: Flexibility in policy specification, through dynamic provided rules

R1 is implemented through the solution presented in Section 4.2.1. Stream Filtering is
evaluated by recording a simulated attack and documenting each step of the simulation.
By replaying the simulation with the Aggregation Module in place, it is possible to test
if for the pre-given input the expected output is generated. If the expected output is
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received, without containing duplicate information and the amount of false negatives is
significantly low then it can be stated that this component is functioning correctly.

R2 is implemented by the Alert Fusion component. Again by using a traffic dump of
documented simulated attacks one can create the input needed, and predetermine the
output that is going to be generated by the component. In this case the output is inspected
in order to verify that the output which is generated also contains the correct information.
As in the above case of Stream Filtering, a significantly low number of wrongly aggregated
or not aggregated alerts, can let us conclude that this components functions as intended.

R3 is implemented through Action Inclusion as discussed in Section 4.4. In order to
determine if the feedback does indeed bring change in the behaviour of the Policy De-
cision Point, it has to be inspect if the attack instances which were not resolved when the
attack simulation is running without the Aggregation Module, have been resolved in the
implementation containing the Aggregation Module.

R4 can be verified by using the same method as the one that was used in verifying the
solution to R2. By inspecting the alerts which were generated by the dynamic aggregation
rules it can be observed if the function does indeed function as intended.

Performance can be quantified over the components as a total by measuring the con-
sumed resources, and the delay which arises when the Aggregation Module processes the
alerts. Using the worst case scenario defined in Section 6.3 the system can be tested as to
how it performs under full load. This can be used to verify the stability of the system and
the resource consumption of the Aggregation Module.

Security is another essential evaluation target. Since the Aggregation Module operates
as a sub-Aggregation Module of a much larger security application, it has to be tested
in order to verify that the Aggregation Module itself is secure from tampering. Not all
requirements can be exhaustively tested, but the core is to test the Alert Fusion component
if its memory can be overrun, if the feedback can be faked, and if faulty configuration files
can be recognized.
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The work presented here proposed a sub-module for the ANSII project, which is responsible
for aggregating alerts, eliminating duplicates in the process and providing new insight,
through feedback, about the state of threats in the system. Chapter 2, gave a brief
overview about the ANSII Project, and then proceeded to analyse the environment which
this thesis studied. It proceeded to identify the problems which exist in the traditional
design of the network. The most important problems presented were the non-existent
communication with the Policy Enforcement Point, and the huge number of duplicate
alerts generated by the IDSs.

Chapter 4 presented a solution to the problems which were identified in the Analysis prob-
lem, which is called Aggregation Module and has as its main mission to aggregate similar
alerts, forward alerts only when needed thus eliminating any duplicate alerts reaching
the PDP, and receiving and appending feedback to the alerts which are contained in its
memory. Through a special configuration file which contains the rules defined in the PDP,
the module generates aggregation rules on the fly thus removing the need of defining spe-
cial rules in every PDP. The implementation chapter presented the frameworks chosen to
implement the module, and how each framework can be mapped to the functionalities
defined in chapter 4.

In the evaluation section, evaluation methods were derived from the requirements posed in
Chapter 2, which intent to produce tests that can verify whether the module functions as
intended, does this without significant trade-off and that the module cannot be comprom-
ised through malicious actions. Although no implementation was made for the concept
envisioned in this thesis and thus no evaluation, the concepts provided here should add a
contribution to the alert aggregation field, and to the total of the correlation process.

This thesis, proposed to not only aggregate alerts based on common characteristics, but
introduces the idea of deriving forwarding rules of alerts from the Policy Decision Points
rules. Through the point of view, of intrusion response systems, this tries to simplify the
rule specification in those systems. There is no need to specify special rules for the content
that is going to be forwarded to the Policy Decision Point of an IRS.

Another re-approach that this thesis adds to the concept of IRSs, and alert aggregation in
general is the consideration of feedback from the different Policy Enforcement Points in the
network. Through the feedback new insight can be gained about resolved, and unresolved
threats in the system. These insights were presented in Figure 2.3 from Section 2.4.3.
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Through the inclusion of feedback as part of a larger alert, can allow more flexible and
adaptable reactions from the point of view of the decision and enforcement mechanism.

Subject of further research should be the successful implementation of the module, and
evaluation. A core subject that can be considered after this is to expand the modules
functionality. The alert correlation process and the concepts introduced in it, can also be
applied in a number of sensory equipment. An approach here is to accommodate as part
of the correlation process the analysis of alerts generated by other security components
and not only the Intrusion Detection Systems.
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