
Technische Universität München
Department of Informatics

Bachelor’s Thesis in Informatics

A Feedback System for Smart Buildings

Arved Baus

Technische Universität München
Department of Informatics

Bachelor’s Thesis in Informatics

A Feedback System for Smart Buildings

Ein Feedback-System für intelligente Gebäude

Author Arved Baus
Supervisor Prof. Dr.-Ing. Georg Carle
Advisor Dr. Holger Kinkelin, Marcel von Maltitz, M. Sc. , Dipl.-Inf. Johann Schlamp
Date 15. July 2015

Informatik VIII
Chair for Network Architectures and Services

I con�rm that this thesis is my own work and I have documented all sources and material
used.

Garching b. München, 15. July 2015

Signature

Abstract

In smart buildings multiple devices, sensors, and actuators are connected and orches-
trated by services to work as a single entity. The overall aim is to improve and optimize
our living and working environment. Today, one especially important goal is the reduc-
tion of the building’s energy footprint. However, building automation alone is unable to
exploit the maximum energy saving potential. Multiple studies stress that the involve-
ment of the inhabitants plays an important role as energy consumption relies heavily
on habits and social norms. This means that an interaction between a smart building’s
energy saving system and its residents becomes highly important to reduce wasteful
energy consumption.
This leads to the question how this communication can be realized. This work presents
design, implementation and evaluation of a prototypical interaction system between
building and inhabitants. The core idea is to provide a user-friendly and non-intrusive
mobile phone application together with a server backend. To ensure authenticity and
secrecy of messages, the server backend is based on the MeasrDroid Framework. Al-
though the primary use case considered in this work is energy saving, our system was
designed to be adaptable to other use cases.
Considering the amount of data produced by a smart building and the di�erent interests
of di�erent users, the selection of information sent to a user is highly relevant. There-
fore, the Publisher/Subscriber pattern was applied: Users can subscribe to publishers
providing only relevant information to them. Vice versa, di�erent people with di�erent
authorizations live and work in a building. As a consequence, publishers are capable to
o�er di�erent information streams depending on the role of the user to ensures that
possibly secret information does not reach the wrong user. Furthermore, information is
typically only interesting for a user if the information refers to the user’s near surround-
ing. Location is therefore the third selector for targeting. As user’s location is personal
data, our system was designed to respect the user’s privacy.

I

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Problem . 1
1.3 Goals and Research Questions . 2
1.4 Application of the waterfall model . 3

2 Background 5
2.1 Smart Building . 5
2.2 Importance of Feedback for In�uencing Users 6
2.3 Google Cloud Messaging . 6
2.4 Measrdroid . 7

2.4.1 MeasrDroid Core . 7
2.4.2 Backend Infrastructure . 8
2.4.3 Properties of MeasrDroid . 10

2.5 Publisher/Subscriber pattern . 10

3 Analysis 13
3.1 Roles . 13
3.2 Use Cases . 14

3.2.1 First Aid . 14
3.2.2 Proactive Noti�cation . 15
3.2.3 Interest Groups . 15
3.2.4 Con�rmation of Malfunctions 16
3.2.5 Reduce Energy Consumption 17

3.3 Requirements . 18
3.3.1 Functional Requirements . 18
3.3.2 Non-functional Requirements 18

4 Design 21
4.1 Architecture . 21
4.2 Publisher . 22
4.3 Contextual Evaluation of the MeasrDroid Framework 23

II Contents

4.4 Additions to MeasrDroid Framework 23
4.4.1 Additions to the Backend . 23
4.4.2 Android App . 24
4.4.3 Summary . 24

4.5 Information Flow . 25
4.6 Privacy . 27

5 Implementation 29
5.1 Android Application . 29

5.1.1 Integration of Google Cloud Messaging 29
5.1.2 Measurements . 31
5.1.3 Location Awareness . 32
5.1.4 Role Selection . 33
5.1.5 Graphical User Interface . 33

5.2 Publisher Manager . 34
5.2.1 Authentication . 35
5.2.2 RESTful Service . 35
5.2.3 Communication with Android Clients 37
5.2.4 Database . 40
5.2.5 Frontend . 42

5.3 Demo Publisher . 42

6 Evaluation 45
6.1 Usability . 45
6.2 Latency . 46
6.3 Privacy . 47
6.4 Extensibility . 47
6.5 Summary . 48

7 Conclusion & Outlook 51

Appendices 53

A Glossary 55

Bibliography 57

III

List of Figures

2.1 Component Diagram . 9

4.1 Component Diagram . 22
4.2 Component Diagram . 24
4.3 User Noti�cation . 25
4.4 Noti�cation Overview . 25
4.5 Publisher Overview . 26
4.6 Proactive Noti�cations . 26
4.7 Architecture Overview . 27
4.8 Sequence Diagram . 28

5.1 Screenshot: Role Selection . 34

6.1 Screenshot: ActionBar . 46
6.2 Overview Latency . 49

IV List of Figures

V

List of Tables

1.1 Application of Waterfall Model . 3

2.1 MeasrDroidSetup Tag . 8

5.1 Symbol Meaning . 33
5.2 REST Interface - Publisher Manager . 36
5.3 REST Interface - Publisher . 36

6.1 Evaluation Summary . 48

VI List of Tables

1

Chapter 1

Introduction

1.1 Motivation

Buildings consume more than 42 % of all electric energy worldwide and will be the
biggest emitters of greenhouse gases by 2025, according to a research conducted by IBM.
In developed countries statistics are even more devastating: In the US, buildings use
more that 70% of all electricity from which 50% is wasted. This leaves room for further
optimization: The carbon dioxide (CO2) emission can be lowered by approximately 50 -
70% and the water usage by 30 - 50% through the usage of smart buildings. But today,
smart buildings are mainly intended to protect their occupants and provide them a safe
working and living environment. Thereby, they miss to address the mentioned need for
optimization regarding energy consumption. This means that during the development
of future buildings safety and the protection of the environment must be considered.
Smart buildings connect many services and devices to work as a single entity. To tap the
full potential of smart buildings also the inhabitants must get involved in the process of
lowering the environmental impact. [1]

1.2 Problem

According to 2.1 the smart building has to have not only the ability to collect an extended
amount of data but also to process and present it to involve the user in the process of
energy saving. To accomplish this goal a communication system has to be established
that allows the building to communicate with the user to provide information about its
surrounding. But at the same time the amount of collected personal data such as GPS
position should be kept to a minimum.
In many cases the user can also provide additional information to the system and other
users. The system must o�er a way for user to share their knowledge through sending

2 Chapter 1. Introduction

proactive noti�cations. Nearly all users of the target group carry a smart phone and are
also familiar with its usage. Mobile applications have in general a �at learning curve
and the user does not have to carry another device with them. Also the distribution and
update of a mobile phone application is cheap and does also scale well with an increas-
ing number of users. There are of course other possibilities to establish a connection
between users and building such as the installation of panels located at important points
of the building or a web interface which can be used with nearly all digital devices. The
disadvantage of all these approaches is that a user has to login �rst before she can start
communicating.

1.3 Goals and Research Questions

Due to the mentioned advantages it can be said that a smart phone application o�ers
an ideal channel for communicating. The research questions that arises in the context
of smart phones in connection with smart buildings are diverse and span over multiple
�elds of expertise. This work is therefore restricted on elementary questions regarding
the communication between the user and the smart building.

RQ1: Identi�cation of participating parties and their needs The di�erent parties
that are involved in the communication and their needs must be identi�ed. It
should also be ensured that new participants can be added easily. This question
is discussed in detail in chapter 3.1.

RQ2: Filter Information In order to motivate the user to participate actively in the
communication, it should be avoided to overwhelm her with too many informa-
tion. Therefore, it is necessary to research how important information can be
�ltered for the user. An approach for this question is presented in chapter 2.5.

RQ3: Protect User Privacy In order to �lter information for the user data must be
collected. This data can reach from GPS coordinations to personal preferences.

RQ4: Choice of Technologies An application is developed that illustrate the results
to the mentioned questions above. To implement this application di�erent tech-
nologies must be evaluated. Chapter 5 presents the resulting application in detail.

The primary �eld of application for the developed system is an university. Under this
restriction certain assumptions are made such as rights and tasks of participating users.
Nevertheless, the system is not restricted to this area, it can be easily customized for
other working environments. An university provides also a vast variety of people with
di�erent tasks and responsibilities.

1.4. Application of the waterfall model 3

Table 1.1: Application of Waterfall Model

Phase Explanation Chapter
Requirement All necessary requirements are derived

from use cases and documented
3.3

Design The software architecture of the system
is designed

4

Implementation Concrete Implementation of the system
that has been designed in the previous
phase

5

Veri�cation Evaluating the quality of the solution. 6

1.4 Application of the waterfall model

This work applies the waterfall model which is a widespread sequential design process
in the �eld of software engineering. It is in general divided into �ve di�erent phases:
Requirements, Design, Implementation, Veri�cation, Maintenance. The waterfall model
clearly emphasizes the creation of documentation to receive maintainable and under-
standable source code. The phases must be conducted in this order because they build
on each other. It is not possible to return to a phase that has already been �nished.
Table 1.1 presents the di�erent phases of the waterfall model and their corresponding
chapters in this work. The phase Maintenance is not part of this work due to the time
constraints. [2]

4 Chapter 1. Introduction

5

Chapter 2

Background

This chapter lays the knowledge foundation for further discussions in the design chapter.

2.1 Smart Building

There is no clear de�nition of smart building. In the context of this work the de�nition
of Smart building follows the “Smart 2020 report“. This report has been conducted
by The Climate Group and “McKinsey & Company“. According to this de�nition the
Information and Communication Technology (ICT) in a building has to ful�l all of the
following points to be “smart“.

• Standardise ICT can provide information in standard forms on energy consump-
tion and emission across multiple sectors

• Monitor Data can be collected in real time. The ICT is able to control the energy
consumption

• Account The ICT provides useful information to the consumer in order to involve
her in the process of energy saving.

• Rethink The user should rethink his behaviour due to the provided information

• Transform As a result of the described process the user should change her
behaviour to save energy.

The focus lays on the raise of awareness concerning energy consumption among inhab-
itants. At the same time it misses to stress the already mentioned importance of privacy.
Nevertheless in the context of this thesis a smart building has to have the potential to
ful�l all of the mentioned points. [3]

6 Chapter 2. Background

2.2 Importance of Feedback for In�uencing Users

Also the report "Schlussbericht Nutzverhalten beim Wohnen" from the city of Zurich
emphasizes the in�uence of the user’s behaviour on the energy consumption of a build-
ing. Furthermore, the report states that habits can be changed more easily than other
factors which lead to a bad carbon footprint such as the location, size and equipment of
the building. [4]
The report does also mention that the behaviour of the user is not only changeable but
does also has a high potential for improvement: According to a survey of the german
Bundesministerium für Umwelt (BMU) from the year 2008 three out of four interviewee
neither has known their energy consumption nor their energy price. [5]
But saving money is - according to another survey conducted by the BMU in the year
2012 - the biggest motivation for people to rethink their habits regarding energy con-
sumption. [6]

Summarizing it can be said that smart buildings satisfy a market with high poten-
tial. They try to close the gap between intention and a lack of knowledge through an
educational approach. Nevertheless there are problems regarding the communication
between user and smart building which will be discussed in the next chapter.

2.3 Google Cloud Messaging

Google Cloud Messaging (GCM) is the successor of Cloud to Device Messaging (C2DM)
and was introduced in June 2012. It is a service which enables programmers to send
data with maximal 4KB payload to Android, Chrome and iOS applications. It supports
the HTTP as well as the XMPP protocol. It “handles all aspects of queueing of messages
and delivery to the target Android application running on the target device“1. If an
application uses GCM it does not need to be currently running on the device. A broadcast
Intent is permanently running in the background on the android phone and listening
to incoming messages.
GCM needs four credentials to send a noti�cation to an application. The Sender ID is
used in the registration process and de�nes the server that is permitted to send messages.
This message has to include the Sender Auth Token in the header of the POST request.
The target device is uniquely de�ned by the Application ID. Furthermore the Android
app has to provide a Registration Token that allows it to receive messages by the
server. When the intent receives a new message it will wake up the speci�ed application
and pass the data to a handler de�ned by the target application for further processing.
The described architecture provides a communication layer which can be used by all
applications on the same device. Therefore, it is only necessary to run one background

1https://developers.google.com/cloud-messaging/

https://developers.google.com/cloud-messaging/

2.4. Measrdroid 7

thread listening on requests instead of a thread for every application. This leads to
an more e�cient battery and memory usage. The MeasrDroid Framework (2.4) does
also use GCM for communication between server and client. At the time of writing
the GCM service is free to use. Furthermore, Google does not limit the amount of sent
messages. Nevertheless there are also several limitations: If a device is not reachable
for the service messages will be stored on the GCM server to send them to the client
at a later point of time. This storage can take maximal 100 messages addressed to one
device. If this limit is outreached all cached messages will be discarded. If this has
happened a report message will be sent to the client at the next time he is reachable.
There is, as already stated, no limitation regarding the number of send messages. But
Google throttles messages sent to a single device to prevent an attack through a huge
number of messages. Google does not publish the exact number of directly receivable
messages. But, according to several tests, 20 messages can be send from the same server
and received on one client without any arti�cial delay. Furthermore, the size of a single
message send to a device must not outreach four kilobytes. In this case the service
refuses to send the message to devices. [7]

2.4 Measrdroid

The Measrdroid Framework is an Android Framework which collects technical data on
mobile phones to use them in scienti�c research projects. The aim of this Framework is
to analyse technical aspects of the internet to gain a better understanding of it. In the
following the existing system will be presented and its usage for this project evaluated.

2.4.1 MeasrDroid Core

The MeasrDroid Core is an un-opinionated Android Framework which has vast ca-
pabilities. It allows the developer to integrate Google Cloud Messaging Service (see
2.3 for more information) easily into an application. In order to use MeasrDroid the
main class of the application must inherit from the MeasrDroid base class and has to
be marked with the @MeasrDroidSetup tag. Through this tag additional classes can use
the capabilities of MeasrDroid. All available attributes and their meaning are listed in
table 2.1.
There are no restrictions regarding the amount or combinations that can be used in an
Android Application.

http://www.droid.net.in.tum.de/

8 Chapter 2. Background

Table 2.1: MeasrDroidSetup Tag

Name Meaning
gui_id Multiple views use the MeasrDroid core. In order to map the

applications with their measurements this id is necessary
name Name of the application
services Services which run in the background and that should be man-

aged by the MeasrDroid core.
database Provides a type safe interface to store settings. Noticeable is

that MeasrDroid uses the SharedPreferences.Editor which is not
able to store non primitive data types across user sessions2.

sensors Further sensors can be added to MeasrDroid. In order to acti-
vate external sensors the S.ROOT.GUI.WILDCARD needs to be
set in the con�guration of a measurement.

confManagers The MeasrDroid core daily checks the conf.droid server for new
con�gurations of the application. Con�guration �les provide a
way to send seldom changing data to all clients.

GCMManagers GCM messages which have an unknown format will be send
to the GCMManagers which can process it further.

prefManagers Through external Preference Manager it is possible to inject
new preferences to the application. It will be called in case that
the user clicks changes or persists any preference.

wizardPages At the �rst start of an application a wizard is displayed which
guides the user through the process of installation. The wizard
can be extended with additional pages using this tag.

2.4.2 Backend Infrastructure

The measrdroid application for example is an application which allows the user to
visualize all taken measurements. [8]
In the following the core components of the existing Measrdroid infrastructure and
their tasks are presented.

• C3PO C3PO is the core Server of the MeasrDroid backend. It is the only server
which has direct access to the database of measurements. Due to security reasons
is C3PO not connected to the internet. C3PO is involved in every communication
between the Android Client and the backend. The core assumption of Measrdroids
security system is that any server but C3PO is possibly compromised. The security
architecture of MeasrDroid foresees that any communication involving C3PO
must have also been started by it.

• Satellite Server C3PO does only provide core features. To extend the capabili-
ties of MeasrDroid new Satellite Servers have to be deployed. MeasrDroid does
regularly check speci�c directories of all satellite servers to receive data.

2.4. Measrdroid 9

• gcm.droid The gcm.droid is capable to send messages to devices with the given
gcmId.

• Push.droid C3PO pushes messages to the Push.droid server which sends it to the
clients using Google Cloud Messaging.

• Upload.droid All measurements taken by the clients are sent to the upload.droid
server. C3PO does regularly pull all received messages from this server and stores
it in its database.

The presented components use Python and Bash Scripts to communicate with each
other over the �le system.
Figure 2.1 shows the current architecture of the MeasrDroid project in connection with
an Android Application that uses the MeasrDroid Core.

Figure 2.1: Component Diagram

10 Chapter 2. Background

2.4.3 Properties of MeasrDroid

MeasrDroid has a variety of advantages, some of those are:

• Documentation During the development over ten Bachelor and Master theses
had been written about the di�erent parts of the system. All components are
therefore well documented.

• Flexibility MeasrDroid can read multiple sensors of a device. Not all of them will
be useful for this project. But MeasrDroid o�ers also the opportunity to activate
and deactivate sensors �exibly.

• Easy Integration The MeasrDroid core can be easily integrated into an existing
application. Few changes are necessary to use the provided capabilities and start
measurements.

• Security MeasrDroid provides an existing security system. All messages send to
the application must have been signed by C3PO. This prohibits the misuse of the
established communication channel.

• Existing backend MeasrDroid does already have an existing and tested backend
architecture with Google Cloud Messaging integration. The use of MeasrDroid
does therefore decrease the workload signi�cantly.

But the use of MeasrDroid has also some disadvantages:

• No real-time Applications Due to the described architecture no real time Ap-
plication can be implemented. C3PO syncs after a certain time interval with
its servers. Due to the amount of processed data, the time steps cannot be set
arbitrary small.

• Restricted to Android MeasrDroid is at the time of writing only available for
Android smart phones. Even if Android has possessed the highest market share
among all mobile operating systems with 78% in the �rst quarter of the year 2015,
the user base of the other systems is noticeable. It is unlikely that future versions
of the MeasrDroid core will support other mobile operating systems. [9]

2.5 Publisher/Subscriber pattern

The Publisher/Subscriber pattern (also called Observer pattern) intents to de�ne a one-
to-many dependency so that when one object changes state, all its dependents are
noti�ed and updated. At the same time a tight coupling between the publisher and
subscriber should be avoided because this reduces the reusability of the components. A
Publisher o�ers therefore an API to register and unregister publishers.

2.5. Publisher/Subscriber pattern 11

If a Publisher sends a noti�cation it pushes it to all subscribed publishers. The Publish-
er/Subscriber pattern can be divided into three subclasses depending on their way to
handle an update of their status:

• Push Noti�cation Every Time the publisher update its status every subscriber
is noti�ed. The actual update of the status is not contained in the noti�cation.

• Push-Update Noti�cations Like Push Noti�cation, but the new status is send
with the noti�cation.

• Pull Noti�cation The subscriber is noti�ed about any status change, it au-
tonomously ask the subscriber for status changes.

12 Chapter 2. Background

13

Chapter 3

Analysis

In this chapter the environment of a typical university is analysed. At �rst, the roles of
possible users are identi�ed. Afterwards, typical use cases that involve these roles are
presented from which the functional and non-functional requirements are derived.
The use cases and roles are restricted to the environment of an university as this is the
target platform for the application. This environment serves as an example to derive
requirements of the application. The university o�ers an environment where users with
a variety of di�erent tasks and authentications work together and communicate with
each other, similar as in a factory or o�ce building. It is not the goal to develop an
application speci�c to the needs of a university.

3.1 Roles

A variety of people with di�erent roles are interacting with the system and with each
other. In the following their di�erent interests of roles and their tasks are described:

• Facility Manager The facility manager has vast responsibilities. They reach
from repairing the elevator to salting the pavement on cold days. He wants to be
informed about any malfunctions and their location. His goal is to provide fast
and reliable support.

• Student The student works in the building and is also interested in its environ-
ment. Therefore he is willing to contribute to the maintenance of the building.
Nevertheless he wants to spend as less time as possible on this task to concen-
trate on his actual work. He has also minor authorities and in most cases no
administrative tasks.

• Professor The professor does research and and holds lectures. He has great inter-
est in the university and major authorities. He often has extensive administrative
tasks.

14 Chapter 3. Analysis

During the development of the application all of these interests should be considered. It
is noticeable that this is only a small subset of all roles which are present in a building.
Further ones could be a normal employee or a member of the cleaning sta�. Nevertheless
the presented selection illustrates the di�erences between di�erent roles.

3.2 Use Cases

In the following use cases are presented to show the reward of using the presented
system. All use cases follow the same structure: After a short introduction into the
domain of the problem a possible solving strategy is presented.

3.2.1 First Aid

A student hurts himself during a Basketball game and needs �rst aid. The system o�ers
an opportunity to call for �rst aid. Some fellow student volunteer and provide their
help for such a case. The urgent need for help makes this use case time-critical.

Use Case 1 Emergency

Scope: Local

Primary Actor: Students

Roles and Interests: • Student: Fast and reliable �rst aid
• Volunteer (fellow student) : Location of the accident

Preconditions: Students have the App installed and fellow students are
registered as volunteers

Postconditions: Volunteer is informed about the position of the student
that needs help

Main Success Scenario:

1. Students call the system for help.
2. Volunteers next to the location of the accident receive a noti�cation with exact

GPS coordination.

Frequency of Occurrence: Medium

3.2. Use Cases 15

3.2.2 Proactive Noti�cation

Due to the limitations of a smart buildings, there are events which cannot be recognised
automatically. The system o�ers therefore an option to make noti�cations initialized
by a user. Not only the user who is responsible to solve this issue is informed but also
other users that are also a�ected.

Use Case 2 Proactive Noti�cation

Scope: Local

Primary Actor: Facility Manager, Student, Professor

Roles and Interests: • Student, Professor: Does not want to slip on the
slick pavement

• Facility Manager: Provides a safe working environ-
ment

Preconditions: A student steps out of the train and slips due to a slick
pavement.

Postconditions: The facility manager and everybody near to the location
are informed about the slick pavement.

Main Success Scenario:

1. A student observes the slick pavement and sends a noti�cation to the system.
2. The System informs the facility manager who salts the pavement.
3. Until this happens all passants will be asked to walk carefully through a noti�-

cation sent by the system.

Frequency of Occurrence: Medium

3.2.3 Interest Groups

An interest group exists of people with an equal opinion about one or multiple topics.
If a user is unhappy about his environment due to a certain circumstance, it is very
likely that there are other users who share his opinion. The system supports therefore
the establishment of interest groups. In an interest group users of di�erent roles can
participate.

16 Chapter 3. Analysis

Use Case 3 Interest Groups

Scope: Global

Primary Actor: Student, Professor, Facility Manager

Roles and Interests: • Student, Professor: Appropriate working environ-
ment

• Facility Manager: Minimize Cost, Possible Improve-
ments

Preconditions: Multiple Students complain about headache after meet-
ings in a certain room of the building, caused by a low
percentage of oxygen in the air

Postconditions: The Facility Manager is aware of the poor working
environment

Main Success Scenario:

1. An student sends a noti�cation to the system to complain about his environ-
ment.

2. Multiple students observe the same issue and form a group of interest.
3. The Facility Manager gets informed about the amount of complaints.

Frequency of Occurrence: Medium

3.2.4 Con�rmation of Malfunctions

Intelligent buildings are only able to detect malfunctions of a building with a certain
percentage. Also proactive noti�cations of a user can be misleading. Therefore it is
necessary to check the validity of both. The system should therefore notify a user whose
location is near to the malfunction.

Use Case 4 Con�rmation of Malfunctions

Scope: Local

Primary Actor: Facility Manager, Student

3.2. Use Cases 17

Roles and Interests: • Student: Quick �x of issues
• Facility Manager: Location, no misleading informa-

tion

Preconditions: The smart building recognizes an anomaly in the power
consumption of the co�ee machine.

Postconditions: The Facility Manager repairs the co�ee machine.

Main Success Scenario:

1. The System sends a noti�cation to a nearby user to check whether the co�ee
machine works properly.

2. The user discovers that the co�ee machine is o� due to a short circuit.
3. The user sends a con�rmation with a short description.
4. The Facility Manager gets a noti�cation with the location of the co�ee machine

and the task to �x it.

Frequency of Occurrence: High

3.2.5 Reduce Energy Consumption

Intelligent buildings are already possible to detect wasteful use of energy. The system
should for example be able to notify a user which is located near to a display that
has been left on after work. This use case and possible solutions are explained in the
Bachelor’s thesis of Lawrence Krug. [10]

Use Case 4 High Energy Consumption

Scope: Local

Primary Actor: Student, Professor, Facility Manager

Roles and Interests: • Student, Professor, Facility Manager: Reduce energy
consumption

Preconditions: The smart building detects a turned on display despite the
fact that the user has already left the building

Postconditions: The display will be turned o�

18 Chapter 3. Analysis

Frequency of Occurrence: High

3.3 Requirements

From these di�erent use cases multiple functional and non-functional requirements can
be derived.

3.3.1 Functional Requirements

R1: Publisher/Subscriber The system should be implemented with the Publisher/-
Subscriber pattern that is presented in chapter 2.5. Therefore, every user receives
only a subset of all sent messages. Through this approach di�erent use cases like
3.2.3 are possible and �t in a natural way into the existing system. Every interest
group is a publisher which sends its messages to everybody who has subscribed
to the topic. The Publisher/Subscriber pattern is described in chapter 2.5. In this
case the Push-Update Noti�cation version of the pattern should be applied.

R2: Role-based Channels The system should allow communication channels for
di�erent users and di�erent roles. The owner of the channel can decide which
roles can subscribe to her channel and which cannot. Through this design decision
the channel owner has full control about the access rights.

R3: Location Awareness Many informations that a smart building provides are only
speci�c to a location. If, for example, somebody has left his computer turned on
after leaving the building, then this is only important to people which are still in
the same part of the building. Therefore, a location aware system is needed to
�lter the information for the user.

3.3.2 Non-functional Requirements

R4: Security The proper functioning of the system relies heavily on the absence of
misleading information. It should be therefore impossible for any user to inject
such information or trick the system in any other malicious kind.

R5: Privacy Due to requirement R3 and the implicit dealing with the location of the
user the question after the privacy of the user arises. It should not be possible
for an attacker to associate the position with personal information of a user or to
even recreate a movement pro�le. The goal of the system is to expose and collect
as less data as possible.

3.3. Requirements 19

R6: Real Time Interaction The importance of a fast interaction with the user is
stressed by the use cases in 3.2.1 and 3.2.2 . Especially during an emergency
it is important to inform all a�ected persons as soon as possible. For the use
cases presented in 3.2.3 and 3.2.4 the response of the system in real time is less
important.

R7: Extensibility The architecture should allow to extend and improve the system
and its functions easily.

R8: Usability The advantage of using a smart phone application for interaction is
that most users are already familiar with the system and do not need special
training. In order to keep this advantage the Graphical User Interface should
follow design patterns the user is already familiar with.

20 Chapter 3. Analysis

21

Chapter 4

Design

This chapter derivatives the architecture from the requirements presented in chapter 3.3.
At �rst the di�erent components of the system are identi�ed. Following this, bene�ts
of using the MeasrDroid Framework that is described in chapter 2.4 are evaluated.
Afterwards the abstract architecture and the �ow of information between the di�erent
components is described. The following chapter builds on the insights of this chapter
to explain concrete details regarding the implementation of the application.

4.1 Architecture

The architecture can be divided into three main components.

• Mobile Application An Android Application which allows the user to send and
receive noti�cations. It should be able to receive messages through Google Cloud
Messaging and send responses back to the server. Requirement R3 states that the
application must be aware of the current location. No special training should be
necessary to use this application according to requirement R8.

• Communication Layer The communication layer provides a channel of com-
munication between application and server. Google Cloud Messaging is an ideal
service to send messages from the server to the client as discussed in 2.3 and
should therefore be used.

• Logic Layer The Logic Layer consists of multiple Publishers according to require-
ment R1. These publishers are independent of each other and use the infrastruc-
ture provided by the framework to communicate with the Android clients.

Figure 4.1 shows a component diagram of the presented architecture. The complexity
of the diagram increases in the course of this chapter. Each component can be easily

22 Chapter 4. Design

Figure 4.1: Component Diagram

identi�ed in the di�erent diagrams by its unique color. Publishers can only commu-
nicate with clients through the Communication Layer. This enables the ful�lment of
requirement R4 and R5 (3.3.2).

4.2 Publisher

The developed framework should provide an API which enables developers to integrate
new publishers easily into an existing system. The complexity of logic a publisher
provides di�ers. A Publisher provides multiple tags users are able to subscribe to. In
the following a few possible publishers and their tags are presented:

• Alert system In the use case described in chapter 3.2.2 a user can send a message
proactively and warn other users about possible dangers such as a slick pavement.

• Interest Groups The use case in chapter 3.2.3 provides an example where user
can form groups of interests. Every interest group would form a tag user can
subscribe to if they are interested.

• Energy Manager In 3.2.5 an use case has been presented where the system does
automatically detect high energy consumption. The developed framework could
be used to communicate with a user who is located in the near surrounding of a

4.3. Contextual Evaluation of the MeasrDroid Framework 23

device that wastes energy. Di�erent part of the building could be represented by
tags. The user can subscribe to frequently visited parts of the building.

4.3 Contextual Evaluation of the MeasrDroid Framework

The MeasrDroid Framework, its architecture and advantages such as disadvantages
have been already discussed in 2.4. It will now be evaluated as a foundation of the
architecture presented in 4.1. MeasrDroid provides a core component which allows to
use a variety of measurements. [11] Sensors can be enabled and disabled independently
of each other. That means a granular control over the collected data what is in favor of
the user’s privacy. MeasrDroid has also an already existing Google Cloud Messaging
integration. The disadvantage of using MeasrDroid is that it is not possible to implement
applications who rely on a time critical connection to the server. MeasrDroid’s security
approach forbids sending requests to C3PO. This leads to an architecture where any
component communicating with MeasrDroid puts data in a speci�ed directory and
relies on MeasrDroid to fetch and further process it. Due to the amount of collected
data the time interval between two fetches must not be arbitrary small.
From a pragmatic point of view the advantages of using MeasrDroid for this project
outreach the disadvantages. Due to the limited time and resources of this work the
usage of MeasrDroid lightens the workload tremendously out of the discussed reasons.
The MeasrDroid Core component can be used on the client side. The capabilities of
MeasrDroid’s backend system around C3PO matches also partially the requirements of
the Communication Layer.

4.4 Additions to MeasrDroid Framework

To realise the architecture described in chapter 4.1 utilizing MeasrDroid, the existing
system must be extended.

4.4.1 Additions to the Backend

Figure 4.2 shows the necessary additions to the MeasrDroid Framework on the server
side. A new satellite server must be developed which o�ers a RESTful API for Publishers.
The Publisher uses this API to communicate with the client. Furthermore, Publishers
can provide a Web Interface for more sophisticated interaction with the client such
as presenting graphs or complex input forms. The satellite server keeps track of all
registered services and o�ers a selection to the user that depends on her role. This
satellite server is called Publisher Manager in the context of this work.

24 Chapter 4. Design

Figure 4.2: Component Diagram

4.4.2 Android App

The native Android application should also provide a native user interface to ensure a
�awless user experience. In the �nal application the user receives a noti�cation on his
phone as displayed in �gure 4.3 that indicate that a new message has arrived. The user
can now either click on the noti�cation to open the Message View instantly or he can
open the application and take a look at all unanswered messages as shown in �gure 4.4.
The application does also provide a view that shows all available Publishers and their
tags. It is depicted in �gure 4.5. In order to subscribe or unsubscribe to a tag the user
must click on the switch button in front of the tag. This also activates the tag in the
proactive noti�cation fragment as shown in �gure 4.6 where user can send messages
without having to have received one in the �rst place.

4.4.3 Summary

Figure 4.7 shows an overview about the whole architecture. Publishers communicate
with a server called Publisher Manager to send requests to and receive responses from

4.5. Information Flow 25

Figure 4.3: User Noti�cation Figure 4.4: Noti�cation Overview

clients. All Publisher together form the Logic Layer. A Publisher is a web server that
communicates with the Publisher Manager through a REST Interface. The Publisher
Manager persists all incoming requests and their responses in a database. This database
does also contain all users of the system and their subscribed tags. The PublisherManager
sends any new request from one of its Publishers to C3PO.

4.5 Information Flow

In the following the communication between the di�erent components of the system
and the user will be explained in detail. The entire �ow of information is displayed in
4.8 as an UML sequence diagram. The di�erent communication “steps “are increasingly
numbered by their time of execution. The description refers to this steps as an orienta-
tion.
In general, there are two di�erent types of communication between publisher and client.
On the one hand the client can start the communication proactively through sending a
text message to the publisher. On the other hand the publisher can start the communi-
cation through sending a new message to the Publisher Manager. The �rst type works

26 Chapter 4. Design

Figure 4.5: Publisher Overview Figure 4.6: Proactive Noti�cations

similarly as the second one but without the initial communication between publisher
and user. Therefore, only the second type will be discussed.

Step 1: The Publisher starts the communication through the call of a RESTInterface
which the Publisher Manager provides. A detailed explanation if this Interface can be
found in chapter 5.2.2. The message contains a text, the role of the receiver and option-
ally her GPS position and a radius.
Step 2 - 3: The Publisher Manager does now look up the GCM ids of all users who
have subscribed to the tag and also have a role that matches the requirement. Every
device gets an unique GCM id for every installed application which uses this service.
MeasrDroid polls regularly all new messages from a directory of the Publish Manager
and sends it via Google Cloud Messaging to the client. To send messages the push.droid
server is used. It is not displayed in the diagram for the sake of simplicity.
Step 4 - 6: The MeasrDroidCore parses and analyses the received message. In case
that the message has an unknown structure, the MeasrDroidCore sends it to the GUI. If
the publisher has speci�ed a user location through GPS coordinates, the GUI starts a
MeasrDroid Measurement to check if the client is within the radius. Every executed
Measurement will be uploaded to C3PO to an unknown point of time. This constraint

4.6. Privacy 27

Figure 4.7: Architecture Overview

is by design and cannot be deactivated.
Step 7 - 11: The GUI has registered a handler on the measurement to receive the results,
too. In case that the user is within the given radius he will receive a noti�cation on
his mobile phone. Now, he is able to give a feedback through the interaction with a
Message View. His input will be handled has a normal measurement and instantaneously
uploaded to C3PO.
Step 12 - 13: C3PO forwards all incoming measurements which have been taken on
a device with gui_id=5 to the Publisher Manager which stores every response in a
database. Afterwards, it calls the REST API of the Publisher which has initialized the
communication in the �rst place with the new user response.

4.6 Privacy

User Privacy (Requirement R5) plays an important role if sensible data is collected.
In the case of the presented system the response to messages and the location of the
user are informations that should not be exposed to unknown parties. Nevertheless,
it is necessary to store this information as pointed out in chapter 3.3. To address this

28 Chapter 4. Design

Figure 4.8: Sequence Diagram

issue the MeasrDroid Framework is used. C3PO signs all outgoing messages with a
key that only the MeasrDroid Core component is able to decrypt. The result of every
measurement is stored in an encrypted �le in the �le system of the device. This �le is
only readable by C3PO, not even the device itself is capable to decrypt it. In order to
avoid possible security holes the application must not copy and store any measurements
that are reached to it through a Handler.
The results are then uploaded to C3PO by MeasrDroid at an unknown point of time.

29

Chapter 5

Implementation

This chapter describes the implementation of the Publisher/Subscriber system that
has been presented in chapter 4. Each component and its concrete implementation is
presented in detail. The focus lays hereby on the communication between the di�erent
components and the use of MeasrDroid.

5.1 Android Application

Through the developed smart phone application the user should be able to communicate
with the system. MeasrDroid is used to transport information from the server to the
user and vice versa.

5.1.1 Integration of Google Cloud Messaging

The GoogleCloudMessagingManager will be called if the core receives a message that it
is unable to parse. In general there exist two types of messages the server can send to
the client.
On the one hand there are PublisherLists which contain a new list of publisher including
their tags and IDs. If a new TagList arrives it will be stored to the local �le system in JSON
using the DatabaseManager. Afterwards a new NEW_PUBLISHER_LIST event is broad-
casted using the LocalBroadcastManager provided by the Android SDK. A broadcast can
be received by every process that listens to the speci�ed event using a BroadcastReceiver.
Local broadcasts can only be received by the same application which also sent it. A
normal broadcast, in contrast, allows the communication between di�erent applications
on the same smart phone. All types of broadcasts are send asynchronously by default.
The PublisherFragment listens to the NEW_PUBLISHER_LIST event and reads the list
of publishers from the �le system to update the user interface in case of an incoming

30 Chapter 5. Implementation

event. The structure of a Publisher list is shown in 5.1

Listing 5.1: Tag List
1 {

2 "messageType": "TagList",

3 "tags": [

4 {

5 "_id": "...",

6 "description": "...",

7 "title": "asdd"

8 }, ...

9]

10 }

On the other hand there are publisher noti�cations which represent a message sent
by a Publisher to the Publisher Manager. The structure is displayed in listing 5.2. The
publisherMessageId is set by the publisher to keep track of its own messages. The location
is an optional attribute which allows to address only users which are in a certain area.
To decide whether a user is in an area or not the MeasrDroid core has to take a GPS
measurement, because the MeasrDroid server does not know the exact position of its
users. If this attribute is not speci�ed or the radius is set to zero, no measurement is
conducted and the message is directly prompted to the user. The message is the part of
the noti�cation which will be displayed to the user. Title and text are mandatory �elds,
whereas the url is optional. This attribute indicates that there is a website that provides
information that the user has an interest in.

5.1. Android Application 31

Listing 5.2: Publisher Noti�cation
1 {

2 "publisherMessageId": "0",

3 "messageType": "PublisherNotification",

4 "location": {

5 "latitude": ...,

6 "doc_type": "GeoLocation",

7 "radius": ...,

8 "longitude": ...

9 },

10 "message": {

11 "title": "...",

12 "url": "...",

13 "text": "...",

14 "viewId": ...,

15 },

16 "publisherId": "..."

17 }

5.1.2 Measurements

MeasrDroid is only capable to send measurements from an Android client to a server.
The result of a measurement is stored in the JavaScript Object Notation (JSON). After
a measurement has been taken its result will be immediately decrypted and cached in
the local �le system of the device. This prevent attackers who have access to the device
from reading any measurements taken by the user. Only C3PO has the key to decrypt
measurements. To save mobile data value MeasrDroid prefers to send measurements
only if the device is connected to a WI-FI network. In case the user is not connected to
such a network for a time, that has been speci�ed by the user in advance, it uploads all
cached measurements at once. This means in order to use the MeasrDroid infrastructure,
any communication between client and server has to be represented by a measurement.
Through the sensors attribute of the @MeasrDroidSetup tag external sensors such as the
GUISensor can be registered. If a measurement with enabled external sensors is started
the GUISensor adds every new user response and the current role of the user to the mea-
surement. Furthermore, MeasrDroids default behaviour to cache measurements until
the device is in a WI-FI network has to be bypassed. Therefore the ForcePublishManager
has been implemented. It delegates all calls to his own instance of a PublishManager
but without checking whether the user is connected to a wireless or mobile network
or whether his donated limit of tra�c has already exceeded. After every interaction
between the user and the application which should be stored on the Publisher Manager

32 Chapter 5. Implementation

such as subscribing to new tags the ForcePublishManager must be called to upload the
new measurements as soon as possible. Message Views must store the user input in
the Noti�cationDB in an object of the response class. The JSON representation of the
response class is represented in 5.3. It stores the original noti�cation and the response
as a string, because no more sophisticated response structure is needed for the current
Message Views.

Listing 5.3: JSON of Response class
1 response: {

2 notification: {

3 ...

4 }

5 response: "..."

6 }

5.1.3 Location Awareness

Requirement R3 demands that the application must be aware of its location. If a message
arrives that is only interesting for users within a certain area, the application conducts a
measurement using MeasrDroid with activated location sensors. The message provides
longitude, latitude and radius to determine the area. After �nishing the measurement
the application evaluates the result on the device. The haversine formula is used to
calculate the distance between the current location and the speci�ed one. It states that
between two points on a sphere the central angle between them is given by equation
(5.1).

haversin(
d

r
) = haversin(ϕ2 − ϕ1) + cos (ϕ1)cos (ϕ2)haversin(λ2 − λ1) (5.1)

Equation (5.2) show the de�nition of the haversin function.

haversin(θ) = sin2 (
θ

2) =
1 − cos (θ)

2 (5.2)

Table 5.1 shows the explanation of the di�erent symbols

After the application of the inverse haversine function the distance between the two
points depending on their GPS coordinates can be derived as shown in equation (5.3).
[12]

d = 2r arcsin(
√
haversin(θ2 − θ1) + cos (θ1)cos (θ2)haversin(λ2 − λ1))

= 2r arcsin(
√
sin2 (

θ2 − θ1
2) + cos (θ1)cos (θ2)sin2 (

λ2 − λ1
2)

(5.3)

5.1. Android Application 33

Table 5.1: Symbol Meaning

Symbol Meaning
d distance between the two points
r radius of the sphere (in this case 6378.1 kilometres)
θ1,θ2 latitude of point 1 and 2
λ1,λ2 longitude of point 1 and 2

5.1.4 Role Selection

The application allows users to select their role. There are three di�erent roles provided
by the application: Student, Professor and Facility Manager.
An application that uses Measrdroid must display its wizard to inform the user about
the fact that measurements are taken. Measrdroid provides the possibility to show
further wizard pages to the user during the installation process. In general there are
two di�erent types of wizard pages: Obligatory and mandatory. The role selection is
a mandatory page. The RolePreferenceManager tracks every change of this setting and
must be set as an Preference Manager in the @MeasrDroidSetup tag. If the user persists
his selection the inherited preferencePersisted method will be called, which ensures to
call the ForcePublishManager to upload the new role preference as soon as possible.
A picture from the application that shows the role selection page is displayed in �gure
5.1.

5.1.5 Graphical User Interface

The Android application uses the ActionBar pattern to provide an intuitive user interface.
An ActionBar allows the user to switch between di�erent fragment through swiping left
or right. A Fragment is an independent page. Subscribed tags, proactive noti�cations
and received noti�cations are fragments in the developed application. The application
uses ActionBarSherlock1 for the implementation of an ActionBar. ActionBarSherlock is
an extension of the native support library and supports all Android versions from 3.x.
These are more than 94.1% 2of all Android devices. Noti�cations from publishers are
displayed in message views. Every type of noti�cation has its own independent message
view and activity to dynamically customize the view programmatically depending on
the message. The built-in view of the application shows for example a button with "More
Information" printed on it, depending whether the message provides an non-empty url
attribute.
New Message Views can be added easily. The class ViewEnum maps the viewId attribute

1http://actionbarsherlock.com/
2https://developer.android.com

http://actionbarsherlock.com/
https://developer.android.com/about/dashboards/index.html?utm_source=suzunone

34 Chapter 5. Implementation

Figure 5.1: Screenshot: Role Selection

which is provided by incoming noti�cations with the corresponding Activity. The
Noti�cationOverviewFragment and Noti�cationManager use this enum to display the
right view for every incoming message. In case that a third view needs to be added, a new
Android Activity and its correspond XML layout must be implemented. Furthermore, a
new entry must be added to the ViewEnum. It is the task of the Activity to store every
response in the Noti�cationDB as a response object and uploads it afterwards through a
call to the ForcePublishManager.

5.2 Publisher Manager

The Publisher Manager acts as a connector between the Android clients and the di�erent
Publishers. It uses MeasrDroid to communicate with the clients and provides a Rest
Interface for publishers. It does also expect the publishers to implement a callable
REST Interface. The Publisher Manager uses the Python Pyramid Web Framework that
emphasizes its small size and its customizability. [13]

5.2. Publisher Manager 35

5.2.1 Authentication

The Publisher Manager provides a variety of services. But its capabilities should not be
exposed to everybody. The implementation of an authentication mechanism is therefore
necessary. HTTP Basic authentication (BA) is one of the widely used authentication
mechanism in the world wide web. The transferred username and password are encoded
with Base64 but neither encrypted nor hashed. BA should therefore always used in
connection with HTTPS. The credentials are cached in the browser for 15 minutes.
BA has also the disadvantage that username and password must be given in every
request which increases the danger of an attack and the logout is only possible if the
user closes the window. The Publisher Manager uses therefore a hybrid solution. The
user authenticates herself once with basic http authentication and receives a auth_tkt
session cookie in return. If another service is called, the Publisher Manager uses this
cookie for further authentication.
At the time of writing there are two di�erent permission types implemented to illustrate
the access control. The user admin has the right to call interfaces with the permissions
view and edit. The user viewer belongs to the group of spectators and has only view
rights. The admin group has full control about the publisher and is allowed to perform
every possible action.

5.2.2 RESTful Service

For the implementation of a RESTful Service the Publisher Manager uses the cornice
REST framework. It provides useful helpers to build and document services. It also
has a sensible default behaviour that follows best practices such as raising a Http Bad
Request error if a non standard conform JSON object has been provided.3 Furthermore,
cornice takes care to check if the cookie of the user matches the speci�ed permission.

The table 5.2 provides a full overview about the provided REST Interface and an short
explanation for every address. All addresses are relative to the base url of the Publisher
Manager. The addresses /publisher/register and publisher/sendMessage expect complex
data in the body of the request encoded as JSON. These services are therefore described
in detail in the following chapters.

The Publisher Manager does also expect all of its Publisher to provide a REST Interface.
Table 5.3 shows an overview of the expected interface.

3https://cornice.readthedocs.org/en/latest/

https://cornice.readthedocs.org/en/latest/

36 Chapter 5. Implementation

Table 5.2: REST Interface - Publisher Manager

Address Type Permission Meaning
/publisher/register POST edit Add a new Publisher to the Publisher

Manager. Returns the id of the new
Publisher

/measrdroid/upload GET None Called by C3PO to indicate that new
measurements are available

/publisher/sendMessage POST edit Send a new message from a publisher
to the subscribed clients

/publisher/info GET view Get information about all stored Pub-
lishers

/request/info GET view Get all requests send by one pub-
lisher. The url parameter publisherId
speci�es the said publisher.

/publisher/delete POST edit The id of the publisher must be given
in the body in the �eld publisherId

/role/info GET view Show all available roles
/login POST None Returns an auth_tkt session cookie
/logout POST None Removes the session cookie from the

browser

Table 5.3: REST Interface - Publisher

Address Type Meaning
/receiveMessage POST Signals that a new respond for this Publisher has

arrived. The complete response object is provided
as JSON in the body of the request.

5.2.2.1 Sending a Message

In listing 5.4 the JSON structure is shown that the publisher/sendMessage address
requires. The viewId identi�es the Message View. In the current implementation only
the viewId one is occupied. It is noticeable that the provided viewId must be identical
with the corresponding Message View Id that is stored in the ViewEnum class of the
Android Application. It is the task of the programmer to ensure that these ids match.
The publisherMessageId is given by the publisher to map the request and response of
its messages. Longitude, latitude and radius specify a certain areal. These parameters
are optional. The provided radius is interpreted in meter. The url attribute points to a
website with further information. This �eld is also optional.

5.2. Publisher Manager 37

Listing 5.4: sendMessage
1 {

2 viewId: "..",

3 publisherMessageId "..",

4 roleIds: ["..", ..],

5 tagIds: ["..", ..],

6 textMessage "..",

7 longitude: "..",

8 latitude: "..",

9 radius: "..",

10 url: ".."

11 }

5.2.2.2 Registering a new Publisher

To register a new Publisher a request with the body displayed in listing 5.5 must be
sent to publisher/register. Tags is a list with the name of all Tags that the Publisher
will manage. The url attribute describes the base url of the publisher. The Publisher
Manager expects the Publisher to provide a RESTInterface under this url. Name and
description are plain strings. The roles attribute is a list that expects object from type
role.

Listing 5.5: register
1 {

2 tags: ["..", ..]

3 url: "..",

4 description: "..",

5 name: "..",

6 roles: ["..", ..]

7 }

5.2.3 Communication with Android Clients

Due to MeasrDroids strict security architecture no direct communication with Android
Clients is possible. Every measurement taken by the MeasrDroid Core is encrypted with
a key so that only C3PO is able to decrypt the measurement. Also messages send to the
client must be signed by C3PO. C3PO stores all incoming measurements that belong to
gui_id=5 in the directory /srv/measrdroid/incoming/ of the Publisher Manager and calls
the /measrdroid/upload service to signal the presence of new data. MeasrDroid uploads

38 Chapter 5. Implementation

all new measurements every �ve minutes. The format of incoming measurement is
displayed in listing 5.6.
In the error attribute every deactivated sensor is listed. Every Android client has a
unique client_id. The client_id is a hash value over multiple hardware characteristics of
the device. It is therefore possible to recognize clients even after a reinstallation of the
application. MeasrDroid conducts a �rst measurement after the user has �nished the
installation of the application. This is the only time that also the gcm_id is included in
the measurement. It is therefore important to store the gcm_id and the corresponding
gcm_id. The core_ver speci�es the version of the MeasrDroid Core. MeasrDroid puts all
information provided by non-built-in components in the gui �eld of the JSON. The data
�eld contains all data from external sensors. Currently, just the GUISensor is registered
as external sensor and the RolePreferenceManager as preference manager. A response
from the client contains a text and the appropriate tag. Also the subscribed Tags and
role are sent to update the user entry in the database. The measurements are sorted by
their timestamp and parsed in this order. This way the newest role selection will not be
overridden by an older one. This is important because multiple measurements of role
selections can arrive on the Publisher Manager at the same time as already mentioned.

C3PO checks the directory /srv/measrdroid/outgoing/ every three minutes for new mes-
sages. MeasrDroid expects messages in the structure as displayed in listing 5.7 and
will discard any message that does not follow this speci�cation without any error. The
payload is in the context of this work a message that can be parsed by the Google-
CloudMessagingManager class of the application (see also 5.2)

5.2. Publisher Manager 39

Listing 5.6: Incoming Messages
1 {

2 "error" : {

3 ...

4 },

5 "result" : {

6 "client_id" : "...",

7 "conf_id" : "..",

8 "core_ver" : 11,

9 "device_id" : "...",

10 "gui": {

11 "data" : {

12 "GUISensor" : {

13 "responses" : "[{

14 "response" : "...",

15 "tags":[{"title": "..",

16 "_id": ".."}, ...

17]}

18 }]",

19 "subscribedTags" : "[

20 {"title" : "...", _id : "..."},

...

21]

22 }

23 },

24 "settings" : {

25 "role" : {

26 "user_role" : "..."

27 }

28 }

29 },

30 "gui_id" : 5,

31 "timestamp" : "...",

32 ...

33 }

34 }

40 Chapter 5. Implementation

Listing 5.7: Outgoing Message
1 {

2 ids: ["..", ..]

3 payload: {

4 ...

5 }

6 }

5.2.4 Database

The Publisher Manager must persist data to keep track of incoming and outgoing mes-
sages and the user base. In the following the decision for CouchDB and its integration
is explained in detail.

5.2.4.1 CouchDB

The usage of a NoSQL database is a sensible choice for the Publisher Manager. The
reason therefore lays in the fact that only JSON is used as a format for communication
within the MeasrDroid Project. NoSQL databases do not have a relational database
schema in contrast to relational databases. CouchDB belongs to the class of document-
oriented databases which is a subclass of NoSQL databases. Those databases get the
type of an entry from the data itself instead from an explicit entry in the database. Every
document in the database has an unique id �eld. CouchDB does also provide a REST
API for updating and querying the database. To integrate CouchDB into the Python
Pyramid Web Framework the couchdbkit4 database driver has been used. It provides
many features such as schema de�nitions and representation of database entries as
Python objects that are similar to dictionaries. Couchbkit is available on the Python
Package Index (pip) and licensed under a Creative Commons Attribution 2.0 License5.

5.2.4.2 Data Schemas

Couchdbkit allows to de�ne CouchDB data schemas. Even if CouchDB allows the
storage of JSON �les that do not have any schemas, the application of schemas has
advantages. In a data schema �elds can have restrictions such as minimal or maximal
size. Furthermore, they can be marked as required or optional. This approach allows
the automatic validation of input data at storage time which leads to a more consis-
tent database. The Publisher Manager has schema de�nitions for Roles, Tags, Users,

4http://couchdbkit.org/
5https://creativecommons.org/licenses/by/2.0/

http://couchdbkit.org/
https://creativecommons.org/licenses/by/2.0/

5.2. Publisher Manager 41

Locations, Messages, Publishers, Requests and Responses. Listing 5.8 shows the schema
de�nition of the user model. The gmcId and clientId are stored as Strings. One user
can subscribe to multiple tags, the tagIds attribute is therefore a list of strings. Due
to its small size, the role attribute can be stored as a SchemaProperty that copies this
database entry into the document. In this case no second lookup of the id is necessary.

Listing 5.8: User Schema
1 class User(Document):

2 gcmId = StringProperty(required=True)

3 role = SchemaProperty(required=False, schema=Role)

4 tagIds = StringListProperty(required=False)

5 clientId = StringProperty(required=True)

5.2.4.3 Querying

CouchDB exposes an API to write views for querying the database. A view consists
of a map and eventually a reduce function. The map function executes an operation
on the whole dataset such as a selection. Listing 5.9 shows a map function that selects
all documents with type user. The select function of other document schemas are
analogously.

Listing 5.9: Map Function: User Select
1 function(doc) {

2 if (doc.doc_type == "User"){

3 emit(doc._id, doc);

4 }

5 }

Listing 5.10 shows the selection of all users that have the same clientId as the key variable.
The web server applies this view and passes the key through the following command
from a Python application: User.view(’user/�ndUserByClientId’, key=client_id).

Listing 5.10: Map Function: FindBy ClientId
1 function(doc) {

2 if(doc.doc_type == "User") {

3 key = doc.clientId;

4 value = doc;

5 emit(key, value);

6 }

7 }

42 Chapter 5. Implementation

Through a reduce function it is possible to apply a function over the complete dataset.
Nevertheless, this is not necessary in the case of the Publisher Manager web application.

5.2.5 Frontend

The Publisher Manager provides a frontend for administrative tasks such as adding new
Publishers to the database or delete old ones. The frontend of the server consists only
of static �les, no rendering of documents is executed on the server. To provide an inter-
active user experience the JavaScript MVC framework AngularJS is used. AngualarJS is
capable of two way data binding. This means, if the user changes data on the frontend
the data does also change in the underlying service and vice versa. AngularJS provides a
built-in HTTP service that is capable to call the REST Interface of the Publisher Manager
via AJAX. The presented approach has many advantages. On the one hand it lowers
the used performance on the backend, because no rendering must be executed. On the
other hand the needed bandwidth is reduced, due to the fact that the Publisher Manager
delivers only JSON �les instead of complete HTML documents with redundant infor-
mation after the page has loaded the �rst time. AngularJS has a strong ecosystem that
provides access to many extensions. Those are installed with the frontend dependency
manager bower.

5.3 Demo Publisher

To demonstrate the capabilities of the system a Demo Publisher has been implemented.
The server uses the Express web framework for Node.js. Node.js utilizes the Google V8
runtime engine to execute JavaScript code outside the browser. The usage of Node.js has
many advantages such as code sharing between client and server and non-blocking input
and output calls. The Node Package Manager (npm) distributes thousands of production
ready Node.js packages what accelerates the development of applications. [14, Chap-
ter 8]
Node.js is therefore an ideal �t for the development of the Demo Publisher. The usage
of two di�erent web technologies for Publisher Manager and Publisher shows also that
both architectures are completely independent from each other and only rely on the
speci�ed REST Interface.
Also the web interface of the Publisher Demo Server has been implemented with angu-
larJS. Furthermore the socket.io package is used to establish a two-way socket connec-
tion between client and server.6 This means, that the server can start the communication
with the client or broadcast new events to all listening clients. This leads to a reduction
of bandwidth in comparison to other approaches such as calling the REST Interface
after a certain time interval to check for updates.

6http://socket.io/

http://socket.io/

5.3. Demo Publisher 43

The Demo Publisher uses bower as frontend package manager. To add a new dependency
to the application a new entry must be added to the bower.json �le. Bower is available
on the Node Package Manager and licensed under the MIT License.7

To automate repetitive tasks such as mini�cation, compilation, unit testing and linting
the JavaScript task runner Grunt is used. Grunt is also available on the Node Package
Manager and licensed under the MIT License.8

7http://bower.io/
8http://gruntjs.com/

http://bower.io/
http://gruntjs.com/

44 Chapter 5. Implementation

45

Chapter 6

Evaluation

In the following the developed system is evaluated under di�erent aspects.

6.1 Usability

The usability of the application (R8; c.f. section 3.3.2) is an important requirement. New
users should be able to use the application without special training. To reach this goal
the application follows conventions that the user are already familiar with if they have
minimal experience in the use of mobile phone applications.
The application uses the ActionBarSherlock library as described in chapter 5.1.5 to
apply the ActionBar interface pattern. The action bar of the Application is divided into
three di�erent action bars. The main action bar displays the MeasrDroid branding and
indicates a menu through three points in the upper right corner. Under the main action
bar the top bar displays three di�erent Categories: Noti�cation Overview, Proactive
Noti�cation and Publisher. The user can switch between them through swiping left and
right. The bottom bar displays another branding for the Chair for Network Architectures
and Services of the Technische Universität München. Summarizing it can be said that
the application follows the Google Style Guide for mobile applications. [15] Figure 6.1
shows the ActionBar of the �nal application.

The developed application uses the same colour scheme and layouts as the MeasrDroid
App does which is available on the Google Play Store. On this way a recognizable brand
is established.

46 Chapter 6. Evaluation

Figure 6.1: Screenshot: ActionBar

6.2 Latency

Latency is the time interval between a request and the matching response. Only through
a low latency Real Time Applications are realisable (R7; c.f. section 3.3.2). In the
following the latency of the developed system is analysed. If a Publisher sends a request
to its clients, it sends the message to the Publisher Manager with a call of its REST
Interface. The Publisher Manager validates the new message and puts it into a certain
directory in the �le system. C3PO checks this directory for new new messages every
three minutes. Afterwards, MeasrDroid signs the message so that the MeasrDroid Core is
able to approve the message. C3PO pushes all new messages to gcm.droid every minute
where messages are send from to clients via GCM. The time GCM needs to deliver a
message highly depends on the network connection of the client. The client needs also
one to two minutes to conduct a GPS measurement that is only necessary if the message
depends on the location of the user. The response of the user is uploaded to upload.droid
immediately after the input. C3PO checks upload.droid every three minutes for new
messages, puts them every three minutes in a special directory of the Publisher Manager
and calls a REST API to signal the incoming of new messages. An overview about the

6.3. Privacy 47

described process and times is depicted in �gure 6.2.
In the worst case a message needs ten to twelve minutes from the publisher to the client
and back, assuming that the user responses immediately to the new request and GCM
delivers the message without an additional delay.
A main part of the high latency is caused by the usage of the MeasrDroid backend
around C3PO. Without the use of MeasrDroid the latency is the sum of usual network
latency and the time for a GPS measurement.

6.3 Privacy

Privacy is also an important requirement for the developed application (R5; c.f. section
3.3.2). The application uses the MeasrDroid system to take measurements and to transfer
information from the client to the server and vice versa. On the one hand MeasrDroid
Core ensures that every incoming message has been decrypted by C3PO. On the other
hand C3PO accepts only messages that have been signed by the MeasrDroid Core. Thus,
Publishers that use the Publisher Manager to communicate with the client do not need
to establish their own secure connection. Every publisher is as trustworthy to the client
as MeasrDroid itself.
The determination of the user position happens on the device itself as explained in
chapter 5.1.2. Therefore, no active tracking of the user position is necessary.

6.4 Extensibility

Extensibility is according to 3.3.2 requirement R7. The system consists of Publisher
and Subscribers. The architecture must ensure that both parties can be extended by
new functionality easily. On the one hand Publishers can be added, edited and removed
easily through the Publisher Manager. There are no restrictions regarding technologies
for a Publisher, the developer is free to choose a language and framework she feels
comfortable in. It is also possible to integrate third party services into a Publisher. In
general, it is not necessary to have knowledge in the development of Android applica-
tions to use the presented framework.
The developed Android application on the other hand can be enriched with new Message
Views. The process to do so is described in detail in chapter 5.1.5. New Message Views
can enrich the user experience trough new interactive content. Furthermore, the system
does also provide the capability to send an url to the user that links to a website with
further information.

All in all it can be said that the developed system ful�ls this requirement. The REST
API of the Publisher Manager provides a �exible way to communicate with the clients

48 Chapter 6. Evaluation

Table 6.1: Evaluation Summary

Name Explanation Evaluation
Publisher Subscriber Pattern has been fully implemented ++
Role-based Channels Role based messages and channels are possi-

ble, but the user can freely choose her role
without authentication.

+

Location Awareness The Android Clients are capable to measure
the exact location with MeasrDroid.

++

Security It is the task of the Publisher to ensure the
absence of false information.

◦

Privacy MeasrDroid ensures the integrity of user in-
formation. The API does not expose any user
locations to the Publishers.

++

Real Time Interaction MeasrDroids backend infrastructure is only
capable to deliver and receive messages with
a high latency (10 - 12 minutes)

- -

Extensibility New Publisher and Subscriber can be added
easily. The addition of new roles is slightly
more complicated

+

Usability The Application follows best practices and
common design patterns to provide an intu-
itive user experience.

++

with as less restrictions as possible. Also the usage of JSON as primary communication
format is well chosen due to its widespread distribution it has parsers in nearly all
common languages. The Android application on the other hand can be extended with
new views.

6.5 Summary

The table 6.1 gives a quick overview over the results of this chapter. The requirements
have the same order as in chapter 3.3.

6.5. Summary 49

Figure 6.2: Overview Latency

50 Chapter 6. Evaluation

51

Chapter 7

Conclusion & Outlook

The overall goal of smart buildings is the improvement and optimization of living and
working environment. In order to achieve this goal connectivity is a crucial factor: A
variety of devices and users with di�erent tasks and authorization must communicate
with each other. To motivate user to participate actively in the communication a user-
friendly mobile phone application has been developed. New Users can be easily added to
the system through the installation of an Android Application that guides them through
all important steps of the setup process. (RQ1) In order to avoid an overwhelming
amount of information the Publisher/Subscriber pattern has been applied to let the user
freely choose between all available Publishers for her role. (RQ3) The described system
allows to easily extend the system by further Publishers that use a REST API to send and
receive messages form the clients. The developer of such a Publisher is not restricted to
any technology and can use the system without any knowledge of mobile application
development. New Publishers must be registered on the Publisher Manager and are then
able to receive messages from and send to their user base.
The communication between subscriber and publisher is completely encrypted by the
MeasrDroid framework. The API of the Publisher Manager exposes as less data as
possible to its Publishers to ensure the integrity of the collected user data. As a result of
this e�ort the creation of a movement pro�le is not possible. (RQ3, RQ4)
Also a demo Publisher is implemented that uses the Express Framework for Node.JS.
This publisher provides an easy user interface to send messages manually to clients and
serves as a foundation for further developments.

The presented system is a proof of concept that the di�erent components of MeasrDroid
can be used outside of their intended domain. Nevertheless, there are also aspects of
the implementation which need further improvement to provide a solid solution that
can be used in a real environment.
One important aspect of the system is the role system. The current system allows all
users to select their role freely. Of course, this mechanism must be exchanged for a

52 Chapter 7. Conclusion & Outlook

service that provides a user authentication mechanism.
The system provides two Message Views at the moment. One to respond to incoming
requests and another one for sending proactive noti�cations. The application can be ex-
tended in the future with new Message Views. A detailed explanation about the existing
Message Views can be found in chapter 5.1.5.

In chapter 6 it has been shown that it take at least twelve minutes to get a response after
the client has send a message. The reason therefore lays in the fact that the architecture
of MeasrDroid is intended for non-time-critical applications and a high number of users.
Its strict security policy prohibits the development of real time applications. In order to
address this issue a new backend for the MeasrDroid Project must be developed. The
new server must have a less strict security policy that allows the direct sending of data
from the server to the client and vice versa. In this case no changes to the MeasrDroid
Core component would be necessary.

Appendices

53

55

Appendix A

Glossary

• C3PO C3PO is the main server of the MeasrDroid backend. It is not connected to
the Internet. C3PO is not callable from the outside, every communication must
be initialized by it. Data must be transferred through the �le system.

• MeasrDroid Backend The MeasrDroid Backend consists of multiple servers. It
persists all client measurements in a database and provides further features such
as con�guration �les for clients.

• MeasrDroid Core The MeasrDroid core is part of the MeasrDroid Framework.
It can be used to develop Android applications which use the capabilities of
MeasrDroid. It provides a programmatic way to take measurements using a
variety of sensors.

• Measurement A Measurement is the only way for a client to communicate with
the MeasrDroid Backend.

• Message View Publisher can specify a Message View. Message Views are native
Android views and provide a way to extend the presentation of data on android
clients. At the time of writing there are two views already implemented.

• Publisher A Publisher is a service communicates with users using the REST
Interface of the Publisher Manager. It does not communicate with MeasrDroid
directly.

• Publisher Manager The Publisher Manager takes messages from Publishers and
uses MeasrDroid to deliver them to the clients.

• PublisherNoti�cationA Publisher Noti�cation is message sent from a publisher
to a subscriber via the Publisher Manager. Whether a subscriber receives the
message or not depends on her role and the subscribed tags.

• Role A Client can only have one role. Roles help the Publisher Manager to

56 Appendix A. Glossary

understand which Publishers and Tags can be subscribed from Subscribers. The
roles provided by the current implementation are facility manager, student and
professor.

• Subscriber A subscriber is a user of the Android application. She has a role and
can subscribe to multiple tags.

• Tag One Publisher can have multiple Tags, which can be attached to commu-
nication events. Tags help the Publisher Manager to send the right information
to subscribers. The Subscriber can subscribe to tags which are grouped by their
publishers.

57

Bibliography

[1] R. R. Brad Brech, “Smart cities series: Understanding the ibm approach to
e�cient buildings,” pp. 1 – 5, 2011, accessed: 2015-07-14. [Online]. Available:
http://www.redbooks.ibm.com/redpapers/pdfs/redp4735.pdf

[2] M. Rerych, “Wasserfallmodell : Entstheungskontext,” 2007, accessed: 2015-
07-14. [Online]. Available: http://cartoon.iguw.tuwien.ac.at/�t/�t01/wasserfall/
entstehung.html

[3] C. Group, “Smart 2020: Enabling the low carbon economy in the information
age,” pp. 40 – 55, 2008, accessed: 2015-07-14. [Online]. Available: http:
//www.smart2020.org/publications/

[4] S. Z. A. für Hochbauten, “Schlussberihct nutzverhalten beim wohnen: Analse,
relevanz und potenzial von massnahmen zur reduktion des energieverbrauchs
(e�zienz und su�zienz),” pp. 21 – 46, 2011, accessed: 2015-07-14. [Online].
Available: http://www.mehralswohnen.ch/�leadmin/download/1107_Bericht_
Nutzerverhalten.pdf

[5] M. W. Sabine Veth, “Umweltbewusstsein in deutschland 2008,” pp. 39 – 45, 2008,
accessed: 2015-07-14. [Online]. Available: http://www.umweltbundesamt.de/sites/
default/�les/medien/publikation/long/3678.pdf

[6] D. K. S. Dr. Jutta Emig, “Umweltbewusstsein in deutschland 2012,” pp. 42 – 50,
2012, accessed: 2015-07-14. [Online]. Available: http://www.umweltbundesamt.de/
sites/default/�les/medien/publikation/long/4396.pdf

[7] M. Faath, “Analysis of content delivery networks with an Android-based mea-
surement framework,” Master’s Thesis, Technische Universität München, Munich,
Germany, 2013, Advised by Dipl.-Inf. Johann Schlamp.

[8] “Measrdroid on the google play store,” accessed: 2015-07-14. [Online]. Available:
https://play.google.com/store/apps/details?id=de.tum.in.net.measrdroid.gui.stats

[9] IDC, “Smartphone os market share, q1 2015,” 2015, accessed: 2015-07-14. [Online].
Available: https://www.idc.com/prodserv/smartphone-os-market-share.jsp

http://www.redbooks.ibm.com/redpapers/pdfs/redp4735.pdf
http://cartoon.iguw.tuwien.ac.at/fit/fit01/wasserfall/entstehung.html
http://cartoon.iguw.tuwien.ac.at/fit/fit01/wasserfall/entstehung.html
http://www.smart2020.org/publications/
http://www.smart2020.org/publications/
http://www.mehralswohnen.ch/fileadmin/download/1107_Bericht_Nutzerverhalten.pdf
http://www.mehralswohnen.ch/fileadmin/download/1107_Bericht_Nutzerverhalten.pdf
http://www.umweltbundesamt.de/sites/default/files/medien/publikation/long/3678.pdf
http://www.umweltbundesamt.de/sites/default/files/medien/publikation/long/3678.pdf
http://www.umweltbundesamt.de/sites/default/files/medien/publikation/long/4396.pdf
http://www.umweltbundesamt.de/sites/default/files/medien/publikation/long/4396.pdf
https://play.google.com/store/apps/details?id=de.tum.in.net.measrdroid.gui.stats
https://www.idc.com/prodserv/smartphone-os-market-share.jsp

58 Bibliography

[10] L. Krug, “A System for giving Practical Advice for Energy Savings Based on Sen-
sor Information,” Bachelor’s Thesis, Technische Universität München, Munich,
Germany, 2015, Advised by Holger Kinkelin, Marcel von Maltitz.

[11] “Measurement overview,” 2015, accessed: 2015-07-14. [Online]. Available:
http://www.droid.net.in.tum.de/about/measurements

[12] U. S. C. Bureau, “Geographic information systems faq„” accessed: 2015-07-14,
Repost, Linked has been removed. [Online]. Available: http://www.movable-type.
co.uk/scripts/gis-faq-5.1.html

[13] “The pyramid web framework,” 2015, accessed: 2015-07-14. [Online]. Available:
http://docs.pylonsproject.org/projects/pyramid/en/latest/

[14] M. W. Tom Hughes-Croucher, Node: Up and Running, 2012.

[15] “Action bar,” 2015, accessed: 2015-07-14. [Online]. Available: https://developer.
android.com/design/patterns/actionbar.html

http://www.droid.net.in.tum.de/about/measurements
http://www.movable-type.co.uk/scripts/gis-faq-5.1.html
http://www.movable-type.co.uk/scripts/gis-faq-5.1.html
http://docs.pylonsproject.org/projects/pyramid/en/latest/
https://developer.android.com/design/patterns/actionbar.html
https://developer.android.com/design/patterns/actionbar.html

	Introduction
	Motivation
	Problem
	Goals and Research Questions
	Application of the waterfall model

	Background
	Smart Building
	Importance of Feedback for Influencing Users
	Google Cloud Messaging
	Measrdroid
	MeasrDroid Core
	Backend Infrastructure
	Properties of MeasrDroid

	Publisher/Subscriber pattern

	Analysis
	Roles
	Use Cases
	First Aid
	Proactive Notification
	Interest Groups
	Confirmation of Malfunctions
	Reduce Energy Consumption

	Requirements
	Functional Requirements
	Non-functional Requirements

	Design
	Architecture
	Publisher
	Contextual Evaluation of the MeasrDroid Framework
	Additions to MeasrDroid Framework
	Additions to the Backend
	Android App
	Summary

	Information Flow
	Privacy

	Implementation
	Android Application
	Integration of Google Cloud Messaging
	Measurements
	Location Awareness
	Role Selection
	Graphical User Interface

	Publisher Manager
	Authentication
	RESTful Service
	Communication with Android Clients
	Database
	Frontend

	Demo Publisher

	Evaluation
	Usability
	Latency
	Privacy
	Extensibility
	Summary

	Conclusion & Outlook
	Appendices
	Glossary
	Bibliography

